Instruções de segurança **Proline Promag 200**

INMETRO: Zona 1

Versão Ex d

Segurança OCP 0004 INMETRO

Proline Promag 200

Sumário

Documentação associada 4
Certificados e declarações4
Titular do certificado 5
Código de pedido estendido 6
Instruções de segurança: Geral8
Instruções de segurança: Instalação9
Tabelas de temperatura
Riscos de explosão surgindo de gás e pó
Valores de conexão: circuitos de sinal

Documentação associada

Para uma visão geral do escopo da respectiva Documentação técnica, consulte:

- Device Viewer (www.endress.com/deviceviewer): Insira o número de série informado na etiqueta de identificação.
- Aplicativo de operações da Endress+Hauser: Insira o número de série que está na etiqueta de identificação ou escaneie o QR code.

Para comissionar o equipamento, observe as instruções de operação relativas ao equipamento:

Medidor	Código da documentação					
	HART FOUNDATION Fieldbus PROFIBUS I					
Promag H 200	BA01110D	BA01377D	BA01375D			
Promag P 200	BA01111D	BA01378D	BA01376D			

Documentação adicional

Sumário	Tipo de documento	Código da documentação
Display remoto FHX50	Documentação especial	SD01007F
	Instruções de segurança	XA01077F
	Ex ia	
Proteção contra explosão	Folheto	CP00021Z/11

Preste atenção na documentação referente ao equipamento.

Certificados e declarações

Declaração de conformidade

CERTIFICADO DE CONFORMIDADE INMETRO

Certificado de conformidade

Número do certificado:

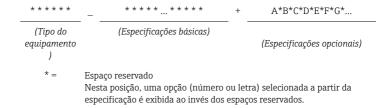
- TÜV 18.0687
- TÜV 23.0020
- TÜV 23.0021
- TÜV 23.0022

Anexar o número de certificação de conformidade com as normas em www.abnt.org.br (dependendo da versão do equipamento).

- ABNT NBR IEC 60079-0: 2020
- ABNT NBR IEC 60079-1: 2016
- ABNT NBR IEC 60079-11: 2013

Titular do certificado

Endress+Hauser Flowtec AG


Kägenstrasse 7 4153 Reinach BL

Suíça

Código de pedido estendido

O código de pedido estendido é indicado na etiqueta de identificação, que é afixado ao equipamento de forma que fique visível. Informações adicionais sobre a etiqueta de identificação são fornecidas nas Instruções de operação associadas.

Estrutura do código de pedido estendido

Tipo do equipamento

O equipamento e o projeto do instrumento é definido na seção "tipo de equipamento" (raiz do produto).

Especificações básicas

Os recursos absolutamente essenciais para o equipamento (recursos obrigatórios) são descritos em especificações básicas. O número de posições depende do número de recursos disponíveis. O opcional selecionado de um recurso pode consistir de várias posições.

Especificações opcionais

As especificações opcionais descrevem os recursos adicionais para o equipamento (recursos opcionais). O número de posições depende do número de recursos disponíveis. Os recursos têm uma estrutura de 2 dígitos para ajudar na identificação (por exemplo, JA). O primeiro dígito (ID) representa o grupo de recursos e consiste de um número ou uma letra (por exemplo J = teste, certificado). O segundo dígito constitui o valor que se refere ao recurso dentro do grupo (por exemplo, A = 3,1 material (peças úmidas), certificado de inspeção).

Mais informações detalhadas sobre esse equipamento são fornecidas nas seguintes tabelas. Essas tabelas descrevem as posições individuais e IDs no código de pedido estendido que são relevantes às áreas classificadas.

Tipo do equipamento

Posição	Código do pedido para	Opção selecionada	Descrição
1	Família de instrumentos	5	Medidor de vazão eletromagnético
2	Sensor	H, P ¹⁾	Tipo de sensor
3	Transmissor	2	Tipo de transmissor: 2 fios, versão compacta
4	Índice de geração	В	Geração de plataforma
5, 6	Diâmetro nominal	Exemplos: 02, 04, 40, 50, 1H, 1Z, T0, E4 ^{2) 3)}	Diâmetro nominal do sensor

- 1) 2) 3)
- Para transmissor de substituição somente: X Para a especificação exata do diâmetro nominal, consulte a etiqueta de identificação Apenas para transmissor de substituição: XX

Especificações básicas

Posição	Código do pedido para	Opção selecionada	Tipo de proteção
1, 2	Aprovação	MK	Ex db [ia] IIC T6T1 Gb

Posição	Código do pedido para	Opção selecionada	Descrição
3	Saída; entrada	A	4 a 20 mA HART
		В	4 a 20 mA HART, saída de pulso/frequência/comutada
		Е	FOUNDATION Fieldbus, saída de pulso/ frequência/comutada
		G	PROFIBUS PA, saída de pulso/frequência/ comutada

Posição	Código do pedido para	Opção selecionada	Descrição	
4	Display; Operação	A	Sem, através de comunicação	
		С	SD02 4 linhas; botões + função de backup de dados	
		Е	SD03 4 linhas, ilum.; controle por toque + função de backup de dados	
		L	Preparado para display FHX50 + conexão M12 ¹⁾	
		М	Preparado para o display FHX50 + conexão customizada ¹⁾	

1) FHX50 é aprovado separadamente.

Especificações opcionais

Nenhuma opção específica para áreas classificadas está disponível.

Instruções de segurança: Geral

- Os colaboradores devem atender as seguintes condições para montagem, instalação elétrica, comissionamento e manutenção do equipamento:
 - Estejam devidamente qualificado para a função e tarefas que executam
 - Serem treinados em proteção contra explosão
 - Estar familiarizados com os regulamentos ou diretrizes nacionais (por ex. ABNT NBR IEC 60079-14)
- Instale o equipamento de acordo com as instruções do fabricante e regulamentações nacionais.
- Não opere o equipamento fora dos parâmetros elétricos, térmicos e mecânicos especificados.
- Apenas use o equipamento em meios para os quais as partes molhadas tenham durabilidade suficiente.
- Consulte as tabelas de temperaturas para o relacionamento entre a temperatura ambiente permitida para o sensor e/ou transmissor, dependendo da faixa de aplicação e as classes de temperaturas.
- Alterações ao equipamento podem afetar a proteção contra explosão e devem ser executadas por colaboradores autorizados a realizarem tal tarefa pela Endress+Hauser.

 Quando usar em misturas híbridas (gás e pó ocorrendo simultaneamente), observe medidas adicionais para proteção contra explosão.

- Em equipamentos com roscas Ex d danificadas:
 - O uso em áreas classificadas não é permitido.
 - O reparo de roscas Ex d não é permitido.
- Observe todos os dados técnicos do equipamento (consulte a etiqueta de identificação).

Instruções de segurança: Instalação

- Temperatura de serviço contínua do cabo de conexão:
 -40 para +80 °C; de acordo com a faixa da temperatura de serviço, tendo em conta as influências adicionais das condições de processo
- Use somente entradas para cabos certificadas adequadas para a aplicação. Observe os critérios de seleção conforme ABNT NBR IEC 60079-14.
 - Da mesma forma, o terminal de conexão não inclui fontes de ignição.
- Quando o medidor estiver conectado, preste atenção à proteção contra explosão no transmissor.
- Em atmosferas potencialmente explosivas:

 $(T_{a.min.} e T_{a.máx.} + 20 K)$.

- Não desconecte a conexão elétrica do circuito da fonte de alimentação quando estiver energizado.
- Não abra a tampa do compartimento de conexão quando estiver energizado.
- Quando estiver conectando através de uma entrada para conduíte aprovada para este propósito, monte a unidade de vedação associada diretamente no gabinete.
- Lacre os prensa-cabos de entrada não usados com conectores de vedação que correspondam ao tipo de proteção. O conector de vedação de transporte plástico não corresponde a essa exigência e, portanto, deve ser substituído durante a instalação.
- Use somente conectores de vedação certificados. Os conectores de vedação de metal fornecidos atendem essa exigência.

Segurança intrínseca

- O equipamento pode ser conectado com a ferramenta de serviço Endress+Hauser FXA291: consulte as instruções de operação.
- O equipamento pode ser conectado ao display remoto FHX50 com proteção contra explosão Ex ia ; consulte a documentação especial e a Documentação Ex.

Equalização potencial

- Integre o equipamento à equalização de potencial.
- Se a conexão terra foi estabelecida pelo tubo, conforme especificado, também é possível integrar o sensor ao sistema de equalização potencial pelo tubo.

Tabelas de temperatura

Temperatura ambiente

Temperatura ambiente mínima

Especificação básica, posição 3 (saída) = A, B, E, G:

$$T_a = -40 \, ^{\circ}\text{C}$$

Temperatura ambiente máxima:

 $T_{a}=+60\,^{\circ}\text{C}$ dependendo da temperatura do meio e da classe de temperatura

Temperatura do meio

Temperatura mínima do meio

 $T_m = -40$ para 0 °C dependendo da versão do equipamento selecionada (consulte a etiqueta de identificação!)

Temperatura máxima do meio

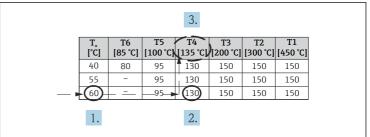
 $T_{\rm m}$ para T6...T1 dependendo da temperatura ambiente máxima $T_{\rm a}$

Versão compacta

T _a [°C]	T6 [85 ℃]	T5 [100 ℃]	T4 [135 ℃]	T3 [200 °C]	T2 [300°C]	T1 [450 ℃]
40	80	95	130	150	150	150
55	-	95	130	150	150	150
60 ¹⁾	-	95	130	150	150	150

1) O seguinte diz respeito à especificação básica, Posição 3 (Saída) = A, B, E, G: $\rm P_i = 0.85~W$

Riscos de explosão surgindo de gás e pó

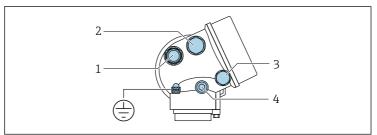

Determinar a classe de temperatura e a temperatura de superfície com a tabela de temperatura

- \blacksquare No caso de gás: determine a classe de temperatura como função da temperatura ambiente máxima T_a e a temperatura máxima do meio $T_{\rm m}.$
- lacktriangle No caso de poeira: determine a temperatura de superfície máxima como função da temperatura ambiente máxima T_a e a temperatura média máxima T_m .

Exemplo

■ Temperatura ambiente máxima medida: T_{ma} = 63 °C

■ Temperatura média máxima medida: T_{mm} = 108 °C


A0031267

Procedimento para determinar a classe de temperatura e a temperatura da superfície

- 1. Na coluna para a temperatura ambiente máxima T_a , selecione a temperatura que é imediatamente maior ou igual à temperatura ambiente máxima T_{ma} que está presente.
 - $T_a = 60\,^{\circ}\text{C}$. A linha que mostra a temperatura média máxima é determinada.
- 2. Selecione a temperatura média máxima TT_m desta linha, que é imediatamente maior ou igual à temperatura média máxima medida T_{mm} presente.
 - A coluna com a classe de temperatura para gás é determinada: 108 °C ≤ 130 °C → T4.
- 3. A temperatura máxima da classe de temperatura determinada corresponde à temperatura de superfície máxima para poeira: T4 = 135 °C.

Valores de conexão: circuitos de sinal As seguintes tabelas contêm as especificações que dependem do tipo do transmissor e suas atribuições de entrada e saída. Compare as especificações seguintes com aquelas da etiqueta de identificação no transmissor.

Conexão do transmissor

A0023831

Pos	ição	Especificação básica, Posição 1, 2 Aprovação	Tipo de proteção usada para entrada para cabo	Descrição
1	Entrada para cabo para saída 1	MK	Ex db	Os conectores de vedação de plástico funcionam como uma proteção durante o transporte e devem ser substituídos por um material de instalação adequado e aprovado individualmente.
				As extensões de rosca de metal instaladas e os conectores modelo são testados e certificados como partes do invólucro quanto ao tipo de proteção Ex db IIC. As várias versões roscadas são rotuladas, por motivos de identificação, como se segue: Md: M20 x 1,5 NPTd: NPT ½" Gd: G ½"
2	Entrada para cabo para saída 2	MK	Ex db	Os conectores de vedação de plástico funcionam como uma proteção durante o transporte e devem ser substituídos por um material de instalação adequado e aprovado individualmente.
				As extensões de rosca de metal instaladas e os conectores modelo são testados e certificados como partes do invólucro quanto ao tipo de proteção Ex db IIC. As várias versões roscadas são rotuladas, por motivos de identificação, como se segue: Md: M20 x 1,5 NPTd: NPT ½" Gd: G ½"
3	Código de pedido opcional ¹⁾ : Entrada para cabo do display remoto e módulo de operação do FHX50	MK	Exia	_

Posição		Descrição
4	Conector de compensação de pressão	AVISO Grau de proteção do invólucro anulado devido à vedação insuficiente do invólucro. ▶ Não abra - não é uma entrada para cabo.
(4)	Equalização de potencial	AVISO Terminal para conexão com equalização de potencial. ▶ Preste atenção ao conceito de aterramento da instalação.

1) Especificação básica, posição 4 (display; operação) = L, M

Esquema de ligação elétrica

Transmissor

Versões de conexão

Código de pedido para	Números de terminal				
"Saída"	Saída 1		Saída 2		
	1 (+) 2 (-)		3 (+)	4 (-)	
Opção A	4 a 20 mA HART (passiva)		-		
Opção B 1)	4 a 20 mA HART (passiva)		Pulso/frequência/saída comutada (passiva)		
Opção E ²⁾	FOUNDATION Fieldbus		Pulso/frequ comutada	ência/saída (passiva)	
Opção G 3)	PROFIBUS PA		Pulso/frequ comutada	ência/saída (passiva)	

- 1) Saída 1 deve sempre ser usada; saída 2 é opcional.
- 2) FOUNDATION Fieldbus com proteção contra polaridade reversa.
- 3) PROFIBUS PA com proteção de polaridade reversa integrada.

Valores relacionados à segurança

Tipo de proteção Ex d

Código de pedido para "Saída"	Tipo de saída	Valores relacionados à segurança
Opção A	HART de 4 a 20 mA	U _{nom.} = CC35 V U _{máx.} = 250 V
Opção B	HART de 4 a 20 mA	U _{nom} =CC35 V U _{máx.} = 250 V
	Saída em pulso/frequência/ comutada	$\begin{array}{l} U_{nom.} = \text{CC35 V} \\ U_{m\acute{a}x.} = 250 \text{ V} \\ P_{m\acute{a}x.} = 1 \text{ W}^{1)} \end{array}$
Opção E	FOUNDATION Fieldbus	$\begin{array}{l} U_{nom.} = CC32 \ V \\ U_{m\acute{a}x.} = 250 \ V \\ P_{m\acute{a}x.} = 0.88 \ W \end{array}$

Código de pedido para "Saída"	Tipo de saída	Valores relacionados à segurança
	Saída em pulso/frequência/ comutada	$U_{nom.} = CC35 V$ $U_{máx.} = 250 V$ $P_{máx.} = 1 W^{1)}$
Орção G	PROFIBUS PA	
	Saída em pulso/frequência/ comutada	$\begin{split} &U_{nom.} = \text{CC35 V} \\ &U_{m\acute{a}x.} = 250 \text{ V} \\ &P_{m\acute{a}x.} = 1 \text{ W}^{1)} \end{split}$

1) Circuito interno limitado por $R_i = 760,5 \Omega$

Display remoto FHX50

Especificação básica, posição 1, 2 Aprovação	Especificação do cabo	Especificação básica , posição 4 Display; operação Opção L, M
	Comprimento máx. do cabo: 60 m (196.85 ft)	$U_0 = 7.3 \text{ V}$
		$I_0 = 327 \text{ mA}$
		P _o = 362 mW
Opção MK		L _o = 149 μH
		C _o = 388 nF
		C _c ≤ 125 nF
		$L_c \le 149 \mu H$

www.addresses.endress.com