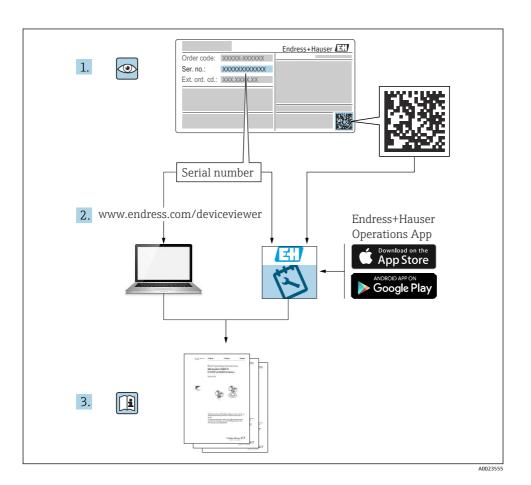
사용 설명서 요약 **유량계** Proline Promag P


전자식 센서

본 사용 설명서(요약본)는 계기 사용 설명서를 대체하지 **않습니다**.

사용 설명서(요약본) 1부: 센서 센서에 대한 정보 포함 사용 설명서(요약본) 2부: 트랜스미터 → 🖺 3.

유량계 사용 설명서(요약본)

이 계기는 트랜스미터와 센서로 구성됩니다.

두 구성 요소를 시운전하는 방법은 유량계 사용 설명서(요약본)를 함께 구성하는 2개의 개별 설명서에 나와 있습니다.

- 사용 설명서(요약본) 1부: 센서
- 사용 설명서(요약본) 2부: 트랜스미터

계기를 시운전할 때 사용 설명서(요약본)의 두 부분을 모두 참조하십시오. 설명서는 서로 보 완하는 내용으로 구성되어 있습니다.

사용 설명서(요약본) 1부: 센서

센서 사용 설명서(요약본)은 계기 설치 전문가를 대상으로 작성되었습니다.

- 입고 승인 및 제품 식별
- 보관 및 운송
- 설치

사용 설명서(요약본) 2부: 트랜스미터

트랜스미터 사용 설명서(요약본)은 계기의 시운전, 구성, 파라미터화를 담당하는 전문가를 대상으로 작성되었습니다.

- 제품 설명
- 설치
- 전기 연결
- 작동 옵션
- 시스템 통합
- 시운전
- 진단 정보

기기 관련 기타 설명서

이 사용 설명서(요약본)는 **사용 설명서(요약본) 1부: 센서**입니다.

"사용 설명서(요약본) 2부: 트랜스미터"는 아래에서 제공됩니다.

- 인터넷: www.endress.com/deviceviewer
- 스마트폰/태블릿: Endress+Hauser Operations 앱

기기에 대해 자세히 알아보려면 사용 설명서 및 기타 설명서를 참조하십시오.

- 인터넷: www.endress.com/deviceviewer
- 스마트폰/태블릿: Endress+Hauser Operations 앱

목차

1	문서 정보	. 5
1.1	기호	5
2	기본 안전 지침	. 7
2.1	작업자 준수사항	7
2.2	용도	
2.4	작동 안전	8
2.5 2.6	제품 안전IT 보안	
_	이크 스이 미 캠프 시범	
3 3.1	입고 승인 및 제품 식별 입고 승인	
3.2	제품 식별	
4	보관 및 운송	12
4 4.1	보관 조건보관 조건	
4.2	제품 운반	
5	설치	14
5.1	설치 요구사항	
5.2	계기 설치	. 23
5.3	설치 후 점검	. 25
6	폐기	26
6.1	계기 제거	
6.2	측정 기기 펴기	. 26
7	부록	26
7 1	.iu.zo.==	20

1 문서 정보

1.1 기호

1.1.1 안전 기호

▲ 위험

위험 상황을 알리는 기호입니다. 이 상황을 방지하지 못하면 심각한 인명 피해가 발생할 수 있습니다.

▲ 경고

위험 상황을 알리는 기호입니다. 이 상황을 방지하지 못하면 심각한 인명 피해가 발생할 수 있습니다.

▲ 주의

위험 상황을 알리는 기호입니다. 이 상황을 방지하지 못하면 경미한 부상이나 중상을 당할 수 있습니다.

주의

신체적 상해가 발생하지 않는 과정 및 기타 요인에 대해 알려주는 기호입니다.

1.1.2 특정 정보 관련 기호

기호	의미	기호	의미
✓	허용 허용된 절차, 프로세스 또는 작업입니 다.	✓ ✓	우선 우선 순위가 높은 절차, 프로세스 또는 작업입니다.
X	금지 금지된 절차, 프로세스 또는 작업입니 다.	i	팁 추가 정보를 알려줍니다.
	설명서 참조		페이지 참조
	그래픽 참조	1., 2., 3	일련의 단계
L-	한 단계의 결과		육안 검사

1.1.3 전기 기호

기호	의미	기호	의미
	직류	~	교류
≂	직류 및 교류	- 1	접지 연결 접지 시스템을 통해 접지되었다고 작 업자가 인지하고 있는 단자.

기호	의미
	등전위화 연결(PE: 보호 접지) 다른 연결을 설정하기 전에 접지에 연결해야 하는 접지 단자
	접지 단자는 계기 내부와 외부에 있습니다. ■ 내부 접지 단자: 등전위화가 공급망에 연결됩니다. ■ 외부 접지 단자: 계기가 플랜트 접지 시스템에 연결됩니다.

1.1.4 공구 기호

기호	의미	기호	의미
8	Torx 스크류드라이버	0	일자형 스크류드라이버
06	십자형 스크류드라이버	06	육각 렌치(Allen key)
Ŕ	단구 렌치		

1.1.5 그래픽 기호

기호	의미	기호	의미
1, 2, 3,	항목 번호	1., 2., 3	일련의 단계
A, B, C,	보기	A-A, B-B, C-C,	섹션
EX	방폭 지역	×	안전 장소(비방폭 지역)
≋➡	유량 방향		

2 기본 안전 지침

2.1 작업자 준수사항

작업자는 다음과 같은 작업별 요건을 충족해야 합니다.

- ▶ 일정 교육을 받은 전문가가 기능 및 작업에 대한 자격을 보유해야 함
- ▶ 설비 소유자 및 작업자의 승인을 받아야 함
- ▶ 연방 및 국가 규정을 숙지하고 있어야 함
- ▶ 작업을 시작하기 전에 작업 내용에 따라 매뉴얼과 보조 자료 및 인증서에 나온 지침을 읽고 숙지해야 함
- ▶ 지침을 준수하고 기본 조건을 충족해야 함

2.2 용도

용도 및 유체

이 계기는 최소 전도도가 5 μS/cm(Promag 10, 100, 300, 500) 또는 20 μS/cm (Promag 200) 인 액체의 유량 측정에만 적합합니다.

주문한 버전의 일부에서는 계기가 폭발성, 가연성, 독성, 산화성 유체도 측정할 수 있습니다. 위험 영역, 위생 용도 또는 프로세스 압력으로 인해 위험이 증가하는 경우에 사용하는 측정 계기는 명판에 해당 내용이 표시됩니다.

계기가 작동 시간 동안 올바른 상태를 유지하게 하려면 다음과 같이 하십시오.

- ▶ 지정된 압력 및 온도 범위를 벗어나지 않게 하십시오.
- ▶ 명판의 데이터와 사용 설명서 및 보조 자료의 일반 조건을 완전히 충족하는 계기만 사용 하십시오.
- ▶ 명판을 참조하여 주문한 계기가 위험 장소에서 원하는 용도(예: 폭발 방지, 압력 용기 안전)로 사용 허가되었는지 확인하십시오.
- ▶ 프로세스에서 사용되는 재료가 충분한 저항력이 있는 유체에서만 측정 계기를 사용하십시오.
- 계기의 외기 온도가 대기 온도를 벗어날 경우 계기 설명서에 명시된 관련 기본 조건을 준수하는 것이 절대적으로 필요합니다..
- ▶ 환경 영향에 의한 부식으로 계기가 영구적으로 손상되지 않도록 조치하십시오.

잘못된 사용

지정되지 않은 용도로 계기를 사용하면 안전 문제가 발생할 수 있습니다. 지정되지 않은 용 도로 사용하여 발생하는 손상에 대해서는 제조사가 책임을 지지 않습니다.

▲경고

부식성 또는 마모성 유체와 주변 조건으로 인한 파손 위험!

- ▶ 프로세스 유체와 센서 재질을 함께 사용할 수 있는지 확인하십시오.
- ▶ 프로세스 유체에 닿는 모든 재질의 저항성을 확인하십시오.
- ▶ 지정된 압력 및 온도 범위를 벗어나지 않게 하십시오.

주의

모호한 사례인지 확인하십시오.

▶ Endress+Hauser는 특수 액체 및 세정 액체와 관련하여 액체에 젖은 소재의 내부식성을 확인하는 작업을 도와드릴 수 있지만, 프로세스 과정에서 온도, 농도 또는 오염 수준이 미세하게 변하여 내부식성이 변하는 상황에 대해서는 어떤 보증이나 책임도 지지 않습니다.

잔존 위험

▲경고

유체 또는 전자 장치의 온도가 높거나 낮으면 계기 표면이 뜨거워지거나 차가워질 수 있습니다. 그 결과 화상이나 동상에 걸릴 위험이 있습니다!

▶ 고온 또는 저온 유체의 경우 적절한 접촉 보호 장치를 설치하십시오.

2.3 작업장 안전

계기 작업 시:

▶ 국가 규정에 따라 필수 보호 장비를 착용하십시오.

2.4 작동 안전

부상 위험!

- ▶ 적절한 기술적 조건 및 이중 안전(fail-safe) 조건에서만 계기를 작동하십시오.
- ▶ 계기의 무간섭 작동은 오퍼레이터의 책임입니다.

플라스틱 재질의 트랜스미터 하우징의 주변 요구사항

플라스틱 트랜스미터 하우징이 일정한 증기 및 공기 혼합물에 영구적으로 노출되면 하우징 이 손상될 수 있습니다.

- ▶ 확실하지 않으면 Endress + Hauser 영업 센터로 문의하십시오.
- ▶ 승인 관련 장소에서 사용하는 경우 명판의 정보를 준수하십시오.

2.5 제품 아전

이 계기는 최신 안전 요건을 충족시키기 위해 우수한 엔지니어링 관행에 따라 설계 및 테스트되었으며, 작동하기에 안전한 상태로 공장에서 출하되었습니다.

일반 안전 기준 및 법적 요건을 충족합니다. 계기별 EC 적합성 선언에 나온 EC 지침도 준수합 니다. Endress+Hauser는 이를 확인하는 CE 마크를 계기에 부착합니다.

또한 이 계기는 관련 영국 규정(명령)의 법적 요건을 충족합니다. 이는 UKCA 적합성 선언에 관련 표준과 함께 명시되어 있습니다.

UKCA 마킹 옵션을 선택하면 Endress+Hauser는 계기를 성공적으로 평가하고 테스트했음을 확인하는 UKCA 마크를 계기에 부착합니다.

Endress+Hauser UK 연락처:

Endress+Hauser Ltd.

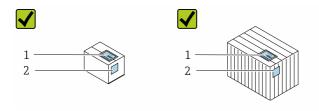
Floats Road

Manchester M23 9NF

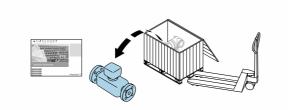
United Kingdom

www.uk.endress.com

2.6 IT 보안

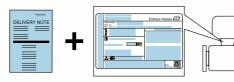

Endress+Hauser의 보증은 제품을 사용 설명서에서 설명하는 대로 설치하여 사용해야만 유효합니다. 제품에는 부주의한 설정 변경으로부터 제품을 보호하는 보안 메커니즘이 있습니다.

오퍼레이터는 보안 표준에 따라 제품 및 관련 데이터 전송에 추가적인 보호를 제공하는 IT 보안 조치를 직접 마련해야 합니다.


입고 승인 및 제품 식별 3

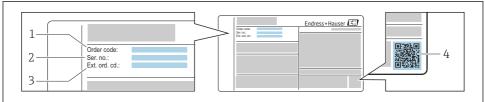
입고 승인 3.1

납품서(1)와 제품 스티 커(2)의 주문 코드가 동 일합니까?



제품이 손상되지 않았 습니까?

명판의 데이터가 납품 서의 주문 정보와 일치 합니까?


봉투가 문서와 함께 제 공됩니까?

- 조건 중 하나라도 충족되지 않으면 Endress + Hauser 영업 센터로 문의하십시오. 기술 자료는 인터넷이나 Endress+Hauser Operations App을 통해 이용할 수 있습니다.

3.2 제품 식별

계기 식별을 위해 다음 옵션을 사용할 수 있습니다.

- 명판 사양
- 납품서의 주문 코드와 계기 기능 내역
- Device Viewer (www.endress.com/deviceviewer)에 명판의 일련 번호 입력: 계기에 관한 모든 정보가 표시됩니다.
- 명판의 일련 번호를 Endress+Hauser Operations App에 입력하거나 Endress+Hauser Operations App으로 명판의 데이터 매트릭스 코드를 스캔하십시오. 계기와 관련된 모든 정보가 표시됩니다.

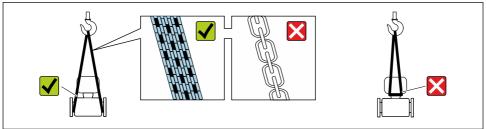
A0030196

■ 1 명판예

- 1 주문 코드
- 2 일련 번호(Ser. no.)
- 3 확장 주문 코드(Ext. ord. cd.)
- 4 2D 매트릭스 코드(QR 코드)

📵 명판의 사양 내역에 관한 자세한 정보는 계기의 사용 설명서를 참조하십시오 .

4 보관 및 운송


4.1 보관 조건

다음 보관 주의사항을 준수하십시오.

- ▶ 충격으로부터 보호할 수 있도록 원래 포장에 보관하십시오.
- ▶ 프로세스 연결부에 설치된 보호 커버 또는 보호 캡을 제거하지 마십시오. 밀봉 표면의 기계적 손상과 측정 배관의 오염을 방지합니다.
- ▶ 지나치게 높은 표면 온도를 피하기 위해 직사광선으로부터 보호하십시오.
- ▶ 곰팡이 및 박테리아 침투가 라이너를 손상시킬 수 있기 때문에 습기가 계기에 모일 수 없는 보관 장소를 선택하십시오.
- ▶ 건조하고 먼지가 없는 장소에 보관하십시오.
- ▶ 실외에 보관하지 마십시오.

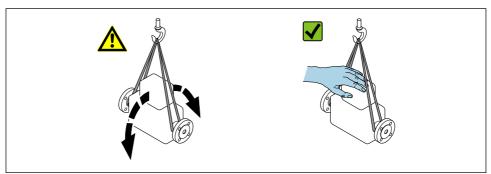
4.2 제품 운반

계기를 원래 포장에 담아 측정 포인트로 운반하십시오.

A0029252

■ 프로세스 연결부에 설치된 보호 커버 또는 캡을 제거하지 마십시오. 밀봉 표면의 기계 적 손상과 측정 튜브의 오염을 방지합니다.

4.2.1 리프팅 러그가 없는 계기


▲경고

계기의 무게 중심은 웨빙 슬링의 현수점보다 높습니다.

계기가 미끄러질 경우 부상을 당할 위험이 있습니다.

- ▶ 계기가 미끄러지거나 돌지 않도록 고정하십시오.
- ▶ 포장에 표시된 무게를 확인하십시오(스티커 라벨).

유량계 Proline Promag P 보관 및 운송

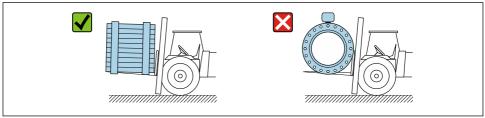
A0029214

4.2.2 리프팅 러그가 있는 측정 기기

▲주의

리프팅 러그가 있는 기기의 특별 운반 지침

- ▶ 기기를 운반할 때는 기기 또는 플랜지에 장착된 리프팅 러그만 사용하십시오.
- ▶ 기기는 적어도 두 개의 리프팅 러그에 항상 고정되어야 합니다.


4.2.3 지게차를 사용한 운반

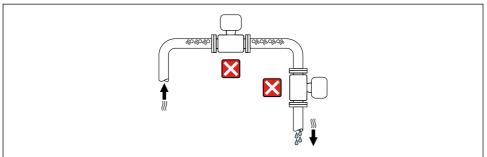
나무 상자로 운반하는 경우, 바닥 구조상 지게차를 사용해 길이 방향으로 또는 양 측면에서 나무 상자를 들어 올릴 수 있습니다.

▲주의

자기 코일 손상 위험

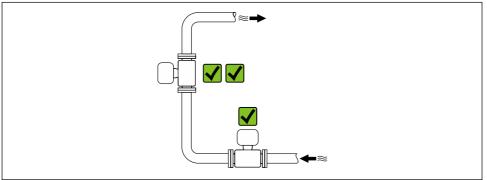
- ▶ 지게차로 운반할 경우 금속 케이스로 센서를 들어 올리지 마십시오.
- ▶ 케이스가 구부러져 내부 자기 코일이 손상될 수 있습니다.

A0029319


5 설치

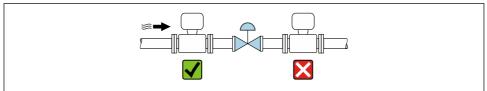
5.1 설치 요구사항

5.1.1 설치 위치


설치 장소

- 배관의 가장 높은 지점에 계기를 설치하지 마십시오.
- 하향관에서 배관 배출구의 업스트림에 계기를 설치하지 마십시오.

A004213

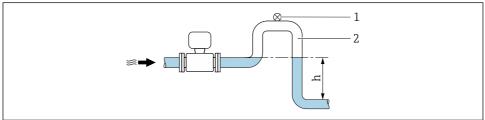

계기를 상향관에 설치하는 것이 이상적입니다.

A0042317

밸브 근처 설치

계기를 밸브의 업스트림에 유량 방향으로 설치하십시오.

A0041091

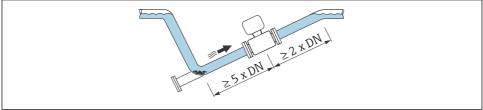

설치

하향관의 업스트림에 설치

주의

측정관의 부압은 라이너를 손상시킬 수 있습니다!

- ▶ 길이 h가 ≥ 5 m (16.4 ft)인 하향관의 업스트림에 설치할 경우 계기의 다운스트림에 사이 편과 통기 밸브를 설치하십시오.
- 이렇게 배치하면 배관에서 액체 흐름이 막히는 현상과 공기 유입을 방지할 수 있습니다.

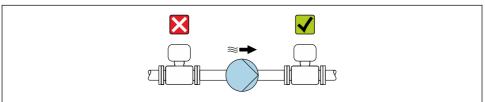


A0028981

- 1 통기 밸브
- 2 배관 사이펀
- h 하향관 길이

비만관에 설치

- 경사진 비만관에는 드레인 타입 구성이 필요합니다.
- 세척 밸브의 설치가 권장됩니다.


A0041088

펌프 근처 설치

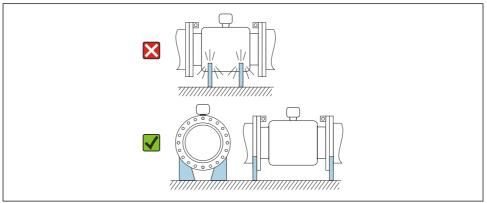
주의

측정관의 부압은 라이너를 손상시킬 수 있습니다!

- ▶ 시스템 압력을 유지하려면 펌프의 다운스트림에 유량 방향으로 계기를 설치하십시오.
- ▶ 왕복 펌프, 다이어프램 펌프 또는 연동 펌프를 사용하는 경우 맥동 감쇠기를 설치하십시 오.

A0041083

고중량 계기의 설치


공칭 직경 DN이 ≥ 350 mm (14 in)인 경우 지지대가 필요합니다.

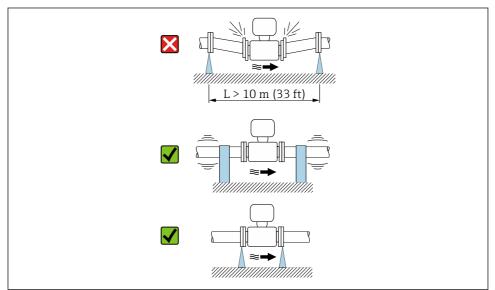
주의

계기 손상!

잘못된 지지대를 사용할 경우 센서 하우징이 구부러지고 내부 자기 코일이 손상될 수 있습니 다.

▶ 배관 플랜지에만 지지대를 사용하십시오.

A0041087


배관 진동이 발생할 경우 설치

배관 진동이 심하게 발생할 경우 리모트 버전이 권장됩니다.

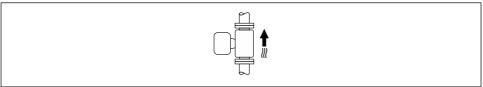
주의

배관 진동은 계기를 손상시킬 수 있습니다!

- ▶ 계기를 심한 진동에 노출시키지 마십시오.
- ▶ 배관을 지지하고 제자리에 고정하십시오.
- ▶ 계기를 지지하고 제자리에 고정하십시오.
- ▶ 센서와 트랜스미터를 별도로 설치하십시오.

A0041092

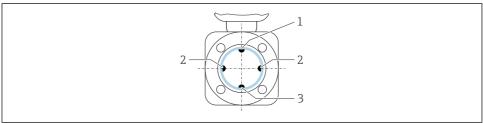
방향


센서 명판의 화살표 방향은 유량 방향에 따라 센서를 설치할 수 있도록 도와줍니다.

A0015591	
A0015589	1)
A0015590	✓ ✓ 2) 3) ✓ 4)
	×
	A0015591 A0015589

- 1) 프로세스 온도가 낮을 경우 외기 온도가 하강할 수 있습니다. 트랜스미터의 최소 외기 온도를 유지하려면 이 방향을 권장합니다.
- 2) 프로세스 온도가 높을 경우 외기 온도가 상승할 수 있습니다. 트랜스미터의 최대 외기 온도를 유지하려면 이 방향을 권장합니다.
- 3) 강한 열 발생 시 전자장치의 과열을 방지하려면(예: CIP 또는 SIP 세척 프로세스) 트랜스미터 부분이 아래를 향하도록 계기를 설치하십시오.
- 4) 빈관 검출 기능이 켜진 경우 빈관 검출은 트랜스미터 하우징이 위쪽을 가리키는 경우에만 작동합니다.

수직


자가 배출 배관 시스템과 빈관 검출 기능과 함께 사용 시에 최적입니다.

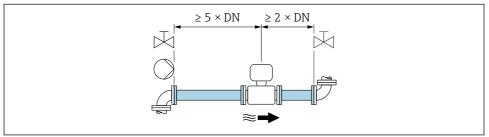
A0015591

수평

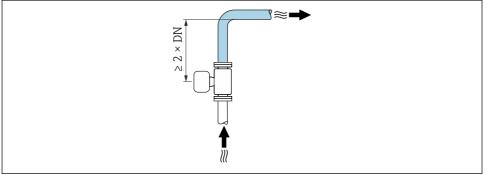
- 이상적으로 측정 전극면은 수평이어야 합니다. 그러면 혼입된 기포에 의해 측정 전극이 잠 시 절연되는 것을 방지할 수 있습니다.
- 빈관 검출 기능은 트랜스미터 하우징이 위쪽을 향한 경우에만 작동합니다. 그렇지 않으면 빈관 검출 기능이 일부만 채워졌거나 비어 있는 측정 튜브에 실제로 응답한다는 보장이 없 습니다.

A0029344

- 1 빈관 검출용 EPD 전극
- 2 신호 검출용 측정 전극
- 3 등전위화용 기준 전극
- 탄탈럼 또는 백금 전극이 있는 계기는 EPD 전극 없이 주문할 수 있습니다. 이 경우 측정 전극을 통해 빈관 검출이 수행됩니다.


전후단 직관부

전후단 직관부와 함께 설치


엘보, 펌프 또는 밸브와 함께 설치

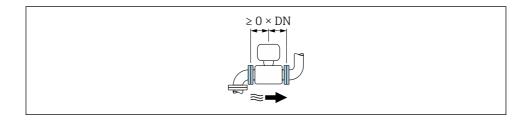
진공을 방지하고 지정된 정확도를 유지하려면 계기를 난류를 발생시키는 어셈블리(예: 밸브, T 이음)의 업스트림이나 펌프의 다운스트림에 설치하십시오.

전후단 직관부가 똑바르고 방해받지 않도록 유지하십시오.

A0028997

A0042132

전후단 직관부 없이 설치


계기 설계와 설치 장소에 따라 전후단 직관부를 줄이거나 완전히 생략할 수 있습니다. 계기 및 요청 시 가능한 제품 옵션.

🚹 최대 측정 오차

계기가 전후단 직관부와 함께 설치된 경우 판독값 ± 1 mm/s (0.04 in/s)의 ± 0.5 %의 최대 측정 오차가 보장됩니다.

곡관부 앞 또는 뒤에 설치

전후단 직관부 없이 설치할 수 있습니다.

펌프 다운스트림에 설치

전후단 직관부 없이 설치할 수 있습니다.

밸브 업스트릭에 설치

전후단 직관부 없이 설치할 수 있습니다.

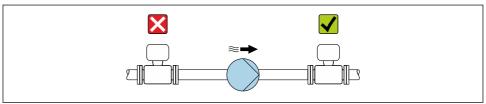
밸브 다운스트림에 설치

작동 중 밸브가 100% 열리는 경우 전후단 직관부 없이 설치할 수 있습니다.

5.1.2 환경 및 프로세스별 요구사항

외기 온도 범위

주변 온도 범위에 대한 자세한 정보는 기기별 사용 설명서를 참조하십시오.


실외 작동 시:

- 계기를 그늘진 곳에 설치하십시오.
- 특히 따뜻한 지역에서는 직사광선을 피하십시오.
- 기상 조건에 직접 노출되지 않게 하십시오.

온도 표

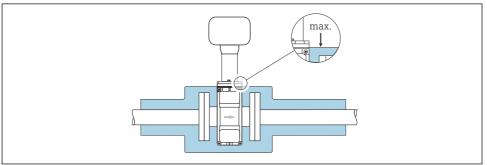
📵 온도 표에 대한 자세한 정보는 기기별 "안전 지침"(XA) 문서를 참조하십시오.

시스템 압력

A0028777

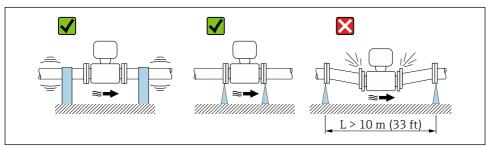
또한 왕복 펌프, 다이어프램 펌프 또는 연동 펌프를 사용하는 경우 펄스 감쇠기를 설치 하십시오.

단열 Promag 10, 300, 500


프로세스 유체가 매우 뜨거울 경우 에너지 손실을 줄이고 사람이 실수로 고온 배관에 접촉하는 것을 방지하기 위해 배관을 절연해야 합니다. 배관 절연 관련 표준 및 지침을 준수하십시오.

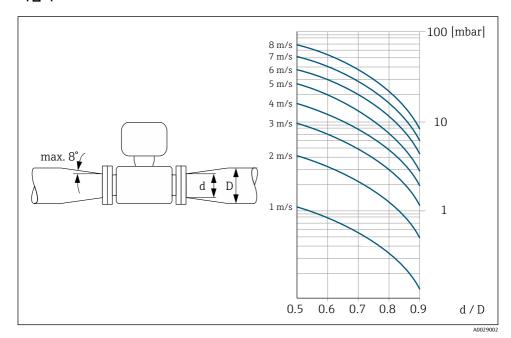
- 방열을 위해 하우징 지지대/연장 넥이 사용됩니다.
 - "라이닝", 옵션 **B** "PFA 고온" 주문 코드가 있는 계기는 항상 하우징 지지대와 함께 제공 됩니다.
 - 모든 다른 계기는 "센서 옵션", 옵션 CG "센서 연장 넥" 주문 코드를 통해 하우징 지지 대를 주문할 수 있습니다.

▲경고


단열로 인한 전자장치 과열!

▶ 하우징 지지대는 방열을 위해 사용되고 완전히 자유로워야 합니다(예: 덮이지 않음). 센서 단열재는 2개의 센서 하프 쉘의 상단 가장자리까지 확장될 수 있습니다.

A0031216


진동

A0029004

图 2 기기 진동을 방지하기 위한 조치

어댑터

5.2 계기설치

5.2.1 필요 공구

플랜지 및 기타 프로세스 연결의 경우 적절한 설치 공구를 사용하십시오.

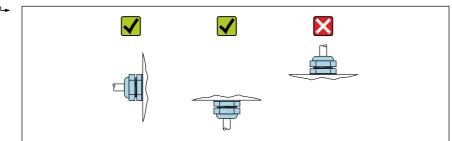
5.2.2 측정 기기 준비

- 1. 남은 포장재를 모두 제거하십시오.
- 2. 센서에 있는 모든 보호 커버 또는 보호 캡을 제거하십시오.
- 3. 전자기기 격실 커버에서 스티커 라벨을 제거하십시오.

5.2.3 센서 설치

▲경고

측정 튜브 내부에 전기 전도 층이 형성될 수 있습니다!


측정 신호 단락 위험.

- ▶ 개스킷 내경이 프로세스 연결부와 배관의 내경보다 크거나 같아야 합니다.
- ▶ 개스킷이 깨끗하고 손상되지 않았는지 확인하십시오.
- ▶ 개스킷을 올바르게 설치하십시오.
- ▶ 흑연 같은 전도성 밀봉제를 사용하지 마십시오.

▲경고

부적절한 프로세스 밀봉으로 인한 위험!

- ▶ 개스킷 내경이 프로세스 연결부와 배관의 내경보다 크거나 같아야 합니다.
- ▶ 씰이 깨끗하고 손상되지 않았는지 확인하십시오.
- ▶ 씰을 올바르게 설치하십시오.
- 1. 센서의 화살표 방향이 유체의 유량 방향과 일치하는지 확인하십시오.
- 계기 사양을 준수하려면 측정 섹션의 중앙에 오도록 배관 플랜지 사이에 계기를 설치하십시오.
- 3. 접지 디스크를 사용할 경우 제공된 설치 지침을 준수하십시오.
- 4. 나사 조임 토크를 준수하십시오.
- 케이블 인입구가 위쪽을 향하지 않도록 계기를 설치하거나 트랜스미터 하우징을 돌리 십시오.

A0029263

씰 설치

▲주의

측정 튜브 내부에 전기 전도 층이 형성될 수 있습니다!

측정 신호 단락 위험.

▶ 흑연 같은 전도성 밀봉제를 사용하지 마십시오.

씰을 설치할 때 다음 지침을 따르십시오.

- 씰이 배관 단면으로 돌출되지 않게 하십시오.
- 프로세스 연결부를 설치할 때 해당 씰이 깨끗하고 올바르게 가운데에 위치하는지 확인하십시오.
- DIN 플랜지의 경우 DIN EN 1514-1 기준 씰만 사용하십시오.
- "PFA" 라이닝: 일반적으로 추가 씰이 필요하지 **않습니다**.
- "PTFE" 라이닝: 일반적으로 추가 씰이 필요하지 **않습니다**.

접지 케이블/접지 디스크 설치

등전위화에 대한 정보와 자세한 접지 케이블/접지 디스크 설치 지침은 송신기 사용 설명서 (요약본)를 참조하십시오.

나사 조임 토크

→ 🖺 26

5.3 설치 후 점검

육안으로 봤을 때 계기가 손상되었습니까?		
계기가 측정 포인트 사양을 준수합니까?		
예: 프로세스 온도 프로세스 압력("기술 정보" 문서의 "압력-온도 정격" 섹션 참조) 외기 온도 측정 범위		
올바른 센서 방향을 선택했습니까 → 🗎 18 ?		
 ● 센서 유형 기준 ● 유체 온도 기준 ● 유체 특성 기준(기체 방출, 고체 동반) 		
센서 명판의 화살표가 배관을 통과하는 유체의 실제 방향과 일치합니까 → 🖺 18?		
측정 포인트 식별 및 라벨이 올바릅니까(육안 검사)?		
계기가 강수와 직사광선으로부터 적절하게 보호되고 있습니까?		
고정 나사가 올바른 조임 토크로 조여졌습니까?		

6 폐기

펴 전기전자제품(WEEE)을 미분류 지자체 펴기물로 펴기하는 경우를 최소화하기 위해 펴 전기전자제품(WEEE) 처리에 관한 지침 2012/19/EU에 규정되어 있는 경우 제품에 해당 기호가 표시되어 있습니다. 이 기호가 있는 제품은 미분류 지자체 펴기물로 펴기하지 말고, 해당 조건에 따라 펴기할 수 있도록 제조사에 반환하십시오.

6.1 계기 제거

1. 계기를 끄십시오.

▲경고

프로세스 조건으로 인한 인체 위험!

- ▶ 계기의 압력, 고온, 유해 유체 같은 위험한 프로세스 조건에 주의하십시오.
- 2. "계기 설치" 및 "계기 연결" 섹션의 설치 및 연결 단계를 역순으로 수행하십시오. 안전 지 침을 준수하십시오.

6.2 측정 기기 폐기

▲경고

건강에 유해한 유체로 인한 인체 및 환경 위험.

▶ 측정 기기와 모든 구멍에 건강 또는 환경에 유해한 잔류 유체가 없어야 합니다(예: 틈으로 침투하거나 플라스틱을 통해 확산되는 물질).

펴기 시 다음 주의사항을 준수하십시오.

- ▶ 관련 연방/국가 규정을 준수하십시오.
- ▶ 기기 구성요소를 적절히 분리해 재사용하십시오.

7 부록

7.1 나사 조임 토크

나사 조임 토크에 대한 자세한 정보는 기기 사용 설명서의 "센서 설치" 섹션을 참조하십 시오.

다음에 주의하십시오.

- 명시된 토크는 다음에만 적용됩니다.
 - 윤활된 나사.
 - 인장 응력이 없는 배관.
- 나사를 균일하게 대각선으로 반대 순서로 조이십시오.
- 나사를 너무 세게 조이면 밀봉면이 변형되거나 씰이 손상될 수 있습니다.

EN 1092-1 (DIN 2501)의 최대 나사 조임 토크

공칭 직경	압력 등급	나사	플랜지 두께	최대 나사 조약	임 토크 [Nm]
[mm]	[bar]	[mm]	[mm]	PTFE	PFA
15	PN 40	4 × M12	16	11	-
25	PN 40	4 × M12	18	26	20
32	PN 40	4 × M16	18	41	35
40	PN 40	4 × M16	18	52	47
50	PN 40	4 × M16	20	65	59
65 ¹⁾	PN 16	8 × M16	18	43	40
65	PN 40	8 × M16	22	43	40
80	PN 16	8 × M16	20	53	48
80	PN 40	8 × M16	24	53	48
100	PN 16	8 × M16	20	57	51
100	PN 40	8 × M20	24	78	70
125	PN 16	8 × M16	22	75	67
125	PN 40	8 × M24	26	111	99
150	PN 16	8 × M20	22	99	85
150	PN 40	8 × M24	28	136	120
200	PN 10	8 × M20	24	141	101
200	PN 16	12 × M20	24	94	67
200	PN 25	12 × M24	30	138	105
250	PN 10	12 × M20	26	110	-
250	PN 16	12 × M24	26	131	-
250	PN 25	12 × M27	32	200	-
300	PN 10	12 × M20	26	125	-
300	PN 16	12 × M24	28	179	-
300	PN 25	16 × M27	34	204	-
350	PN 10	16 × M20	26	188	_
350	PN 16	16 × M24	30	254	-
350	PN 25	16 × M30	38	380	-
400	PN 10	16 × M24	26	260	-
400	PN 16	16 × M27	32	330	-
400	PN 25	16 × M33	40	488	-
450	PN 10	20 × M24	28	235	-

공칭 직경	압력 등급	나사	플랜지 두께	최대 나사 조	임 토크 [Nm]
[mm]	[bar]	[mm]	[mm]	PTFE	PFA
450	PN 16	20 × M27	40	300	-
450	PN 25	20 × M33	46	385	_
500	PN 10	20 × M24	28	265	-
500	PN 16	20 × M30	34	448	-
500	PN 25	20 × M33	48	533	-
600	PN 10	20 × M27	28	345	-
600	PN 16	20 × M33	36	658	-
600	PN 25	20 × M36	58	731	-

1) EN 1092-1에 따른 크기(DIN 2501 아님)

EN 1092-1 (DIN 2501)의 공칭 나사 조임 토크; EN 1092-1:2013에 따른 플랜지의 경우 EN 1591-1:2014에 따라 계산

공칭 직경	압력 등급	나사	플랜지 두께	공칭 나사 조임 토크 [Nm]
[mm]	[bar]	[mm]	[mm]	PTFE
350	PN 10	16 × M20	26	60
	PN 16	16 × M24	30	115
	PN 25	16 × M30	38	220
400	PN 10	16 × M24	26	90
	PN 16	16 × M27	32	155
	PN 25	16 × M33	40	290
450	PN 10	20 × M24	28	90
	PN 16	20 × M27	34	155
	PN 25	20 × M33	46	290
500	PN 10	20 × M24	28	100
	PN 16	20 × M30	36	205
	PN 25	20 × M33	48	345
600	PN 10	20 × M27	30	150
600 ¹⁾	PN 16	20 × M33	40	310
600	PN 25	20 × M36	48	500

1) EN 1092-1에 따른 크기(DIN 2501 아님)

ASME B16.5, Class 150/300

공칭 직경		압력 등급	나사	최대 나사 조임 토	크 [Nm] ([lbf·ft])
[mm]	[in]	[psi]	[in]	PTFE	PFA
15	1/2	Class 150	4 × ½	6 (4)	- (-)
15	1/2	Class 300	4 × ½	6 (4)	- (-)
25	1	Class 150	4 × ½	11 (8)	10 (7)
25	1	Class 300	4 × 5/8	14 (10)	12 (9)
40	1 ½	Class 150	4 × ½	24 (18)	21 (15)
40	1 ½	Class 300	4 × 3/4	34 (25)	31 (23)
50	2	Class 150	4 × 5/8	47 (35)	44 (32)
50	2	Class 300	8 × 5/8	23 (17)	22 (16)
80	3	Class 150	4 × 5/8	79 (58)	67 (49)
80	3	Class 300	8 × ¾	47 (35)	42 (31)
100	4	Class 150	8 × 5/8	56 (41)	50 (37)
100	4	Class 300	8 × ¾	67 (49)	59 (44)
150	6	Class 150	8 × ³ / ₄	106 (78)	86 (63)
150	6	Class 300	12 × ¾	73 (54)	67 (49)
200	8	Class 150	8 × ³ / ₄	143 (105)	109 (80)
250	10	Class 150	12 × 7/8	135 (100)	- (-)
300	12	Class 150	12 × 7/8	178 (131)	- (-)
350	14	Class 150	12 × 1	260 (192)	- (-)
400	16	Class 150	16 × 1	246 (181)	- (-)
450	18	Class 150	16 × 1 1/8	371 (274)	- (-)
500	20	Class 150	20 × 1 1/8	341 (252)	- (-)
600	24	Class 150	20 × 1 1/4	477 (352)	- (-)

JIS B2220의 최대 나사 조임 토크

공칭 직경	압력 등급	나사	최대 나사 조약	임 토크 [Nm]
[mm]	[bar]	[mm]	PTFE	PFA
25	10K	4 × M16	32	27
	20K	4 × M16	32	27
32	10K	4 × M16	38	-
	20K	4 × M16	38	-
40	10K	4 × M16	41	37

공칭 직경	압력 등급	나사	최대 나사 조	임 토크 [Nm]
[mm]	[bar]	[mm]	PTFE	PFA
	20K	4 × M16	41	37
50	10K	4 × M16	54	46
	20K	8 × M16	27	23
65	10K	4 × M16	74	63
	20K	8 × M16	37	31
80	10K	8 × M16	38	32
	20K	8 × M20	57	46
100	10K	8 × M16	47	38
	20K	8 × M20	75	58
125	10K	8 × M20	80	66
	20K	8 × M22	121	103
150	10K	8 × M20	99	81
	20K	12 × M22	108	72
200	10K	12 × M20	82	54
	20K	12 × M22	121	88
250	10K	12 × M22	133	-
	20K	12 × M24	212	-
300	10K	16 × M22	99	-
	20K	16 × M24	183	-

JIS B2220의 공칭 나사 조임 토크

공칭 직경	압력 등급	나사	공칭 나사 조약	임 토크 [Nm]
[mm]	[bar]	[mm]	HG	PUR
350	10K	16 × M22	109	109
	20K	16 × M30×3	217	217
400	10K	16 × M24	163	163
	20K	16 × M30×3	258	258
450	10K	16 × M24	155	155
	20K	16 × M30×3	272	272
500	10K	16 × M24	183	183
	20K	16 × M30×3	315	315
600	10K	16 × M30	235	235

공칭 직경	압력 등급	나사	공칭 나사 조약	임 토크 [Nm]
[mm]	[bar]	[mm]	HG	PUR
	20K	16 × M36×3	381	381
700	10K	16 × M30	300	300
750	10K	16 × M30	339	339

AS 2129, Table E

공칭 직경	나사	최대 나사 조임 토크 [Nm]
[mm]	[mm]	PTFE
25	4 × M12	21
50	4 × M16	42

AS 4087, PN 16

공칭 직경	나사	최대 나사 조임 토크 [Nm]
[mm]	[mm]	PTFE
50	4 × M16	42

www.addresses.endress.com