Technische Information **Prosonic S FDU90**

Solutions

Ultraschallmesstechnik

Ultraschallsensor für Füllstandmessung und Durchflussmessung

Anwendungsbereich

- Kontinuierliche, berührungslose Füllstandmessung von Flüssigkeiten und Schüttgütern in Silos, Förderbändern, Halden und in Brechern
- Durchflussmessung in offenen Gerinnen und Messwehren
- Maximaler Messbereich: 3 m (9,8 ft) in Flüssigkeiten; 1,2 m (3,9 ft) in Schüttgütern

Ihre Vorteile

- Temperatursensor zur Laufzeitkorrektur integriert, daher genaue Messung auch bei Temperaturänderungen
- Hermetisch geschweißter PVDF-Sensor für höchste chemische Beständigkeit
- Geeignet f
 ür raue Umgebungsbedingungen dank getrennter Installation des Messumformers (bis zu 300 m (984 ft))
- Geringe Ansatzbildung aufgrund des Selbstreinigungseffekts
- Witterungsbeständig und überflutungssicher (IP68)
- Internationale Staub-Ex- und Gas-Ex-Zertifikate

Inhaltsverzeichnis

Darstellungskonventionen
Arbeitsweise und Systemaufbau
Eingang5Blockdistanz5Messbereich5Arbeitsfrequenz6
Energieversorgung6Versorgungsspannung6Versorgung der eingebauten Sensorheizung6Elektrischer Anschluss6Anschlussdiagramm Sensor → FMU907Anschlussdiagramm Sensor → FMU957Kabelspezifikationen Verlängerungskabel7Kürzen des Sensorkabels8
Montage8Einbaubedingungen für Füllstandmessungen8Einbaubedingungen für Durchflussmessungen9Einbaumöglichkeiten (Beispiele)10Stutzenmontage10Schallführungsrohr zur Messung in engen Schächten11Befestigung des Sensors11
Umgebung11Schutzart11Schwingungsfestigkeit11Lagerungstemperatur11Temperaturwechselbeständigkeit11Elektromagnetische Verträglichkeit12
Prozess12Prozesstemperatur12Prozessdruck12
Konstruktiver Aufbau12Abmessungen12Abmessungen Gegenmutter G1"13Gewicht13Werkstoffe14Werkstoffe Anschlusskabel14Werkstoff Gegenmutter G1"14
Zertifikate und Zulassungen14CE-Zeichen14RoHS14RCM-Tick Kennzeichnung14Ex-Zulassung14Externe Normen und Richtlinien14

Bestellinformationen	1
Zubehör	16
Verlängerungskabel für Sensoren	16
Wetterschutzhaube	16
Einschraubflansch FAX50	1
Überflutungsschutzhülse	1
Ausleger für die Sensoren	18
Montageblech für Deckenmontage	22
Ausrichtvorrichtung FAU40	22
Speisegerät RNB130 für die Sensorheizung	23
Schutzgehäuse IP66 für das Speisegerät RNB130	24
Ergänzende Dokumentation	24
Dokumentation für Messumformer FMU90	24
Dokumentation für Messumformer FMU95	24
Moitoro Dokumontationon	2

Wichtige Hinweise zum Dokument

Darstellungskonventionen

Warnhinweissymbole

▲ GEFAHR

Dieser Hinweis macht auf eine gefährliche Situation aufmerksam, die, wenn sie nicht vermieden wird, zu Tod oder schwerer Körperverletzung führen wird.

WARNUNG

Dieser Hinweis macht auf eine gefährliche Situation aufmerksam, die, wenn sie nicht vermieden wird, zu Tod oder schwerer Körperverletzung führen kann.

▲ VORSICHT

Dieser Hinweis macht auf eine gefährliche Situation aufmerksam, die, wenn sie nicht vermieden wird, zu leichter oder mittelschwerer Körperverletzung führen kann.

HINWFIS

Dieser Hinweis enthält Informationen zu Vorgehensweisen und weiterführenden Sachverhalten, die keine Körperverletzung nach sich ziehen.

Elektrische Symbole

Erdanschluss

Eine geerdete Klemme, die vom Gesichtspunkt des Benutzers über ein Erdungssystem geerdet ist.

Werkzeugsymbole

Gabelschlüssel

Symbole für Informationstypen und Grafiken

🔽 Erlaubt

Abläufe, Prozesse oder Handlungen, die erlaubt sind

▼ Verboten

Abläufe, Prozesse oder Handlungen, die verboten sind

1 Tipp

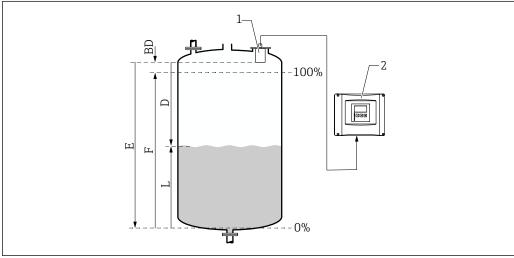
Kennzeichnet zusätzliche Informationen

Verweis auf Dokumentation

1., 2., 3.

Handlungsschritte

1, 2, 3, ...


Positionsnummern

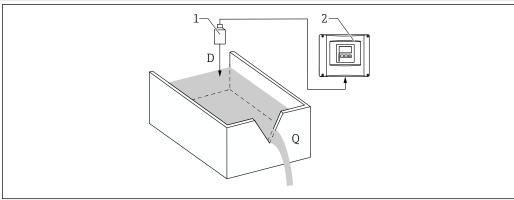
A, B, C, ...

Ansichten

Arbeitsweise und Systemaufbau

Füllstandmessung

A003488


- 1 Sensor Prosonic S
- 2 Messumformer Prosonic S
- BD Blockdistanz
- D Abstand zwischen Referenzpunkt (Sensormembran) und Medienoberfläche
- E Leerdistanz
- F Messspanne
- L Füllstand

Der Sensor sendet Ultraschallimpulse in Richtung der Medienoberfläche. Dort werden sie reflektiert und anschließend vom Sensor wieder empfangen. Der Messumformer misst die Zeit t zwischen Senden und Empfangen eines Impulses. Daraus berechnet er mit Hilfe der Schallgeschwindigkeit c die Distanz D zwischen der Referenzpunkt (Sensormembran) und der Medienoberfläche:

 $D = c \cdot t/2$

 $\hbox{Aus D ergibt sich der F\"{u}llst} \hbox{and L. Aus L ergibt sich mit einer Linearisierung das Volumen V oder die Masse M.}$

Durchflussmessung an Messrinnen oder Messwehren

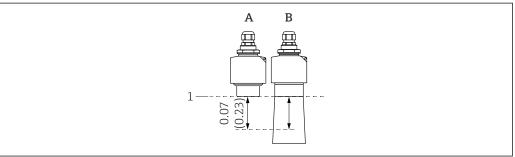
A003521

- 1 Sensor Prosonic S
- 2 Messumformer Prosonic S
- D Abstand zwischen Sensormembran und Flüssigkeitsoberfläche
- Q Durchfluss

Der Sensor sendet Ultraschallimpulse in Richtung der Flüssigkeitsoberfläche. Dort werden sie reflektiert und anschließend vom Sensor wieder empfangen. Der Messumformer misst die Zeit t zwischen Senden und Empfangen eines Impulses. Daraus berechnet er mit Hilfe der Schallgeschwindigkeit c die Distanz D zwischen der (Referenzpunkt) Sensormembran und der Flüssigkeitsoberfläche:

 $D = c \cdot t/2$

Aus D ergibt sich der Pegel L. Aus L ergibt sich mit einer Linearisierung der Durchfluss Q.


Temperaturabhängige Laufzeitkorrektur

Temperaturabhängige Laufzeitkorrektur über einen externen Temperatursensor, anzuschließen an den Messumformer FMU90.

Eingang

Blockdistanz

Signale im Bereich der Blockdistanz (BD) können wegen des Ausschwingverhaltens der Sensoren nicht gemessen werden.

Δ0039791

- 🗷 1 Blockdistanz des Ultraschallsensors. Maßeinheit m (ft)
- A FDU90 ohne Überflutungsschutzhülse
- B FDU90 mit Überflutungsschutzhülse
- 1 Referenzpunkt (Sensormembran) der Messung

Messbereich

Abschätzung der effektiven Sensorreichweite abhängig von den Einsatzbedingungen

- 1. Alle zutreffenden Dämpfungswerte aus den folgenden Listen addieren.
- 2. Aus der ermittelten Gesamtdämpfung im Reichweitendiagramm die Reichweite des Sensors ablesen.

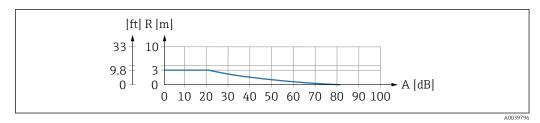
Dämpfung durch Flüssigkeitsoberfläche

- ruhige Oberfläche: 0 dB
- wellige Oberfläche: 5 ... 10 dB
- stark turbulente Oberfläche: 10 ... 20 dB
- schaumige Oberfläche: Endress+Hauser kontaktieren: http://www.endress.com/contact

Dämpfung durch Schüttgutoberfläche

- harte, raue Oberfläche (z.B. Schotter): 40 dB
- weiche Oberfläche (z.B. Torf, staubbedeckter Klinker): 40 ... 60 dB

Dämpfung durch Staub


- keine Staubentwicklung: 0 dB
- geringe Staubentwicklung: 5 dB
- starke Staubentwicklung: 5 ... 20 dB

Dämpfung durch Befüllstrom im Detektionsbereich

- kein Befüllstrom: 0 dB
- geringe Mengen: 5 dB
- große Mengen: 5 ... 20 dB

Dämpfung durch Temperaturdifferenz zwischen Sensor und Füllgutoberfläche

- bis 20 °C (68 °F): 0 dB
- bis 40 °C (104 °F): 5 ... 10 dB
- bis 80 °C (176 °F): 10 ... 20 dB

■ 2 Reichweitendiagramm der Ultraschallsensoren

A Gesamtdämpfung in dB

R Reichweite in m (ft)

Arbeitsfrequenz

90 kHz

Energieversorgung

Versorgungsspannung

Wird vom Messumformer zur Verfügung gestellt.

Versorgung der eingebauten Sensorheizung

Geräteausführungen mit Sensorheizung

FDU90-***B*

Anschlussdaten

- Versorgungsspannung: 24 $V_{DC} \pm 10 \%$
- Restwelligkeit: < 100 mV
- Stromaufnahme: 250 mA pro Sensor
- Geeignetes Speisegerät: RNB130 von Endress+Hauser

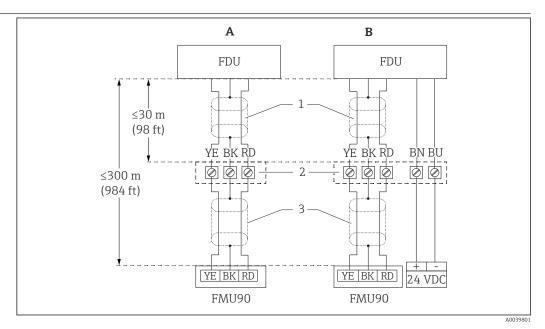
- Bei aktiver Sensorheizung kann der integrierte Temperatursensor nicht verwendet werden.
 Stattdessen einen der folgenden externen Temperatursensoren verwenden:
 - Pt100
 - Omnigrad S TR61 von Endress+Hauser
- Anschluss des externen Temperatursensors: siehe Technische Information TI00397F.

Elektrischer Anschluss

Allgemeine Hinweise

HINWEIS

Mögliche Funktionsstörungen durch Interferenzen


► Sensorkabel nicht parallel zu Hochspannungs- oder Starkstromkabeln und nicht in der Nähe von Frequenzumrichtern verlegen.

HINWEIS

Funktionsstörung durch unterbrochenen Kabelschirm


- ▶ Bei vorkonfektionierten Kabeln: Die schwarze Ader (Schirm) an die Klemme "BK" anschließen.
- ▶ Bei Verlängerungskabeln: Den Schirm verdrillen und an die Klemme "BK" anschließen.

Anschlussdiagramm Sensor → FMU90

- ₩ 3 Anschlussdiagramm Sensor; YE: gelb, BK: schwarz; RD: rot; BU: blau; BN: braun; Schutzleiter GNYE: grüngelb
- Ohne Sensorheizung Α
- В Mit Sensorheizung
- 1 Abschirmung des Sensorkabels
- 2 Klemmenkasten
- 3 Abschirmung des Verlängerungskabels

Anschlussdiagramm Sensor → FMU95

- € 4 Anschlussdiagramm Sensor; YE: gelb, BK: schwarz; RD: rot; BU: blau; BN: braun; Schutzleiter GNYE: grüngelb
- Abschirmung des Sensorkabels
- Klemmenkasten 2
- Abschirmung des Verlängerungskabels

Kabelspezifikationen Verlängerungskabel

- Maximale Gesamtlänge (Sensorkabel + Verlängerungskabel) 300 m (984 ft)
- Adernzahl

Gemäß Anschlussdiagramm

Abschirmung

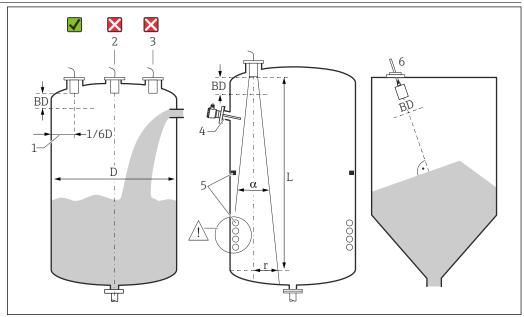
Jeweils ein Abschirmgeflecht für die Adern YE und RD (kein Folienschirm)

Querschnitt

0,75 ... 2,5 mm² (18 ... 14 AWG)

- Widerstand
 - Max. $8\,\Omega$ pro Ader
- Kapazität Ader zu Schirm

Max. 60 nF


Geeignete Verlängerungskabel sind von Endress+Hauser erhältlich.

Kürzen des Sensorkabels

Das Sensorkabel kann bei Bedarf gekürzt werden (siehe Betriebsanleitung des Messumformers FMU90 oder FMU95).

Montage

Einbaubedingungen für Füllstandmessungen

A00367

- 5 Einbaubedingungen für Füllstandmessungen
- 1 Empfohlener Abstand zur Behälterwand: 1/6 des Behälterdurchmessers D.
- 2 Nicht in der Behältermitte montieren.
- 3 Messungen durch den Befüllstrom vermeiden.
- 4 Im Strahlkegel dürfen sich keine Einbauten befinden.
- 5 Insbesondere symmetrische Einbauten beeinträchtigen die Messung.
- 6 Bei Schüttgütern: Sensor mit Ausrichtvorrichtung FAU40 senkrecht zur Füllgutoberfläche ausrichten.
- BD Blockdistanz

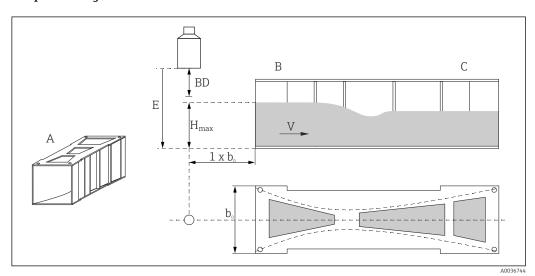
Abstrahlwinkel/Abstrahlkegel

- α (typisch) = 12°
- L (max) = 3 m (9,8 ft)
- r (max) = 0,31 m (1,0 ft)

Weitere Bedingungen

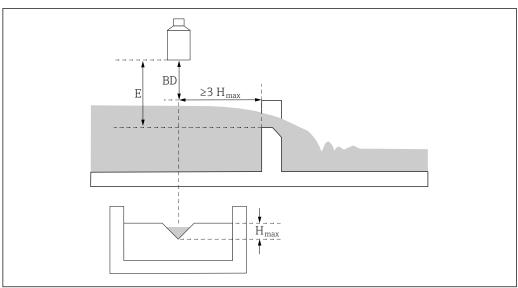
- Die Unterkante des Sensors sollte sich im Inneren des Behälters befinden
- Die maximale Befüllhöhe darf nicht in die Blockdistanz gelangen

Mehrere Sensoren in einem Behälter


Sensoren, die an einem gemeinsamen Messumformer FMU90 oder FMU95 angeschlossen sind, können in einem Behälter eingesetzt werden.

Einbaubedingungen für Durchflussmessungen

Bedingungen

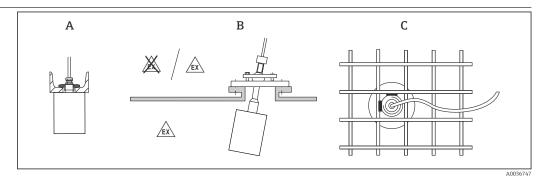

- \blacksquare Sensor auf der Oberwasserseite über dem maximalen Oberwasserpegel H_{max} plus der Blockdistanz BD montieren
- Sensor in der Mitte des Gerinnes bzw. Wehrs positionieren
- Sensor senkrecht zur Wasseroberfläche ausrichten
- Vorgegebenen Montageabstand zur Einschnürung des Gerinnes bzw. zur Wehrkante einhalten siehe Betriebsanleitung FMU90 / FMU95
- Den Sensor durch Wetterschutzhaube gegen Sonneneinstrahlung und Niederschlag schützen

Beispiel: Khafagi-Venturi-Rinne

- A Khafagi-Venturi-Rinne
- *b*₀ Breite der Khafagi-Venturi-Rinne
- B Oberwasserseite
- C Unterwasserseite
- BD Blockdistanz des Sensors
- *E* Abgleich leer (bei Inbetriebnahme einzugeben)
- H_{max} Maximaler Oberwasserpegel
- V Durchfluss

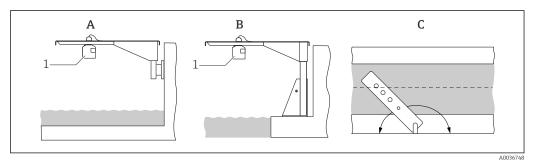
Beispiel: Dreieckswehr

A0036745


BD Blockdistanz des Sensors

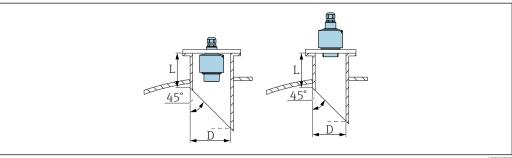
E Abgleich leer (bei Inbetriebnahme einzugeben)

 H_{max} Maximaler Oberwasserpegel


Endress+Hauser

Einbaumöglichkeiten (Beispiele)

€ 6 Einbau in Anlagen


- Α An U-Schiene oder Winkel
- В Mit Ausrichtvorrichtung FAU40
- С Mit 1"-Muffe, angeschweißt an einem Gitterrost

₩ 7 Einbau mit Ausleger über offenen Kanälen oder Messrinnen

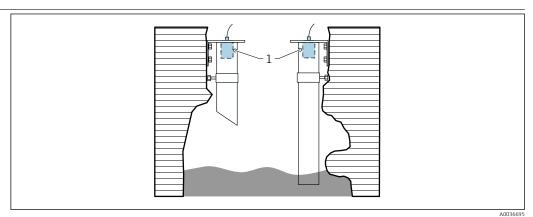
- Ausleger mit Wandhalter
- В Ausleger mit Montageständer
- CDer Ausleger ist schwenkbar (um z.B. den Sensor zentral über dem Kanal zu positionieren)

Stutzenmontage

- Stutzendurchmesser D
- Stutzenlänge

Bedingungen an den Stutzen

- Glatte Innenseite ohne Kanten oder Schweißnähte
- Kein Grat auf der Innenseite des tankseitigen Stutzenendes
- Tankseitiges Stutzenende schräg ausgeführt (ideal: 45°)


Maximale Stutzenlänge - montiert am rückseitigen Gewinde

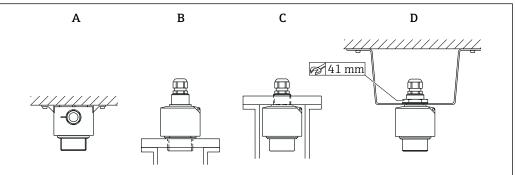
- D = DN80/3": L_{max} = 340 mm (13,4 in) D = DN100/4": L_{max} = 390 mm (15,4 in) D = DN150/6" ... DN300/12": L_{max} = 400 mm (15,7 in)

Maximale Stutzenlänge - frontbündig montiert

- D = DN50/2": L_{max} = 50 mm (1,97 in) D = DN80/3": L_{max} = 250 mm (9,84 in) D = DN100/4" ... DN300/12": L_{max} = 300 mm (11,8 in)

Schallführungsrohr zur Messung in engen Schächten

11.00


- 1 Entlüftungsöffnung
- Geeignetes Schallführungsrohr: z.B. PE- oder PVC-Abwasserrohr
- Mindestdurchmesser: DN80
- Entlüftungsöffnung am oberen Ende
- Keine Verunreinigungen durch anhaftenden Schmutz (bei Bedarf regelmäßige Reinigung vorsehen)

Befestigung des Sensors

HINWEIS

Gefahr von Schäden am Sensor

- ▶ Sensorkabel nicht zur Aufhängung verwenden.
- Sensormembran bei Montage nicht beschädigen.

A0036749

- 8 Befestigung des Ultraschallsensors
- A Deckenmontage
- B Eingeschraubt am frontseitigen Gewinde
- C Eingeschraubt am rückseitigen Gewinde
- D Eingeschraubt mit Gegenmutter

Umgebung

Schutzart	Getestet nach IP68/NEMA6P (24 h bei 1,83 m (6 ft) unter Wasser)
Schwingungsfestigkeit	DIN EN 600068-2-64; 20 2 000 Hz; 1 (m/s ²) ² /Hz; 3x100 min
Lagerungstemperatur	Wie Prozesstemperatur
Temperaturwechselbestän- digkeit	In Anlehnung an DIN EN 60068-2-14; Prüfung nach Prozesstemperatur min./max.; 0,5 K/min; 1000 h

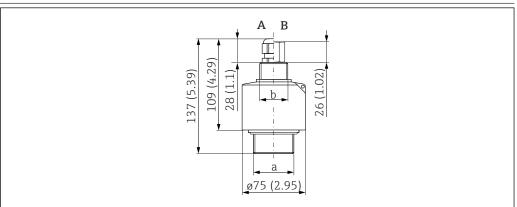
Elektromagnetische Verträglichkeit

Elektromagnetische Verträglichkeit gemäß allen relevanten Anforderungen der EN 61326- Serie und NAMUR- Empfehlung EMV (NE 21). Details sind aus der Konformitätserklärung ersichtlich. Die Geräte erfüllen hinsichtlich der Störaussendung die Anforderungen der Klasse A und sind nur für den Einsatz in "industrieller Umgebung" vorgesehen.

Prozess

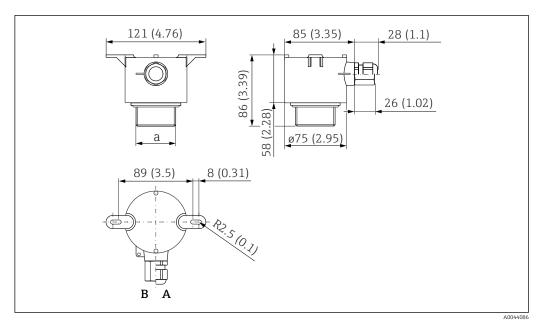
Prozesstemperatur	-40	+8

-40 ... +80 °C (-40 ... +176 °F)


Um Vereisung des Sensors zu verhindern, sind die Sensoren in einer Ausführung mit Sensorheizung erhältlich.

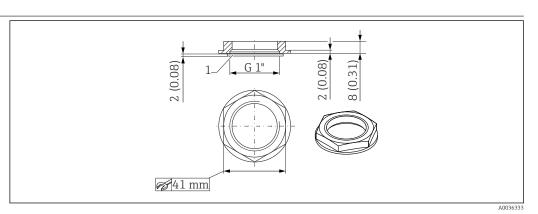
Prozessdruck

0,7 ... 4 bar (10,15 ... 58 psi)


Konstruktiver Aufbau

Abmessungen

A003633

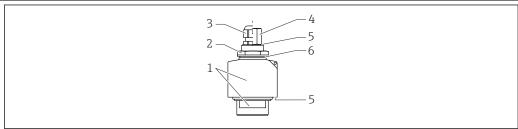

- 9 FDU90-*G*** (Gewinde G1 und G1-1/2); FDU90-*N*** (Gewinde NPT 1 und NPT 1-1/2). Maßeinheit mm (in)
- A Kabelverschraubung
- B Rohradapter
- a Frontseitiges Gewinde; G1-1/2 oder NPT1-1/2
- b Rückseitiges Gewinde; G1 oder NPT1

■ 10 FDU90-*W*** (Deckenmontage). Maßeinheit mm (in)

- A Kabelverschraubung
- B Rohradapter
- a Frontseitiges Gewinde; G1-1/2 oder NPT1-1/2

Abmessungen Gegenmutter G1"

🖪 11 Gegenmutter; Abmessungen. Maßeinheit mm (in)


- Die Gegenmutter ist bei folgenden Sensoren im Lieferumfang enthalten: FDU90-*G*** (Rückseitiges Gewinde G1)
 - Die Gegenmutter ist nicht geeignet für NPT-Gewinde.

Gewicht

Gewicht einschließlich Kabel 5 m (16 ft))

- ohne Überflutungsschutzhülse: ca. 0,9 kg (1,98 lb)
- mit Überflutungsschutzhülse: ca. 1,0 kg (2,21 lb)

Werkstoffe

A0038714

■ 12 Werkstoffe

- 1 Sensorgehäuse: PVDF
- 2 Gegenmutter: PA6.6
- 3 Kabelverschraubung: PA
- 4 Rohradapter: CuZn vernickelt
- 5 O-Ring: EPDM6 Dichtung: EPDM

Werkstoffe Anschlusskabel

PVC

Werkstoff Gegenmutter G1"

- **Gegenmutter**: PA6.6
- Dichtung (im Lieferumfang enthalten): EPDM

Zertifikate und Zulassungen

CE-Zeichen

Das Messsystem erfüllt die gesetzlichen Anforderungen der anwendbaren EU-Richtlinien. Diese sind zusammen mit den angewandten Normen in der entsprechenden EU-Konformitätserklärung aufgeführt.

Endress+Hauser bestätigt die erfolgreiche Prüfung des Geräts mit der Anbringung des CE-Zeichens.

RoHS

Das Messsystem entspricht den Stoffbeschränkungen der Richtlinie zur Beschränkung der Verwendung bestimmter gefährlicher Stoffe 2011/65/EU (RoHS 2).

RCM-Tick Kennzeichnung

Das ausgelieferte Produkt oder Messsystem entspricht den ACMA (Australian Communications and Media Authority) Regelungen für Netzwerkintegrität, Leistungsmerkmale sowie Gesundheits- und Sicherheitsanforderungen. Insbesondere werden die Vorgaben der elektromagnetischen Verträglichkeit eingehalten. Die Produkte sind mit der RCM-Tick Kennzeichnung auf dem Typenschild versehen.

A0020E6

Ex-Zulassung

Erhältlichen Ex-Zulassungen: siehe Produktkonfigurator

Sensoren mit Ex-Zulassung können an den Messumformer FMU90 ohne Ex-Zulassung angeschlossen werden.

Externe Normen und Richtlinien

EN 60529

Schutzarten durch Gehäuse (IP-Code)

EN 61326-Serie

EMV Produktfamiliennorm für elektrische Mess-, Steuer-, Regel- und Laborgeräte

NAMIIR

Interessengemeinschaft Automatisierungstechnik der Prozessindustrie

Bestellinformationen

Bestellinformationen

Ausführliche Bestellinformationen sind bei der nächstgelegenen Vertriebsorganisation www.addresses.endress.com oder im Produktkonfigurator unter www.endress.com verfügbar:

- 1. Corporate klicken
- 2. Land auswählen
- Products klicken
- 4. Produkt mit Hilfe der Filter und Suchmaske auswählen
- 5. Produktseite öffnen

Die Schaltfläche Konfiguration rechts vom Produktbild öffnet den Produktkonfigurator.

Produktkonfigurator - das Tool für individuelle Produktkonfiguration

- Tagesaktuelle Konfigurationsdaten
- Je nach Gerät: Direkte Eingabe von messstellenspezifischen Angaben wie Messbereich oder Bediensprache
- Automatische Überprüfung von Ausschlusskriterien
- Automatische Erzeugung des Bestellcodes mit seiner Aufschlüsselung im PDF- oder Excel-Ausgabeformat
- Direkte Bestellmöglichkeit im Endress+Hauser Onlineshop

5-Punkt-Linearitätsprotokoll


Bedingungen für das 5-Punkt-Linearitätsprotokoll

- Das 5-Punkt-Linearitätsprotokoll gilt für die gesamte Messeinrichtung bestehend aus Sensor und Messumformer. Bei der Bestellung ist zu spezifizieren, an welchem Sensoreingang des Messumformers der Sensor geprüft werden soll.
- Die Linearitätsprüfung erfolgt unter Referenzbedingungen des Messumformers.

Lage der Linearisierungspunkte

- Die 5 Punkte des Linearitätsprotokolls sind gleichmäßig über die Messspanne S verteilt.
- Zur Definition der Messspanne sind bei der Bestellung Werte für Abgleich Leer (E) und Abgleich Voll (F) anzugeben.
- Die angegebenen Werte werden nur zur Erstellung des Linearitätsprotokolls verwendet. Anschließend werden Abgleich Leer und Abgleich Voll auf die Werkseinstellung zurückgesetzt.

Bedingungen für die Definition der Messspanne

A001952

🛮 13 Größen zur Definition der Messspanne

- R Referenzpunkt (Sensormembran)
- E "Abgleich Leer" (Abstand Sensormembran zu 0%-Punkt)
- F "Abgleich Voll" (Abstand 0%- zu 100%-Punkt)
- A Distanz Sensormembran zu 100%-Punkt
- $E \le 3000 \text{ mm} (118 \text{ in})$
- F = 100 ... 2 900 mm (3,94 ... 114 in)

■ $A \ge 160 \text{ mm } (6,3 \text{ in})$

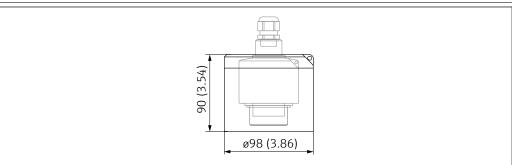
Lieferumfang

- Sensor in der bestellten Ausführung
- Für zertifizierte Ausführungen: Sicherheitshinweise (XA)
- Für Sensoren mit Sensorheizung: Klemmenmodul zum Einbau ins Feldgehäuse des Messumformers FMU90
- Für Sensoren mit G1"-Prozessanschluss: Gegenmutter (PA6.6) und Dichtung (EPDM)

Zubehör

Verlängerungskabel für Sensoren

- Maximal zulässige Gesamtlänge (Sensorkabel + Verlängerungskabel): 300 m (984 ft)
- Sensorkabel und Verlängerungskabel sind typgleich.

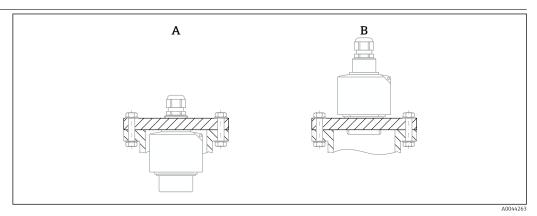

Sensor ohne Sensorheizung

- Kabeltyp: LiYCY 2x(0,75)
- Werkstoff: PVC
- Umgebungstemperatur: -40 ... +105 °C (-40 ... +221 °F)
- Bestellnummer: 71027742

Sensor mit Sensorheizung

- Kabeltyp: LiYY 2x(0,75)D+2x0,75
- Werkstoff: PVC
- Umgebungstemperatur: -40 ... +105 °C (-40 ... +221 °F)
- Bestellnummer: 71027746

Wetterschutzhaube

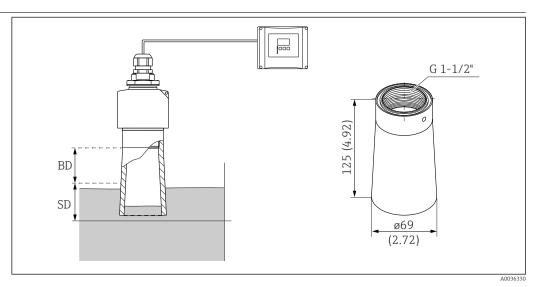

A003633

■ 14 Wetterschutzhaube. Maßeinheit mm (in)

■ Werkstoff: PVDF

■ Bestellnummer: 52025686

Einschraubflansch FAX50



- A Montage an rückseitigem Gewinde G1 oder NPT 1
- B Montage an frontsetigem Gewinde G 1-1/2 oder NPT 1-1/2

- Kann verwendet werden für:
 - frontseitiges Gewinde G1-1/2 oder NPT1-1/2
 - rückseitiges Gewinde G1 oder NPT1
- Erhältliche Flanschgrößen: siehe Produktkonfigurator
- Minimale Nennweite: DN80 / NPS 3"

Überflutungsschutzhülse

- 🛮 15 Überflutungsschutzhülse. Maßeinheit mm (in)
- BD Blockdistanz
- SD Sicherheitsdistanz (benutzerdefiniert)

Verwendung

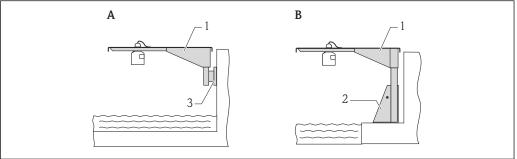
Verhindert, dass der Füllstand bei Überflutung in die Blockdistanz des Sensor gelangt.

Technische Daten

Gewinde: G1-1/2"
 Werkstoff Hülse: PP
 Werkstoff Dichtung: EPDM
 Gewicht: 0,12 kg (0,26 lb)

Bestellung als Zubehör Bestell-Nr.: 71091216

Bestellung mit Sensor


- Bestellcode: FDU90-****B
- Der Sensor hat dann frontseitig immer ein G 1-1/2"-Gewinde unabhängig von der Auswahl im Merkmal 020, "Prozessanschluss".

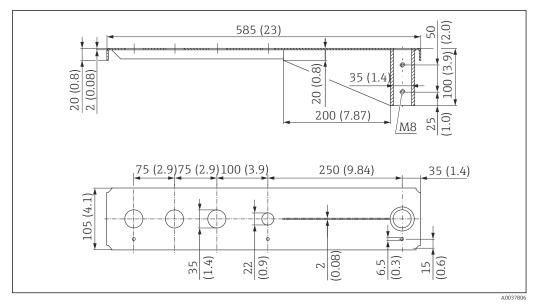
Montage

- 1. Mitgelieferte Dichtung einsetzen und Überflutungsschutzhülse handfest bis zum Anschlag anziehen.
- 2. Neuen Grundabgleich einschließlich Störechoausblendung durchführen.

Ausleger für die Sensoren

Anwendung

A001958


- 16 Montage von Sensor mit Ausleger
- A Montage an Ausleger mit Wandhalter
- B Montage an Ausleger mit Montageständer
- 1 Ausleger
- 2 Montageständer
- 3 Wandhalter

Verwendung der Öffnungen

- Öffnung 35 mm (1,4 in)
 Sensor mit Gegenmutter
- Öffnung 22 mm (0,9 in)
 Temperatursensor (z.B. Omnigrad TR61 mit Prozessanschluss TA50)

Abmessungen

Ausleger 500 mm, für rückseitige Anschlüsse G 1" oder MNPT 1"

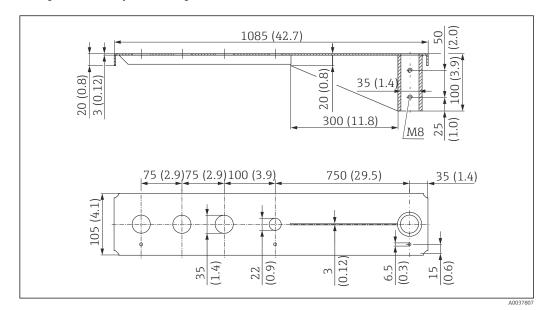
■ 17 Abmessungen. Maßeinheit mm (in)

Gewicht:

3,0 kg (6,62 lb)

Material

316L (1.4404)


Bestellnummer

71452315

- 35 mm (1,38 in) Öffnungen für alle rückseitigen Anschlüsse G 1" oder MNPT 1"
- 22 mm (0,87 in) Öffnung kann für einen beliebigen zusätzlichen Sensor verwendet werden
- Feststellschrauben sind im Lieferumfang enthalten

Ausleger 1 000 mm, für rückseitige Anschlüsse G 1" oder MNPT 1"

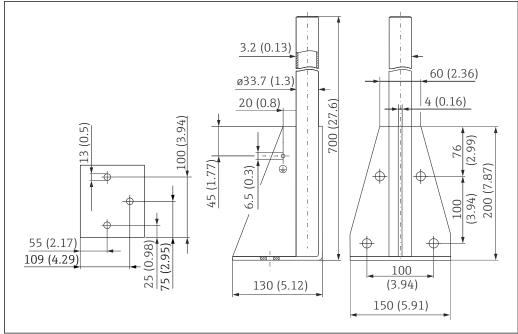
 18 Abmessungen. Maßeinheit mm (in)

Gewicht:

5,4 kg (11,91 lb)

Material

316L (1.4404)


Bestellnummer

71452316

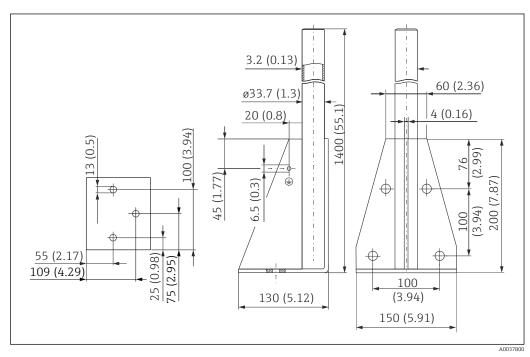
- 35 mm (1,38 in) Öffnungen für alle rückseitigen Anschlüsse G 1" oder MNPT 1"
 22 mm (0,87 in) Öffnung kann für einen beliebigen zusätzlichen Sensor verwendet werden
- Feststellschrauben sind im Lieferumfang enthalten

Ständer, 700 mm (27,6 in)

■ 19 Abmessungen. Maßeinheit mm (in)

Gewicht:

4,0 kg (8,82 lb)


Material

316L (1.4404)

Bestellnummer

71452327

Ständer, 1400 mm (55,1 in)

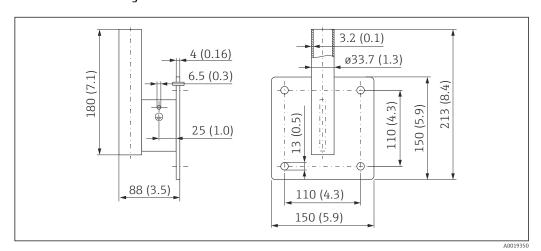
■ 20 Abmessungen. Maßeinheit mm (in)

20 Endress+Hauser

A003779

Gewicht:

6,0 kg (13,23 lb)


Material

316L (1.4404)

Bestellnummer

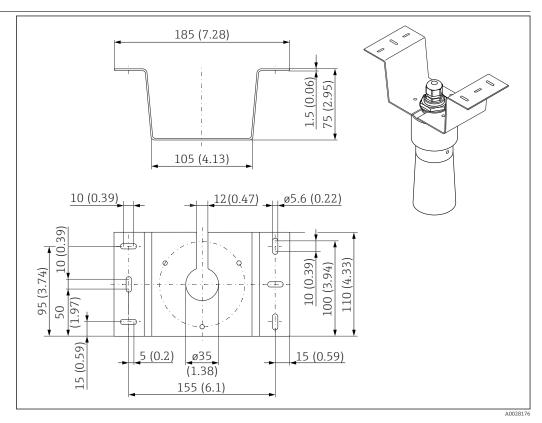
71452326

Wandhalter für Ausleger schwenkbar

■ 21 Abmessungen Wandhalter. Maßeinheit mm (in)

Gewicht

1,21 kg (2,67 lb)


Material

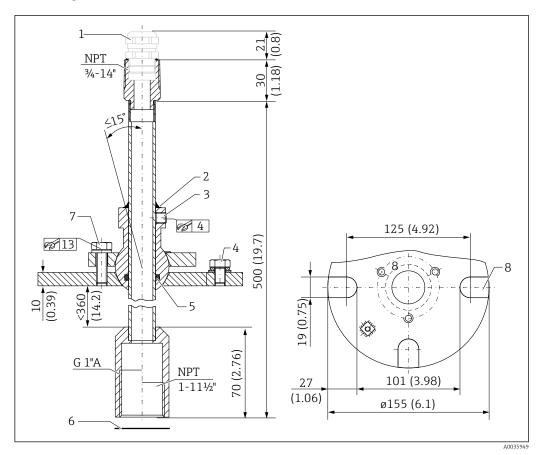
316L (1.4404)

Be stell nummer

71452323

Montageblech für Deckenmontage

🗷 22 Montageblech für Deckenmontage. Maßeinheit mm (in)


Werkstoff: 316L (1.4404)Bestell-Nr.: 71093130

Ausrichtvorrichtung FAU40

Verwendung

- \blacksquare Ausrichten eines Ultraschallsensors auf eine Schüttgutoberfläche
- Schwenkbereich: 15 °
- Zonentrennung bei explosionsgefährdeten Bereichen

Abmessungen

 \blacksquare 23 Ausrichtvorrichtung FAU40. Maßeinheit mm (in)

- 1 Kabelverschraubung M20x1.5 (falls in der Produktstruktur gewählt)
- 2 Hier abdichten
- 3 Zwei Innensechskantschrauben zur Höhenverstellung (8 Nm (6 lbf ft) \pm 2 Nm (\pm 1,5 lbf ft))
- 4 Erdungsschraube
- 5 O-Ring
- 6 Dem Sensor beiliegende Dichtung; zu verwenden bei ATEX Zone 20
- 7 Schraube zur seitlichen Verstellung (18 Nm (13,5 lbf ft)±2 Nm (±1,5 lbf ft))
- 8 Montageaussparungen (bei Ausführung mit UNI-Flansch)

Weitere Informationen

Technische Information TI00179F

Speisegerät RNB130 für die Sensorheizung

Technische Daten

- Funktion: Primär getaktete Stromversorgung
- Eingang: 100 ... 240 V_{AC}
- **Ausgang**: 24 V_{DC}; max 30 V im Fehlerfall

Anschlussmöglichkeiten

- einphasiges Wechselstromnetz
- zwei Außenleiter von Drehstromnetzen (TN, TT- oder IT-Netz nach VDE 0100 T 300/IEC 364-3)

Optional dazu erhältlich: Schutzgehäuse IP66

Weitere Informationen

Technische Information TI00120R

Schutzgehäuse IP66 für das Speisegerät RNB130

■ Bestellnummer: 51002468

• Weitere Informationen: Technische Information TI00080R

Ergänzende Dokumentation

Dokumentation für Messumformer FMU90

- Technische Information: TI00397F
- Betriebsanleitung:
 - BA00288F (HART, Füllstandmessung)
 - BA00289F (HART, Durchflussmessung)
 - BA00292F (Profibus DP, Füllstandmessung)
- BA00293F (Profibus DP, Durchflussmessung)
 Beschreibung der Geräteparameter: GP01151F

Dokumentation für Messumformer FMU95

- Technische Information: TI00398F
- Betriebsanleitung: BA00344F
- Beschreibung der Geräteparameter: GP01152F

Weitere Dokumentationen

Weiterführende Informationen und aktuell verfügbare Dokumentationen auf der Endress+Hauser- Internetseite: www.endress.com \rightarrow Downloads.

www.addresses.endress.com

