

Appendix to the Operating Manual Graphic Data Manager RSG40 Memograph M

Option Energy

Mass flow and energy calculation for water and steam

BA00266R/09/c4/01.11 71074241 Software GMU00xA, V02.10.xx

Inhaltsverzeichnis

1	Allgemeine Beschreibung der Funktionalität 4
2	Beschreibung der Anwendungen 5
2.1 2.2 2.3	Wasser-Anwendungen5Wasser/Glykol Anwendungen7Dampf Anwendungen8
3	Einstellung (Setup) der Anwendungen 10
3.1 3.2 3.3 3.4 3.5	Allgemeiner Leitfaden zur Programmierung10Auswahl der Einheiten10Beispiele für Wasser und Dampf Energiemessung11Bilanzierung (Verknüpfung von Anwendungen)16Fehlerverhalten18
4	Technische Daten

1 Allgemeine Beschreibung der Funktionalität

Das Energiepaket bietet die Möglichkeit den Masse- und Energiefluss in Wasser- und Dampfanwendungen auf Grundlage der Eingangsgrößen

- Durchfluss
- Druck
- Temperatur (bzw. Temperaturdifferenz)

zu berechnen.

Ferner sind Energieberechnungen unter Verwendung von Kälteträgermedien auf Glykolbasis möglich. Zusätzlich kann die Dichte der hinterlegten Medien im jeweiligen Betriebszustand berechnet werden.

Durch Verrechnung der Ergebnisse untereinander oder durch Verknüpfung mit weiteren Eingangsgrößen (z.B. Gasdurchfluss, elektr. Energie) lassen sich Gesamtbilanzierungen, Wirkungsgradberechnungen etc. durchführen. Diese Kennzahlen sind wichtige Indikatoren für die Qualität des Prozesses bzw. bilden die Grundlage für Prozessoptimierungen, Wartung, etc.

Zur Berechnung der thermodynamischen Zustandsgrößen von Wasser und Dampf wird der international anerkannte Berechnungsstandard IAPWS-IF 97 verwendet.

2 Beschreibung der Anwendungen

2.1 Wasser-Anwendungen

2.1.1 Wasser-Wärmemenge

Berechnung der Wärmemenge in einem Wasserstrom. Beispiel: Ermittlung der Restwärme im Rücklauf eines Wärmetauschers.

Eingangsgrößen: Betriebsvolumen und Temperatur

Der mittlere Druck wird auf Grundlage der gemessenen Temperatur automatisch berechnet.

 $E = q \cdot \rho(T,p) \cdot h(T)$

- E: Wärmemenge
- q: Betriebsvolumen
- ρ: Dichte
- T: Betriebstemperatur
- h: Spezifische Enthalpie v. Wasser (bezogen auf 0°C)

2.1.2 Wasser Wärmedifferenz

Berechnung der Wärmemenge, welche von einem Wasserstrom in einem Wärmetauscher abgegeben oder aufgenommen wird. Typische Anwendung zur Energiemessung in Heiz- oder Kühlkreisläufen.

Eingangsgrößen: Messung des Betriebsvolumens und der Temperatur unmittelbar vor und nach einem Wärmetauscher (im Vorlauf bzw. Rücklauf).

Der Durchflusssensor kann auf der Warm- oder Kaltseite eingebaut werden.

- E: Wärmemenge
- q: Betriebsvolumen
- ρ: Dichte
- T₁: T warm
- T₂: T kalt
- h (T_1) : Spezifische Enthalpie von Wasser bei Temperatur 1
- h (T₂): Spezifische Enthalpie von Wasser bei Temperatur 2

2.2 Wasser/Glykol Anwendungen

2.2.1 Wasser/Glykol Wärmedifferenz

Berechnung der Wärmemenge, welche von einem Kälteträgermedium (Wasser-Glykol Gemisch) in einem Wärmetauscher abgegeben oder aufgenommen wird. Typische Anwendung zur Energiemessung in Heiz- oder Kühlkreisläufen.

Eingangsgrößen: Messung des Betriebsvolumens und der Temperatur unmittelbar vor und nach einem Wärmetauscher (im Vorlauf bzw. Rücklauf).

Die Dichte und Wärmeleitfähigkeit des Kälteträgers werden auf Grund des Mischungsverhältnisses (Konzentration) berechnet.

Der Durchflusssensor kann auf der Warm- oder Kaltseite eingebaut werden.

- E: Wärmemenge
- q: Betriebsvolumen
- ρ : Dichte
- T₁: T warm
- T₂: T kalt
- c (T_1) : Spezifische Wärmekapazität bei Temperatur 1
- c (T_2): Spezifische Wärmekapazität bei Temperatur 2
- cm Mittlere spezifische Wärmekapazität

2.3 Dampf Anwendungen

2.3.1 Dampf Wärmemenge

Berechnung des Massestroms (Massefluss) und der darin enthaltenen Wärmemenge am Ausgang eines Dampferzeugers oder bei einzelnen Verbrauchern.

Eingangsgrößen: Betriebsvolumenstrom, Temperatur und/oder Druck

 $E = q \cdot \rho(p,T) \cdot h_D(p,T_D)$

a0009709

- E: Wärmemenge
- q: Betriebsvolumen
- ρ: Dichte
- T_D: Temperatur Dampf
- p: Druck (Dampf)
- $h_D \qquad \qquad \text{Spezifische Enthalpie von Dampf}$

Zur vereinfachten Messung von Sattdampf kann auf die Druck- oder Temperaturmessung verzichtet werden. Die fehlende Eingangsgröße wird anhand der hinterlegten Sattdampfkurve ermittelt. Bei Messung von Druck und Temperatur wird der Dampfzustand exakt ermittelt und überwacht. Bei Erreichen der Sattdampftemperatur = Kondensattemperatur wird ein Nassdampfalarm ausgegeben. (siehe Fehlerverhalten 3.5)

2.3.2 Dampf Wärmedifferenz

Berechnung der Wärmemenge, die beim Kondensieren des Dampfes in einem Wärmetauscher abgegeben wird.

Alternativ auch Berechnung der Wärmemenge (Energie), die zur Erzeugung von Dampf aufgewendet wird.

Eingangsgrößen: Messung des Drucks und der Temperaturen unmittelbar vor und nach einem Wärmetauscher (oder Dampferzeuger).

Der Durchflusssensor kann entweder in der Dampfleitung oder der Wasserleitung (Kondensat oder Speisewasser) eingebaut werden.

Falls sowohl in der Dampf- als auch in der Wasserleitung eine Durchflussmessung erwünscht ist (z.B. aufgrund von Dampfverbrauch bzw. Verlusten) müssen zwei Anwendungen eingestellt werden, nämlich Dampf Wärmemenge und Wasser Wärmemenge. Die Bilanzierung der Masse- und Energiemengen kann dann in einem Mathematikkanal mit Hilfe des Formeleditors durchgeführt werden (siehe 3.4.1).

 $E = q \cdot \rho(p, T_D) \cdot [h_D(p, T_D) - h_W(T_W)]$

- E: Wärmemenge
- q: Betriebsvolumen
- ρ: Dichte
- T_D: Temperatur Dampf
- T_W: Temperatur Wasser (Kondensat)
- p: Druck (Dampf)
- h_D: Spezifische Enthalpie von Dampf
- h_W: Spezifische Enthalpie von Wasser

3 Einstellung (Setup) der Anwendungen

3.1 Allgemeiner Leitfaden zur Programmierung

- 1. Einstellung der Durchfluss-, Druck- und Temperatureingänge Hierfür werden die standardmäßigen Eingänge verwendet. Die Einheiten zur Skalierung der Messbereiche sollten vorzugsweise nachstehender Tabelle (siehe 3.2) entnommen werden. Andernfalls müssen bei Definition der Anwendung Koeffizienten zur Umrechnung definiert werden (siehe 3.2).
- Mathematikkanal öffnen. Funktion zur Energie oder Masseberechnung aktivieren und Anwendung auswählen. Eingänge zuordnen und Einheiten definieren. Einheiten für Summenzähler im Menü Integration auswählen. Für Dampfanwendungen ggf. Einstellung des Fehlerverhaltens bei Nassdampfalarm.
- 3. Konfiguration der Anzeige, d.h. Zusammenstellen von Werten zur Anzeige und Auswahl der Darstellungsart.

3.2 Auswahl der Einheiten

Die Einheiten für die Eingänge und die Anwendung werden im Rahmen der Einstellung der Anwendung (im Mathematikkanal) ausgewählt. Bitte beachten Sie dabei, dass die hier gewählten Einheiten identisch mit den Einheiten sind, die für die Skalierung der Eingänge verwendet wurden. Sollten Sie andere Einheiten zur Parametrierung der Eingänge bevorzugen, muss ein Mathematikkanal ausgewählt werden, wo eine Umrechnung auf eine in der Tabelle genannten Einheiten durchgeführt werden muss. Dieser Mathematikkanal wird dann als Durchflusseingang in einem anderen Mathematikkanal zur Energie- oder Masseberechnung verwendet.

Durchfluss	m³/h	ft ³ /h	gal/h	ft³/min	GPM			
Druck	bar(a)(g)	Psi(a)(g)	MPa(a)(g)	inH2O(a)(g)				
Dichte	kg/m ³	lb∕ft ³						
Temperatur	°C	К	°F					
Wärmefluss	kW	MW	kBTU/h	MBTU/h	ton	kBTU/min	therm/ min	therm/h
Wärmeenergie	kWh	MWh	MJ	MBTU	tonh	kBTU	therm	
Massefluss	kg/h	t/h	lbs/h	ton/h				
Massesumme	kg	t	lbs	ton				

Einheiten im Energiepaket

gal = Gallons liquid: 1 ft³ = 7,48051948 gal ton = ton (short) US: 1 ton = 907,184 74 kg ton = ton refrigeration: 1 ton = 3,516 852 84 kW BTU = International [Steam] Table (IT): 1 Btu = 1055,056 kJ therm = therm US (basierend auf BTU59 °F): 1 therm = 105 480,4 kJ GPM = Gallons per Minute

3.3 Beispiele für Wasser und Dampf Energiemessung

3.3.1 Beispiel Wasser Wärmedifferenz

- 1. Einstellung der Durchfluss- , Druck- und Temperatureingänge. Signal auswählen, Name für Kanalbezeichnung eingeben, Einheit definieren (siehe Tabelle
 - 3.2) und Messbereich einstellen.

2. Einstellung der Energieberechnung.

2.1 Mathekanal öffnen, Energieberechnung wählen, Sensoren und Einheiten zuordnen, Einbauort des Durchflusssensors festlegen und Zoombereich einstellen.

Display/change unit set-up/add new unit			- 🗆 🗵
Finished Unit set-up Extras			
🛛 🗒 🔆 🛠 😫 🖴 憎 🔁 🍓	19° % 90 % 10°		
Analogeingang 13 Analogeingang 14	Berechnung aktiv	Energieberechnung	
Analogeingang 15	Kanalbezeichnung	Math 1	
Analogeingang 16	Applikation	Wasser Wärmedifferenz	
- Mathematik	Durchfluss	Durchfluss	
Mathe 1 (aktiv) Mathe 2	Einheit/Dimension	m²/h	
Mathe 3	Einbauort Durchfluss	Kalt	
···· Mathe 4	Temperatur Warm	Temperatur warm	
Mathe 5 Mathe 6	Temperatur Kalt	Temperatur kalt	
···· Mathe 7	Einheit/Dimension	°C 🗸	
Mathe 8	Aufzeichnungsart	Momentanwert	
Mathe 5	Einheit/Dimension	kw 💌	
Mathe 11	Nachkommastellen	eine (X,Y)	
···· maine 12 inearisierung	Zoom Anfang	0,0	kW
Grenzwerte	Zoom Ende	1000,0	kW
Gignal Gruppierung Ausgänge	Einst. kopieren	nein	
Applikation			
			11.

2.2 Einheit für die Zähler auswählen.

Integration aktiv schalten, Einheit auswählen und ggf. Schwellenwert (Schleichmenge) einstellen (Werte die kleiner als der Schwellenwert sind werden nicht integriert).

Geräteeinstellungen anzeigen/ändern/neues Ger	ät	ſ	
Fertig Geräteinstellungen Extras			
日	: B. \$: 2		
Analogeingang 13	Integration	ja	·
···· Analogeingang 15	Einheit integr.	kWh	
Analogeingang 16	Schwellwert	Bereich um Nullpunkt	·
E- Mathematik	Schwellwert	0	kW
Mathe 1 (aktiv)			
···· Mathe 2			
Malle 3			

3. Einstellung der Anzeige.

Werte und Darstellungsart für Anzeige auswählen.

Display/change unit set-up/add new u	unit			_ 🗆 ×
Finished Unit set-up Extras				
📗 🗒 🛠 😫 📾 🎒 憎 🔁 🤅	b	🖻 🤽 🕾 🕺 🖸		
Mathe 4 Mathe 5		Bezeichnung	Group 1	-
Mathe 6		Speicherzyklus	1min	-
Mathe 7		Alarmzyklus	1s	-
Mathe 9		Amplitudenraster	10	-
Mathe 10		Anzeige blau	Durchfluss	-
Mathe 11		Angezeigt wird	Momentanwert/Zustand	•
		Anzeige schwarz	Temperatur warm	-
. Grenzwerte		Angezeigt wird	Momentanwert/Zustand	-
Gruppe 1 (aktiv)		Anzeige rot	Temperatur kalt	-
⊕- Gruppe 2		Angezeigt wird	Momentanwert/Zustand	Ŧ
Gruppe 3		Anzeige grün	Math 1	i
. Gruppe 5		Angezeigt wird	Momentanwert/Zustand	ŧ.
Gruppe 6		Anzeige violett	Math 1	
Gruppe 8		Angezeigt wird	Gesamtzähler	ŧ.
Gruppe 9		Anzeige orange	ausgeschaltet	Ţ
Gruppe 10 Ausoänce	-	Anzeige cyan	ausgeschaltet	-

3.3.2 Beispiel Dampf Wärmemenge / Masse

Einstellung der Durchfluss-, Druck und Temperatureingänge.
 Signal auswählen, Name für Kanalbezeichnung eingeben, Einheit definieren (siehe Tabelle
 2) und Messbereich einstellen

Gerateeinstellungen anzeigen/andern tig Geräteinstellungen Extrac	/neues Gerat		
ug Geratemstellungen Extras ⊐1.1ot(I-42A) ⊡n GH₂ ∠Extras	a. #97 Qo @L 9.9 @		
Eingange	Signal	Widerstandstherm.	•
⊡ · Durchfluss (1) (aktiv)	Bereich	Pt100 (IEC)	•
Druck (2) (aktiv)	Anschlusstechnik	4-Leiter	•
···· Analogeingang (4)	Kanalbezeichnung	Temperatur	
Analogeingang 5	Aufzeichnungsart	Mittelwert	-
 Analogeingang 6 Analogeingang 7 	Einheit/Dimension	°C	
Analogeingang 8	Nachkommastellen	eine (X,Y)	•
···· Analogeingang 9 ···· Analogeingang 10	Anf. Messbereich		-200,0 °C
···· Analogeingang 11	Ende Messbereich		850,0 °C
Analogeingang 12 Analogeingang 13	Zoom Anfang	,	-200,0 °C
	Toom Ende		850.0 %

- 2. Einstellung der Energieberechnung.
 - 2.1 Mathekanal öffnen, Energie- oder Masseberechnung wählen, Sensoren und Einheiten zuordnen.

Falls Sie Engergie und Masse berechnen und anzeigen wollen, Einstellungen in Mathekanal 2 kopieren und dort "Masseberechnung" auswählen.

Geräteeinstellungen anzeigen/ändern/neues Gerät						
Fertig Geräteinstellungen Extras						
🖬 🙊 🛠 🎝 🖓 🖓 🖓 🕼	9 % B) \$\$ 2					
Analogeingang 14	Berechnung aktiv	Energieberechnung				
Analogeingang 16	Kanalbezeichnung	Math 1				
⊕. Digitaleingänge	Applikation	Dampf Wärmemenge				
Matnematik Mathe 1 (aktiv)	Durchfluss	Durchfluss				
Mathe 2	Einheit/Dimension	m³/h				
Mathe 3 Mathe 4	Druck	Druck				
···· Mathe 5	Einheit/Dimension	bar (a)				
Mathe 6 Mathe 7	Temperatur Dampf	Temperatur				
Mathe 8	Einheit/Dimension	°C 💌				
Mathe 9 Mathe 10	Aufzeichnungsart	Momentanwert				
···· Mathe 11	Einheit/Dimension	MW				
Mathe 12	Nachkommastellen	eine (X,Y)				
. Grenzwerte	Zoom Anfang	0,0	MW			
. Signal Gruppierung	Zoom Ende	100,0	MW			
⊕. Ausgänge ⊕. Applikation	Einst. kopieren	nein 💌				
J						

2.2 Einheit für die Zähler auswählen.

Integration aktiv schalten, Einheit auswählen und ggf. Schwellenwert (Schleichmenge) einstellen (siehe Beispiel 3.2.2, Nr. 2.2)

2.3 Verhalten bei Nassdampfalarm einstellen.

(Nur möglich, wenn Druck- und Temperatureingänge verwendet werden.) Geräteeinstellung/Experte aktivieren, Fehlerverhalten Nassdampfalarm einstellen (Zählerstopp bei Nassdampfalarm oder Berechnung mit Sattdampfbedingung fortsetzen und Integration fortführen, d.h. Zähler laufen normal weiter. Einstellung ob Nassdampfalarm via Relais signalisiert werden soll).

🖆 Geräteeinstellungen anzeigen/ändern/neues Gerät								
Fertig Geräteinstellungen Extras								
🛛 🗟 🙊 🛠 🛠 😫 🔗 🖄	Pa 🐁 📽 🗞 😰							
Memo M Energie 10.55.86.13 System Eingänge Digitaleingänge Mathematik Integration (aktiv) Fehlerverhalten Mathe 2	Nassdampfalarm Fehler schaltet	Berechnung Sattdampf						
Mathe 3	~							
		11						

 Einstellung der Anzeige. Werte und Darstellungsart f
ür Anzeige ausw
ählen (Bedienposition: Signal Gruppierung (siehe Beispiel 3.2.2, Nr. 3)

3.3.3 Durchflussmessung nach dem Differenzdruckverfahren

Durchflussmessungen nach dem Differenzdruckverfahren (z.B. Blende, Staudrucksonde) sind nur im Auslegepunkt genau. Temperatur- und Druckschwankungen haben erheblichen Einfluss auf die Messgenauigkeit. Beispielsweise führt eine Druckschwankung von 1 bar bei einem Auslegedruck von 10 bar zu einem Messfehler von ca. 11 %.

Bei Einsatz dieses Messverfahrens empfehlen wir deshalb, einen Mathematikkanal zur Kompensation der Masse- und Energiemessung zu verwenden. Hierfür benötigen Sie das Auslegedatenblatt der Messstelle, insbesondere folgende Daten:

- Druck im Auslegezustand
- Temperatur im Auslegezustand
- Dichte im Auslegezustand

Beispiel: Auslegezustand Dampfmessung:

P(a): 145 psi (10 bar) - Absolutdruck T(a): 392 °F (200 °C) Dichte(a): 0,3028 lb/ft³ (4,85 kg/m³) Max. Flow 10 tons/h (9,07 t/h)

Einstellung in Einzelschritten.

- 1. Ausgang des Differenzdrucktransmitters (DP) auf Betriebsvolumen oder Masse skalieren, 10 tons/h (Kennlinie radiziert).
- Eingang am Graphic Data Manager auswählen und auf Betriebsvolumen skalieren, d.h. ft³/h (m³/h). Falls der Ausgang des DP-Transmitter, wie im Beispiel, auf Masse skaliert ist, muss das Betriebsvolumen im Auslegezustand berechnet werden. 10 tons/h*2000 : 0,3028 lb/ft³ = 66050,2 ft³/h 9,07 t/h*1000 : 4,85 kg/m³ = 1870,10 m³/h (Der DP-Transmitter Ausgang kann auf Masse skaliert bleiben).
- 3. In Mathekanal (1-8), Masse- oder Energiemessung auswählen. Dann Dampfanwendung einstellen. (siehe Beispiel 3.3.2)
- 4. Mathekanal (9-12) auswählen und dort folgende Formel eingeben (M1 gegebenenfalls durch den in Schritt 3 ausgewählten Mathekanal ersetzen): M1*(P/P(a))^0,5*(T(a)/T)^0,5 P: Betriebsdruck (gemessen) Pa: Druck im Auslegezustand T: Betriebstemperatur (gemessen) Ta: Temperatur im Auslegezustand

Ta und T sind absolute Temperaturen in Kelvin, das heißt, die Formel muss ggf. noch zur Umrechung der Temperatur ergänzt werden. Achten Sie ferner darauf, dass die Druckeinheiten identisch sind (z.B. nicht Absolut- und Relativdruck mixen!).

- a. Beispiel: Temperaturessung in °F (Druckmessung psi absolut) $M1^*((P/10)^*(32+200^*1,8)/(32+T^*1,8))^{\ 0,5}$
- b. Beispiel: Temperaturmessung in °C (Druckmessung bar absolut) $M1^*((P/10)^*(200+273,15)/(T+273,15))^0,5$

Als Ergebnis erhalten Sie den kompensierten Masse- oder Energiefluss.

3.4 Bilanzierung (Verknüpfung von Anwendungen)

3.4.1 Allgemein

Um Masse- oder Energiemengen miteinander zu verrechnen (bilanzieren) oder Kennzahlen zu berechnen, kann ein beliebiger Mathematikkanal verwendet werden.

Beispiel: Bilanzierung eines Dampfkessels.

- In Mathekanal 1 wird die Wärmemenge des erzeugten Dampfs berechnet.
- Mathekanal 2 wird zur Berechnung der Restenergie im Kondensatstrom (Wasser Wärmemenge) verwendet.

Gesucht:

Energie, die zwischen Dampfvorlauf und Kondensatrücklauf abgegeben wurde. Lösung:

Mathekanal 3 öffnen, Formeleditor auswählen und dort die Energieströme (Momentanwerte) voneinander subtrahieren und aufsummieren (Integration). Alternativ können die Zähler auch direkt subtrahiert werden.

Formeleditor			×
	Eingänge		\mathbf{X}
F <u>o</u> rmel:	Signalart:	Mathematikeingänge (MI)	T
MI(1;1)-	Signaltyp:	Momentanwert	•
	Kanal:	Dampf-Wärme	•
	Von:	Dampf-Wärme	v
	Bis:	Dampf-Wärme	V
Eingänge Funktionen Analog In Standard Digital In In Math Iog Standard	n sum s min	OK * / [] 4	Abbrechen 8 9 5 6
exp x^y tan atar abs % mod rad grad	n max	Formel prüfen	2 3
			Abbrechen

3.4.2 Überwachung von Dampfkesseln

Die Überwachung eines Dampfkessels dient der Anlagensicherheit und zur Prozessoptimierung und dadurch zur Einsparung von Kosten.

Messgrößen zur Überwachung der Anlagesicherheit:

- Füllstand
- Kesseldruck
- Kesseltemperatur

Messgrößen und Kennwerte zur Prozessoptimierung:

- Energie Dampfstrom
- Energie Kondensatstrom
- Energie Speisewasser oder Frischwasser
- Energie Kesselablass (Blow Down)
- Energie Brennstoff (z.B. Erdgas, Heizöl)
- Energie, Sauerstoffgehalt und Temperatur des Abgasstroms
- Massefluss Verbrennungsluft (inkl. O2 Gehalt und Temperatur)
- Chemische Analyse: PH, gelöster Sauerstoff, Leitfähigkeit

Wirkungsgrad

a0009725-de

Programmierung zur Berechnung des Dampfkessel Wirkungsgrads (Boilereffizienz)

Zur Berechnung des Wirkungsgrads in einem Mathematikkanal werden immer die Summenzähler (integrierte Werte) verwendet! Eine Momentaufnahme des Wirkungsgrads besitzt nur wenig Aussagekraft.

a) offenes System (Dampfverbrauch)

- Mathekanal 1 (M1): Dampf Wärmemenge
- Mathekanal 2 (M2): Speisewasser Wärmemenge
- Mathekanal 3 (M3): Verbrennungsenergie des Erdgas zur Dampferzeugung*
- Mathekanal 4 (M4): Berechnung des Kesselwirkungsgrads

Formel (M4) = (M1-M2)/M3

b) geschlossenes System (d.h. Kondensatrücklauf)

- Mathekanal 1 (M1): Dampf Wärmemenge
- Mathekanal 2 (M2): Wasser Wärmemenge im Kondensat
- Mathekanal 3 (M3): Verbrennungsenergie des Erdgas zur Dampferzeugung*
- Mathekanal 4 (M4): Berechnung Kesselwirkungsgrads

Formel (M4) = (M1-M2)/M3

c) geschlossenes System unter Einbeziehung des Kesselablass

- M1: Dampfwärmedifferenz (Dampfdurchfluss, T Dampf, (P Dampf), T Speisewasser)
- M2: Dampfwärmedifferenz (Speisewasserdurchfluss, T Dampf, T Speisewasser)
- M3: Energieverlust durch Kesselablass: (M2-M1)
- M4: Verbrennungsenergie des Erdgas zur Dampferzeugung*
- M5: Berechnung des Kesselwirkungsgrads (M2/M4)

Der Energieverlust aufgrund von Kesselablass (Blow Down) kann auch mit einer Dampf Wärmedifferenzanwendung näherungsweise berechnet werden. Annahme: Masse Kesselablass = Masse Frischwasser

- M1: Dampf Wärmemenge
- M2: Wasser Wärmemenge im Kondensat
- M3: Energieverlust Kesselablass, Wasserwärmedifferenz (V, T Frischwasser; T, P Dampf)
- M4: Verbrennungsenergie des Erdgas zur Dampferzeugung*
- M5: Berechnung Kesselwirkungsgrads

Formel (M5) = (M1-M2+M3)/M4

*Der Erdgasmassestrom wird von einem Durchflussgerät gemessen und an den Graphic Data Manager übertragen. Im Mathekanal 3 wird der Erdgasstrom in Energie umgerechnet (unterer Heizwert Erdgas*Massestrom Erdgas)

3.5 Fehlerverhalten

Das Fehlerverhalten kann nur im Expertenmodus eingestellt werden.

Die Einstellungen für das Fehlerverhalten der Eingänge sind in der Betriebsanleitung des Graphic Data Managers im Kapitel 6.4 beschrieben (siehe mitgelieferte CD-ROM).

Im Fehlerfall wird die Energie- und Masseberechnung mit einem Ersatzwert fortgesetzt oder die Berechnung ist ungültig.

Bei Dampfanwendungen wird bei Erreichen der Kondensattemperatur (Nassdampfalarm) der gesättigte Dampfzustand auf Grundlage von T berechnet und der Wärmefluss (Leistung) berechnet. Für die Zähler kann in Menüposition Fehlerverhalten/Nassdampfalarm definiert werden, wie diese reagieren sollen:

- Anhalten der Integration (Zählerstopp)
- Integration wird fortgesetzt, d.h. Zähler laufen weiter (Berechnung Sattdampf)

4 Technische Daten

	Wasser	Wasser/Glykol	Dampf
Messbereich	0 bis 350 °C (32 bis 662 °F)	-40 bis 200 °C (-40 bis 392 °F)	
Messbereich überhitzter Dampf			0 bis 1000 bar (0 bis 14503,7 psi) 0 bis 800 °C (32 bis 1472 °F)
Messbereich Sattdampf			0 bis 165 bar (0 bis 2393 psi) 0 bis 350 °C (32 bis 662 °F)
Min. Temperaturdifferenz	0 °C (32 °F)		
Konzentration		0 bis 60 Vol %	
Fehlergrenzen (Universaleingänge)	3 bis 20 °C (37,4 to 68°F) < 1,0 % v. Mw. 20 bis 250 °C (68 to 482°F) < 0,3 % v. Mw.		
Berechnungszyklus	500 ms		
Berechnungsstandard	IAPWS-IF 97	Polynomfunktionen (Ungenauigkeit: max. 0,6 %)	IAPWS-IF 97

Table of contents

1	General description of the function 22
2	Description of the applications 23
2.1 2.2 2.3	Water applications23Water/glycol applications25Steam applications26
3	Application setup 28
3.1 3.2 3.3 3.4 3.5	General guidelines on programming28Selecting the units28Examples for water and steam energy measurement29Balancing (linking applications)34Failsafe mode36
4	Technical data

1 General description of the function

The energy package provides users with the possibility of calculating the mass and energy flow in water and steam applications on the basis of the following input variables:

- Flow
- Pressure
- Temperature (or temperature differential)

Furthermore, energy calculations are also possible using glycol-based refrigerant media. Data for various media are stored in the device. For these, the density in the respective operating point can be calculated additionally.

By balancing the results against one another or by linking the results to other input variables (e.g. gas flow, electr. energy), users can perform overall balances, calculate efficiency levels etc. These values are important indicators for the quality of the process and form the basis for process optimization efforts, maintenance, etc.

The internationally recognized IAPWS-IF 97 standard is used to calculate the thermodynamic state variables of water and steam.

2 Description of the applications

2.1 Water applications

2.1.1 Water heat quantity

Calculation of the quantity of heat in a flow of water. Example: Determining the residual heat in the return line of a heat exchanger.

Input variables: Operating volume and temperature.

The average pressure is calculated automatically based on the temperature measured.

 $E = q \cdot \rho(T,p) \cdot h(T)$

- E: Quantity of heat
- q: Operating volume
- ρ: Density
- T: Operating temperature
- h: Specific enthalpy of water (in relation to 0 $^{\circ}$ C)

2.1.2 Water heat difference

Calculation of the quantity of heat which is given off, or taken in, by a flow of water in a heat exchanger. Typical application for measuring energy in heating and cooling circuits. Input variables: Measurement of the operating volume and the temperature directly upstream and downstream from a heat exchanger (in the feed line or return line).

The flow sensor can be installed on the warm or cold side.

- E: Quantity of heat
- q: Operating volume
- Density ρ:
- T₁: T warm
- T_2 : h (T₁): T cold
- Specific enthalpy of water at temperature 1 h (T₂): Specific enthalpy of water at temperature 2

2.2 Water/glycol applications

2.2.1 Water/glycol heat difference

Calculation of the quantity of heat which is given off, or taken in, by a refrigerant medium (water/glycol mixture) in a heat exchanger. Typical application for measuring energy in heating and cooling circuits.

Input variables: Measurement of the operating volume and the temperature directly upstream and downstream from a heat exchanger (in the feed line or return line).

The flow sensor can be installed on the warm or cold side.

E: Quantity of heat

q: Operating volume

ρ: Density

- T₁: T warm
- T_2 : T cold
- c (T_1) : Specific heat capacity at temperature 1
- c (T_2) : Specific heat capacity at temperature 2
- cm Average specific heat capacity

2.3 Steam applications

2.3.1 Steam quantity of heat

Calculation of the mass flow and the quantity of heat it contains at the output of a steam generator or for individual consumers.

Input variables: operating volume flow, temperature and/or pressure

 $E = q \cdot \rho(p,T) \cdot h_D(p,T_D)$

a0009709

- E: Quantity of heat
- q: Operating volume
- ρ: Density
- T_D : Temperature of steam
- p: Pressure (steam)
- $h_D \qquad \qquad \text{Specific enthalpy of steam}$

For simplified saturated steam measurement, you can refrain from measuring the pressure or temperature. The missing input variable is determined using the saturated steam curve stored in the system.

When measuring pressure and temperature, the steam state is determined exactly and monitored. A wet steam alarm is output when the saturated steam temperature = condensate temperature. (See failsafe mode 3.5)

2.3.2 Steam heat difference

Calculation of the quantity of heat given off when the steam condenses in a heat exchanger. Alternatively also the calculation of the quantity of heat (energy) used for steam generation.

Input variables: Measurement of the pressure and temperatures directly upstream and downstream from a heat exchanger (or steam generator).

The flow sensor can either be integrated in the steam pipe or the water pipe (condensate or feed water).

If flow measurement is required in both the steam pipe and the water pipe (e.g. due to steam consumption or loss), two applications have to be set up, namely steam heat quantity and water heat quantity. The quantities of mass and energy can then be balanced in a mathematics channel with the aid of the formula editor (see 3.4.1).

$$E = q \cdot \rho(p, T_D) \cdot [h_D(p, T_D) - h_W(T_W)]$$

- E: Quantity of heat
- q: Operating volume
- ρ: Density
- T_D: Temperature of steam
- T_W: Temperature of water (condensate)
- p: Pressure (steam)
- h_D: Specific enthalpy of steam
- h_W: Specific enthalpy of water

20000710

3 Application setup

3.1 General guidelines on programming

- Set the flow, pressure and temperature inputs: The standard inputs are used here. Preferably, the units for scaling the measuring ranges should be taken from the table below (see 3.2). Otherwise, conversion coefficients must be defined when defining the application (see 3.2).
- Open the mathematics channel. Activate the function for calculating the energy or mass and select the application. Assign inputs and define units. Select units for the totalizers in the Totalization menu.

For steam applications, configure the failsafe mode in the event of a wet steam alarm, if applicable.

3. Configure the display, i.e. group the values for displaying and selecting the display mode.

3.2 Selecting the units

The units for the inputs and the application are selected within the context of configuring the application (in the mathematics channel). Please ensure that the units selected here are identical to the units that were used to scale the inputs.

If you prefer other units for configuring the inputs, a mathematics channel must be selected where the unit has to be converted to a unit indicated in the table. This mathematics channel is then used as a flow input in another mathematics channel to calculate the energy or mass.

Flow	m³/h	ft³/h	gal/h	ft³/min	GPM			
Pressure	bar(a)(g)	Psi(a)(g)	MPa(a)(g)	inH2O(a)(g)				
Density	kg/m ³	lb/ft ³						
Temperature	°C	К	°F					
Heat flow	kW	MW	kBTU/h	MBTU/h	ton	kBTU/min	therm/min	therm/h
Heat energy	kWh	MWh	MJ	MBTU	tonh	kBTU	therm	
Mass flow	kg/h	t/h	lbs/h	ton/h				
Mass sum	kg	t	lbs	ton				

Units in the energy package

gal = gallons liquid: 1 ft³ = 7.48051948 gal ton = ton (short) US: 1 ton = 907.184 74 kg ton = ton refrigeration: 1 ton = $3.516\ 852\ 84\ kW$ BTU = International [Steam] Table (IT): 1 Btu = $1055.056\ kJ$ therm = therm US (based on BTU59 °F): 1 therm = $105\ 480.4\ kJ$ GAL = Gallons per minute

3.3 Examples for water and steam energy measurement

3.3.1 Example of water heat difference

- 1. Set the flow, pressure and temperature inputs.
 - Select the signal, enter a name for channel identification, define the unit (see Table 3.2) and set the measuring range.

2. Configure energy calculation.

2.1 Open the math channel, select energy calculation, assign sensors and units, specify the flow sensor installation point and zoom range.

Display/change unit set-up/add new unit			- 🗆 🗵
Finished Unit set-up Extras			
🛯 🔆 🛠 😫 🕾 😂 憎 🗞	r 2: 5: 5: 5		
Analog input 13 Analog input 13 Analog input 14 Analog input 14 Analog input 15 Analog input 16 A	ET *2 20 28 29 Calculation active Channel ident. Application Flow Engineering unit Flow installation point Temperature warm Temperature cold Engineering unit Plot type Engineering unit Decimal point Zoom start Zoom end Copy settings	Energy calculation	kBtw/h kBtw/h

2.2 Select the unit for the totalizers.

Activate totalization, select the unit and set the threshold value (low flow cutoff) if necessary (values that are smaller than the threshold value are not totalized).

Display/change unit set-up/add new	/ unit		<u>- 🗆 ×</u>
Finished Unit set-up Extras			
🛛 🗐 🛠 😫 😫 🎒 😫	🍓 🖻 🗞 🖳 👬 👂		
Analog input 16	Totalization	Yes	
	Total. eng. unit	MBtu	
Maths 1 (active) Totalization (active)	Threshold value	Area around zero point	
Maths 2	Threshold value	0	kBtu/h
Maths 3			
			//.

3. Configure the display.

Select the values and how information is displayed on the display.

Display/change unit set-up/add new unit			_ 🗆 🗵
Finished Unit set-up Extras			
🖪 🙊 🛠 😫 🖴 🖄 🕾	🗞 🖆 🗞 🕾 🕺 😰		
Maths 8	Identifier	Group 1	
Maths 9 Maths 10	Save cycle	1min 💌	
Maths 11	Alarm cycle	1s 💌	
Maths 12	Grid divisions	10	
. Set points	Display blue	Flow	
- Signal groups - Group 1 (active)	Display	Instantaneous value/state	
⊕- Group 2	Display black	Temperature warm	
Group 3	Display	Instantaneous value/state	
⊕ Group 5	Display red	Temperature cold	
Group 6 Group 7	Display	Instantaneous value/state	
⊕. Group 8	Display green	Math 1	
⊕ Group 9	Display	Instantaneous value/state	
	Display violet	Math 1	
Application	Display	Totalizer	
	Disnlav oranne	Quitched off	_
J			11

3.3.2 Example for steam quantity of heat / mass

1. Set the flow, pressure and temperature input. Select the signal, enter a name for channel identification, define the unit (see Table 3.2) and set the measuring range

Display/change unit set-up/add new i	unit		- 101 >
ished Unit set-up Extras			
] 🙊 🛠 84 Sa 😂 12 Sa	🖥 🗳 🖧 🖫 👬 🖻		
Inputs	Signal	Resistance therm., RTD]
Flow (1) (active)	Range	Pt100 (IEC)]
Pressure (2) (active) Temperature (3) (active)	Connection	4-wire	ĺ
Analog input 4	Channel ident.	Temperature	-
Analog input 5	Plot type	Instantaneous value	1
Analog input 6 Analog input 7	Engineering unit	°C	
Analog input 8	Decimal point	One (X,Y)	1
Analog input 9 Analog input 10	Range start	-200,0	°C
Analog input 11	Meas. range end	850,0	°C
Analog input 12 Analog input 13	Zoom start	-200,0	°C
Analog input 14	Zoom end	850,0	°C
Analog input 15 Analog input 16	Damping/filter	1,0	s
Digital inputs	Copy settings	No	

- 2. Configure energy calculation.
 - 2.1 Open the math channel, select energy or mass calculation, assign sensors and units. If energy and mass are to be calculated and displayed, copy the settings to maths channel 2 and select "Mass calculation" there.

Display/change unit set-up/add new u	nit		- 🗆 ×
Finished Unit set-up Extras			
🛛 🕸 🛠 🕸 😫 12 🖼 (b 6° % 5, 5% 5		
Analog input 16 	Image: Second	Energy calculation	
Maths 10 Maths 11 Maths 12 Linearization Signal groups Group 1 (active) Group 2 Group 3 Group 4	Plot type Engineering unit Decimal point Zoom start Zoom end Copy settings	Average kBtw/n One (X,Y) 0,0 1000,0 No	kBtu/h kBtu/h

2.2 Select the unit for the totalizers.

Activate totalization, select the unit and set the threshold value (low flow cutoff) where necessary (see example 3.2.2, no. 2.2).

2.3 Configure behavior for wet steam alarm.

(Only possible if pressure and temperature input used.)

Activate Unit setup/Expert, set the wet steam alarm fault mode (totalizer stop in event of wet steam alarm or continue calculation under saturated steam conditions and continue totalization, i.e. totalizers continue to operate normally. Configure whether the wet steam alarm should be signaled via a relay).

Display/change unit set-up/add new u	unit		- II X
Finished Unit set-up Extras			
🛛 🖳 🛠 😫 😫 😫 😫	to to to the set of t		
	Wet steam alarm Fault switches	Saturated steam calculation Relay 1 (Term. 11-13)	V
	,		1.

3. Configure the display.

Select the values and display mode for the display (operating item: signal groups (see example 3.2.2, no. 3).

3.3.3 Differential pressure flow measurement

Flow measurements based on the differential pressure method (e.g. orifice plate, Pitot tube) are only accurate at the design point. Fluctuations in temperature and pressure impact the accuracy considerably. For example, pressure fluctuations of 1 bar can cause a measuring error of approx. 11% at a design pressure of 10 bar.

Therefore, when deploying this measurement method we recommend using a mathematics channel to compensate the mass and energy measurement. For this purpose, you need the design datasheet of the measuring point, particularly:

- Pressure in design conditions
- Temperature in design conditions
- Density in design conditions

Example: steam measurement design conditions:

P(a): 145 psi (10 bar) – absolute pressure T(a): 392 °F (200 °C) Density(a): 0.3028 lb/ft³ (4.85 kg/m³) Max. flow 10 tons/h (9.07 t/h)

Step-by-step configuration.

- 1. Scale the output of the differential pressure (DP) transmitter to operating volume or mass, 10 tons/h (curve square root).
- Select the input at the Graphic Data Manager and scale to operating volume i.e. ft³/h (m³/h), for example. If the output of the DP transmitter is scaled to mass as in the example, the operating volume must be calculated in the design conditions. Example: 10 tons/h*2000 : 0.3028 lb/ft³ = 66050.2 ft³/h
 9.07 t/h*1000 : 4.85 kg/m³ = 1870.10 m³/h (The DP transmitter output can remain scaled to mass).
- 3. In the math channel (1–8), select mass or energy measurement. Then configure the steam application. (See example 3.3.2)
- 4. Select the math channel (9-12) and enter the following formula (if applicable, change M1 to the math channel selected in step 3.): M1*(P/P(a))^0.5*(T(a)/T)^0.5 P: operating pressure (measured) Pa: pressure in design conditions T: operating temperature (measured) Ta: temperature in design conditions

Ta and T are absolute temperatures in Kelvin which means that the formula may have to be altered to include temperature conversion. Furthermore, make sure that the pressure units are identical (e.g. do not mix absolute pressure and relative pressure!).

- a. Example: temperature measurement in °F (psi absolute pressure measurement) M1*((P/10)*(32+200*1.8)/(32+T*1.8))^0.5
- b. Example: temperature measurement in °C (bar absolute pressure measurement) $M1^{*}((P/10)^{*}(200+273.15)/(T+273.15))^{\circ}0.5$

The result is the compensated mass or energy flow.

3.4 Balancing (linking applications)

3.4.1 General

To balance mass or energy amounts against one another or to calculate characteristic values, any mathematics channel can be used.

Example: balancing a steam boiler.

- Steam heat quantity is calculated in math channel 1.
- Math channel 2 is used to calculate the water heat quantity (residual energy in the flow of condensate in a steam system).

Looking for:

Energy that was given off between the steam feed line and the condensate return line. **Solution:**

Open math channel 3, select the formula editor and subtract the quantities of energy from one another (math channel 1– math channel 2).

Formula editor			×
D 🛱 🖬 💡	Inputs		×
Formula:	Kind of Signal:	Math channel (MI)	
MI(1;1)	Signal type:	Intermediate value	
	Channel:	Math 1	•
	From:	Math 1	~
	To:	Math 1	-
		OK Cance	
Analog In Standard Logic		+ · <	C
Digital In In sinasin	sum	* / 7 8	9
Math log sqrt cos acos	min	() 4 5	6
exp x^y tan atan	max	1 2	3
abs % mod rad grad	avg	Check Formula 0 ;	
		ОК	Cancel

3.4.2 Monitoring steam boilers

A steam boiler is monitored to ensure plant safety and to optimize processes and thus save costs. The measured variables for monitoring the safety of the plant are:

- Level
- Boiler pressure
- Boiler temperature

Measured variables and characteristic values for process optimization:

- Energy of steam flow
- Energy of condensate flow
- Energy of feed water or fresh water
- Energy of blowdown
- Energy of fuel (e.g. natural gas, heating oil)
- Energy, oxygen content and temperature of the flow of flue gas
- Mass flow combustion air (incl. O2 contents and temperature)
- Chemical analysis: PH, dissolved oxygen, conductivity

a0009725-en

Programming the Graphic Data Manager to calculate boiler efficiency

The totalizer values (integrated values) are always used to calculate the efficiency in a maths channel! A snap-shot of the efficiency has hardly any significance.

a) Open system

- Math channel 1 (M1): steam heat quantity
- Math channel 2 (M2): feed water heat quantity
- Math channel 3 (M3): combustion energy of natural gas for steam generation*
- Math channel 4 (M4): calculation of boiler efficiency

Formula (M4) = (M1-M2)/M3

b) Closed system (i.e. condensate return)

- Math channel 1 (M1): steam heat quantity
- Math channel 2 (M2): water heat quantity in condensate
- Math channel 3 (M3): combustion energy of natural gas for steam generation*
- Math channel 4 (M4): calculation of boiler efficiency

Formula (M4) = (M1-M2)/M3

c) Closed system taking blowdown into account

- M1: steam heat difference (steam flow, T steam, (P steam), T feed water
- M2: steam heat difference (feed water flow, T steam, T feed water
- M3: energy loss caused by blowdown: (M2-M1)
- M4: combustion energy of natural gas for steam generation*
- M5: calculation of boiler efficiency (M2/M4)

The energy loss caused by blowdown can also be calculated approximately using a steam heat difference application.

Assumption: mass blowdown = mass fresh water

- M1: steam heat quantity
- M2: water heat quantity in condensate
- M3: energy loss caused by blowdown, water heat difference (V, T fresh water; T, P steam)
- M4: combustion energy of natural gas for steam generation*
- M5: calculation of boiler efficiency

Formula (M5) = (M1-M2+M3)/M4

*Natural gas mass flow is measured by the flowmeter and transmitted to the Graphic Data Manager. In math channel 3, the flow of natural gas is converted to energy (lower heating value for natural gas*natural gas mass flow rate).

3.5 Failsafe mode

The failsafe mode can only be set up in expert mode.

The settings for the failsafe mode of inputs are described in the operating instructions of the Graphic Data Manager in section 6.4 (delivered on CD-ROM).

In the case of a fault, energy and mass calculation is either continued using a substitute value or becomes invalid.

In steam applications, when the condensate temperature is reached (wet steam alarm), the saturated steam state is determined using T and the heat flow is calculated. The behavior of the totalizers can be defined in the menu item "Failsafe mode/wet steam alarm":

- Integration stop (totalizer stop)
- Continue integration, i.e. totalizers continue to run (saturated steam calculation)
4 Technical data

	Water	Water/glycol	Steam
Measuring range	0 to 350 °C (32 to 662 °F)	-40 to 200 °C (-40 to 392 °F)	
Measuring range for superheated steam			0 to 1000 bar (0 to 14503.7 psi) 0 to 800 °C (32 to 1472 °F)
Measuring range for saturated steam			0 to 165 bar (0 to 2393 psi) 0 to 350 °C (32 to 662 °F)
Min. temperature differential	0 °C (32 °F)		
Concentration		0 to 60 vol %	
Error limits (universal inputs)	3 to 20 °C (37.4 to 68°F) < 1.0 % of m 20 to 250 °C (68 to 482°F) < 0.3 % of	neas. v. meas. v.	
Scan rate	500 ms		
Calculation standard	IAPWS-IF 97	Polynomial functions (Inaccuracy: max. 0.6 %)	IAPWS-IF 97

Sommaire

1	Description générale des fonctionnalités
	40
2	Description des applications 41
2.1 2.2 2.3	Applications eau41Applications eau/glycol43Application vapeur44
3	Réglage des applications (Setup) 46
3.1 3.2 3.3	Fil conducteur pour la programmation 46 Sélection des unités 46 Exemples pour la mesure d'énergie dans l'eau 47
3.4 3.5	Bilan (combinaison d'applications)
4	Caractéristiques techniques 55

1 Description générale des fonctionnalités

Le pack énergie permet de calculer le débit massique et d'énergie sur la base des grandeurs d'entrée suivantes :

- Débit
- Pression
- Température (ou différence de température)

Par ailleurs il est possible de réaliser des calculs d'énergie en utilisant des produits cryogéniques sur base glycol pour les applications de refroidissement.

On peut en outre calculer, pour le mode de fonctionnement respectif, la densité de divers produits dont les données sont stockées dans l'appareil.

La compensation des résultats entre eux ou leur combinaison avec d'autres grandeurs d'entrée (par ex. débit de gaz, énergie électrique) permet d'établir des bilans généraux, des calculs de rendement etc. Ces caractéristiques sont d'importants indicateurs pour la qualité des process ou servent de base à l'optimisation des process, à la maintenance etc

Pour le calcul des grandeurs d'état thermodynamiques de l'eau et de la vapeur, on utilise le standard de calcul international IAPWS-IF 97.

2 Description des applications

2.1 Applications eau

2.1.1 Quantité de chaleur dans l'eau

Calcul de la quantité de chaleur dans un flux d'eau. Exemple : détermination de la chaleur résiduelle dans le retour d'un échangeur thermique, etc. Grandeurs d'entrée : volume de service et température

La pression moyenne est automatiquement calculée sur la base de la température mesurée.

 $E = q \cdot \rho(T,\!p) \cdot h(T)$

- E : Quantité de chaleur
- q: Volume de service
- ρ: Masse volumique
- T : Température de service
- h : Enthalpie spécifique de l'eau (rapportée à 0 °C)

a0009704

2.1.2 Eau/différence de chaleur

Calcul de la quantité de chaleur restituée ou absorbée par un flux d'eau dans un échangeur thermique. Application typique pour la mesure d'énergie dans les circuits de chauffage ou de réfrigération.

Grandeurs d'entrée : mesure du volume de service et de la température immédiatement avant et après un échangeur thermique (entrée ou sortie).

Le capteur de débit peut être implanté côté chaud ou froid.

E : Quantité de chaleur

- q: Volume de service
- $\rho \text{:} \qquad \text{Masse volumique}$
- T₁: T chaud
- T_2 : T froid
- h (T_1) : Enthalpie spécifique de l'eau pour température 1
- $h\left(T_{2}\right): \qquad \text{Enthalpie spécifique de l'eau pour température 2}$

2.2 Applications eau/glycol

2.2.1 Eau-glycol/différence de chaleur

Calcul de la quantité de chaleur restituée ou absorbée par un produit cryogénique (mélange eauglycol) dans un échangeur thermique. Application typique pour la mesure d'énergie dans les circuits de chauffage ou de réfrigération.

Grandeurs d'entrée : mesure du volume de service et de la température immédiatement avant et après un échangeur thermique (entrée ou sortie).

La masse volumique et la conductivité thermique du support cryogénique sont calculées sur la base du rapport de concentration.

Le capteur de débit peut être implanté côté chaud ou froid.

- E : Quantité de chaleur
- q: Volume de service
- ρ: Masse volumique
- T₁: T chaud
- T_2 : T froid
- $c(T_1): \qquad \text{Capacité de chaleur spécifique pour température 1}$
- $c(T_2)$: Capacité de chaleur spécifique pour température 2
- cm Capacité de chaleur spécifique moyenne

2.3 Application vapeur

2.3.1 Quantité de chaleur vapeur

Calcul du débit massique et de la quantité de chaleur à la sortie d'un générateur de vapeur ou chez certains consommateurs.

Grandeurs d'entrée : débit volumique de service, température et/ou pression

 $E = q \cdot \rho(p,T) \cdot h_D(p,T_D)$

a0009709

- E : Quantité de chaleur
- q: Volume de service
- ρ: Masse volumique
- T_D: Température vapeur
- p: Pression (vapeur)
- ${\rm h}_{\rm D}$ Enthalpie spécifique de la vapeur

Pour une mesure simplifiée de la vapeur saturée, il est possible de renoncer à la mesure de pression ou de température. La grandeur de mesure manquante est déterminée sur la base de la courbe de vapeur saturée mémorisée.

Lors de la mesure de pression et de température, on détermine de manière précise et on surveille l'état de vapeur. Lorsque température de vapeur saturée = température de condensat, une alarme vapeur humide est émise (voir mode défaut 3.5)

2.3.2 Vapeur/différence de chaleur

Calcul de la quantité de chaleur restituée lors de la condensation de la vapeur dans un échangeur thermique.

En alternative il est également possible de calculer la quantité de chaleur (énergie) nécessaire à la génération de vapeur.

Grandeurs d'entrée : Mesure de la pression et de la température immédiatement en amont et en aval d'un échangeur thermique (ou générateur de vapeur).

Le capteur de débit peut être implanté dans la conduite vapeur ou eau (condensat ou eau d'alimentation).

Si l'on souhaite effectuer une mesure de débit tant sur la conduite de vapeur que dans celle d'eau (par ex. consommation ou perte de vapeur), il faut régler deux applications, à savoir quantité de chaleur eau et vapeur. Le bilan de la masse et de l'énergie peut être réalisé dans une voie mathématique à l'aide d'un éditeur de formule (voir page 3.4.1).

- E: Quantité de chaleur g: Volume de service
- q: Volume de serviceρ: Masse volumique
- $T_{\rm D}$: Température vapeur
- T_W : Température eau (condensat)
- p: Pression (vapeur)
- h_D: Enthalpie spécifique de la vapeur
- h_w: Enthalpie spécifique de l'eau

3 Réglage des applications (Setup)

3.1 Fil conducteur pour la programmation

- Réglage des entrées débit, pression et température Pour ce faire on utlise les entrées standard. Les unités pour la mise à l'échelle des gammes de mesure devraient de préférence être reprises du tableau suivant (voir 3.2). Dans le cas contraire il faut, lors de la définition de l'application, déterminer des facteurs de conversion (voir 3.2).
- Ouvrir la voie mathématique. Activer la fonction de calcul de l'énergie ou de la masse et sélectionner l'application. Affecter les entrées et définir les unités. Sélectionner les unités pour les totalisateurs dans le menu Intégration. Pour les applications vapeur, configurer le réglage du mode défaut en cas d'alarme vapeur humide.
- 3. Configuration de l'affichage, c'est à dire préparation des valeurs pour l'affichage et sélection du mode de représentation.

3.2 Sélection des unités

Les unités pour les entrées et l'application sont sélectionnées dans le cadre de l'application traitée (dans la voie mathématique). Veuillez noter que les unités sélectionnées ici sont identiques aux unités utilisées pour la mise à l'échelle des entrées.

Si vous préférez d'autres unités pour le paramétrage des entrées, il faut sélectionner une voie mathématique dans laquelle devra avoir lieu la conversion dans une unité figurant dans le tableau. Cette voie mathématique est utilisée comme entrée débit dans une autre voie mathématique pour le calcul d'énergie ou de masse.

Débit	m³/h	ft³/h	gal/h	ft³/min	GPM			
Pression	bar(a)(g)	Psi(a)(g)	MPa(a)(g)	inH2O(a)(g)				
Densité	kg/m ³	lb/ft ³						
Température	°C	K	°F					
Débit de chaleur	kW	MW	kBTU/h	MBTU/h	ton	kBTU/min	therm/ min	therm/h
Energie thermique	kWh	MWh	MJ	MBTU	tonh	kBTU	therm	
Débit massique	kg/h	t/h	lbs/h	ton/h				
Somme de la masse	kg	Т	lbs	ton				

Unités dans le pack énergie

gal = Gallons liquid: 1 ft³ = 7,48051948 gal ton = ton (short) US: 1 ton = 907,184 74 kg ton = ton refrigeration: 1 ton = 3,516 852 84 kW BTU = International [Steam] Table (IT): 1 Btu = 1055,056 kJ therm = therm US (sur la base de BTU59 °F): 1 therm = 105 480,4 kJ GAL = Gallons per minute

3.3 Exemples pour la mesure d'énergie dans l'eau et la vapeur

3.3.1 Exemple eau/ différence de chaleur

 Configuration des entrées débit, pression et température Sélectionner le signal, entrer le nom pour la désignation de voie, définir une unité (voir tableau 3.2) et régler la gamme de mesure.

🚺 Visualisation / changer la programmation	/ nouvel appareil	_	
Terminé Configuration appareil Options			
🛛 🗐 🛠 😫 📾 🎒 🖄 🐿	r 2: 5: 5: 2		
Entrées universelles	Signal	Courant	
Correction valeur mesurée	Gamme	4-20 mA	
Intégration	Identif. Voie	T* chaude	
⊕ Analysuer O3 (2) (actif)]	
⊕ Débit ret EPVF (3) (actif)	Affichage	Moyenne	
⊕ TOC EPVF (4) (actif)	Unité physique	°C	
- Entrée universelle 5	Deint désire		
- Entrée universelle 6	Point decimal	Un (X, Y)	
- Entrée universelle 7	Début de gamme	0,0	°C
- Entrée universelle 8	Fin de comme	200.0	*0
- Entrée universelle 9	r in de gamme	200,0	č
- Entrée universelle 10	Début du zoom	0,0	°C
- Entrée universelle 11	Ein du zoom	200	*C
- Entrée universelle 12			Ŭ
- Entrée universelle 13	Filtre	0,0	s
- Entrée universelle 14	Copier config.	Non	
- Entrée universelle 15			

2. Configuration du calcul d'énergie

2.1 Ouvrir la voie mathématique, sélectionner calcul d'énergie, affecter les capteurs et unités, spécifier les points de montage du capteur de débit et régler la gamme zoom.

Visualisation / changer la programmation	Visualisation / changer la programmation / nouvel appareil			
IIII 🔆 🛠 😫 📾 🎒 Me 🔁	r 2. 5. 5. 5.			
Appareil Démo Energie Système Entrées universelles Entrées digitales Mathé Mathé 1 Mathé 5 Mathé 6 Mathé 6 Mathé 10 Mathé 11 Mathé 12 Endrées Entrées	Application Calcul actif Identif. Voie Application Débit Unité physique Point implant. débit Températ. chaud Températ. froid Unité physique Affichage Unité physique Point du zoom Fin du zoom Copier config. Copier config. Copier config. Calcul actif Calcul actif	Calcul énergie	kW	

2.2 Sélectionner l'unité pour les compteurs.

Activer l'intégration, sélectionner l'unité et régler le cas échéant une valeur de seuil (débit de fuite). Les valeurs inférieures au seuil ne sont pas intégrées.

🛃 Visualisation / changer la programmation	/ nouvel appareil		<u>_ ×</u>
Terminé Configuration appareil Options			
🖬 🚊 🛠 🎝 🖏 📾 😂 🏙 🗞	🖻 😤 🖳 👬 🖸		
Appareil Démo Energie Système Entrées Entrées Entrées digitales Mathé Mathé 1 (actif) Intégration (actif) Mathé	Intégration Unité d'intégr. Valeur seuil Valeur seuil	Oui Suitour du zéro Suitour du	• • • •
			1

- 3.
- Configuration de l'affichage. Sélectionner les valeur et le mode de représentation pour l'affichage.

Visualisation / changer la programmation	/ nouvel appareil		<u>_ </u>
Terminé Configuration appareil Options			
日 🛠 四 💁 🎒	r 2. 5. 5. 5.		
⊡-Appareil Démo Energie B-Système B-Entrées	Désignation Cycle sauvegarde	Groupe 1	
B) - Sorties ⊟- Application (+) - Seuils	Cycle alarme Graduation	1s •	
Groupe de signaux	Tracé bleu Affichage	Débit ret EPVF	ĺ
E Representation par diag. circ. E Boucle froide (2) (actif) E Groupe 3	Tracé noir	T° chaude	
⊕ Groupe 4 ⊕ Groupe 5 ⊕ Groupe 6	Tracé rouge	T° froide	
· Groupe 7 ⊕- Groupe 8	Affichage Tracé vert	Valeur instantanée / état Math 1	
⊕ Groupe 9 ⊕ Groupe 10 ⊕ Profibus DP	Affichage Tracé violet	Compteur totalisateur 💌	
Textes Touches program.	Tracé orange	Non activé	
Serveur Web	Tracé brun	Non activé	_
			11.

3.3.2 Exemple quantité de chaleur vapeur / masse

 Configuration des entrées débit, pression et température Sélectionner le signal, entrer le nom pour la désignation de voie, définir une unité (voir tableau 3.2) et régler la gamme de mesure.

Visualisation / changer la programmation	/ nouvel appareil		<u>_ </u>
🔜 🙊 🛠 🎝 🖓 🖓	r 2. 2. 3: 5: 5		
Entrées universelles ▲	Signal	Résistance therm. RTD	
□• T* (2) (actif)	Gamme	Pt100 (IEC)	
Correction valeur mesurée	Connexion	4-fils	
	Identif. Voie	T*	
TOC EPVF (4) (actif)	Affichage	Moyenne	
Entrée universelle 5	Unité physique	°C	
- Entrée universelle 7	Point décimal	Un (X,Y)	
- Entrée universelle 8	Début de gemme	-200.0	°C
Entrée universelle 9	Debuc de gamme	-200,0	Ŭ
Entrée universelle 10	Fin de gamme	850,0	°C
Entrée universelle 11	Début du zoom	-200,0	°C
Entrée universelle 12	Fin du zoom	850.0	°C
Entrée universelle 13	111 dd 20011	000,0	č
Entrée universelle 14	Filtre	1,0	s
Entrée universelle 16	Copier config.	Non	

- 2. Configuration du calcul d'énergie
 - 2.1 Ouvrir la voie mathématique, sélectionner le calcul d'énergie ou de masse, affecter les capteurs et les unités.

Si vous souhaitez calculer et afficher l'énergie et la masse, copiez les réglages sur la voie mathématique 2 et sélectionnez "calcul de masse".

🚰 Visualisation / changer la programmation	/ nouvel appareil		<u>- 0 ×</u>
Terminé Configuration appareil Options			
🛯 🖳 🛠 😫 📾 🎒 🚳	🗊 🗞 🖳 👬 🖸		
⊡- Appareil Démo Energie ⊟- Système	Calcul actif	Calcul énergie	
⊟ Entrées	Identif. Voie	Math 1	
	Application	Enthalpie vapeur	
⊡- Mathé	Débit	Débit	
	Unité physique	m²/h	
- Mathé 2	Pression	Pression	
Mathé 3	Unité physique	bar (a)	
Mathé 4 Mathé 5	Températ. vapeur	T° 🔹	
Mathé 6	Unité physique	°C 🗸	
Mathé 7 Mathé 8	Affichage	Valeur instantanée	
Mathé 9	Unité physique	MW	
Mathé 10 Mathé 11	Point décimal	Un (X,Y)	
Mathé 12	Début du zoom	0,0	MW
	Fin du zoom	10,0	MW
⊕ Sorties ⊕ Application	Copier config.	Non	
	·		

2.2 Sélectionner l'unité pour les compteurs.

Activer l'intégration, sélectionner les unités et régler le cas échéant la valeur de seuil (voir exemple 3.2.2, N°. 2.2)

- 2.3 Régler le mode en cas d'alarme vapeur humide.
 - (Seulement possible si on utilise des entrées pression et température) Passer en mode configuration appareil/Experts, régler le mode en cas d'alarme vapeur humide (les compteurs s'interrompent en cas d'alarme humide) ou poursuivre le calcul en conditions de vapeur saturée et continuer l'intégration, c'est à dire le compteur continue de fonctionner normalement). Réglage si l'alarme vapeur humide doit être signalée via relais).

🛃 Visualisation / changer la programma	tion / nouvel appareil		
Terminé Configuration appareil Options			
🛛 🖹 🛠 😫 📽 😂 🖄 😫	🍓 🖻 🗞 💁 👫 👂		
Appareil Démo Energie Système Frtrées Frtrées Frtrées	Alar. vap.hum. Commut. défaut	Calcul vap. saturée Relais 1 (11-13)	▼
			li.

3. Configuration de l'affichage.

Sélectionner les valeurs et le type de représentation (position : groupe de signaux (voir exemple 3.2.2, N°. 3)

3.3.3 Mesure de débit par pression différentielle

Les mesures de débit par pression différentielle (par ex. diaphragme, tube de pitot) ne sont précises qu'au point de réglage. Les variations de température et de pression ont une influence considérable sur la précision de mesure. Par exemple une variation de pression de 1 bar engendre, pour une pression réglée de 10 bar, une erreur de mesure d'env. 11 %.

Aussi, lors de l'application de ce principe de mesure, nous recommandons d'utiliser une voie mathématique pour la compensation de la mesure de masse ou d'énergie. Pour ce faire il vous faut la fiche technique du point de mesure, notamment les données suivantes :

- Pression au point de réglage
- Température au point de réglage
- Densité au point de réglage

Exemple : point de réglage mesure de vapeur :

 $\begin{array}{l} P(a): 145 \mbox{ psi} \ (10 \mbox{ bar}) - \mbox{ pression absolue} \\ T(a): 392 \ ^{\circ}F \ (200 \ ^{\circ}C) \\ Densité \ (a): 0,3028 \ lb/ft^3 \ (4,85 \ kg/m^3) \\ Max. \ Flow \ 10 \ tons/h \ (9,07 \ t/h) \end{array}$

Configuration par étapes :

- 1. Mettre la sortie du transmetteur de pression différentielle (DP) à l'échelle pour travailler en volume de service ou masse, 10 tons/h (caractéristique à extraction de racine carrée).
- Sélectionner l'entrée du Graphic Data Manager et mettre le volume de service à l'échelle, c'est à dire ft³/h (m³/h). Si la sortie du transmetteur DP est mise à l'échelle comme dans l'exemple, il faut calculer le volume de service au point de réglage.
 10 tons/h*2000 : 0,3028 lb/ft³ = 66050,2 ft³/h
 9,07 t/h*1000 : 4,85 kg/m³ = 1870,10 m³/h
 (La sortie du transmetteur DP peut rester à l'échelle pour la masse).
- 3. Dans la voie mathématique (1-8), sélectionner mesure de masse ou d'énergie. Puis configurer l'application vapeur. (voir exemple 3.3.2)
- 4. Sélectionner la voie mathématique (9-12) et y entrer la formule suivante (remplacer le cas échéant M1 par la voie mathématique sélectionnée au pas 3) : M1*(P/P(a))^0,5*(T(a)/T)^0,5 p : pression de service (mesurée) Pa : pression au point de réglage T : température de service (mesurée) Ta : température au point de réglage

Ta et T sont des températures absolues en Kelvin, c'est à dire que la formule doit si nécessaire être complétée pour une conversion de la température. Veillez aussi à ce que les unités de pression soient identiques (par ex. attention au mix pression absolue et relative !).

- a. Exemple : Mesure de température en °F (mesure de pression en psi absolu) $M1^*((P/10)^*(32+200^*1,8)/(32+T^*1,8))^0,5$
- b. Exemple : Mesure de température en °C (mesure de pression bar absolu) $M1^*((P/10)^*(200+273,15)/(T+273,15))^0,5$

Comme résultat vous obtenez le débit de masse ou d'énergie compensé.

3.4 Bilan (combinaison d'applications)

3.4.1 Généralités

Pour compenser entre elles les masses ou énergies calculées (bilan) ou pour calculer des rendements, on pourra utiliser une voie mathématique quelconque.

Exemple : bilan énergétique d'une chaudière.

- Dans la voie mathématique 1 on calcule la quantité de chaleur de la vapeur générée.
- La voie 2 est utilisé pour le calcul de l'énergie restante dans le flux de condensat (quantité de chaleur résiduelle des condensats).

On recherche :

l'énergie restituée entre l'entrée vapeur et la sortie condensat.

Solution :

ouvrir la voie mathématique 3, sélectionner l'éditeur de formule et soustraire les flux énergétiques des voies 1 et 2.

Formula editor	Inputs		×	×
	- Kind of Signal:	Math channel (MI)	v	
Formula:	Signal type:	Intermediate value	-	
	Channel:	Chaleur vapeur	•	
	From:	Chaleur vapeur	V	
	To:	Chaleur vapeur	V	
Inputs Functions	-	ОК	Interrompre	
Analog In Standard Logic Enhance	ed	+ -	<	С
Digital In pi sin	asin sum		7 8	9
Math log sqrt cos	acos min		4 5	6
exp x^y tan	atan max		1 2	3
Limit abs % mod rad	grad avg	Check Formula	0;	
				nterrompre

3.4.2 Surveillance de chaudières

La surveillance d'une chaudière contribue à la sécurité d'une installation et à l'optimisation de process et de ce fait à la réduction de coûts.

Grandeurs de mesure pour la surveillance de la sécurité d'une installation :

- Niveau
- Pression de chaudière
- Température de chaudière

Grandeurs de mesure et valeurs nominales pour l'optimisation de process :

- Energie débit de vapeur
- Energie débit de condensat
- Energie eau d'alimentation ou eau fraiche
- Energie sortie chaudière (Blow Down)
- Energie carburant (par ex. gaz naturel, fuel)
- Energie, teneur en oxygène et température du débit ou flux de gaz émis
- Débit massique air de combustion (y compris teneur en O2 et température)
- Analyse chimique : pH, oxygène dissous, conductivité

a0009725-de

Programmation pour le calcul du rendement de la chaudière

Ce sont toujours les compteurs (valeurs intégrées) qui sont utilisés pour le calcul de rendement dans une voie mathématique ! La valeur momentanée du rendement est très peu explicite.

a) Système ouvert (consommation de vapeur)

- Voie mathématique 1 (M1) : Quantité de chaleur de la vapeur
- Voie mathématique 2 (M2) : Quantité de chaleur de l'eau d'approvisionnement
- Voie mathématique 3 (M3) : Energie de combustion du gaz naturel pour génération de vapeur*
- Voie mathématique 4 (M4) : Calcul du rendement de la chaudière

Formule (M4) = (M1-M2)/M3

b) Système fermé (par ex. retour de condensat)

- Voie mathématique 1 (M1) : Quantité de chaleur de la vapeur
- Voie mathématique 2 (M2) : Quantité de chaleur de l'eau dans le condensat
- Voie mathématique 3 (M3) : Energie de combustion du gaz naturel pour la génération de vapeur*
- Voie mathématique 4 (M4) : Calcul du rendement de la chaudière

Formule (M4) = (M1-M2)/M3

c) Système fermé avec prise en compte de la sortie de chaudière

- M1 : Différence de chaleur de vapeur (débit de vapeur, T vapeur, (P vapeur), T eau alimentation)
- M2 : Différence de chaleur de la vapeur (débit d'eau d'alimentation, T vapeur, (P vapeur), T eau d'alimentation)
- M3 : Energie résiduelle en sortie de chaudière : (M2-M1)
- M4 : Energie de combustion du gaz naturel pour la génération de vapeur*
- M5 : Calcul du rendement de chaudière (M2/M4)

La perte énergétique en sortie de chaudière (résidus) peut aussi être calculée par approximation avec une application différence de chaleur.

Hypothèse : masse sortie de chaudière = masse eau fraiche

- M1 : Quantité de chaleur vapeur
- M2 : Quantité de chaleur de l'eau dans le condensat
- M3 : Energie résiduelle en sortie de chaudière, différence de chaleur eau (V, T eau fraiche; T, P vapeur)
- M4 : Energie de combustion du gaz naturel pour génération de vapeur*
- M5 : Calcul du rendement de la chaudière

Formule (M5) = (M1-M2+M3)/M4

*le débit massique de gaz naturel est mesuré par un débitmètre et transmis au Graphic Data Manager. Dans la voie mathématique 3 le débit de gaz naturel est converti en énergie (pouvoir calorifique gaz naturel x débit massique gaz naturel)

3.5 Mode défaut

Le mode défaut peut uniquement être configuré dans le mode expert.

Les réglages du mode défaut des entrées sont décrits dans le manuel de mise en service du Graphic Data Managers au chapitre 6.4 (voir CD-ROM fourni).

En cas de défaut, le calcul d'énergie et de masse est poursuivi soit avec une valeur de remplacement ou le calcul devient invalide.

Pour les applications de vapeur, lorsque la température de condensation est atteinte (alarme vapeur humide), on calcule l'état de vapeur saturée sur la base de T° ainsi que le débit de vapeur (puissance). Le comportement des compteurs en cas de défaut peut être défini sous "Mode défaut/Alarme vapeur humide" :

- Arrêt de l'intégration (stop des compteurs)
- L'intégration est poursuivie, c'est à dire les compteurs continuent de tourner en mode calcul vapeur saturée.

4 Caractéristiques techniques

	Eau	Eau/glycol	Vapeur	
Gamme de mesure	0 à 350 °C (32 à 662 °F)	-40 à 200 °C (-40 à 392 °F)		
Gamme de mesure vapeur surchauffée			0 à 1000 bar (0 à 14503,7 psi) 0 à 800 °C (32 à 1472 °F)	
Gamme de mesure vapeur saturée			0 à 165 bar (0 à 2393 psi) 0 à 350 °C (32 à 662 °F)	
Différence de température min.	0 °C (32 °F)			
Concentration		0 à 60 Vol %		
Tolérances (entrées universelles)	3 à 20 °C (37,4 à 68°F) < 1,0 % de la valeur mesurée 20 à 250 °C (68 à 482°F) < 0,3 % de la valeur mesurée			
Cycle de calcul	500 ms			
Standard de calcul	IAPWS-IF 97	Fonctions polynomes (Incertitude de mesure : max. 0,6 %)	IAPWS-IF 97	

Sommario

1	Descrizione generale della funzione. 58
2	Descrizione delle applicazioni 59
2.1 2.2 2.3	Applicazioni relative all'acqua59Applicazioni con acqua/glicole61Applicazioni relative al vapore62
3	Setup - Applicazione
3.1 3.2 3.3	Linee guida generali sulla programmazione 64 Scelta delle unità 64 Esempi di misura dell'energia nell'acqua e nel vapore .
3.4 3.5	65Bilanciamento (combinazione di applicazioni)70Modalità di sicurezza72
4	Dati tecnici

1 Descrizione generale della funzione

Il pacchetto Energia consente agli utenti di calcolare la massa e il flusso di energia in applicazioni con acqua e vapore sulla base delle seguenti variabili di ingresso:

- portata
- pressione
- temperatura (o temperatura differenziale)

I calcoli dell'energia, inoltre, possono essere eseguiti anche se si utilizzano fluidi refrigeranti a base di glicole.

In aggiunta, la densità dei fluidi depositati può essere calcolata alle relative condizioni di misura.

Compensando tra loro i risultati o collegandoli ad altre variabili di ingresso (ad es. portata gas, energia elettrica), gli utenti possono eseguire regolazioni complete, calcolare i livelli di efficienza, ecc. Questi valori sono importanti indicatori della qualità del processo e sono fondamentali per l'ottimizzazione del processo, la manutenzione, ecc.

Lo standard IAPWS-IF 97, riconosciuto a livello internazionale, serve per calcolare le variabili dello stato termodinamico dell'acqua e del vapore.

2 Descrizione delle applicazioni

2.1 Applicazioni relative all'acqua

2.1.1 Quantità di calore nell'acqua

Calcolo della quantità di calore in un flusso d'acqua. Esempio: determinazione del calore residuo nella linea di ritorno di uno scambiatore di calore. Variabili in ingresso: volume di esercizio e temperatura.

La pressione media viene calcolata automaticamente sulla base della temperatura misurata.

 $E = q \cdot \rho(T,p) \cdot h(T)$

- E: Quantità di calore
- q: Volume di funzionamento
- ρ: Densità
- T: Temperatura operativa
- h: Entalpia specifica dell'acqua (in relazione a 0 °C)

2.1.2 Differenza di calore nell'acqua

Calcolo della quantità di calore restituita o assorbita da un flusso d'acqua in uno scambiatore di calore. Applicazione tipica per la misura dell'energia nei circuiti di riscaldamento e raffreddamento. Variabili in ingresso: misura del volume e della temperatura di esercizio immediatamente a monte e a valle di uno scambiatore di calore (nella linea di mandata o di ritorno).

Il sensore di portata può essere installato sul lato caldo o sul lato freddo.

- E: Quantità di calore
- q: Volume di funzionamento
- ρ: Densità
- T₁: T caldo
- T₂: T freddo
- h (T_1): Entalpia specifica dell'acqua a temperatura 1
- h (T₂): Entalpia specifica dell'acqua a temperatura 2

2.2 Applicazioni con acqua/glicole

2.2.1 Differenza di calore nell'acqua/glicole

Calcolo della quantità di calore restituita o assorbita da un liquido refrigerante (miscela acqua/ glicole) in uno scambiatore di calore. Applicazione tipica per la misura dell'energia nei circuiti di riscaldamento e raffreddamento.

Variabili in ingresso: misura del volume di esercizio e della temperatura immediatamente a monte e a valle di uno scambiatore di calore (nella linea di mandata o di ritorno).

Il sensore di portata può essere installato sul lato caldo o sul lato freddo.

E:	Quantità	di	calore
----	----------	----	--------

Volume di funzionamento q:

Densità ρ:

- T₁: T caldo
- T₂: T freddo
- c (T₁):
- Capacità termica specifica a temperatura 1 Capacità termica specifica a temperatura 2
- c (T₂): cm
 - Capacità termica specifica media

2.3 Applicazioni relative al vapore

2.3.1 Quantità di calore del vapore

Calcolo della portata massica e della quantità di calore all'uscita di un generatore di vapore o presso utenze individuali.

Variabili in ingresso: portata volumetrica, temperatura e/o pressione di esercizio

 $E = q \cdot \rho(p,T) \cdot h_D(p,T_D)$

a0009709

- E: Quantità di calore
- q: Volume di funzionamento
- ρ: Densità
- T_D: Temperatura del vapore
- p: Pressione (vapore)
- h_D Entalpia specifica del vapore

Per eseguire una misura semplificata relativa al vapore saturo, si può evitare di misurare la pressione o la temperatura. La variabile in ingresso mancante può essere determinata utilizzando la curva di vapore saturo memorizzata nel sistema.

Durante la misura della pressione e della temperatura, lo stato del vapore viene determinato in maniera precisa e monitorato. Quando temperatura del vapore saturo = temperatura di condensa viene emesso un allarme di vapore umido. (v. modalità di sicurezza 3.5)

2.3.2 Delta temperatura vapore

Calcolo della quantità di calore restituita durante la condensazione del vapore nello scambiatore di calore.

In alternativa è anche possibile calcolare la quantità di calore (energia) utilizzata per la produzione del calore.

Variabili in ingresso: misura della pressione e delle temperature direttamente a monte e a valle di uno scambiatore di calore (o generatore di vapore).

Il sensore di portata può essere integrato nel tubo del vapore o nel tubo dell'acqua (condensa o acqua di alimentazione).

Se la misura della portata deve essere eseguita sia nel tubo del vapore sia nel tubo dell'acqua (ad esempio per il consumo o la perdita di vapore), sarà necessario configurare due applicazioni, ossia quantità di calore e quantità di calore nell'acqua. Quindi sarà possibile bilanciare le quantità di massa ed energia in un canale matematico utilizzando un editor di formule (v. 3.4.1).

- E: Quantità di calore
- q: Volume di funzionamento
- ρ: Densità
- T_D: Temperatura del vapore
- T_W: Temperatura dell'acqua (condensa)
- p: Pressione (vapore)
- h_D: Entalpia specifica del vapore
- h_w: Entalpia specifica dell'acqua

3 Setup - Applicazione

3.1 Linee guida generali sulla programmazione

- Impostare gli ingressi di portata, pressione e temperatura: A questo scopo vengono utilizzati gli ingressi standard. Se possibile, le unità per la scalatura dei campi di misura devono essere ricavate dalla tabella sopra riportata (v. 3.2). In caso contrario, occorre determinare il coefficiente di conversione durante la definizione dell'applicazione (v. 3.2).
- Aprire il canale matematico. Attivare la funzione di calcolo dell'energia o della massa e selezionare l'applicazione. Assegnare gli ingressi e definire le unità. Selezionare le unità per i totalizzatori nel menu Totalizzazione. Per le applicazioni con vapore, configurare la modalità di sicurezza in caso di allarme di vapore umido, se applicabile.
- 3. Configurare la visualizzazione, ossia definire le modalità di raggruppamento dei valori per la visualizzazione e selezionare la modalità di visualizzazione.

3.2 Scelta delle unità

Le unità per gli ingressi e l'applicazione vengono selezionati nell'ambito della configurazione dell'applicazione (nel canale matematico). Assicurarsi che le unità selezionate qui siano identiche alle unità utilizzate per la scalatura degli ingressi.

Se si desidera utilizzare altre unità per la configurazione degli ingressi, è necessario selezionare un canale matematico in cui l'unità dovrà essere convertita in un'unità indicata in tabella. Questo canale matematico viene quindi utilizzato come ingresso di portata in un altro canale matematico per il calcolo dell'energia o della massa.

Portata	m³/h	ft³/h	gal/h	ft³/min	GPM			
Pressione	bar(a)(g)	Psi(a)(g)	MPa(a)(g)	inH2O(a)(g)				
Densità	kg/m ³	lb/ft ³						
Temperatura	°C	K	°F					
Potenza termica	kW	MW	kBTU/h	MBTU/h	t	kBTU/min	therm/min	therm/h
Energia termica	kWh	MWh	MJ	MBTU	tonh	kBTU	therm	
Portata massica	kg/h	t/h	lbs/h	ton/h				
Somma massa	kg	t	lbs	t				

Unità nel pacchetto energia

gal = galloni liquido: 1 ft³ = 7,48051948 gal ton = tonnellata (piccola tonnellata, short ton) US: 1 ton = 907,184 74 kg ton = ton refrigerazione: 1 ton = 3,516 852 84 kW BTU = International [Steam] Table (IT): 1 Btu = 1055,056 kJ therm = therm USA (basato su BTU59 °F): 1 therm = 105 480,4 kJ GAL = galloni al minuto

3.3 Esempi di misura dell'energia nell'acqua e nel vapore

3.3.1 Esempi di differenza di calore nell'acqua

 Impostare gli ingressi di portata, pressione e temperatura Selezionare il segnale, immettere un nome per l'identificazione del canale, definire l'unità (v. Taballa e o).

Tabella 3.2) e impostare il campo di misura.

2. Configurare il calcolo dell'energia.

2.1 Aprire il canale matematico, selezionare il calcolo dell'energia, assegnare i sensori e le unità, specificare il punto d'installazione del sensore di portata e regolare il campo di zoom.

Display/change unit set-up/add new unit				
Finished Unit set-up Extras				
🛯 🙊 🛠 😫 🕾 😂 憎 🗞	27 % S. \$4 2			
Analog input 13 Analog input 14 Analog input 15 Analog input 15 Analog input 16 Oigital inputs Maths 1 (active) Maths 2 Maths 3 Maths 4 Maths 5 Maths 5 Maths 6 Maths 7 Maths 8 Maths 10 Maths 11 Maths 12 OIgital inputs Signal groups Outputs Application	Calculation active Channel ident. Application Flow Engineering unit Flow installation point Temperature warm Temperature cold Engineering unit Flot type Engineering unit Decimal point Zoom start Zoom end Copy settings	Energy calculation	kBtw/h kBtw/h	
			11.	

2.2 Selezionare l'unità per i totalizzatori.

Attivare la totalizzazione, selezionare l'unità e, se necessario, impostare il valore di soglia (taglio bassa portata) (i valori inferiori al valore di soglia non sono totalizzati).

Display/change unit set-up/add new unit				
Finished Unit set-up Extras				
🖬 🙊 🛠 😫 🖴 🛯 🖻	🚳 🖻 🗞 🕾 💱 😰			
Analog input 16	Totalization	Yes		
	Total. eng. unit	MBtu		
Totalization (active)	Threshold value	Area around zero point		
Maths 2	Threshold value	0	kBtu/h	
Maths 3				
			11.	

3. Configurare la visualizzazione.

Selezionare i valori e le modalità di visualizzazione delle informazioni sul display.

Display/change unit set-up/add new	/ unit		
Finished Unit set-up Extras			
日 🛠 🎝 🖓 😂 旭 🖻	👻 🗳 🗞 🔩 🗱 💈		
Maths 8	Identifier	Group 1	-
Maths 9 Maths 10	Save cycle	1min 💌]
Maths 11	Alarm cycle	1s 💌	1
Maths 12 ⊕- Linearization	Grid divisions	10]
Set points	Display blue	Flow]
Group 1 (active)	Display	Instantaneous value/state]
	Display black	Temperature warm]
Group 3 H Group 4	Display	Instantaneous value/state]
	Display red	Temperature cold]
Group 6 Group 7	Display	Instantaneous value/state]
	Display green	Math 1] –
⊕ Group 9	Display	Instantaneous value/state	
Outputs	Display violet	Math 1	J
Application	Display	Totalizer	
	Disnlay orange	Switched off	
			111

3.3.2 Esempio relativo alla quantità di calore/massa nel caso del vapore

 Impostare l'ingresso di portata, pressione e temperatura. Selezionare il segnale, immettere un nome per l'identificazione del canale, definire l'unità (v. Tabella 3.2) e impostare il campo di misura.

2. Configurare il calcolo dell'energia.

2.1 Aprire il canale matematico, selezionare il calcolo dell'energia o della massa, assegnare i sensori e le unità.

Se è necessario calcolare e visualizzare l'energia e la massa, copiare le impostazioni nel canale matematico 2 e selezionare "Calcolo della massa".

Display/change unit set-up/add new unit				
Finished Unit set-up Extras				
🛯 🖹 🛠 😫 🕾 🎒 🛤 🖗	b 🖻 🗞 🖳 👬 👂			
Analog input 16	Calculation active	Energy calculation		
⊡- Maths	Channel ident.	Math 1		
Maths 1 (active) Totalization (active)	Application	Steam heat quantity		
Maths 2	Flow	Flow		
Maths 3	Engineering unit	ft³/h		
Maths 5	Pressure	Pressure		
···· Maths 6	Engineering unit	psi (a)		
···· Maths 7 ···· Maths 8	Temperature steam	Temperature		
···· Maths 9	Engineering unit	۴		
···· Maths 10 ···· Maths 11	Plot type	Average		
Maths 12	Engineering unit	kBtu/h		
Linearization Set points	Decimal point	One (X,Y)		
⊡. Signal groups	Zoom start	0,0	kBtu/h	
Group 1 (active)	Zoom end	1000,0	kBtu/h	
Group 2 Group 3	Copy settings	No		
⊕ Group 4				

2.2 Selezionare l'unità per i totalizzatori.

Attivare l'autorizzazione, selezionare l'unità e, se necessario, impostare il valore di soglia (taglio bassa portata) (v. Esempio 3.2.2, n. 2.2).

- 2.3 Configurare il comportamento dell'allarme di vapore umido.
 - (Possibile solo se si utilizza l'ingresso di pressione e temperatura).

Attivare Setup unità/Expert, impostare la modalità di sicurezza in caso di allarme di vapore umido (arresto totalizzatore in caso di allarme di vapore umido o proseguimento del calcolo in condizioni di vapore saturo e proseguimento della totalizzazione, vale a dire che i totalizzatori continuano a funzionare normalmente. Stabilire se l'allarme di vapore umido deve essere segnalato tramite relè).

0 /			
Display/change unit set-up/add new	unit		- 🗆 🗙
Finished Unit set-up Extras			
日 涼 父 \$4 \$2 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	🐿 🖆 🗞 🕾 👬 👂		
- Energy 24.05	Wet steam alarm	Caturated steam calculation	
	wet steam alarm	Saturated steam calculation	
- Inputs	Fault switches	Relay 1 (Term. 11-13)	_
- Maths 1 (active)			
Totalization (active)			
Fault mode			
Maths 2			
Maths 3			
			//.

3. Configurare la visualizzazione.

Selezionare i valori e la modalità di visualizzazione del display (posizione: gruppi di segnali (v. esempio 3.2.2, n. 3).

3.3.3 Misura della portata con il metodo della pressione differenziale

Le misure di portata basate sul metodo della pressione differenziale (es. orifizio, tubo di Pitot) sono accurate solo nel punto previsto da progetto. Le variazioni di temperatura e pressione influiscono notevolmente sull'accuratezza. Le variazioni di pressione di 1 bar, ad esempio, possono provocare un errore di misura dell'11% con una pressione di progetto di 10 bar.

Pertanto, se si adotta questo metodo di misura, si consiglia di utilizzare un canale matematico per la compensazione della misura della massa e dell'energia. A questo scopo, è necessaria la scheda tecnica del punto di misura, con i dati seguenti:

- Pressione alle condizioni di progetto
- Temperatura alle condizioni di progetto
- Densità alle condizioni di progetto

Esempio: condizioni di progetto:

P(a): 10 bar – pressione assoluta T(a): 200 °C Densità(a): 4,85 kg/m³ Portata massima 10 ton/h

Configurazione passo a passo.

- 1. Scalare l'uscita del trasmettitore di pressione differenziale (PD) in base al volume di esercizio o massa, 10 ton/h (curva caratteristica con estrazione radice quadrata).
- Selezionare l'ingresso sul Graphic Data Manager e scalare in base al volume di esercizio, ad esempio m³/h. Se l'uscita del trasmettitore di pressione differenziale è scalata sulla massa come nell'esempio, il volume di esercizio deve essere calcolato alle condizioni di progetto. Esempio: 9,07 t/h*1000 : 4,85 kg/m³ = 1870,10 m³/h

(L'uscita del trasmettitore di pressione differenziale può rimanere scalata sulla massa).

- 3. Nel canale matematico (1-8), selezionare la misura della massa o dell'energia. Quindi configurare l'applicazione per il vapore. (v. Esempio 3.3.2)
- 4. Selezionare il canale matematico (9-12) e immettere la seguente formula (se applicabile, cambiare M1 passando al canale matematico selezionato al punto 3): M1*(P/P(a))^0,5*(T(a)/T)^0,5
 P: pressione di esercizio (misurata)
 Pa: pressione alle condizioni di progetto
 T: temperatura operativa (misurata)
 Ta: temperatura alle condizioni di progetto

Ta e T sono temperature assolute espresse in Kelvin, il che significa che potrebbe essere necessario modificare la formula per inserire la conversione della temperatura. Inoltre, occorre assicurarsi che le unità di pressione siano identiche (ad esempio, evitare di mescolare pressioni assolute e pressioni relative).

- a. Esempio: misura di temperatura in °F (misura della pressione assoluta in psi) $M1^*((P/10)^*(32+200^*1,8)/(32+T^*1,8))^0,5)$
- b. Esempio: misura di temperatura in °C (misura della pressione assoluta in bar) $M1^{*}((P/10)^{*}(200+273,15)/(T+273,15))^{0},5$

Come risultato si ottiene la portata massica o di energia compensata.

3.4 Bilanciamento (combinazione di applicazioni)

3.4.1 Verifica generale

Per bilanciare le masse o le energie o per calcolare i valori caratteristici si può utilizzare un canale matematico qualsiasi.

Esempio: bilanciamento di una caldaia a vapore.

- La quantità di calore del vapore è calcolata nel canale matematico 1.
- Il canale matematico è utilizzato per calcolare la quantità di calore dell'acqua (energia residua del flusso di condensa dell'impianto).

Si vuole ottenere:

l'energia restituita tra la linea d'ingresso del vapore e la linea di ritorno della condensa.

Soluzione:

aprire il canale matematico 3, selezionare l'editor di formule e sottrarre tra loro le quantità di energia (canale matematico 1 – canale matematico 2).

Imputs Formula: Kind of Signal: Math channel (MI) MI(1:1) Signal type: Intermediate value Channel: Math 1	
Figmula: Kind of Signal: Math channel (MI) MI(1;1) Signal type: Intermediate value Channel: Math 1	
MI(1;1) Signal type: Intermediate value Channet: Math 1	_
Channel: Math 1	
	•
From: Math 1	~
To; Math 1	-
Inputs Functions OK Cance	<u>;</u>
Analog In Standard Logic + · <	С
Digital In pi sin asin sum × / 7 8	9
Math log sqrt cos acos min () 4 5	6
exp x^y tan atan max 1 2	3
abs % mod rad grad avg Check Formula 0 ;	
ОК	Cancel

3.4.2 Monitoraggio delle caldaie a vapore

Le caldaie a vapore vengono monitorate per garantire la sicurezza degli impianti e ottimizzare i processi al fine di risparmiare.

Le variabili misurate utilizzate per il monitoraggio della sicurezza dell'impianto sono:

- Livello
- Pressione della caldaia
- Temperatura della caldaia

Variabili misurate e valori caratteristici per l'ottimizzazione del processo:

- Energia del flusso di vapore
- Energia del flusso di condensa
- Energia dell'acqua di alimentazione o acqua potabile
- Energia di scarico della caldaia (blowdown)
- Energia del carburante (es. gas naturale, olio combustibile)
- Energia, tenore d'ossigeno e temperatura del flusso di gas combustibile
- Portata massica dell'aria di combustione (ivi compresi tenore di O2 e temperatura)
- Analisi chimica: pH, ossigeno disciolto, conducibilità

Efficienza

Programmazione del Graphic Data Manager per calcolare l'efficienza della caldaia

Per calcolare l'efficienza in un canale matematico si utilizzano sempre i valori del totalizzatore (valori integrati). Un valore di efficienza istantaneo di per sé ha poco valore.

a) Sistema aperto

- Canale matematico 1 (M1): Quantità di calore del vapore
- Canale matematico 2 (M2): quantità di calore acqua di alimentazione
- Canale matematico 3 (M3): energia di combustione del gas naturale per la produzione del vapore*
- Canale matematico 4 (M4): calcolo dell'efficienza della caldaia

Formula (M4) = (M1-M2)/M3

b) Sistema chiuso (ritorno condensa)

- Canale matematico 1 (M1): quantità di calore del vapore
- Canale matematico 2 (M2): quantità di calore dell'acqua nella condensa
- Canale matematico 3 (M3): energia di combustione del gas naturale per la produzione del vapore*
- Canale matematico 4 (M4): calcolo dell'efficienza della caldaia

Formula (M4) = (M1-M2)/M3

c) Sistema chiuso che tiene conto dello scarico (blowdown) della caldaia

- M1: differenza di calore del vapore (flusso di vapore, T vapore, (P vapore), T acqua alimentazione
- M2: differenza di calore del vapore (flusso acqua di alimentazione, T vapore, T acqua alimentazione
- M3: perdita di energia causate dallo scarico (blowdown) della caldaia: (M2-M1)
- M4: energia di combustione del gas naturale per la produzione del vapore*
- M5: calcolo dell'efficienza della caldaia (M2/M4)

La perdita di energia causata dallo scarico (blowdown) della caldaia può anche essere calcolata per approssimazione con un'applicazione di differenza di calore.

Presupposto: massa scarico (blowdown) = massa acqua potabile

- M1: quantità di calore del vapore
- M2: quantità di calore dell'acqua nella condensa
- M3: perdita di energia causata dallo scarico (blowdown) della caldaia, differenza di calore dell'acqua (V, T acqua potabile; T, P vapore)
- M4: energia di combustione del gas naturale per la produzione del vapore*
- M5: calcolo dell'efficienza della caldaia

Formula (M5) = (M1-M2+M3)/M4

*La portata massica del gas naturale viene misurata dal misuratore di portata e trasmessa al Graphic Data Manager. Nel canale matematico 3, la portata del gas naturale viene convertita in energia (potere calorifico inferiore per gas naturale*portata massica del gas naturale).

3.5 Modalità di sicurezza

La modalità di sicurezza può essere configurata solo in modalità expert.

Le impostazioni relative alla modalità di sicurezza degli ingressi sono descritte al paragrafo 6.4 delle Istruzioni di funzionamento del Graphic Data Manager (su CD-ROM).

In caso di guasto, il calcolo dell'energia e della massa può proseguire con un valore sostitutivo oppure può essere invalidato.

Nelle applicazioni di vapore, quando viene raggiunta la temperatura di condensazione (allarme di vapore umido), viene determinato lo stato del vapore saturo utilizzando T e il flusso di calore. Il comportamento dei totalizzatori può essere definito in corrispondenza dell'opzione di menu "Modalità di sicurezza/allarme vapore umido":

- Arresto dell'integrazione (arresto dei totalizzatori)
- L'integrazione prosegue, ossia i totalizzatori continuano a funzionare (calcolo del vapore saturo)
4 Dati tecnici

	Acqua	Acqua/glicole	Vapore
Campo di misura	da 0 a 350°C	da -40 a 200°C	
Campo di misura per vapore surriscaldato			da 0 a 1000 bar da 0 a 800°C (da 32 a 1472°F)
Campo di misura per vapore saturo			da 0 a 165 bar da 0 a 350°C
Differenza di temperatura min.	0 °C		
Concentrazione		da 0 a 60 vol %	
Limiti di errore (ingressi universali)	da 3 a 20 °C < 1,0 % del v. mis. da 20 a 250 °C < 0,3 % del v. mis.		
Velocità di scansione	500 ms		
Standard di calcolo	IAPWS-IF 97	Funzioni polinomiali (incertezza di misura: max. 0,6 %)	IAPWS-IF 97

www.endress.com/worldwide

BA00266R/09/c4/01.11 71074241 FM9.0