BA 152F.00/14/fr/10.99 016837-2000 Version software 2.0

Electronique FEB 20 avec protocole INTENSOR FEB 22 avec protocole HART

Instructions de montage et de mise en service

Instructions en bref

Ces instructions sont destinées au personnel familiarisé avec l'étalonnage standard rapide :

① sans module d'affichage et de commande

2 avec module d'affichage et de commande FHB 20

Avertissement !

Ces instructions s'adressent uniquement au personnel qui a entièrement lu et compris le manuel de mise en service BA 152F.

Sommaire

In	strı	actions en bref	2							
Sc	mn	naire	4							
Modifications de software 5										
Co	onse	eils de sécurité	6							
Co	onse	eils de sécurité	7							
1.	In	troduction	8							
	1.1 1.2 1.3	Domaine d'application	8 8 8							
2.	In	stallation	9							
	2.1 2.2	Raccordement <th< th=""><th>9 11</th></th<>	9 11							
3.	UI	tilisation sans affichage	12							
	3.1	Eléments de commande	12							
	0.2	réglées en usine (reset)	12							
	3.3 3.4	Etalonnage vide et plein	13							
	3.5	partiellement rempli	13 14							
4.	Co	ommande par matrice de								
	рі	rogrammation	15							
	4.1 4.2	Eléments de commande	15							
	4.3	Commulog VU 260 Z Utilisation avec le terminal portable HART	16							
	4.4	Communicator DXR 275	16							
		d'un terminal portable	16							
5.	Ré	églages de base	17							
	5.1 5.2	Correction d'implantation	17							
	53	par défaut (reset)	17 18							
	5.4	Correction de la densité	19							
	5.5 5.6	Etalonnage sec	20 21							
6.	A	utres réglages	22							
	6.1	Linéarisation	22							
	6.2	Mesure de pression et de pression différentielle	26							
	6.3	Verrouillage/déverrouillage	28							

Informations relatives au point			
de mesure	29		
 7.1 Diagnostic et suppression des défauts 7.2 Simulation 7.3 Réparations 7.4 Remplacement de l'électronique 7.5 Remplacement de la cellule de mesure 	30 31 32 32		
Matrice INTENSOR	33 34		

FEB 20 avec VU 260 Z

Modifications de software

Version se	oft et édition BA	۱	Modifications	Remarques	
FEB 20	N° appareil et soft	VU 260 Z			
1.1	7811	1.7	Pas de modification dans la doc		
1.3	7813	1.7		Pas de	
1.4	7814	1.7		Up/Download	
2.0	7820	1.8	 Commande sans affichage étalonnage via clavier agit sur les cases matricielles V0H1 étalonnage vide, V0H2 étalonnage plein, V0H5 valeur pour 4 mA, V0H6 valeur pour 20 mA Commande avec affichage V0H5/V0H6 : sortie courant peut être inversée V3H7 : correction d'implantation complétée V3H6 : affichage de la correction d'implantation complété V0H8 : modifié en Affichage après correction d'implantation 	entre SW 1.x et 2.x possible	

FEB 22 avec DXR 275

Version soft et édition BA			Modifications	Remarques
FEB 22	N° appareil et soft	DXR 275		
1.1	7911	Device	Pas de modification dans la doc	
1.3	7913	Revision: 1		
1.4	7914	DD- Revision:		Pas de Up/Download
2.0	7920	Device Revision: 2 DD- Revision: 1	Commande sans affichage - Etalonnage via clavier agit sur étalonnage de base, étalonnage vide, étalonnage plein, valeur pour 4 mA, valeur pour 20 mA Commande via matrice - Etalonnage de base : sortie courant peut être inversée - Etalonnage étendu : correction d'implantation complétée - Etalonnage de base : affichage après correction d'implantation	2.x possible

Conseils de sécurité

Utilisation conforme	Les électroniques FEB 20 et FEB 22 servent à la mesure continue de niveau d'après le principe hydrostatique. Elles peuvent être combinées aux sondes hydrostatiques DB 50, DB 50L, DB 51, DB 52 et DB 53. Les électroniques ont été conçues pour fonctionner de manière sûre conformément aux normes européennes de technique et de sécurité. Installées incorrectement, ou employées sur des applications pour lesquelles elles n'ont pas été prévues, elles peuvent être source de dangers; les dommages en résultant ne sont pas couverts par la garantie du fabricant. Les modifications et réparations effectuées sont admissibles uniquement si cela est expressément mentionné dans le présent manuel. Les appareils endommagés pouvant être source de dangers ne doivent pas être mis en service et devront être marqués comme défectueux.
Zones explosibles	Si le système de mesure doit être installé en zone explosible, il convient de tenir compte des normes nationales en vigueur ainsi que des directives données dans les certificats.
Montage et mise en service	Le système de mesure doit être installé, raccordé, commandé et réparé selon les instructions figurant dans le présent manuel. Le personnel qui l'utilisera devra être autorisé et suffisamment formé. Le présent manuel aura été lu et compris, et les instructions seront respectées.
Commande	Les appareils ne devront être commandés que par un personnel autorisé et formé par l'utilisateur de l'installation. Il convient de respecter les directives données dans le présent manuel.

Conseils de sécurité

Afin de mettre en évidence les risques que comportent les différentes manipulations, les symboles suivants sont placés dans la marge, en regard du texte correspondant :

Symbole	Remarque	Conseils de sécurité
Remarque !	Remarque ! Ce symbole signale les actions ou procédures qui, menées incorrectement, sont susceptibles de perturber indirectement le fonctionnement des appareils ou de générer des réactions imprévues.	
Attention !	Attention ! Ce symbole signale les actions ou procédures qui, menées incorrectement, risquent d'entraîner des dommages corporels ou des dysfonctionnements d'appareils.	-
Danger !	Danger ! Ce symbole signale les actions ou les procédures qui, menées incorrectement, entraînent des dommages corporels, des dangers ou la détérioration de l'appareil	-
(Ex)	Appareils électriques certifiés pour utilisation en zone explosible Si ce symbole figure sur la plaque signalétique de l'appareil, ce dernier pourra être utilisé en zone explosible.	Mode de protection
<u></u> ε _x	Zone explosible Ce symbole caractérise dans les schémas du présent manuel la zone explosible. Les appareils qui se trouvent en zone explosible ou les câbles qui y mènent doivent posséder un mode de protection anti-déflagrante correspondant.	
	Zone sûre (zone non explosible) Ce symbole caractérise dans les schémas du présent manuel la zone non explosible. Les appareils qui se trouvent en zone non explosible doivent également être certifiés si des câbles qui leur sont raccordés mènent en zone explosible.	
	Courant continu Une borne à laquelle on mesure une tension continue ou qui est traversée par un courant continu.	Symboles électriques
\sim	Courant alternatif Une borne à laquelle on mesure une tension alternative (sinusoïdale) ou qui est traversée par un courant alternatif.	-
	Prise de terre Une borne, qui du point de vue de l'utilisateur est déjà reliée à la terre.	
	Prise de terre Une borne, qui doit être mise à la terre avant de réaliser d'autres raccordements.	
\bigtriangledown	Raccordement d'équipotentialité Un raccordement, qui doit être relié au système de mise à la terre de l'installation. Il peut s'agir d'une ligne d'équipotentialité ou un système de mise à la terre en étoile, selon réglementation nationale ou propre à l'entreprise.	

Introduction 1.

1.1 Domaine d'application

Les électroniques FEB 20 et FEB 22 sont des transmetteurs pour les sondes hydrostatiques Deltapilot S DB 50, DB 50 L, DB 51, DB 52, DB 53. Les appareils de la famille Deltapilot S servent à la mesure continue de niveau dans tous les produits liquides et pâteux, dans l'industrie chimique, pharmaceutique et agro-alimentaire et dans le domaine du traitement des eaux et des eaux usées.

1.2 Principe de fonctionnement

La pression hydrostatique d'une colonne de fluide permet la mesure continue du niveau avec un capteur de pression. Le capteur de pression Deltapilot S convertit la pression exercée sur la membrane en un signal électrique. Ce signal est transmis pour traitement à l'électronique qui émet directement un signal normé 4...20 mA. Dans le cas d'une électronique smart, un signal de communication numérique superposé au signal courant permet un échange de données bidirectionnel entre l'électronique et un terminal portable, un transmetteur du type Commutec FMX 770 et FXN 671 ou un Commubox. La transmission des données numériques est régie par un protocole.

L'électronique FEB 20 fonctionne avec le protocole INTENSOR, l'électronique FEB 22 fonctionne avec le protocole HART.

1.3 Ensemble de mesure

Dans le cas le plus simple, le point de mesure complet se compose d'un Deltapilot S et d'une électronique smart FEB 20 ou FEB 22.

La figure ci-dessous illustre toutes les possibilités.

Exploitation	Appareil	Documentation	Fonctionnalité
Sur site sans affichage (uniquement quatre touches sur l'électronique)		Dans ce manuel, chap. 3, à partir de la p. 10	– Reset – Etalonnage vide et plein – Verrouillage, déverrouillage
Sur site avec affichage	Module d'affichage et de commande FHB20	Chap. 4 à partir de la p. 13	Utilisation de la matrice – Etalonnage vide et plein
Exploitation en mode communication (avec	FEB 20 : terminal portable VU 260 Z	BA 028F	 Etalonnage sec Linéarisation Réglage de la sortie
ou sans affichage)	FEB 22 : terminal universel DXR 275	doc. DXR 275	courant – Décalage du point zéro
	Silometer FMX 770	BA 136F	- Verrouillage/ déverrouillage - Valeur de crête
	Interface Rackbus FXN 671	TI 236F	- Simulation
	Commubox FXA 191	TI 237F	

Fig. 1

- Exploitation du Deltapilot S
- Exploitation directe sur le terrain, en option avec module d'affichage et de commande FHB 20
- Exploitation à distance avec terminal portable
- Exploitation avec transmetteurs Silometer FMX 770 ou FXN 671 (alimentation et carte d'interface au Rackbus)
- Exploitation via Commubox et PC
- Exploitation via un système de conduite de procédé

2. Installation

Ce chapitre décrit le raccordement électrique des électroniques et donne toutes les caractéristiques mécaniques et techniques nécessaires à leur mise en service et leur exploitation.

2.1 Raccordement

- Dévisser le couvercle.
- Retirer le module d'affichage et de commande FHB 20.
 (si vous avez commandé un module d'affichage et de commande, il est livré monté. Il suffit de le dévisser en exerçant une légère pression pour l'enlever).
- Introduire le câble d'alimentation à travers le presse-étoupe.

∟2-13-1 ເ€ ∫© © ⊚∆

- Raccorder le câble aux bornes selon le schéma de raccordement.
- Utiliser un câble blindé à deux conducteurs usuel.
- Le signal de communication peut être altéré sous certaines conditions si le câble utilisé n'est pas blindé.
- Pour les applications en zone non explosible, le blindage est le plus efficace s'il est mis à la terre aux deux extrémités.
- Pour les applications en zone explosible, le blindage doit être mis à la terre à une extrémité seulement, de préférence côté sonde Deltapilot S.

Raccorder le connecteur du module d'affichage et de commande. Tenir compte du codage connecteur - prise.

FMX 770, FXN 671

Silometer

• Monter le module, qui peut être tourné par pas de 90°.

ΥΥ

d4 d2

Alimentation de transmetteur

BA152y02

Fig. 3 Montage du module d'affichage et de commande FHB 20

Fig. 2

Raccordement électrique

Module d'affichage et de commande FHB 20

Blindage

Câble d'alimentation

Module DAT

La mémoire non volatile du module DAT contient toutes les données spécifiques à la cellule de mesure. Ce module est livré monté. Relié en permanence au boîtier Deltapilot S, il ne peut pas être perdu.

- Si le module doit être remplacé, il faut décrocher la boucle avant de le retirer.
- Installer le nouveau module et accrocher la boucle.

Fig. 4 Remplacement du module DAT. La boucle évite la perte du DAT.

Terminal portable

Possibilités de raccordement : - directement à l'électronique

– à un endroit quelconque du câble de signal de mesure

Attention !

Pour une transmission parfaite du signal de communication, il faut une résistance minimale entre les points de raccordement et l'alimentation.

Fig. 5 Raccordement d'un terminal portable. Pour les applications en zone Ex, utiliser une alimentation agréée ou une barrière de séparation Ex.

Dimensions

Fig. 6 Dimensions des électroniques FEB 20, FEB 22

2.2 Caractéristiques techniques

Informations générales	Constructeur	Endress+Hauser
	Désignation de l'appareil	Electronique FEB 20 (INTENSOR), FEB 22 (HART)
Grandaura d'antrés	Grandeur de mesure	Niveau par pression hydrostatique d'une colonne de fluide
Grandeurs d'entrée	Gammes de mesure	0100 mbar -100100 mbar 0400 mbar -400400 mbar 01200 mbar -9001200 mbar 04000 mbar -9004000 mbar
Constant in the section	Signal de sortie	2 file : 4 20 mA avec signal de communication numérique superposé
Grandeurs de sortie	Résistance de communication	250Ω
	Charge	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	Signal de défaut	Réaction de la sortie courant : au choix 3,6 mA, 22 mA ou HOLD (maintien de la dernière valeur)
	Rangeabilité	10:1
	Décalage du point zéro	90 % de l'étendue de mesure
	Temps d'intégration	099 s, réglage usine : 0 s
	Protection contre les surtensions	Eclateurs : 230 V Courant de choc nominal : 10 kA
Précision de mesure	Conditions de référence	25 °C
	Linéarité	Ecart de mesure 0,2 % de la gamme réglée (méthode à 2 points selon DIN 16086), en option avec 0,1 %
	Influence de la température ambiante	0,01 %/10 K de la gamme de mesure de la cellule (selon DIN 16086)
	Hystérésis	± 0,1 % de la gamme de mesure de la cellule (selon DIN 16086)
	Dérive à long terme	0,1 % de gamme de mesure nominale durant 6 mois (selon DIN 16086)
Conditions d'utilisation	Gamme de température du produit mesuré	DB 50, DB 50 L : -10+100 °C (135°C, max. 30 min) DB 51, DB 52, DB 53 : -10 °C80 °C
avec électronique intégrée)	Gamme de température ambiante	-20+60 °C; avec électronique séparée -20+80 °C
	Gamme de température ambiante limite	-40+85 ℃
	Gamme de temp. de stockage	-40+85 °C
	Compatibilité électromagnétique	Résistance aux interférences selon EN50082-2 et norme NAMUR avec 10 V/m, émission d'interférences selon EN 50081-2
	Protection	IP 20
Construction	Matériau	Boîtier matière synthétique ABS, électronique surmoulée
	Dimensions	Voir : 2.1 Dimensions
Affichage et commande	Module d'affichage et de commande FHB 20	Affichage LCD 4 positions, avec affichage par segments du courant, signal d'erreur et signal de communication, en option pour affichage et commande sur site, embrochable
	Commande	Par 4 touches -, +, V, H sur l'affichage FHB 20
	Utilisation sans affichage	Etalonnage et fonctions de base avec 4 touches 0 % : -, + et 100 % : -, +, sur l'électronique
	Interfaces de communication	Terminal portable : raccordement direct à la sortie courant ou en un endroit quelconque de la ligne de signal, résistance de communication 250 Ω
Alimentation	Tension d'alimentation	11,530 V _{DC}
	Ondulation sur les appareils smart Ondulation sur les appareils non smart	INTENSOR ondulation max. (mesurée à 500 Ω) 0500 kHz: U _{CC} =30 mV HART ondulation max. (mesurée à 500 Ω) 47 Hz125 Hz : U _{CC} =200 mV Bruit max. (mesuré à 500 Ω) 500 Hz10 kHz: U _{eff.} =2,2 mV Dans la gamme 1Hz100kHz, niveau de bruit max. U _{CC} \leq 1 V

3. Utilisation sans affichage

Ce chapitre décrit l'utilisation du Deltapilot S sans module d'affichage FHB 20 ni communication. Les éléments de commande sont constitués de 4 touches sur la face supérieure de l'électronique.

Voici les commandes possibles :

- rétablissement des valeurs usine (reset)
- étalonnage vide et plein
- étalonnage d'un réservoir partiellement rempli avec ampèremètre
- protection des entrées par verrouillage

3.1 Eléments de commande

3.2 Rétablissement des valeurs réglées en usine (reset)

Le reset rétablit les valeurs par défaut.

Déroulement

- Appuyer simultanément sur les touches
 0 % : et 100 % : -.
- La DEL verte de confirmation clignote

Fig. 7 Eléments de commande ①Couvercle avec explic

- ①Couvercle avec explications sur les fonctions des touches
 ②Touches de commande sur
- l'électronique
 Raccord pour ampèremètre
- et alimentation
- ④DEL verte clignote pour la confirmation des entrées

Fig. 8

Combinaison des touches pour le rétablissement des valeurs par défaut

Préparation

3.3 Etalonnage vide et plein

L'étalonnage vide et plein attribue les valeurs min. et max. souhaitées respectivement à 4 et 20 mA.

- L'appareil est monté.
- Le réservoir peut être rempli.

Etalonnage vide et plein

• Un courant de 4 mA est attribué au point d'étalonnage "vide" (niveau minimal)

• Un courant de 20 mA est attribué au point d'étalonnage "plein" (niveau maximal)

Les points d'étalonnage sont notés dans les cases matricielles :

- Etalonnage vide (V0H1) et plein (V0H2)
- Valeurs pour 4 mA (V0H5) et 20 mA (V0H6)

3.4 Etalonnage d'un réservoir partiellement rempli

L'étalonnage indirect est possible sur un réservoir partiellement rempli, si le niveau est connu avec précision en deux points.

- Monter l'appareil.
- Raccorder un ampèremètre.
- Le réservoir est rempli jusqu'à une hauteur quelconque connue.
- Calculer la valeur de courant correspondant au niveau effectif.

Valeur de courant du niveau effectif = 4 mA + $\frac{16 \text{ mA x niveau effectif}}{\text{niveau max}}$

Fig. 10 Raccordement d'un ampèremètre

Préparation

Résultat

Effet sur la matrice

Déroulement

Exemple : Le réservoir est rempli à 20 %, ce qui correspond à un courant de 7,2 mA.

$$I = 4 \text{ mA} + \frac{16 \text{ mA} \cdot 20\%}{100\%} = 7,2 \text{ mA}$$

Au 2ème point d'étalonnage, le réservoir est rempli à 80 %, ce qui correspond à un courant de 16,8 mA.

- Remplir le réservoir à 20 %
- Régler le courant sur 7,2 mA avec les touches **0 % : + ou –** . • Remplir le réservoir à 80 %
- Régler le courant sur 16,8 mA avec les touches 100 % : + ou .

Remarque!

Remarque !

La DEL de confirmation verte ne clignote pas lorsque l'étalonnage est effectué sur un réservoir partiellement rempli.

Résultat

• Un courant de 4 mA est attribué au point d'étalonnage "vide" (niveau minimal) Un courant de 20 mA est attribué au point d'étalonnage "plein" (niveau maximal)

Effet sur la matrice

Les points d'étalonnage sont notés dans les cases matricielles :

- Etalonnage vide (V0H1) et plein (V0H2)
- Valeurs pour 4 mA (V0H5) et 20 mA (V0H6)

3.5 Verrouillage / déverrouillage

Le verrouillage permet de protéger le point de mesure contre toute modification intempestive du réglage.

En appuyant simultanément sur les touches **0 % : + et 100 % : -** la commande par touches et la commande par les éléments communicants (indicateur, terminal

Verrouillage

portable, FMX 770, FXN 671, etc.) sont verrouillées.

Dans ce cas, le déverrouillage n'est possible que par les touches.

- Appuyer simultanément sur les touches 0 % : + et 100 % : - .
- La DEL de confirmation verte clignote.

Fig. 12 Combinaisons des touches pour le verrouillage

Attention !

Attention !

Déverrouillage

- Appuyer simultanément sur les touches
 0 % : et 100 % : +.
- La DEL de confirmation verte clignote.

Fig. 13 Combinaison des touches pour le déverrouillage

4. Commande par matrice de programmation

La commande par la communication est basée sur une matrice 10x10 établie selon les principes suivants :

- Chaque rangée est attribuée à un groupe de fonctions.
- Chaque case contient un paramètre.

La matrice est la même, quel que soit l'organe de réglage :

- module de commande et d'affichage FHB 20
- terminal portable Commulog VU 260 Z (INTENSOR)
- transmetteur FMX 770

ou par le programme d'exploitation Fieldmanager 485 ou Commuwin II.

Si la FEB 22 est utilisé avec un terminal HART DXR 275 et le protocole HART, elle utilise un menu exploité à partir de la matrice.

4.1 Eléments de commande

L'utilisation avec le module FHB 20 est indépendante du protocole INTENSOR ou HART, elle est la même pour les électroniques FEB 20 et 22.

Remarque !

Si l'appareil a été réglé avec le module FHB 20, il est possible de démonter ce dernier pour effectuer l'étalonnage d'autres appareils. Toutes les entrées sont sauvegardées indépendamment du module et ne peuvent être perdues.

4. Commande par matrice de programmation

Remarque!

Fig. 14

FHB 20 :

Interface utilisateur de

②signal de défaut

④position de matrice

sélectionnée

d'entrée

l'électronique avec module

d'affichage et de commande

①signal de communication :

allumé dans le cas d'une

exploitation avec terminal portable, FMX, FXN, etc.

3 affichage 4 digits des valeurs

⑤bargrah du signal 4...20 mA

6 touches de commande

de mesure et des paramètres

Touches	ouches Fonctions				
Sélection de la position	Sélection de la position de matrice				
V	Sélection de la position verticale				
Н	Sélection de la position horizontale				
V et H	L'affichage passe à V0H0 lors de l'appui simultané sur les touches V et H				
Entrée du paramètre	Entrée du paramètre				
+ OU -	Active la position de matrice sélectionnée. La position sélectionnée clignote.				
+	Incrémente la valeur de la position sélectionnée de + 1.				
-	Décrémente la valeur de la position sélectionnée de - 1.				
+ et -	Retour à la valeur précédente si la valeur entrée n'a pas été confirmée				
Confirmation de l'entrée					
V ou H ou V et H	Confirmation de l'entrée et sortie de la matrice de programmation				

4.2 Utilisation avec le terminal Commulog VU 260 Z

Un Deltapilot S avec électronique FEB 20 (INTENSOR) peut être réglé avec le terminal portable VU 260 Z (à partir de la version 1.7), voir également manuel d'exploitation BA 028F.

- Sélectionner la position de matrice avec les touches ▲, ♥, ➡, €
- Appeler le mode d'entrée avec E .
- Entrer les paramètres avec les touches ♠, ♥, ➡, €, E
- En cas de défaut, la touche 👻 appelle le message d'erreur en texte clair.

4.3 Utilisation avec le terminal portable HART **Communicator DXR 275**

Un Deltapilot S avec électronique FEB 22 (HART) peut être réglé avec le terminal DXR 275.

- Le menu "Group Select" appelle la matrice.
- Les lignes représentent les titres des menus.
- Les paramètres sont réglés dans des sous-menus.

4.4 Conseils sur l'utilisation d'un terminal portable

Les indications concernant uniquement l'utilisation du terminal portable sont signalées par le pictogramme ci-contre.

Fig. 15 Eléments de commande et fonctions des touches du terminal portable Commulog VU 260 Z

5. Réglages de base

Ce chapitre décrit les réglages pour la mise en service d'un Deltapilot S avec électronique FEB 20 ou FEB 22.

- Rétablissement des valeurs par défaut (reset)
- Etalonnage vide et plein ou étalonnage sec
- Réglage de la sortie courant (4...20 mA)

5.1 Correction d'implantation

En fonction de l'implantation du capteur il est possible d'obtenir de faibles décalages de l'affichage de la pression à proximité du point zéro. C'est à dire qu'avec un réservoir vide le capteur monté n'indique pas zéro mais une faible pression (+/- 2 mbar). Cet affichage imprécis peut être corrigé en case matricielle V3H7. La valeur à corriger doit être lue en case V3H6 (affichage de la pression au capteur avant correction).

Pas	Pos. matrice	Entrée	Signification
1 1	V3H6		Lire la valeur (par ex. 0,23)
2	V3H7	par ex. 0,23	Correction de la valeur de pression indiquée de 0,23
3		V ou H	Confirmation de l'entrée

La valeur de pression entrée est déduite de la pression au capteur - la valeur mesurée principale affichée est zéro.

V0H0 : Valeur mesurée principale

V3H6 : Affichage de la pression au capteur avant correction de l'implantation V0H8 : Affichage de la pression au capteur après correction de l 'implantation

5.2 Rétablissement des valeurs par défaut (reset)

A la première mise en service, il est conseillé de rétablir les valeurs par défaut de la matrice. A la page 33 vous trouverez une matrice avec les valeurs par défaut, où vous pouvez également noter vos réglages.

ſ	Pas	Pos. matrice	Entrée	Signification
	1	V9H5	333	Rétablissement des valeurs par défaut
	2		V ou H	Confirmation de l'entrée

Ne sont pas concernés par le retour aux valeurs par défaut

• la courbe de linéarisation,

• les valeurs mémorisées de la fonction "valeur de crête"

• les positions dans lesquelles ont été sélectionnées des unités techniques

• le repère

Ces valeurs peuvent être effacées directement dans la case de la matrice.

Déroulement

Affichage de la mesure

Résultat

5.3 Etalonnage vide et plein

L'étalonnage vide et plein permet de définir le niveau minimal et maximal souhaité.

Préparation

- Le Deltapilot S est monté.
- Le réservoir peut être rempli.

Déroulement

Pas	Pos. matrice	Entrée	Signification
1	V3H0	0	Sélection du mode d'étalonnage "niveau"
2		V ou H	Confirmation de l'entrée
3	V0H1	par ex. 0	Le réservoir est vide. Le niveau effectif (par ex. 0 %)
			correspond au point d'étalonnage "vide"
4		V ou H	Confirmation de l'entrée
5	V0H2	par ex. 100	Le réservoir est rempli. Le niveau effectif (par ex. 100 %)
			correspond au point d'étalonnage "plein".
6		V ou H	Confirmation de l'entrée.

Résultat

• La valeur mesurée est indiquée en position V0H0 dans l'unité d'étalonnage.

• Toutes les autres indications telles que la sortie courant, la linéarisation, etc. doivent être réglées dans les mêmes unités que l'étalonnage.

Dans le cas du terminal portable, l'unité d'étalonnage est affichée à l'écran si elle a été préalablement sélectionnée en VAH2.

Le décalage du point zéro permet de déplacer le point d'étalonnage "vide". La valeur **Décalage du point zéro** de mesure en V0H0 est corrigée de la valeur entrée.

Fig. 18 Exemple de décalage du point zéro : La mesure doit débuter légèrement au-dessus de l'étalonnage. Le point zéro est corrigé de +5 %. Lors de l'étalonnage plein, déduire la valeur de décalage dès l'étalonnage du niveau maximal. La valeur de mesure en VOH0 est corrigée de la valeur de décalage entrée.

Pas	Pos. matrice	Entrée	Signification
1	V3H3	5	Le point d'étalonnage "vide" en V0H1 est décalé de 5 %.
			Lors de l'étalonnage plein, déduire la valeur de décalage du niveau maximal.
2		V ou H	Confirmation de l'entrée.

Remarque !

• Le décalage du point zéro est effectué dans les mêmes unités que l'étalonnage.

• Les autres entrées se rapportent au zéro décalé.

5.4 Correction de la densité

Si l'étalonnage est effectué avec de l'eau, ou si le produit varie ultérieurement, les valeurs d'étalonnage peuvent être corrigées simplement à l'aide d'un facteur de densité.

Facteur de densité = facteur effectif · nouvelle densité ancienne densité

Exemple : Un réservoir est rempli et étalonné à l'eau. La densité de l'eau (ancienne densité) est 1 g/cm³. Ensuite, le réservoir est utilisé pour le stockage d'un produit dont la densité est 1,2 g/cm³. Le réglage usine en V3H2 est 1 g/cm³, c'est à dire le facteur actuel est 1 g/cm³.

Facteur de densité = $1 \text{ g/cm}^3 \cdot \frac{1,2 \text{ g/cm}^3}{1 \text{ g/cm}^3} = 1,2 \text{ g/cm}^3$

Pas	Pos. matrice	Entrée	Signification	Déroulement
1	V3H2	1,2	Les valeurs d'étalonnage sont adaptées au nouveau	
			produit.	
2		V ou H	Confirmation de l'entrée.	

La valeur de mesure en V0H0 est divisée par le facteur de densité et ainsi adaptée au nouveau produit.

L'entrée d'un facteur de densité se rapporte à la mesure de niveau.

Si l'on souhaite une mesure de volume par une courbe de linéarisation, il faut d'abord entrer le facteur de densité, puis la courbe de linéarisation.

Détermination du facteur de densité

5.5 Etalonnage sec

L'étalonnage sec est un étalonnage théorique qui peut être effectué avec Deltapilot S non monté ou avec un réservoir vide.

Le point d'étalonnage "vide" se trouve toujours au point de montage de la sonde. Une entrée de valeur n'est pas nécessaire. Si la mesure doit être effectuée avec un autre niveau, il est possible de décaler le point zéro.

Préparation

Déroulement

- La hauteur de remplissage du point d'étalonnage "plein" est connue.
- Le facteur de densité est connu.

Exemple : Etalonnage sec avec décalage du point zéro et Deltapilot S monté à la sortie du réservoir : La mesure doit commencer 0,2 m au-dessus du point "vide". La valeur de décalage est entrée en V3H3. Pour l'étalonnage "plein", ajouter la valeur de décalage. La valeur de mesure en V0H0 est corrigée de la valeur de décalage.

Il y a deux modes d'étalonnage sec au choix :

- affichage de la valeur mesurée dans l'unité technique souhaitée

- affichage de la valeur mesurée en %

Pas	Pos. matrice	Entrée	Signification
1	V3H0	par ex. 1	Sélection du mode "étalonnage sec" : affichage de la valeur mesurée dans l'unité de longueur souhaitée
2		V ou H	Confirmation de l'entrée
3	V3H1	par ex. 0	Unité de l'étalonnage sec, par ex. m
4		V ou H	Confirmation de l'entrée
5	V3H2	Par ex. 1,2	Entrée du facteur de densité, par ex. 1,2 pour 1,2 kg/m ³
6		V ou H	Confirmation de l'entrée
7	V3H3	0,2	Le point d'étalonnage "vide" défini par le lieu de
			montage de la sonde est décalé de 0,2 m
8		V ou H	Confirmation de l'entrée
9	V0H2	Par ex. 4,2	Entrée du niveau maximal "plein", par ex. 4,2 m
			La valeur tient compte du décalage qui suit
10		V ou H	Confirmation de l'entrée

Si l'on passe du mode d'étalonnage "Niveau" (V3H0-valeur 0) sur "Etalonnage sec" (V3H0-valeur 1) ou "Etalonnage %" (V3H2-valeur 2), les cases matricielles "Facteur densité" (V3H2) et "Décalage du zéro" (V3H3) sont remises à zéro.

Décalage du point zéro

Correction de

montage

l'étalonnage après le

Remarque !

La valeur de décalage du point zéro et le niveau maximal sont toujours entrés dans l'unité technique choisie. Toutes les autres entrées se rapportent dorénavant au point zéro décalé.

Après un étalonnage sec, le premier remplissage du réservoir doit impérativement être fait sous surveillance, afin d'identifier immédiatement des erreurs ou des défauts. Un "étalonnage normal" (V3H0) : 0, permet de corriger l'entrée ou d'entrer des données plus précises. Attention, les corrections doivent être effectuées dans l'unité technique de l'étalonnage.

Pas	Pos. matrice	Entrée	Signification
1	V3H0	0	Mode d'étalonnage "niveau"
2		V ou H	Confirmation de l'entrée
3	V0H2	par ex. 4,5	Le réservoir est rempli jusqu'à 4,5 m
4		V ou H	Confirmation de l'entrée

5.6 Réglage de la sortie courant

Le FEB 20 dispose d'une sortie courant 4...20 mA qui peut être attribuée de manière quelconque à la valeur affichée en V0H0. Voici les entrées possibles pour la sortie courant :

Matrice	Entrée	Signification ou informations complémentaires
V0H5	Valeur 4 mA dans l'unité d'étalonnage <i>Réglage usine : 0</i>	<i>Dilatation de la gamme de mesure (turn down)</i> Le début et la fin de gamme 420 mA peuvent être définis librement, ils peuvent également être attribués à une partie
V0H6	Valeur 20 mA dans l'unité d'étalonnage <i>Réglage usine : 100</i>	quelconque de l'étendue de mesure. Sortie courant inversée La sortie courant peut également être inversée c'est-à-dire que le courant signal diminue lorsque la valeur mesurée augmente.
V0H3	Seuil de courant min. 4 mA 0 : OFF (3,820 mA) 1 : ON (420 mA) <i>Réglage usine : 0</i>	Le seuil min. 4 mA garantit que le courant ne sera jamais inférieur à cette valeur. La sortie courant 3,8 mA est judicieuse dans le cas d'un affichage instable ou d'une dilatation de la gamme de mesure. Dans ce cas, la valeur de courant minimale peut se situer légèrement en-dessous du seuil de 4 mA sans que cela déclenche un état de défaut.
V0H4	Temps d'intégration (099 s) <i>Réglage usine : 0</i>	Le temps d'intégration influence la vitesse avec laquelle la sortie courant et les pos. d'affichage V0H0, V0H8, V0H9 réagissent aux variations de niveau. Une augmentation du temps d'intégration permet d'atténuer l'influence de surfaces liquides instables sur l'affichage et les fonctions de fin d'échelle.
V0H7	Sortie en cas de défaut 0 : min. = 3,6 mA 1 : max. = 22 mA 2 : HOLD (dernière valeur valide conservée) <i>Réglage usine : 1</i>	Pour signaler un défaut, le courant de sortie passe à la valeur sélectionnée.

Pas	Pos. matrice	Entrée	Signification	Déroulement
1	V0H5	Par ex. 0	Entrée du niveau pour 4 mA (par ex. 0 %)	
2		V ou H	Confirmation de l'entrée	
3	V0H6	Par ex. 100	Entrée du niveau pour 20 mA (par ex. 100 %)	
4		V ou H	Confirmation de l'entrée	
5	V0H4	par ex. 30	Le temps d'intégration est de 30 s, par ex. en cas	
			de surface agitée	
6		V ou H	Confirmation de l'entrée	
7	V0H7	1	En cas de défaut, la sortie courant passe à 22 mA	
8		V ou H	Confirmation de l'entrée	

• Le courant de 4 mA est attribué au point d'étalonnage "vide".

• Le courant de 20 mA est attribué au point d'étalonnage "plein".

• Si l'on souhaite en plus entrer une courbe de linéarisation, faire cette opération avant de régler la sortie courant.

Résultat

Fig. 20 Réglage de la sortie courant. Dilatation de la gamme de mesure : Le début et la fin d'échelle peuvent également être attribués à une partie de la gamme de mesure.

6. Autres réglages

Ce chapitre décrit les fonctions des électroniques FEB 20 et FEB 22 disponibles en plus des réglages de base.

- Linéarisation
- Mesure de pression et de pression différentielle
- Verrouillage

6.1 Linéarisation

Dans les cuves et les réservoirs où le volume n'est pas directement proportionnel au niveau, la mesure de niveau est transformée en mesure de volume par linéarisation.

Entrée V2H0	Mode de linéarisation	Signification
0	linéaire (réglage usine)	Le réservoir est linéaire, par ex. cuve cylindrique verticale. Si l'étalonnage a été fait en unité de volume, la valeur de mesure peut être lue en unité de volume sans entrée supplémentaire.
2	entrée manuelle	Pour une courbe de linéarisation, entrer max. 11 couples de valeurs (niveau et volume correspondant)
3	entrée semi-automatique d'une courbe de linéarisation	En cas d'entrée semi-automatique, le réservoir est progressivement rempli ou vidangé. La hauteur de remplissage est automatiquement mesurée par le Deltapilot S via la pression hydrostatique. Le volume correspondant est introduit.
Autres for	nctions disponibles dans	V2H0 :
1	activation de tableau	Le tableau de linéarisation entré n'agit qu'après avoir été activé.
4	effacement de tableau	Avant d'entrer un tableau de linéarisation, il faut toujours effacer le tableau éventuellement présent. Le mode de linéarisation passe alors automatiquement à "linéaire".

1. Entrée manuelle d'une courbe de linéarisation

Préparation

- Les couples de valeurs de la courbe de linéarisation sont connus.
- La courbe de linéarisation doit être monotone croissante.
- Les hauteurs de remplissage des premier et dernier points doivent correspondre à l'étalonnage vide et plein
- La linéarisation est effectuée dans l'unité de l'étalonnage de base.

Fig. 21 Entrée d'une courbe de linéarisation pour une cuve verticale avec sortie conique. Quelques règles à observer : – Max. 11 points.

- Le premier point doit se situer à hauteur de la sonde. Il correspond à l'étalonnage vide.
- Le dernier point doit se situer à la hauteur du niveau maximal.
 Il correspond à l'étalonnage plein.

Pas	Pos. matrice	Entrée	Signification	Déroulement
1	V2H0	4	Le tableau existant est effacé.	
2		V ou H	Confirmation de l'entrée	
3	V2H0	2	Sélection du mode de linéarisation manuel	
4		V ou H	Confirmation de l'entrée	
5	V2H1	1	Premier couple de valeurs	
6		V ou H	Confirmation de l'entrée	
7	V2H2	par ex. 0	Niveau pour point 1 (par ex. 0 m = étalonnage vide)	
8		V ou H	Confirmation de l'entrée	
9	V2H3	par ex. 6	Volume pour point 1 (par ex. 0,6 m ³)	
10		V ou H	Confirmation de l'entrée	
11	V2H1	2	Deuxième couple de valeurs	
12	V2H2			
	Après entrée	de tous les co	ouples de valeurs	
44	V2H0	1	Activation du tableau	
	Réglage de la sortie courant voir 5.6 "Réglage de la sortie courant"			

• Le volume est indiqué en VOHO.

• La hauteur de remplissage est indiquée en VOH9.

En cas d'utilisation du terminal portable, l'unité de linéarisation est affichée à l'écran si elle a été préalablement sélectionnée en VAH3.

Remarque !

- Si une linéarisation manuelle est effectuée et si en V3H0 on a réglé "niveau" (valeur 0), les valeurs d'entrée sont reprises en m. Si par la suite V3H0 passe en "étalonnage sec H" (valeur 1), et si en V3H1 l'unité est modifiée, la valeur entrée est convertie dans la nouvelle unité. Si l'on veut procéder tout de suite à la linéarisation en cm, il faut d'abord définir l'unité en V3H1. Cette case n'est cependant ouverte qu'en mode "étalonnage sec H" V3H0 (valeur 1)
- Lors de "étalonnage sec H" V3H0 (valeur 1) ou lors de la linéarisation manuelle V2H0 (valeur 2), les valeurs de V0H2 ou V2H2 se rapportent à l'unité choisie de V3H1. Si lors d'une linéarisation manuelle la valeur 0 "niveau" a été réglée en V3H0, la valeur est affichée en % en V2H2 et V0H0.

Avertissement !

Pendant l'entrée de la courbe caractéristique, la sortie courant signale une erreur et le symbole d'erreur est allumé.

• E 605 : La courbe de linéarisation manuelle n'est pas complète. Ce message disparaît dès que la courbe a été activée.

Après l'entrée de toutes les valeurs, la courbe subit un test de plausibilité. Voici les messages pouvant apparaître :

• W 602 : La courbe n'est pas monotone croissante.

Le numéro du dernier couple de valeurs valable est automatiquement indiqué en V2H1, ce qui signifie qu'il faut entrer tous les couples de valeurs à partir de ce numéro.

• W 604 : La courbe de linéarisation se compose de moins de deux couples de valeurs. Compléter la courbe.

Résultat

2ème exemple : Courbe de linéarisation pour une cuve cylindrique horizontale.

L'exemple ci-dessous permet de calculer une courbe de linéarisation pour chaque cuve cylindrique horizontale.

Déroulement

- Le niveau est de 0 % pour une cuve vide et 100 % pour une cuve pleine.
- Le niveau est entré par pas de 10 %.
- Le niveau d'une cuve complètement pleine est de 100 %. Des volumes sont attribués aux pas de 10 % de niveau.
 - Calculer le volume correspondant à chaque pas de 10 % en fonction du volume de la cuve complètement pleine.

Volume pour x% niveau = $\frac{\text{volume total·volume(%)}}{100}$

Fig. 22 Entrée d'une courbe de linéarisation pour une cuve cylindrique horizontale. Le premier point (0 %) et le dernier point (100 %) se rapportent au fond et au sommet de la cuve.

N° ligne	Niveau V2H2		Volume V2H3	
V2H1	%	Valeur utilisateur	%	Valeur utilisateur
1	0		0	
2	10		5,20	
3	20		14,24	
4	30		25,23	
5	40		37,35	
6	50		50,00	
7	60		62,65	
8	70		74,77	
9	80		85,76	
10	90		94,79	
11	100		100	

3. Entrée semi-automatique d'une courbe de linéarisation

Il est possible par exemple de remplir la cuve lors de l'étalonnage et de la vider progressivement lors de la linéarisation. Le niveau est déterminé automatiquement par la pression hydrostatique, il suffit d'entrer le volume correspondant.

Il est par ex. de 32 m°.V ou HConfirmation de l'entrée5Sélection du 2ème couple de valeursV ou HConfirmation de l'entrée

Après entrée de tous les couples de valeurs, par ex. 6...1
V2H0 1 Activation du tableau
Réglage de la sortie courant, voir section 5.5, "Réglage de la sortie courant".

• Le volume est affiché en V0H0.

V2H1

V2H2

• La hauteur de remplissage avant linéarisation est indiquée en V0H9.

Remarque !

10

11

Utilisation avec le terminal portable HART DRX 275 : Le niveau effectif ne peut pas être lu dans le menu "linéarisation - entrée menu" (pos. matrice V2H2). Le message "paramètre invalide" est affiché à l'écran.

La linéarisation est correcte malgré ce message d'erreur. Le niveau peut être contrôlé en sélectionnant le menu "étalonnage de base - niveau", (pos. matrice V0H9).

Résultat

Remarque!

Déroulement

6.2 Mesure de pression et de pression différentielle

En mode d'étalonnage "pression" (V3H0 = 3), la pression exercée sur le Deltapilot S est affichée en V0H0. Il est possible de mesurer la pression différentielle avec deux sondes Deltapilot S dans des cuves pressurisées, sur des filtres, etc.

Remarque !

L'étalonnage en mode "pression" est effectué sans pression de référence. Les points d'étalonnage "vide" (4 mA) et "plein" (20 mA) sont entrés.

Mesure de pression

Préparation

• Les unités de pression suivantes sont disponibles en V3H4 :

0 : mbar	4 : psi	8 : MPa	12 : g / cm ²
1 : bar	5 : ft H ₂ O	9 : hPa	13 : kg / cm ²
2 : m H ₂ O	6 : in H ₂ O	10 : mm Hg	14 : lb / ft ²
3 · mm H2O	7 · Pa	11 · in Ha	$15 \cdot kaf / cm^2$

Déroulement

Dee	Dee metrice	Fratuán	Clautification
Pas	Pos. matrice	Entree	Signification
1	V3H0	3	Sélection du mode d'étalonnage "pression"
2		V ou H	Confirmation de l'entrée
3	V3H4	par ex. 2	Sélection de l'unité de pression, par ex. m H ₂ O
4		V ou H	Confirmation de l'entrée
5	V0H5	par ex. 0	Entrée de la pression minimale pour 4 mA
6		V ou H	Confirmation de l'entrée
7	V0H6	par ex. 20	Entrée de la pression maximale pour 20 mA
8		V ou H	Confirmation de l'entrée

Résultat

Remaraue

• La pression est indiquée en VOH0

Remarque !

Si l'unité de pression est modifiée après l'étalonnage en V3H4, l'électronique convertit toutes les valeurs selon la nouvelle unité. De ce fait un réétalonnage est inutile.

Mesure de pression différentielle

Préparation

- Il faut monter 2 Deltapilot S
- La sonde ① mesure la pression totale (pression hydrostatique et pression de tête).
 La sonde ② ne mesure que la pression de tête.
- Le rapport de la pression hydrostatique à la pression de tête doit être au max. 1:6.

Fig. 24 Mesure de pression différentielle dans une cuve pressurisée

Attention !

• La membrane de mesure de la sonde @ ne doit pas être immergée, car la pression hydrostatique ainsi engendrée fausserait la mesure.

1. Etalonnage de la sonde ① (pression hydrostatique et pression de tête)

Ρ	as Pos. matrice	Entrée	Signification
1	V3H0	3	Sélection du mode d'étalonnage "pression"
2		V ou H	Confirmation de l'entrée
3	V3H4	par ex. 0	Sélection d'une unité de pression, par ex. mbar
4		V ou H	Confirmation de l'entrée
5	V0H5	par ex. 0	Sélection de la pression minimale (par ex. 0 mbar)
			pour 4 mA
6		V ou H	Confirmation de l'entrée
7	V0H6	par ex. 1500	Sélection de la pression maximale
			(par ex. 1500 mbar) pour 20 mA
			1000 mbar de pression de tête max.,
			500 mbar de pression hydrostatique pour env. 5 m
			de colonne d'eau
8		V ou H	Confirmation de l'entrée

2. Etalonnage de la sonde 2 (pression de tête)

Entrée

V ou H

par ex. 0

3

Pos. matrice

V3H0

V3H4

Attention !

Pas

1

2

3

La sortie courant des 2 Deltapilot S doit être affectée à la même gamme de mesure. Ceci signifie que même si la pression de tête max. est de 1000 mbar, la valeur 20 mA doit être affectée à 1500 mbar comme pour la sonde ①.

Signification

Confirmation de l'entrée

Sélection du mode d'étalonnage "pression"

Sélection d'une unité de pression, par ex. mbar

4		V ou H	Confirmation de l'entrée
5	V0H5	par ex. 0	Sélection de la pression minimale,
			par ex. 0 mbar pour 4 mA
6		V ou H	Confirmation de l'entrée
7	V0H6	par ex. 1500	Sélection de la pression maximale, par ex.
			1500 mbar pour 20 mA
8		V ou H	Confirmation de l'entrée

• La valeur de niveau est calculée à partir de la différence entre la pression totale et **Rés** la pression de tête.

• La pression mesurée par les Deltapilot S en V0H0 (Deltapilot ① : pression hydrostatique et pression de tête, Deltapilot ② : pression de tête) peut être lue sur chaque capteur en V0H0.

Résultat

Attention !

6.3 Verrouillage/déverrouillage

La matrice peut être verrouillée après entrée de tous les paramètres :

- à l'aide des touches de commande sur le module d'affichage et de commande FHB 20, ou
- par la matrice, par l'entrée d'un code à 3 chiffres différent de 333

Cette manipulation permet de protéger le point de mesure contre les modifications intempestives.

1. Verrouillage à l'aide des touches de commande

2. Verrouillage et déverrouillage par la matrice de programmation

Pas	Pos. matrice	Entrée	Signification
1	V9H9	par ex. 332	Toutes les positions de matrice sont verrouillées sauf V9H9.
2		V ou H	Confirmation de l'entrée Les valeurs peuvent être lues mais pas modifiées.
		9999 est affi	iché en V9H9

Déverrouillage

Fig. 25

de commande

Verrouillage

Verrouillage à l'aide des touches

Pos. matrice	Entrée	Signification
V9H9	333	Suppression du verrouillage
	V ou H	Confirmation de l'entrée
		La matrice n'est plus verrouillée.
	333 est affic	ché en V9H9
	Pos. matrice V9H9	Pos. matrice Entrée V9H9 333 V ou H <i>333 est affic</i>

Remarque !

Si l'électronique FEB 20 sans affichage a été verrouillée avec la combinaison de touches 0 % : + et 100 % : -, toute la matrice, y compris la pos. V9H9 est verrouillée. Le déverrouillage n'est possible qu'avec la combinaison des touches 0 % : - et 100 % : +, pour la version sans affichage, ou avec la combinaison des touches - et H pour la version avec affichage (voir aussi 3.5, verrouillage sans affichage).

7. Informations relatives au point de mesure

Pos. matrice	Affichage ou entrée	Valeurs mesurées
V0H0	Valeur mesurée principale (unité au choix : si V2H0 = 1 en VAH3, si V2H0 = 0 et V3H0 = 0 en VAH2, si V2H0 = 0 et V3H0 = 1 en V3H1)	
V0H8	Pression au capteur après correction d'implantation (unité au choix en V3H4)	
V3H6	Pression au capteur avant correction d'implantation (unité au choix en V3H4)	
V0H9	Hauteur de remplissage avant linéarisation (unité au choix : si V3H0 = 0 en VAH2, si V3H0 = 1 en V3H1)	
V9H8	Courant de sortie (mA)	
V7H0	Seuil de mesure inférieur du capteur (unité choisie en V3H4)	Données du capteur
V7H1	Seuil de mesure supérieur du capteur (unité choisie en V3H4)	
V7H3	Température au capteur actuelle (unité au choix en V3H5)	
V9H3	N° d'appareil et de soft	Indications sur le point de mesure
V9H0	Code diagnostic actuel	Comportement en cas de défaut
V9H1	Dernier code diagnostic	

Les informations suivantes peuvent être interrogées :

La fonction valeur de crête permet d'interroger rétroactivement la valeur max. mesurée pour la pression et la température.

Pos. matrice	Affichage
V7H2	Pression maximale (unité au choix en V3H4)
V7H4	Température maximale (unité au choix en V3H5)

Remarque !

Les unités de pression et température sont sélectionnées dans les cases matricielles V3H4 et V3H5. Veuillez noter qu'une modification de l'unité de pression en V3H4 agit sur toutes les entrées relatives à la pression.

Les valeurs de la fonction valeur de crête ne sont pas remises à zéro l'ors d'un reset. Elles peuvent être remises à la valeur actuelle dans les cases V7H2 et V7H4.

Pas	Matrice	Entrée	Signification
1	V7H2	V ou H	Ramène la pression max. à la valeur actuelle
Pas	Matrice	Entrée	Signification
1	V7H4	V ou H	Ramène la température max. à la valeur actuelle

La case matricielle "Communication VA" peut seulement être interrogée et paramétrée via la communication (terminal portable, FMX 770, FXN 671)

VAH0	Désignation du point de mesure Vous pouvez désigner ici votre point de mesure avec max. 8 caractères (ASCII)			
VAH2	Sélection de l'unité avant linéarisation			
VAH3	Sélection de l'unité après linéarisation			
VAH5	Numéro de série de l'appareil			
VAH6	Pression au capteur en cas d'étalonnage vide (unité au choix en V3H4)			
VAH7	Facteur de densité en cas d'étalonnage vide			
VAH8	Pression au capteur en cas d'étalonnage plein (unité au choix en V3H4)			
VAH9	Facteur de densité en cas d'étalonnage plein			

Fonction valeur de crête

Remarque !

Interrogations spéciales avec terminal portable, FMX 770, FXN 671 etc

E 605

E 610

W 102

W103

W 602

W 604

W 613

W 620

Défaut

Défaut

Avertissement

Avertissement

Avertissement

Avertissement

Avertissement

Avertissement

7.1 Diagnostic et suppression des défauts

Défaut	Lorsque • Le sign • Le cour (min. 3, • L'erreur	le FEB 20 ou F al de défaut es rant à la sortie 6 mA, max. 22 r en cours est l	EB 22 identifie un défaut : st allumé à l'écran est celui sélectionné pour la signalisation de défaut 2 mA ou HOLD - maintien de la dernière valeur mesurée) lue en V9H0, l'avant dernière en V9H1	
Avertissement	Lorsque le FEB 20 ou FEB 22 identifie un avertissement : • Le signal d'avertissement clignote à l'écran, l'électronique continue de mesurer. • L'erreur en cours est lue en V9H0, l'avant dernière en V9H1			
Codes d'erreurs	L'erreulLa derr	r actuelle est a nière erreur est	ffichée en V9H0 affichée en V9H1	
	Code	Туре	Cause et remède	
	E 101 E 114 E 117 E 121	Défaut	Défaut sur l'électronique - Suppression par le service maintenance E+H	
	E 106	Défaut	Téléchargement actif – Attendre la fin de la procédure	
	E 110	Défaut	Données du transmetteur non mémorisées – Faire un reset	
	E 112	Défaut	Raccordement défectueux du capteur - Vérifier si le module DAT est correctement raccordé.	
	E 116	Défaut	Erreur download - Relancer la procédure avec les données corrigées ou faire un reset	
	E 122	Défaut	Ligne de signalisation interrompue – Vérifier le raccordement du capteur Si l'erreur persiste, contacter le service maintenance E+H	
	E 125	Défaut	Valeur en dehors des limites - Vérifier le raccordement du capteur	

Si l'erreur persiste, contacter le service maintenance E+H

Erreur d'électronique avec l'affichage de la valeur de crête – Suppression du défaut par le service maintenance E+H

Le volume augmente-t-il avec la hauteur de remplissage ?

Vérifier l'étalonnage et les réglages de la sortie courant

La courbe de linéarisation comporte moins de deux points de référence

- À la fin du mode simulation, passer de nouveau au mode d'étalonnage

La valeur de la sortie courant se situe en dehors de la gamme réglée

valeurs dans le tableau)

-Vérifier l'étalonnage

Initialisation en cours, durée env. 6 s

Appareil en mode simulation

(3,8 mA...20 mA ou 4...20 mA)

souhaité

-Si l'erreur persiste, l'initialisation est impossible

Courbe de linéarisation non monotone croissante - Vérifier la plausibilité de votre courbe manuelle

-Vérifiez votre courbe caractéristique manuelle

Courbe de linéarisation manuelle incomplète (apparaît durant l'entrée des

- Activer la courbe de linéarisation après l'introduction de tous les points

Erreur d'étalonnage, même valeur de pression pour V0H1 et V0H2

7.2 Simulation

La simulation vous permet de simuler et de vérifier les fonctions de l'électronique . Les modes possibles sont les suivants :

- Simulation courant
- Simulation pression
- Simulation niveau
- Simulation volume (uniquement après linéarisation)
- Le mode de simulation actif est indiqué par le clignotement du signal de défaut à l'affichage et le code W 613 en V9H0.
- Cet état subsiste pendant toute la durée de la simulation
 Retourner au mode de mesure normal à la fin de la simulation. Simulation OFF : V9H6 : 0

Pas.	Pos. matrice	Entrée	Signification
1	V9H6	1	Sélection de la "simulation courant"
2		V ou H	Confirmation de l'entrée
3	V9H7	par ex. 14	Entrée de la valeur courant souhaitée, par ex. 14 mA

La valeur du courant est indiquée en V9H8 et apparait à la sortie courant.

Pas	Pos. matrice	Entrée	Signification
1	V9H6	2	Sélection de la "simulation pression"
2		V ou H	Confirmation de l'entrée
3	V3H4	par ex. 0	Sélection de l'unité, par ex. mbar
4		V ou H	Confirmation de l'entrée
5	V9H7	par ex. 200	Entrée de la valeur de pression souhaitée,
			par ex. 200 mbar

Lors de la simulation de la pression, c'est toujours la pression compensée par rapport à l'implantation (V0H8) qui est simulée.

La valeur du courant est indiquée en V9H8 et apparaît à la sortie courant. Le volume (après linéarisation) ou le niveau (sans linéarisation) est indiqué en V0H0. Le niveau apparait en V0H9.

Pas	Pos. matrice	Entrée	Signification
1	V9H6	3	Sélection de la "simulation niveau"
2		V ou H	Confirmation de l'entrée
3	V9H7	par ex. 5	Entrée du niveau souhaité dans l'unité d'étalonnage,
			par ex. 5 m

La valeur du courant est indiquée en V9H8 et apparaît à la sortie courant. Le niveau apparait en V0H0.

Pas	Pos. matrice	Entrée	Signification
1	V9H6	4	Sélection de la "simulation volume"
2		V ou H	Confirmation de l'entrée
3	V9H7	par ex. 17	Entrée du volume souhaité dans l'unité de linéarisation,
			par ex. 17 m ³

La valeur du courant est indiquée en V9H8 et apparaît à la sortie courant. Le volume est indiqué en V0H0. Si aucune courbe de linéarisation n'a été entrée, le volume correspond au niveau.

Attention !

L'appareil retourne automatiquement au mode de fonctionnement normal en cas de coupure de courant.

Simulation courant

Simulation pression

Simulation niveau

Simulation volume

7.3 Réparations

Si vous devez retourner à Endress+Hauser l'électronique FEB 20 ou le Deltapilot S complet, veuillez joindre au matériel une feuille avec les informations suivantes :

- Description exacte de l'application.
- Caractéristiques physico-chimiques du produit.
- Une brève description de l'erreur survenue.

Avant de nous retourner une sonde, veuillez prendre les mesures suivantes :

- Retirez complètement tous les résidus de produit, surtout si ce dernier nuit à la santé, comme les substances toxiques, cancérigènes, radioactives, etc.
- Nous vous prions instamment de renoncer à un envoi s'il ne vous a pas été possible de supprimer complètement le produit dangereux, par exemple dans les interstices, ou lorsqu'il a diffusé à travers la matière synthétique.

7.4 Remplacement de l'électronique

S'il faut remplacer l'électronique, les données de la cellule sont transmises vers la nouvelle électronique à l'aide du module DAT. Le remplacement du module et le raccordement électrique sont décrits dans la section 2.1 "Raccordement". Après la mise en place, refaire l'étalonnage et les réglages.

Attention !

Après le remplacement de l'électronique il faut vérifier le bon positionnement du câble de terre

- à la borne de terre du boîtier
- à la borne de raccordement 4

Vérifier également la résistance entre la borne de raccordement 4 et la borne de terre externe. Elle doit toujours être inférieure ou égale à 0,1 ohms.

7.5 Remplacement de la cellule de mesure

Toute les valeurs d'étalonnage sont conservées en cas de remplacement de la cellule, elles sont converties au niveau interne avec les nouvelles données de la cellule. La nouvelle cellule est livrée avec un nouveau module DAT. Le montage et le raccordement du module DAT sont décrits dans la section 2.1 "Raccordement".

En cas de perte, un nouveau module DAT peut être commandé auprès d'Endress+Hauser; pour ceci, indiquez le numéro figurant sur le boîtier du Deltapilot S et la cellule de mesure.

Matrice INTENSOR

	H0	H1	H2	H3	H4	H5	H6	H7	H8	H9	
V0 Etalon- nage	Valeur mesurée	Etalonnage "vide"	Etalonnage "plein"	Seuil min.4 mA off : 0 on : 1	Temps d'intégra- tion 099 s	Valeur pour 4 mA	Valeur pour 20 mA	Sortie en cas de défaut min : 0 max : 1 hold : 2	Pression capteur après correction d'implanta- tion	Niveau mesuré avant linéarisation	
V1											
V2 Linéarisa- tion	Mode linéarisation linéaire : 0 activer tableau : 1 entrée manu. : 2 entrée semi-aut.:3 effacer : 4	N° ligne (111)	Entrée niveau	Entrée volume							
V3 Extension étalon- nage	Mode étalonnage niveau % :0 étal. sec H :1 étal. sec % : 2 press. : 3	Unité étalonnage sec m: 0 cm: 1 ft: 2 inch: 3	Facteur de densité	Valeur décalage zéro	Unité de pression mbar : 0 bar : 1 m H ₂ O : 2	Unité de temp. ℃: 0 °F: 1	Pression capteur avec correction d'implan- tation	Correction d'implan- tation			
V4 V6											
V7 Info capteur	Seuil de mesure inférieur	Seuil de mesure supérieur	Pression max.	Tempéra- ture	Tempéra- ture max.						
V8											
V9 Mainte- nance et simulation	Code diagnostic effectif	Dernier code diagnostic		N° version logiciel		Retour valeurs usine "333"	Simulation Off: 0 Courant:1 Press.: 2 Niveau: 3 Volume:4	Valeur simulation	Affichage courant	Verrouil- lage ≠ 333 Déver- rouillage : "333"	
VA Commu- nication	N° repère		Unité avant linéarisation	Unité après linéarisation		N° série	Pression pour étalonnage vide	Facteur de densité pour étalonnage vide	Pression pour étalonnage plein	Facteur de densité pour étalonnage plein	
	Affichage										

Cette matrice donne un aperçu des valeurs réglées en usine. Vous pouvez entrer vos valeurs ici.

	H0	H1	H2	H3	H4	H5	H6	H7	H8	H9	
V0		0.000	100.0	0	0	0.000	100.0	1			
V1											
V2	0	1	0.000	0.000							
V3	0	0	1.000	0.000	0						
V4	V4										
V7											
V8											
V9				7820		0	0	0.000		333	
VA			0	0							

Matrice HART

Conversion HART/ INTENSOR

	Matrice Menu HART		Matrice	Menu HART	Matrice	Menu HART	
		1 Etalonnage de base		3 Etalonnage complémentaire		5 Service/Simulation	
	VOHO	1 Valeur mesurée	V3H0	1 Mode d'étalonnage	V9H0	1 Code diagnostic	
	V0H1 *1	2Etalonnage "vide"	V3H1 ^{*3}	2 Unité étalonnage sec	V9H1	2 Dernier code diag.	
	V0H2 *2	3Etalonnage "plein"	V3H2	3 Facteur de densité	V9H3	3 N° appareil et logiciel	
	V0H3	4Courant min. 4 mA	V3H3	4 Valeur décalage du zéro	V9H5	4 Remise à zéro	
	V0H4	5 Temps d'intégration	V3H4	5 Unité de pression	V9H6	5 Simulation	
	V0H5	6 Valeur pour 4 mA	V3H5	6 Temperatureinheit	V9H7 *4	6 Valeur simulation	
	V0H6	7 Valeur pour 20 mA	V3H6	4 Info transmetteur	V9H8	7 Affichage courant	
	V0H7	8 Sortie défaut	V3H7	1 Seuil inférieur	V9H9	8 Verrouillage/ déverrouillage	
	V0H8	9 Affichage pression capteur		2 Seuil supérieur		6 Communication	
	V0H9 *2	10 Niveau	V7H0	3 Pression max.	VAH0	1 N° repère	
		2 Linéarisation	V7H1	4 Température	VAH2	2 Unité avant linéaris.	
	V2H0 *2	1 Type de linéarisation	V7H2	5 Température max.	VAH3	3 Unité après linéaris.	
c	V2H1 *2	2N° ligne	V7H3		VAH5	4 N° série	
	V2H2 *2	3Entrée niveau	V7H4		VAH6	5 Press. étal. vide	
	V2H3 *2	4 Entrée volume			VAH7	6 Fact. dens. étal. vide	
					VAH8	7 Press. étal. plein	
					VAH9	8 Fact. dens. étal. plein	

La présence des paramètres marqués de * dépend du mode d'étalonnage : *1 uniquement niveau

^{*2} uniquement étalonnage niveau/sec

*3 uniquement étalonnage sec *4 uniquement simulation Lorsqu'il manque un paramètre, les paramètres suivants sont

automatiquement déplacés d'un rang.