Pokyny k obsluze **Prosonic S FMU90 HART**

Měření průtoku Detekce zpětného toku a nečistot Denní počítadla a sumátory

Obsah

1	Důležité informace o dokumentu 4
1.1 1.2 1.3	Funkce dokumentu4Používané symboly4Dokumentace6
1.4	Registrované ochranné známky 6
2	Základní bezpečnostní pokyny 7
2.1 2.2 2.3	Určené použití
3	Popis výrobku 8
3.1	Provedení výrobku: polykarbonátové pouzdro
3.2	ao provozu
3.3 3.4	provozu
	a panel skříně
4	Vstupní přejímka a identifikace
	výrobku 11
4.1 4.2 4.3	Vstupní přejímka 11 Identifikace výrobku 11 Skladování, přeprava 12
5	Montáž 13
5.1	Montáž polykarbonátového pouzdra do
5.2 5.3 5.4	provozu
55	modulu 19 Montáž senzorů 21
5.6	Kontrola po provedené montáži
6	Elektrické připojení
6.1	Podmínky připojení 22
6.2 6.3	Připojení přístroje
7	Možnosti provozu přístroje 44
7.1 7.2	Struktura a funkce nabídky obsluhy 44 Přístup do nabídky obsluhy z místního displeje
8	Systémová integrace 49

9	Uvedení do provozu	50
9.1	Přípravné kroky	50
9.2	Zapnutí měřicího přístroje	50
9.3	Nastavení měřicího přístroje	51
9.4	Pokročilé nastavení	58
9.5	Simulace	70
9.6	Ochrana nastavení před neoprávněným	
	přístupem	71
10	Diagnostika, vyhledávání	
	a odstraňování závad	73
10 1	Věcoborná závadu	72
10.1	Přehled diagnostických informací	76
10.2	Historie firmwaru	79
10.9		1)
11	Údržba	81
11.1	Čištění zvenku	81
		01
12	Opravy	82
12.1	Všeobecné informace	82
12.2	Náhradní díly	82
12.3	Zpětné zasílání	82
12.4	Likvidace	83
10		07
13	Prisiusenstvi	84
13.1	Příslušenství specifická podle typu	
	komunikace	84
13.2	Příslušenství specifická podle daného	~ (
	pristroje	84
14	Nabídka obsluhy	89
1/1	Nabídka Hladina - Hladina (I.VI. N)"	00
14.1	Nabídka Drůtok N"	909
14.2	Nabídka Znětný tok"	90
14.J 14.4	Nabídka Počítadlo průtoku"	93
14.5	Nabídka Beznečnostní nastavení"	93
14.5	Nabídka Relé/ovládací prvkv"	94
147	Nabídka Výstup/výpočet \rightarrow Proudový	71
± 107	výstup N"	100
14.8	Přehled nabídky "Vlastnosti přístroie"	101
14.9	Nabídka "Info o systému"	101
14.10	Nabídka "Zobrazení"	103
14.11	Nabídka "Správa senzorů"	103

1 Důležité informace o dokumentu

1.1 Funkce dokumentu

Tento návod k obsluze poskytuje veškeré informace, které jsou potřebné v různých fázích životního cyklu zařízení, včetně těchto:

- Identifikace výrobku
- Vstupní přejímka
- Skladování
- Instalace
- Připojení
- Ovládání
- Uvedení do provozu
- Vyhledávání a odstraňování závad
- Údržba
- Likvidace

1.2 Používané symboly

1.2.1 Bezpečnostní symboly

A NEBEZPEČÍ

Tento symbol upozorňuje na nebezpečnou situaci. Pokud se této situaci nevyhnete, bude to mít za následek vážné nebo smrtelné zranění.

A VAROVÁNÍ

Tento symbol upozorňuje na nebezpečnou situaci. Pokud se této situaci nevyhnete, může to mít za následek vážné nebo smrtelné zranění.

A UPOZORNĚNÍ

Tento symbol upozorňuje na nebezpečnou situaci. Pokud se této situaci nevyhnete, bude to mít za následek menší nebo střední zranění.

OZNÁMENÍ

Tento symbol obsahuje informace o postupech a dalších skutečnostech, které nevedou ke zranění osob.

1.2.2 Elektrické symboly

\sim

Střídavý proud

Stejnosměrný proud a střídavý proud

Stejnosměrný proud

Ŧ

Zemnění

Zemnicí svorka, která je s ohledem na bezpečnost pracovníka obsluhy připojena na zemnicí systém.

🕀 Ochranné zemnění (PE)

Zemnicí svorky, které musí být připojeny k zemi před provedením jakéhokoli dalšího připojení.

Zemnicí svorky jsou umístěné uvnitř a vně přístroje:

- Vnitřní zemnicí svorka: Ochranné uzemnění je připojeno k síťovému napájení.
- Vnější zemnicí svorka: Přístroj je připojen k provoznímu systému uzemnění.

1.2.3 Značky nástrojů

€ Křížový šroubovák

Plochý šroubovák

♥ Hvězdicový šroubovák

⊖ & Klíč na inbusové šrouby ∀ Klíč otevřený plochý

1.2.4 Symboly pro určité typy informací a grafické znázornění

Povoleno

Postupy, procesy a kroky, které jsou povolené

VV Upřednostňované

Postupy, procesy a kroky, které jsou upřednostňované

X Zakázáno Postupy, procesy a kroky, které jsou zakázané

Tip Označuje doplňující informace

Odkaz na dokumentaci

Odkaz na obrázek

Poznámka nebo jednotlivý krok, které je třeba dodržovat

1., 2., 3.

Řada kroků

└**▶** Výsledek určitého kroku

Vizuální inspekce

Operace přes ovládací nástroj

Parametr chráněný proti zápisu

1, 2, 3, ... Čísla položek

A, B, C, ... Pohledy

Dodržujte bezpečnostní pokyny obsažené v příslušném Návodu k obsluze

Tepelná odolnost připojovacích kabelů Specifikuje minimální hodnotu tepelné odolnosti připojovacích kabelů

1.3 Dokumentace

Na webu společnosti Endress+Hauser (www.endress.com/downloads) jsou v sekci Ke stažení k dispozici tyto druhy dokumentace:

- Přehled rozsahu příslušné technické dokumentace najdete v následujícím:
 - W@M Device Viewer (www.endress.com/deviceviewer): Zadejte sériové číslo z výrobního štítku
 - Provozní aplikace Endress+Hauser: Zadejte sériové číslo z výrobního štítku nebo naskenujte 2D maticový kód (QR kód) na výrobním štítku

1.3.1 Technické informace (TI)

Pomůcka pro plánování

Tento dokument obsahuje veškeré technické údaje o zařízení a poskytuje přehled příslušenství a dalších výrobků, které pro dané zařízení lze objednat.

1.3.2 Stručný návod k obsluze (KA)

Průvodce, který vás rychle provede postupem k získání 1. měřené hodnoty Stručné pokyny k obsluze obsahují veškeré zásadní informace od vstupní přejímky po prvotní uvedení do provozu.

1.3.3 Bezpečnostní pokyny (XA)

V závislosti na typu schválení jsou následující Bezpečnostní pokyny (XA) dodávány společně se zařízením. Tvoří pak nedílnou součást návodu k obsluze.

Na typovém štítku jsou uvedeny bezpečnostní pokyny (XA), které s přístrojem souvisejí.

1.4 Registrované ochranné známky

HART®

Registrovaná obchodní značka FieldComm Group, Austin, Texas, USA

2 Základní bezpečnostní pokyny

2.1 Určené použití

Prosonic S FMU90 je převodník pro ultrazvukové senzory FDU90, FDU91, FDU91F, FDU92, FDU93 a FDU95. Aby byly podporovány stávající instalace, lze rovněž připojit následující senzory: FDU80, FDU80F, FDU81, FDU81F, FDU82, FDU83, FDU84, FDU85, FDU86, FDU96.

Typické měřicí úlohy

- Měření průtoku v otevřených profilech a měrných přepadech
- (Neresetovatelné) sumátory a (resetovatelná) denní počítadla
- Pulzní řízení vzorkovačů na bázi času nebo objemu
- Detekce zpětného toku a nečistot v profilech
- Simultánní měření hladiny nádrže a vypouštěného objemu v přepadové nádrži dešťové vody jediným senzorem

2.2 Instalace, uvedení do provozu a provoz

Přístroj je konstruován tak, aby splňoval aktuální bezpečnostní požadavky, a splňuje veškeré relevantní normy a předpisy ES. Pokud se však nepoužívá správně nebo se používá pro aplikace, pro které není určen, mohou vyvstat rizika související s danou aplikací, např. přetečení produktu v důsledku nesprávné instalace či nesprávného nastavení. Instalaci, elektrické připojení, uvedení do provozu, provoz a údržbu měřicího systému proto musí vykonávat výhradně školení specialisté s oprávněním od provozovatele systému k vykonávání těchto prací. Technický personál si musí předem přečíst a pochopit tento návod k obsluze a musí jej dodržovat. Úpravy a opravy přístroje se smí provádět pouze tehdy, pokud jsou výslovně povolené v návodu k obsluze.

2.3 Provozní bezpečnost a procesní bezpečnost

Musí se zavést alternativní monitorovací opatření k zajištění provozní bezpečnosti a procesní bezpečnosti během nastavení, testování a prací údržby na přístroji.

2.3.1 Prostředí s nebezpečím výbuchu

Pokud se měřicí systém používá v prostředí s nebezpečím výbuchu, musí se dodržovat příslušné národní normy. Přístroj je dodáván se samostatnou "dokumentací pro použití v prostředí s nebezpečím výbuchu (Ex)", která tvoří nedílnou součást tohoto návodu k obsluze. Je třeba přísně dodržovat instalační specifikace, připojovací hodnoty a bezpečnostní pokyny uvedené v této doplňující dokumentaci.

- Dbejte na to, aby byl technický personál dostatečně proškolen.
- Dodržujte metrologické a bezpečnostní požadavky pro dané místo měření.

Převodník se smí instalovat pouze ve vhodných prostorech. Senzory se schválením pro prostředí s nebezpečím výbuchu se smí připojovat k převodníkům, které nemají schválení Ex pro použití v prostředí s nebezpečím výbuchu.

A VAROVÁNÍ

Nebezpečí výbuchu

 Nepřipojujte senzory FDU83, FDU84, FDU85 a FDU86 s certifikátem ATEX, FM nebo CSA k převodníku Prosonic S.

3 Popis výrobku

3.1 Provedení výrobku: polykarbonátové pouzdro do provozu

Platí pro:

Objednací kód 030 (pouzdro, materiál)

Možnost 1 (polykarbonátové pouzdro do provozu, IP 66 NEMA 4x)

I Díly modulu Prosonic S v polykarbonátovém pouzdře do provozu

- 1 Svorky
- 2 Označení a identifikace přístroje
- 3 Očko pouzdra
- 4 Typový štítek
- 5 Kryt modulu svorek
- 6 Zobrazovací a ovládací modul
- 7 Připravené otvory pro kabelové průchodky
- 8 Blok zemnicích svorek
- 9 Kabel displeje
- 10 Stručný návod k obsluze

Pro následující verze přístroje jsou za účelem utěsnění součástí dodávky dva speciální šrouby:

- FMU90-*21*******
- FMU90-*41*******

3.2 Provedení výrobku: hliníkové pouzdro do provozu

📔 Platí pro:

Objednací kód 030 (pouzdro, materiál)

Možnost 3 (hliníkové pouzdro do provozu, IP 66 NEMA 4x)

2 Díly modulu Prosonic S v hliníkovém pouzdře do provozu

- 1 Hliníkové pouzdro do provozu, otevřené
- 2 Typový štítek
- 3 Svorka pro vyrovnání potenciálu (ochranné uzemnění)
- 4 Zobrazovací a ovládací modul
- 5 Hliníkové pouzdro do provozu, uzavřené

Platí pro:

Objednací kód 030 (pouzdro, materiál) Možnost 2 (montáž na lištu DIN PBT, IP 20)

🗷 3 Díly modulu Prosonic S v pouzdře pro montáž na lištu DIN

- 1 Zobrazovací a ovládací modul
- 2 Kryt modulu svorek
- 3 Typový štítek
- 4 Označení a identifikace přístroje
- 5 Stručný návod k obsluze
- 6 Kabel displeje
- 7 Svorky

Příklad pouzdra pro možnost montáže na lištu DIN je uveden na obrázku výše. Pouzdro může být užší nebo širší, záleží na verzi přístroje.

3.4 Provedení výrobku: vzdálený displej a ovládací modul pro montáž na dveře a panel skříně

📲 Platí pro:

Objednací kód 040 (obsluha)

Možnost E (osvětlený displej + klávesnice, 96 × 96, montáž na panel, IP 65 vpředu)

€ 4 Díly modulu Prosonic S se vzdáleným displejem a ovládacím modulem

- Pouzdro pro montáž na lištu DIN bez displeje a ovládacího modulu Vzdálený displej a ovládací modul pro montáž do skříně 1
- 2
- Kabel (3 m [9.8 ft]) je součástí dodávky 3
- Příklad pouzdra pro možnost montáže na lištu DIN je uveden na obrázku výše. Pouzdro může být užší nebo širší, záleží na verzi přístroje. i

4 Vstupní přejímka a identifikace výrobku

4.1 Vstupní přejímka

Během přejímky zboží zkontrolujte následující:

- Jsou objednací kódy na dodacím listě a štítek na výrobku identické?
- Je zboží nepoškozeno?
- Souhlasí údaje na štítku s objednacími informacemi na dodacím listu?
- Pokud je vyžadováno (viz typový štítek): Jsou dodány bezpečnostní pokyny (XA)?

Pokud některá z podmínek nebude splněna, kontaktujte svého distributora Endress +Hauser.

4.2 Identifikace výrobku

Pro ověření identifikace měřicího přístroje jsou k dispozici následující možnosti:

- Specifikace výrobních štítků
- Objednací kód s rozepsáním jednotlivých položek přístroje na dodacím listu
- Zapište výrobní číslo z výrobního štítku do W@M Device Viewer (www.endress.com/deviceviewer): Zobrazí se všechny informace o měřicím přístroji.
- Zadejte výrobní číslo z výrobního štítku do aplikace *Endress+Hauser Operations App* nebo naskenujte 2D maticový kód (QR kód) na výrobním štítku prostřednictvím aplikace *Endress+Hauser Operations App*: Zobrazí se veškeré informace o měřicím přístroji.

4.2.1 Typový štítek

E 5 Typový štítek

- 1 Stupeň ochrany
- 2 Dvojrozměrný maticový kód (QR kód)
- 3 Odkaz na další dokumentaci týkající se bezpečnosti
- 4 Identifikační označení podle směrnice ATEX 2014/34/ES a druh ochrany
- 5 Výrobní číslo

4.3 Skladování, přeprava

- Zabalte přístroj tak, aby byl chráněn proti nárazům pro případ skladování a přepravy. Optimální ochranu zabezpečuje původní obal.
- Přípustné teploty pro skladování: -40 ... +60 °C (-40 ... 140 °F)

5 Montáž

5.1 Montáž polykarbonátového pouzdra do provozu

Platí pro:

Objednací kód 030 (pouzdro, materiál) Možnost 1 (polykarbonátové pouzdro do provozu, IP 66 NEMA 4x)

5.1.1 Podmínky montáže

Rozměry polykarbonátového pouzdra do provozu

🗉 6 Rozměry modulu Prosonic S s polykarbonátovým pouzdrem do provozu. Jednotka měření mm (in)

- A Očko pouzdra (součást dodávky), lze použít také jako šablonu pro vrtání
- B Polykarbonátové pouzdro do provozu
- C Minimální montážní odstup

Namontujte očko pouzdra na rovnou plochu tak, aby nemohlo dojít k jeho deformaci nebo ohnutí. Jinak by bylo obtížné, nebo dokonce nemožné namontovat polykarbonátové pouzdro do provozu.

Montážní poloha

- Stíněné místo, chráněné před přímým sluncem. V případě potřeby použijte ochrannou stříšku.
- V případě montáže ve venkovním prostředí: Použijte přepěťovou ochranu.
- Nadmořská výška: Instalujte maximálně v nadmořské výšce 2 000 m (6 560 ft) nad střední hladinou moře.
- Minimální volný prostor na levé straně: 55 mm (2,17 in); víčko pouzdra jinak nelze otevřít.

5.1.2 Montáž přístroje

Montáž na zeď

- Dodaný držák pouzdra lze použít rovněž jako vrtací šablonu.
- Namontujte držák pouzdra na rovnou plochu tak, aby nemohlo dojít k jeho deformaci nebo ohnutí.

Polykarbonátové pouzdro do provozu pro montáž na zeď

1 Držák pouzdra (součást dodávky)

Montáž na sloupek

🗷 8 Montážní deska pro montáž polykarbonátového pouzdra do provozu na sloupek

1 Držák pouzdra (součást dodávky)

5.2 Montáž hliníkového pouzdra do provozu

Platí pro:

Objednací kód 030 (pouzdro, materiál) Možnost 3 (hliníkové pouzdro do provozu, IP 66 NEMA 4x)

5.2.1 Podmínky montáže

Rozměry hliníkového pouzdra do provozu

Rozměry modulu Prosonic S s hliníkovým pouzdrem do provozu. Jednotka měření mm (in)

Montážní poloha

- Stíněné místo, chráněné před přímým sluncem
- V případě montáže ve venkovním prostředí: Použijte přepěťovou ochranu.
- Nadmořská výška: Instalujte maximálně v nadmořské výšce 2000 m (6560 ft) nad střední hladinou moře.
- Minimální volný prostor na levé straně: 55 mm (2,17 in); víčko pouzdra jinak nelze otevřít

Montáž

5.2.2 Montáž přístroje

 10 Hliníkové pouzdro do provozu pro montáž na zeď

Montáž pouzdra na lištu DIN 5.3

Objednací kód 030 (pouzdro, materiál) Možnost 2 (montáž na lištu DIN PBT, IP 20)

A VAROVÁNÍ

Pouzdro na lištu DIN splňuje specifikace pro třídu krytí IP 06.

Pokud je pouzdro poškozené, vyvstává riziko zásahu elektrickým proudem u dílů pod napětím.

Přístroj nainstalujte do stabilní skříně.

5.3.1 Podmínky montáže

Rozměry

El 11 Rozměry modulu Prosonic S s pouzdrem pro montáž na lištu DIN; Σ: počet dalších připojovacích modulů. Jednotka měření mm (in)

Montážní poloha

- Ve skříni mimo prostředí s nebezpečím výbuchu
- V dostatečné vzdálenosti od vysokonapěťových elektrických kabelů, kabelů motorů, stykačů nebo frekvenčních měničů
- Nadmořská výška: Instalujte maximálně v nadmořské výšce 2 000 m (6 560 ft) nad střední hladinou moře.
- Minimální volný prostor na levé straně: 10 mm (0,4 in); víčko pouzdra jinak nelze otevřít.

5.3.2 Montáž přístroje

🗉 12 Montáž/demontáž pouzdra na lištu DIN. Jednotka měření mm (in)

- A Montáž
- B Demontáž

5.4 Montáž vzdáleného displeje a ovládacího modulu

📔 Platí pro:

Objednací kód 040 (obsluha) Možnost E (osvětlený displej + klávesnice, 96 × 96, montáž na panel, IP 65 vpředu)

5.4.1 Způsoby montáže

Montáž do příslušného instalačního otvoru

🗉 13 Otvor pro vzdálený displej a ovládací modul. Jednotka měření mm (in)

Montáž do vzdáleného displeje modulu Prosonic FMU860/861/862

- Tento způsob montáže je vhodný, pokud FMU9x nahrazuje předchozí model FMU86x (také u modulu vzdáleného displeje).
- Objednací číslo pro desku adaptéru: 52027441

1 Vzdálený displej modulu Prosonic S s deskou adaptéru

2 Otvor vzdáleného displeje modulu FMU860/861/862

5.4.2 Montáž přístroje

Rozsah dodávky

- Displej a ovládací modul 96 × 96 mm (3.78" × 3.78")
- 4 úchytky s maticemi a šrouby
- Připojovací kabel (3 m (9,8 ft)) pro připojení k převodníku (s vhodnými konektory)

Pokyny pro montáž

🖻 15 Montáž vzdáleného displeje a ovládacího modulu

5.5 Montáž senzorů

Další informace a dokumentace aktuálně k dispozici najdete na webu Endress+Hauser: www.endress.com → Ke stažení.

Dokumentace k senzorům:

- TI01469F (FDU90)
- TI01470F (FDU91)
- TI01471F (FDU91F)
- TI01472F (FDU92)
- TI01473F (FDU93)
- TI01474F (FDU95)

Senzory FDU80/80F/81/81F/82/83/84/85/86/96 již nelze objednat. Převodník Prosonic S lze připojit, i když senzory jsou již namontovány.

5.6 Kontrola po provedené montáži

Po montáži přístroje proveďte tyto kontroly:

Není přístroj poškozen (vizuální kontrola)?

□ Odpovídá přístroj specifikacím místa měření, jako jsou například procesní teplota, procesní tlak, okolní teplota, rozsah měření atd.?

Dekud je součástí dodávky: Je číslo měřicího bodu a označení štítkem správné?

□ Je měřicí přístroj odpovídajícím způsobem chráněn před vlhkostí a přímým slunečním zářením?

U případě pouzdra do provozu: Jsou kabelové vývodky správně utaženy?

□ Je přístroj pevně usazen na liště DIN / je přístroj správně namontován na držáku pouzdra do provozu (vizuální kontrola)?

□ Jsou šrouby víčka svorkovnicového modulu pouzdra do provozu bezpečně utaženy (vizuální kontrola)?

6 Elektrické připojení

6.1 Podmínky připojení

6.1.1 Specifikace kabelu

- Průřez vodiče: 0,2 ... 2,5 mm² (26 ... 14 AWG)
- Průřez pláště vodiče: 0,25 ... 2,5 mm² (24 ... 14 AWG)
- Min. délka odizolování: 10 mm (0,39 in)

6.2 Připojení přístroje

6.2.1 Svorkovnicový modul polykarbonátového pouzdra do provozu

Platí pro:

Objednací kód 030 (pouzdro, materiál) Možnost 1 (polykarbonátové pouzdro do provozu, IP 66 NEMA 4x)

Přístup k modulu svorkovnice

🗉 16 🛛 Přístup k modulu svorkovnice v polykarbonátovém pouzdru do provozu

🖻 17 Pro snazší připojení se doporučuje sejmout kryt z pouzdra

Kabelové průchodky

Připravené otvory ve spodní části pouzdra pro tyto kabelové průchodky:

- M20×1,5 (10 otvorů)
- M16×1,5 (5 otvorů)
- M25×1,5 (1 otvor)

Pro vyřezání otvorů použijte vhodný nástroj.

6.2.2 Modul svorkovnice hliníkového pouzdra do provozu

📔 Platí pro:

Objednací kód 030 (pouzdro, materiál) Možnost 3 (hliníkové pouzdro do provozu, IP 66 NEMA 4x)

A VAROVÁNÍ

Pro zajištění ochrany proti výbuchu:

- Zajistěte, aby se všechny svorky nacházely v pouzdru do provozu. (Výjimka: svorka pro ochranné uzemnění na vnější straně pouzdra do provozu.)
- Připojte pouzdra k místnímu zemnicímu potenciálu (PML).
- Pro vedení kabelů použijte pouze kabelové průchodky, které splňují požadavky na ochranu proti výbuchu v místě provozu.

Přístup k modulu svorkovnice

I8 Přístup k svorkovnicovému modulu v hliníkovém pouzdru do provozu

- 1 Hliníkové pouzdro do provozu, otevřené
- 2 Typový štítek
- 3 Svorka pro ochranné uzemnění
- 4 Zobrazovací a ovládací modul
- 5 Hliníkové pouzdro do provozu, uzavřené

Kabelové průchodky

- Na spodní straně pouzdra do provozu se nachází 12 otvorů M20×1,5 pro kabelové průchodky.
- Pro vytvoření elektrického připojení: Proveď te kabely kabelovými průchodkami a do pouzdra. Elektrické připojení se poté vytvoří stejným způsobem jako v případě pouzdra na lištu DIN.

6.2.3 Svorkovnicový modul pouzdra na lištu DIN

Platí pro:

Objednací kód 030 (pouzdro, materiál) Možnost 2 (montáž na lištu DIN PBT, IP 20)

Přístup k modulu svorkovnice

🗉 19 Přístup k modulu svorkovnice: jednotlivá jednotka pouzdra pro montáž na lištu DIN

🗉 20 Přístup k modulu svorkovnice: několik jednotek pouzdra pro montáž na lištu DIN instalovaných vedle sebe

6.2.4 Přiřazení svorek

Typ svorky

Prosonic S má zásuvné pružinové svorky. Pevné vodiče nebo flexibilní vodiče s návlečkami lze vložit přímo do svorky bez použití páčky a tak automaticky vytvořit vodivý kontakt.

Oblasti se svorkami

- Základní oblast se svorkami (A) U všech verzí přístroje
- Oblast svorek pro další vstupy a výstupy (B)
 - U těchto verzí přístroje:
 - FMU90 *****2******
 - FMU90 ******2****
- Oblast svorek pro relé (C)
 - U těchto verzí přístroje:
 - FMU90 *****3****
 - FMU90 *****6****
- Oblast svorek pro spínací vstupy a teplotní vstupy (D)
 U těchto verzí přístroje:
 FMU90 *******B***

🗉 21 Oblasti svorek; svorky znázorněné šedou barvou nejsou k dispozici u všech verzí přístroje

- A Základní oblast se svorkami
- *B* Volitelný prostor se svorkami pro dva senzory
- C Volitelný prostor se svorkami pro až pět relé
- D Volitelná oblast se svorkami pro až čtyři externí spínače a jeden externí teplotní senzor

Stavy spínání relé zobrazené v oblasti svorek se vztahují k stavu bez napětí.

Svorky pro napájení (verze se střídavým napájením)

Prostor se svorkami A

- Svorka 1: L (90 ... 253 V_{AC})
- Svorka 2: N
- Svorka 3: ochranné pospojování
- Pojistka: 400 mA T

Svorky pro napájení (verze se stejnosměrným napájením)

Prostor se svorkami A

- Svorka 1: L+ (10,5 ... 32 V_{DC})
- Svorka 2: L-
- Svorka 3: ochranné pospojování
- Pojistka: 2AT

Svorky pro analogové výstupy

Prostor se svorkami A Svorky 4, 5: analogový výstup 1 (0/4 až 20 mA, HART) Prostor se svorkami B Svorky 41, 42: analogový výstup 2 (0/4 až 20 mA)

Svorky pro relé

Prostor se svorkami A Svorky 6, 7, 8: relé 1

Prostor se svorkami C

- Svorky 50, 51, 52: relé 2
- Svorky 53, 54, 55: relé 3
- Svorky 56, 57, 58: relé 4
- Svorky 59, 60, 61: relé 5
- Svorky 62, 63, 64: relé 6

Svorky pro vstupy snímačů hladiny

Prostor se svorkami A

- Senzor 1 (pro provedení přístroje s jedním vstupem pro senzor)
- Svorka 9: žlutý vodič senzoru
- Svorka 10: černý vodič senzoru (stínění kabelu)
- Svorka 11: červený vodič senzoru

Prostor se svorkami B

- Senzor 1 (pro provedení přístroje se dvěma vstupy pro senzor)
 - Svorka 9: žlutý vodič senzoru
 - Svorka 10: černý vodič senzoru (stínění kabelu)
 - Svorka 11: červený vodič senzoru
- Senzor 2 (pro provedení přístroje se dvěma vstupy pro senzor)
 - Svorka 12: žlutý vodič senzoru
 - Svorka 13: černý vodič senzoru (stínění kabelu)
 - Svorka 14: červený vodič senzoru

Svorky pro synchronizaci

Prostor se svorkami A Svorky 39, 40: synchronizace několika převodníků Prosonic S

Svorky pro vstupy spínačů

Prostor se svorkami D

- Svorky 71, 72, 73: externí spínač 1
- Svorky 74, 75, 76: externí spínač 2
- Svorky 77, 78, 79: externí spínač 3
- Svorky 80, 81, 82: externí spínač 4

Svorky pro vstup teplotního snímače

Prostor se svorkami D

- Svorky 83, 84, 85:
- Pt100
- Omnigrad S TR61 (Endress+ Hauser)

Další prvky v prostorech se svorkami

Prostor se svorkami A

- Zobrazení
- Připojení displeje nebo odděleného zobrazovacího a ovládacího modulu • Servis
 - Servisní rozhraní; pro připojení PC/notebooku přes Commubox FXA291
- = 🛛 🕯

Přepínač ochrany proti zápisu: Uzamyká přístroj za účelem zabránění úpravám nastavení.

6.3 Speciální pokyny pro připojení

6.3.1 Připojení napájecího zdroje

A UPOZORNĚNÍ

K zajištění elektrické bezpečnosti:

- Při montáži upevněte napájecí kabely bezpečně na místo, aby byly trvale připojeny k elektrickým instalacím v budově.
- Při připojení k hlavnímu vedení instalujte hlavní vypínač přístroje tak, aby byl v dosahu přístroje. Vypínač musí být označen jako odpojovač přístroje (IEC/EN 61010).
- ► U verze 90–253 V AC: zapojte vyrovnání potenciálů
- Před připojením vypněte napájecí napětí.

Připojení napájecího zdroje k polykarbonátovému pouzdru do provozu

Platí pro:

Objednací kód 030 (pouzdro, materiál) Možnost 1 (polykarbonátové pouzdro do provozu, IP 66 NEMA 4x)

🗷 22 Připojení napájecího zdroje k polykarbonátovému pouzdru do provozu

1 Blok svorek v pouzdru do provozu pro vyrovnání potenciálů

2 Vyrovnání potenciálů; zapojeno

Připojení napájecího zdroje k hliníkovému pouzdru do provozu

Platí pro:

Objednací kód 030 (pouzdro, materiál) Možnost 3 (hliníkové pouzdro do provozu, IP 66 NEMA 4x)

A VAROVÁNÍ

Nebezpečí úrazu elektrickým proudem a nebezpečí výbuchu

 Připojte hliníkové pouzdro do provozu ke svorce PE a/nebo k místnímu potenciálu země (PML) přes svorku ochranného uzemnění.

23 Připojení napájecího zdroje k hliníkovému pouzdru do provozu

- 1 Vyrovnání potenciálů u hliníkového pouzdra do provozu; zapojeno
- 2 Řada ochranných zemnicích svorek (s kontaktem na lištu DIN)
- 3 Ochranná zemnicí svorka na vnější straně pouzdra do provozu
- 4 Napájení

Připojení napájecího zdroje k pouzdru pro montáž na lištu DIN

Platí pro:

Objednací kód 030 (pouzdro, materiál) Možnost 2 (montáž na lištu DIN PBT, IP 20)

🗷 24 Připojení napájecího zdroje k pouzdru pro montáž na lištu DIN

- 1 Kovová lišta DIN ve skříni
- 2 Řada svorek (bez kontaktu na lištu DIN)
- 3 Řada ochranných zemnicích svorek (s kontaktem na lištu DIN)
- 4 Uzemnění přes lištu DIN

6.3.2 Připojení senzoru

A UPOZORNĚNÍ

Neadekvátní vyrovnání potenciálů může ohrozit elektrickou bezpečnost

 Připojte žluto/zelené ochranné uzemnění senzorů FDU91F, FDU93 a FDU95 k místnímu vyrovnání potenciálů po maximální vzdálenosti 30 m (98 ft). To lze provést ve svorkovnici, v převodníku nebo ve skříni.

OZNÁMENÍ

Rušivé signály mohou způsobit poruchy funkčnosti

 Nelze vést kabely senzoru paralelně s vedením vysokého napětí nebo v blízkosti frekvenčních měničů.

OZNÁMENÍ

Poškozené stínění kabelu může způsobit poruchy funkčnosti

- ▶ U předem zakončených kabelů: černý vodič (stínění) připojte ke svorce "BK".
- ► U prodlužovacích kabelů: stínění stočte a připojte ke svorce "BK".

A VAROVÁNÍ

Nebezpečí výbuchu

- Nepřipojujte senzory FDU83, FDU84, FDU85 a FDU86 s certifikátem ATEX, FM, nebo CSA k převodníkům FMU90 nebo FMU95.
- U senzorů FDU91F/93/95/96 a FDU83/84/85/86: připojte zemnicí kabel (GNYE) k místnímu vyrovnání potenciálů po maximální vzdálenosti 30 m (98 ft). To lze provést ve svorkovnici či v převodníku nebo ve skříni, pokud vzdálenost k senzoru nepřekročí 30 m (98 ft).

OZNÁMENÍ

Vyhodnocovací elektronika a její přímé připojení (displej / servisní konektor, servisní rozhraní atd.) jsou galvanicky oddělené od napájení a komunikačních signálů a jsou připojeny k potenciálu elektroniky senzoru.

- V případě uzemněných senzorů věnujte pozornost rozdílu potenciálů. ►
- Pokud snímáte plášť kabelu senzoru, vezměte v úvahu nejdelší požadovanou délku kabelu.

Další informace a dokumentace aktuálně k dispozici najdete na webu Endress+Hauser: www.endress.com \rightarrow Ke stažení.

Dokumentace k senzorům:

- TI01469F (FDU90)
- TI01470F (FDU91)
- TI01471F (FDU91F)
- TI01472F (FDU92)
- TI01473F (FDU93)
- TI01474F (FDU95)

Senzory FDU80/80F/81/81F/82/83/84/85/86/96 již nelze objednat. Převodník Prosonic S lze připojit, i když senzory jsou již namontovány.

Schéma připojení pro FDU9x → FMU90

- 25 Schéma připojení pro senzory FDU9x; YE: žlutý, BK: černý; RD: červený; BU: modrý; BN: hnědý; GNYE: zeleno/žlutý
- A Bez ohřívače senzoru
- B S ohřívačem senzoru
- C Uzemnění na svorkovnici
- D Uzemnění na vysílači FMU90
- 1 Stínění kabelu senzoru
- 2 Svorkovnice
- 3 Stínění prodlužovacího kabelu

Vyrovnání potenciálů kovových senzorů v polykarbonátovém pouzdru do provozu

Objednací kód 030 (pouzdro, materiál) Možnost 1 (polykarbonátové pouzdro do provozu, IP 66 NEMA 4x)

Platí pro tyto senzory

- FDU91F
- FDU93
- FDU95

Tyto senzory již nejsou k dispozici, ale lze je připojit k modulu Prosonic S ve stávajících instalacích.

- FDU96
- FDU83
- FDU84
- FDU85
- **F**DU86

26 Vyrovnání potenciálů kovových senzorů v polykarbonátovém pouzdru do provozu

- 1 Blok svorek v pouzdru do provozu pro vyrovnání potenciálů
- 2 Vyrovnání potenciálů; zapojeno.

Vyrovnání potenciálů kovových senzorů v hliníkovém pouzdru do provozu

📔 Platí pro:

Objednací kód 030 (pouzdro, materiál) Možnost 3 (montáž do provozu, hliník, IP 66 NEMA 4x)

Platí pro tyto senzory

- FDU91F
- FDU93
- FDU95

Tyto senzory již nejsou k dispozici, ale lze je připojit k modulu Prosonic S ve stávajících instalacích.

- FDU96
- FDU83
- FDU84
- FDU85
- FDU86

27 Vyrovnání potenciálů kovových senzorů v hliníkovém pouzdru do provozu

- 1 Vyrovnání potenciálů u pouzdra do provozu; zapojeno
- 2 Řada ochranných zemnicích svorek (s kontaktem na lištu DIN)
- 3 Ochranná zemnicí svorka na vnější straně pouzdra do provozu
- 4 Napájení

Vyrovnání potenciálů kovových senzorů v pouzdru pro montáž na lištu DIN

Platí pro:

Objednací kód 030 (pouzdro, materiál) Možnost 2 (montáž na lištu DIN PBT, IP 20)

Platí pro tyto senzory

- FDU91F
- FDU93
- FDU95

Tyto senzory již nejsou k dispozici, ale lze je připojit k modulu Prosonic S ve stávajících instalacích.

- FDU96
- FDU83
- FDU84
- FDU85
- FDU86

🖻 28 Vyrovnání potenciálů kovových senzorů v pouzdru pro montáž na lištu DIN

- 1 Kovová lišta DIN ve skříni
- 2 Řada svorek (bez kontaktu na lištu DIN)
- 3 Řada ochranných zemnicích svorek (s kontaktem na lištu DIN)
- 4 Uzemnění přes lištu DIN

6.3.3 Prodlužovací kabel senzoru

A VAROVÁNÍ

Nebezpečí výbuchu

- K připojení prodlužovacího kabelu použijte svorkovnici.
- Pokud je svorkovnice instalována v oblastech s nebezpečím výbuchu, dodržujte příslušné národní předpisy.

Specifikace prodlužovacího kabelu

- Maximální celková délka (kabel senzoru + prodlužovací kabel) 300 m (984 ft)
- Počet vodičů

Viz schéma připojení

- Stínění
 - Jeden stínicí oplet pro vodič YE a jeden pro vodič RD (bez stínicí fólie)
- Průřez
 - 0,75 ... 2,5 mm² (18 ... 14 AWG)
- Rezistence
 Max. 8 Ω na jeden vodič
- Kapacitance, vodič ke stínění Max. 60 nF
- Ochranné uzemnění (pro FDU91F/93/95) Možná není ve stínění.

😭 Vhodné připojovací kabely jsou k dispozici u společnosti Endress+Hauser (→ 🖺 87).

6.3.4 Zkrácení kabelu senzoru

OZNÁMENÍ

Poškozené vodiče nebo instalace bez zpětného vodiče mohou způsobit poruchy funkčnosti

- Při odstraňování izolace dbejte na to, aby nedošlo k poškození vodiče.
- Po zkrácení kabelu stočte stínící kovový oplet a připojte jej ke svorce "BK".
- Pokud má kabel ochranné uzemnění (GNYE), nepřipojujte toto ochranné uzemnění ke stínění vodiče.

🖻 29 Zkrácení kabelu senzoru

A Senzory FDU90/91/92

В

Senzory FDU91F/93/95

Vodiče "BU" (modrý) a "BN" (hnědý) jsou k dispozici pouze u senzorů s ohřívačem.

6.3.5 Připojení ohřívače senzoru

Platí pro FDU90/FDU91: Objednací kód 035 (ohřívač)

Možnost B (připojení k 24 V DC)

Technické údaje pro ohřívač senzoru

- Napájecí napětí
- 24 V_{DC}±10 % **Zbytkové zvlnění**
- < 100 mV
- Spotřeba proudu

250 mA na jeden senzor

Teplotní kompenzace u ohřívače senzoru

Pokud se používá ohřívač senzoru, připojte externí teplotní senzor, abyste mohli korigovat dobu pohybu zvuku a přiřaď te tento teplotní senzor k senzoru.

Připojení ohřívače senzoru u polykarbonátového pouzdra do provozu

Platí pro:

Objednací kód 030 (pouzdro, materiál)

Možnost 1 (polykarbonátové pouzdro do provozu, IP 66 NEMA 4x)

Image: Series and S

- 1 Modul svorek pro ohřívač senzoru (součást dodávky senzorů, kde je specifikován)
- 2 Externí napájecí jednotka
- 3 Hnědý vodič (BN)
- 4 Modrý vodič (BU)

Připojení ohřívače senzoru u hliníkového pouzdra do provozu

Platí pro:

Objednací kód 030 (pouzdro, materiál)

Možnost 3 (montáž do provozu, hliník, IP 66 NEMA 4x)
A VAROVÁNÍ

Nebezpečí výbuchu

- ▶ Napájecí jednotku instalujte vně prostředí s nebezpečím výbuchu.
- Použijte kabel, který splňuje požadavky zóny, ve které je hliníkové pouzdro do provozu instalováno.
- Připojte ohřívač senzoru uvnitř hliníkového pouzdra do provozu (nebo jiného krytu chráněného proti výbuchu) k napájení. Za tímto účelem nainstalujte na lištu DIN v pouzdru další bloky svorek.
- ▶ Před otevřením hliníkového pouzdra do provozu: Vypněte napájení ohřívače senzoru.

🗷 31 Připojení ohřívače senzoru u hliníkového pouzdra do provozu

- 1 Externí napájecí jednotka
- BN Hnědý vodič
- BU Modrý vodič

Připojení ohřívače senzoru u pouzdra s lištou DIN

Platí pro:

Objednací kód 030 (pouzdro, materiál) Možnost 2 (montáž na lištu DIN PBT, IP 20)

Napájecí napětí musí být ve skříni, např. přes blok svorek:

🛙 32 Připojení ohřívače senzoru přes kovovou lištu DIN ve skříni

- 1 Externí napájecí jednotka
- BN Hnědý vodič
- BU Modrý vodič

6.3.6 Synchronizační terminál

Použití souborů GSD

Pokud jsou kabely senzorů několika převodníků vedeny paralelně, je nutné použít synchronizační terminál. V důsledku synchronizace nemůže převodník přijímat signály, když jiný převodník signály vysílá. Tím se zamezí tomu, aby se vysílací a přijímací signály vzájemně ovlivňovaly.

Počet převodníků, které lze synchronizovat

- 20 (v případě FMU90/FMU95)
- 10 (pokud se FMU90/FMU95 synchronizuje s FMU86x)

Postup v případě, že se synchronizuje více než 20 převodníků

- Vytvořte skupiny o počtu 20 převodníků maximálně.
- U převodníků ve stejné skupině mohou být kabely senzorů vedeny paralelně.
- Kabely senzorů odlišných skupin musí být vzájemně odděleny.

Specifikace kabelů pro synchronizaci

- Max. délka
 - 10 m (33 ft) mezi jednotlivými převodníky
- Průřez
- 2× 0,75 ... 2,5 mm² (18 ... 14 AWG)
- Stínění kabelu
 - Vyžadováno pro kabely > 1 m (3,3 ft); uzemněte stínění.

Schéma zapojení pro synchronizaci

Synchronizace více převodníků FMU90/FMU95

■ 34 Synchronizace FMU90/FMU95 s FMU86x

6.3.7 Připojení externích spínačů

Platí pro:

Objednací kód 090 (další vstup) Možnost B (4× limitní spínač hladiny + 1× teplota)

🗟 35 Připojení externích spínačů

- A Zásuvná svorkovnice Liquiphant
- B Připojení externích spínačů (pasivní)
- C Připojení externích spínačů (aktivní)

Vstupy pro externí spínače

- Externí spínač 1
 - 0 [≙] < 8 V nebo 72 a 73 propojené
 - 1 [≙] > 16 V nebo 72 a 73 nepropojené
- Externí spínač 2
 - 0 < 8 V nebo 75 a 76 propojené
 - 1 [≙] > 16 V nebo 75 a 76 nepropojené
- Externí spínač 3
 - 0 ² < 8 V nebo 78 a 79 propojené</p>
 - 1 [≙] > 16 V nebo 78 a 79 nepropojené
- Externí spínač 4
 - 0 [≙] < 8 V nebo 81 a 82 propojené
 - 1 [≙] > 16 V nebo 81 a 82 nepropojené

Maximální zkratový proud

24 V při 20 mA

6.3.8 Připojení teplotního senzoru Pt100

🎦 Platí pro:

Objednací kód 090 (další vstup) Možnost B (4× limitní spínač hladiny + 1× teplota)

A VAROVÁNÍ

Nebezpečí výbuchu

Není povoleno připojit senzor Pt100 v prostředí s nebezpečím výbuchu.

▶ V prostředí s nebezpečím výbuchu použijte Omnigrad S TR61 s příslušným certifikátem.

A003490

B 36 Připojení teplotního senzoru Pt100

A Pt100 s třívodičovým připojením

B Pt100 se čtyřvodičovým připojením (jeden konektor se nepoužije)

Použití dvouvodičového připojení není dovoleno kvůli nedostačující přesnosti měření.

Po připojení senzoru

V nabídce obsluhy přiřaďte teplotní senzor k ultrazvukovému senzoru: Správa senzorů → Správa senzorů → US senzor N → Měření teploty = Externí teplota

6.3.9 Připojení teplotního senzoru Omnigrad S TR61

Platí pro:

Objednací kód 090 (další vstup) Možnost B (4× limitní spínač hladiny + 1× teplota)

Připojení teplotního senzoru Omnigrad S TR61 vně prostředí s nebezpečím výbuchu

🗷 37 Připojení senzoru Omnigrad S TR61 vně prostředí s nebezpečím výbuchu

RD Barva vodiče = červený

Modely Omnigrad S vhodné pro připojení

TR61-A...

Doplňkové informace

Technické informace TI01029T

V nabídce obsluhy přiřaďte teplotní senzor k ultrazvukovému senzoru: Správa senzorů → Správa senzorů → US senzor N → Měření teploty = Externí teplota

Připojení teplotního senzoru Omnigrad S TR61 v prostředí s nebezpečím výbuchu

38 Připojení senzoru Omnigrad S TR61 v prostředí s nebezpečím výbuchu

- A Teplotní senzor v prostředí s nebezpečím výbuchu
- B Teplotní senzor v prostředí s nebezpečím výbuchu, s připojením ve svorkovnici
- RD Barva vodiče = červený

Modely Omnigrad S vhodné pro připojení

Záleží na požadovaném schválení:

- TR61-E********
- TR61-H*********
- TR61-M*********
- TR61-N*********
- TR61-R***********
- TR61-S*********
- TR61-2**********
- TR61-3**********

Doplňkové informace

- Technické informace TI01029T
- Dokumentace Ex (XA) je součástí dodávky TR61. Je to nedílná součást dokumentace. Je třeba přísně dodržovat instalační specifikace, připojovací údaje a bezpečnostní pokyny uvedené v této doplňující dokumentaci.

📔 Po připojení senzoru

V nabídce obsluhy přiřaďte teplotní senzor k ultrazvukovému senzoru: Správa senzorů → Správa senzorů → US senzor N → Měření teploty = Externí teplota

6.3.10 Připojení vzdáleného displeje a ovládacího modulu

📔 Platí pro:

Objednací kód 040 (obsluha) Možnost E (osvětlený displej + klávesnice, 96 × 96, montáž na panel, IP 65 vpředu)

🗷 39 Připojení vzdáleného displeje a ovládacího modulu

1 Zakončený připojovací kabel 3 m (9,8 ft) s konektorem displeje (součást dodávky)

Minimální průměr pro kabelovou průchodku

20 mm (0,79 in)

6.3.11 Kontrola po připojení

Jsou svorky správně přiřazené?

Pro pouzdro do provozu (polykarbonát/hliník):

□ Jsou kabelové průchodky utěsněné?

□ Je kryt pouzdra důkladně upevněn?

Pro hliníkové pouzdro do provozu:

□ Je pouzdro připojeno k ochrannému uzemnění (PE) nebo k místnímu zemnímu potenciálu (PML)?

Jestliže je napájení zapnuté:

🗆 Svítí kontrolka LED pro provozní stav zeleně?

□ Jestliže je připojen modul displeje: Je něco zobrazeno na obrazovce?

7 Možnosti provozu přístroje

7.1 Struktura a funkce nabídky obsluhy

7.1.1 Podmenu a soubory parametrů

Parametry, které k sobě náleží, jsou v nabídce obsluhy seskupeny do jednoho souboru parametrů. Každý soubor parametrů je označen pětimístným číselným kódem.

🛃 40 Označení souborů parametrů:

- 1 Podnabídka
- 2 Číslo odpovídajícího vstupu nebo výstupu (pro vícekanálové přístroje)
- 3 Číslo souboru parametrů v rámci podnabídky

7.1.2 Typy parametrů

Parametry pouze pro čtení

- Symbol:
- Nelze upravit.

Upravitelné parametry

- Symbol:
- Lze otevřít pro úpravy stiskem

7.2 Přístup do nabídky obsluhy z místního displeje

7.2.1 Zobrazovací a ovládací prvky

Prvky na zobrazovacím a ovládacím modulu

- 1 Symboly softwarových tlačítek
- 2 Tlačítka
- 3 Světelné diody znázorňující stavy přepínání relé
- 4 LED znázorňující provozní stav
- 5 Symbol na displeji
- 6 Hodnota parametru s jednotkou (zde: primární hodnota)
- 7 Název zobrazovaného parametru

Symboly pro provozní stavy

- - Provozní stav Uživatel:
- Uživatelské parametry lze upravovat. Servisní parametry nelze upravovat.
- (52)

Provozní stav **Diagnostika**:

Je připojeno servisní rozhraní.

• 🖂

Provozní stav Servis:

Uživatelské parametry a servisní parametry lze upravovat.

- (**C**))
 - Provozní stav Zamknuto:

Všechny parametry jsou zamknuté a nelze je upravovat.

Symboly indikující stav upravování aktuálního parametru

- (A)
 - Parametr pouze pro čtení

Tento parametr v aktuálním provozním stavu přístroje **nelze** upravovat.

• 🔜

Upravitelný parametr

Tento parametr lze upravovat.

Symboly rolování

ک 🕑

K dispozici je rolovací seznam

Zobrazí se, pokud seznam obsahuje více možností, než je možné zobrazit na displeji. Všechny možnosti v seznamu lze zobrazit opakovaným stisknutím tlačítka () nebo

Pohyb v zobrazení obalové křivky (vyberte formát zobrazení "Cyklický")

- 44
 - Pohyb doleva
- • •
- Pohyb doprava
- Přiblížení
- Oddálení

Indikátor LED pro provozní stavy

- Svítí zeleně
 - Normální provoz; nejsou zjištěny žádné chyby
- Bliká červeně

Výstraha: Byla zjištěna chyba, ale měření pokračuje. Spolehlivost měřené hodnoty nelze zaručit.

Svítí červeně

Alarm: Byla zjištěna chyba. Měření je přerušeno. Naměřená hodnota převezme hodnotu zadanou uživatelem ("Výstup při alarmu").

Nesvítí

Žádné napájecí napětí.

Světelné diody pro relé

- Svítí žlutě
- Relé pod napětím
- Nesvítí Relé bez napětí (klidový stav)

Tlačítka (ovládání softwarovými tlačítky)

Aktuální funkce tlačítka je znázorněna symboly softwarových tlačítek nad příslušným tlačítkem.

• • •

Přesune pruh výběru v seznamu voleb dolů.

• 🗲 🔁

Přesune pruh výběru v seznamu voleb nahoru.

- ____
 - Otevře zvolenou podnabídku, soubor parametrů nebo parametr.
 - Potvrdí hodnotu upraveného parametru.
- • •

Přejde na předchozí soubor parametrů v rámci podnabídky.

• (E30)

Přejde na následující soubor parametrů v rámci podnabídky.

• 🗸

Vybere ve výběrovém seznamu danou možnost, která je aktuálně označena výběrovým pruhem.

•

Zvýší zvolenou číslici alfanumerického parametru.

•

Sníží zvolenou číslici alfanumerického parametru.

- 67:30

- Otevře seznam aktuálně detekovaných chyb.
- Pokud je přítomna výstraha, symbol bliká.
- Pokud je přítomen alarm, symbol je zobrazen trvale.
- (33)

Zobrazí další stránku měřených hodnot (k dispozici pouze tehdy, pokud bylo definováno několik stránek měřených hodnot; viz nabídku "Displej").

- Info
- Otevře nabídku "Zkratka", která obsahuje nejdůležitější parametry pouze ke čtení.

Otevře hlavní nabídku, kde máte přístup ke **všem** parametrům přístroje.

Základní kombinace kláves

🖻 41 Escape (klávesa Esc)

42 Zvýšit kontrast

E 43 Snížit kontrast

🔄 44 Zamknutí

7.2.2 Vyvolání nabídky obsluhy ze standardní obrazovky (zobrazení naměřené hodnoty)

Levé tlačítko ("Informace"): místní nabídka

Poskytuje rychlý přístup k nejdůležitějším parametrům:

- Denní počítadlo
- Označení tagů
- Obalová křivka
- Jazyk
- Informace o přístroji
- Heslo/resetování
- Prostřední klávesa: aktuální chyby

Pokud systém automatické kontroly zjistí jednu nebo více chyb, nad prostřední klávesou se zobrazí symbol tlačítka **(1977–1976)**. Po stisknutí tlačítka se zobrazí seznam všech aktuálních nevyřešených chyb.

Pravé tlačítko ("Nabídka"): hlavní nabídka

Obsahuje všechny parametry přístroje, rozdělené do podnabídek a sad parametrů.

8 Systémová integrace

- 🗟 45 Systémová integrace přes protokol HART
- 1 PLC, API
- 2 Commubox FXA195 (USB), protokol HART
- 3 DeviceCare/FieldCare
- 4 Commubox FXA291 (servisní rozhraní)
- 5 Zobrazovací a ovládací modul na Prosonic S (pokud je k dispozici)
- 6 Field Xpert SMT70/SMT77
- 7 Modem VIATOR Bluetooth s připojovacím kabelem

9 Uvedení do provozu

9.1 Přípravné kroky

9.1.1 Reset na tovární nastavení (reset)

OZNÁMENÍ

Reset může negativně ovlivnit měření.

• Po resetu přístroje proveďte nové základní nastavení.

Používání funkce reset

Pokud chcete použít přístroj s neznámou historií, je vždy vhodné jej resetovat.

Účinky resetu

- Všechny parametry se resetují na tovární nastavení.
- Linearizace je deaktivována. Pokud je k dispozici tabulka linearizace, není odstraněna a lze ji v případě potřeby znovu aktivovat.
- Potlačení rušivých odrazů (mapování) je deaktivováno. Mapovací křivka však není odstraněna a v případě potřeby ji lze znovu aktivovat.

Účinek na protokol pětibodové linearity

Vytvořením protokolu pětibodové linearity je měřicí systém (senzor FDU9x a převodník FMU9x) upraven a přesnost měření je optimalizována pro specifikovaný rozsah.

Servisní parametr **Nulová vzdálenost** je jemně nastaven pro tuto justaci. Po resetování musí tento parametr být znovu nastaven v nabídce Servis podle dat indikovaných v protokolu pětibodové linearity pro senzor FDU9x. Kontaktujte v této záležitost prodejní centrum společnosti Endress+Hauser.

Provedení resetu

1. Přejděte na Vlastnosti přístroje → Heslo/reset → Reset.

2. Zadejte "333".

9.2 Zapnutí měřicího přístroje

Parametry, které je zapotřebí nastavit při prvním zapnutí přístroje

- Jazyk
 - Vyberte jazyk zobrazení na displeji.
- Jednotka délky
 - Zvolte jednotku délky, ve které se měří vzdálenost.
- Jednotka teploty
 Zvolte jednotku pro teplotu měřenou senzorem.
- Provozní režim

Možné volby závisí na provedení přístroje a prostředí instalace.

Ovládací prvky

Zvolte, zda se má nastavit řízení čerpadel nebo řízení česel.

9.3 Nastavení měřicího přístroje

9.3.1 Navigace k nabídce "Základ. nastavení"

Režim provozu: "Hladina + průtok" nebo "Průtok" Průtok \rightarrow Průtok \rightarrow Průtok N \rightarrow Základ. nastavení

Režim provozu: "Detekce průtoku + vzedmutí" Průtok \rightarrow Průtok 1 + vzedmutí \rightarrow Průtok \rightarrow Základ. nastavení

9.3.2 Soubor parametrů "Výběr senzoru"

Pohyb po obrazovce displeje

Základ. nastavení → Výběr senzoru

Parametr

- Input (vstup)
 - Přiřaďte senzor ke kanálu.
- Výběr senzoru
 Specifikujte typ senzoru.
 - Zvolte možnost Automaticky pro senzory FDU9x.
 - Zvolte možnost **Manuálně** pro senzory FDU8x.
- Detekováno

Zobrazuje se pouze tehdy, pokud **Výběr senzoru = Automaticky** Zobrazuje automaticky detekovaný typ senzoru.

9.3.3 Soubor parametrů "Linerarizace"

Účel linearizace

Pro výpočet průtoku Q z měřené hladiny h proti směru proudění.

Pohyb po obrazovce displeje

Základ. nastavení \rightarrow Linearizace

Parametry

- Тур
 - Volitelná možnost "Profil/přepad"
 - Zvolte tuto možnost pro použití předprogramované linearizační křivky.
 - Volitelná možnost "Tabulka"
 - Zvolte tuto možnost pro zadání vámi vybrané linearizační tabulky.
 - Volitelná možnost "Vzorec"
 - Zvolte tuto možnost pro použití vzorce na výpočet průtoku: Q = C ($h^{\alpha} + \gamma h^{\beta}$)

Jedn. průtoku

Specifikujte jednotku pro linearizovanou hodnotu.

Křivka

Zobrazuje se pouze tehdy, pokud **Typ** = **Profil/přepad**.

V prvním kroku specifikujte tvar profilu nebo přepadu.

V dalším kroku poté specifikujte velikost profilu nebo přepadu.

Šířka

Zobrazuje se pouze tehdy, pokud Typ = **Obdélník. přepad**, **NFX** nebo **Lichoběž. přepad** Vyberte šířku přepadu.

Editovat

Zobrazuje se pouze tehdy, pokud **Typ** = **Tabulka**.

Otevře soubor parametrů **Editovat** pro zadání linearizační tabulky.

Tabulka stavů

Aktivuje nebo deaktivuje linearizační tabulku.

alfa, beta, gama, C

Zobrazuje se pouze tehdy, pokud **Typ** = **Vzorec**.

Přiřaď te odpovídající hodnoty parametrům vzorce na výpočet průtoku.

Maximální průtok

Potvrďte hodnotu zobrazovanou pro maximální průtok profilu nebo přepadu nebo zadejte odpovídající hodnotu.

9.3.4 Editor tabulky

Podmínky linearizační tabulky:

- Až 32 párů hodnot "hladina h / průtok Q".
- Monotónně stoupající nebo klesající. (Monotónnost se kontroluje při aktivaci tabulky.)
- Jakmile je zadána, musí se aktivovat parametrem Tabulka stavů.

1 0,0000 0,0000 2 0,0000 0,0000 3 0,0000 0,0000	А	В	С
2 0,0000 0,0000 3 0,0000 0,0000	1	0,0000	0,0000
3 0,0000 0,0000	2	0,0000	0,0000
	3	0,0000	0,0000

A Číslo řádku

B Sloupec pro hladinu

C Sloupec pro průtok

1. Stiskněte **E p**po přechod na další řádek.

- 2. Stiskněte **E** pro přechod na předchozí řádek.
- 3. Stiskněte **E Pro** pro otevření označeného řádku pro zpracování.

A0040751

A Číslo řádku

- B Sloupec pro hladinu
- C Sloupec pro průtok

2. Stiskem 🚾 🗩 nebo 🐨 💴 můžete procházet sloupcem s čísly řádků.

3. Stiskněte **1** pro vymazání celého řádku, vložení nebo přemístění řádku.

Stiskem tlačítka **Escape** se vrátíte k předchozímu kroku.

\mathcal{N}^{\Box}
A0032709

9.3.5 Soubor parametrů "Prázdná kalibrace"

🖻 46 Prázdná kalibrace pro profil

- 1 Ultrazvukový senzor
- D Naměřená vzdálenost
- h Hladina proti směru proudění
- E Prázdná kalibrace: "Prázdný E"

🗟 47 Prázdná kalibrace pro přepady

- 1 Ultrazvukový senzor
- D Naměřená vzdálenost
- h Hladina proti směru proudění
- E Prázdná kalibrace: "Prázdný E"

Pohyb po obrazovce displeje

Základ. nastavení → Prázdná kalibrace

Parametry

- Prázdný E
 - Pro profily: Specifikujte vzdálenost mezi membránou senzoru a dnem profilu v nejužším bodě.
 - Pro přepady: Specifikujte vzdálenost mezi membránou senzoru a nejnižším bodem hřebenu přepadu.
- Blokovací vzdálenost

Stanovuje blokovací vzdálenost BD senzoru.

9.3.6 Soubor parametrů "Průtok N"

Pohyb po obrazovce displeje

Základ. nastavení \rightarrow Průtok N

Parametr

- Průtok N
- Zobrazuje aktuálně měřený průtok Q pro účely ověření.
- Hladina
 - Zobrazuje aktuálně měřenou hladinu h pro účely ověření.
- Vzdálenost
 - Zobrazuje aktuálně měřenou vzdálenost D pro účely ověření.

9.3.7 Soubor parametrů "Prověř hodnotu"

- 📔 🛛 Tento soubor parametrů spouští potlačování rušivých odrazů (mapování).
 - Pro zaznamenání všech rušivých odrazů proveď te mapování při nejnižší možné hladině (ideálně v prázdném kanálu).
 - Pokud není možné kanál během uvádění do provozu vyprázdnit, zaznamenejte předběžné mapování, když je kanál částečně naplněný. Mapování poté zopakujte, když hladina poprvé dosáhne přibližně 0 %.

Image: Princip funkce potlačení rušivých odrazů (mapování)

- A Křivka odrazů (a) obsahuje rušivé odrazy a odraz hladiny. Bez mapování by mohly být vyhodnoceny i rušivé odrazy.
- B Mapováním se vytvoří mapovací křivka (b). Ta potlačuje všechny odrazy, které leží uvnitř rozsahu mapování (c).
- C Poté jsou vyhodnocovány pouze odrazy, které jsou vyšší než mapovací křivka. Rušivý odraz leží pod mapovací křivkou, a proto se ignoruje (nevyhodnocuje).

Pohyb po obrazovce displeje

Základ. nastavení → Prověř hodnotu

Parametry

Vzdálenost

Zobrazuje aktuálně měřenou vzdálenost D mezi membránou senzoru a povrchem kapaliny.

Prověř vzdálenost

Porovnejte zobrazovanou vzdálenost s aktuální hodnotou a zadejte výsledek porovnání. Na základě tohoto údaje přístroj automaticky určuje rozsah mapování.

Vzdálenost = OK

Zobrazovaná vzdálenost a aktuální vzdálenost souhlasí.

 \rightarrow Pokračujte souborem parametrů LVL N vzdál. mapa.

- Vzdál. malá
 - Zobrazovaná vzdálenost je menší než aktuální vzdálenost.
 - \rightarrow Pokračujte souborem parametrů LVL N vzdál. mapa.
- Vzdál. velká
 - Zobrazovaná vzdálenost je větší než aktuální vzdálenost.
 - → Mapování není možné.
 - → Nastavení pro senzor N končí.
- Vzdál. neznámá
 - Aktuální vzdálenost není známa.
 - → Mapování není možné.
 - \rightarrow Nastavení pro senzor N končí.
- Manuálně

Rozsah mapování se má definovat manuálně.

 \rightarrow Pokračujte souborem parametrů LVL N vzdál. mapa.

9.3.8 Soubor parametrů "Mapování vzdálenosti"

Pohyb po obrazovce displeje

Základ. nastavení \rightarrow Prověř hodnotu \rightarrow Mapování vzdálenosti

Parametry

Aktuál. vzdál.

Zobrazuje aktuálně měřenou vzdálenost D mezi membránou senzoru a povrchem kapaliny.

Rozsah mapování

Specifikuje rozsah s počátkem od membrány senzoru, ve kterém se provádí mapování.

- Pokud Prověř vzdálenost = Vzdálenost = Ok nebo Vzdál. malá:
- Potvrďte předvolenou hodnotu.
- Pokud Prověř vzdálenost = Manuálně: Zadejte požadovaný rozsah mapování.

Start mapování

- Zvolte Ano pro zahájení záznamu mapovací křivky.
- → Zobrazí se soubor parametrů **PRT N stav**.

 \rightarrow Pokud je zobrazovaná vzdálenost stále příliš malá: Pokračujte v zaznamenávání mapovacích křivek, dokud nedojde ke shodě mezi zobrazovanou vzdáleností a skutečnou vzdáleností.

Stav

Specifikuje stav mapování:

- Zapnout mapu
 - Mapovací křivka je zohledňována během vyhodnocení signálu.
- Vypnout mapu
 Manovací křivka noní zo

Mapovací křivka není zohledňována během vyhodnocení signálu, ale zůstává uložena v přístroji.

Vymazat mapu

Mapovací křivka se vymaže.

9.3.9 Soubor parametrů "US senzor N"

Pro vícekanálové přístroje: Zakažte nepoužívané vstupy senzorů v souboru parametrů **US senzor N**.

Pohyb po obrazovce displeje

Správa senzoru \rightarrow Senzor FDU N \rightarrow Provoz senzoru

Parametr "Provoz senzoru"

Zapnutí nebo vypnutí senzoru N.

9.4 Pokročilé nastavení

9.4.1 Nastavení detekce zpětného toku a nečistot

Základní principy

🖻 49 Detekce zpětného toku s dvěma ultrazvukovými senzory

- 1 Protisměrný senzor
- *h*₁ Hladina proti proudu
- 2 Senzor po směru proudění
- *h*₂ Hladina po proudu

Měření průtoku může být ohroženo zpětným průtokem na straně po proudu nebo nečistotami v profilu. Tyto problémy lze zjistit pomocí funkce detekce zpětného toku a nečistot. K detekci zpětného toku a nečistot jsou zapotřebí dva senzory – jeden na straně proti proudu a druhý na straně po proudu. Přístroj vyhodnotí poměr hladiny po proudu h₂ k hladině proti proudu h₁.

Poloha protisměrného senzoru

Na straně po proudu senzor namontujte v dostatečné vzdálenosti od bodu vypouštění profilu. Místo měření vyberte tak, aby povrch vody byl klidný a hladina nebyla ovlivňována profilem.

Detekce zpětného toku

Přístroj detekuje zpětný tok, když poměr h_2/h_1 překročí kritickou hodnotu (pro Venturiho profily typicky 0,8). Potom průběžně snižuje zobrazený průtok na 0. Kromě toho lze nastavit relé alarmu zpětného toku, které signalizuje výstrahu, když vznikne zpětný tok.

Detekce nečistot

Nečistota v profilu je detekována, když poměr h_2/h_1 klesne pod kritickou hodnotu (typicky 0,1). Lze nastavit relé alarmu nečistot, které signalizuje výstrahu, když v profilu je nečistota.

Sekvence nastavování

- 1. Přejděte na **Průtok → Průtok 1 + zpětný tok → Průtok → Základní nastavení**
- 2. Nastavte protisměrný senzor (měření průtoku).
- 3. Přejděte na **Průtok → Průtok 1 + zpětný tok → Zpětný tok → Základní nastavení**

4. Nastavte senzor po proudu (detekce zpětného toku a nečistot).

Soubor parametrů "Výběr senzoru zpětného toku"

Pohyb po obrazovce displeje

Průtok → Průtok 1 + zpětný tok → Zpětný tok → Základní nastavení → Výběr senzoru zpětného toku.

Parametr

- Vstup
 - Přiřaď te senzor po proudu ke kanálu.
- Výběr senzoru Určete typ senzoru.

Zvolte možnost Automaticky pro senzory FDU9x.

Detekováno

Zobrazuje se pouze tehdy, pokud **Výběr senzoru** = **Automaticky** Zobrazuje automaticky detekovaný typ senzoru.

Soubor parametrů "Prázdná kalibrace zpětného toku"

Pohyb po obrazovce displeje

Průtok
 \rightarrow Průtok 1 + zpětný tok \rightarrow Zpětný tok
 \rightarrow Základní nastavení \rightarrow Prázdná kalibrace zpětného toku

Parametr

- Prázdný E
 - Určete vzdálenost mezi membránou senzoru a dnem profilu.
- Blokovací vzdálenost
 Stanovuje blokovací vzdálenost BD senzoru.

Soubor parametrů "Detekce zpětného toku"

Pohyb po obrazovce displeje

Průtok → Průtok 1 + zpětný tok → Průtok → Základní nastavení → Detekce zpětného toku

Parametr "Poměr B"

Určete horní limit B pro poměr h_2/h_1 . Zpětný tok je hlášen, když $h_2/h_1 > B$.

Soubor parametrů "Detekce nečistot"

Pohyb po obrazovce displeje

Průtok → Průtok 1 + zpětný tok → Zpětný tok → Základní nastavení → Detekce nečistot

Parametr "Poměr D"

Určete dolní limit D pro poměr h_2/h_1 . Nečistoty v profilu jsou hlášeny, když $h_2/h_1 < D$.

Soubor parametrů "Zpětný tok"

Pohyb po obrazovce displeje

Průtok → Průtok 1 + zpětný tok → Zpětný tok → Základní nastavení → Zpětný tok

Parametr

- Výška vzedmutí
 - Zobrazuje aktuální hodnotu hladiny po proudu h₂.
- Hladina průtoku
- Zobrazuje aktuální hodnotu hladiny proti proudu h₁.
- Aktuální poměr
 - Zobrazuje aktuální hodnotu pro poměr h_2/h_1 .
- Průtok 1
- Zobrazuje aktuálně naměřený průtok.

Soubor parametrů "Prověř. hodn. zpětného toku"

- Tento soubor parametrů spouští mapování (potlačování rušivých odrazů) pro senzor po proudu.
 - Pro zaznamenání všech rušivých odrazů proveď te mapování při nejnižší možné hladině (ideálně v prázdném kanálu).
 - Pokud není možné kanál během uvádění do provozu vyprázdnit, zaznamenejte předběžné mapování, když je kanál částečně naplněný. Mapování poté zopakujte, když hladina poprvé dosáhne přibližně 0 %.

E 50 Princip funkce mapování (potlačení rušivých odrazů)

- A Křivka odrazů (a) obsahuje rušivé odrazy a odraz hladiny. Bez mapování by byly vyhodnoceny i rušivé odrazy.
- B Mapováním se vytvoří mapovací křivka (b). Ta potlačuje všechny odrazy, které leží uvnitř rozsahu mapování (c).
- C Poté jsou vyhodnocovány pouze odrazy, které jsou vyšší než mapovací křivka. Rušivý odraz leží pod mapovací křivkou, a proto se ignoruje (nevyhodnocuje).

Pohyb po obrazovce displeje

Průtok → Průtok 1 + zpětný tok → Průtok → Základní nastavení → Prověř. hodn. zpětného toku

Parametr

Vzdálenost

Zobrazuje aktuálně měřenou vzdálenost D mezi membránou senzoru a povrchem kapaliny.

Prověř vzdálenost

Porovnejte zobrazovanou vzdálenost s aktuální hodnotou a zadejte výsledek porovnání. Na základě tohoto údaje přístroj automaticky určuje rozsah mapování.

Vzdálenost = OK

Zobrazovaná vzdálenost a aktuální vzdálenost souhlasí.

→ Pokračujte na soubor parametrů Mapování zpětného toku.

Vzdál. malá

Zobrazovaná vzdálenost je menší než aktuální vzdálenost.

- → Pokračujte na soubor parametrů **Mapování zpětného toku**.
- Vzdál. velká
 - Zobrazovaná vzdálenost je větší než aktuální vzdálenost.
 - \rightarrow Mapování není možné.
 - → Nastavení senzoru po proudu končí.
- Vzdál. neznámá

Aktuální vzdálenost není známa.

- → Mapování není možné.
- \rightarrow Nastavení senzoru po proudu končí.
- Manuálně

Rozsah mapování se má definovat manuálně.

→ Pokračujte na soubor parametrů **Mapování zpětného toku**.

Soubor parametrů "Mapování zpětného toku"

Pohyb po obrazovce displeje

Průtok
 \rightarrow Průtok 1 + zpětný tok \rightarrow Zpětný tok
 \rightarrow Základní nastavení \rightarrow Mapování zpětného toku

Parametr

Aktuál. vzdál

Zobrazuje aktuálně měřenou vzdálenost D mezi membránou senzoru a povrchem kapaliny.

Rozsah mapování

Specifikuje rozsah s počátkem od membrány senzoru, ve kterém se provádí mapování.

- Pokud Prověř vzdálenost = Vzdálenost = Ok nebo Vzdál. malá: Potvrďte předvolenou hodnotu.
- Pokud Prověř vzdálenost = Manuálně:

Zadejte požadovaný rozsah mapování.

Start mapování

- Zvolte Ano pro zahájení záznamu mapovací křivky.
- → Zobrazí se soubor parametrů **Stav zpětného toku**.

→ Pokud je zobrazovaná vzdálenost stále příliš malá: Pokračujte v zaznamenávání mapovacích křivek, dokud nedojde ke shodě mezi zobrazovanou vzdáleností a skutečnou vzdáleností.

- Stav
- Specifikuje stav mapování:
- Zapnout mapu

Mapovací křivka je zohledňována během vyhodnocení signálu.

 Vypnout mapu Mapovací křivka ne

Mapovací křivka není zohledňována během vyhodnocení signálu, ale zůstává uložena v přístroji.

Vymazat mapu

Mapovací křivka se vymaže.

Soubor parametrů "Výběr relé"

Pohyb po obrazovce displeje

Relé/řízení → Nastavení relé → Relé N

Parametr

- Funkce
 - Vyberte možnost Alarm/diagnost.
- Vyberte funkci
 - Vyberte možnost Alarm/diagnost.
- Funkce
 - Vyberte možnost Alarm zpětného toku nebo Alarm nečistot.

9.4.2 Nastavení současného měření hladiny a průtoku jedním senzorem

🖻 51 Současné měření hladiny a průtoku jedním senzorem

1 Senzor

2 Převodník Prosonic S

- L Hladina
- Q Průtok

1. Přejděte na: Vlastnosti přístroje → Provozní param. → Provozní režim

- 2. Vyberte možnost **Hladina + průtok**.
- 3. Přepněte do nabídky **Hladina**. V této nabídce nastavte měření hladiny, včetně mapování.
- 4. Přepněte do nabídky **Průtok**. V této nabídce nastavte měření průtoku. Zde není nutné nastavovat mapování.

9.4.3 Nastavení parametrů počítadla průtoku

Pohyb po obrazovce displeje

- U sumátorů (nelze resetovat):
 Průtok → Počítadlo průtoku → Počítadlo průtoku N
- U denních počítadlo průtoků → Počítadlo přůtok
 Průtok → Denní počítadlo → Denní počítadlo N

Parametr

- Přiřazení
 - Vyberte průtok, který má být počítán.
- Jednotka počítadla

Vyberte jednotku pro počítání.

- Hodnota Indikuje aktuální hodnotu počítadla průtoku.
- Přetečení

Indikuje počet, kolikrát počítadlo překročilo bod přetečení. Průtok = (přetečení × 10⁷ + hodnota) × jednotka počítadla

Reset

K dispozici pouze pro denní počítadla. Vyberte možnost **Ano** a resetujte počítadlo.

- Akce při poruše
 - Aktuální hodnota: Pro počítání bude použita aktuální hodnota průtoku.
 - Přidržet: Počítadlo použije hodnotu průtoku, která byla přítomna, když došlo k chybě.
 - Stop: Počítadlo se zastaví.
- Externí reset

Pouze u přístrojů s externím spínacím vstupem.

Vyberte externí vstup, přes který bude počítadlo resetováno.

Externí start

Pouze u přístrojů s externím spínacím vstupem.

Vyberte externí vstup, přes který bude počítadlo startováno a zastavováno.

9.4.4 Nastavení místního displeje

Typ vizualizace

€ 53 "Typ" = "2× hodnota + sloup."

🗉 54 "Typ" = "hodnota max. rozm.". Rozdílné hodnoty se zobrazují cyklicky v maximální velikosti.

S5 "Typ" = "3 × 2 hodn. střídavě". Lze zobrazit až šest hodnot. Tyto hodnoty jsou rozprostřeny na třech stránkách, na každé stránce jsou dvě. Tyto stránky se zobrazují cyklicky.

Když chcete přejít k následující hodnotě okamžitě, v hlavní obrazovce stiskněte

Nastavení typu vizualizace

- 1. Přejděte na soubor parametrů **Zobrazení → Zobrazení**.
- 2. Typ vizualizace vyberte v parametru **Typ** (viz výše).
- Pro Typ = Hodn.max.rozm. nebo Alter. 5 × 2 střídavě:
 V parametru Čas určete dobu, po jejímž uplynutí se zobrazí následující obrazovka.
- 4. V parametrech **Hodnota 1** až **Hodnota N** vyberte měřenou hodnotu, která bude zobrazována.
- 5. V parametrech **Uživatel. text 1** až **Uživatel. text N** zadejte textový řetězec, který bude zobrazován společně s hodnotami.
 - Specifikovaný textový řetězec bude zobrazen, když Uživatel. text = Ano (viz níže).

Nastavení formátu zobrazení

- 1. Přejděte k souboru parametrů: **Zobrazení → Formát zobrazení**.
- 2. V parametru **Formát** vyberte formát čísla pro údaje o délce.
- 3. V parametru **Místa za čárkou** určete počet desetinných míst, která budou zobrazována.
- 4. V parametru **Oddělovací znak** určete, jestli pro oddělení desetinného místa bude použita čárka nebo tečka.
- 5. V parametru **Uživatel. text** určete, zda bude na obrazovce zobrazen **Uživatel. text 1** až **Uživatel. text N** (viz výše).

Nastavení času návratu zpět na začátek

- 1. Přejděte na Zobrazení → Zpět na začátek → Zpět na začátek
- 2. Určete dobu, po jejímž uplynutí se místní zobrazení vrátí zpět na začátek (zobrazení měřené hodnoty).

9.4.5 Nastavení relé limitní hodnoty

Typ limity = "Standardní" nebo "Trend/rychlost"

🖻 56 Parametry pro "Typ limity" = "Standardní" nebo "Trend/rychlost"

- 1 "Bod zapnutí" > "Bod vypnutí"
- 2 "Bod vypnutí" > "Bod zapnutí"
- Α Bod zapnutí
- В Bod vypnutí
- С Relé pod napětím
- D Relé bez napětí

Typ limity = "Pásmo" nebo "Mimo pásmo"

🖻 57 Parametry pro "Typ limity" = "Pásmo" nebo "Mimo pásmo"

- 1
- "Typ limity" = "Pásmo" "Typ limity" = "Mimo pásmo" Horní spínací bod 2
- Α
- В Dolní spínací bod
- С Relé pod napětím
- D Relé bez napětí
- Ε Hystereze

Nastavení limitního relé

- 1. Přejděte na soubor parametrů Relé/řízení → Nastavení relé. → Relé N
- 2. V parametru **Funkce** vyberte možnost **Limit**.
 - └→ Zobrazí se seznam Funkce.
- 3. Vyberte proměnnou, k níž se limitní hodnota vztahuje.
- 4. V parametru **Typ limity** vyberte vhodný typ limitní hodnoty (viz výše).
- 5. U Typ limity = Standardní:V parametru Bod zapnutí určete bod zapnutí.
- 6. U Typ limity = Standardní:V parametru Bod vypnutí určete bod vypnutí.
- U Typ limity = Trend/rychlost:
 V parametru Zapnutí/min určete bod zapnutí pro danou rychlost změny.
- 8. U Typ limity = Trend/rychlost:
 V parametru Vypnutí/min určete bod vypnutí pro danou rychlost změny.
- 9. U **Typ limity = Pásmo** nebo **Mimo pásmo** V parametru **Horní spín. bod** určete horní spínací bod.
- 10. U Typ limity = Pásmo nebo Mimo pásmoV parametru Dolní spín. bod určete dolní spínací bod.
- 11. U Typ limity = Pásmo nebo Mimo pásmoV parametru Hystereze určete hysterezi pro spínací body.
- 12. V parametru **Zpožď. přepnutí** určete pro dané relé prodlevu při přepnutí.
 - Relé přepne jen tehdy, když limitní hodnota byla překročena po dobu, která je zde specifikována.
- 13. V parametru **Invertovat** určete, jestli směr spínání relé má být invertován ve vztahu k definovanému chování.
- 14. V parametru Akce při poruše určete chování relé, jestliže dojde k chybě.

9.4.6 Nastavení relé alarmu nebo diagnostiky

- 1. Přejděte na: Relé/řízení → Nastavení relé. → Relé N
- V parametru Funkce vyberte možnost Alarm/diagnost.
 Zobrazí se seznam Funkce.
- 3. Určete, jestli relé indikuje alarm (možnost **Alarmové relé**), nebo až dva stavy přístroje definované uživatelem (možnost **Diagnostické**).
- 4. U Funkce = Diagnostické

```
V parametrech Přiřazení 1 a Přiřazení 2 vyberte stavy přístroje, které mají být indikovány pomocí relé.
```

5. V parametru **Invertovat** určete, jestli směr spínání relé má být invertován ve vztahu k definovanému chování.

9.4.7 Nastavení relé časového impulzu

Relé časového impulzu generuje v pravidelných intervalech krátký impulz.

- 🖻 58 Nastavení relé časového impulzu
- A Doba impulzu
- B Šířka impulzu
- C Relé pod napětím
- D Relé bez napětí

Pohyb po obrazovce displeje

Relé/řízení → Nastavení relé → Relé N

Parametr

- Vyberte funkci
 - Vyberte možnost Čas impulzu.
- Šířka impulzu Definujte trvání každého jednotlivého impulzu.
- Čas impulzu
- Definujte časový interval mezi jednotlivými impulzy.
- Invertovat
- Určete, jestli směr spínání relé má být invertován. (Tovární nastavení: Ne.)
- Akce při poruše
- Určete chování relé, jestliže dojde k chybě.

9.4.8 Nastavení impulzního relé pro počítání impulzů

Relé pro počítání impulzů generuje krátký impulz pokaždé, když profilem nebo přepadem proteče určitý objem kapaliny.

Pohyb po obrazovce displeje

Relé/řízení → Nastavení relé→ Relé N

Parametr

- Vyberte funkci
 - Vyberte možnost Čítací impulz.
- Funkce
 - Vyberte průtok, k němuž se čítací impulzy vztahují.
- Jednotka počítadla
- Vyberte jednotku objemu pro počítání průtoku.
- Hodnota pulzu
 - Vyberte objem průtoku, po kterém bude generován impulz.
- Šířka impulzu
 - Definujte trvání každého jednotlivého impulzu.
- Čítač pulzů
- Indikuje, kolik pulzů již bylo generováno.
- Přetečení × 10^7
- Indikuje, jak často čítač překročil bod přetečení 10⁷ při počítání pulzů.
- Vynul. čítač
 - Ano: Čítač je nastaven na 0.
 - Ne: Čítač si podrží svou hodnotu.
- Start čítače

Určete dolní limit průtoku pro čítání. Průtok nižší, než je tato hodnota, bude během čítání ignorován.

Zastavení čítače

Určete horní limit průtoku pro čítání. Průtok vyšší, než je tato hodnota, bude během čítání ignorován.

Invertovat

Určete, jestli směr spínání relé má být invertován. (Tovární nastavení: Ne.)

Akce při poruše

Určete chování relé, jestliže dojde k chybě.

9.4.9 Nastavení proudových výstupů

Přiřazení měřené hodnoty proudovému výstupu

- Přejděte na: Výstup/výpočet → Proudový výstup N → Přiřaz./výpočet → Přiřaz.proud. N
- 2. V parametru **Výstup** určete, která hodnota bude na výstupu přes proudový výstup.
 - ← Parametr **Výstupní proud** zobrazuje poslední výstupní proud.

Rozšířená kalibrace proudového výstupu

 Přejděte na: Výstup/výpočet → Proudový výstup N → Rozšířená kalibrace → Režim proudu N

E 59 Proudový rozsah

- A 4 ... 20 mA
- B 0...20 mA
- C Pevný proud HART
- D Hodnota mA

V parametru **Rozmezí proudu** vyberte proudový rozsah, do kterého bude naměřená hodnota (0 % až 100 %) namapována. Pokud je vybrána možnost **Pevný proud**, naměřená hodnota se přenáší pouze přes signál HART.

3. U Rozmezí proudu = Pevný proud HART:

V parametru **Hodnota mA** určete hodnotu fixního proudu.

- 🖻 60 🛛 Tlumení výstupu
- 1 Měřená hodnota
- 2 Výstupní proud

V parametru **Tlumení výstupu** definujte konstantu tlumení, která bude použita při tlumení výstupního signálu.

Image: Book of the second s

- A Práh pro 4 mA vypnout
- B Práh pro 4 mA zapnout

U Rozmezí proudu = 4-20 mA:

V parametru **Práh pro 4 mA** zapněte nebo vypněte dolní prahovou hodnotu proudu.

 Když je práh pro 4 mA zapnutý, minimální proud je 4 mA, dokonce i když naměřená hodnota je nižší.

🗷 62 Princip fungování přestavování hodnot proudu

- A Rozsah 0/4 mA
- B Rozsah 20 mA

V parametru **Rozsah proudu** určete, jestli přestavení rozsahu bude zapnuto nebo vypnuto.

Přestavení rozsahu rozprostře signál hladiny. Bez přestavení rozsahu celý rozsah hladiny (0 % až 100 %) je mapována na proudový rozsah. Když je funkce přestavení rozsahu proudu zapnutá, volba rozsahu hladiny (definovaná parametry Hodnota rozsahu 0/4 mA a Hodnota rozsahu 20 mA) je mapována na proudový rozsah.

7. U Rozsah proudu = Zapnuto:

V parametru **Hodnota rozsahu 0/4 mA** určete naměřenou hodnotu, při níž proud je 0 mA nebo 4 mA.

8. U Rozsah proudu = Zapnuto:

V parametru **Hodnota rozsahu 20 mA** určete naměřenou hodnotu, při níž proud je 20 mA.

9.4.10 Nastavení signálu HART

- Tato část se týká pouze proudového výstupu 1. První proměnná HART (PV) vždy odpovídá naměřené hodnotě, která je také přiřazena proudu. Ostatní proměnné HART lze definovat v podnabídce **Nastavení HART**.
- 1. Přejděte na: Výstup/výpočet → Proudový výstup N → Nastavení HART → Nastavení HART
- 2. V parametru Adresa HART určete adresu HART přístroje.
 - Jestliže je adresa nastavena na 0, naměřená hodnota se objeví na výstupu jako hodnota proudu. U adres 1–15 je výstupní proud konstantní. Naměřená hodnota je potom předána na výstup pouze přes signál HART.
- 3. V parametru **Počet preambulí** určete počet preambulí pro protokol HART.
- 4. V parametru **Měřená hodnota N** (N = 2–4) určete, která měřená hodnota bude vysílána na výstup prostřednictvím proměnné HART.
- 5. V parametru **Tlumení výstupu N** (N = 2–4) určete konstantu tlumení pro proměnnou HART.

9.5 Simulace

9.5.1 Simulace průtoku

Pohyb po obrazovce displeje

- U senzoru průtoku:
 - $Průtok \rightarrow Průtok \rightarrow Průtok N \rightarrow Simulace$
- U protisměrného senzoru v případě detekce zpětného toku nebo detekce nečistot: Průtok → Průtok 1 + zpětný tok → Průtok → Průtok 1 → Simulace
- U senzoru po proudu v případě detekce zpětného toku nebo detekce nečistot: Průtok → Průtok 1 + zpětný tok → Zpětný tok → Simulace

Parametr

Simulace

Vyberte proměnnou, která má být simulována (hladina nebo objem).

Hodn. sim. hladiny

K dispozici jen tehdy, když **Simulace** = **Sim. hladiny**.

Určete hladinu, která má být simulována. Vypočtený průtok a výstupní signál sleduje tuto hodnotu.

- Hodnota simulace
 - K dispozici jen tehdy, když **Simulace** = **Průtok**.

Určete hodnotu průtoku, který má být simulován. Výstupní signál sleduje tuto hodnotu.

9.5.2 Simulace proudu

Pohyb po obrazovce displeje

Výstup/výpočet \rightarrow Proudový výstup N \rightarrow Simulace

Parametr

Simulace

- Zapněte nebo vypněte simulaci.
- Hodnota simulace

K dispozici jen tehdy, když **Simulace** = **Zapnuto**.

Určete proud, který má být simulován. Proudový výstup přijme tuto hodnotu.

9.6 Ochrana nastavení před neoprávněným přístupem

9.6.1 Softwarový zámek

Zamknutí

1. Přejděte na Vlastnosti přístroje → Heslo/reset → Kód.

2. Zadejte číslo ≠ 100.

└ Přístroj je zamknutý; nelze provádět žádné zadávání.

Odemknutí

- Pokud dojde k pokusu o změnu parametru, přístroj přejde na Heslo/reset.
 Zadejte "100".
 - └ Nyní bude opět možné provádět zadávání.

9.6.2 Zámek klávesnice

Zamknutí

- ▶ Stiskněte všechna tři tlačítka současně.
 - Přístroj je zamknutý; nelze provádět žádné zadávání. Na displeji se zobrazí symbol (D___).

Odemknutí

- Pokud dojde k pokusu o změnu parametru, přístroj přejde na Heslo/reset. "Zamkn. tlačítky" se zobrazí v parametru Stav.
 Stiskněte všechna tři tlačítka současně.
 - └ Nyní bude opět možné provádět zadávání.

9.6.3 Hardwarový zámek

A Odemknuto

B Zamknuto

Přepínač ochrany proti zápisu, kterým lze přístroj uzamknout a tím chránit proti změnám parametrů, je umístěn v základních oblasti svorek. Když je přístroj zamknutý, na displeji se zobrazí symbol (

9.6.4 Zobrazení stavu zamknutí

Pohyb po obrazovce displeje

Vlastnosti přístroje \rightarrow Heslo/reset \rightarrow Stav

Možnosti zobrazené na displeji

- Odemknuto
- Všechny parametry mohou být upraveny (s výjimkou sekce Servisní parametry).
- Zamčeno heslem

Přístroj byl uzamčen z nabídky obsluhy. Lze jej odemknout zadáním přístupového kódu v parametru **Nastavení přístroje → Heslo/reset → Kód**.

Zamkn. tlačítky

Přístroj byl uzamčen ovládacími tlačítky. Lze jej odemknout stisknutím všech tří tlačítek současně.

Spínač zamknut

Přístroj byl uzamčen přepínačem ochrany proti zápisu v oblasti svorek. Odemknutí lze provést zase tímto přepínačem.
10 Diagnostika, vyhledávání a odstraňování závad

10.1 Všeobecné závady

10.1.1 Chyba kalibrace

Nesprávná měřená hodnota

Zkontrolujte parametr Aktuál. vzdál.

• Aktuál. vzdál. je nesprávný:

- U měření v obtoku nebo ultrazvukovém vodicím potrubí: Nastavte vhodnou možnost v souboru parametrů LVL N apl. param.
- Proveď te potlačení rušivých odrazů (mapování) (soubor parametrů LVL N prov.
 - hodn.).
- Hodnota Aktuál. vzdál. je správná:
 - Zkontrolujte parametry Prázdný E a Plný F, a pokud je potřeba, proveďte opravu.
 - Zkontrolujte linearizaci, a pokud je potřeba, proveďte opravu.

Bez změny měřené hodnoty při doplňování/vypouštění

- Proveď te potlačení rušivých odrazů (mapování).
- Vyčistěte senzor.
- Vyberte lepší instalační polohu senzoru (aby nedocházelo k rušivým odrazům).

Pokud je povrch turbulentní, naměřená hodnota sporadicky vyskočí na vyšší úrovně.

- Proveď te potlačení rušivých odrazů (mapování).
- Nastavte parametr Provozní podm. na Neklid. povrch nebo Míchadlo.
- Vyberte jinou instalační polohu, popřípadě použijte větší senzor.

Během doplňování/vypouštění naměřená hodnota sporadicky poklesne.

- Nastavte parametr Geometrie nádrže na Sférické víko nebo Válcová ležatá.
- Pro montáž senzoru nepoužívejte středovou montážní polohu.
- Pokud to je možné, použijte uklidňovací trubku / ultrazvukové vodicí potrubí.

Ztráta odrazu (chyba E xx 641)

- Zkontrolujte všechny parametry aplikace (soubor parametrů LVL N appl. param.).
- Vyberte jinou instalační polohu, popřípadě použijte větší senzor.
- Senzor vyrovnejte tak, aby byl rovnoběžný s povrchem výrobku (zejména v aplikacích se sypkými materiály).

10.1.2 Kontrola signálu v zobrazení obalové křivky

Cíl zobrazení obalové křivky

Měřicí signál lze sledovat pomocí zobrazení obalové křivky. Z obalové křivky je možné zjistit, zda jsou přítomny rušivé odrazy a zda jsou tyto odrazy zcela potlačeny funkcí potlačení rušivých odrazů (mapování).

Obalová křivka na zobrazovacím modulu

Jestliže chcete vyvolat zobrazení obalové křivky:

1. Přejděte na Info o systému. → Obalová křivka.

2. U přístrojů s několika senzory:

Vyberte senzor, jehož obalová křivka má být zobrazena.

- 3. Vyberte typ křivky, která má být zobrazena: obalová křivka, křivka plovoucího průměru (FAC), mapovací křivka.
- 4. Vyberte formát zobrazení: jednotlivá křivka nebo cyklická.

🖻 64 Obalová křivka na místním displeji

- 1 Mapovací křivka (tečkovaná čára)
- 2 Kvalita odrazu vyhodnocovaného odrazu (tj. vzdálenost vrcholu odražené vlny od křivky
 - plovoucího průměru)
- 3 Označení pro vyhodnocovaný odraz
- 4 Označení pro prázdnou kalibraci E
 5 Pravý limit rozsahu zohrazení
- Pravý limit rozsahu zobrazení
 Vzdálenost vyhodnocovaného odrazu (měřeno od referenčního bodu senzoru)
- 7 Obalová křivka (plná čára)
- 8 Levý limit rozsahu zobrazení
- 9 Označení pro plnou kalibraci F

Změna velikosti zobrazení obalové křivky

1. Stiskněte levé nebo prostřední tlačítko.

- V pravém horním rohu grafu se objeví symbol 1 nebo 1.
- 2. Přiblížení: Stiskněte prostřední tlačítko.
- 3. Oddálení: Stiskněte levé tlačítko.

Posun obalové křivky horizontálně

- 1. Stiskněte pravé tlačítko.
 - V pravém horním rohu grafu se objeví symbol 📢 nebo 🕪.
- 2. Jestliže chcete obrazovku posunout doprava, stiskněte prostřední tlačítko.
- 3. Jestliže chcete obrazovku posunout doleva, stiskněte levé tlačítko.

Ukončení zobrazení obalové křivky

Stiskněte všechna tři tlačítka současně.

Zobrazení obalové křivky v systému FieldCare/DeviceCare

- 1. Na panelu nabídek klikněte na **F** (funkce).
- 2. Vyberte senzor, jehož obalová křivka má být zobrazena.
- 3. Pokud chcete zobrazit jednotlivou křivku, klikněte na tlačítko Číst křivku.
- 4. Pokud chcete zobrazovat křivky cyklicky, stiskněte tlačítko **Cyklické čtení**.
- 5. V okně **Křivky** vyberte typ křivky, která má být zobrazena: obalová křivka, křivka plovoucího průměru (FAC), mapovací křivka.

10.2 Přehled diagnostických informací

10.2.1 Chybový signál

Zobrazení chyb, které se vyskytnou během uvádění do provozu nebo během provozu:

- Displej v místě použití:
 - Symbol chyby
 - Kód chyby
 - Popis chyby
- Proudový výstup, závisí na parametru Výstup při alarmu → Výstup N:
 - Min. (3,6 mA): -10 %, 3,6 mA
 - Max. (22 mA): 110 %, 22 mA
 - **Přidržet**: Je přidržena poslední hodnota.
 - Uživ. specif.: Definováno v parametru Výstupní hodnota N.
- Nabídka obsluhy:

Info o systému \rightarrow Seznam poruch \rightarrow Aktuální porucha

10.2.2 Seznam posledních poruch

Nabídka obsluhy:

Info o systému \rightarrow Seznam poruch \rightarrow Poslední porucha

10.2.3 Typy poruch

Alarm (A)

svítí trvale.

Hodnota výstupního signálu je definována parametrem Výstup při alarmu \rightarrow Výstup N:

- Min. (3,6 mA): -10 %, 3,6 mA
- **Max. (22 mA)**: 110 %, 22 mA
- Přidržet: Je přidržena poslední hodnota.
- Uživ. specif.: Definováno v parametru Výstupní hodnota N.

Kontrolka LED indikující provozní stav bliká červeně. Zobrazí se chybová zpráva.

Výstraha (W)

Bliká indikátor **E 10**.

- Přístroj pokračuje v měření.
- Kontrolka LED indikující provozní stav bliká červeně.
- Zobrazí se chybová zpráva.

10.2.4 Chybové kódy

Význam chybových kódů

- Pozice 1:
 - Typ chyby
 - A: alarm
 - W: výstraha
 - E: chyba (Chování při výskytu chyby je definováno uživatelem.)
- Pozice 2 a 3:

Vstupní nebo výstupní kanál

"**00**" znamená, že chyba se nevztahuje ke konkrétnímu kanálu.

Pozice 4 až 6:

Chybový kód podle následující tabulky

Seznam chybových kódů

- A 00 100
 - Verze softwaru neodpovídá verzi hardwaru.
- A 00 101
- Chyba kontrolního součtu
 - ightarrow Celkový reset a následná kalibrace
- A 00 102
 - Chyba kontrolního součtu
 - \rightarrow Celkový reset a následná kalibrace
- W 00 103
 - Probíhá inicializace vyčkejte prosím
 - \rightarrow Pokud tato zpráva po několika sekundách nezmizí, proveď
te výměnu modulu elektroniky.
- A 00 106
 - Stahování čekejte prosím
 - \rightarrow Vyčkejte, než bude stahování dokončeno.
- A 00 110
 - Chyba kontrolního součtu
 - \rightarrow Celkový reset a následná kalibrace
- A 00 111/112/114/115
 - Porucha elektroniky
 - \rightarrow Vypněte přístroj a znovu jej zapněte.
- → Pokud chyba přetrvává: volejte servisní středisko Endress+Hauser.
- A 00 116
 - Chyba stahování

→ Zopakujte stahování.

• A 00 117

Hardware po změně nebyl identifikován

- A 0x 121
 - Proudový výstup 01 nebo 02 není zkalibrován
 - → Volejte servisní středisko Endress+Hauser.
- A 00 125
 - Porucha elektroniky

→ Proveďte výměnu elektroniky.

- A 00 152
 - Chyba kontrolního součtu

 \rightarrow Proveď te celkový reset a následnou kalibraci.

- W 00 153
- Inicializace

 \rightarrow Pokud tato zpráva po několika sekundách nezmizí, proveď
te výměnu modulu elektroniky.

- A 00 155
- Porucha elektroniky
 - \rightarrow Proveď te výměnu elektroniky.
- A 00 164
 - Porucha elektroniky Vyměňte elektroniku.
- A00 171 Porucha elektroniky

Vyměňte elektroniku.

- A 00 180
- Chyba synchronizace
 - \rightarrow Zkontrolujte synchronizační připojení.
- A 00 183
- Nepodporovaný hardware
-
 \rightarrow Zkontrolujte, jestli se nainstalované desky plošných spojů shodují s objednacím kódem přístroje.
- \rightarrow Volejte servisní středisko Endress+Hauser.

• A 0x 231

Vadný senzor 01 nebo 02 – zkontrolujte připojení \rightarrow Zkontrolujte, že senzor je správně připojen.

• A 00 250

Vadný externí teplotní senzor

 \rightarrow Zkontrolujte teplotní senzor.

• A 0x 281

Chybné údaje senzoru teploty 01 nebo 02 – zkontrolujte připojení \rightarrow Zkontrolujte, že senzor je správně připojen.

• W 0x 501

Pro vstup 01 nebo 02 není vybrán žádný senzor → Vyberte senzor (nabídka **Hladina** nebo **Průtok**).

• A 0x 502

Senzor 01 nebo 02 není rozpoznán

 \rightarrow Zadejte typ senzoru ručně (nabídka **Hladina** nebo **Průtok**, podnabídka **Základní nastavení**).

• A 00 511

Nejsou k dispozici žádné kalibrační údaje z výroby

• A 0x 512

Záznam mapování

 \rightarrow Vyčkejte, než bude mapování dokončeno.

• W01521

Nový senzor 01 nebo 02 rozpoznán

• W01601

Křivka linearizace postupuje nesprávně u hladiny 01 nebo 02 \rightarrow Zadejte linearizaci znovu (nabídka **Hladina**).

• W 0x 602/603

Křivka linearizace postupuje nesprávně u průtoku 01 nebo 02 \rightarrow Zadejte linearizaci znovu (nabídka **Průtok**).

• A 0x 604

Chyba u kalibrace hladiny 01 nebo 02

→ Opravte kalibraci (nabídka **Hladina**).

• A 0x 605/606

Chyba u kalibrace průtoku 01 nebo 02 → Opravte kalibraci (nabídka **Průtok**).

• W 0x 611

Méně než 2 body linearizace pro hladinu 01 nebo 02 \rightarrow Zadejte další body linearizace (nabídka **Hladina**).

• W 0x 612/613

Méně než 2 body linearizace pro průtok 01 nebo 02 \rightarrow Zadejte další body linearizace (nabídla **Průtok**).

• W 0x 620

Hodnota impulzu příliš malá, relé 01–06

 \rightarrow Zkontrolujte čítací jednotky (nabídka **Průtok**, podnabídka **Flow counter**).

• E 0x 641

Žádný použitelný senzor odrazu 01 nebo 02

 \rightarrow Zkontrolujte základní nastavení senzoru (nabídka **Hladina** nebo **Průtok**).

A 0x 651

Hladina v bezpečnostní vzdálenosti, senzor 01 nebo 02, nebezpečí přeplnění Tato chybová zpráva zmizí, jakmile hladina už nebude v bezpečnostní vzdálenosti. → Pokud je třeba, aktivujte funkci **Reset auto přidržení** (nabídka **Bezpeč. nastavení**).

• E 0x 661

Teplota senzoru 01 nebo 02 příliš vysoká (u senzoru byla překročena max. přípustná teplota)

• W 0x 682

Proud 01 nebo 02 mimo rozsah

- → Proveď te základní nastavení.
- \rightarrow Zkontrolujte linearizaci.

• W 0x 691

Senzor 01 nebo 02 detekoval problém při plnění

- W 00 692
- Detekován zpětný tok (u instalace s aktivní detekcí zpětného průtoku)
- W 00 693
- Detekovány nečistoty (u instalace s aktivní detekcí nečistot)
- W 0x 70y
 - Provozní hodiny alarm čerpadla y PST x
 - \rightarrow Resetujte počítadlo provozních hodin (podnabídka Alarm pr. hod.).
- W 0x 71y
 - Porucha čerpadla y PST x

→ Zkontrolujte čerpadlo 1. Po odstranění závady čerpadla resetujte kontrolér čerpadla, nebo přístroj vypněte a znovu zapněte.

- W 00 801
 - Simulace hladiny zapnutá
 - \rightarrow Vypněte simulaci hladiny (nabídka **Hladina**).
- W 0x 802

Simulační senzor 01 nebo 02 zapnutý

- → Simulaci vypněte.
- W 0x 803/804
 - Simulace průtoku zapnutá → Simulaci vypněte (nabídka **Průtok**).
- → Simulaci vypriete (nabidka i • W 01 805
- Simulace proudového výstupu 01 zapnutá → Simulaci vypněte (nabídka **Výstupy/výpočty**).
- W 02 806

Simulace proudového výstupu 02 zapnutá → Simulaci vypněte (nabídka **Výstupy/výpočty**).

• W 0x 807

Simulační relé 01−06 zapnuté → Simulaci vypněte.

• W 0x 808

Senzor 01 nebo 02 vypnutý

 \rightarrow Zapněte senzor (nabídka **Správa senzorů**).

- W 0x 809
 - Nastavení proudu D/A aktivní
- A 00 820-832

Odlišné jednotky pro výpočet střední hodnoty/součtu/rozdílu nebo řízení česla. → Zkontrolujte jednotky v příslušných základních nastaveních (nabídka **Hladina** nebo **Průtok**).

10.3 Historie firmwaru

- V01.00.00 (12.2005)
 Původní software
- BA00289F/00/EN/12.05 • V01.00.02 (06.2006)
 - Byla revidována funkce omezovacího relé BA00289F/00/EN/12.05
- V02.00.00 (04.2007)
 Nová možnost: binární vstupy (např. pro zachycení externích mezních hodnot nebo poloh čerpadla, motoru a spínače)
 BA00289F/00/EN/10.07
- V02.01.00 (07.2009)
 Zavedení senzoru FDU90
 BA00289F/00/en/07.09

- V02.01.01 (02.2010)
 Zavedení věrohodnosti teploty
 BA00289F/00/en/07.09
- V01.02.03 (05.2011)
 Zlepšená věrohodnost teploty; omezení čítače průtoku; odstraňování závad BA00289F/00/en/07.09
- V01.02.05 (08.2014)
 Neustálé zlepšování
 BA00289F/00/en/13.12
- V01.02.06 (04.2016)
 Neustálé zlepšování
 BA00289F/00/en/14.17

11 Údržba

Přístroj nevyžaduje žádnou zvláštní údržbu.

11.1 Čištění zvenku

Při čištění zvenku používejte vždy čisticí prostředky, které nezpůsobují korozi povrchu krytu ani těsnění.

12 Opravy

12.1 Všeobecné informace

12.1.1 Koncept oprav ve společnosti Endress+Hauser

Podle koncepce oprav zavedené ve společnosti Endress+Hauser mají měřicí přístroje modulární konstrukci a zákazníci jsou schopni provádět opravy sami. Více informací o servisu a náhradních dílech získáte od obchodního zástupce společnosti Endress + Hauser.

12.1.2 Opravy přístrojů, které mají Ex schválení

- Opravy přístrojů se schválením Ex smí provádět jenom specialisté nebo pracovníci servisu společnosti Endress+Hauser.
- Dodržujte příslušné normy, národní předpisy pro prostředí s nebezpečím výbuchu, bezpečnostní pokyny (XA) a certifikáty.
- Používejte pouze originální náhradní díly od společnosti Endress+Hauser.
- Když objednáváte náhradní díly, uvádějte k nim označení ze štítku. Při výměnách lze použít pouze naprosto stejné díly.
- Opravy provádějte podle pokynů. Po dokončení opravy proveďte na přístroji specifikované rutinní zkoušky.
- Certifikovaný přístroj smí přestavět na jinou verzi certifikovaného přístroje pouze pracovníci servisu společnosti Endress+Hauser.
- Veškeré opravy a úpravy zdokumentujte.

12.1.3 Výměna přístroje nebo modulu elektroniky

Po výměně celého přístroje nebo modulu s elektronikou lze parametry stáhnout opět do přístroje prostřednictvím komunikačního rozhraní. K tomuto účelu je nutné nejdříve nahrát data do počítače pomocí softwaru "FieldCare". Můžete pokračovat v měření bez nutnosti provádění nové kalibrace. Znovu je potřeba provést jen linearizaci a potlačení rušivých odrazů.

12.1.4 Výměna senzoru

Po výměně senzoru zkontrolujte tyto parametry:

- Prázdný E
- Plný F
- Ověř vzdálenost (mapování)

Poté je možné obnovit měření bez dalších omezení.

12.2 Náhradní díly

Veškeré náhradní díly pro měřicí přístroj, včetně objednacího kódu, jsou uvedeny v *W@M Device Viewer* (www.endress.com/deviceviewer) a lze je zde rovněž objednat. Pokud existují k těmto náhradním dílům pokyny pro montáž, můžete si je stáhnout.

12.3 Zpětné zasílání

Požadavky na bezpečné zpětné zasílání se mohou lišit v závislosti na typu zařízení a národní legislativě.

1. Další informace najdete na webových stránkách: http://www.endress.com/support/return-material. 2. Je-li třeba provést opravu či tovární kalibraci, nebo pokud bylo objednáno či dodáno nesprávné zařízení, musí být zařízení vráceno zpět.

12.4 Likvidace

Během likvidace dodržujte následující pokyny:

- Dodržujte platné federální/národní zákony.
- Zajistěte řádné roztřídění a recyklaci součástí zařízení.

13 Příslušenství

13.1 Příslušenství specifická podle typu komunikace

13.1.1 Commubox FXA195 HART

- Jiskrově bezpečná komunikace HART s FieldCare nebo DeviceCare prostřednictvím rozhraní USB
- Další informace: Technické informace TI00404F

13.1.2 Commubox FXA291

- Připojuje rozhraní CDI (Common Data Interface) přístrojů Endress+Hauser s USB portem počítače.
- Objednací číslo: 51516983
- Další informace: Technické informace TI00405C

13.2 Příslušenství specifická podle daného přístroje

13.2.1 Ochranná stříška pro polykarbonátové pouzdro do provozu

65 Ochranná stříška pro polykarbonátové pouzdro do provozu. Jednotka měření mm (in)

- Materiál: 316Ti (1.4571)
- Montáž a upevnění: pomocí očka pouzdra Prosonic S
- Objednací číslo: 52024477

13.2.2 Montážní deska pro polykarbonátové pouzdro do provozu

🖻 66 Montážní deska pro polykarbonátové pouzdro do provozu

- Kompatibilní s očkem pouzdra Prosonic S
- Průměr potrubí: 25 ... 50 mm (1 ... 2 in)
- Rozměry: 210 × 110 mm (8,27 × 4,33 in)
- Materiál: 316Ti (1.4571)
- Montážní příslušenství: Upevňovací spony, šrouby a matice jsou součástí dodávky.
- Objednací číslo: 52024478

Montážní rám, krátký

67 Rozměry montážního rámu, krátkého. Jednotka měření mm (in)

Hmotnost: 3,2 kg (7,06 lb)

Materiál

316L (1.4404)

Objednací číslo

71452327

Montážní rám, dlouhý

🖻 68 Rozměry montážního rámu, dlouhého. Jednotka měření mm (in)

Hmotnost:

4,9 kg (10,08 lb)

Materiál

316L (1.4404) **Objednací číslo**

71452326

13.2.3 Deska adaptéru pro vzdálený displej

🖻 69 Použití desky adaptéru

- 1 Vzdálený displej modulu Prosonic S FMU9x s deskou adaptéru
- 2 Instalační otvor vzdáleného displeje předchůdce převodníku FMU86x

Pro montáž vzdáleného displeje modulu Prosonic S FMU9x v krytu většího vzdáleného displeje předchůdce FMU86x

- Rozměry: 144 × 144 mm (5,7 × 5,7 in)
- Objednací číslo: 52027441

13.2.4 Přepěťová ochrana HAW562

Snižuje zbytkové napětí z předřazených bleskojistek; omezuje přepětí vyvolané nebo generované v systému.

Další informace: Technické informace TI01012K

13.2.5 Prodlužovací kabely pro senzory

- Maximální přípustná celková délka (kabel senzoru + prodlužovací kabel): 300 m (984 ft)
 - Kabel senzoru a prodlužovací kabel musí být stejného typu.

FDU90/FDU91 bez ohřívače senzoru

- Typ kabelu: LiYCY 2× (0,75)
- Materiál: PVC
- Okolní teplota:
- Objednací číslo: 71027742

FDU90/FDU91 s ohřívačem senzoru

- Typ kabelu: LiYY 2× (0,75)D + 2× 0,75
- Materiál: PVC
- Okolní teplota:-40 ... +105 °C (-40 ... +221 °F)
- Objednací číslo: 71027746

FDU92

- Typ kabelu: LiYCY 2× (0,75)
- Materiál: PVC
- Okolní teplota:-40 ... +105 °C (-40 ... +221 °F)
- Objednací číslo: 71027742

FDU91F/FDU93/FDU95

- Typ kabelu: LiYY 2× (0,75)D + 1× 0,75
- Materiál: PVC
- Okolní teplota:-40 ... +105 °C (-40 ... +221 °F)
- Objednací číslo: 71027743

FDU95

- Typ kabelu: Li2G2G 2× (0,75)D + 1× 0,75
- Materiál: silikon
- Okolní teplota:-40 ... +150 °C (-40 ... +302 °F)
- Objednací číslo: 71027745

13.2.6 Teplotní senzor Omnigrad S TR61

☑ 70 Struktura senzoru Omnigrad S TR61; rozměry: mm (palce)

- Náhrada za FMT131-R* (prostředí bez nebezpečí výbuchu) TR61-ABAD0BHSCC2B
- Náhrada za FMT131-J* (ATEX II 2G EEx m II T6/T5) TR61-EBAD0BHSCC2B
- Další informace: Technické informace TI01029T

14 Nabídka obsluhy

14.1 Nabídka "Hladina → Hladina (LVL N)"

14.1.1 Podnabídka "Základní nastavení"

Soubor parametrů L1003 "LVL N výběr senz."

- Vstup
- Výběr senzoru
- Detekováno

Soubor parametrů L1004 "LVL N uživ. param."

- Geometrie nádrže
- Charakteristika média
- Procesní podmínky

Soubor parametrů L1005 "LVL N kal. prázdn." Prázdný E

Soubor parametrů L 1006 "LVL N kal. plný"

- Plný F
- Blokovací vzdálenost

Soubor parametrů L1007 "LVL N jednotka"

- Jedn. hladiny
- Hladina N
- Vzdálenost

Soubor parametrů L1008 "LVL N linearizace"

- Тур
- Uživ. jednotky
- Uživatelsky upravený text
- Konec měř. rozs.
- Průměr
- Střední výška (H)
- Režim
- Edit
- Tabulka stavů

Soubor parametrů L100B "LVL N prov. hodn."

- Aktuál. vzdál. N
- Ověř vzdálenost

Soubor parametrů L100B "LVL N vzdál. mapa"

- Aktuál. vzdál. N
- Rozsah mapování
- Start mapování
- Stav

Soubor parametrů L100C "LVL N Stav"

- Hladina N
- Aktuál. vzdál. N
- Stav

14.1.2 Podnabídka "Rozšíř. kalibr."

Soubor parametrů L1016 "LVL N vzdál. mapa"

- Aktuál. vzdál. N
- Rozsah mapování
- Start mapování
- Stav

Soubor parametrů L1017 "LVL N prov. hodn." Korekce

Soubor parametrů L1018 "LVL N korekce" Offset

Soubor parametrů L1020 "LVL N blokovací vzdálenost" Blokovací vzdálenost

Soubor parametrů L1019 "LVL N omezení"

- Omezení
- Horní mez
- Dolní mez

Soubor parametrů L1020/L1021 "LVL N ext. vstup M"

Pouze pro přístroje s přídavnými digitálními vstupy (FMU90******B***)

- Vstup M
- Funkce
- Hodnota

14.1.3 Podnabídka "Simulace"

Soubor parametrů L1022 "LVL N simulace"

- Simulace
- Hodn. sim. hladiny
- Hodn. sim. objemu

14.2 Nabídka "Průtok N"

Přechod k nabídce:

- Jestliže Režim provozu = Hladina + průtok: Průtok → Průtok → Průtok N
- Jestliže Režim provozu = Průtok: Průtok → Průtok → Průtok N
- Jestliže Režim provozu = Průtok + zpětný tok: Průtok → Průtok 1 + zpětný tok → Průtok N

14.2.1 Podnabídka "Základní nastavení"

Soubor parametrů F1003 "Průtok N výběr senz."

- Vstup
- Výběr senzoru
- Detekováno

Soubor parametrů F1004 "Průtok N linearizace"

- Typ
- Jedn. průtoku
- Křivka
- Šířka
- Edit
- Tabulka stavů
- alfa
- beta
- gama
- C
- Max. průtok
- Soubor parametrů F1010 "Průtok N kal. prázdn."
- Prázdný E
- Blokovací vzdálenost

Soubor parametrů F1005 "Průtok N"

- Průtok N
- Hladina
- Vzdálenost

Soubor parametrů F1006 "Průtok N prov. hodn."

- Vzdálenost
- Ověř vzdálenost

Soubor parametrů F1008 "Průtok N mapování"

- Vzdálenost
- Rozsah mapování
- Start mapování
- Stav

Soubor parametrů "Průtok N stav"

- Hladina
- Vzdálenost
- Průtok N
- Stav

14.2.2 Podnabídka "Rozšíř. kalibr."

Soubor parametrů F1010 "Průtok N mapování"

- Vzdálenost
- Rozsah mapování
- Start mapování
- Stav

Soubor parametrů F1011 "Průtok N potlačení"

- Tlumení nízkého průtoku
- Průtok N

Soubor parametrů F1012 "Průtok N kor. vzdál."

- Korekce
- Průtok N

Soubor parametrů F1013 "Průtok N kor. hlad."

- Offset
- Průtok N

Soubor parametrů F1016 "Průtok N blokovací vzdálenost" Blokovací vzdálenost

Soubor parametrů F1014 "Průtok N omezení"

- Omezení
- Horní mez
- Dolní mez

Soubor parametrů F1015/F1016 "Průtok N ext. vstup M"

- Vstup M
- Funkce
- Hodnota

14.2.3 Podnabídka "Simulace"

Soubor parametrů F1020 "Průtok N simulace"

- Simulace
- Hodn. sim. hladiny
- Hodn. sim. průtoku

14.3 Nabídka "Zpětný tok"

Přechod k podnabídce

Průtok → Průtok 1+ vzedmutí → Zpětný tok

14.3.1 Podnabídka "Základní nastavení"

Soubor parametrů F1304 "Výběr senzoru zpětného toku"

- Vstup
- Výběr senzoru
- Detekováno

Soubor parametrů F1305 "Vzedm. nast. prázdn."

- Prázdný E
- Blokovací vzdálenost

Soubor parametrů F1306 "Detekce zpětného toku" Poměr B

Soubor parametrů F1306 "Detekce nečistot" Poměr D

Soubor parametrů F1307 "Zpětný tok"

- Výška vzedmutí
- Hladina průtoku
- Aktuální poměr
- Průtok 1

Soubor parametrů F1308 "Prověř. hodn. zpětného toku"

- Vzdálenost
- Ověř vzdálenost

Soubor parametrů F1309 "Mapování zpětného toku"

- Vzdálenost
- Rozsah mapování
- Start mapování
- Stav

14.3.2 Podnabídka "Rozšíř. kalibr."

Soubor parametrů F1500 "Mapování zpětného toku"

- Vzdálenost
- Rozsah mapování
- Start mapování
- Stav

Soubor parametrů F1501 "Kor. vzdál. vzedm." Offset senzoru

Soubor parametrů F1502 "Korekce vzedmutí" Offset

Soubor parametrů F1504 "Block. vzdál. vzedm." Blokovací vzdálenost

Soubor parametrů F1503 "Omezení vzedmutí"

- Omezení
- Horní mez
- Dolní mez

Soubor parametrů F1504/F1505 "Vzedmutí. ext. vstup M"

- Vstup M
- Funkce
- Hodnota

14.3.3 Podnabídka "Simulace"

Soubor parametrů F1600 "Simulace vzedmutí"

- Simulace
- Hodn. sim. hladiny

14.4 Nabídka "Počítadlo průtoku"

Přechod k podnabídce:

Průtok → Počítadlo průtoku

14.4.1 Podnabídka "Sumátor"

Soubor parametrů F1202 "Sumátor N"

Přiřazení

Jednotka počítadla

Soubor parametrů F1203 "Sumátor N"

- Hodnota
- Přetečení × 10^7

Soubor parametrů F1204 "Denní počítadlo N" Režim chyby

14.4.2 Podnabídka "Denní počítadlo"

Soubor parametrů F1102 "Denní počítadlo N"

- Přiřazení
- Jednotka počítadla

Soubor parametrů F1103 "Denní počítadlo N"

- Hodnota
- Přetečení × 10^7
- Reset

Soubor parametrů F1104 "Denní počítadlo N" Režim chyby

Soubor parametrů F1105 "Denní počítadlo N"

Pouze pro přístroje s přídavnými digitálními vstupy (FMU90-******B***)

- Externí reset
- Externí start

14.5 Nabídka "Bezpečnostní nastavení"

Soubor parametrů AX101 "Výstup při alarmu"

- Výstup N
- Výstupní hodnota N

Soubor parametrů AX102 "Výstup ztr. echa"

- Hladina N
- Náběh hladiny N
- Hodnota hladiny N
- Průtok N
- Hodnota průtoku N

Soubor parametrů AX103 "Zpožď. ztr. echa" Zpoždění, senzor N

Soubor parametrů AX104 "Bezp. zóna" Bezp. zóna, senzor N

Soubor parametrů AX105 "V bezpečn. zóně"

- V bezpečn. zóně, senzor N
- Reset, senzor N

Soubor parametrů AX107 "Rekce. vys. tepl."

- Překroč. tepl. sen. N
- Max. tepl. sen. N

Soubor parametrů A0000 "Vadná teplota senzoru" Vad. tep. sen. N

Soubor parametrů A0000 "Zpoždění relé" Relé zpoždění startu

14.6 Nabídka "Relé/ovládací prvky"

14.6.1 Podnabídka "Řízení čerpadla N" (standardní – omezené řízení)

Platí pro:

- FMU90-*1********
- FMU90-*2********

Soubor parametrů R1300 "Řízení čerpadla N"

- Referenční
- Počet čerpadel

Soubor parametrů R1301 "Řízení čerpadla N" Funkce = Limita řízení

Soubor parametrů R1302 "Řízení čerpadla N" Čerpadlo M

Soubor parametrů R1303 "Čerpadlo M / řízení N"

- Bod zapnutí
- Bod vypnutí
- Zpoždění zapnutí
- Střídavé zobrazení
- Redukce krusty

Soubor parametrů R1304 "Čerpadlo M / řízení N"

- Interval doběhu
- Doba doběhu
- Režim chyby
- Soubor parametrů R1306 "Přiřazení relé → Relé K"

Funkce

Invertovat

14.6.2 Podnabídka "Řízení čerpadla N" (standardní – řízení rychlosti čerpání)

Platí pro:

- FMU90-*1*******
- FMU90-*2********

Soubor parametrů R1300 "Řízení čerpadla N"

- Referenční
- Počet čerpadel

Soubor parametrů R1301 "Řízení čerpadla N" Funkce = Řízení rychlosti čerpání

Soubor parametrů R13A3 "Řízení čerpadla N"

- Bod zapnutí
- Bod vypnutí
- Min. rychlost čerpání/min
- Redukce krusty
- Hranice zapnutí
- Čas mezi starty čerpadel
- Střídavé zobrazení

Soubor parametrů R13A2 "Řízení čerpadla N" Čerpadlo M

Soubor parametrů R13A3 "Čerpadlo M / řízení N"

- Zpoždění zapnutí
- Interval doběhu
- Doba doběhu
- Režim chyby

Soubor parametrů R13A6 "Přiřazení relé → Relé K"

- Funkce
- Invertovat

14.6.3 Podnabídka "Řízení čerpadla N → Základní nastavení" (rozšířené – omezené řízení)

Platí pro:

- FMU90-*3********
- FMU90-*4********

Přechod k podnabídce:

Relé/řízení → Řízení čerpadla N → Základní nastavení

Soubor parametrů R1401 "Řízení čerpadla N"

- Referenční
- Počet čerpadel
- Záložní čerpadlo
- Reset

Soubor parametrů R1402 "Řízení čerpadla N"

- Funkce = Limit jediný / limit paralelní
- Typ zatížení

Soubor parametrů R1403 "Řízení čerpadla N" Čerpadlo M

Soubor parametrů R1404 "Čerpadlo M / řízení N"

- Bod zapnutí
- Bod vypnutí
- Zpoždění zapnutí
- Střídavé zobrazení
- Míra využití
- Max. doba využití
- Redukce krusty

Soubor parametrů R1405 "Čerpadlo M / řízení N"

- Interval doběhu
- Doba doběhu
- Režim chyby

Soubor parametrů R1406 "Čerpadlo M / řízení N"

- Zpětná vazba čerpadla
- Zpoždění zpětné vazby
- Význam zpětné vazby

Soubor parametrů R1408 "Přiřazení relé→ Relé K"

- Funkce
- Invertovat

14.6.4 Podnabídka "Řízení čerpadla N → Základní nastavení" (rozšířené – řízení rychlosti čerpání)

Platí pro:

- FMU90-*3*******
- FMU90-*4********

Přechod k podnabídce:

Relé/řízení → Řízení čerpadla N → Základní nastavení

Soubor parametrů R1401 "Řízení čerpadla N"

- Referenční
- Počet čerpadel
- Záložní čerpadlo
- Reset

Soubor parametrů R1402 "Řízení čerpadla N"

- Funkce = Řízení rychlosti čerpání
- Typ zatížení

Soubor parametrů R1504 "Řízení čerpadla N"

- Bod zapnutí
- Bod vypnutí
- Min. rychlost čerpání/min
- Čas mezi starty čerpadel
- Hranice zapnutí
- Střídavé zobrazení
- Redukce krusty

Soubor parametrů R1505 "Řízení čerpadla N" Čerpadlo M

Soubor parametrů R1505 "Čerpadlo M / řízení N"

- Zpoždění zapnutí
- Míra využití
- Max. doba využití

Soubor parametrů R1506 "Čerpadlo M / řízení N"

- Interval doběhu
- Doba doběhu
- Režim chyby

Soubor parametrů R1507 "Čerpadlo M / řízení N"

- Zpětná vazba čerpadla
- Zpoždění zpětné vazby
- Význam zpětné vazby

Soubor parametrů R1509 "Přiřazení relé → Relé K"

- Funkce
- Invertovat

14.6.5 Podnabídka "Řízení čerpadla N → Přívalová funkce"

Platí pro:

- FMU90-*3********
- FMU90-*4********

Přechod k podnabídce:

Relé/řízení → Řízení čerpadla N → Přívalová funkce

Soubor parametrů R1601 "Přívalová funkce N"

- Přívalová funkce
- Bod zapnutí
- Bod vypnutí
- Doba přívalu

14.6.6 Podnabídka "Řízení čerpadla N → Test funkčnosti"

Platí pro:

- FMU90-*3********
- FMU90-*4********

Přechod k podnabídce:

Relé/řízení → Řízení čerpadla N → Test funkčnosti

Soubor parametrů R1602 "Test funkčnosti N"

- Test funkčnosti
- Max. odstávka
- Max. doba testu
- Bod zapnutí
- Bod vypnutí

14.6.7 Podnabídka "Řízení čerpadla N → Ovládání čištění"

Platí pro:

- FMU90-*3********
- FMU90-*4********

Přechod k podnabídce:

Relé/řízení → Řízení čerpadla N → Ovládání čištění

Soubor parametrů R1603 "Ovládání čištění N"

- Ovládání čištění
- Cykly čerpadla
- Cykly čištění
- Doba čištění
- Zpoždění čištění

Soubor parametrů R1605 "Přiřazení relé → Relé M"

- Funkce
- Invertovat

14.6.8 Podnabídka "Řízení čerpadla N → Řízení tarifu"

Platí pro:

- FMU90-*3*****B***
- FMU90-*4*****B***

Přechod k podnabídce:

Relé/řízení → Řízení čerpadla N → Řízení tarifu

Soubor parametrů R1607 "Řízení tarifu N"

- Řízení tarifu
- Vstup tarifu

Soubor parametrů R1608 "Řízení tarifu N" Čerpadlo M

Soubor parametrů R1619 "Řízení tarifu N / čerpadlo M"

- Bod zapnutí
- Tarif zapnutí
- Bod vypnutí
- Tarif vypnutí

14.6.9 Podnabídka "Řízení čerpadla N → Data čerpadla"

Platí pro:

- FMU90-*3********
- FMU90-*4********

Přechod k podnabídce:

 $\text{Relé/
ightarrow}$ ízení \rightarrow Řízení čerpadla N \rightarrow Data čerpadla \rightarrow Čerpadlo M

Soubor parametrů R1611 "Data čerpadla" P M"

- Provozní hodiny
- Reset prov. hodin
- Provozní hodiny celkem
- Počet startů
- Počet startů/h
- Počet doběhů
- Reset doběhů
- Čas posledního spuštění

14.6.10 Podnabídka "Řízení čerpadla N → Alarm prov. hod."

Platí pro:

- FMU90-*3*******
- FMU90-*4*******

Přechod k podnabídce:

Relé/řízení → Řízení čerpadla N → Alarm. prov. hod.

Soubor parametrů R1612 "Alarm prov. hod."

- Alarm provozních hodin
- Prodleva poplachu

Soubor parametrů R1613 "Alarm prov. hod." Čerpadlo M

Soubor parametrů R1613 "Alarm prov. hod. N P M"

- Provozní hodiny
- Max. počet prov. hodin

Soubor parametrů R1615 "Přiřazení relé → Relé K"

- Funkce
- Invertovat

14.6.11 Podnabídka "Řízení čerpadla N → Alarm čerpadla"

Platí pro:

- FMU90-*3*****B***
- FMU90-*4*****B***

Přechod k podnabídce:

Relé/řízení \rightarrow Řízení čerpadla N \rightarrow Alarm čerpadla

Soubor parametrů R1617 "Alarm čerpadla N"

- Alarm čerpadla
- Doba čekání

Soubor parametrů R1619 "Přiřazení relé → Relé K"

- Funkce
- Invertovat

14.6.12 Podnabídka "Řízení česla"

Soubor parametrů R1200 "Řízení česla"

- Voda na vstupu
- Voda na výstupu
- Funkce

Soubor parametrů R1201 "Řízení česla"

- Bod zapnutí
- Bod vypnutí

Soubor parametrů R1202 "Řízení česla"

- Prodleva sepnutí
- Režim chyby

Soubor parametrů R2204 "Přiřazení relé → Relé N"

- Funkce
- Invertovat

14.6.13 Podnabídka "Konfigurace relé → Relé N" (funkce: limita)

Soubor parametrů R1203 "Relé N"

- Funkce \rightarrow Limita \rightarrow Limita XXX
- Typ limity
- Bod zapnutí
- Bod vypnutí
- Zapnutí/min
- Vypnutí/min
- Horní spínací bod
- Dolní spínací bod
- Hystereze

Soubor parametrů R1204 "Relé N"

- Prodleva spínače
- Invertovat
- Režim chyby

14.6.14 Podnabídka "Konfigurace relé → Relé N" (funkce: časový impulz)

Soubor parametrů "R2103 "Relé N"

- Funkce → Časový impulz
- Šířka impulzu
- Doba impulzu

Soubor parametrů "R2104 "Relé N"

- Invertovat
- Režim chyby

14.6.15 Podnabídka "Konfigurace relé → Relé N" (funkce: počítání pulzů)

Soubor parametrů R1203 "Relé N"

- Funkce
 \rightarrow Počítání pulzů \rightarrow Tok pulzů N
- Jednotka počítadla
- Hodnota pulzu
- Šířka impulzu

Soubor parametrů R1205 "Relé N"

- Čítač pulzů
- Přetečení × 10^7
- Vynul. čítač
- Start čítače
- Zastavení čítače

Soubor parametrů R1204 "Relé N"

- Invertovat
- Režim chyby

14.6.16 Podnabídka "Konfigurace relé → Relé N" (funkce: alarm/ diagnost.)

Soubor parametrů "R2103 "Relé N"

- Funkce \rightarrow Alarm/diagnost.
 - Poplachové relé
 - Diagnostika
 - Alarm zpětného toku
 - Alarm nečistot
- Přiřazení M

Soubor parametrů "R2104 "Relé N" Invertovat

14.6.17 Podnabídka "Simulace relé"

Soubor parametrů R2106 "Relé N"

- Simulace
- Hodnota simulace

14.7 Nabídka "Výstup/výpočet → Proudový výstup N"

14.7.1 Podnabídka "Přiřazení/výpočet"

Soubor parametrů O1201 "Přiřaz. proudu N"

- Výstup
- Výstupní proud

14.7.2 Podnabídka "Rozšíř. kalibr."

Soubor parametrů OX202 "Režim proudu N"

- Proudový rozsah
- Hodnota mA
- Tlumení výstupu
- Práh 4 mA
- Rozsah proudu
- Rozsah 0/4 mA
- Rozsah 20 mA

14.7.3 Podnabídka "Nastavení HART"

Pouze pro proudový výstup 1

Soubor parametrů 01203 "Nastavení HART"

- Adresa HART
- Počet preambulí
- Krátký TAG HART

Soubor parametrů 02205/03206/04207 "Příd. hodn. HART M"

- Měřená hodnota M
- Tlumení výstupu M

14.7.4 Podnabídka "Simulace"

- Soubor parametrů O1204 "Proudový výstup N"
- Simulace
- Hodnota simulace

14.8 Přehled nabídky "Vlastnosti přístroje"

14.8.1 Podnabídka "Provoz. parametry"

Soubor parametrů D1101 "Jednotka vzdálenosti" Jednotka vzdálenosti

Soubor parametrů D110B "Jednotka teploty" Jednotka teploty

Soubor parametrů D110C "Provozní režim" Provozní režim

Soubor parametrů D110D "Řízení" Řízení

14.8.2 Podnabídka "Měř. místo / Tag"

Soubor parametrů D1102 "Měř. místo / Tag"

- Výstup N
- Označení přístroje

14.8.3 Podnabídka "Jazyk"

Soubor parametrů D1103 "Jazyk" Jazyk

14.8.4 Podnabídka "Heslo/reset"

Soubor parametrů D1104 "Heslo/reset"

- Reset
- Kód
- Stav

14.9 Nabídka "Info o systému"

14.9.1 Podnabídka "Informace o přístroji"

Soubor parametrů IX101 "Řada přístrojů" Řada přístrojů

Soubor parametrů IX102 "Název přístroje" Název přístroje

Soubor parametrů IX103 "Označení přístroje" Označení přístroje

Soubor parametrů IX105 "Výrobní číslo" Výrobní číslo

Soubor parametrů IX106 "Verze softwaru" Verze softwaru

Soubor parametrů IX107 "Číslo revize přístroje" Číslo revize přístroje

Soubor parametrů IX108 "Verze DD" Verze DD

14.9.2 Podnabídka "Info vstup/výstup"

Soubor parametrů IX108 "Hladina N"

- Vstup
- Výběr senzoru
- Detekováno

Soubor parametrů IX109 "Průtok N"

- Vstup
- Výběr senzoru
- Detekováno

Soubor parametrů IX10A "Proudový výstup N" Výstup

Soubor parametrů IX10B "Relé N" Funkce

14.9.3 Podnabídka "Zobrazení trendu → Trendový výstup N"

Soubor parametrů IX10F Trendový výstup N Časový interval

14.9.4 Podnabídka "Min./max. hodnoty"

Soubor parametrů IX302 "Hladina → Hladina (LVL) N"

- Max. hodnota
- Min. hodnota
- Reset

Soubor parametrů IX302 "Průtok → Průtok N"

- Max. hodnota
- Min. hodnota
- Reset

Soubor parametrů IX302 "Teplota → Teplotní senzor N"

- Max. hodnota
- Min. hodnota

14.9.5 Podnabídka "Obalová křivka"

Soubor parametrů IX126 "Obal kř. senz. N"

- Nastavení grafu (volba zobrazované křivky)
- Nastavení grafu (volba mezi individuální křivkou a cyklickou prezentací)

14.9.6 Podnabídka "Seznam poruch"

Soubor parametrů E1002 "Aktuální porucha"

- 1:
- **2**:
- **•** ...

Soubor parametrů E1003 "Poslední porucha"

- **•** 1:
- 2:
- ...

14.9.7 Podnabídka "Diagnostika"

Soubor parametrů E1403 "Provozní hodiny" Provozní hodiny

Soubor parametrů E1404 "Aktuální vzdálenost" Aktuál. vzdál. N

Soubor parametrů E1405 "Akt. měř. hodnota"

- Hladina N
- Průtok N

Soubor parametrů E1405 "Aplikační param." Senzor N

Soubor parametrů E1406 "Kvalita echa sen." Kvalita echa N

14.10 Nabídka "Zobrazení"

Soubor parametrů DX202 "Zobrazení"

- Тур
- Hodnota N
- Uživatelský upravený text N

Soubor parametrů DX201 "Formát zobrazení"

- Format (formát)
- Počet desetinný míst
- Oddělovací znak
- Uživatelsky upravený text

Soubor parametrů DX200 "Zpět na začátek" Zpět na začátek

14.11 Nabídka "Správa senzorů"

14.11.1 Podnabídka "Správa senzorů → Senzor FDU → Správa senzoru"

Soubor parametrů D1019 "Vstup" FDU senzor N

Soubor parametrů D1106 "US senzor N"

- Provoz senzoru
- Priorita senzoru
- Detekováno
- Výběr senzoru
- Okno detekce

Soubor parametrů D1107 "US senzor N"

- Měření teploty
- Ext.říz.vysílání
- Vstup
- Vzdálenost

14.11.2 Podnabídka "Správa senzorů → Senzor FDU → Ext. tepl. senzor"

Soubor parametrů D1020 "Ext. tepl. senzor"

- Typ senzoru
- Jednotka teploty

Soubor parametrů D1021 "Ext. tepl. senzor"

- Max. hodnota
- Min. hodnota
- Aktuální hodnota
- Reset

Soubor parametrů D1022 "Ext. tepl. senzor"

- Režim chyby
- Hodnota při výstraze

14.11.3 Podnabídka "Správa senzorů → Senzor FDU → Externí bin. vstup"

Soubor parametrů D1025 "Ext. bin. vstup N"

- Invertovat
- Hodnota

www.addresses.endress.com

