Type approval certificate Number **T8910** revision 5 Project number 2491609 Page 1 of 1 Issued by NMi Certin B.V. In accordance with The "Metrologiewet" (Stb. 2006, 137) and the "Regeling nationaal autonoom geregelde meetinstrumenten" Manufacturer Endress+Hauser SE+Co. KG Hauptstrasse 1 79689 Maulburg Germany Measuring instrument An automatic level gauge Manufacturer's mark or name : Endress+Hauser SE+Co. KG Type designation : NMR81 and NMR84 Further properties are described in the annexes: - Description T8910 revision 5; - Documentation folder T8910-3. Remarks – This revision replaces the previous revisions; - The documentation folder replaces the previous documentation folder. 26 November 2020 NMi Certin B.V. Thijsseweg 11 2629 JA Delft The Netherlands T +31 88 636 2332 certin@nmi.nl www.nmi.nl This document is issued under the provision that no liability is accepted and that the manufacturer shall indemnify third-party liability. Reproduction of the complete document only is permitted. This document is digitally signed and sealed. The digital signature can be verified in the blue ribbon at the top of the electronic version of this certificate. Number **T8910** revision 5 Project number 2491609 Page 1 of 7 ### 1 General information about the level gauge Properties of the level gauge, whether mentioned or not, shall not conflict with the legislation. #### 1.1 Essential parts See document number 8910/0-02 for assembly drawing of the level gauge housing. #### 1.1.1 Electronic parts The level gauge is composed of the following parts: | The level gauge is composed of the following parts: | | | | | |---|--|-------------------|--|--| | Part | Documentation | Remarks | | | | Display/Keyboard | 8910/0-03, 0-04, 0-05,
5-01, 5-02, 5-03 | - | | | | Frontplane | 8910/0-06, 0-07 | - | | | | IOM-Analog AEXd | 8910/0-08, 0-09, 0-10, 2-02 | - | | | | IOM-Analog AEXi | 8910/0-11, 0-12, 0-13, 2-03 | - | | | | IOM-Digital | 8910/0-14, 0-15, 0-16 | - | | | | IOM-Modbus | 8910/0-17, 0-18, 0-19 | - | | | | IOM-V1/WM550 | 8910/0-20, 0-21, 0-22,
5-04, 5-05, 5-06 | - | | | | Main Board (CPU) | 8910/0-23, 0-24, 0-23 | - | | | | Power supply HV AC | 8910/0-26, 0-27, 0-28 | HV = High voltage | | | | Power supply LV AC | 8910/5-07, 5-08, 5-09 | LV = Low voltage | | | | Power supply LV DC | 8910/5-10, 5-11, 5-12 | LV = Low voltage | | | | Ex-Limiter | 8910/0-29, 0-30, 0-31 | - | | | | SMR-C APP | 8910/0-32, 0-33, 0-32 | - | | | | SMR-C MWM | 8910/0-35, 0-36, 0-37 | - | | | | SMR-E APP | 8910/0-38, 0-39, 0-40 - | | | | | SMR-E MWM | 8910/0-41, 0-42, 0-43 | 1, 0-42, 0-43 | | | ### 1.1.2 Antenna's | Part | Documentation | Remarks | |---|-----------------|---| | NMR81 sensor | 8910/0-44, 2-01 | | | - NMR81 DN50 | 8910/0-45 | Type NMR81 with drop (or so called lens) antennas suitable | | - NMR81 DN80 | 8910/0-46 | for free space applications. | | - NMR81 DN100 | 8910/0-47 | тел пес эрасе аррисанелы | | NMR84 sensor | 8910/0-48 | Type NMR84 with planar | | - NMR84 DN100 | 8910/0-49 | antennas suitable for stilling | | - NMR84 DN150
Optional horn antenna's
DN200, DN250 or DN300 | 8910/0-50 | well applications.
Optionally for the DN150 a
horn antenna can be attached. | 2/8 Endress+Hauser Number **T8910** revision 5 Project number 2491609 Page 2 of 7 Remark: The sizes mentioned in the table are regarding antenna size. The process connection is independent of the size of the antenna. #### 1.1.3 Remote indications (optional) The following remote indications can be used optionally: - NRF81, as described in the Test Certificate TC8909; - Tankvision, as described in the Test Certificate TC7445; - Tankvision Professional, as described in the Test Certificate TC8732. #### 1.2 Essential characteristics #### 1.2.1 Maximum measuring range | Туре | Maximum range | Remarks | |--|---------------|--| | NMR81 | 30 metre | - | | NMR84 size DN100 | 20 metre | - | | NMR84 size DN150
Optional horn antenna's
DN200, DN250 or DN300 | 35 metre | For the maximum range of 35 m, it is sufficient to calibrate up to 30 m. | #### 1.2.2 Gauge reference compensation It should be noted that certain applications are possible if and only if a correctly functioning system is implemented for temperature compensation for expansion of the tank shell or stilling well. The actual maximum measuring height is determined per application. Prior to that the manufacturer shall prove, by calculation and by measurements, that the intended application can be considered legal. See paragraph 1.2.7 regarding vapour influence of the liquid product. #### 1.2.3 Temperature range ambient - -25 °C / +55 °C #### 1.2.4 Electromagnetic environment class E2 #### 1.2.5 Power supply The level gauge can be powered by one of these options: - AC high voltage (HV), in the range of 100 ... 240V AC (-15% / +10%) @ 50/60Hz. - AC low voltage (LV), with 65 V AC (-20% / +15%) @ 50/60Hz. - DC low voltage (LV), in the range of 24 ... 55 V DC (-20% / +15%) @ 50/60Hz. #### 1.2.6 Indication - Scale interval of the indication, in m or mm, shall not be greater than 1 mm. - Indication of status messages, error messages and alarm messages. - Indication of the device locking status. #### 1.2.7 Liquid product range Application of the level gauge is allowed on the following products: Liquids, stored under atmospheric conditions, with the restriction that no heavy foam is present; and Endress+Hauser 3/8 Number T8910 revision 5 Project number 2491609 Page 3 of 7 Liquids of which the vapour influence does not affect the legal aspects of the accuracy. The maximum error caused by the vapour influence may be calculated using the following formulas as stated in the next section. #### Additional information to determine the vapour influence The maximum error caused by the vapour influence may be calculated using the following formulas. If the dielectric constant of the product is known the formula is: $$\delta \ell = \left[\frac{p_{m,gas}^{(t)}}{p_0} \varepsilon_m^{1/2} + \frac{p_0^{(t)} - p_{m,gas}^{(t)}}{p_0} \varepsilon_{air}^{1/2} - \varepsilon_{air}^{(20)^{1/2}} \right] \times 1000 \quad [mm/m]$$ If the breaking index is known the formula is: $$\delta \ell = \left(\frac{p_{m,gas}^{(t)}}{p_0} n_{m,gas}^{(t)} + \frac{p_0 - p_{m,gas}^{(t)}}{p_0} n_{air}^{(t)} - n_{air}^{(20)}\right) \times 1000 \quad [mm/m]$$ In the above given formulas the meaning of the variables is as follows: = length error, in mm/m P^(t) m,gas = vapour pressure at the given vapour temperature, in torr = pressure in the tank, in torr Po $\epsilon^{\frac{1}{2}}$ m = dielectric constant of the vapour at the given vapour temperature $\epsilon^{\frac{1}{2}}$ air = dielectric constant of the air at the given vapour temperature $\epsilon^{\frac{1}{2}}\,\mathsf{m}$ $\epsilon^{(20)\%}$ air = dielectric constant of the air at 20 °C (reference value) n (t) m,gas = breaking index of the vapour at the given vapour temperature n (20) air = breaking index of the air at 20 °C (reference value) = vapour temperature, in °C 1 torr = 133,3224 Pa 1 bar = 750,0617 torr If the product is not stored at the reference temperature (20 °C), the dielectric constant of product and air may be determined using the following formula: $$\varepsilon_{air}^{(t,p)} = \left(\varepsilon_{air}^{(20,1Alm)} - 1\right) \cdot \frac{p}{760[1 + 0.00341(t - 20)]} + 1$$ In an analogous way the breaking index may be determined using the following formula: $$n_{air}^{(t)} = \frac{(n_{air}^{(20)} - 1) \cdot p}{760(1 + 0.00341(t - 20))} + 1$$ In the above given formulas the meaning of the variables is as following: Endress+Hauser 4/8 Number **T8910** revision 5 Project number 2491609 Page 4 of 7 ### Additional information to determine the vapour influence $\epsilon^{\text{(t,p)}}$ air = dielectric constant of the air at given temperature and pressure $\epsilon^{\text{(20, 1 Atm)}}$ air = dielectric constant of the air at 20 °C and 1 Atm (reference value) $n^{(t)}$ air = breaking index of the air at given temperature $n^{(20)}$ air = breaking index of the air at 20 °C (reference value) P = actual pressure, in torr t = actual temperature, in °C 1 torr = 133,3224 Pa 1 bar = 750,0617 torr #### 1.2.8 Software specification (refer to WELMEC 7.2): - Software type P; - · Risk Class C; - Extension T, while extensions L, S and D are not applicable. | Software version | Checksum | Remarks | |------------------|----------|---------| | 01.02.00 | 0x51D2 | - | | 01.02.01 | 0xD919 | - | | 01.03.03 | 0x72A3 | - | | 01.03.04 | 0xA032 | - | | 01.04.01 | 0xcd58 | - | Software version and belonging checksum can be viewed by the display as stated in paragraph 1.5.1. #### 1.2.9 Data communication The level gauge is capable of indicating several quantities. Use for Weights and Measures related purposes is allowed for the following quantities: - Level. The following input(s) can be used for legally relevant data: - 4...20 mA analog input; - HART superimposed; - Digital input. The following output(s) can be used for legally relevant data: - Display; - 4...20 mA analog output; - HART superimposed; - Digital output; - 2-wire serial communication. Endress+Hauser 5/8 Number **T8910** revision 5 Project number 2491609 Page 5 of 7 The following transmission protocols can be used for legally relevant data: - Modbus protocol; - V1 protocol; - WM550 protocol. #### 1.3 Essential shapes #### 1.3.1 Markings The main nameplate is bearing at least, good legible, the following information: - Type approval certificate number T8910; - Name or trade mark of the manufacturer; - Serial number and year of manufacture; - Identification of the measuring tank the level gauged is mounted upon; - The reference height (in mm); - The text "Het nulpunt van de vloeistofhoogtemeter ligt mm beneden het referentiepunt." (meaning: "The zero-point of the liquid level gauge is mm below the reference point."); - The text "Vloeistof" for the nature and characteristics of the liquid product to be measured. This measuring instrument was previously placed on the market under the name "Endress+Hauser GmbH + Co. KG". #### 1.4 Conditional parts #### 1.4.1 Housing The material of the housing of the level gauge is aluminium or stainless steel. #### 1.5 Conditional characteristics #### 1.5.1 Programming When the Weights & Measures switch is set to "W&M sealed" W&M parameters cannot be changed. Below an overview is given of the parameters that are important from a legal point of view, with the correct setting: | Parameter | Value | Remarks | |--------------------------|--------------|--| | Setup | | | | Units preset | mm or m | Used to select one of a preset unit settings. | | Tube diameter | verification | Enter the diameter of stilling well. | | Empty | verification | Distance from reference point to zero position (tank bottom or datum plate). | | Tank reference
height | verification | Defines the distance from the dipping reference point to the zero position (tank bottom or datum plate). | 6/8 Endress+Hauser Number T8910 revision 5 Project number 2491609 Page 6 of 7 | Parameter | Value | Remarks | | |--------------------------|--------------------------------------|--|--| | Set level | verification | If the level measured by the device does not match the actual level obtained by a manual dip, enter the correct level into this parameter. | | | Setup->Advanced S | etup->Display | | | | Value 1 display | tank level | Select the measured value that is shown on the local display. | | | Setup->Advanced S | etup->System | | | | Distance unit | mm or m | Select the unit for distance. This selection does not affect the measurement and calculation accuracy of the device. | | | Diagnostics->Device info | | | | | Firmware version | See § 1.2.8 | Shows the device firmware version installed. | | | Firmware CRC | See § 1.2.8 | Shows the checksum of the firmware version. | | | W&M config CRC | information | Shows the checksum of all W&M parameter. This value can differ from the calibration report. For more information chapter 3. | | | Expert->Sensor->Se | Expert->Sensor->Sensor prop | | | | Sensor module type | calibration | | | | Antenna zero
distance | calibration | | | | Cable zero distance | calibration | | | | Microfactor | calibration
for NMR81
specific | These parameters shall be according to calibration of the level gauge. | | | Phase calibration offset | calibration
for NMR84
specific | cansilation of the level gauge. | | | Phase calibration slope | calibration
for NMR84
specific | | | 1.5.2 Error messages On the indication or indications a message is presented if the measured value is not legal and/or a technical problem occurs. Endress+Hauser 7/8 Number T8910 revision 5 Project number 2491609 Page 7 of 7 #### 2 Seals The following seals are applied: - The Weights and Measures key switch. A seal or sealing sticker has to be place over the switch after system is configured and sealed and switch is closed; - The data plate is fixed to the level gauge and secured against removal by seal or it will be destroyed when removed; - The housing is sealed against opening. For an example of the sealing see document number 8910/5-13. #### 3 **Conditions for conformity assessment** - The level gauge shall be constructed in conformity with the description and documentation folder that belong to this Type approval certificate; - The seals shall be applied as described in chapter 2. - The calibration of the level gauge can be done in a test lab. The result of this investigation is a calibration report, which states the results and the settings of all parameters of the level gauge (as a result of this investigation, some parameters may have to be changed in respect of the original factory settings to adapt to the local conditions during commissioning). For the measurement accuracy the following parameter mentioned in paragraph 1.5.1 shall be verified according to the calibration report: - Sensor module type; - Antenna zero distance; - Cable zero distance; - Microfactor for NMR81 specific; - Phase calibration offset for NMR84 specific; - Phase calibration slope for NMR84 specific. - For NMR84 size DN150 (optional with horn antenna's DN200, DN250 or DN300) a calibration up to 30 metre is sufficient for use of a maximum measuring range of 35 #### **Reports** An overview of performed tests is given in the reports: - NMi-16200591-01; - NMi-16200591-02; - NMi-1902618-01; - NMi-2491609-01: - NMi-2491609-02. A report can be a test report, an evaluation report, a type evaluation report and/or a pattern evaluation report.