

Information technique

Proline Promass 40E

Débitmètre massique Coriolis

Le débitmètre massique avec fonctionnalité de base économique – l'alternative aux débitmètres volumiques traditionnels

Domaine d'application

Le principe de mesure Coriolis est indépendant de propriétés physiques du fluide comme la viscosité et la masse volumique.

- Mesure hautement précise de liquides et gaz, par ex. additifs, huiles, graisses, acides, bases, vernis, peintures, suspensions et gaz
- Températures du produit jusqu'à +140 °C (+284 °F)
- Pression de process jusqu'à 100 bar (1450 psi)
- Mesure de débit massique jusqu'à 180 t/h (6600 lb/min)

Agréments pour zones explosibles :

■ ATEX, FM, CSA, TIIS, IECEx, NEPSI

Agréments dans les secteurs agro-alimentaire/hygiène :

Liaison à un système numérique de contrôle commande : lacktriangle HART

Principaux aspects sécurité:

■ Directive des équipements sous pression (DESP)

Principaux avantages

Les appareils de mesure Promass vous permettent d'enregistrer, pendant vos mesures, différentes variables de process (masse/volume/volume normé) dans différentes conditions.

Les transmetteurs Proline vous offrent :

 un concept d'appareil et de services modulaire pour une rentabilité maximale

Les **capteurs Promass**, éprouvés sur plus de 100000 applications, offrent les avantages suivants :

- Mesure de débit en design compact
- Insensibilité aux vibrations grâce à la fréqence de résonance élevée du système bi-tube équilibré
- Protection efficace contre les forces engendrées par la conduite grâce à une construction robuste
- Montage simple sans prise en compte de longueurs d'entrée et de sortie

Sommaire

Frincipe de ioncuonnement et construction
Principe de mesure
Ensemble de mesure
Grandeurs d'entrée
Grandeur de mesure
Gammes de mesure4
Dynamique de mesure
Signal d'entrée
Grandeurs de sortie5
Signal de sortie
Signal de défaut5
Charge
Suppression des débits de fuite5
Séparation galvanique
Sortie commutation
Energie auxiliaire
Raccordement électrique unité de mesure 6
Raccordement electrique occupation des bornes
Tension d'alimentation
Entrées de câble
Consommation
Coupure de l'alimentation
Compensation de potentiel 6
Précision de mesure
Conditions de référence
Ecart de mesure maximal
Reproductibilité
Effet de la température du produit
Effet de la pression du produit9
Bases de calcul
Conditions d'utilisation : montage
Conditions d'implantation
Longueurs droites d'entrée et de sortie
Pression du système
Conditions d'utilisation : environnement
Température ambiante
Température de stockage
Protection
Résistance aux chocs
Résistance aux vibrations
Compatibilité électromagnétique (CEM)
Conditions d'utilisation : process
Gamme de température du produit
Gamme de pression du produit (pression nominale)
Disque d'éclatement dans le boitier du capteur (en option)14
Seuil de débit
Perte de charge
1 of the the change

Construction	10
Construction, dimensions	
Disque de rupture	
Poids	
Matériaux	
Courbes de contrainte des matériaux	
Raccords process	34
Niveau de programmation et d'affichage	34
Eléments d'affichage	
Langues	
Commande à distance	
Certificats et agréments	34
Marquage CE	34
Marque C-Tick	34
Agrément Ex	
Compatibilité alimentaire	
Normes et directives externes	
Directive équipements sous pression	35
Informations à la commande	35
Accessoires	35
Documentation complémentaire	35
Marques déposées	35

Principe de fonctionnement et construction

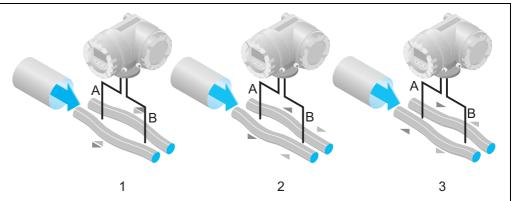
Principe de mesure

La mesure repose sur le principe de la force de Coriolis. Cette force est générée lorsqu'un système est simultanément soumis à des mouvements de translation et de rotation.

 $F_C = 2 \cdot \Delta m \ (v \cdot \omega)$

 F_C = force de Coriolis

 $\Delta m = masse déplacée$


 ω = vitesse de rotation

v = vitesse radiale dans des systèmes en rotation ou en oscillation

La force de Coriolis dépend de la masse déplacée Δ m, de sa vitesse dans le système, donc du débit massique. Le Promass exploite une oscillation à la place d'une vitesse de rotation constante ω .

Dans le cas du capteur, deux tubes de mesure parallèles en opposition de phase traversés par le produit sont mis en vibration, formant une sorte de diapason. Les forces de Coriolis prenant naissance aux tubes de mesure engendrent un décalage de phase de l'oscillation des tubes (voir figure):

- Lorsque le débit est nul, c'est à dire qu'il n'y a pas d'écoulement, les deux tubes oscillent en phase (1).
- Lorsqu'il y a un débit massique, l'oscillation des tubes est temporisée à l'entrée (2) et accélérée en sortie (3).

a000338

Le déphasage (A - B) est directement proportionnel au débit massique. Les oscillations des tubes de mesure sont captées par des capteurs électrodynamiques à l'entrée et à la sortie. L'équilibre du système est obtenu par une oscillation en opposition de phase des deux tubes de mesure. Le principe de mesure fonctionne indépendamment de la température, de la pression, de la viscosité, de la conductivité et du profil d'écoulement.

Mesure volumique

Les tubes de mesure sont toujours amenés à leur fréquence de résonance. Un changement de masse et donc de masse volumique du système oscillant (tubes de mesure et produit) engendre une régulation automatique de la fréquence d'oscillation. La fréquence de résonance est ainsi fonction de la masse volumique du produit. Le débit volumique peut ainsi être calculé au moyen du débit massique et de la masse volumique.

Pour la compensation mathématique des effets thermiques, on mesure la température aux tubes de mesure.

Ensemble de mesure

L'ensemble de mesure comprend le transmetteur et le capteur (version compacte) :

- Transmetteur Promass 40
- Capteur Promass E (DN 8...80; 3/8"...3")

Grandeurs d'entrée

Grandeur de mesure

- Débit massique (proportionnel à la différence de phase entre deux capteurs montés sur le tube de mesure).
- Débit volumique (déterminé à partir du débit massique et de la masse volumique du produit, qui est proportionnelle à la fréquence de résonance des tubes de mesure).
- Température du produit (par des capteurs de température) pour la compensation mathématique des effets thermiques.

Gammes de mesure

Gammes de mesure pour liquides

D	DN Gamme pour valeurs finales (liquides) $\dot{\mathbf{m}}_{\min(F)}\dot{\mathbf{m}}_{\max(F)}$		s (liquides) $\dot{\mathbf{m}}_{\min(F)}\dot{\mathbf{m}}_{\max(F)}$
[mm]	[inch]	[kg/h]	[lb/min]
8	3/8"	02000	073,5
15	1/2"	06500	0238
25	1"	018 000	0660
40	1 1/2"	045 000	01650
50	2"	070 000	02570
80	3"	0180000	06600

Gammes de mesure pour gaz

Les valeurs de fin d'échelle dépendent de la masse volumique du gaz utilisé. Vous pouvez calculer les valeurs de fin d'échelle avec la formule suivante :

 $\dot{\mathbf{m}}_{\max(G)} = \dot{\mathbf{m}}_{\max(F)} \cdot \rho_{(G)} \div \mathbf{x} \; [\text{kg/m}^3]$

 $\dot{m}_{\text{max}(G)} = \text{fin d'échelle max. pour gaz [kg/h]}$

 $\dot{m}_{\text{max}(F)}$ = fin d'échelle max. pour liquides [kg/h]

 $\rho_{(G)}$ = masse volumique du gaz en [kg/m³] sous conditions de process

DN		V
[mm]	[inch]	X
8	3/8"	85
15	1/2"	110
25	1"	125
40	1 1/2"	125
50	2"	125
80	3"	155

Sachant que $\dot{\boldsymbol{m}}_{max(G)}$ ne peut jamais dépasser $\dot{\boldsymbol{m}}_{max(F)}$

Exemple de calcul pour gaz :

- Appareil de mesure : Promass E, DN 50
- Gaz : air avec une masse volumique de 60,3 kg/m³ (à 20 °C et 50 bar)
- Gamme de mesure (liquide) : 70000 kg/h
- x = 125 (pour Promass E DN 50)

Valeur de fin d'échelle possible :

 $\dot{\bm{m}}_{max[G]} = \dot{\bm{m}}_{max[F]} \cdot \rho_{[G]} \div x \; [kg/m^3] = 70\,000 \; kg/h \cdot 60,3 \; kg/m^3 \div 125 \; kg/m^3 = 33800 \; kg/h$

Valeurs de fin d'échelle recommandées

voir indications au chapitre "Limites de débit" \rightarrow $\stackrel{\triangle}{=}$ 14 et suiv.

Dynamique de mesure

Les débits supérieurs à la valeur de fin d'échelle réglée ne surchargent pas l'ampli, c'est-à-dire le débit totalisé est mesuré correctement.

Signal d'entrée

Entrée état (entrée auxiliaire)

U = 3...30 V DC, $R_i = 5k\Omega$, séparation galvanique

Configurable pour : remise à zéro du totalisateur, suppression de la mesure, remise à zéro de messages erreur, démarrage de l'étalonnage du zéro.

Grandeurs de sortie

Signal de sortie

Sortie courant

active/passive au choix, séparation galvanique, constante de temps au choix (0.05...100 s), fin d'échelle réglable, coefficient de température : typique 0.005% P.E./°C, résolution : $0.5 \mu A$

- \blacksquare active : 0/4...20 mA, $\rm R_L < 700~\Omega$ (pour HART : $\rm R_L \ge 250~\Omega)$
- passive : 4...20 mA; tension d'alimentation U_S 18...30 V DC; $R_i \ge 150~\Omega$

Sortie impulsion/fréquence

passive, collecteur ouvert, 30 V DC, 250 mA, séparation galvanique.

- Sortie fréquence : fréquence finale 2...1000 Hz (f_{max} = 1250 Hz), rapport impulsion/pause 1:1, durée des impulsions max. 10 s
- Sortie impulsions : valeur et polarité des impulsions au choix, durée des impulsions réglable (0,5...2000 ms)

Signal de défaut

Sortie courant

Mode défaut au choix (par ex. selon recommandation NAMUR NE 43)

Sortie impulsion/fréquence

Mode défaut au choix

Sortie état

"non conductrice" en cas de défaut ou de coupure de l'alimentation

Charge

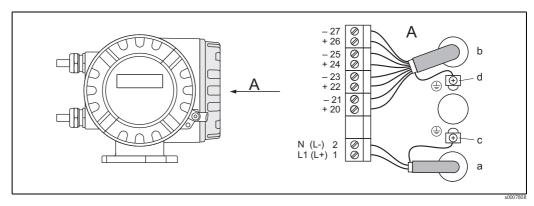
voir "signal de sortie"

Suppression des débits de fuite

Points de commutation pour suppression de débits de fuite librement réglables

Séparation galvanique

Tous les circuits pour les entrées, sorties et l'alimentation sont galvaniquement séparés entre eux.


Sortie commutation

Sortie état

- collecteur ouvert
- max. 30 V DC / 250 mA
- séparation galvanique
- configurable pour : messages erreurs, détection présence produit (DPP), sens d'écoulement, seuils

Energie auxiliaire

Raccordement électrique unité de mesure

Raccordement du transmetteur, section de câble max. 2,5 mm²

- a Câble pour l'énergie auxiliaire : 85...260 V AC, 20...55 V AC, 16...62 V DC Borne n°1 : L1 pour AC, L+ pour DC Borne n°2 : N pour AC, L- pour DC
- b Câble de signal : voir occupation des bornes
- c Borne pour fil de terre
- d Borne de terre blindage du câble de signal

Raccordement électrique occupation des bornes

	Numéro des bornes (entrées/sorties)			
Variante de commande	20 (+) / 21 (-)	22 (+) / 23 (-)	24 (+) / 25 (-)	26 (+) / 27 (-)
40***-********A	-	-	Sortie fréquence	Sortie courant, HART
40***_********D	Entrée état	Sortie état	Sortie fréquence	Sortie courant, HART
40***_********	-	-	Sortie fréquence Ex i, passive	Sortie courant Ex i active, HART
40***_********T	-	-	Sortie fréquence Ex i, passive	Sortie courant Ex i passive, HART

Tension d'alimentation

85...260 V AC, 45...65 Hz 20...55 V AC, 45...65 Hz 16...62 V DC

Entrées de câble

Câble d'alimentation et de signal (entrées/sorties) :

- Entrée de câble M20 × 1,5 (8...12 mm / 0,31"...0,47")
- \blacksquare Filetage pour entrées de câble, ½" NPT, G ½"

Consommation

AC: <15 VA (y compris capteur) DC: <15 W (y compris capteur)

Courant de marche

max. 13,5 A (< 50 ms) pour 24 V DC
 max. 3 A (< 5 ms) bei 260 V AC

Coupure de l'alimentation

Pontage de min. 1 période

- Une EEPROM sauvegarde les données du système de mesure en cas de coupure de l'alimentation
- HistoROM/S-DAT : mémoire de données interchangeable avec données du capteur (diamètre nominal, numéro de série, zéro etc)

Compensation de potentiel

Des mesures spéciales pour la compensation de potentiel ne sont pas nécessaires. Pour les appareils destinés aux zones explosibles, tenir compte des remarques correspondantes dans la documentation Ex spécifiques.

Précision de mesure

Conditions de référence

- Tolérances selon ISO/DIS 11631
- Eau, typique +20...+30 °C (+68...+86 °F); 2...4 bar (30...60 psi)
- Indications selon protocole d'étalonnage ±5 °C (±9 °F) et ±2 bar (±30 psi)
- Indications sur l'écart de mesure se basant sur des bancs d'étalonnage accrédités rattachés à ISO 17025

Ecart de mesure maximal

Les valeurs indiquées se rapportent à la sortie impulsion/fréquence correspondante. L'écart de mesure pour la sortie courant est en outre de typ. $\pm 5~\mu A$. Bases de calcul $\rightarrow \stackrel{\triangle}{=} 9$.

de m. = de la mesure

Débit massique et volumique (liquides)

 $\pm 0,50\%$ de m.

Débit massique (gaz)

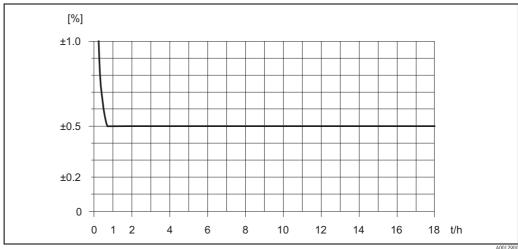
±1,00% de m.

Masse volumique (liquides)

- ±0,0005 g/cc (sous conditions de référence)
- ±0,0005 g/cc (après étalonnage de masse volumique de terrain sous conditions de process)
- $\pm 0,02$ g/cc (sur l'ensemble de la gamme de mesure du capteur)

1 g/cc = 1 kg/l

Température


 ± 0.5 °C $\pm 0.005 \cdot$ T °C (± 1 °F $\pm 0.003 \cdot$ (T - 32) °F)

T = température du produit

Stabilité du zéro

DN		Stabilité du zéro	
[mm]	[inch]	[kg/h] ou [l/h]	[lb/min]
8	3/8"	0,20	0,0074
15	1/2"	0,65	0,0239
25	1"	1,80	0,0662
40	1 1/2"	4,50	0,1654
50	2"	7,00	0,2573
80	3"	18,00	0,6615

Exemple d'écart de mesure maximal

Ecart de mesure max. en % de m. (exemple : Promass 40E, DN 25)

A0012900

Valeurs de débit (exemples)

Bases de calcul→ 🖹 9

Rangeabilité	Débit		Ecart de mesure maximal
	[kg/h] ou [l/h]	[lb/min]	[% de m.]
250 : 1	72	2,646	2,5
100:1	180	6,615	1,0
50:1	360	13,23	0,5
10:1	1800	66,15	0,5
2:1	9000	330,75	0,5

de m. = de la mesure

Reproductibilité

Bases de calcul $\rightarrow \stackrel{\triangleright}{=} 9$.

de m. = de la mesure

Débit massique et volumique (liquides)

±0,25% de m.

Débit massique (gaz)

±0,50% de m.

Masse volumique (liquides)

 $\pm 0,00025 \text{ g/cc}$

1 g/cc = 1 kg/l

Température

 ± 0.25 °C $\pm 0.0025 \cdot$ T °C (± 1 °F $\pm 0.003 \cdot$ (T - 32) °F)

T = température du produit

Effet de la température du produit

Dans le cas d'une différence entre la température lors de l'étalonnage du zéro et la température de process, l'écart de mesure des capteurs est de $\pm 0,0003\%$ typ. de la valeur de fin d'échelle/°C ($\pm 0,0001\%$ de la valeur de fin d'échelle/°F).

Effet de la pression du produit

L'effet d'une différence entre pression d'étalonnage et pression de process sur l'écart de mesure dans le cas d'un débit massique est représenté dans la suite.

DN		Promass E
[mm]	[inch]	[% de m./bar]
8	3/8"	Aucun effet
15	1/2"	Aucun effet
25	1"	Aucun effet
40	1 ½"	Aucun effet
50	2"	-0,009
80	3"	-0,020

de m. = de la mesure

Bases de calcul

En fonction du débit :

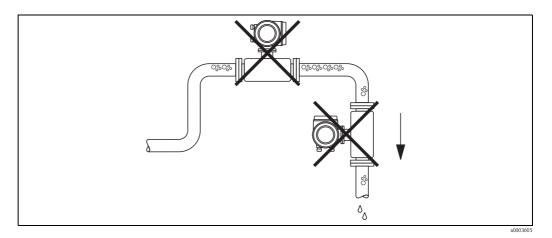
- Débit \geq Stabilité du zéro \div (précision de base \div 100)
 - Ecart de mesure max. : ± précision de base en % de m.
 - Reproductibilité : $\pm \frac{1}{2}$ · précision de base en % de m.
- Débit < Stabilité du zéro ÷ (précision de base ÷ 100)
 - Ecart de mesure max. : ± (stabilité du zéro ÷ valeur mesurée) · 100% de m.
 - Reproductibilité : ± ½ · (stabilité du zéro ÷ valeur mesurée) · 100% de m.

de m. = de la mesure

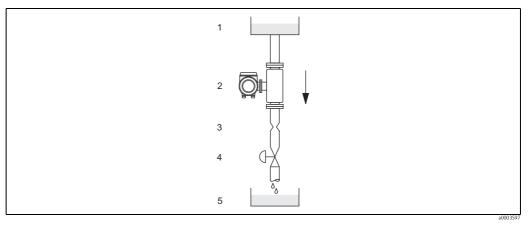
Précision de base pour :	Promass 40E
Débit massique liquides	0,50
Débit volumique liquides	0,50
Débit massique gaz	1,00

Conditions d'utilisation: montage

Conditions d'implantation


Tenir compte des points suivants :

- En principe, il n'est pas nécessaire de prendre des mesures particulières au moment du montage (par ex. support).
 - Les forces externes sont compensées par la construction, par ex. l'enceinte de confinement.
- Grâce à la fréquence de résonance élevée des tubes de mesure le système est peu sensible aux vibrations de l'installation.
- Lors du montage il n'est pas nécessaire de tenir compte d'éléments générateurs de turbulences (vannes, coudes, T etc) tant qu'il n'y a pas de cavitation.


Point de montage

La formation de bulles d'air ou de gaz dans le tube de mesure génère des erreurs de mesures. **Eviter** de ce fait les points de montage suivants dans la conduite :

- Pas d'installation au plus haut point de la conduite. Risque de formation de bulles d'air!
- Pas d'installation immédiatement avant une sortie de conduite dans un écoulement gravitaire.

La proposition d'installation représentée dans la fig. suivante permet cependant un montage dans un écoulement gravitaire. Les restrictions ou la mise en place d'une vanne de section inférieure au diamètre nominal évitent le fonctionnement à vide du capteur pendant la mesure.

Montage dans un écoulement gravitaire (par ex. en dosage)

- 1 Cuve
- 2 Capteur

DN		∅ Diaphragme, restriction	
[mm]	[inch]	[mm]	[inch]
8	3/8"	6	0,24
15	1/2"	10	0,40
25	1"	14	0,55
40	11/2"	22	0,87
50	2"	28	1,10
80	3"	50	2,00

Implantation

S'assurer que le sens de la flèche sur la plaque signalétique du capteur correspond au sens d'écoulement (du produit dans la conduite).

Verticale (vue V)

Implantation recommandée avec sens d'écoulement montant. Lorsque le produit est au repos, les particules solides se déposent et les bulles de gaz remontent. Les tubes de mesure peuvent en outre être entièrement vidangés et protégés contre les dépôts.

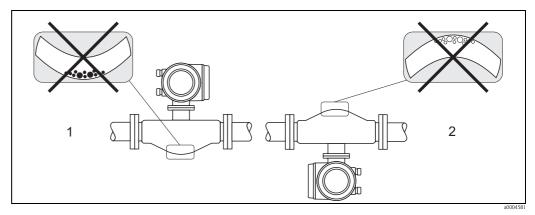
Horizontale (vue H1, H2)

Les tubes de mesure doivent être horizontaux et côte à côte. Lorsque l'installation est correcte, le boitier du transmetteur est placé en amont ou en aval de la conduite (vue H1/H2). Eviter de monter le boitier dans le même plan horizontal que la conduite. Tenir compte des conseils de montage particuliers ! $\rightarrow \blacksquare$ 11

Implantation:	Position verticale	Horizontale, tête de transmetteur en haut	Horizontale, tête de transmetteur en bas
	Vue V	722 a0004576 Vue H1	^{a0004580} Vue H2
Standard, Version compacte	V	VV	VV ①

- ✓ = implantation recommandée
- ✓ = implantation possible sous certaines conditions
- $\mathbf{X} = \text{implantation interdite}$

Pour garantir que la température ambiante maximale admissible au transmetteur soit respectée, nous recommandons les implantations suivantes :


 \oplus = pour les produits ayant des températures basses nous recommandons une implantation horizontale avec tête de transmetteur en haut (vue H1) ou une implantation verticale (vue V).

Conseils d'implantation particuliers

Attention!

Les deux tubes de mesure sont légèrement courbés. Il convient de ce fait d'adapter la position du capteur aux propriétés du produit !

Montage horizontal

- 1 Pas approprié pour les produits chargés en solides. Risque de sédimentation !
- 2 Pas approprié pour les produits ayant tendance à dégazer. Risque d'accumulation d'air!

Chauffage

Pour certains produits, il faut veiller à éviter toute déperdition thermique dans la zone du capteur. Le chauffage pourra être électrique, par ex. avec des bandeaux chauffants, ou assuré par des conduites en cuivre véhiculant de l'eau ou de la vapeur chaude, ou par des gaines chauffantes.

Attention !

- Lors de l'utilisation d'un chauffage d'appoint électrique, dont la régulation est effectuée par un réglage par train d'ondes ou via des paquets d'impulsions, on pourra avoir en raison des champs magnétiques apparus (c'est à dire pour des valeurs supérieures à celles admises par la norme EN (Sinus 30 A/m)), une influence des valeurs mesurées. Dans de tels cas il est nécessaire de procéder à un blindage magnétique du capteur. Le blindage de l'enceinte de confinement peut être effectué par de la tôle ou de la tôle magnétique à grains non orientés (par ex. V330 -35A) aux propriétés suivantes :
 - Perméabilité magnétique relative $\mu_r \ge 300$
 - Epaisseur de tôle d ≥ 0,35 mm (d \ge 0,014")
- Indications relatives aux gammes de température \rightarrow 🖹 14

Des enveloppes de réchauffage spéciales sont disponibles pour les capteurs, elles peuvent être commandées comme accessoires auprès d'Endress+Hauser.

Isolation thermique

Pour certains produits, il faut veiller à éviter tout apport de chaleur dans la zone du capteur. Différents matériaux peuvent être utilisés pour l'isolation.

Etalonnage du zéro

Tous les appareils de mesure sont étalonnés d'après les derniers progrès techniques. Le zéro ainsi déterminé est indiqué sur la plaque signalétique de l'appareil. L'étalonnage se fait sous conditions de référence → 🖹 7 Un étalonnage du zéro est de ce fait **non** indispensable pour Promass!

Un étalonnage du zéro est recommandé uniquement dans certains cas particuliers :

- lorsqu'une précision élevée est exigée en cas de très faibles débits
- dans le cas de conditions de process ou de service extrêmes comme par ex. des températures de process très élevées ou une viscosité du produit très importante.

Longueurs droites d'entrée et de sortie

Il n'est pas nécessaire de respecter des longueurs droites d'entrée et de sortie lors du montage.

Pression du système

Il faut impérativement éviter la cavitation car elle peut influencer l'oscillation du tube de mesure. Il n'y a pas de précautions particulières à prendre lorsque les caractéristiques du produit à mesurer sont similaires à celles de l'eau.

Dans le cas de liquides ayant un point d'ébullition très bas (hydrocarbures, solvants, gaz liquéfiés) ou en présence d'une pompe aspirante, il faut veiller à maintenir une pression supérieure à la pression de vapeur et à éviter que le liquide ne commence à bouillir. De même, il faut éviter le dégazage dans les tubes de mesure. Une pression du système suffisamment élevée permet d'éviter de tels effets.

Il convient de ce fait de préférer les points de montage suivants :

- du côté refoulement de pompes (pas de risque de dépression)
- au point le plus bas d'une colonne montante

Conditions d'utilisation: environnement

Température ambiante

Capteur, transmetteur:

■ Standard: -20...+60 °C (-4...+140 °F)

■ En option : -40...+60 °C (-40...+140 °F)

Remarque!

- Monter l'appareil à un endroit ombragé. Eviter un rayonnement solaire direct, notamment dans les zones climatiques chaudes.
- Pour des températures ambiantes inférieures à −20°C (−4°F), la lisibilité de l'affichage peut être compromise.

Température de stockage	-40+80 °C (-40+176 °F) (de préférence à +20 °C (+68 °F)
Protection	En standard : IP 67 (NEMA 4X) pour capteur et transmetteur
Résistance aux chocs	selon CEI 68-2-31
Résistance aux vibrations	Accélération jusqu'à 1g, 10150 Hz selon CEI 68-2-6
Compatibilité électromagnétique (CEM)	Selon CEI/EN 61326/A1 et recommandation NAMUR NE 21

Conditions d'utilisation: process

Gamme de température du produit

Capteur

-40...+140 °C (-40...+284 °F)

Gamme de pression du produit (pression nominale)

Brides

- selon DIN PN 40...100
- selon ASME B16.5 Cl 150, Cl 300, Cl 600
- JIS 10K, 20K, 40K, 63K

Enceinte de confinement

Le capteur Promass E ne possède pas d'enceinte de confinement.

Disque de rupture dans le boitier du capteur (en option)

Le boitier du capteur sert à protéger l'électronique et la mécanique, il est rempli d'azote sec. Le boitier de ce capteur ne sert pas en outre d'enceinte de confinement. Cependant pour le boitier on peut indiquer 15 bar (217,5 psi) comme valeur de référence pour la résistance à la pression.

Afin d'augmenter la sécurité il est possible d'utiliser une version avec disque de rupture (pression de déclenchement 10...15 bar (145...217,5 psi)) qui peut être commandée séparément comme option.

Autres informations $\rightarrow \stackrel{\triangle}{=} 29$.

Seuil de débit

Voir indications au chapitre "Gamme de mesure" $\rightarrow \stackrel{\triangle}{=} 4$

Le diamètre nominal approprié est déterminé par une optimisation entre débit et chute de pression admissible. Un aperçu des valeurs de fin d'échelle max. possibles se trouve au chapitre "Gamme de mesure"

- La valeur de fin d'échelle minimale recommandée est de 1/20 de la valeur de fin d'échelle max.
- Pour les applications les plus courantes, on peut considérer que 20...50 % de la fin d'échelle maximale est une valeur idéale.
- Dans le cas de produits abrasifs, par ex. les liquides chargés en particules solides, il faudra opter pour une valeur de fin d'échelle plus faible (vitesse d'écoulement <1 m/s 3ft/s)).
- Dans le cas de mesures de gaz :
 - La vitesse d'écoulement dans les tubes de mesure ne devrait pas dépasser la moitié de la vitesse du son (0.5 Mach).
 - Le débit massique max. dépend de la masse volumique du gaz : Formule $\rightarrow \stackrel{ ext{$=}}{=} 4$

Perte de charge

La perte de charge dépend des propriétés du produit et du débit existant. Elle pourra être calculée pour les liquides par approximation à l'aide des formules suivantes :

Nombre de Reynolds	$Re = \frac{2 \cdot \dot{m}}{\pi \cdot d \cdot v \cdot \rho}$	a0004623
Re ≥ 2300 *	$\Delta p = K \cdot \nu^{0.25} \cdot \dot{\mathbf{m}}^{1.85} \cdot \rho^{-0.86}$	a0004626
Re < 2300	$\Delta p = K1 \cdot v \cdot \dot{m} + \frac{K2 \cdot v^{0.25} \cdot \dot{m}^2}{\rho}$	a0004628
$\begin{split} \Delta p &= \text{perte de charge [mbar]} \\ v &= \text{viscosit\'e cin\'ematique [m}^2/\text{s]} \\ \dot{\boldsymbol{m}} &= \text{d\'ebit massique [kg/s]} \end{split}$	$\begin{array}{l} \rho = \text{masse volumique du produit } [\text{kg/m}^3] \\ d = \text{diamètre intérieur des tubes de mesure } [m] \\ KK2 = \text{constantes (en fonction du diamètre nominal)} \end{array}$	
* Pour les gaz, il convient d'utiliser pour	le calcul de la perte de charge en principe la formule pour Re ≥2300.	

DN	d[m]	К	K1	K2
8	5,35 · 10 ⁻³	5,70 · 10 ⁷	7,91 · 10 ⁷	2,10 · 10 ⁷
15	8,30 · 10 ⁻³	7,62 · 10 ⁶	1,73 · 10 ⁷	2,13 · 10 ⁶
25	12,00 · 10 ⁻³	1,89 · 10 ⁶	4,66 · 10 ⁶	6,11 · 10 ⁵
40	17,60 · 10 ⁻³	4,42 · 10 ⁵	1,35 · 10 ⁶	1,38 · 10 ⁵
50	26,00 · 10 ⁻³	8,54 · 10 ⁴	4,02 · 10 ⁵	2,31 · 10 ⁴
80	40,50 · 10 ⁻³	1,44 · 10 ⁴	5,00 · 10 ⁴	2,30 · 10 ⁴

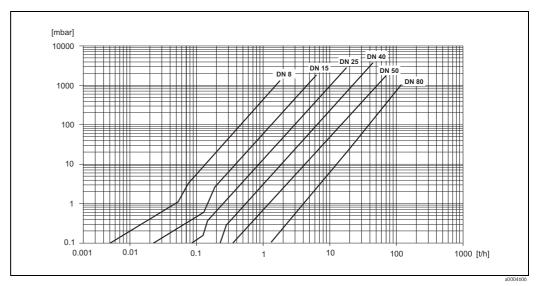


Diagramme des pertes de charge avec l'eau

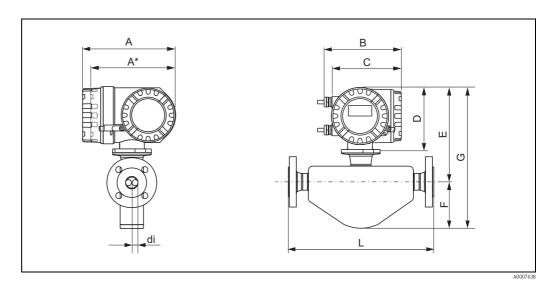
Perte de charge (unités US)

La perte de charge dépend du diamètre nominal et des propriétés du produit. Endress+Hauser vous fournit le logiciel PC "Applicator", qui permet de calculer la perte de charge en unités US.

Le logiciel "Applicator" comprend les principales données associées à l'appareil, ce qui permet d'optimiser la sélection et le dimensionnement du système de mesure.

Le logiciel est utilisé pour les calculs suivants :

- Diamètre nominal du capteur avec propriétés du produit comme la viscosité, la masse volumique etc.
- Perte de charge en aval du point de mesure
- Conversion du débit massique en débit volumique etc.
- Affichage simultané des dimensionnements pour le diamètre nominal inférieur ou supérieur
- Détermination des gammes de mesure


Applicator fonctionne sous Windows sur tout PC compatible IBM.

Construction

Construction, dimensions

Dimensions:	
Boitier de terrain version compacte, fonte d'aluminium à revêtement pulvérisé	→ 🖹 17
Raccords process en unités SI	
Raccords par bride EN DIN	→ 🖹 18
Raccords par bride ASME B16.5	→ 🖹 18
Raccords par bride JIS	→ 🖹 18
Raccords VCO	→ 🖹 21
Tri-Clamp	→ 🖹 22
DIN 11851 (raccord fileté hygiénique)	→ 🖹 23
DIN 11864-1 Forme A (raccord fileté aseptique)	→ 🖹 23
DIN 11864-2 Forme A (bride aseptique avec rainure)	→ 🖹 24
ISO 2853 (raccord fileté hygiénique)	→ 🖹 25
SMS 1145 (raccord fileté hygiénique)	→ 🖹 25
Raccords process en unités US	
Raccords par bride ASME B16.5	→ 🖹 26
Raccords VCO	→ 🖹 27
Tri-Clamp	→ 🖹 28
SMS 1145 (raccord fileté hygiénique)	→ 🖹 29
Disque de rupture	→ 🖹 29

Boitier de terrain version compacte, fonte d'aluminium à revêtement pulvérisé

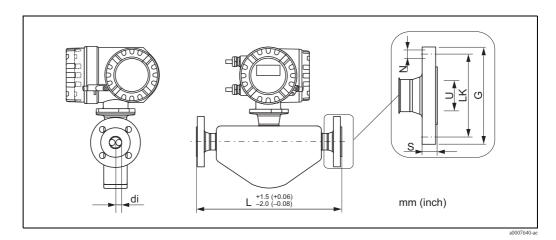
Dimensions en unités SI

DN	A	A*	В	С	D	Е	F	G	L	di
8	227	207	187	168	160	224	93	317	1)	1)
15	227	207	187	168	160	226	105	331	1)	1)
25	227	207	187	168	160	231	106	337	1)	1)
40	227	207	187	168	160	237	121	358	1)	1)
50	227	207	187	168	160	253	170	423	1)	1)
80	227	207	187	168	160	282	205	487	1)	1)

en fonction du raccord process correspondant
 * Version aveugle (sans affichage local)
 Toutes les dimensions en [mm]

Dimensions en unités US

DN	А	A*	В	С	D	Е	F	G	L	di
3/8"	9,08	8,28	7,48	6,72	6,40	8,82	3,66	12,48	2)	2)
1/2"	9,08	8,28	7,48	6,72	6,40	8,90	4,13	13,03	2)	2)
1"	9,08	8,28	7,48	6,72	6,40	9,09	4,17	13,27	2)	2)
1 1/2"	9,08	8,28	7,48	6,72	6,40	9,33	4,76	14,09	2)	2)
2"	9,08	8,28	7,48	6,72	6,40	9,96	6,69	16,65	2)	2)
3"	9,08	8,28	7,48	6,72	6,40	11,10	8,07	19,17	2)	2)


 $^{^{1)}}$ en fonction du raccord process correspondant

^{*} Version aveugle (sans affichage local)

Toutes les dimensions en [inch]

Raccords process en unités SI

Raccords par bride EN (DIN), ASME B16.5, JIS

Raccords par bride EN DIN

	•									
Bride selon I	Bride selon EN 1092-1 (DIN 2501 / DIN 2512N 1)) / PN 40: 1.4404/316L									
Rugosité de su	Rugosité de surface (bride) : EN 1092-1 Forme B1 (DIN 2526 Forme C), Ra 3,212,5 µm									
DN	G	L	N	S	LK	U	di			
8	95	232	4 × Ø14	16	65	17,3	5,35			
15	95	279	4 × Ø14	16	65	17,3	8,30			
25	115	329	4 × Ø14	18	85	28,5	12,0			
40	150	445	4 × Ø18	18	110	43,1	17,6			
50	165	556	4 × Ø18	20	125	54,5	26,0			
80	200	610	8 × Ø18	24	160	82,5	40,5			

 $^{^{1)}}$ Bride avec double emboîtement selon EN 1092-1 forme D (DIN 2512N) livrable Toutes les dimensions en [mm]

Bride selon EN 1092-1 (DIN 2501) / PN 40 (avec brides DN 25): inox 1.4404/316L								
Rugosité de surface (bride) : EN 1092-1 Forme B1 (DIN 2526 Forme C), Ra 3,212,5 µm								
DN	G	L	N	S	LK	U	di	
8	8 115 329 4 × Ø14 18 85 28,5 5,35							
15	15 115 329 4 × Ø14 18 85 28,5 8,30							

Toutes les dimensions en [mm]

Bride selon I	Bride selon EN 1092-1 (DIN 2501 / DIN 2512N 1) / PN 63: 1.4404/316L								
Rugosité de surface (bride) : EN 1092-1 Forme B1 (DIN 2526 Forme C), Ra 0,83,2 µm									
DN	G	L	N	S	LK	U	di		
50	180	565	4 × Ø22	26	135	54,5	26,0		
80	215	650	8 × Ø22	28	170	81,7	40,5		

 $^{^{\}rm 1)}$ Bride avec double emboîtement selon EN 1092-1 forme D (DIN 2512N) livrable Toutes les dimensions en [mm]

Bride selon I	Bride selon EN 1092-1 (DIN 2501 / DIN 2512N 1) / PN 100 : 1.4404/316L								
Rugosité de surface (bride) : EN 1092-1 Forme B1 (DIN 2526 Forme C), Ra 0,83,2 μm									
DN	G	L	N	S	LK	U	di		
8	105	261	4 × Ø14	20	75	17,3	5,35		
15	105	295	4 × Ø14	20	75	17,3	8,30		
25	140	360	4 × Ø18	24	100	28,5	12,0		
40	170	486	4 × Ø22	26	125	42,5	17,6		
50	195	581	4 × Ø26	28	145	53,9	26,0		
80	230	660	8 × Ø26	32	180	80,9	40,5		

¹⁾ Bride avec double emboîtement selon EN 1092-1 forme D (DIN 2512N) livrable Toutes les dimensions en [mm]

Raccords par bride ASME B16.5

Bride selon ASME B16.5 / Cl 150: inox 1.4404/316L									
DN	G	L	N	S	LK	U	di		
8	88,9	232	4 × Ø15,7	11,2	60,5	15,7	5,35		
15	88,9	279	4 × Ø15,7	11,2	60,5	15,7	8,30		
25	108,0	329	4 × Ø15,7	14,2	79,2	26,7	12,0		
40	127,0	445	4 × Ø15,7	17,5	98,6	40,9	17,6		
50	152,4	556	4 × Ø19,1	19,1	120,7	52,6	26,0		
80	190,5	610	4 × Ø19,1	23,9	152,4	78,0	40,5		

Toutes les dimensions en [mm]

Bride selon	Bride selon ASME B16.5 / Cl 300: inox 1.4404/316L									
DN	G	L	N	S	LK	U	di			
8	95,2	232	4 × Ø15,7	14,2	66,5	15,7	5,35			
15	95,2	279	4 × Ø15,7	14,2	66,5	15,7	8,30			
25	123,9	329	4 × Ø19,0	17,5	88,9	26,7	12,0			
40	155,4	445	4 × Ø22,3	20,6	114,3	40,9	17,6			
50	165,1	556	8 × Ø19,0	22,3	127,0	52,6	26,0			
80	209,5	610	8 × Ø22,3	28,4	168,1	78,0	40,5			

Toutes les dimensions en [mm]

Bride selon ASME B16.5 / Cl 600 : inox 1.4404/316L							
DN	G	L	N	S	LK	U	di
8	95,3	261	4 × Ø15,7	20,6	66,5	13,9	5,35
15	95,3	295	4 × Ø15,7	20,6	66,5	13,9	8,30
25	124,0	380	4 × Ø19,1	23,9	88,9	24,3	12,0
40	155,4	496	4 × Ø22,4	28,7	114,3	38,1	17,6
50	165,1	583	8 × Ø19,1	31,8	127,0	49,2	26,0
80	209,6	672	8 × Ø22,4	38,2	168,1	73,7	40,5

Toutes les dimensions en [mm]

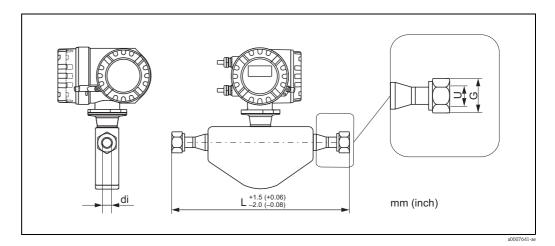
Raccords par bride JIS

Bride JIS B2220 / 10K: SUS 316L							
DN	G	L	N	S	LK	U	di
50	155	556	4 × Ø19	16	120	50	26,0
80	185	605	8 × Ø19	18	150	80	40,5

Toutes les dimensions en [mm]

Bride JIS B2220 / 20K : SUS 316L							
DN	G	L	N	S	LK	U	di
8	95	232	4 × Ø15	14	70	15	5,35
15	95	279	4 × Ø15	14	70	15	8,30
25	125	329	4 × Ø19	16	90	25	12,0
40	140	445	4 × Ø19	18	105	40	17,6
50	155	556	8 × Ø19	18	120	50	26,0
80	200	605	8 × Ø23	22	160	80	40,5

Toutes les dimensions en [mm]

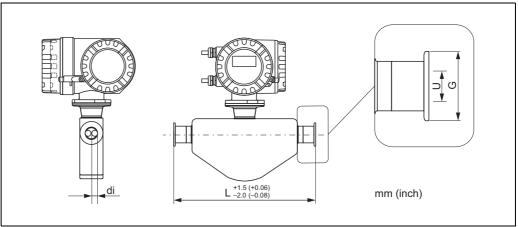

Bride JIS B22	Bride JIS B2220 / 40K : SUS 316L							
DN	G	L	N	S	LK	U	di	
8	115	261	4 × Ø19	20	80	15	5,35	
15	115	300	4 × Ø19	20	80	15	8,30	
25	130	375	4 × Ø19	22	95	25	12,0	
40	160	496	4 × Ø23	24	120	38	17,6	
50	165	601	8 × Ø19	26	130	50	26,0	
80	210	662	8 × Ø23	32	170	75	40,5	

Toutes les dimensions en [mm]

Bride JIS B2220 / 63K: SUS 316L							
DN	G	L	N	S	LK	U	di
8	120	282	4 × Ø19	23	85	12	5,35
15	120	315	4 × Ø19	23	85	12	8,30
25	140	383	4 × Ø23	27	100	22	12,0
40	175	515	4 × Ø25	32	130	35	17,6
50	185	616	8 × Ø23	34	145	48	26,0
80	230	687	8 × Ø25	40	185	73	40,5

Toutes les dimensions en [mm]

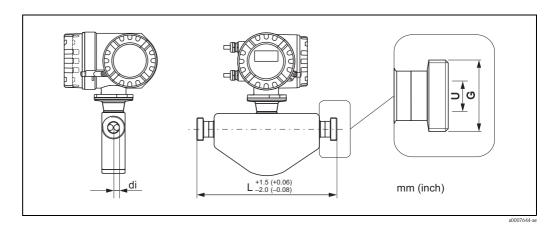
Raccords VCO



Raccords VCO: inox 1.4404/316L						
DN	G	L	U	di		
8	Clé 1"	252	10,2	5,35		
15	Clé 1½"	305	15,7	8,30		

Toutes les dimensions en [mm]

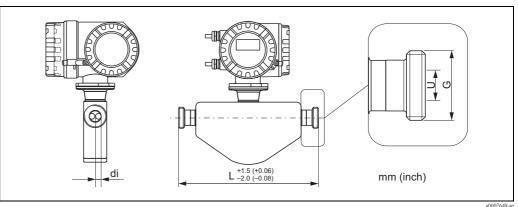
Tri-Clamp


Tri-Clamp 1", 1½", 2": inox 1.4404/316L						
DN	Clamp	G	L	U	di	
8	1"	50,4	229	22,1	5,35	
15	1"	50,4	273	22,1	8,30	
25	1"	50,4	324	22,1	12,0	
40	1 1/2"	50,4	456	34,8	17,6	
50	2"	63,9	562	47,5	26,0	
80	3"	90,9	672	72,9	40,5	

Version 3A livrable (Ra \leq 0,8 μ m/150 grit.) Toutes les dimensions en [mm]

Tri-Clamp ½": inox 1.4404/316L						
DN	Clamp	G	L	U	di	
8	1/2"	25,0	229	9,5	5,35	
15	1/2"	25,0	273	9,5	8,30	

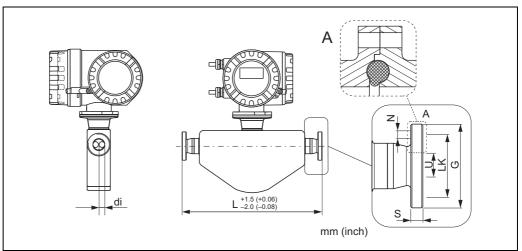
Version 3A livrable (Ra \leq 0,8 $\mu m/150$ grit.) Toutes les dimensions en [mm]


DIN 11851 (raccord fileté hygiénique)

Raccord fileté hygiénique DIN 11851 : inox 1.4404/316L DN U di 8 Rd $34 \times 1/8$ " 229 16 5,35 15 Rd $34 \times 1/8$ " 273 16 8,30 Rd $52 \times 1/6$ " 25 324 12,0 26 40 Rd $65 \times 1/6$ " 456 38 17,6 50 Rd 78 × 1/6" 50 26,0 562 Rd $110 \times 1/4$ " 40,5 672 81

Version 3A livrable (Ra \leq 0,8 $\mu m/150$ grit.) ; Toutes les dimensions en [mm]

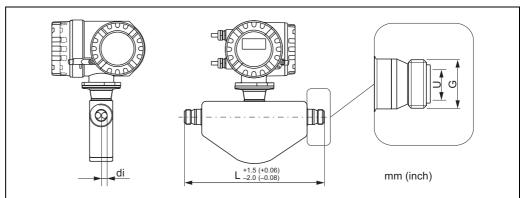
DIN 11864-1 Forme A (raccord fileté aseptique)



a0007649-a

Raccord fileté aseptique DIN 11864-1 Forme A : inox 1.4404/316L							
DN	G	L	U	di			
8	Rd 28 × 1/8"	229	10	5,35			
15	Rd 34 × 1/8"	273	16	8,30			
25	Rd 52 × 1/6"	324	26	12,00			
40	Rd 65 × 1/6"	456	38	17,60			
50	Rd 78 × 1/6"	562	50	26,00			
80	Rd 110 × 1/4"	672	81	40,5			

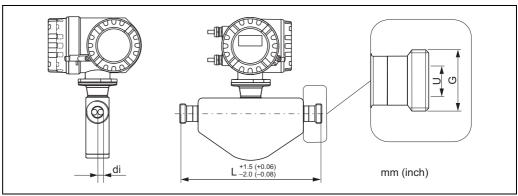
Version 3A livrable (Ra \leq 0,8 $\mu m/150$ grit.) ; Toutes les dimensions en [mm]


DIN 11864-2 Forme A (bride aseptique avec rainure)

DIN 11864-2	DIN 11864-2 Forme A (bride aseptique avec rainure): inox 1.4404/316L							
DN	G	L	N	S	LK	U	di	
8	54	249	4 × Ø9	10	37	10	5,35	
15	59	293	4 × Ø9	10	42	16	8,30	
25	70	344	4 × Ø9	10	53	26	12,0	
40	82	456	4 × Ø9	10	65	38	17,6	
50	94	562	4 × Ø9	10	77	50	26,0	
80	133	672	8 × Ø11	12	112	81	40,5	

Version 3A livrable (Ra \leq 0,8 $\mu m/150$ grit.) Toutes les dimensions en [mm]

ISO 2853 (raccord fileté hygiénique)

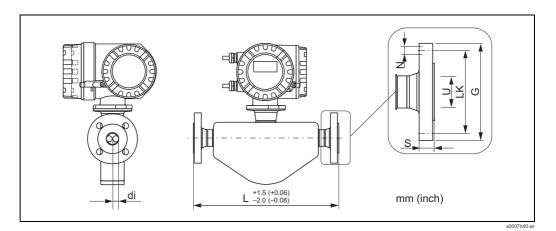


a0007651-ae

Raccord fileté hygiénique ISO 2853 : inox 1.4404/316L							
DN	G 1)	L	U	di			
8	37,13	229	22,6	5,35			
15	37,13	273	22,6	8,30			
25	37,13	324	22,6	12,0			
40	50,68	456	35,6	17,6			
50	64,16	562	48,6	26,0			
80	91,19	672	72,9	40,5			

 $^{^{1)}}$ Diamètre de filetage max. selon ISO 2853 Annexe A; Version 3A livrable (Ra \leq 0,8 $\mu m/150$ grit.) Toutes les dimensions en [mm]

SMS 1145 (raccord fileté hygiénique)


a0007653-ae

Raccord fileté hygiénique SMS 1145 : inox 1.4404/316L							
DN	G	L	U	di			
8	Rd 40 × 1/6"	229	22,5	5,35			
15	Rd 40 × 1/6"	273	22,5	8,30			
25	Rd 40 × 1/6"	324	22,5	12,0			
40	Rd 60 × 1/6"	456	35,5	17,6			
50	Rd 70 × 1/6"	562	48,5	26,0			
80	Rd 98 × 1/6"	672	72,9	40,5			

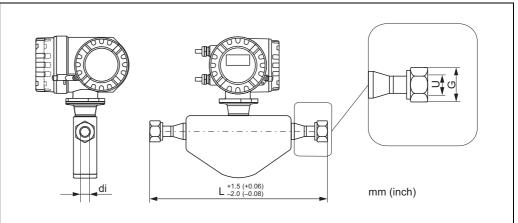
Version 3A livrable (Ra \leq 0,8 $\mu m/150$ grit.) ; Toutes les dimensions en [mm]

Raccords process en unités US

Raccords par bride ASME B16.5

Bride selon ASME B16.5 / Cl 150 : inox 1.4404/316L DN G Ν S LK U di L 3/8" 3,50 9,13 $4 \times \emptyset0,62$ 0,44 2,38 0,62 0,21 10,98 $4 \times 00,62$ 0,44 0,33 3,50 2,38 0,62 1" 4,25 12,95 $4 \times \emptyset0,62$ 0,56 1,05 0,47 3,12 11/2" $4 \times Ø0,62$ 5,00 17,52 0,69 3,88 1,61 0,69 $4 \times \emptyset0,75$ 2" 6,00 21,89 0,75 4,75 2,07 1,02 0,94 1,59 3" 7,50 $4 \times \emptyset 0,75$ 6,00 3,07 24,02

Toutes les dimensions en [inch]

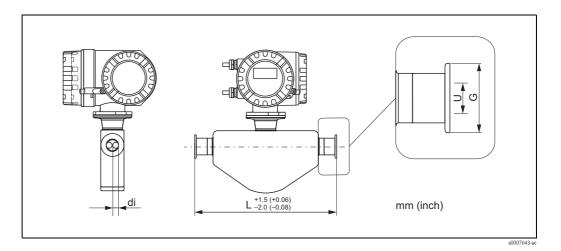

Bride selon ASME B16.5 / Cl 300: inox 1.4404/316L								
DN	G	L	N	S	LK	U	di	
3/8"	3,75	9,13	4 × Ø0,62	0,56	2,62	0,62	0,21	
1/2"	3,75	10,98	4 × Ø0,62	0,56	2,62	0,62	0,33	
1"	4,88	12,95	4 × Ø0,75	0,69	3,50	1,05	0,47	
1 ½"	6,12	17,52	4 × Ø0,88	0,81	4,50	1,61	0,69	
2"	6,50	21,89	4 × Ø0,75	0,88	5,00	2,07	1,02	
3"	8,25	24,02	8 × Ø0,88	1,12	6,62	3,07	1,59	

Toutes les dimensions en [inch]

Bride selon ASME B16.5 / Cl 600: inox 1.4404/316L								
DN	G	L	N	S	LK	U	di	
3/8"	3,75	10,28	4 × Ø0,62	0,81	2,62	0,55	0,21	
1/2"	3,75	11,61	4 × Ø0,62	0,81	2,62	0,55	0,33	
1"	4,88	14,96	4 × Ø0,75	0,94	3,50	0,96	0,47	
11/2"	6,12	19,53	4 × Ø0,88	1,13	4,50	1,50	0,69	
2"	6,50	22,95	4 × Ø0,75	1,25	5,00	1,94	1,02	
3"	8,25	24,46	8 × Ø0,88	1,50	6,62	2,90	1,59	

Toutes les dimensions en [inch]

Raccords VCO



-0007441 -

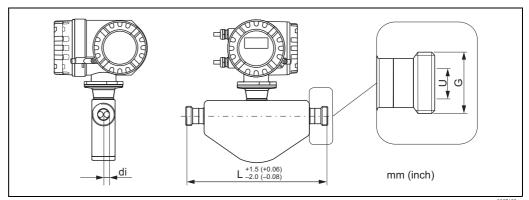
Raccords VCO: inox 1.4404/316L								
DN	G	L	U	di				
3/8"	1" AF	9,92	0,40	0,21				
1/2"	1½" AF	12,01	0,62	0,33				

Toutes les dimensions en [inch]

Tri-Clamp

Tri-Clamp 1", 1½", 2": inox 1.4404/316L DN Clamp G L U di 3/8" 1" 1,98 9,02 0,87 0,21 1/2" 1" 1,98 10,75 0,33 0,87 1" 1" 1,98 12,76 0,47 0,87 1½" 11/2" 1,98 17,95 1,37 0,69 2" 2" 2,52 22,13 1,87 1,02 3" 3" 3,58 2,87 1,59 26,46

Version 3A livrable (Ra \leq 30 $\mu in/150$ grit.)


Toutes les dimensions en [inch]

Tri-Clamp ½": inox 1.4404/316L								
DN	Clamp	G	L	U	di			
3/8"	1/2"	0,98	9,02	0,37	0,21			
1/2"	1/2"	0,98	10,75	0,37	0,33			

Version 3A livrable (Ra ≤ 30 μin/150 grit.)

Toutes les dimensions en [inch]

SMS 1145 (raccord fileté hygiénique)

a0007653-a6

Raccord fileté SMS hygiénique 1145 : inox 1.4404/316L								
DN	G	L	U	di				
3/8"	Rd 40 × 1/6"	9,02	0,89	0,21				
1/2"	Rd 40 × 1/6"	10,75	0,89	0,33				
1"	Rd 40 × 1/6"	12,76	0,89	0,47				
11/2"	Rd 60 × 1/6"	17,95	1,40	0,69				
2"	Rd 70 × 1/6"	22,13	1,91	1,02				
3"	Rd 98 × 1/6"	26,46	2,87	1,59				

Version 3A livrable (Ra \leq 30 μ in/150 grit.); toutes les dimensions en [inch]

Disque de rupture

En option on pourra obtenir des boitiers de capteur avec disque de rupture intégré.

Danger!

- Veillez à ce que le fonctionnement du disque de rupture ne soit pas compromis par son implantation. La pression de déclenchement dans le boitier est indiquée sur la plaque signalétique. Prendre toutes les mesures nécessaires pour qu'en cas de déclenchement du disque de rupture il n'en résulte aucun dommage ni danger pour les humains. Pression de déclenchement dans le boitier 10…15 bar (145…217,5 psi).
- Veuillez noter qu'en cas d'utilisation d'un disque de rupture le boitier ne peut plus assurer la fonction de protection.
- Une ouverture des raccords ou une suppression du disque de rupture n'est pas permise.

Attention

L'utilisation de disques de rupture ne peut pas être combinée à l'emploi d'une enveloppe de réchauffage disponible séparément.

Remarque!

- La protection de transport du disque de rupture doit être enlevée avant la mise en service.
- Tenir compte des plaques signalétiques.

Plaque signalétique du disque de rupture

Poids

Poids en unités SI

DN [mm]	8	15	25	40	50	80
Version compacte	8	8	10	15	22	31

Toutes les valeurs (poids) se rapportent à des appareils avec brides $EN/DIN\ PN\ 40$. Indications de poids en [kg].

Poids en unités US

DN [inch]	3/8"	1/2"	1"	1½"	2"	3"
Version compacte	18	18	22	33	49	69

Toutes les valeurs (poids) se rapportent à des appareils avec brides $EN/DIN\ PN\ 40$. Indications de poids en [lbs].

Matériaux

Boîtier transmetteur

- Fonte d'alu moulée à revêtement pulvérisé
- Matériau fenêtre : verre ou polycarbonate

Boitier capteur/enceinte de confinement

- Surface externe résistant aux acides et aux bases
- Acier inox 1.4301/ASTM 304

Raccords process

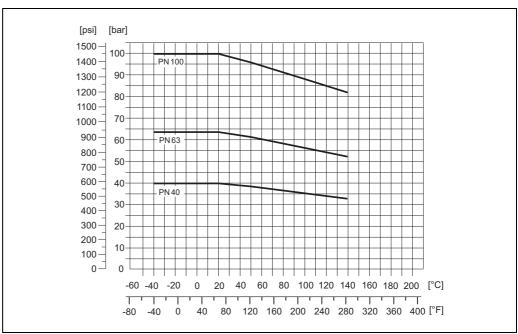
- Acier inox 1.4404/316
 - Brides selon EN 1092-1 (DIN 2501) et ASME B16.5
 - DIN 11864-2 Forme A (bride aseptique avec rainure)
 - Manchon fileté: DIN 11851, SMS 1145, ISO 2853, DIN 11864-1 Forme A
 - Tri-Clamp
 - Raccord VCO
- Acier inox SUS 316L
 - Brides selon JIS B2220

Tubes de mesure

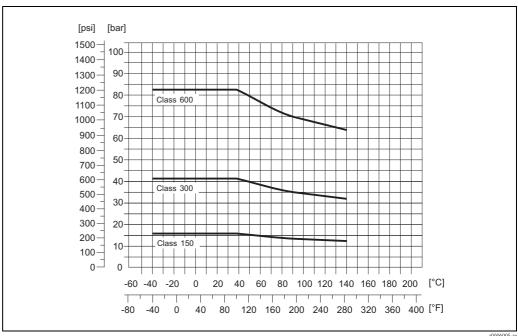
- Acier inox 1.4539/904L
- Rugosité de surface : $Ra_{max} = 0.8 \mu m/150 \text{ grit.}$ (30 $\mu in/150 \text{ grit.}$)

Joints

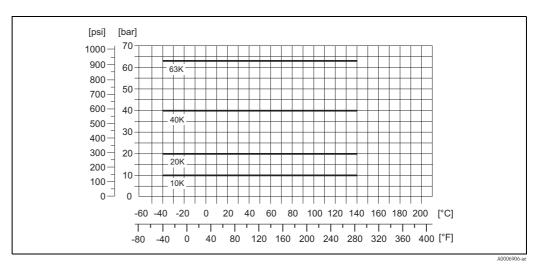
Raccords process soudés sans joints internes


Courbes de contrainte des matériaux

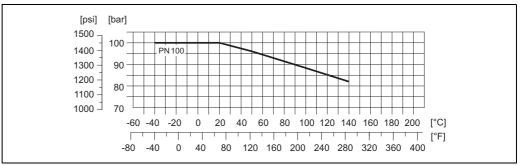
Les courbes de contrainte suivantes se rapportent à l'ensemble de l'appareil de mesure et pas seulement au raccord process.


Raccord par bride selon EN 1092-1 (DIN 2501)

Matériau de bride : inox 1.4404/316L


Raccord par bride selon ASME B16.5

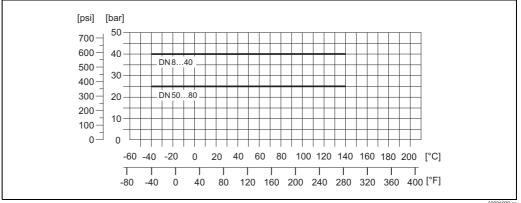
Matériau de bride : inox 1.4404/316L


Raccord par bride selon JIS B2220

Matériau de bride: SUS 316L

Raccord process VCO

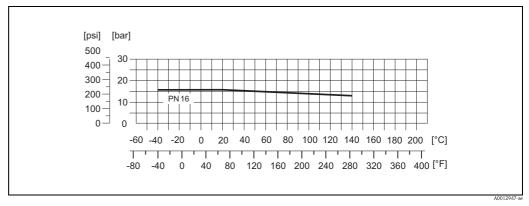
Matériau de bride: inox 1.4404/316L



Tri-Clamp

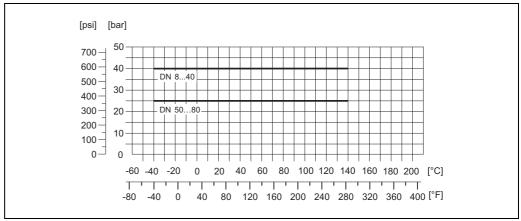
Les raccords clamp sont appropriés pour une pression maximale de 16 bar (232 psi). Les limites d'utilisation du clamp et du joint utilisés doivent être prises en compte étant donné qu'elles peuvent être inférieures à 16 bar (232 psi). Le clamp et le joint ne font pas partie du matériel livré.

Raccord fileté selon DIN 11851


Matériau du raccord: inox 1.4404/316L

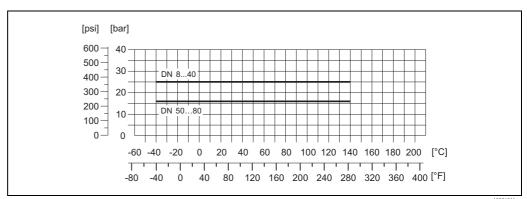
DIN 11851 prévoit une utilisation jusqu'à +140 °C (+284 °F) lors de l'emploi de matériaux d'étanchéité appropriés. A prendre en compte lors de la sélection de joints et écrous étant donné que ces composants peuvent entrainer des limitations de la gamme de pression et de température.

Raccord fileté hygiénique SMS 1145


Matériau du raccord : inox 1.4404/316L

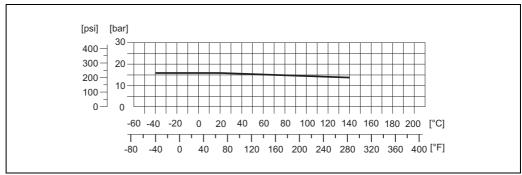
SMS 1145 prévoit une utilisation jusqu'à 6 bar (87 psi) lors de l'emploi de matériaux d'étanchéité appropriés. A prendre en compte lors de la sélection de joints et écrous étant donné que ces composants peuvent entrainer des limitations de la gamme de pression et de température.

Raccord fileté aseptique selon DIN 11864-1 Forme A


Matériau du raccord: inox 1.4404/316L

A0006910-ae

Raccord par bride avec rainure selon DIN 11864-2 Forme A


Matériau de bride : inox 1.4404/316L

A0000911-a

Raccord fileté hygiénique selon ISO 2853

Matériau du raccord: inox 1.4404/316L

A0006912-ae

Raccords process

Raccords process à souder

- Brides selon EN 1092-1 (DIN 2501), selon ASME B16.5, JIS B2220, raccords VCO
- Raccords alimentaires: tri-Clamp, raccord fileté (DIN 11851, SMS 1145, ISO 2853, DIN 11864-1
 Forme A), DIN 11864-2
 Forme A (bride aseptique avec rainure)

Niveau de programmation et d'affichage

Eléments d'affichage

- Affichage à cristaux liquides : éclairé, 4 lignes de 16 digits chacune
- Affichage configurable individuellement pour la représentation de diverses grandeurs de mesure et d'état.
- Pour des températures ambiantes inférieures à -20°C (-4°F), la lisibilité de l'affichage peut être compromise.

Langues

Langues d'affichage : français, espagnol, italien, néerlandais, portugais, allemand, anglais

Commande à distance

- Protocole HART (terminal portable)
- Logiciel de configuration et de service "FieldCare" d'Endress+Hauser
- Logiciels de configuration AMS (Fisher Rosemount), SIMATIC PDM (Siemens)

Certificats et agréments

Marquage CE	Le système de mesure remplit les exigences légales des directives CE. Endress+Hauser confirme la réussite des tests par l'appareil par l'apposition de la marque CE.
Marque C-Tick	Le système de mesure est conforme aux exigences CEM de la "Australian Communications and Media Authority (ACMA)"
Agrément Ex	Votre agence Endress+Hauser vous fournira de plus amples renseignements sur les versions Ex livrables (ATEX, FM, CSA, IECCEx, NEPSI etc.). Toutes les données relatives à la protection antidéflagrante figurent dans des documentations Ex séparées, que vous pourrez obtenir sur simple demande.

Compatibilité alimentaire

Agrément 3A

Normes et directives externes

■ EN 60529

Protection par le boitier (code IP).

EN 61010-1

Directives de sécurité pour les appareils électriques de mesure, de commande, de régulation et de laboratoire.

- CEI/EN 61326
 - "Emissivité selon exigences pour classe A". Compatibilité électromagnétique (exigences CEM).
- NAMUR NE 21

Compatibilité électromagnétique de matériels électriques destinés aux process et aux laboratoires.

■ NAMUR NE 43

Uniformisation du niveau de signal pour l'information de défaut en provenance de transmetteurs digitaux avec signal de sortie analogique.

■ NAMUR NE 53

Logiciel d'appareils de terrain et d'appareils de traitement du signal avec électronique digitale.

Directive sur les équipements sous pression

Les appareils avec un diamètre nominal inférieur ou égal à DN 25 satisfont en général à l'article 3(3) de la directive 97/23/CE (Directive équipements sous pression) ; ils ont été conçus et fabriqués selon les règles de l'art. Pour les diamètres supérieurs il existe le cas échéant (en fonction du produit et de la pression process) des agréments supplémentaires selon catégorie II/III.

Informations à la commande

Des indications détaillées quant à la référence de commande vous seront fournies par votre agence Endress+Hauser.

Accessoires

Différents accessoires sont disponibles pour le transmetteur et le capteur, qui peuvent être commandés séparément auprès d'Endress+Hauser.

Documentation complémentaire

- Mesure de débit de liquides, gaz et vapeurs (FA005D)
- Manuel de mises en service/Description des fonctions
 - Promass 40 HART (BA061D/BA062D)
- Documentations Ex complémentaires : ATEX, FM, CSA, IECEx NEPSI

Marques déposées

TRI-CLAMP®

Marque déposée de la société Ladish & Co., Inc., Kenosha, USA

HART®

Marque déposée de HART Communication Foundation, Austin, USA

HistoROMTM, S-DAT[®], T-DATTM, F-CHIP[®], Fieldcheck[®], FieldCare[®], Applicator[®] Marques déposées de la société Endress+Hauser Flowtec AG, Reinach, CH

France			Canada	Belgique Luxembourg	Suisse
Endress+Hauser SAS 3 rue du Rhin, BP 150 68331 Huningue Cedex info@frendress.com www.fr.endress.com Relations commerciales (N°Indigo 0 825 888 001) (N°Indigo a) 825 888 001 (N°Indigo a) 825 888 003 (N°Indigo a) 825 888 00	Agence Paris-Nord 94472 Boissy St Léger Cedex Agence Ouest 33700 Mérignac Agence Est Bureau de Huningue 68331 Huningue Cedex Bureau de Lyon Case 91, 69673 Bron Cedex	Agence Export Endress+Hauser SAS 3 rue du Rhin, BP 150 68331 Huningue Cedex Tél. (33) 3 89 69 67 38 Fax (33) 3 89 69 55 10 info@fi.endress.com www.fr.endress.com	Endress+Hauser 6800 Côte de Liesse Suite 100 H4T 2A7 St Laurent, Québec Tél. (514) 733-0254 Téléfax (514) 733-2924 Endress+Hauser 1075 Sutton Drive Burlington, Ontario Tél. (905) 681-9292 Téléfax (905) 681-9444	Endress+Hauser SA 13 rue Carli B-1140 Bruxelles Tél. (02) 248 06 00 Téléfax (02) 248 05 53	Endress+Hauser Metso AG Kägenstrasse 2 Postfach CH-4153 Reinach Tél. (061) 715 75 75 Téléfax (061) 715 27 75

People for Process Automation