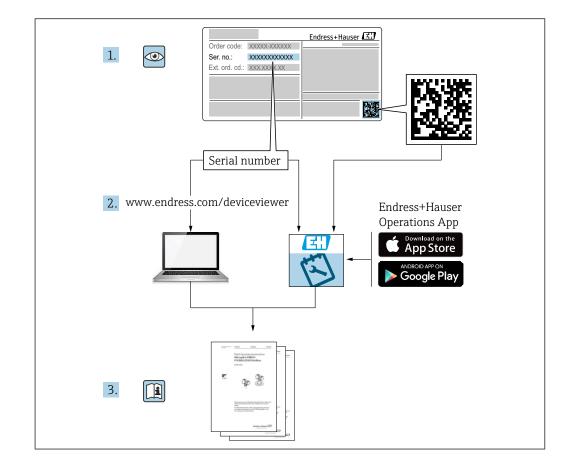
BA02155F/97/EN/03.22-00


71566612 2022-05-01

Operating Instructions Solimotion FTR16

Flow indicator for bulk solids

Table of contents

1	About this document	. 5
1.1	Symbols	. 5
	1.1.1 Safety symbols	. 5
	1.1.2 Electrical symbols	. 5
	1.1.3 Symbols for certain types of information	5
	1.1.4 Symbols in graphics	. 5
	1.1.5 Device-specific symbols	. 5
2	Basic safety instructions	6
2.1	Requirements for the personnel	
2.2	Designated use	. 6
	2.2.1 Incorrect use	
2.3	Workplace safety	
2.4	Operational safety	
2.5	Product safety	. 7
3	Product description	. 7
3.1	Product design	. 7
4	Incoming acceptance and product	
	identification	8
4.1	Incoming acceptance	. 8
4.2	Product identification	. 8
	4.2.1 Nameplate	
	4.2.2 Manufacturer address	
4.3	Storage and transport	
	4.3.1 Storage conditions	
	4.3.2 Transporting the device	. 9
5	Mounting	. 9
5.1	Mounting conditions	. 9
	5.1.1 Mounting position	
	5.1.2 Operating temperature range	. 9
	5.1.3 Mounting dimensions	
5.2	Mounting the device	
	5.2.1 Mounting in contact with the process	10
	5.2.2 Mounting without contact with	1 7
5.3	the process Post-installation check	17
6	Electrical connection	
o 6.1		
0.1	Connection requirements6.1.1Connect potential equalization	
	6.1.2 Connecting cable requirements	
6.2	Output signal	
6.3	Connecting the device	
0.5	6.3.1 Pin assignment	
6.4	Post-connection check	
7	Operation options	19
7.1	Light signals (LEDs)	
7.2	Output signal	
	7.2.1 Bulk movement	
	7.2.2 Error case	
7.3	On-site operation	
7.4	Parameterization	
	7.4.1 Activation parameterization mode	21
	7.4.2 Automatic adjustment	21

7.5	7.4.3 Set process window7.4.4 Set switching delay7.4.5 Reset to factory settingsFunction test	22 23
8	Commissioning	23
8.1 8.2	Function check	
9	Diagnostics and troubleshooting	24
10	Maintenance	24
10.1	Cleaning	24
11	Repair	
11.1 11.2	Return Disposal	24
12	Accessories	25
12.1	Device specific accessories	
	12.1.1 Prefabricated cables	
12.2	12.1.2 Operating magnet	
12.2	Counternut	
12.4	Welding sleeve	
12.5	Weld-in adapter	28
12.6	Mounting flange	
12.7	High pressure adapter	
12.8	Plug	
12.9	Sight glass fitting Insertion adapter	
	Weld-in nozzle	
	High temperature adapter	
13	Technical data	
13.1	Input	
	13.1.1 Measured variable	
	13.1.2 Measuring range (Detection range)13.1.3 Operating frequency	
	13.1.4 Detectable speed	
	13.1.5 Transmitting power	
	13.1.6 Antenna opening angle (3 dB)	
13.2	Output	
	13.2.1 Output signal	
100	13.2.2 Ex connection data	
13.3	Power supply	
	13.3.2 Power consumption	
	13.3.3 Current consumption	
	13.3.4 Load	
13.4	Environment	
	13.4.1 Ambient temperature	
	13.4.2Storage temperature13.4.3Degree of protection	
	13.4.4 Vibration resistance	
	13.4.5 Shock resistance	
	13.4.6 Electromagnetic compatibility	
13.5	Process	36

	13.5.1 Process temperature
	13.5.2 Process pressure
13.6	Additional technical data

1 About this document

1.1 Symbols

1.1.1 Safety symbols

A DANGER

This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in serious or fatal injury.

This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury.

This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in minor or medium injury.

NOTICE

This symbol contains information on procedures and other facts which do not result in personal injury.

1.1.2 Electrical symbols

\pm Ground connection

Grounded clamp, which is grounded via a grounding system.

1.1.3 Symbols for certain types of information

Permitted

Procedures, processes or actions that are permitted.

🔀 Forbidden

Procedures, processes or actions that are forbidden.

🚹 Tip

Indicates additional information

- Reference to documentation
- Reference to another section
- Reference to graphic
- 1., 2., 3. Series of steps

1.1.4 Symbols in graphics

A, B, C ... View

- 1, 2, 3 ... Item numbers
- 🖾 Hazardous area
- 🔉 Safe area (non-hazardous area)

1.1.5 Device-specific symbols

+ LED on Indicates an illuminated LED

• LED off Indicates an non-illuminated LED ○ LED undefined

Indicates an undefined or arbitrary light state of the LED

|↑| Maximum bulk flow

Indicates a maximum bulk movement

It Minimum bulk flow

Indicates a minimum or absent bulk movement

2 Basic safety instructions

2.1 Requirements for the personnel

The personnel must fulfill the following requirements to carry out the necessary tasks, e. g., commissioning and maintenance:

- ► Trained, qualified specialists must have a relevant qualification for the specific function and task
- ► Are authorized by the plant owner/operator
- ► Are familiar with federal/national regulations
- ► Must have read and understood the instructions in the manual and supplementary documentation
- ► Follow instructions and comply with conditions

2.2 Designated use

Only use the flow indicator to monitor a bulk material movement. Improper use can pose hazards. Ensure that the measuring device is free of defects while it is in operation.

- Use the device only in media to which the process-wetted materials are adequately resistant.
- Do not exceed or drop below the limit values for the measuring device
 TI01610F

2.2.1 Incorrect use

The manufacturer is not liable for damage caused by improper or non-designated use.

Residual risks

Due to heat transfer from the process, the temperature of the electronics housing and the assemblies contained therein may rise to 70 $^{\circ}$ C (158 $^{\circ}$ F) during operation.

Danger of burns from contact with surfaces!

▶ If necessary, ensure protection against contact to prevent burns.

2.3 Workplace safety

For work on and with the device:

► Wear the required protective equipment according to federal/national regulations.

2.4 Operational safety

Risk of injury!

- ► Operate the device in proper technical condition and fail-safe condition only.
- ► The operator is responsible for interference-free operation of the device.

Conversions to the device

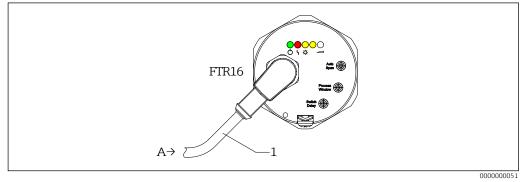
Unauthorized modifications to the device are not permitted and can lead to unforeseeable dangers.

▶ If, despite this, modifications are required, consult with Endress+Hauser.

Repair

Repair is only possible by the manufacturer.

2.5 Product safety


This flow indicator is designed in accordance with good engineering practice to meet state-of-the-art safety requirements, has been tested, and left the factory in a condition in which it is safe to operate.

It meets general safety standards and legal requirements. It also complies with the EU directives listed in the device-specific EU Declaration of Conformity. Endress+Hauser confirms this by affixing the CE mark to the device.

3 Product description

Ultra compact flow indicator for monitoring pneumatic and mechanical transport processes of bulk solids

3.1 Product design

I Product design

A Supply and signal circuit

1 Connection cable M12 socket

Use in potentially explosive atmospheres \rightarrow Observe XA!

4 Incoming acceptance and product identification

4.1 Incoming acceptance

Check the following during goods acceptance:

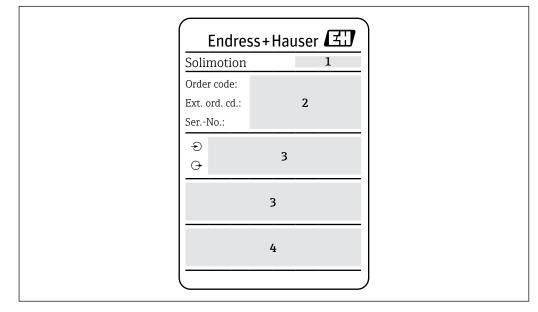
 $\hfill\square$ Are the order codes on the delivery note and the product sticker identical?

□ Are the goods undamaged?

Do the nameplate data match the ordering information on the delivery note?

□ If required (see nameplate): Are the Safety Instructions, e. g. XA, provided?

□ Is the device properly secured?


f

If one of these conditions is not met, please contact the manufacturer's sales office.

4.2 Product identification

The measuring device can be identified in the following ways:

- Nameplate data
- Extended order code with breakdown of the device features on the delivery note
- Enter serial number from nameplates in *W@M Device Viewer* (www.endress.com/ deviceviewer): All of the information on the measuring device is displayed along with an overview of the scope of technical documentation provided
- Enter the serial number on the nameplate into the *Endress+Hauser Operations App* or use the *Endress+Hauser Operations App* to scan the 2-D matrix code (QR Code) on the nameplate

4.2.1 Nameplate

■2 Nameplate data

1 Manufacturer address

2 Order number, external order code, serial number

3 Technical data

4 Approval-specific information

4.2.2 Manufacturer address

Endress+Hauser SE+Co. KG Hauptstraße 1 79689 Maulburg, Germany

4.3 Storage and transport

4.3.1 Storage conditions

Use original packaging.

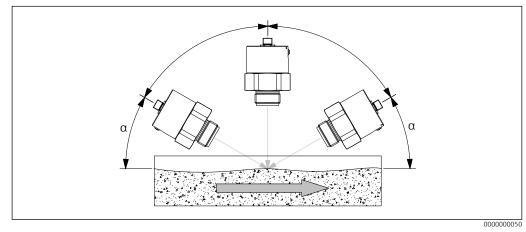
Storage temperature

→ 🖹 36

4.3.2 Transporting the device

Transport the device to the measuring point in the original packaging.

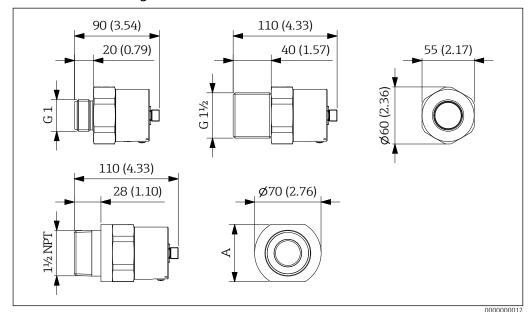
5 Mounting


5.1 Mounting conditions

Minimization of application-specific influences \blacktriangleright Vibration influence $\rightarrow \cong 36$

5.1.1 Mounting position

• Any mounting position


- Small angle α can increase signal quality.
- Material detection on conveyor belts: $\alpha = 45^{\circ}$ recommended

■3 Mounting position

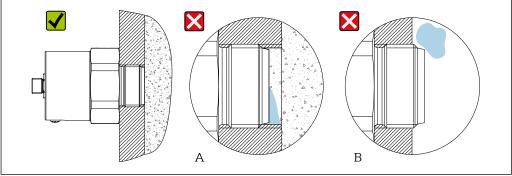
5.1.2 Operating temperature range

→ 🖹 36

5.1.3 Mounting dimensions

Mounting dimensions. Unit of measurement mm (in)

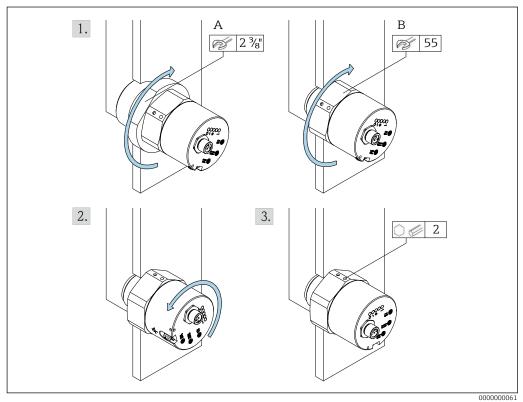
A 2³/₈" (60.325 mm / 2.375 in)


5.2 Mounting the device

5.2.1 Mounting in contact with the process

The FTR16 is screwed directly into the process (for example existing threads or vessel sleeves) with its process connection (standard threads G 1 and G 1½ according to ISO 228-1 or $1\frac{1}{2}$ NPT according to ANSI/ASME B1.20.1).

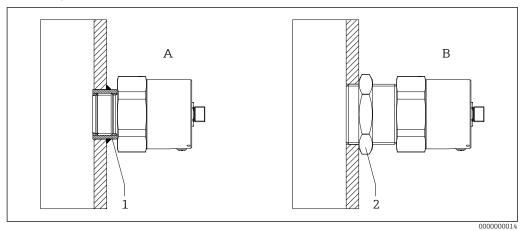
Direct mounting with threaded connection


The simplest mounting method is by screwing into the process wall. To do this, a corresponding internal thread (G 1, G $1\frac{1}{2}$ or $1\frac{1}{2}$ NPT) must be available in the process.

■ 5 Mounting with connection thread

- 000000020
- If the process connection is not screwed far enough into the process wall, there is a risk that material will accumulate in front of the device (**A**), thereby damping the microwave signal.
- If, on the other hand, the process connection is screwed too far into the process (**B**), there is a risk of damage occurring as a result of large product items falling.

Mounting with connection thread

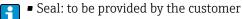


- ■6 Mounting with connection thread
- A 1½ NPT
- B G1/G1¹/₂
- 1. Screw in conical (**A**) or cylindrical (**B**) connection thread.
- 2. Align the housing of the electronics.
- 3. Fix the housing in place.

Seal: to be provided by the customer

Mounting alternatives

- ■7 Mounting alternatives
- 1 Welding sleeve G 1
- 2 Counternut G 1½


When using the G 1½ process connection (standard thread according to ISO 228-1, hexagon SW55) and using the optional counternut, the device can be mounted flush particularly easily, as it is a cylindrical thread. → 🗎 26

Mounting with welding sleeve G 1 (A)

Screw in the device as far as it will go.

Mounting in existing thread G $1\frac{1}{2}$ (B)

 \blacktriangleright Screw in the device flush with the inner wall and lock it with a G 1½ counternut.

Suitable welding sleeve and counternut

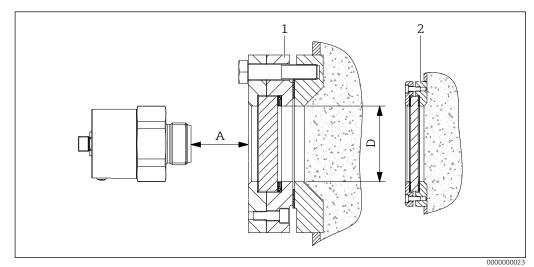
 \rightarrow \cong 26 and order structure option "accessory enclosed"

5.2.2 Mounting without contact with the process

Mounting in front of microwave-permeable plugs

• Observe maximum temperature $\mathbf{T} \rightarrow \square 36$

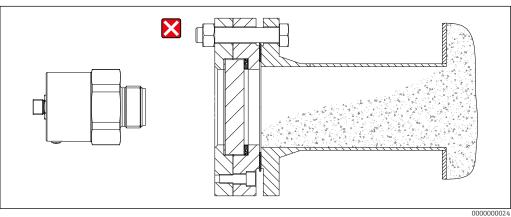
- Risk of condensate formation on the inner process wall ightarrow plug 2
- A minimize \rightarrow minimize signal attenuation
- Erroneous measurements due to moving passage surfaces
- Suitable plug of type FAR54 \rightarrow \cong 30


18 Mounting in front of microwave-impermeable process wall

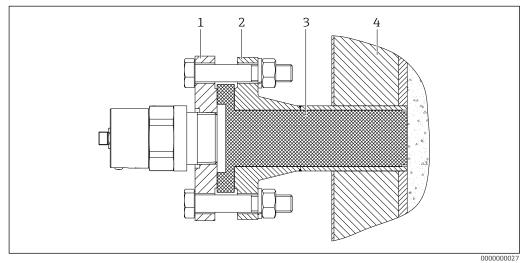
1 Microwave-permeable plug

2 Microwave-permeable plug in case of condensate formation on the inner process wall

Mounting in front of microwave permeable sight glass fitting


- Observe maximum temperature $\rightarrow \cong 36$
 - Suitable sight glass fittings $\rightarrow \square 30$

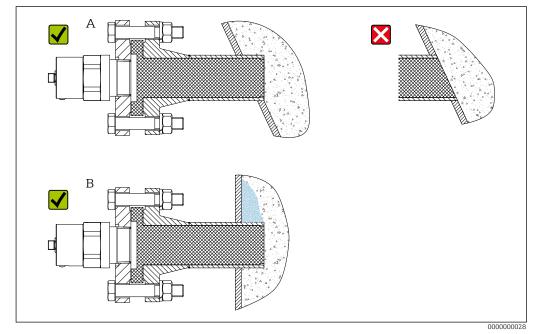
₽9 Mounting in front of microwave permeable sight glass fitting


- Sight glass fitting for processes up to 10 bar (145 psi) Sight glass fitting for unpressurized processes 1
- 2

Avoid material accumulation in front of the sight glass (risk of incorrect measurements).

Impermissible mounting with the risk of material accumulation **€**10

Mounting on process nozzle

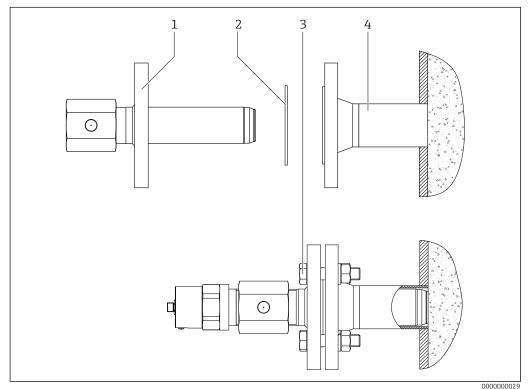


- **₽**11 Mounting on process nozzle
- 1 Mounting flange
- 2 Process nozzle
- 3 Plug
- 4 Process insulation

- Suitable mounting flanges → ≅28
 Suitable plugs → ≅30 i
 - - Suitable process nozzle of type FAR50 $\rightarrow \square$ 33

In case of risk of buildup

• Avoid mounting types that favor this process


12 Mounting with risk of buildup

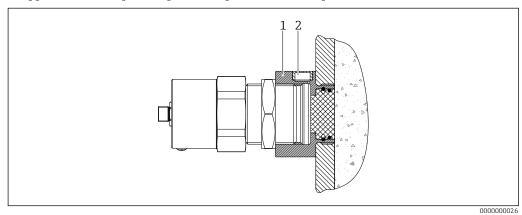
- Mounting of process nozzle with inclined process wall (A)
- Mounting in case of risk of material accumulation on inner process wall (B)

If there is a risk of condensation forming between the device and the plug

► Use of process connection type FAR50 with integrated venting element → 🖹 33

Mounting on process nozzle

₽13 Mounting with insertion adapter FAR51

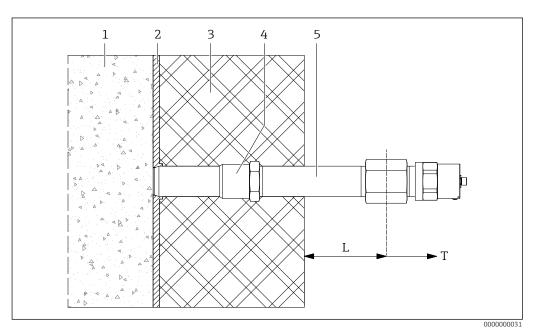

- 1 Insertion adapter
- 2 Customer-supplied gasket 3 Customer-supplied installation material
- 4 Process nozzle

Suitable insertion adapter of type FAR51 $\rightarrow \square$ 32

Mounting with high pressure adapter

▶ Applications with process pressure up to 21 bar (305 psi)

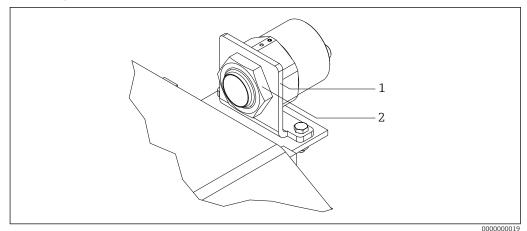
- **1**4 Mounting with high pressure adapter
- High pressure adapter 1
- Integrated venting element 2



Suitable high pressure adapter $\rightarrow \square 29$

Mounting with high temperature adapter and extensions

► Applications with process temperature +60 to +450 °C (+140 to +842 °F)


- Process pressure 0.8 to 5.1 bar (12 to 74 psi) absolute
 - Observe maximum temperature $\mathbf{T} \rightarrow \square 36$
 - ► Exceeding leads to destruction!
 - L must be selected depending on the process and ambient temperatures.
 - Suitable high temperature adapter and extension $\rightarrow \cong 34$

■15 Mounting with high temperature adapter and extensions

- 1 Process
- 2 Wall
- 3 Insulation
- 4 High temperature adapter
- 5 Length extensions (optional)

Mounting for open processes

■16 Mounting for open processes

- 1 Mounting bracket
- 2 Counternut

Suitable mounting bracket an counternut $\rightarrow \square 26$

5.3 Post-installation check

□ Is the device undamaged (visual inspection)?

□ Does the device conform to the measuring point specifications? For example:

- Process temperature
- Process pressure
- Ambient temperature

□ Are the measuring point number and labeling correct (visual inspection)?

□ Is the device adequately protected against precipitation and direct sunlight?

 \Box Is the device properly secured?

6 Electrical connection

For a device for the hazardous area: Observe the instructions in the Ex documentation (XA).

6.1 Connection requirements

6.1.1 Connect potential equalization

The potential equalization for the device must be integrated into the existing potential equalization on site.

Requirements:

- The potential equalization must be connected to the external ground terminal on the device.
- For optimum electromagnetic compatibility, keep the potential equalization line as short as possible.
- The recommended cable cross-section is 2.5 mm².
- The potential equalization of the FTR16 must be included in the local potential equalization.

6.1.2 Connecting cable requirements

The connections cables with M12A connector must be fulfil the following requirements:

- Permissible temperature range $\rightarrow \square 36$
- Protection $\rightarrow \square 36$
- Max. 5 Ω/wire
- Total capacity < 100 nF

Suitable connection cable

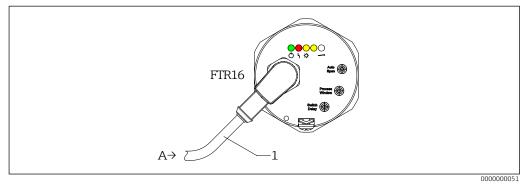
 \rightarrow 🖺 25 and order structure option "accessory enclosed"

6.2 Output signal

Safety-related circuit

The electric switch opens in the presence or absence of bulk material movement, in the event of malfunctions or power failure.

- Maximum bulk flow
- The FTR16 will keep the electrical switch closed as long **as bulk movement is present**. Minimum or no bulk flow.

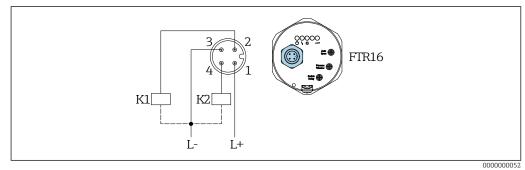

The FTR16 keeps the electrical switch closed as long as **there is little or no bulk movement**.

Function test

With a two-channel evaluation, a function monitoring of the FTR16 can be realized in addition to the flow monitoring.

When both outputs are connected, both outputs assume opposite states (antivalence) in fault-free operation. In the event of a fault or a line break, both outputs drop out.

6.3 Connecting the device


■ 17 Electrical connection

A Supply and signal circuit

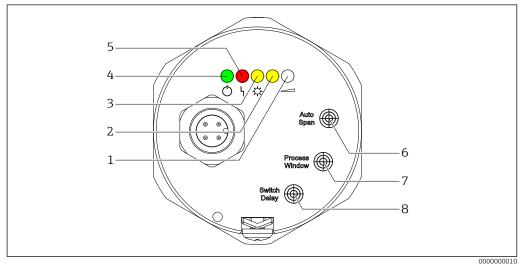
1 Connection cable M12 socket

Power supply, Output signal $\rightarrow \bigoplus 35$

6.3.1 Pin assignment

I8 Pin assignment for supply voltage and output circuit

Kx External load


i

The device is internally equipped with a fine-wire fuse 500 mA (slow-blow) according to IEC 60127-2, this cannot be changed by the user in the event of a fault.

6.4 Post-connection check

- □ Is the device or cable undamaged?
- □ Do the cables used comply with the requirements?
- □ Do the mounted cables have adequate strain relief?
- □ Are the connectors firmly tightened?
- Does the supply voltage match the specifications on the nameplate?
- □ No reverse polarity, is terminal assignment correct?
- □ If supply voltage is present, is the green LED lit?

7 Operation options

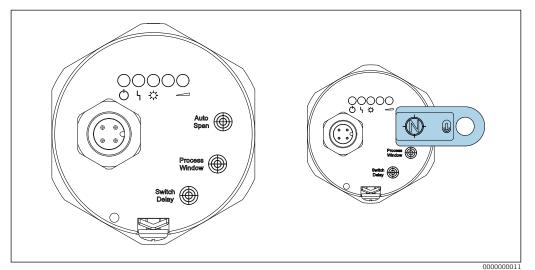
■ 19 Display and operating elements of the FTR16

- 1 Signal strength (LED white)
- 2 Only for parameterization: LED yellow
- 3 Sensor state (LED yellow)
- 4 Operation (LED green)
- 5 Error/warning (LED red)
- 6 Parameterization point automatic adjustment 7 Parameterization point process window
- 7 Parameterization point process window8 Parameterization point switch delay

	Display				Meaning
	0	0	0	0	Operation
		-	-	-	LED lights up: Device is ready for operation (supply voltage is applied)
					LED flashes: Device is in parameterization mode $\rightarrow \bigoplus 21$
0		0	0	0	Error/Warning
		Ŭ	0	Ŭ	LED lights up: Error/device failure (unrecoverable error)
					LED flashes: Warning/maintenance required (recoverable error)
0	0	-Ծ-	0	0	Sensor state
	Ŭ	\uparrow	Ŭ	Ŭ	LED off: Movement of the bulk material
					LED on: No movement of the bulk material
0	0	0	- \	0	For parameterization only
0	0	0	0	-\-	Signal strength
	<u> </u>			~~	The signal strength is indicated by a white LED, the light state (off, 2 to 15 Hz or permanently lit) is proportional to the strength of the signal.

7.1 Light signals (LEDs)

7.2 Output signal


7.2.1 Bulk movement

Bulk movement	Signal strength (LED white)	Sensor state	Switching output
	LED on or flashing fast (approx. 9 to 15 Hz)	•	<u>1 2 1 4</u>
	LED off or flashing slowly (approx. 2 to 8 Hz)	- \	<u>1/2</u> <u>1</u> 4

7.2.2 Error case

Bulk movement	Sensor state	Error/Warning	Switchin	ıg output
	• Warning		<u>1_t 2</u>	1/4
	- \	LED flashing	1_/_2	<u>1 4</u>
	●	Error LED lights up permanently	1 / 2	14

7.3 On-site operation

■20 On-site operation

Operation via operating magnet $\rightarrow \square 26$

To operate, place the operating magnet (north pole visible as shown) on the marked areas of the FTR16. The operating magnet is included in the scope of delivery of the FTR16. It can be optionally cancelled or ordered as an accessory.

7.4 Parameterization

Setting options only available with activated parameterization mode (7.4.2 ... 7.4.5)

7.4.1 Activation parameterization mode

- 1. Power supply off: Operating magnet on "Auto Span", "Process Window" or "Switch Delay"
- 2. Power supply on: Initialization \rightarrow green LED (operation) flashes slowly
- 3. Remove operating magnet \rightarrow parameterization mode (green LED continues to flash slowly)
- The device continues to operate normally in the background depending on the current settings, so that, for example, an occurring bulk material movement leads to a changeover of the signal output.
- 10 minutes no action → parameterization mode is terminated (device switches to normal operation)
- The parameterization mode can also be terminated by a voltage reset.

7.4.2 Automatic adjustment

- Setting to the process-dependent bulk material movement
- To be performed once during commissioning with maximum movement of the bulk material

Perform automatic adjustment

- 1. Operating magnet on "Auto Span" \rightarrow green LED flashes quickly
- 2. Remove the operating magnet within 10 seconds:
 - \rightarrow green LED lights up for 2 s
 - \rightarrow automatic adjustment successfully performed
- Automatic adjustment not feasible (for example, in the absence of bulk material movement) → Warning
- After an automatic adjustment, the white LED (signal strength) lights up permanently if the bulk material movement is sufficiently high.

• If there is no or only slight bulk material movement, the yellow LED (sensor status) report the lack of movement, and the white LED is off or flashing at a low frequency. If this is not the case, the process window must then be adjusted.

7.4.3 Set process window

- If, after an automatic adjustment, a movement is detected despite the absence of bulk material movement (for example, due to moving plant parts in the detection range of the FTR16), the process window must reduced step by step.
- An enlargement of the process window is also possible. This is useful if, for example, the bulk material quantity or the conveying speed fluctuate.

Customize process window

- 1. Operating magnet on "Process Window":
 - \rightarrow green LED flashes quickly
 - \rightarrow display (5 s) current process window
- 2. Continue to stop operating magnet \rightarrow every 5 s change to next process window
- 3. Remove operating magnet \rightarrow last displayed process window selected

Display	Meaning
★ ★ ☆ ☆ ☆	100 % (very large process window)
★ ★ ☆ ↓ ●	70 % (large process window)
★ ★ ☆ ● ●	50 % (factory setting)
* * • • •	30 % (small process window)
* • • • •	15 % (very small process window)

7.4.4 Set switching delay

A switching delay is helpful, for example, if the signal strength fluctuates strongly, so that the outputs only switch when the switching point is exceeded or undershot for a correspondingly long time.

Set switching delay

- 1. Operating magnet on "Switch Delay":
 - \rightarrow green LED flashes quickly
 - \rightarrow display (5 s) current switching delay
- 2. Continue to stop operating magnet \rightarrow every 5 s change to next switching delay
- 3. Remove operating magnet \rightarrow last displayed switching delay selected

Display	Meaning
$\bullet \bullet \bullet \bullet$	Switching delay off (factory setting)
★ ★ ● ● ●	500 ms
★ ★ ☆ ● ●	1 s
★ ★ ☆ ★ ●	5 s
* * * * *	10 s

7.4.5 Reset to factory settings

In case of unknown settings or use in a new application, it is recommended to reset the FTR16 to its factory settings beforehand.

Factory settings:

- Process window 50 %
- Switching delay off

Perform factory reset

- 1. Operating magnet on "Auto Span" \rightarrow green LED flashes quickly
- 2. Continue to stop operating magnet (min. 20 s):
 - \rightarrow after 10 s, red LED flashes slowly (warning of resetting)
 - ightarrow after another 10 s red LED flashes quickly
- 3. Remove operating magnet \rightarrow parameter reset to factory setting (7.4.2 ... 7.4.4)

7.5 Function test

- Function test only possible with parameterization mode deactivated! $\rightarrow \square 21$
- If the operating magnet is held ≥ 30 s against the marking, the red LED flashes and the device automatically returns to the current switching state.

Perform function test

- 1. Operating magnet on "Auto Span", "Process Window" or "Switch Delay" (min. 2 s)
 - \rightarrow all LEDs light up briefly
 - \rightarrow current switching state is inverted
 - \rightarrow function test is performed

2. Remove operating magnet \rightarrow change to normal operation

8 Commissioning

8.1 Function check

Before commissioning the measuring point, check whether the post-installation and postconnection checks have been performed.

- "Post-installation check" checklist $\rightarrow \square 17$
- "Post-connection check" checklist $\rightarrow \square 19$

8.2 Powering up the measuring device

The device is ready for operation a maximum of 3 s after the supply voltage is applied. Initial setup \rightarrow 7.4.2 ... 7.4.5

Error	Possible cause	Remedy
Device does not respond	Supply voltage does not match the specification on the nameplate	Apply correct voltage
	Supply voltage has the wrong polarity	Reverse the polarity of the supply voltage
Signal outputs do not switch	FTR16 not parameterized	Parameterize FTR16 (if necessary, reset to factory settings beforehand).
	FTR16 defective	Inspection and repair if necessary

9 Diagnostics and troubleshooting

10 Maintenance

No special maintenance work is required.

10.1 Cleaning

The device must be cleaned if necessary (for example, removal of product caking), but do not damage the transmission window.

11 Repair

No repair is provided for this device.

11.1 Return

The measuring device must be returned if the wrong device has been ordered or delivered. As an ISO-certified company and also due to legal regulations, Endress+Hauser is obliged to follow certain procedures when handling any returned products that have been in contact with medium. To ensure safe, swift and professional device returns, please refer to the procedure and conditions for returning devices provided on the Endress+Hauser website at

http://www.endress.com/support/return-material

11.2 Disposal

X

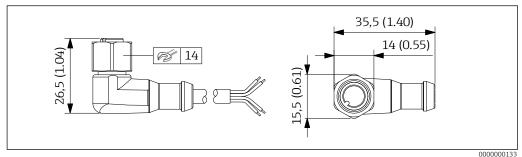
If required by the Directive 2012/19/EU on waste electrical and electronic equipment (WEEE), our products are marked with the depicted symbol in order to minimize the disposal of WEEE as unsorted municipal waste.

Such products may not be disposed of as unsorted municipal waste and can be returned to Endress+Hauser for disposal at conditions stipulated in our General Terms and Conditions or as individually agreed.

12 Accessories

The accessories can be optionally ordered together with the device or separately. → Ordering structure "Accessories enclosed" option

12.1 Device specific accessories


12.1.1 Prefabricated cables

Connection cable with M12 right-angle socket (為)

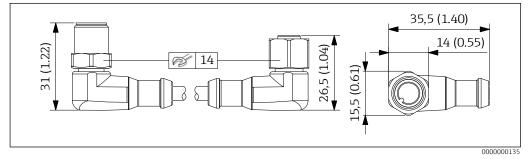
- Number of poles/cross section: 4 x 0.34 mm²
- A-coded
- Operating temperature range: -25 to +90 °C (-13 to +194 °F)
- Materials
 - TPU (housing)
 - FKM (seal)
 - PUR (cable)
- Degree of protection: IP69
- Order number:
 - 71530949 (5 m (196.85 in))
 - 71530950 (10 m (393.70 in))
 - 71530953 (20 m (787.40 in))

Connection cable with M12 right-angle socket (▲/為)

- Number of poles/cross section: 4 x 0.34 mm²
- A-coded
- Operating temperature range: -20 to +60 °C (-4 to +140 °F)
- Materials
 - TPU (housing)
 - FKM (seal)
 - PUR (cable)
- Degree of protection: IP67 (企) / IP69 (鯊)
- Order number:
 - 71530971 (5 m (196.85 in))
 - 71530973 (10 m (393.70 in))

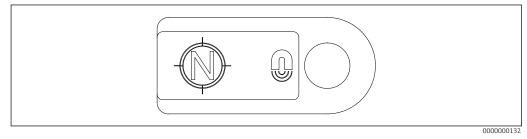
■21 Connection cable with M12 right-angle socket. Unit of measurement mm (in)

Connecting cable with M12 right-angle plug and M12 right-angle socket (為)


- Number of poles/cross section: 4 x 0.34 mm²
- A-coded
- Operating temperature range: -25 to +90 °C (-13 to +194 °F)
- Materials
 - TPU (housing)
 - FKM (seal)
 - PUR (cable)
- Degree of protection: IP69

- Order number:
 - 71530943 (5 m (196.85 in))
 - 71530944 (10 m (393.70 in))
 - 71530947 (20 m (787.40 in))

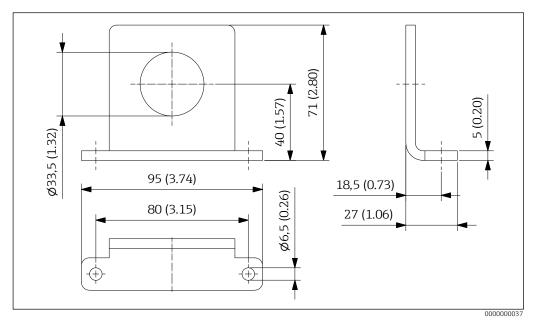
Connecting cable with M12 right-angle plug and M12 right-angle socket (A/X)


- Number of poles/cross section: 4 x 0.34 mm²
- A-coded
- Operating temperature range: -20 to +60 °C (-4 to +140 °F)
- Materials
 - TPU (housing)
 - FKM (seal)
- PUR (cable)
- Degree of protection: IP67 (兪) / IP69 (鯊)
- Order number:
 - 71530969 (5 m (196.85 in))

- 71530970 (10 m (393.70 in))

E22 Connecting cable with M12 right-angle plug and M12 right-angle socket. Unit of measurement mm (in)

12.1.2 Operating magnet

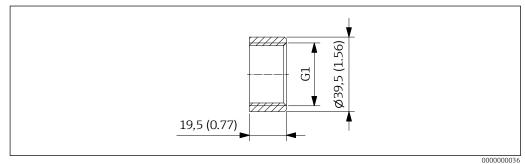


■23 Operating magnet

Order number: 71535426

12.2 Mounting bracket

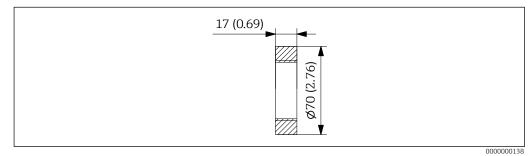
- G 1, ISO 228-1
- Material: 304 (1.4301)
- Weight: 0.22 kg (0.49 lb)
- Mounting screws (2 x M6): to be provided by customer
- Order number: 71530850

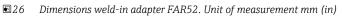

■24 Dimensions mounting bracket. Unit of measurement mm (in)

12.3 Counternut

- Material: 316 (1.4401)
- Weight:
 - G1: 0.04 kg (0.09 lb)
 - G 1½: 0.07 kg (0.15 lb)
- Order number:
 - 71530854 (G 1, SW40)
 - 71530857 (G 1½, SW55)

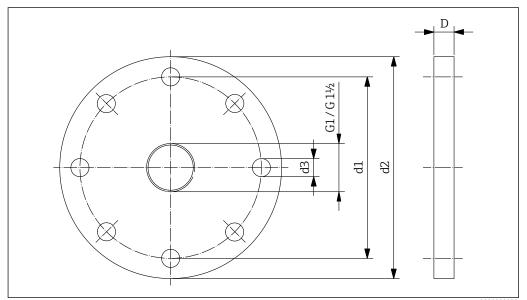
12.4 Welding sleeve


- G 1 (ISO 228-1), half length according to EN 10241
- Material: 316Ti (1.4571)
- Weight: 0.07 kg (0.15 lb)
- Order number:
 - 71530862
 - 71530941 (with inspection certificate EN 10204 3.1 material)



■25 Dimensions welding sleeve. Unit of measurement mm (in)

12.5 Weld-in adapter


- Type FAR52 (\rightarrow III01369F), internal thread G 1½
- Material: 316Ti (1.4571), steel P235GH (1.0345)
- Weight: 0.3 kg (0.66 lb)

12.6 Mounting flange

- Connection dimensions according to DIN EN 1092-1
- Material: 316Ti (1.4571)
- Weight: DN40 approx. 2.3 kg (5.07 lb) to DN100 approx. 5.8 kg (12.79 lb)
- Mounting screws and gasket: to be provided by customer
- Order number:
 - 71530977 (DN40 PN40, G 1)
 - 71530992 (DN40 PN40, G 1, with inspection certificate EN 10204 3.1 material)
 - 71381884 (DN40 PN16, G 1½)
 - 71381885 (DN40 PN16, G 1¹/₂, with inspection certificate EN 10204 3.1 material)
 - 71531009 (DN50 PN16, G 1)
 - 71531011 (DN50 PN16, G 1, with inspection certificate EN 10204 3.1 material)
 - 71381887 (DN50 PN16, G 1½)
 - 71381888 (DN50 PN16, G 1¹/₂, with inspection certificate EN 10204 3.1 material) - 71531014 (DN100 PN16, G 1)
 - 71531024 (DN100 PN16, G 1, with inspection certificate EN 10204 3.1 material)
 - 71381890 (DN100 PN16, G 1¹/₂)
 - 71381891 (DN100 PN16, G 1¹/₂, with inspection certificate EN 10204 3.1 material)

■27 Dimensions mounting flange (Anschlussmaße nach EN 1092-1)

Flange	d1 mm (in)	d2 mm (in)	d3 mm (in)	D mm (in)	Holes
DN40 PN40	110 (4.33)	150 (5.91)	18 (0.71)	18 (0.71)	4
DN50 PN16	125 (4.92)	165 (6.50)	18 (0.71)	18 (0.71)	4
DN100 PN16	180 (7.09)	220 (8.66)	18 (0.71)	20 (0.79)	8

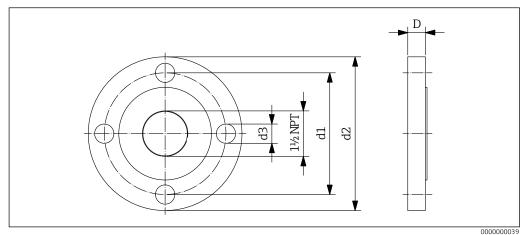
Connection dimensions according to ANSI/ASME B16.5

• Material: 316Ti (1.4571)

• Weight: 1¹/₂" approx. 1.5 kg (3.31 lb) to 4" approx. 6.8 kg (15.0 lb)

Mounting screws and gasket: to be provided by customer

Order number:

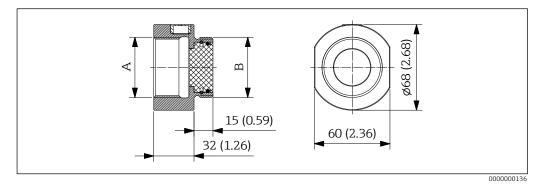

- 71006349 (11/2" 150 lbs, 11/2 NPT)
- 71108387 (1¹/₂" 150 lbs, 1¹/₂ NPT, with inspection certificate EN 10204 3.1 material)

- 71006351 (2" 150 lbs, 1½ NPT)

- 71108389 (2" 150 lbs, 1¹/₂ NPT, with inspection certificate EN 10204 - 3.1 material)

- 71006353 (4" 150 lbs, 1½ NPT)

- 71108391 (4" 150 lbs, 1¹/₂ NPT, with inspection certificate EN 10204 - 3.1 material)

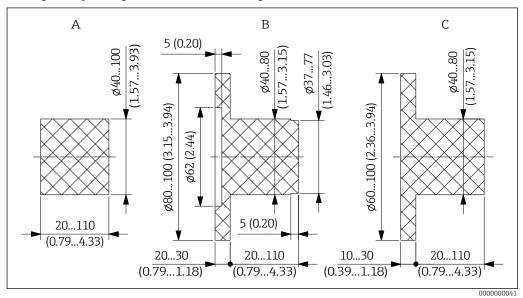


28 Dimensions mounting flange (Connection dimensions according to ANSI/ASME B16.5)

Flange	d1 mm (in)	d2 mm (in)	d3 mm (in)	D mm (in)	Holes
11⁄2" 150 lbs	98.6 (3.88)	127 (5.00)	15.7 (0.62)	17.5 (0.69)	4
2" 150 lbs	120.7 (4.75)	152.4 (6.00)	19.1 (0.75)	19.1 (0.75)	4
4" 150 lbs	190.5 (7.50)	228.6 (9.00)	19.1 (0.75)	23.9 (0.94)	8

12.7 High pressure adapter

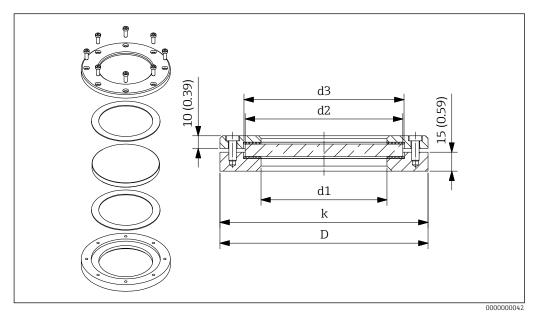
- Process pressure: 21 bar (305 psi) absolute
- Material: 316Ti (1.4571), PTFE (window transmission)
- Weight: approx. 0.8 kg (1.76 lb)
- Seal: to be provided by the customer
- Order number:
 - 71381894 (G 1½ (A+B), ISO 228-1)
 - 71381898 (G 1½ (A+B), ISO 228-1, with inspection certificate EN 10204 3.1 material)
 - 71381899 (G 1¹/₂ (B), ISO 228-1, 1¹/₂ NPT (A), ANSI/ASME)
 - 71381904 (G 1¹/₂ (B), ISO 228-1, 1¹/₂ NPT (A), ANSI/ASME, with inspection certificate EN 10204 3.1 material)



29 Dimensions high pressure adapter. Unit of measurement mm (in)

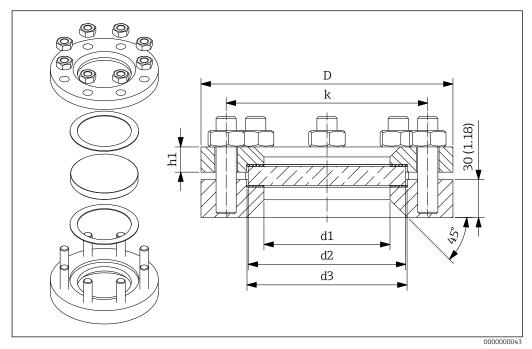
- A Device connection thread
- B Process connection thread

12.8 Plug


- Type FAR54 (→ □TI01371F)
- Material: PTFE, aluminum oxide ceramics
- Process temperature: -40 to +800 °C (-40 to +1472 °F)
- Weight: Depending on version (max. 3.2 kg (7.05 lb))

■ 30 Dimensions plug FAR54. Unit of measurement mm (in)

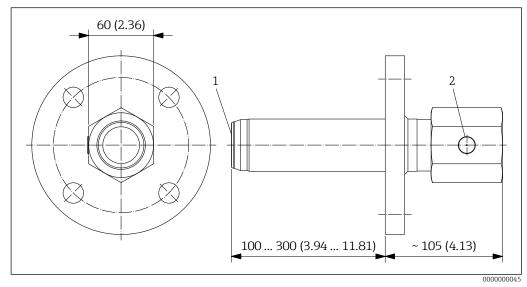
12.9 Sight glass fitting


- Unpressurized, weld-on or weld-in type
- Material: 316Ti (1.4571), seal silicone (max. +200 °C/+392 °F)
- Weight: DN50 approx. 2.4 kg (5.29 lb) to DN100 approx. 4.1 kg (9.04 lb)
- Mounting screws enclosed
- Order number:
 - 71026443 (DN50)
 - 71026444 (DN80)
 - 71026445 (DN100)
- Sight glass disc (spare part)
 - 71209118 (DN50)
 - 71209116 (DN80)
 - 71209115 (DN100)

■ 31 Dimensions sight glass fitting for unpressurized processes. Unit of measurement mm (in)

DN	d1 mm (in)	d2 mm (in)	d3 mm (in)	D mm (in)	k mm (in)
50	80 (3.15)	100 (3.94)	102 (4.02)	140 (5.51)	120 (4.72)
80	100 (3.94)	125 (4.92)	127 (5.00)	165 (6.50)	145 (5.71)
100	125 (4.92)	150 (5.91)	152 (5.98)	190 (7.48)	170 (6.69)

- Process pressure: 10 bar (145 psi) absolute, weld-on or weld-in type
- Material: 316Ti (1.4571), seal KLINGERSIL[®] C-4400 (max. +200 °C/+392 °F)
- Weight: DN50 approx. 6.7 kg (14.77 lb) to DN100 approx. 13.0 kg (28.66 lb)
- Mounting screws enclosed
- Order number:
 - 71026446 (DN50)
 - 71026447 (DN80)
 - 71026448 (DN100)
- Sight glass disc (spare part)
 - 71209114 (DN50)
 - 71209111 (DN80)
 - 71209107 (DN100)

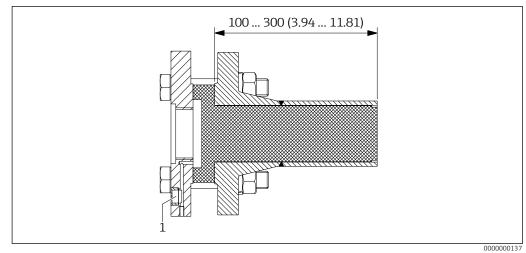


₪ 32 Dimensions sight glass fitting for processes up to 10 bar (145 psi). Unit of measurement mm (in)

DN	d1 mm (in)	d2 mm (in)	d3 mm (in)	D mm (in)	k mm (in)	h1 mm (in)
50	80 (3.15)	100 (3.94)	102 (4.02)	165 (6.50)	125 (4.92)	16 (0.63)
80	100 (3.94)	125 (4.92)	127 (5.00)	200 (7.87)	160 (6.30)	20 (0.79)
100	125 (4.92)	150 (5.91)	152 (5.98)	220 (8.66)	180 (7.09)	22 (0.87)

12.10 Insertion adapter

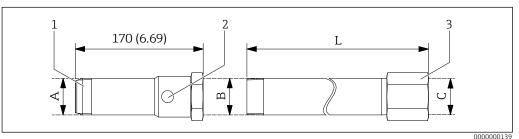
- Type FAR51 (\rightarrow 🗐 TI01368F)
- Process nozzle
 - DN50 to DN100, PN16, Form A - NPS 2" to 4" 150 lbs, RF
- Nozzle length: 100 to 300 mm (3.94 to 11.81 in)
- Connection thread 1½ NPT, G 1½
- Optionally with PTFE or aluminum oxide ceramics
- Process temperature: -40 to +450 °C (-40 to +842 °F)
- Process pressure: 0.8 to 5.1 bar (12 to 74 psi) absolute
- Material: 316Ti (1.4571)
- Weight: 5 to 10 kg (11 to 22 lb)



33 Dimensions insertion adapter. Unit of measurement mm (in)

- 1 Disc with seal, optional
- 2 Integrated venting element

12.11 Weld-in nozzle


- Type FAR50 (→ III01362F)
- Process nozzle:
 DN50 to DN100, PN16, Form A
 - NPS 2" to 4" 150 lbs, RF
- Nozzle length: 100 to 300 mm (3.94 to 11.81 in)
- Connection thread 1½ NPT, G 1½
- Process temperature: max. -40 to +200 °C (-40 to +392 °F)
- Material: Stainless steel 316Ti (1.4571)
- Weight: approx. 6 to 7 kg (13 to 15.5 lb)
- Mounting screws enclosed

- 34 Dimensions weld-in nozzle. Unit of measurement mm (in)
- 1 Integrated venting element

12.12 High temperature adapter

- Process temperature: +450 °C (+842 °F), SW55
- Material: 316Ti (1.4571), aluminum oxide ceramics (front-flush disc)
- Weight: approx. 1.4 kg (3.09 lb)
- Seal: to be provided by the customer
- Order number:
 - 71113441 (R 1¹/₂ (A), G 1¹/₂ (B))
 - 71478114 ((R 1¹/₂ (A), G 1¹/₂ (B), with inspection certificate EN 10204 3.1 material)
 - 71113449 (1½ NPT (A+B))
 - 71478115 (1¹/₂ NPT (A+B), with inspection certificate EN 10204 3.1 material)

235 Dimensions high temperature adapter with extension. Unit of measurement mm (in)

- 1 High temperature adapter (connection thread A, internal thread B)
- 2 Integrated venting element
- 3 Extension (connecting thread B, female thread C)
- Extension for high temperature adapter, SW55
- Material: 316Ti (1.4571)
- Weight: 225 mm (8.86 in) approx. 1.1 kg (2.43 lb) to 525 mm (20.67 in) approx. 2.2 kg (4.85 lb)
- Seal: to be provided by the customer
- Order number:
 - 71113450 (R 1½ (B), G 1½ (C), L = 225 mm)
 - 71113451 (R 1¹/₂ (B), G 1¹/₂ (C), L = 325 mm)
 - 71113452 (R 1½ (B), G 1½ (C), L = 525 mm)
 - 71113453 (1½ NPT (A+B), L = 225 mm)
 - 71113454 (1½ NPT (A+B), L = 325 mm)
 - 71113455 (1½ NPT (A+B), L = 525 mm)

13 Technical data

13.1 Input

13.1.1 Measured variable

Doppler frequency

13.1.2 Measuring range (Detection range)

- With an unobstructed radiation path to the surface of the bulk solids, the maximum range is 5 m (196.9 in) depending on bulk solids (reflection characteristics).
- The range also depends on the container walls to be penetrated.

13.1.3 Operating frequency

24.15 to 24.25 GHz

13.1.4 Detectable speed

0.09 to 62 m/s (3.54 to 2441 in/s)

13.1.5 Transmitting power

- The radiated power is maximum 100 mW e.i.r.p. (equivalent isotrope radiation performance).
- Power density directly in front of the device: Approx. 1 mW/cm²
- Power density at a distance of 1 m: Approx. 0.3 µW/cm²

13.1.6 Antenna opening angle (3 dB)

Approx. ± 12°

13.2 Output

13.2.1 Output signal

Switching output

- 3-wire DC-PNP (positive voltage signal at the switching output of the electronics)
- 2 DC-PNP outputs, antivalent switched
- Max. 200 mA per output, short-circuit proof
- Switching delay parameterizable (off, 500 ms to 10 s)

13.2.2 Ex connection data

See safety instructions (XA): All data relating to explosion protection are provided in separate Ex documentation and are available from the Downloads Area of the Endress+Hauser-website. The Ex documentation is supplied as standard with all Ex devices.

13.3 Power supply

13.3.1 Supply voltage

- U = 18 to 30 V DC
- In accordance with IEC/EN61010 a suitable circuit breaker must be provided for the measuring device.
- Voltage source: Non-hazardous contact voltage or Class 2 circuit (North America).

13.3.2 Power consumption

 $P \leq 1.1 \; W$

13.3.3 Current consumption

 $I \le 60 \text{ mA}$ (without load)

13.3.4 Load

Max. 200 mA

13.4 Environment

13.4.1 Ambient temperature

-20 to +60 °C (-4 to +140 °F)

13.4.2 Storage temperature

See ambient temperature

13.4.3 Degree of protection

- Ӂ: IP69
- 🛦: IP67

13.4.4 Vibration resistance

- Vibration according to EN 60068-2-6
- Excitation: Sine
- Frequency range: 5 to 500 Hz
- Amplitude: 5 to 15 Hz (5.5 mm) peak / 15 to 500 Hz 5 g
- Passing speed: 1 octave per minute
- Test directions: 3 directions (X, Y, Z)
- Test duration: approx. 140 minutes per direction (approx. 70 minutes per temperature/ direction)
- Test temperature: -40 to +70 °C

13.4.5 Shock resistance

- Shock according to EN 60068-2-27
- Excitation: half sine
- Shock duration: 18 ms
- Amplitude: 30 g
- Number of shocks: 3 per direction and temperature
- Test directions: 6 directions (±X, ±Y, ±Z)
- Test temperature: -40 to +70 °C

13.4.6 Electromagnetic compatibility

- Interference emission to EN 61326, Electrical Equipment Class B
- Interference immunity to EN 61326, Appendix A (Industrial)

13.5 Process

13.5.1 Process temperature

- -20 to +60 °C (-4 to +140 °F)
- -20 to +450 $^{\circ}$ C (-4 to +842 $^{\circ}$ F) with optional high temperature adapter
- Observe deviating temperature ranges for the accessories offered!

13.5.2 Process pressure

- 0.5 to 6.8 bar (7 to 99 psi) absolute, only to be observed for direct process mounting
- 0.8 to 5.1 bar (12 to 74 psi) absolute, when using the optional high temperature adapter
- 0.5 to 21 bar (7 to 305 psi) absolute, when using the optional high pressure adapter
- Observe deviating pressure ranges for the accessories offered!

13.6 Additional technical data

Latest technical information: Endress+Hauser website: www.endress.com \rightarrow Downloads.

www.addresses.endress.com

