# Safety Instructions # Proline Promass 40 Division 1 Ex documentation for the Operating Instructions according to FACTORY MUTUAL standards $\rightarrow \; \stackrel{\triangle}{=} \; 3$ Ex documentation for the Operating Instructions according to CANADIAN STANDARDS ASSOCIATION $\rightarrow \stackrel{\cong}{} 13$ XA00058D Proline Promass 40 ### Examples for markings according to FM and CSA: FM APPROVALS #### **Temperature Class** | sui | Maximum face temperat | ure | |-----|-----------------------|--------| | T1 | 842 °F | 450 °C | | T2 | 572 °F | 300 °C | | T2A | 536 °F | 280 °C | | T2B | 500 °F | 260 °C | | T2C | 446 °F | 230 °C | | T2D | 419 °F | 215 °C | | Т3 | 392 °F | 200 °C | | T3A | 356 °F | 180 °C | | ТЗВ | 329 °F | 165 °C | | T3C | 320 °F | 160 °C | | T4 | 275 °F | 135 °C | | T4A | 248 °F | 120 °C | | T5 | 212 °F | 100 °C | | Т6 | 185 °F | 85 °C | ### **Temperature Class** | Maximum surface temperature | | | | | | |-----------------------------|--------|--------|--|--|--| | T1 | 450 °C | 842 °F | | | | | T2 | 300 °C | 572 °F | | | | | T2A | 280 °C | 536 °F | | | | | T2B | 260 °C | 500 °F | | | | | T2C | 230 °C | 446 °F | | | | | T2D | 215 °C | 419 °F | | | | | Т3 | 200 °C | 392 °F | | | | | T3A | 180 °C | 356 °F | | | | | ТЗВ | 165 °C | 329 °F | | | | | T3C | 160 °C | 320 °F | | | | | T4 | 135 °C | 275 °F | | | | | T4A | 120 °C | 248 °F | | | | | T5 | 100 °C | 212 °F | | | | | Т6 | 85 °C | 185 °F | | | | | ٦ | Class | | Example: C | Class I, Division 1, Group ABCD | | | | | | |---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------|---------------------------------|--|--|--|--|--| | | I<br>II | Class I (Gas)<br>Class II (Dust)<br>Class III (Fibre) | | | | | | | | | | Division | | | | | | | | | | | 1 2 | Division 1<br>Division 2 | | | | | | | | | | Group | | | | | | | | | | | CSA / CSC | Gases, vapours and dust examples | Min. ignition temperature $[\mu J]$ | | | | | | | | | A | Acetylene, carbon disulfide (Class I) | 0.02 | | | | | | | | | В | Hydrogen, ethyl nitrate (Class I) | 0.02 | | | | | | | | | С | Ethylene, isoprene (Class I) | 0.06 | | | | | | | | | D | Acetone, ethane, benzene (Class I) | 0.18 | | | | | | | | | Е | Metallic powder (Class II) | | | | | | | | | | F | Coal dust (Class II) | | | | | | | | | | G | Mill dust (Class II) | | | | | | | | | | | Textile fibres (Class III) | | | | | | | | | | Type of Protection | on | | | | | | | | | | Explosionproof Intrinsically Safe Apparatus Associated Apparatus with Intrinsically Safe Connections Associated Nonincendive Field Wiring Apparatus Pressurized Associated Pressurization Systems/Components Nonincendive Dust-Ignitionproof Special Protection | | | | | | | | | A0005630-en 2 # Safety Instructions # Proline Promass 40 ## Division 1 ## Ex documentation This documentation is an integral part of the following Operating Instructions: ■ BA00061D, Operating Instruction, Proline Promass 40 ### **Table of Contents FM** | Special conditions | 4 | |------------------------------------------------------------------------------------------------------------|----| | General warnings | 4 | | Approvals | 5 | | Description of measuring system | 6 | | Nameplate | 6 | | Type code | 7 | | Temperature table compact version | 8 | | Design of measuring system | 8 | | Cable entries | 8 | | Cable specification | 8 | | Potential equalization | 8 | | Electrical connection | 9 | | Terminal assignment and connection data: Power supply | 9 | | Terminal assignment and connection data for signal circuits (intrinsically safe circuits) | 10 | | Terminal assignment and connection data for signal circuits (non-intrinsically safe circuits) $ \ldots .$ | 11 | | Service adapter | 12 | | Device fuse | 12 | | Technical Data | 12 | | Control Drawings | 12 | ### Special conditions - Install per National Electrical Code. Install intrinsically safe circuits per NEC ANSI/ NFPA 70 and ISA RP 12.6 respecting the explosion proof integrity of the enclosure. - Control room equipment shall not use or generate more than 250 V rms. - The device must be integrated into the potential equalization system. - For terminals No. 20 to No. 27 of the transmitter, only devices with ratings $U_m \le 250 \text{ V}$ and $I_m \le 500 \text{ mA}$ are allowed to be connected. - It is not permissible to connect the service adapter whilst the atmosphere is considered to be explosive. - Use of the devices is restricted to mediums against which the process-wetted materials are adequately resistant. - Class II Group G: The surface temperature of the apparatus cannot exceed 329 °F. - Transmitter enclosure G02 explosionproof for use in Class 1 Division 1 Groups A, B, C, D (seals not required) and dust-ignition proof for Class II, III Division 1 Groups E, F, G. - Sensor circuits intrinsically safe for Cl. I, II, III Div. 1 Group A, B, C, D, E, F, G except Promass E: DN 3" (sensor version Group C-D) which are only suitable for Cl. I, II, III Div. 1 Group C, D, E, F, G. (optionally, a version for Groups A and B is available). - Substitution of components may impair intrinsic safety. • Use supply wires suitable for 9°F above ambient temperature, but at least for 176 °F. ### General warnings - Installation, connection to the electricity supply, commissioning and maintenance of the devices must be carried out by qualified specialists trained to work on Ex-rated devices. - Compliance with national regulations relating to the installation of devices in potentially explosive atmospheres is mandatory, if such regulations exist. - Open the device only when it is de-energized (and after a delay of at least 10 minutes following shutdown of the power supply). - The housing of the Ex-rated transmitter can be turned in 90° steps. Whereas the non-Ex version has a bayonet adapter, however, the Ex version has a thread. Recesses for centering the worm screw are provided to prevent inadvertent movement of the transmitter housing. It is permissible to turn the transmitter housing through a maximum of 180° during operation (in either direction), without compromising explosion protection. After turning the housing the worm screw must be tightened again. - The screw cap has to be removed before the local display can be turned, and this must be done with the device de-energized (and after a delay of at least 10 minutes following shutdown of the power supply). ### Turning the transmitter housing - 1. Unscrew the grub screw. - 2. Rotate the transmitter housing cautiously clockwise until the end stop (end of the thread). - 3. Rotate the transmitter housing counter-clockwise (max. 360°) in the wanted position. - 4. Tighten the grub screw again. Fig. 1: Turning the transmitter housing ### Approvals ### General The system meets the fundamental health and safety requirements for the design and construction of devices and protective systems intended for use in potentially explosive atmospheres in accordance with the National Electrical Code. ### No. / approval type J.I. 3002554 ### Notified body FM: Factory Mutual Research ### Identification The identification of the system must contain the following specifications: - XP-IS-DIP / I, II, III / 1 / ABCDEFG / T6-T1, or XP-IS-DIP / I, II, III / 1 / CDEFG / T6-T1 The installation instructions for the safe use of the system must be observed $\rightarrow \stackrel{\triangle}{=} 4$ . # Description of measuring system The measuring system consists of a compact version: Transmitters and sensors form a mechanical unit. ### Nameplate The nameplates, which are mounted in a clearly visible position on the transmitter and sensor, contain all of the relevant information about the measuring system. Fig. 2: Example for nameplates of a transmitter and of a sensor - A Transmitter nameplate - B Sensor nameplate - 1 Transmitter or sensor type - 2 Order code and serial number - 2a Extended order code - 3 Power supply, frequency and power consumption - 4 Available inputs/outputs - 5 Space for additional information on special products - 6 Space for additional information - 7 Type of protection - 8 Space for notes, e.g. delays, etc. - 9 Ambient temperature range - 10 C-Tick symbol - 11 Space for notified body for quality assurance monitoring - 12 Label of notified body: Factory Mutual Research - 13 Associated Ex documentation - 14 Space for other approval specifications and certificates - 15 Calibration factor/zero point - 16 Nominal diameter/nominal pressure - 17 Lining material - 18 Fluid temperature range - 19 Nominal diameter device - 20 Flow direction ### Type code The type code describes the exact design and the equipment of the measuring system. It can be read on the nameplate of the transmitter and sensor and is structured as follows: ### Approvals (Pos. no. 13 in the type code) | * | Application/zone | |------|-------------------------------------------------------------------------------------------------------------------------------| | N, O | <ul> <li>Class I, Groups ABCD</li> <li>Class I, Zone 1, Group IIC</li> <li>Class II, Groups EFG</li> <li>Class III</li> </ul> | | P | <ul> <li>Class I, Groups CD</li> <li>Class I, Zone 1, Group IIB</li> <li>Class II, Groups EFG</li> <li>Class III</li> </ul> | ### Inputs/outputs (Pos. no. 18 in the type code) | * | Type of protection | | | | | | |------|-------------------------------|--|--|--|--|--| | A, D | non-intrisically safe outputs | | | | | | | S, T | Ex ia | | | | | | ### Note! For a detailed explanation of these values with regard to the outputs and inputs available, as well as a description of the associated terminal assignment and connection data: $\rightarrow \stackrel{\cong}{=} 10$ ff. ### Temperature table compact version Max. medium temperature [°F] for T1-T6 in relation to the maximum ambient temperature $T_a$ | | Nominal diameter [in] | <b>T</b> <sub>a</sub><br>[°F] | <b>T6</b> (185 °F) | <b>T5</b> (212 °F) | <b>T4A</b> (248 °F) | <b>T4</b> (275 °F) | <b>T3A</b> (356 °F) | <b>T2C</b> (446 °F) | <b>T2B</b> (500 °F) | <b>T1</b> (842 °F) | |-------|-----------------------|-------------------------------|--------------------|--------------------|---------------------|--------------------|---------------------|---------------------|---------------------|--------------------| | | 3/8" to 2" | +113 | 113 | 212 | 248 | 266 | 284 | 284 | 284 | 284 | | 4*E** | 1" to 2" | +122 | 122 | 212 | 248 | 266 | 284 | 284 | 284 | 284 | | 4 L | | +140 | _ | 212 | 248 | 266 | 284 | 284 | 284 | 284 | | | 3" | T140 | 140 | 167 | 203 | 230 | 284 | 284 | 284 | 284 | The minimum **medium temperature** is –40 °F. The minimum ambient temperature $\rm T_a$ to -4 °F. A version for an ambient temperature $\rm T_a$ to -40 °F is also optionally available. ### Design of measuring system Fig. 3: Design of the measuring system, compact/remote version - Connection compartment cover - Screw terminal for connecting to the potential equalization - see following section "Cable entries" ### Cable entries ① Cable entries for transmitter terminal compartment (XP version) power supply/communication cable. Choice of thread for cable entry: 1/2" NPT. Make sure that the XP cable glands/entries are secured to prevent working loose. ### Cable specification You can find information about the cable specification in the associated Operating Instructions. ### Potential equalization The transmitter must be safely integrated into the potential equalization via the screw terminal on the outside of the transmitter housing. Alternatively, the transmitter of the compact version as of serial number 4Axxxxxx000 can be integrated into the potential equalization via the pipeline as long as the pipeline provides a ground connection conforming to regulations. Note! Further information about potential equalization, screening and grounding can be found in the associated Operating Instructions. ### **Electrical connection** ### Connection compartment Transmitter housing (terminal assignment, connection data $\rightarrow \stackrel{\text{\tiny le}}{=} 9 \text{ ff.}$ ) ### 4 to 20 mA HART A0005611 Fig. 4: Electrical connections - a Power supply cable (terminal assignment, connection data $\rightarrow \stackrel{ all}{=} 9$ ) - b Signal cable (terminal assignment, connection data $\rightarrow \boxed{2}$ 9) - c Ground terminal for signal cable shield - d Ground terminal for protective ground - e Service adapter for connecting the service interface FXA193 (Fieldcheck, FieldCare) Terminal assignment and connection data: Power supply | All transmitters | 1 L (+) | 2 N (-) | | |----------------------------|--------------------------------------------------|-----------------------------------------------|--| | Designation | Supply | Protective earth | | | Functional values | AC: U = 8: AC: U = 2 DC: U = 1 Power consumption | Caution!<br>Observe the<br>grounding concepts | | | Intrinsically safe circuit | n | of the system! | | | U <sub>m</sub> | 260 | V AC | | Terminal assignment and connection data for signal circuits (intrinsically safe circuits) ### Note! The following tables contain values/specifications, which are dependent on the type code (type of measuring device). Please compare the following type code to the one shown on the nameplate of your measuring device. For a graphic representation of the electrical connections: $\rightarrow \mathbb{B}$ 9. ### Terminal assignment of transmitter 40\*\*\*-\*\*\*\*\*\*\*\*S+#\*\*# | T | Terminal no. (inputs/outputs) | | | | | | | | | |-----------------------|-------------------------------|--------|--------|--------|---------------------------------|--------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | Transmitter | 20 (+) | 21 (-) | 22 (+) | 23 (-) | 24 (+) | 25 (-) | 26 (+) | 27 (-) | | | Assignment | - | _ | _ | | Pulse/frequency output, passive | | | output HART,<br>active | | | Electric circuit | - | _ | - | _ | intrin | sically safe | intrin | sically safe | | | Safety-related values | - | - | - | - | | | 1) L <sub>o</sub> IIC/IIB | 21.8 V DC<br>90 mA<br>490 mW<br>4.1 mH/15 mH<br>150 nF/1160 nF<br>2 mH/10 mH<br>80 nF/300 nF<br>30 V DC <sup>2</sup><br>10 mA <sup>2</sup> )<br>0.3 W <sup>2</sup> )<br>negligible<br>6 nF | | | Functional values | - | - | - | _ | passive: 30 V DC / 250 mA | | galvanically is active: $0/4$ to $R_L < 400 \ \Omega$ $R_L \ HART \ge 2$ | 20 mA | | <sup>1)</sup> Permitted values if concentrated inductance and capacitance occur simultaneously. ### Terminal assignment of transmitter 40\*\*\*-\*\*\*\*\*\*\*T+#\*\*# | Transmitter | Terminal no. (inputs/outputs) | | | | | | | | |-----------------------|-------------------------------|--------|--------|--------|---------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------| | Transmitter | 20 (+) | 21 (-) | 22 (+) | 23 (-) | 24 (+) | 25 (-) | 26 (+) | 27 (-) | | Assignment | - | _ | | | | Pulse/frequency output,<br>passive | | output HART,<br>passive | | Electric circuit | - | - | | _ | intrin | sically safe | intrin | sically safe | | Safety-related values | - | - | | _ | $\begin{array}{c} U_i \\ I_i \\ P_i \\ L_i \\ C_i \end{array}$ | 30 V DC<br>500 mA<br>600 mW<br>negligible<br>6 nF | $\begin{array}{c} U_i \\ I_i \\ P_i \\ L_i \\ C_i \end{array}$ | 30 V DC<br>100 mA<br>1.25 W<br>negligible<br>6 nF | | Functional values | - | - | | _ | galvanically isolated, passive: 30 V DC / 250 mA Open Collector Full scale frequency 2 to 5000 Hz | | $\begin{array}{ll} \text{assive: 30 V DC / 250 mA} \\ \text{pen Collector} \\ \text{ill scale frequency} \end{array} \begin{array}{ll} \text{passive: 4 to 20 mA} \\ \text{voltage drop} \leq 9 \text{ V} \\ \text{R}_L < [(V_{p. supply} - 9 \text{ V}) \div \end{array}$ | | $<sup>^{2)}</sup>$ The interconnection must be assessed according to the valid construction provisions. Terminal assignment and connection data for signal circuits (non-intrinsically safe circuits) ### Note! The following tables contain values/specifications, which are dependent on the type code (type of measuring device). Please compare the following type code to the one shown on the nameplate of your measuring device. For a graphic representation of the electrical connections: $\rightarrow \blacksquare 9$ . ### Terminal assignment | Order | Terminal no. (inputs/outputs) | | | | | | | | | | |---------------------------------|-------------------------------|--------|--------------|--------|------------------------|--------|------------------------|--------|--|--| | characteristic "Inputs/outputs" | 20 (+) | 21 (-) | 22 (+) | 23 (-) | 24 (+) | 25 (-) | 26 (+) | 27 (-) | | | | A | - | _ | - | | Pulse/frequency output | | Current output<br>HART | | | | | D | Status | input | Relay output | | Pulse/frequency output | | Current output<br>HART | | | | ### Safety-related and functional values of signal circuits | Signal circuits | Functional values | Safety-related v | alues | |------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------| | Current output HART | galvanically isolated, active/passive can be selected: active: $0/4$ to $20$ mA $R_L < 700~\Omega,~R_L~HART \ge 250~\Omega$ passive: 4 to $20~mA$ $V_S = 18~to~30~V~DC,~R_i \ge 150~\Omega$ | intrinsically safe $U_m$ $I_m$ | = no<br>= 260 V<br>= 500 mA | | Pulse/frequency output | galvanically isolated, active/passive can be selected: active: 24 V DC / 25 mA (max. 250 mA during 20 ms) $R_L > 100 \Omega$ passive: 30 V DC / 250 mA Open Collector Full scale frequency 2 to 10 000 Hz ( $f_{max} = 12500 \text{ Hz}$ ) | | | | Relay output | galvanically isolated,<br>max. 30 V AC / 500 mA<br>max. 60 V DC / 100 mA | | | | Status input | galvanically isolated, 3 to 30 V DC $R_i = 5 \; k\Omega \label{eq:resolution}$ | | | ### Service adapter The service adapter is only used for connecting service interfaces approved by Endress+Hauser. ⚠ Warning! It is not permissible to connect the service adapter whilst the atmosphere is considered to be explosive. ### Device fuse ### ⚠ Warning! Only use the following fuse types that are mounted on the power unit board: - Voltage 20 to 55 V AC / 16 to 62 V DC: Fuse 2.0 A slow-blow, disconnect capacity 1500 A (Schurter, 0001.2503 or Wickmann, Standard Type 181 2.0 A) - Voltage 85 to 260 V AC: Fuse 0.8 A slow-blow, disconnect capacity 1500 A (Schurter, 0001.2507 or Wickmann, Standard Type 181 0.8 A) ### **Technical Data** #### **Dimensions** Please refer to the respective Technical Information for these dimensions: ■ Promass 40E → TI00055D ### Weight - The weight of the XP version is approx. 4.4 lbs greater than that of the standard version. - The weight of the XP version in stainless steel is approx. 20 lbs greater than that of the standard version. ### **Control Drawings** Endress+Hauser Reinach hereby declares that the product is in conformity with the requirements of the FACTORY MUTUAL standard. Note! The "Documentation/Important Information" folder provided with the measuring device contains a CD-ROM with all the Control Drawings. # Safety Instructions # Proline Promass 40 ## Division 1 ## **®** Ex documentation This documentation is an integral part of the following Operating Instructions: ■ BA00061D, Operating Instruction, Proline Promass 40 ### Table of Contents CSA | Special conditions | 16 | |-------------------------------------------------------------------------------------------------------------------------------------|----| | General warnings | 16 | | Approvals | 17 | | Description of measuring system | 18 | | Nameplate | 18 | | Type code | 19 | | Temperature table compact version | 20 | | Design of measuring system | 20 | | Cable entries | 20 | | Cable specification | 20 | | Potential equalization | 20 | | Electrical connection | 21 | | Terminal assignment and connection data: Power supply | 21 | | Terminal assignment and connection data for signal circuits (intrinsically safe circuits) | 22 | | $Terminal \ assignment \ and \ connection \ data \ for \ signal \ circuits \ (non-intrinsically \ safe \ circuits) \ \ldots \ldots$ | 23 | | Service adapter | 24 | | Device fuse | 24 | | Technical Data | 24 | | Control Drawings | 24 | ### Special conditions - Install per Canadian Electrical Code. - Control room equipment shall not use or generate more than 250 V rms. - The device must be integrated into the potential equalization system. - For terminals No. 20 to No. 27 of the transmitter, only devices with ratings $U_m \le 250 \text{ V}$ and $I_m \le 500 \text{ mA}$ are allowed to be connected. - It is not permissible to connect the service adapter whilst the atmosphere is considered to be explosive. - Use of the devices is restricted to mediums against which the process-wetted materials are adequately resistant. - Use supply wires suitable for 5 °C above ambient temperature, but least for 80 °C. - Transmitter enclosure G02 explosionproof for use in Class 1 Division 1 Groups A, B, C, D (seals not required) and dust-ignition proof for Class II, III Division 1 Groups E, F, G. - Sensor circuits intrinsically safe for Cl. I, II, III Div. 1 Group A, B, C, D, E, F, G except Promass E: DN 80 (sensor version Group C-D) which are only suitable for Cl. I, II, III Div. 1 Group C, D, E, F, G. (optionally, a version for Groups A and B is available) - Substitution of components may impair intrinsic safety. Use supply wires suitable for 5 °C above ambient temperature, but at least for 80 °C. ### General warnings - Installation, connection to the electricity supply, commissioning and maintenance of the devices must be carried out by qualified specialists trained to work on Ex-rated devices. - Compliance with national regulations relating to the installation of devices in potentially explosive atmospheres is mandatory, if such regulations exist. - Open the device only when it is de-energized (and after a delay of at least 10 minutes following shutdown of the power supply). - The housing of the Ex-rated transmitter can be turned in 90° steps. Whereas the non-Ex version has a bayonet adapter, however, the Ex version has a thread. Recesses for centering the worm screw are provided to prevent inadvertent movement of the transmitter housing. It is permissible to turn the transmitter housing through a maximum of 180° during operation (in either direction), without compromising explosion protection. After turning the housing the worm screw must be tightened again. - The screw cap has to be removed before the local display can be turned, and this must be done with the device de-energized (and after a delay of at least 10 minutes following shutdown of the power supply). ### Turning the transmitter housing - 1. Unscrew the grub screw. - 2. Rotate the transmitter housing cautiously clockwise until the end stop (end of the thread). - 3. Rotate the transmitter housing counter-clockwise (max. 360°) in the wanted position. - 4. Tighten the grub screw again. Fig. 5: Turning the transmitter housing ### Approvals ### General The system meets the fundamental health and safety requirements for the design and construction of devices and protective systems intended for use in potentially explosive atmospheres in accordance with the Canadian Electrical Code. ### No. / approval type 160686-1132623 ### Notified body CSA: Canadian Standard Association ### Identification The identification of the system must contain the following specifications: or - Class I, Groups ABCD - Class I, Zone 1, Group IIC - Class II, Groups EFG - Class III - Class I, Groups CD - Class I, Zone 1, Group IIB - Class II, Groups EFG - Class III The installation instructions for the safe use of the system must be observed $\rightarrow 16$ . # Description of measuring system The measuring system consists of a compact version: Transmitters and sensors form a mechanical unit. ### Nameplate The nameplates, which are mounted in a clearly visible position on the transmitter and sensor, contain all of the relevant information about the measuring system. Fig. 6: Example for nameplates of a transmitter and of a sensor - A Transmitter nameplate - B Sensor nameplate - 1 Transmitter or sensor type - 2 Order code and serial number - 2a Extended order code - 3 Power supply, frequency and power consumption - 4 Available inputs/outputs - 5 Space for additional information on special products - 6 Space for additional information - 7 Type of protection - 8 Space for notes, e.g. delays, etc. - 9 Ambient temperature range - 10 C-Tick symbol - 11 Space for notified body for quality assurance monitoring - 12 Label of notified body: Canadian Standards Association - 13 Associated Ex documentation - 14 Space for other approval specifications and certificates - 15 Calibration factor/zero point - 16 Nominal diameter/nominal pressure - 17 Lining material - 18 Fluid temperature range - 19 Nominal diameter device - 20 Flow direction ### Type code The type code describes the exact design and the equipment of the measuring system. It can be read on the nameplate of the transmitter and sensor and is structured as follows: ### Approvals (Pos. no. 13 in the type code) | * | Application/zone | |------|-------------------------------------------------------------------------------------------------------------------------------| | N, O | <ul> <li>Class I, Groups ABCD</li> <li>Class I, Zone 1, Group IIC</li> <li>Class II, Groups EFG</li> <li>Class III</li> </ul> | | P | <ul> <li>Class I, Groups CD</li> <li>Class I, Zone 1, Group IIB</li> <li>Class II, Groups EFG</li> <li>Class III</li> </ul> | ### Inputs/outputs (Pos. no. 18 in the type code) | * | Type of protection | | | | | |------------------------------------|--------------------|--|--|--|--| | A, D non-intrisically safe outputs | | | | | | | S, T | Ex ia | | | | | ### Note! For a detailed explanation of these values with regard to the outputs and inputs available, as well as a description of the associated terminal assignment and connection data: $\rightarrow \stackrel{\cong}{}$ 22 ff. ### Temperature table compact version Max. medium temperature [ $^{\circ}$ C] for T1-T6 in relation to the maximum ambient temperature $T_a$ | | Nominal diameter [mm] | T <sub>a</sub><br>[°C] | <b>T6</b> (85 °C) | <b>T5</b> (100 °C) | <b>T4A</b> (120 °C) | <b>T4</b> (135 °C) | <b>T3A</b> (180 °C) | <b>T2C</b> (230 °C) | <b>T2B</b> (260 °C) | <b>T1</b> (450 °C) | |-------|-----------------------|------------------------|-------------------|--------------------|---------------------|--------------------|---------------------|---------------------|---------------------|--------------------| | | 8 to 50 | +45 | 45 | 100 | 120 | 130 | 140 | 140 | 140 | 140 | | 4*E** | 25 to 50 | +50 | 50 | 100 | 120 | 130 | 140 | 140 | 140 | 140 | | 4 6 | 23 10 30 | +60 | _ | 100 | 120 | 130 | 140 | 140 | 140 | 140 | | | 80 | +00 | 60 | 75 | 95 | 110 | 140 | 140 | 140 | 140 | The minimum **medium temperature** is —40 °C. The minimum ambient temperature $T_a$ to $-20~^\circ\text{C}.$ A version for an ambient temperature $T_a$ to $-40~^\circ\text{C}$ is also optionally available. ### Design of measuring system Fig. 7: Design of the measuring system, compact/remote version - Connection compartment cover - Screw terminal for connecting to the potential equalization - see following section "Cable entries" ### Cable entries ① Cable entries for transmitter terminal compartment (XP version) power supply/communication cable. Choice of thread for cable entry: 1/2" NPT. Make sure that the XP cable glands/entries are secured to prevent working loose. ### Cable specification You can find information about the cable specification in the associated Operating Instructions. ### Potential equalization The transmitter must be safely integrated into the potential equalization via the screw terminal on the outside of the transmitter housing. Alternatively, the transmitter of the compact version as of serial number 4Axxxxxx000 can be integrated into the potential equalization via the pipeline as long as the pipeline provides a ground connection conforming to regulations. Note! Further information about potential equalization, screening and grounding can be found in the associated Operating Instructions. ### **Electrical connection** ### Connection compartment Transmitter housing (terminal assignment, connection data $\rightarrow$ $\stackrel{ }{ }$ 21 ff.) ### 4 to 20 mA HART A0005611 Fig. 8: Electrical connections - a Power supply cable (terminal assignment, connection data $\rightarrow \stackrel{ all}{=} 21$ ) - b Signal cable (terminal assignment, connection data $\rightarrow = 21$ ) - c Ground terminal for signal cable shield - d Ground terminal for protective ground - e Service adapter for connecting the service interface FXA193 (Fieldcheck, FieldCare) Terminal assignment and connection data: Power supply | All transmitters | 1 L (+) | 2 N (-) | | |----------------------------|--------------------------------------------------|-----------------------------------------|--| | Designation | Supply | Protective earth | | | Functional values | AC: U = 8: AC: U = 2 DC: U = 1 Power consumption | Caution! Observe the grounding concepts | | | Intrinsically safe circuit | n | of the system! | | | U <sub>m</sub> | 260 | | | Terminal assignment and connection data for signal circuits (intrinsically safe circuits) ### Note! The following tables contain values/specifications, which are dependent on the type code (type of measuring device). Please compare the following type code to the one shown on the nameplate of your measuring device. For agraphic representation of the electrical connections: $\rightarrow \stackrel{\text{\tiny le}}{=} 21$ . ### Terminal assignment of transmitter 40\*\*\*-\*\*\*\*\*\*\*\*S+#\*\*# | Tromamittan | Terminal no. (inputs/outputs) | | | | | | | | | |--------------------------|-------------------------------|--------|--------|---------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | Transmitter | 20 (+) | 21 (-) | 22 (+) | 23 (-) | 24 (+) | 25 (-) | 26 (+) | 27 (-) | | | Assignment | | | | Pulse/frequency output, passive | | Current output HART, active | | | | | Electric circuit | _ | | | _ | intrin | sically safe | intrin | sically safe | | | Safety-related<br>values | - | | - | - | $\begin{array}{c} U_i \\ I_i \\ P_i \\ L_i \\ C_i \end{array}$ | 30 V DC<br>500 mA<br>600 mW<br>negligible<br>6 nF | 1) L <sub>o</sub> IIC/IIB | 21.8 V DC<br>90 mA<br>490 mW<br>4.1 mH/15 mH<br>160 nF/1160 nF<br>2 mH/10 mH<br>80 nF/300 nF<br>30 V DC <sup>2)</sup><br>10 mA <sup>2)</sup><br>0.3 W <sup>2)</sup><br>negligible<br>6 nF | | | Functional values | _ | | - | _ | galvanically isolated, passive: 30 V DC / 250 mA Open Collector Full scale frequency 2 to 5000 Hz | | galvanically isolated, active: $0/4$ to $20$ mA $R_L < 400~\Omega$ $R_L$ HART $\geq 250~\Omega$ | | | <sup>1)</sup> Permitted values if concentrated inductance and capacitance occur simultaneously. ### Terminal assignment of transmitter 40\*\*\*-\*\*\*\*\*\*\*T+#\*\*# | Transmitter | Terminal no. (inputs/outputs) | | | | | | | | | |-----------------------|-------------------------------|--------|--------|--------|---------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--| | Transmitter | 20 (+) | 21 (-) | 22 (+) | 23 (-) | 24 (+) | 25 (-) | 26 (+) | 27 (-) | | | Assignment | - | _ | - | | Pulse/frequency output, passive | | Current output HART, passive | | | | Electric circuit | - | - | - | _ | intrin | sically safe | intrin | sically safe | | | Safety-related values | - | _ | | _ | $\begin{array}{c} U_i \\ I_i \\ P_i \\ L_i \\ C_i \end{array}$ | 30 V DC<br>500 mA<br>600 mW<br>negligible<br>6 nF | $\begin{array}{c} U_i \\ I_i \\ P_i \\ L_i \\ C_i \end{array}$ | 30 V DC<br>100 mA<br>1.25 W<br>negligible<br>6 nF | | | Functional values | - | - | | - | galvanically isolated, passive: 30 V DC / 250 mA Open Collector Full scale frequency 2 to 5000 Hz | | galvanically isolated, passive: 4 to 20 mA voltage drop $\leq$ 9 V $R_L < [(V_{p. supply} - 9 V) \div 25]$ | | | $<sup>^{2)}</sup>$ The interconnection must be assessed according to the valid construction provisions. Terminal assignment and connection data for signal circuits (non-intrinsically safe circuits) ### Note! The following tables contain values/specifications, which are dependent on the type code (type of measuring device). Please compare the following type code to the one shown on the nameplate of your measuring device. For a graphic representation of the electrical connections: $\rightarrow \triangleq 21$ . ### Terminal assignment | Order | Terminal no. (inputs/outputs) | | | | | | | | |---------------------------------|-------------------------------|---------|--------------|--------|------------------------|--------|------------------------|--------| | characteristic "Inputs/outputs" | 20 (+) | 21 (-) | 22 (+) | 23 (-) | 24 (+) | 25 (-) | 26 (+) | 27 (-) | | A | - | _ | - | | Pulse/frequency output | | Current output<br>HART | | | D | Status | s input | Relay output | | Pulse/frequency output | | ut Current output HART | | ### Safety-related and functional values of signal circuits | Signal circuits | Functional values | Safety-related values | |------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------| | Current output HART | galvanically isolated, active/passive can be selected:<br>active: 0/4 to 20 mA<br>$R_L < 700~\Omega,~R_L~HART \ge 250~\Omega$<br>passive: 4 to 20 mA<br>$V_S = 18~to~30~V~DC,~R_i \ge 150~\Omega$ | $\begin{array}{lll} \text{intrinsically safe} &=& \text{no} \\ U_m &=& 260 \text{ V} \\ I_m &=& 500 \text{ mA} \end{array}$ | | Pulse/frequency output | galvanically isolated, active/passive can be selected: active: $24 \text{ V DC} / 25 \text{ mA}$ (max. $250 \text{ mA}$ during $20 \text{ ms}$ ) $R_L > 100 \Omega$ passive: $30 \text{ V DC} / 250 \text{ mA}$ Open Collector Full scale frequency $2 \text{ to } 10 \text{ 000 Hz}$ ( $f_{max} = 12 \text{ 500 Hz}$ ) | | | Relay output | galvanically isolated,<br>max. 30 V AC / 500 mA<br>max. 60 V DC / 100 mA | | | Status input | galvanically isolated, 3 to 30 V DC $R_i = 5 \; k\Omega \label{eq:resolution}$ | | ### Service adapter The service adapter is only used for connecting service interfaces approved by Endress+Hauser. ⚠ Warning! It is not permissible to connect the service adapter whilst the atmosphere is considered to be explosive. ### Device fuse ### ⚠ Warning! Only use the following fuse types that are mounted on the power unit board: Voltage 20 to 55 V AC / 16 to 62 V DC: Fuse 2.0 A slow-blow, disconnect capacity 1500 A (Schurter, 0001.2503 or Wickmann, Standard Type 181 2.0 A) Voltage 85 to 260 V AC: Fuse 0.8 A slow-blow, disconnect capacity 1500 A (Schurter, 0001.2507 or Wickmann, Standard Type 181 0.8 A) ### **Technical Data** #### **Dimensions** Please refer to the respective Technical Information for these dimensions: ■ Promass 40E → TI00055D ### Weight - The weight of the XP version is approx. 2 kg greater than that of the standard version. - The weight of the XP version in stainless steel is approx. 9 kg greater than that of the standard version. ### **Control Drawings** Endress+Hauser Reinach hereby declares that the product is in conformity with the requirements of the CANADIAN STANDARDS ASSOCIATION. Note! The "Documentation/Important Information" folder provided with the measuring device contains a CD-ROM with all the Control Drawings. 24 www.endress.com/worldwide People for Process Automation