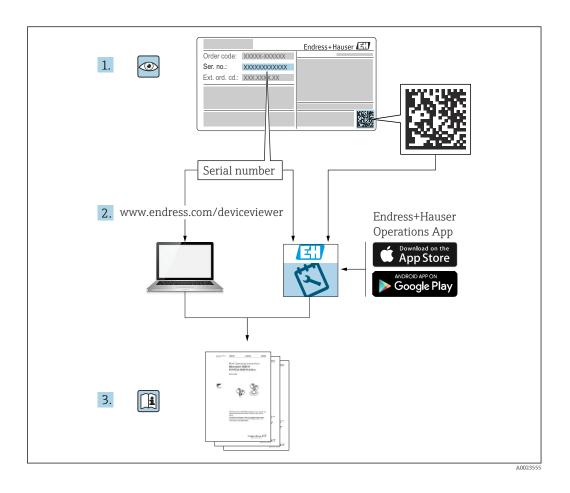
Инструкция по эксплуатации Nivotester FTL325P, 3- канальный


Вибрационный

Детектор уровня с входом ЧИМ и искробезопасной сигнальной цепью для подключения к датчикам Liquiphant и Soliphant

Содержание

1	О настоящем документе	4
1.1	Назначение документа	. 4
1.2	Символы	
1.3	Сопроводительная документация	5
2	Основные указания по технике	
	безопасности	6
2.1	Требования к персоналу	
2.2 2.3	Назначение	
2.3 2.4	Техника безопасности на рабочем месте Эксплуатационная безопасность	6 6
2.5	Безопасность изделия	7
2.6	IT-безопасность	7
3	Конструкция изделия	8
4	Приемка и идентификация	
	изделия	9
4.1	Приемка	. 9
4.2	Идентификация изделия	9
4.3	Хранение, транспортировка	10
5	Монтаж	11
5.1	Условия монтажа	11
5.2 5.3	Монтаж измерительного прибора Проверка после монтажа	11 13
ر.ر	Проверка пооте монтажа	1)
6	Электрическое подключение	14
6.1	Условия подключения	14
6.2 6.3	Подключение измерительного прибора Специальные инструкции по	14
ر.ں	подключению	16
6.4	Обеспечение степени защиты	16
6.5	Проверка после подключения	16
7	Опции управления	17
7.1	Концепция управления	17
7.2 7.3	Открытие лицевой панели	17 17
7.5 7.4	Элементы индикации	18
8	Ввод в эксплуатацию	19
8.1	Функциональная проверка	19
8.2 8.3	Настройка функций	19
2.2	системы	37
9	Диагностика и устранение	
-	неисправностей	38

10	Техническое обслуживание	38
10.1	График технического обслуживания	38
11	Ремонт	39
11.1 11.2 11.3 11.4	Общие сведения	39 39 39 40
12	Аксессуары	40
12.1	Защитный корпус, класс защиты IP66	40
13	Технические характеристики	41
13.1 13.2 13.3 13.4	Сетевое напряжение	41 41 41 42
Алф	авитный указатель	43

1 О настоящем документе

1.1 Назначение документа

В настоящем руководстве по эксплуатации содержатся все сведения, необходимые на различных этапах жизненного цикла прибора. Основные разделы перечислены ниже.

1.2 Символы

1.2.1 Символы техники безопасности

Λ ΟΠΑCΗΟ

Этот символ предупреждает об опасной ситуации. Если не предотвратить такую ситуацию, она приведет к серьезной или смертельной травме.

№ ОСТОРОЖНО

Этот символ предупреждает об опасной ситуации. Если не предотвратить эту ситуацию, она может привести к серьезной или смертельной травме.

№ ВНИМАНИЕ

Этот символ предупреждает об опасной ситуации. Если не предотвратить эту ситуацию, она может привести к травме легкой или средней степени тяжести.

УВЕДОМЛЕНИЕ

Этот символ содержит информацию о процедурах и других данных, которые не приводят к травмам.

1.2.2 Электротехнические символы

— Заземление

Заземленный зажим, который заземляется через систему заземления.

Защитное заземление (PE)

Клеммы заземления, которые должны быть подсоединены к заземлению перед выполнением других соединений. Клеммы заземления расположены на внутренней и наружной поверхностях прибора.

- → Выход
- Вход
- Ч Неисправность
- 🦎 Отсутствие неисправностей
- Сигнал предела

Светодиодные индикаторы (LED)

- Светодиод не горит
- 🔯 Светодиод горит
- 🗷 Светодиод мигает

1.2.3 Описание информационных символов и графических обозначений

Рекомендация

Указывает на дополнительную информацию.

- 📵 Ссылка на документацию
- 🖺 Ссылка на другой раздел
- 1., 2., 3. Серия шагов
- ▶ Результат отдельного этапа
- 1, 2, 3 ... Номера пунктов
- **А, В, С...** Вид
- 🖈 Взрывоопасная зона
- 🔉 Безопасная зона (невзрывоопасная зона)

1.3 Сопроводительная документация

- Для получения информации о соответствующей технической документации см. следующие источники:
 - W@M Device Viewer (www.endress.com/deviceviewer): введите серийный номер с заводской таблички:
 - *приложение Endress+Hauser Operations*: введите серийный номер, указанный на заводской табличке.

1.3.1 Стандартная документация

Техническое описание (TI)

Пособие по планированию: содержит технические характеристики для планирования и сведения об оформлении заказа.

Руководство по эксплуатации (ВА)

Монтаж и ввод в эксплуатацию: содержит все функции меню управления, необходимые для выполнения стандартной задачи измерения. Функции, выходящие за указанные рамки, не включены.

Краткое руководство по эксплуатации (КА)

Краткое руководство по получению первого измеренного значения: охватывает всю необходимую информацию от приемки изделия до электрического подключения.

1.3.2 Сопроводительная документация для различных приборов

В зависимости от заказанной версии прибора предоставляется дополнительная документация или отдельные документы. Строго соблюдайте инструкции, приведенные в соответствующей дополнительной документации. Сопроводительная документации является неотъемлемой частью документации по прибору.

Актуальные указания по технике безопасности прилагаются ко всем сертифицированным исполнениям прибора. При использовании прибора в опасной зоне необходимо соблюдать все требования, содержащиеся в указаниях по технике безопасности.

- Примеры: ATEX, NEPSI, INMETRO, контрольные или монтажные чертежи для исполнений прибора, сертифицированных по правилам FM, CSA и TIIS.
- Руководство по функциональной безопасности (SIL).

2 Основные указания по технике безопасности

2.1 Требования к персоналу

Для выполнения возложенных на него задач, например ввода в эксплуатацию и технического обслуживания, персонал должен соответствовать перечисленным ниже требованиям.

- Обученные специалисты должны обладать квалификацией, соответствующей конкретным функциям и задачам.
- ► Персонал должен получить разрешение на выполнение данных работ от руководства предприятия.
- ► Должен быть осведомлен о действующих нормах национального законодательства.
- Сотрудники должны прочитать и усвоить инструкции, приведенные в руководстве и сопроводительной документации.
- Персонал должен следовать инструкциям и соблюдать общие правила.

2.2 Назначение

- Только в качестве источника питания преобразователя.
- Только для датчиков предельного уровня производства компании Endress+Hauser с двухпроводным ЧИМ-сигналом.
- Допускается использование только изолированных инструментов.
- Допускается использование только оригинальных запасных частей.

2.2.1 Использование не по назначению

Изготовитель не несет ответственности за повреждения, вызванные неправильным использованием или использованием прибора не по назначению.

Отклонение условий применения от нормы может повлиять на уровень защиты. В этом случае корректное функционирование прибора не гарантируется.

2.3 Техника безопасности на рабочем месте

При работе с прибором необходимо соблюдать следующие правила.

► В соответствии с федеральным/национальным законодательством персонал должен использовать средства индивидуальной защиты.

2.4 Эксплуатационная безопасность

Опасность несчастного случая!

- ► Эксплуатируйте только такой прибор, который находится в надлежащем техническом состоянии, без ошибок и неисправностей.
- ▶ Ответственность за работу прибора без помех несет оператор.

Модификация прибора

Несанкционированное изменение конструкции прибора запрещено и может представлять непредвиденную опасность.

► Если, несмотря на все вышеизложенное, требуется внесение изменений в конструкцию прибора, обратитесь в компанию Endress+Hauser.

Ремонт

Условия длительного обеспечения эксплуатационной безопасности и надежности:

- ▶ выполняйте ремонт прибора только в том случае, если это явно разрешено;
- соблюдайте федеральное/национальное законодательство в отношении ремонта электрических приборов;
- используйте только оригинальные запасные части и комплектующие производства компании Endress+Hauser.

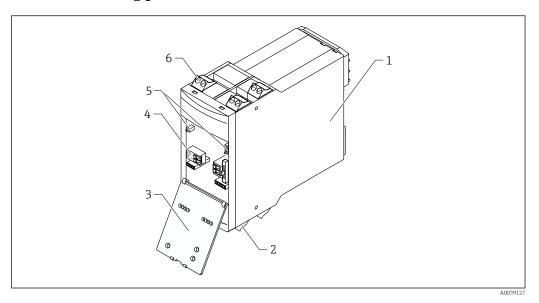
2.5 Безопасность изделия

Этот прибор был разработан и испытан в соответствии с современными стандартами эксплуатационной безопасности и в соответствии с передовой инженерной практикой. Прибор поставляется производителем в пригодном для безопасной эксплуатации состоянии.

2.5.1 Маркировка СЕ

Прибор соответствует всем нормативным требованиям применимых директив ЕС. Эти требования перечислены в декларации соответствия ЕС вместе с применимыми стандартами. Компания Endress+Hauser подтверждает успешное испытание прибора нанесением маркировки СЕ.

2.5.2 Соответствие ЕАС


Прибор соответствует всем нормативным требованиям применимых директив EAC. Эти директивы и действующие стандарты перечислены в заявлении о соответствии EAC. Компания Endress+Hauser подтверждает успешное испытание прибора нанесением маркировки EAC.

2.6 ІТ-безопасность

Необходимо обеспечить дополнительную защиту прибора и передачи данных в прибор и из него.

► Меры IT-безопасности, указанные в собственной политике безопасности владельца/оператора установки, должен реализовать сам владелец/оператор установки.

3 Конструкция изделия

🖪 1 Конструкция изделия

- 1 Корпус
- 2 Наружные клеммы
- 3 Откидная лицевая панель
- 4 Внутренние клеммы
- 5 Кнопка запуска теста, может работать даже, когда закрыта лицевая панель
- 6 Наружные клеммы

8

4 Приемка и идентификация изделия

4.1 Приемка

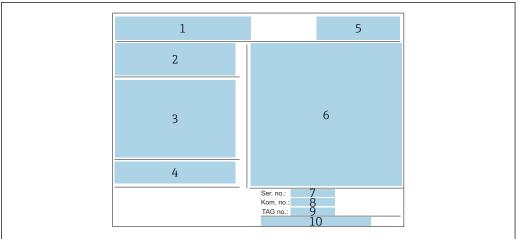
При приемке прибора проверьте следующее.

□ Совпадает ли код заказа в транспортной накладной с кодом заказа на наклейке прибора?

□ Не поврежден ли прибор?

□ Данные заводской таблички соответствуют информации в накладной?

□ Если это необходимо (см. данные на заводской табличке), предоставлены ли указания по технике безопасности, например XA?


Если какое-либо из этих условий не выполняется, обратитесь в региональное торговое представительство компании.

4.2 Идентификация изделия

Данные, указанные на заводской табличке прибора

- \blacktriangleright Введите серийный номер с заводской таблички в W@M Device Viewerwww.endress.com/deviceviewer.
 - □ Появится вся информация об измерительном приборе и список соответствующей технической документации.
- ▶ Введите серийный номер с заводской таблички в приложение Endress+Hauser Operations.
 - □ Появится вся информация об измерительном приборе и список соответствующей технической документации.

4.2.1 Заводская табличка

10039180

Заводская табличка

- 1 Логотип изготовителя, название изделия
- 2 сетевое напряжение;
- 3 Электрическое подключение
- 4 Температурные характеристики и ссылки на дополнительную документацию по безопасности (только для сертифицированных исполнений прибора)
- 5 Ссылка на сертификаты
- 6 Идентификация в соответствии с Директивой 94/9/EC и идентификация типа вэрывозащиты (только для сертифицированных исполнений прибора)
- 7 Серийный номер
- 8 Код заказа
- 9 Кодовое название
- 10 Адрес изготовителя

4.2.2 Адрес изготовителя

Endress+Hauser SE+Co. KG Hauptstraße 1 79689 Maulburg, Германия

Место изготовления: см. заводскую табличку.

4.3 Хранение, транспортировка

- Упаковывайте прибор так, чтобы защитить его от ударов.
 Наивысшую степень защиты обеспечивает оригинальная упаковка.
- Разрешенная температура хранения: −20 до +85 °C (−4 до +185 °F).

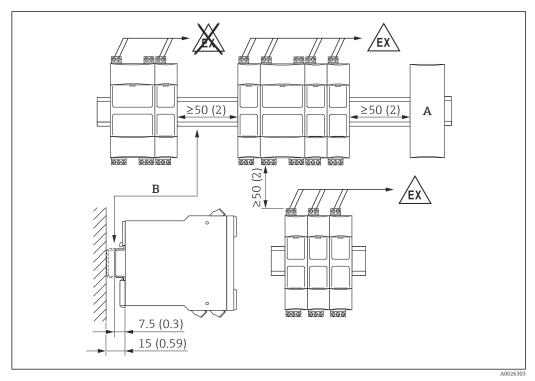
4.3.1 Транспортировка изделия до точки измерения

Транспортировать измерительный прибор к точке измерения следует в оригинальной упаковке.

10

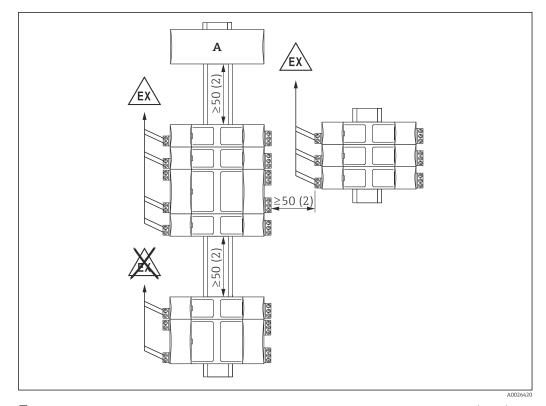
5 Монтаж

5.1 Условия монтажа


- При использовании вне взрывоопасной зоны монтируйте прибор в шкафу.
- Монтируйте прибор так, чтобы защитить его от атмосферного воздействия и ударов.

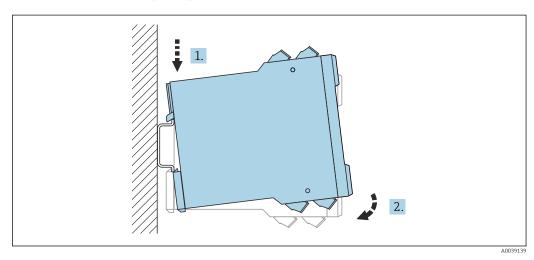
При эксплуатации вне помещений в регионах с теплом климатом берегите прибор от воздействия прямых солнечных лучей.

Выпускается защитный корпус (IP65), в котором можно разместить не более четырех одноканальных приборов Nivotester или двух трехканальных приборов Nivotester.

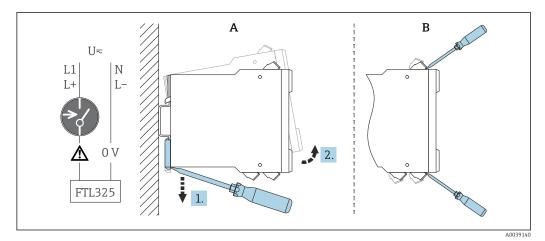

5.2 Монтаж измерительного прибора

5.2.1 Горизонтальный монтаж

- 🗉 3 Минимально допустимое расстояние, горизонтальный монтаж. Единица измерения мм (дюйм)
- А Подключение прибора другого типа
- B DIN-рейка в соответствии с EN 60715 TH35-7.5/15
- Горизонтальный монтаж обеспечивает лучшее рассеивание тепла, чем вертикальный.


5.2.2 Вертикальный монтаж

🖲 4 Минимально допустимое расстояние, вертикальный монтаж. Единица измерения мм (дюйм)


А Подключение прибора другого типа

5.2.3 Монтаж прибора

■ 5 Монтаж; DIN-рейка согласно стандарту EN 60715 TH35-7.5/EN 60715 TH35-15

5.2.4 Демонтаж прибора

№ 6 Демонтаж

- A Снимите с DIN-рейки
- В Для быстрой замены приборов без кабеля снимите клеммные колодки

5.3 Проверка после монтажа

- □ Не поврежден ли измерительный прибор (внешний осмотр)?
- \square Измерительный прибор соответствует техническим характеристикам точки измерения?

Например:

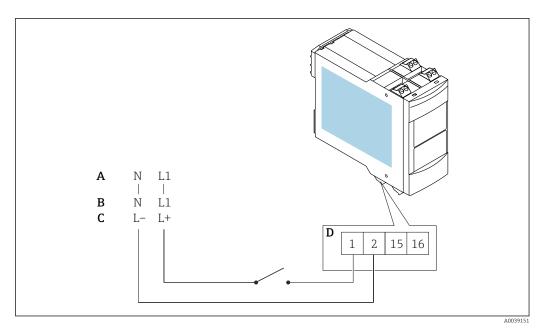
- сетевое напряжение;
- диапазон температур окружающей среды.
- \square Правильно ли выполнена маркировка и идентификация точки измерения (внешний осмотр)?
- \square Измерительный прибор в достаточной мере защищен от осадков и прямых солнечных лучей?

6 Электрическое подключение

6.1 Условия подключения

▲ ОСТОРОЖНО

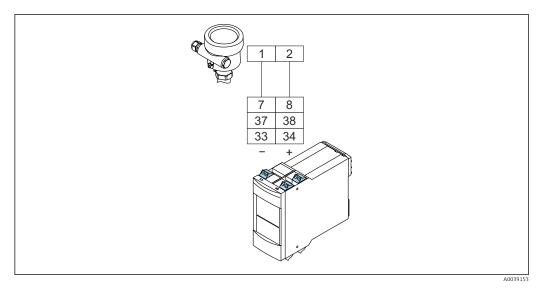
Опасность взрыва вследствие неисправного соединения


- Соблюдайте применимые национальные нормы.
- ▶ Соблюдайте спецификации, приведенные в указаниях по технике безопасности (XA).
- Удостоверьтесь в том, что сетевое напряжение соответствует напряжению, указанному на заводской табличке.
- ▶ Прежде чем выполнять подключение, отключите сетевое напряжение.
- ► При подключении к электросети общего пользования разместите вводное устройство прибора таким образом, чтобы оно было легко доступно рядом с прибором. Следует обозначить этот выключатель электропитания как разъединитель для прибора (МЭК/EN61010).

6.2 Подключение измерительного прибора

Съемные клеммные блоки имеют цветовое кодирование для разделения на искробезопасные клеммы и клеммы, не являющиеся искробезопасными. Это различие позволяет обеспечить безопасное подключение.

6.2.1 Компоновка клемм


🙌 Соблюдайте технические требования, указанные на заводской табличке прибора.

7 Компоновка клемм

- A U∼ 85 до 253 В пер. тока, 50/60 Гц
- $B = U \sim 20$ до 30 B nep. тока, 50/60 Γ ц
- D Сечение макс. 1,5 мм² (16 AWG)

6.2.2 Подключение датчика

🗷 8 Подключение датчика к преобразователю Nivotester

Подключаемые датчики:

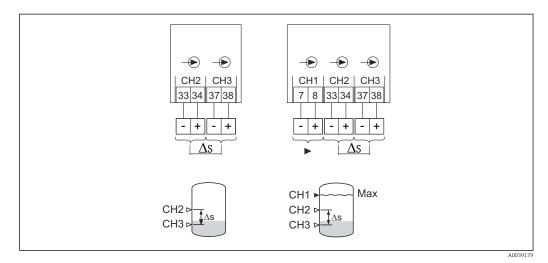
- Liquiphant FTL51B, FTL62, FTL64 с электронной вставкой FEL67;
- Liquiphant M FTL50(H), FTL51(H), FTL51C с электронной вставкой FEL57;
- Liquiphant S FTL70/71 с электронной вставкой FEL57;
- Soliphant M FTM50, FTM51, FTM52 с электронной вставкой FEM57.

Синие клеммные отсеки сверху для взрывоопасных зон.

- Двужильный соединительный кабель между преобразователем Nivotester и датчиком, например находящийся в открытой продаже измерительный кабель или жилы многожильного кабеля, использующегося для подключения измерительных приборов.
- Если возможны сильные электромагнитные помехи (например, от оборудования или радиоэлектронных приборов), необходимо использовать экранированный кабель. Подключайте экран только к клемме заземления датчика. Его подключение к детектору Nivotester запрещено.

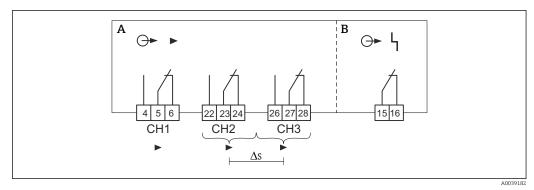
6.2.3 Подключение систем обработки сигналов и управления

Серые клеммные блоки снизу для общепромышленных зон: релейная функция зависит от уровня и режима безопасности; если прибор подключен к устройству с высокой индуктивностью (например, контактору или электромагнитному клапану), для защиты контактов реле необходимо использовать искрогаситель.


6.2.4 Подключение сетевого напряжения

Зеленый клеммный блок в нижней части

Предохранитель встроен в цепь питания. Использование дополнительного плавкого предохранителя не требуется. Прибор Nivotester оснащен защитой от обратной полярности.


6.3 Специальные инструкции по подключению

6.3.1 Подключение датчиков для двухточечного управления Δs

 $\blacksquare 9$ Подключение датчиков для двухточечного управления Δs

6.3.2 Подключение выходов

Подключение выходов

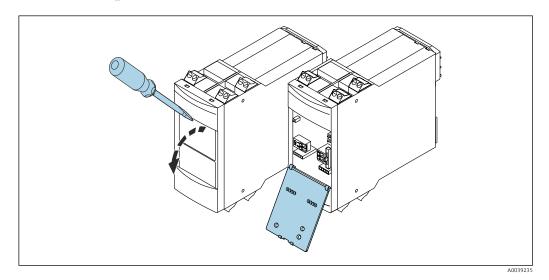
А Сигнал предельного уровня

В Сигнализация неисправности

6.4 Обеспечение степени защиты

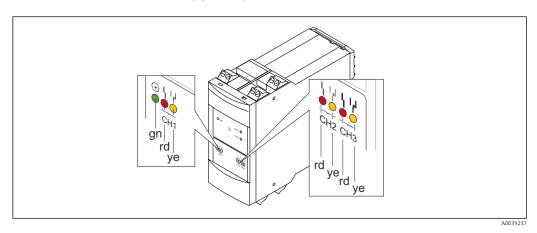
- IP20 (в соответствии с ГОСТ Р МЭК/EN 60529)
- IKO6 (в соответствии с ГОСТ Р МЭК/EN 62262)

6.5 Проверка после подключения


- □ Прибор и кабель не повреждены (внешний осмотр)?
- □ Кабели уложены должным образом (без натяжения)?
- □ Сетевое напряжение соответствует техническим характеристикам, указанным на заводской табличке?
- □ Нет обратной полярности, соблюдено ли назначение клемм?
- □ Кабели соответствуют техническим требованиям?
- □При необходимости: выполнено ли подключение защитного заземления?
- □При наличии сетевого напряжения: работает ли прибор и отображается ли экран?

7 Опции управления

7.1 Концепция управления


Настройка на месте эксплуатации с помощью DIL-переключателей, расположенных за складной передней панелью.

7.2 Открытие лицевой панели

🗷 11 Открытие лицевой панели

7.3 Элементы индикации


🖪 12 Nivotester, светодиоды

gn Зеленый светодиод: готовность к работе

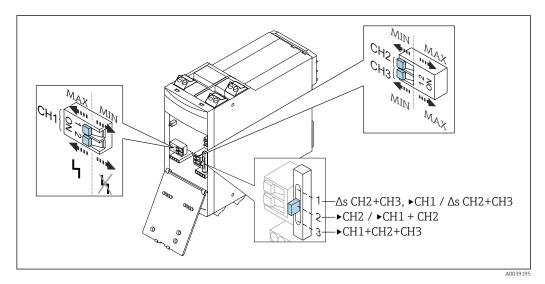
rd Один красный светодиодный индикатор на каждый канал: сигнал сбоя

уе Один желтый светодиодный индикатор: реле уровня включено

7.4 Элементы управления

10026422

🛮 13 Элементы управления


- 1 Кнопка запуска диагностики: может работать даже при закрытой лицевой панели
- 2 DIL-переключатель, один канал (CH1): отказоустойчивый режим MAX/MIN, включение/выключение функции обнаружения неисправностей
- 3 DIL-переключатель, 2-/3-канала (CH2+CH3): отказоустойчивый режим MAX/MIN
- 4 Переключение настроек режима (MODE)

8 Ввод в эксплуатацию

8.1 Функциональная проверка

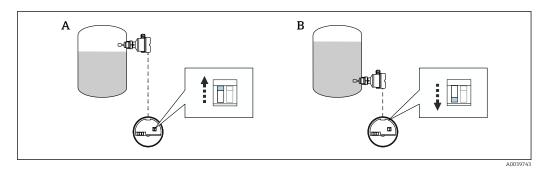
- □ Выполните проверку после монтажа.
- □ Выполните функциональную проверку.

8.2 Настройка функций

🗷 14 Переключатели для настройки функций

DIL-переключатель CH1

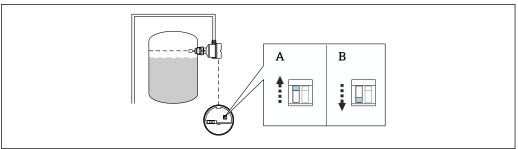
- Настройка отказоустойчивого режима MAX/MIN (1)
- Включение/выключение функции обнаружения неисправностей (2)


DIL-переключатель CH2 + CH3

- Настройка отказоустойчивого режима MIN/MAX для канала CH2
- Настройка отказоустойчивого режима MIN/MAX для канала СНЗ

Переключатель настроек режима (MODE)

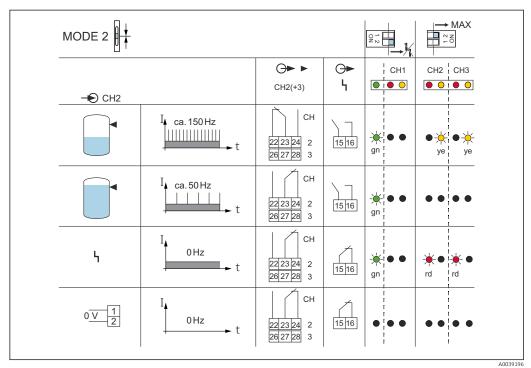
- (1) ∆s, например управление насосом
- (2) Два реле контроля уровня
- (3) Отдельные каналы
- Для условий применения, требующих обеспечения функциональной безопасности в соответствии со стандартом МЭК 61508 (SIL), см. руководство по функциональной безопасности. Для условий применения, соответствующих требованиям правил WHG, см. прилагаемые документы WHG.


8.2.1 Положение переключателя на электронной вставке

🛮 15 🛮 Положение переключателя на электронной вставке (FEL67)

- A MAX
- B MIN

При использовании датчика Liquiphant FTL51B, FTL62, FTL64 с электронной вставкой FEL67 датчик (уровень H) FEL67 должен быть отрегулирован на отказоустойчивый режим MAX, а датчик (уровень L) FEL67 должен быть отрегулирован на отказоустойчивый режим MIN.

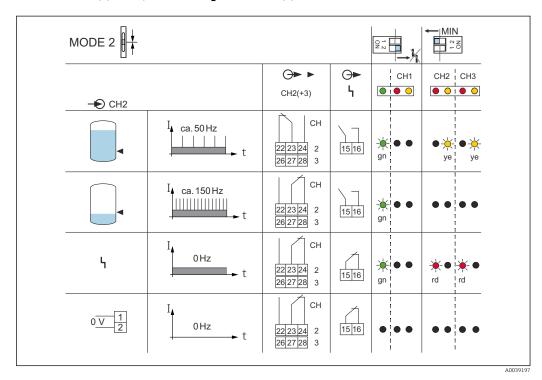

A00395

🗉 16 — Положение переключателя на электронной вставке FEL57

- А STD (стандартная комплектация)
- В ЕХТ (расширенная комплектация)
 - 🚹 Данная настройка имеет отношение только к функциональному испытанию.

20

8.2.2 CH2, отказоустойчивый режим MAX без функции индикации неисправности для канала CH1



🗉 17 Модель переключения и срабатывания сигналов

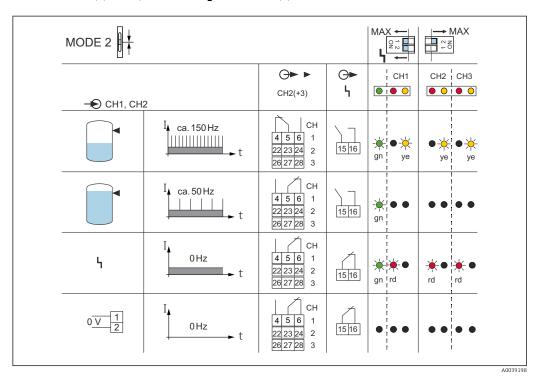
Обнаружение предельного уровня в одном резервуаре 1 датчик, подсоединенный к входному каналу 2 (клеммы 33 и 34) Релейные выходы выходных каналов 2 и 3 переключаются одновременно

Необходимо отключить функцию индикации неисправности для канала 1.

8.2.3 CH2, отказоустойчивый режим MIN без функции индикации неисправности для канала CH1

🗷 18 Модель переключения и срабатывания сигналов

Обнаружение предельного уровня в одном резервуаре

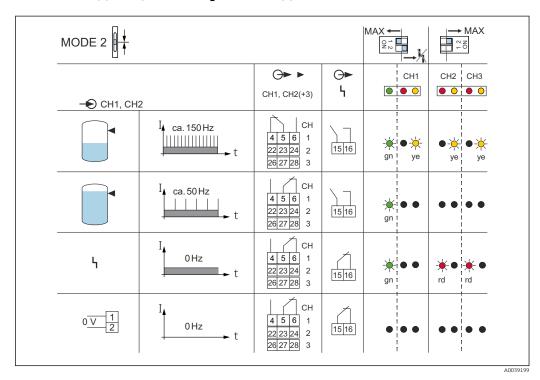

1 датчик, подсоединенный к входному каналу 2 (клеммы 33 и 34)

Релейные выходы выходных каналов 2 и 3 переключаются одновременно

Необходимо отключить функцию индикации неисправности для канала 1.

22

8.2.4 CH1 + CH2, отказоустойчивый режим MAX с функцией индикации неисправности для канала CH1


🖪 19 🛮 Модель переключения и срабатывания сигналов

Обнаружение предельного уровня в двух резервуарах

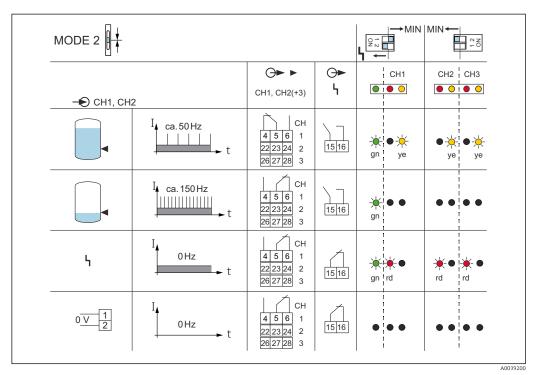
- 1 датчик, подсоединенный к входному каналу 1 (клеммы 7 и 8). Релейные выходы выходного канала 1 переключаются в соответствии с состоянием входного канала 1.
- 1 датчик, подсоединенный к входному каналу 2 (клеммы 33 и 34). Релейные выходы выходных каналов 2 и 3 переключаются одновременно в соответствии с состоянием входного канала 2.

Функция индикации неисправности для входных каналов 1 и 2 включена.

8.2.5 CH1 + CH2, отказоустойчивый режим MAX без функции индикации неисправности для канала CH1

🗉 20 🛮 Модель переключения и срабатывания сигналов

Обнаружение предельного уровня в двух резервуарах


- 1 датчик, подсоединенный к входному каналу 1 (клеммы 7 и 8)
 Релейный выход канала 1 переключается в соответствии с состоянием входного канала 1
- 1 датчик, подсоединенный к входному каналу 2 (клеммы 33 и 34) Релейные выходы выходных каналов 2 и 3 переключаются одновременно в соответствии с состоянием входного канала 2

Функция индикации неисправности для входного канала 1 выключена.

Функция индикации неисправности для входного канала 2 включена.

24

8.2.6 CH1 + CH2, отказоустойчивый режим MIN с функцией индикации неисправности для канала CH1

🗷 21 Модель переключения и срабатывания сигналов

Обнаружение предельного уровня в двух резервуарах

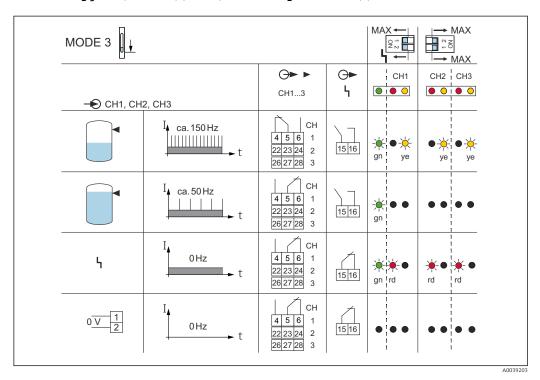
- 1 датчик, подсоединенный к входному каналу 1 (клеммы 7 и 8). Релейные выходы выходного канала 1 переключаются в соответствии с состоянием входного канала 1.
- 1 датчик, подсоединенный к входному каналу 2 (клеммы 33 и 34). Релейные выходы выходных каналов 2 и 3 переключаются одновременно в соответствии с состоянием входного канала 2.

Функция индикации неисправности для входного канала 1 включена.

8.2.7 CH1 + CH2, отказоустойчивый режим MIN без функции индикации неисправности для канала CH1

🗷 22 Модель переключения и срабатывания сигналов

Обнаружение предельного уровня в двух резервуарах

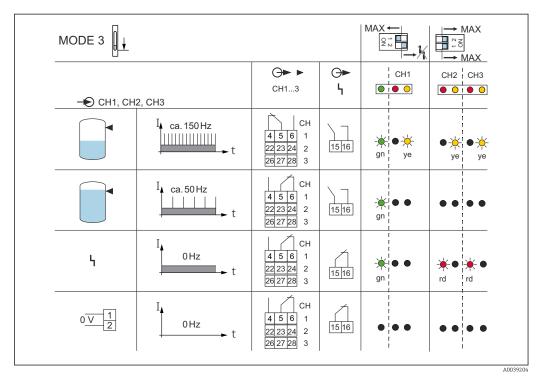

- 1 датчик, подсоединенный к входному каналу 1 (клеммы 7 и 8)
 Релейный выход канала 1 переключается в соответствии с состоянием входного канала 1
- 1 датчик, подсоединенный к входному каналу 2 (клеммы 33 и 34)
 Релейные выходы выходных каналов 2 и 3 переключаются одновременно в соответствии с состоянием входного канала 2

Функция индикации неисправности для входного канала 1 выключена.

Функция индикации неисправности для входного канала 2 включена.

26

8.2.8 CH1 + CH2 + CH3, отказоустойчивый режим MAX с функцией индикации неисправности для канала CH1


🗷 23 Модель переключения и срабатывания сигналов

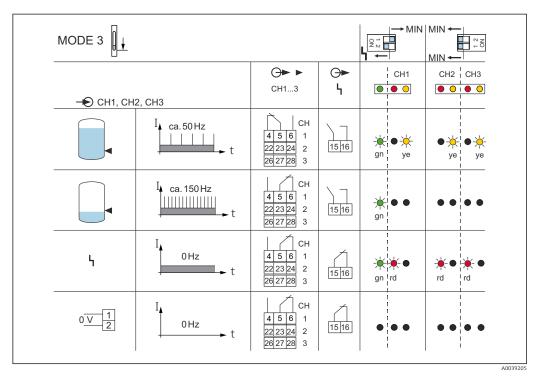
Обнаружение предельного уровня в трех резервуарах

- 1 датчик, подсоединенный к входному каналу 1 (клеммы 7 и 8). Релейный выход канала 1 переключается в соответствии с состоянием входного канала 1.
- 1 датчик, подсоединенный к входному каналу 2 (клеммы 33 и 34). Релейный выход канала 2 переключается в соответствии с состоянием входного канала 2.
- 1 датчик, подсоединенный к входному каналу 3 (клеммы 37 и 38). Релейный выход канала 3 переключается в соответствии с состоянием входного канала 3

Функция индикации неисправности для входных каналов 1, 2 и 3 включена.

8.2.9 CH1 + CH2 + CH3, отказоустойчивый режим MAX без функции индикации неисправности для канала CH1

🗷 24 🛾 Модель переключения и срабатывания сигналов

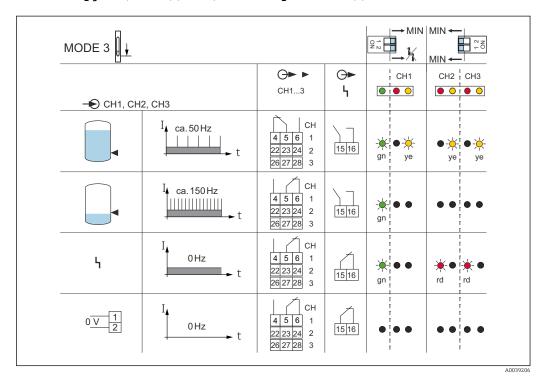

Обнаружение предельного уровня в трех резервуарах

- 1 датчик, подсоединенный к входному каналу 1 (клеммы 7 и 8) Релейный выход канала 1 переключается в соответствии с состоянием входного канала 1
- 1 датчик, подсоединенный к входному каналу 2 (клеммы 33 и 34) Релейный выход канала 2 переключается в соответствии с состоянием входного канала 2
- 1 датчик, подсоединенный к входному каналу 3 (клеммы 37 и 38) Релейный выход канала 3 переключается в соответствии с состоянием входного канала 3

Функция индикации неисправности для входного канала 1 выключена.

Функция индикации неисправности для входных каналов 1, 2 и 3 включена.

8.2.10 CH1 + CH2 + CH3, отказоустойчивый режим MIN с функцией индикации неисправности для канала CH1


🗷 25 Модель переключения и срабатывания сигналов

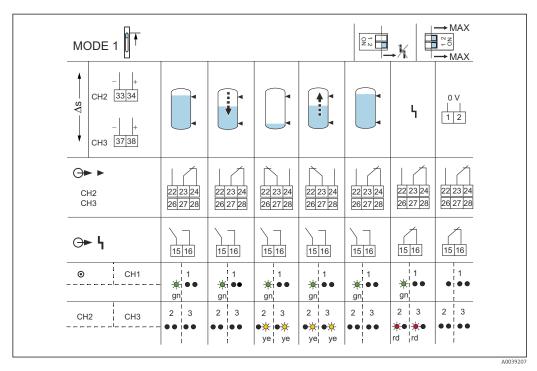
Обнаружение предельного уровня в трех резервуарах

- 1 датчик, подсоединенный к входному каналу 1 (клеммы 7 и 8). Релейные выходы выходного канала 1 переключаются в соответствии с состоянием входного канала 1.
- 1 датчик, подсоединенный к входному каналу 2 (клеммы 33 и 34). Релейные выходы выходного канала 2 переключаются в соответствии с состоянием входного канала 2.
- 1 датчик, подсоединенный к входному каналу 3 (клеммы 37 и 38).
 Релейные выходы выходного канала 3 переключаются в соответствии с состоянием входного канала 3.

Функция индикации неисправности для входных каналов 1, 2 и 3 включена.

8.2.11 CH1 + CH2 + CH3, отказоустойчивый режим MAX без функции индикации неисправности для канала CH1

🗷 26 Модель переключения и срабатывания сигналов


Обнаружение предельного уровня в трех резервуарах

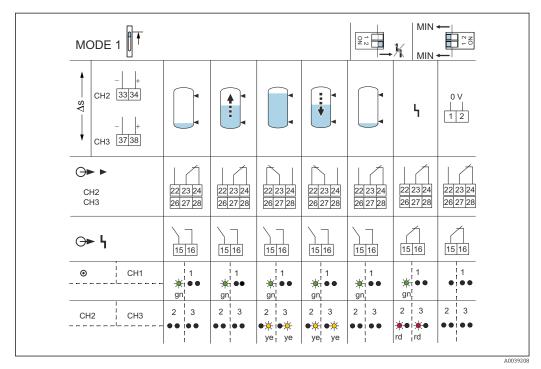
- 1 датчик, подсоединенный к входному каналу 1 (клеммы 7 и 8) Релейный выход канала 1 переключается в соответствии с состоянием входного канала 1
- 1 датчик, подсоединенный к входному каналу 2 (клеммы 33 и 34) Релейный выход канала 2 переключается в соответствии с состоянием входного канала 2
- 1 датчик, подсоединенный к входному каналу 3 (клеммы 37 и 38) Релейный выход канала 3 переключается в соответствии с состоянием входного канала 3

Функция индикации неисправности для входного канала 1 выключена.

Функция индикации неисправности для входных каналов 2 и 3 включена.

8.2.12 CH2 + CH3 (Δs), отказоустойчивый режим MAX без функции индикации неисправности для канала CH1

🗷 27 Модель переключения и срабатывания сигналов


Δs, например управление насосом для резервуара

- 1 датчик (уровень Н) подключен к входному каналу 2 (клеммы 33 и 34)
- 1 датчик (уровень L) подключен к входному каналу 3 (клеммы 37 и 38). Релейные выходы выходных каналов 2 и 3 переключаются одновременно $\rightarrow \ \blacksquare \ 27, \ \blacksquare \ 31.$

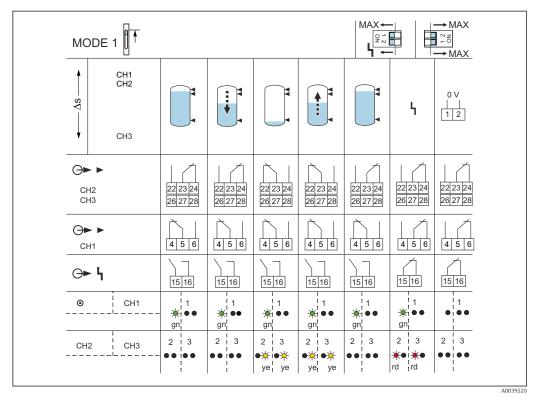
Благодаря этому, например, насос включается при уровне L и выключается при уровне H.

Необходимо отключить функцию индикации неисправности для канала 1.

8.2.13 CH2 + CH3 (Δs), отказоустойчивый режим MIN без функции индикации неисправности для канала CH1

🗷 28 Модель переключения и срабатывания сигналов

Δs, например управление насосом для резервуара


- 1 датчик (уровень Н) подключен к входному каналу 2 (клеммы 33 и 34)
- 1 датчик (уровень L) подключен к входному каналу 3 (клеммы 37 и 38).
 Релейные выходы выходных каналов 2 и 3 переключаются одновременно
 № 28, 월 32.

Благодаря этому, например, насос включается при уровне L и выключается при уровне H.

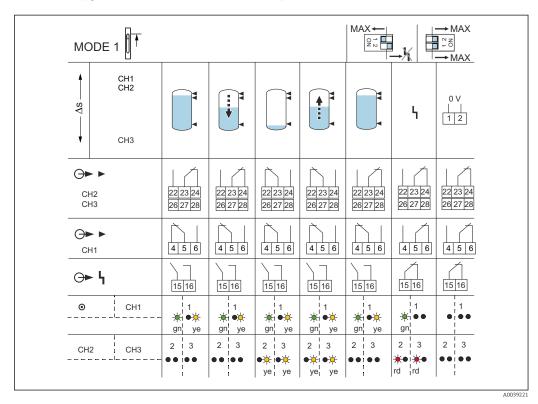
Необходимо отключить функцию индикации неисправности для канала 1.

32

8.2.14 CH2 - CH3 (Δs) + CH1, отказоустойчивый режим MAX с функцией индикации неисправности для канала CH1

🗷 29 Модель переключения и срабатывания сигналов

Δs, например управление насосом для одного резервуара и дополнительная защита от перелива (уровень HH):


- 1 датчик для защиты от перелива (уровень НН) подключен в качестве входного канала 1 (клеммы 7 и 8);
- 1 датчик (уровень Н при управлении насосом) подключен к входному каналу 2 (клеммы 33 и 34);
- 1 датчик (уровень L при управлении насосом) подключен к входному каналу 3 (клеммы 37 и 38).

Релейные выходы выходных каналов 2 и 3 переключаются одновременно \rightarrow 29, \cong 33. Благодаря этому, например, насос включается при уровне L и выключается при уровне H.

Релейный выход 1 не переключается, пока сигнал уровня НН не будет зарегистрирован во входном канале 1.

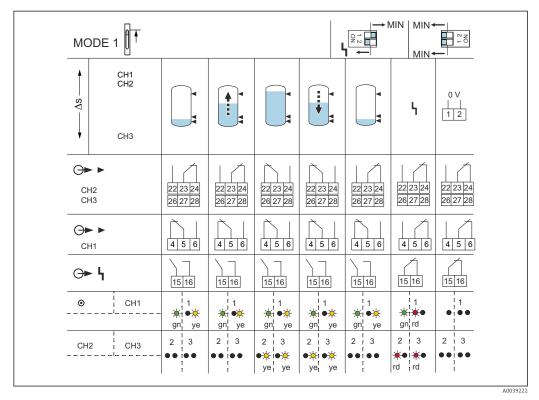
Функция индикации неисправности для входных каналов 1, 2 и 3 включена.

8.2.15 CH2 + CH3 (Δs) + CH1, отказоустойчивый режим МАХ без функции индикации неисправности для канала CH1

🗷 30 Модель переключения и срабатывания сигналов

Δs, например управление насосом для резервуара и дополнительная защита от перелива (уровень HH):

- 1 датчик для защиты от перелива (уровень HH) подключен к входному каналу 1 (клеммы 7 и 8)
- 1 датчик (уровень Н при управлении насосом) подключен к входному каналу 2 (клеммы 33 и 34)
- 1 датчик (уровень L при управлении насосом) подключен к входному каналу 3 (клеммы 37 и 38).


Релейные выходы выходных каналов 2 и 3 переключаются одновременно $\rightarrow \blacksquare$ 30, \blacksquare 34. Благодаря этому, например, насос включается при уровне L и выключается при уровне H. D

Релейный выход 1 не переключается, пока сигнал уровня НН не будет зарегистрирован на входном канале 1.

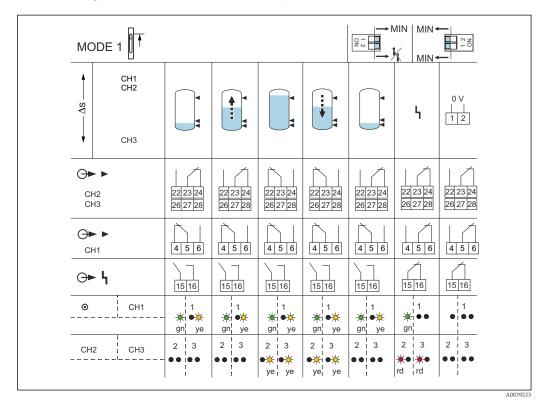
Функция индикации неисправности для входного канала 1 выключена.

Функция индикации неисправности для входных каналов 2 и 3 включена.

8.2.16 CH2 - CH3 (Δs) + CH1, отказоустойчивый режим MIN с функцией индикации неисправности для канала CH1

🗷 31 Модель переключения и срабатывания сигналов

Δs, например, управление насосом для одного резервуара и дополнительное обнаружение минимального уровня (уровень LL):


- 1 датчик обнаружения минимального уровня (уровень LL) подключен к входному каналу 1 (клеммы 7 и 8);
- 1 датчик (уровень Н при управлении насосом) подключен к входному каналу 2 (клеммы 33 и 34);
- 1 датчик (уровень L при управлении насосом) подключен к входному каналу 3 (клеммы 37 и 38).

Релейные выходы выходных каналов 2 и 3 переключаются одновременно $\rightarrow \blacksquare$ 31, \blacksquare 35. Благодаря этому, например , насос включается при уровне H и выключается при уровне L.

Релейный выход 1 не переключается, пока сигнал уровня LL не будет зарегистрирован во входном канале 1.

Функция индикации неисправности для входных каналов 1, 2 и 3 включена.

8.2.17 CH2 + CH3 CH1(Δs), отказоустойчивый режим MIN без функции индикации неисправности для канала CH1

🗷 32 Модель переключения и срабатывания сигналов

Δs, например управление насосом для резервуара и дополнительное обнаружение минимального уровня (уровень LL)

- 1 датчик для обнаружения минимального уровня (уровень LL) подключен к входному каналу 1 (клеммы 7 и 8)
- 1 датчик (уровень H при управлении насосом) подключен к входному каналу 2 (клеммы 33 и 34)
- 1 датчик (уровень L при управлении насосом) подключен к входному каналу 3 (клеммы 37 и 38).

Релейные выходы выходных каналов 2 и 3 переключаются одновременно → ■ 32, ■ 36. Благодаря этому, например, насос включается при уровне L и выключается при уровне H. Релейный выход 1 не переключается, пока сигнал уровня LL не будет зарегистрирован во входном канале 1.

Функция индикации неисправности для входного канала 1 выключена.

Функция индикации неисправности для входных каналов 2 и 3 включена.

8.3 Функциональный тест измерительной системы

Функциональный тест измерительной системы без влияния на уровень среды:

- функциональный тест датчика Liquiphant M/S FTL50/51/50H/51H/51C; FTL70/71 с электронной вставкой FEL57, см. KA00147F;
- функциональный тест датчика Liquiphant FTL51B, FTL62, FTL64 с электронной вставкой FEL67 в соответствии с уровнем полноты функциональной безопасности SIL и WHG (закон о водных ресурсах, Германия).

См. руководство по функциональной безопасности и сертификат WHG.

- Действующие на данный момент сертификаты, разрешения и другие документы можно посмотреть: на сайте Endress+Hauser: www.endress.com → Загрузки.
- В случае сбоя электропитания самодиагностика запускается автоматически. Учитывайте ее влияние на работу системы. При необходимости настройте задержку переключения.

9 Диагностика и устранение неисправностей

Не переключается

 Возможная причина: отсутствует сетевое напряжение (не горит зеленый светодиод).

Способ устранения: проверьте наличие сетевого напряжения.

- Причина: неисправна электроника.
 - Способ устранения: замените преобразователь Nivotester.
- Причина: спаянные контакты (после короткого замыкания).
 Способ устранения: замените преобразователь Nivotester; вставьте предохранитель в контактную цепь.
- Причина: неисправен датчик.
 Способ устранения: замените датчик.

Переключается неверно

Возможная причина: неверная настройка переключателя преобразователя Nivotester для срабатывания сигнала предельного уровня.

Способ устранения: правильно настройте переключатель под лицевой панелью преобразователя Nivotester.

Непрерывный сигнал неисправности

- Возможная причина: короткое замыкание или отсоединение сигнальной цепи от патчика.
 - Способ устранения: проверьте сигнальную цепь.
- Возможная причина: неисправна электроника датчика.
 Способ устранения: замените электронику.
- Возможная причина: неисправен преобразователь Nivotester.
 Способ устранения: замените преобразователь Nivotester.

Неверное переключение после сбоя электропитания

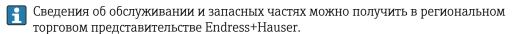
Возможная причина: электронная вставка, модель поведения во время проверки при запуске (испытание).

Способ устранения: проверьте модель переключения на электронной вставке. Заблокируйте управление системой после сбоя электропитания примерно на 45 секунд.

10 Техническое обслуживание

10.1 График технического обслуживания

Как правило, каких-либо особых работ по техническому обслуживанию не требуется.


11 Ремонт

11.1 Общие сведения

11.1.1 Принцип ремонта

Принцип ремонта компании Endress+Hauser:

- измерительные приборы имеют модульную конструкцию;
- заказчики имеют возможность выполнять ремонт приборов.

11.1.2 Ремонт приборов с сертификатами взрывозащиты

▲ ОСТОРОЖНО

Ограничение электрической безопасности в результате некорректного подключения!

Опасность взрыва!

- ▶ Только специалисты сервисного центра Endress+Hauser имеют право выполнять ремонт приборов с сертификатами взрывозащиты.
- ► Требуется соблюдение действующих отраслевых стандартов и национального законодательства в отношении взрывоопасных зон, указаний по технике безопасности и сертификатов.
- ▶ Используйте только оригинальные запасные части Endress+Hauser.
- ▶ Учитывайте обозначение прибора, указанное на заводской табличке. Для замены могут использоваться только аналогичные детали.
- ▶ Проводить ремонт необходимо строго в соответствии с инструкциями.
- ▶ Только специалисты сервисного центра Endress+Hauser имеют право вносить изменения в конструкцию сертифицированного прибора и модифицировать его до уровня иного сертифицированного исполнения.
- ► Документируйте любые ремонтные работы и модификации, имеющие отношение к взрывобезопасности.

11.2 Запасные части

- Некоторые сменные компоненты прибора перечислены на заводской табличке с перечнем запасных частей. На них приводится информация об этих запасных частях.
- Все запасные части прибора вместе с кодами заказа приводятся в программе W@M Device Viewer (www.endress.com/deviceviewer) и подлежат заказу. Кроме того, можно загрузить соответствующие инструкции по монтажу, если таковые предоставляются.
- Серийный номер измерительного прибора или QR-код: указывается на приборе и на заводской табличке с перечнем запасных частей.

11.3 Возврат

Измерительный прибор необходимо вернуть, если был заказан или поставлен не тот прибор. В соответствии с законодательными нормами в отношении компаний с сертифицированной системой менеджмента качества ISO, в компании Endress+Hauser действует специальная процедура обращения с бывшими в употреблении изделиями, находившимися в контакте с технологической средой. Для обеспечения быстрого, безопасного и профессионального возврата приборов изучите процедуру и условия

возврата, приведенные на сайте Endress+Hauser по адресу http://www.endress.com/support/return-material.

11.4 Утилизация

Если этого требует Директива 2012/19 ЕС об отходах электрического и электронного оборудования (WEEE), изделия маркируются указанным символом, с тем чтобы свести к минимуму возможность утилизации WEEE как несортированных коммунальных отходов. Не утилизируйте изделия с такой маркировкой как несортированные коммунальные отходы. Вместо этого возвращайте их в компанию Endress+Hauser для утилизации в надлежащих условиях.

12 Аксессуары

12.1 Защитный корпус, класс защиты ІР66

- С встроенной DIN-рейкой
- С прозрачной крышкой
- Крышку можно закрыть и опломбировать
- Размеры, мм (дюймы) Ш/В/Г: 180/182/165 (7,1/7,2/6,5)
- Код заказа: 52010132

13 Технические характеристики

13.1 Сетевое напряжение

13.1.1 Переменный ток (АС)

Диапазон напряжения: 85 до 253 В пер. тока, 50/60 Гц.

13.1.2 Постоянный ток (DC)

- Диапазон напряжения: 20 до 30 В пер. тока/ 20 до 60 В пост. тока.
- Питание постоянным током: 200 мА.
- Допустимая остаточная пульсация в пределах допустимого диапазона: U_{ss} = макс.
 2 В.

13.2 Потребляемая мощность

Переменный ток

Максимум 4,2 Вт

Постоянный ток

4,0 Вт (при U_{мин.} 20 В)

13.3 Выходной сигнал

- Релейный выход на каждый канал: 1 беспотенциальный переключающий контакт для аварийного сигнала, связанного с уровнем.
- Отказоустойчивый режим с током покоя: с помощью DIL-переключателя можно выбрать режим MIN/MAX.
- 1 реле сигнала сбоя для каналов 1, 2 и 3 (один беспотенциальный переключающий контакт; при этом можно выполнить подключение только к двум контактам).
- Задержка срабатывания: примерно 0,5 с.
- Срок службы: не менее 10⁵ операций переключения при максимальной нагрузке на контакты.
- Коммутационные свойства контакта реле:

Переменное напряжение (АС)

U ~ максимум 250 В.

I ~ максимум 2 A.

Р ~ максимум 500 ВА при $\cos \phi \ge 0.7$.

Постоянный ток (DC)

U = максимум 40 В.

I =максимум 2 A.

Р = максимум 80 Вт.

13.4 Диапазон температуры окружающей среды

- При отдельной установке: -20 до +60 °C (-4 до 140 °F).
- Для последовательной установки без зазоров по бокам:
 −20 до +50 °C (−4 до +122 °F).
- Для установки в защитном корпусе: -20 до +40 °C (-4 до +104 °F)
 Возможна установка не более четырех одноканальных преобразователей Nivotester, или не более двух 3-канальных преобразователей Nivotester, или не более двух одноканальных преобразователей Nivotester плюс один 3-канальный преобразователь Nivotester.
- Температура хранения: -20 до +85 °C (-4 до 185), предпочтительно при 20 °C (68 °F).

Алфавитный указатель

Б Безопасность изделия
В Ввод в эксплуатацию
Д Документ Функция Символы 4
З Заводская табличка
И Идентификация изделия
ММаркировка СЕ7Монтаж11
Н Назначение
О О настоящем документе
Приемка 9 Принцип ремонта 39 Проверка после монтажа 13, 19 Проверка после подключения 16
Символы 4 Символы техники безопасности 4 Соответствие EAC 7 Сопроводительная документация 5
Т Техника безопасности на рабочем месте 6 Типы информации
У Указания по технике безопасности 6 Управление 17 Условия подключения 14 Утилизация 40
Ф Функциональная проверка

X Хранение, транспортировка
Эксплуатационная безопасность 6 Электрическое подключение 14 Электротехнические символы 4
W W@M Device Viewer

www.addresses.endress.com