사용 설명서 요약 Micropilot FMR53, FMR54 HART

Free Space 레이다

이 설명서는 사용 설명서(요약본)이며, 기기별 사용 설명서를 대체하지 않습니다.

기기에 대한 자세한 정보는 사용 설명서와 기타 문서를 참조 하십시오.

모든 기기 버전에 대해 제공:

- 인터넷: www.endress.com/deviceviewer
- 스마트폰/태블릿: Endress+Hauser Operations App

1 관련 문서

A0023555

2 문서 정보

2.1 사용 기호

2.1.1 안전 기호

🛕 위험

위험 상황을 알리는 기호입니다. 이 상황을 방지하지 못하면 심각한 인명 피해가 발생할 수 있습니다.

🛕 경고

위험 상황을 알리는 기호입니다. 이 상황을 방지하지 못하면 심각한 인명 피해가 발생할 수 있습니다.

🛕 주의

위험 상황을 알리는 기호입니다. 이 상황을 방지하지 못하면 경미한 부상이나 중상을 당할 수 있습니다.

주의

신체적 상해가 발생하지 않는 과정 및 기타 요인에 대해 알려주는 기호입니다.

2.1.2 전기 기호

⊕

보호 접지(PE)

다른 연결을 설정하기 전에 접지에 연결해야 하는 접지 단자 접지 단자는 계기 내부와 외부에 있습니다. • 내부 접지 단자: 보호 접지가 주전원에 연결됩니다. • 외부 접지 단자: 계기가 플랜트 접지 시스템에 연결됩니다.

2.1.3 공구 기호

공구 기호

00

```
일자형 스크류드라이버
```

육각 렌치

Ŕ

단구 렌치

2.1.4 특정 정보 및 그래픽 관련 기호

🖌 허용

허용된 절차, 프로세스 또는 작업입니다.

🔀 금지

금지된 절차, 프로세스 또는 작업입니다.

🚹 팁

추가 정보를 알려줍니다.

설명서 참조

그래픽 참조

►

따라야 할 주의 사항 또는 개별 단계

1., 2., 3.

일련의 단계

L► 한 단계의 결과 @ 육안 검사 1, 2, 3, ... 항목 번호 A, B, C, ...

보기

3 기본 안전 지침

3.1 작업자 요건

작업자는 다음 작업 수행 요건을 충족해야 합니다.

- ▶ 일정 교육을 받은 전문가가 기능 및 작업에 대한 자격을 보유해야 합니다.
- ▶ 플랜트 소유자/오퍼레이터의 승인을 받은 작업자여야 합니다.
- ▶ 관련 규정을 숙지해야 합니다.
- ▶ 작업을 시작하기 전에 작업 내용에 따라 사용 설명서 및 보조 문서와 인증서에 나오는 지 침을 읽고 숙지한 작업자여야 합니다.
- ▶ 지침을 따르고 일반 정책을 준수해야 합니다.

3.2 용도

용도 및 유체

이 사용 설명서에서 설명하는 계기는 액체, 페이스트 및 슬러지의 레벨을 비접촉식으로 연속 측정하는 용도로 사용해야 합니다. 계기의 작동 주파수가 약 6 GHz, 최대 방사 펄스 전력이 12.03 mW 그리고 평균 전력 출력이 0.024 mW이기 때문에 작동 시 인간 또는 동물에게 완전 히 무해합니다.

이 계기는 "기술 정보"에 명시된 제한 값과 사용 설명서 및 추가 문서에 명시된 조건을 준수할 경우에 다음 측정용으로만 사용할 수 있습니다.

- ▶ 측정 프로세스 변수: 레벨, 거리, 신호 강도
- ▶ 계산 프로세스 변수: 임의 모양 탱크의 부피 또는 질량; 측정 둑 또는 수로를 통과하는 유 량(선형화 기능을 사용해 레벨을 기준으로 계산)

계기가 작동 시간 동안 올바른 상태를 유지하게 하려면 다음과 같이 하십시오.

- ▶ 프로세스에서 사용되는 재료가 충분한 저항력이 있는 유체에서만 측정 계기를 사용하십 시오.
- ▶ "기술 정보"의 제한 값을 준수하십시오.

잘못된 사용

본 계기를 잘못 사용하거나 원래와 다른 용도로 사용하여 발생한 손상에 대해서는 제조업체 가 책임지지 않습니다.

경계 사례의 경우 분류:

▶ 특수한 유체와 세정액의 경우 Endress+Hauser는 유체에 닿는 재질의 내부식성을 확인하 는 데 도움을 줄 수 있지만, 어떠한 보증이나 책임도 부담하지 않습니다.

잔존 위험

프로세스로부터의 열 전달과 전자 장치 내의 전력 손실 때문에 전자 장치 하우징과 하우징에 포함된 어셈블리(예: 디스플레이 모듈, 메인 전자 모듈 및 I/O 전자 모듈)의 온도가 80 °C (176 °F)까지 상승할 수 있습니다. 작동 중에 센서 온도가 유체 온도에 가깝게 상승할 수 있습 니다.

표면 접촉으로 인한 화상 위험!

유체 온도가 상승하면 접촉으로부터 보호하여 화상을 방지하십시오.

3.3 작업장 안전

계기 작업 시:

국가 규정에 따라 필수 보호 장비를 착용하십시오.

3.4 작동 안전

부상 위험!

- 기술적 조건이 적절하고 오류와 결함이 없는 경우에만 계기를 작동하십시오.
- ▶ 계기의 무오류 작동은 오퍼레이터의 책임입니다.

방폭 지역

계기를 방폭 지역에서 사용할 때(예: 방폭) 사람과 시설에 대한 위험을 방지하려면 다음과 같 이 하십시오.

- ▶ 주문한 계기가 방폭 지역에서 지정된 용도로 사용할 수 있는지 확인하려면 명판을 확인하 십시오.
- ▶ 이 설명서의 필수 요소인 별도의 보조 문서에 명시된 사양을 준수하십시오.

3.5 제품 안전

이 계기는 최신 안전 요건을 충족시키기 위해 우수한 엔지니어링 관행에 따라 설계 및 테스 트되었으며, 작동하기에 안전한 상태로 공장에서 출하되었습니다. 일반 안전 기준 및 법적 요건을 충족합니다.

주의

습한 환경에서 기기를 열 때 보호 등급의 손실

▶ 습한 환경에서 기기를 열면 명판에 표시된 보호 등급이 더 이상 유효하지 않습니다. 이는 또한 기기의 안전한 작동을 저해할 수도 있습니다.

3.5.1 CE 마크

이 측정 시스템은 해당 EU 지침의 법적 요건을 준수합니다. 이는 해당 EU 적합성 선언에 적용 표준과 함께 명시되어 있습니다.

제조사는 CE 마크를 부착해 계기를 성공적으로 테스트했음을 확인합니다.

3.5.2 EAC 적합성

이 측정 시스템은 관련 EAC 가이드라인의 법적 요건을 준수합니다. 이는 해당 EAC 적합성 선 언에 적용 표준과 함께 명시되어 있습니다.

제조사는 EAC 마크를 부착해 계기를 성공적으로 테스트했음을 확인합니다.

4 입고 승인 및 제품 식별

4.1 입고 승인

입고 승인 중 다음 사항을 확인하십시오.

- 납품서와 제품 스티커의 주문 코드가 동일합니까?
- 제품이 손상되지 않았습니까?
- 명판의 데이터가 납품서의 주문 사양과 일치합니까?
- 작업 도구가 포함된 DVD가 있습니까?
 필요한 경우(명판 참조) 안전 지침(XA)이 제공됩니까?

📭 이 조건 중 하나라도 충족되지 않으면 Endress + Hauser 세일즈 센터에 연락하십시오.

4.2 보관 및 운송

4.2.1 보관 조건

- 허용 보관 온도: -40~+80 °C (-40~+176 °F)
- 원래 포장을 사용하십시오.

4.2.2 측정 포인트로 제품 운반

주의

하우징이나 안테나 혼이 손상되거나 파손될 수 있습니다.

부상 위험!

- ▶ 계기를 원래 포장에 담거나 프로세스 연결부를 잡고서 측정 포인트로 운반하십시오.
- ▶ 인양 장비(슬링, 아이 등)는 항상 프로세스 연결부에 고정하고 전자 장치 하우징이나 안테 나 혼에 고정하지 마십시오. 계기가 기울어지거나 미끄러지지 않도록 계기의 무게 중심에 주의하십시오.
- ▶ 18kg (39.6lbs)이 넘는 계기는 안전 지침과 운반 조건을 준수하십시오(IEC61010).

5 설치

5.1 설치장소

- A 벽에서 노즐 바깥쪽 가장자리까지의 권장 거리 ~ 탱크 직경의 1/6. 그러나 어떤 상황에서도 계기를 탱크 벽까지 15 cm (5.91 in)보다 더 가깝게 설치하면 안 됩니다.
- 1 내후성 커버 사용, 직사광선이나 비로부터 보호
- 2 중앙에 설치, 간섭으로 인해 신호 손실이 발생할 수 있습니다.
- 3 충진 커튼 위에 설치하지 마십시오.

5.2 방향

5.3 내부 용기 피팅

신호 빔 내부에 내부 피팅(리미트 스위치, 온도 센서, 스트럿, 진공 링, 가열 코일, 구조물 등) 이 위치하지 않게 하십시오. 빔 각도를 고려하십시오.

5.4 간섭 반향 방지

레이다 신호를 산란시키기 위해 금속 오리피스 플레이트를 비스듬히 설치하면 간섭 반향을 방지할 수 있습니다.

5.5 빔 각도

빔 각도는 레이다파의 에너지 밀도가 최대 에너지 밀도 값의 절반에 도달하는 각도 α로 정의 됩니다(3 dB 폭). 마이크로파도 신호 빔 밖에서 방출되고 간섭 설비에 반사될 수 있습니다.

🕙 1 비각도 α, 거리 D 및 빔 직경 W 간의 관계

📭 빔 직경 W는 빔 각도 α와 거리 D에 따라 달라집니다.

FMR53			
빔 각도 α	23°		
거리(D)	빔 직경 W		
3 m (9.8 ft)	1.22 m (4 ft)		
6 m (20 ft)	2.44 m (8 ft)		
9 m (30 ft)	3.66 m (12 ft)		
12 m (39 ft)	4.88 m (16 ft)		
15 m (49 ft)	6.1 m (20 ft)		
20 m (66 ft)	8.14 m (27 ft)		

FMR54 - 혼 안테나							
안테나 크기	150 mm (6 in)	150 mm (6 in) 200 mm (8 in) 250 mm (10 in)					
빔 각도 α	23°	19°	15°				
거리(D) 빔직경 W							
3 m (9.8 ft)	1.22 m (4 ft)	1 m (3.3 ft)	0.79 m (2.6 ft)				
6 m (20 ft)	2.44 m (8 ft)	2.01 m (6.6 ft)	1.58 m (5.2 ft)				
9 m (30 ft)	3.66 m (12 ft)	3.01 m (9.9 ft)	2.37 m (7.8 ft)				
12 m (39 ft)	4.88 m (16 ft)	4.02 m (13 ft)	3.16 m (10 ft)				
15 m (49 ft)	6.1 m (20 ft)	5.02 m (16 ft)	3.95 m (13 ft)				
20 m (66 ft)	8.14 m (27 ft)	6.69 m (22 ft)	5.27 m (17 ft)				

5.6 탱크의 여유 공간 설치

5.6.1 로드 안테나(FMR53)

정렬

- 안테나를 제품 표면에 수직으로 정렬하십시오.
- 정렬을 돕기 위해 플랜지(플랜지 구멍 사이의 지점) 또는 글랜드에 마킹이 있습니다. 이 마 킹이 가능한 한 탱크 벽 쪽으로 정렬되어야 합니다.

🎦 계기 버전에 따라 마킹이 원이거나 두 개의 평행선일 수 있습니다.

노즐 관련 정보

- ☑ 2 로드 안테나의 노즐 높이(FMR53)
- 1 안테나 비활성 길이
- 2 여기에서 빔 출구

안테나길이 390 mm (15.4 in)		540 mm (21.3 in)	
노즐 높이 H	< 100 mm (3.94 in)	< 250 mm (9.84 in)	

📭 로드 안테나의 비활성 부분(1)이 노즐 밖으로 돌출되어야 합니다.

- PTFE 클래딩 플랜지: 클래딩 플랜지 설치 지침을 준수하십시오.
 - ┚ 일반적으로 PTFE 플랜지 클래딩은 노즐과 계기 플랜지 사이의 씰 역할도 합니다.

나사 연결부 관련 정보

- 육각 너트만 사용해 체결하십시오.
- 공구: 단구 렌치 55 mm
- 최대 허용 토크:
 - 나사 PVDF: 35 Nm (26 lbf ft)
 - 나사 316L: 60 Nm (44 lbf ft)

클래딩 플랜지 설치

🚹 클래딩 플랜지와 관련해 다음 사항에 주의하십시오.

- Ӯ 🔹 제공된 플랜지 보어의 수와 같은 수의 플랜지 나사를 사용하십시오.
 - 필요한 토크로 나사를 조이십시오(표 참조).
 - 24시간 후 또는 첫 번째 온도 사이클 이후에 다시 조이십시오.
 - 프로세스 압력과 온도에 따라 정기적으로 나사를 점검하고 필요한 경우 다시 조이십 시오.

일반적으로 PTFE 플랜지 클래딩은 노즐과 계기 플랜지 사이의 씰 역할도 합니다.

플랜지 크기	나사 수	조임 토크			
EN					
DN50 PN10/16	4	45~65 Nm			
DN50 PN25/40	4	45~65 Nm			
DN80 PN10/16	8	40~55 Nm			
DN80 PN25/40	8	40~55 Nm			
DN100 PN10/16	8	40~60 Nm			
DN100 PN25/40	8	55~80 Nm			
DN150 PN10/16	8	75~115 Nm			
ASME					
NPS 2" Cl.150	4	40~55 Nm			
NPS 2" Cl.300	8	20~30 Nm			
NPS 3" Cl.150	4	65~95 Nm			
NPS 3" Cl.300	8	40~55 Nm			
NPS 4" Cl.150	8	45~70 Nm			
NPS 4" Cl.300	8	55~80 Nm			
NPS 6" Cl.150	8	85~125 Nm			
NPS 6" Cl.300	12	60~90 Nm			
NPS 8" Cl.150	8	115~170 Nm			
NPS 8" Cl.300	12	90~135 Nm			
JIS					
10К 50А	4	40~60 Nm			
10K 80A	8	25~35 Nm			
10K 100A	8	35~55 Nm			
10K 150A	8	75~115 Nm			

5.6.2 혼 안테나(FMR54)

정렬

- 안테나를 제품 표면에 수직으로 정렬하십시오.
- 정렬을 돕기 위해 플랜지(플랜지 구멍 사이의 지점)에 마킹이 있습니다. 이 마킹이 가능한 한 탱크 벽 쪽으로 정렬되어야 합니다.

노즐 관련 정보

혼 안테나는 노즐 밖으로 돌출되어야 합니다. 필요한 경우 100~400 mm (4~16 in)의 안테나 연장부(액세서리)가 있는 버전을 선택하십시오.

🖻 3 🛛 혼 안테나의 노즐 높이 및 직경

1 노즐 설치

안테나	ØD	최대 노즐 높이 H _{max} (안테나 연장부가 없는 안테나)
150mm/6"	146 mm (5.75 in)	185 mm (7.28 in)
200mm/8"	191 mm (7.52 in)	268 mm (10.6 in)
250mm/10"	241 mm (9.49 in)	360 mm (14.2 in)

150mm/6"보다 작은 안테나 버전은 탱크의 여유 공간 설치에 적합하지 않습니다. 바이 패스나 스틸링웰에서만 사용해야 합니다.

플라스틱 벽을 통해 외부에서 측정(FMR50/FMR51)

- 유체의 유전율: ε_r > 10
- 가능하면 250 mm (10 in) 안테나를 사용하십시오.
- 안테나 끝에서 탱크까지의 거리는 약 100 mm (4 in)여야 합니다.
- 가능하면 안테나와 탱크 사이에 응축수나 축적물이 형성될 수 있는 곳에 설치하지 마십시 오.
- 실외에 설치할 경우 안테나와 탱크 사이의 공간을 날씨로부터 보호하십시오.
- 안테나와 탱크 사이에 신호를 반사할 수 있는 피팅이나 부착물을 설치하지 마십시오.

적절한 탱크 천장 두께:

침투 재질	PE	PTFE	РР	Plexiglass
ε _r	2.3	2.1	2.3	3.1
최적 두께	16 mm (0.65 in)	17 mm (0.68 in)	16 mm (0.65 in)	14 mm (0.56 in)

5.7 단열 컨테이너

프로세스 온도가 높을 경우 열 방사 또는 대류의 결과로 전자 장치가 가열되는 것을 방지하 기 위해 일반적인 컨테이너 단열 시스템(2)에 계기를 포함시켜야 합니다. 단열재가 계기 넥 (1)보다 높으면 안 됩니다.

5.8 트랜스미터 하우징 회전

연결부 또는 디스플레이 모듈에 손쉽게 액세스할 수 있도록 트랜스미터 하우징의 방향을 돌 릴 수 있습니다.

- 1. 단구 렌치를 사용해 고정 나사를 푸십시오.
- 2. 하우징을 원하는 방향으로 돌리십시오.
- 3. 고정 나사를 조이십시오(플라스틱 하우징: 1.5 Nm; 알루미늄 또는 스테인리스강 하우 징: 2.5 Nm).

5.9 디스플레이 회전

5.9.1 커버 열기

- 육각 렌치(3 mm)를 사용해 전자 파트 커버의 고정 클램프 나사를 풀고 클램프를 반시 계 방향으로 90°돌리십시오.
- 2. 전자 파트 커버를 푼 다음 커버 씰을 확인하고 필요한 경우 교체하십시오.

5.9.2 디스플레이 모듈 회전

- 1. 디스플레이 모듈을 부드럽게 돌리면서 잡아 당기십시오.
- 2. 디스플레이 모듈을 원하는 위치로 돌리십시오(각 방향으로 최대 8 × 45°).
- 코일 케이블을 하우징과 메인 전자 모듈 사이의 틈에 넣고 디스플레이 모듈을 전자 파 트에 끼우십시오.

5.9.3 전자 파트 커버 닫기

- 1. 전자 파트 커버를 고정하십시오.
- 2. 고정 클램프를 시계 방향으로 90°돌리고, 육각 렌치(3 mm)를 사용해 전자 파트 커버 의 고정 클램프 나사를 2.5 Nm으로 조이십시오.
- 6 전기 연결
- 6.1 연결 요구사항
- 6.1.1 단자 할당

단자 할당, 2선식: 4~20 mA HART

- 🖻 4 단자 할당, 2선식: 4~20 mA HART
- A 통합 과전압 보호 기능 없음
- B 통합 과전압 보호 기능 있음
- 1 연결 4~20 mA, HART 수동: 단자 1 및 2, 통합 과전압 보호 기능 없음
- 2 연결 4~20 mA, HART 수동: 단자 1 및 2, 통합 과전압 보호 기능 있음
- 3 케이블 차펴용 단자

계통도, 2선식: 4~20 mA HART

- 🖻 5 계통도, 2선식: 4~20 mA HART
- 1 전원 공급용 액티브 배리어(예: RN221N), 단자 전압 준수
- 2 HART 통신용 저항기(≥ 250 Ω), 최대 부하 준수
- 3 Commubox FXA195 또는 FieldXpert SFX350/SFX370 연결(VIATOR Bluetooth 모뎀을 통해)
- 4 아날로그 디스플레이 장치, 최대 부하 준수
- 5 케이블 화면; 케이블 사양 준수
- 6 계기

단자 할당, 2선식: 4~20 mA HART, 스위치 출력

🖻 6 단자 할당, 2선식: 4~20 mA HART, 스위치 출력

A 통합 과전압 보호 기능 없음

- B 통합 과전압 보호 기능 있음
- 1 연결 4~20 mA, HART 수동: 단자 1 및 2, 통합 과전압 보호 기능 없음
- 2 연결, 스위치 출력(오픈 컬렉터): 단자 3 및 4, 통합 과전압 보호 기능 없음
- 3 연결, 스위치 출력(오픈 컬렉터): 단자 3 및 4, 통합 과전압 보호 기능 있음
- 4 연결 4~20 mA, HART 수동: 단자 1 및 2, 통합 과전압 보호 기능 있음
- 5 케이블 차펴용 단자

계통도, 2선식: 4~20 mA HART, 스위치 출력

- 🖻 7 계통도, 2선식: 4~20 mA HART, 스위치 출력
- 1 전원 공급용 액티브 배리어(예: RN221N), 단자 전압 준수
- 2 HART 통신용 저항기(≥ 250 Ω), 최대 부하 준수
- 3 Commubox FXA195 또는 FieldXpert SFX350/SFX370 연결(VIATOR Bluetooth 모뎀을 통해)
- 4 아날로그 디스플레이 장치, 최대 부하 준수
- 5 케이블 화면; 케이블 사양 준수
- 6 계기
- 7 스위치 출력(오픈 컬렉터)

단자 할당, 2선식: 4~20 mA HART, 4~20 mA

- 🖻 8 단자 할당, 2선식: 4~20 mA HART, 4~20 mA
- A 통합 과전압 보호 기능 없음
- B 통합 과전압 보호 기능 있음
- 1 연결 전류 출력 1, 4~20 mA HART 수동: 단자 1 및 2, 통합 과전압 보호 기능 없음
- 2 연결 전류 출력 2, 4~20 mA: 단자 3 및 4, 통합 과전압 보호 기능 없음
- 3 연결 전류 출력 2, 4~20 mA: 단자 3 및 4, 통합 과전압 보호 기능 있음
- 4 연결 전류 출력 1, 4~20 mA HART 수동: 단자 1 및 2, 통합 과전압 보호 기능 있음
- 5 케이블 차펴용 단자

계통도, 2선식: 4~20 mAHART, 4~20 mA

- 🖻 9 계통도, 2선식: 4~20 mAHART, 4~20 mA
- 1 전원 공급용 액티브 배리어(예: RN221N), 전류 출력 1, 단자 전압 준수
- 2 HART 통신용 저항기(≥ 250 Ω), 최대 부하 준수
- 3 Commubox FXA195 또는 FieldXpert SFX350/SFX370 연결(VIATOR Bluetooth 모뎀을 통해)
- 4 아날로그 디스플레이 장치, 최대 부하 준수
- 5 케이블 화면; 케이블 사양 준수
- 6 계기
- 7 아날로그 디스플레이 장치, 최대 부하 준수
- 8 전원 공급용 액티브 배리어(예: RN221N), 전류 출력 2, 단자 전압 준수

단자 할당, 4선식: 4~20 mA HART(10.4~48 V_{DC})

편 10 단자 할당, 4선식: 4~20 mA HART(10.4~48 V_{DC})

- 1 연결 4~20 mA HART(능동): 단자 3 및 4
- 2 연결, 공급 전압: 단자 1 및 2
- 3 케이블 차펴용 단자

계통도, 4선식: 4~20 mA HART(10.4~48 V_{DC})

- 1 평가 장치(예: PLC)
- 2 HART 통신용 저항기(≥ 250 Ω), 최대 부하 준수
- 3 Commubox FXA195 또는 FieldXpert SFX350/SFX370 연결(VIATOR Bluetooth 모뎀을 통해)
- 4 아날로그 디스플레이 장치, 최대 부하 준수
- 5 케이블 화면; 케이블 사양 준수
- 6 계기
- 7 공급 전압; 단자 전압 준수, 케이블 사양 준수

단자 할당, 4선식: 4~20 mA HART(90~253 V_{AC})

- 12 단자 할당, 4선식: 4~20 mAHART(90~253 V_{AC})
- 1 연결 4~20 mA HART(능동): 단자 3 및 4
- 2 연결, 공급 전압: 단자 1 및 2
- 3 케이블 차펴용 단자

▲주의

전기 안전 보장:

- 보호 접지 연결을 분리하지 마십시오.
- 보호 접지를 분리하기 전에 공급 전압에서 계기를 분리하십시오.
- 공급 전압을 연결하기 전에 보호 접지를 내부 접지 단자(3)에 연결하십시오. 필요한 경 우 전위 매칭 선로를 외부 접지 단자에 연결하십시오.
- 전자파 적합성(EMC)의 보장을 위해 공급 케이블의 보호 접지 전도체를 통해서만 계기 를 접지하지 마십시오. 대신, 프로세스 연결부(플랜지 또는 나사 연결부)나 외부 접지 단자에도 기능 접지를 연결해야 합니다.
- 계기 근처에 쉽게 접근할 수 있는 전원 스위치를 설치해야 합니다. 전원 스위치에 계기 단로기라는 표시가 있어야 합니다(IEC/EN61010).

계통도, 4선식: 4~20 mA HART(90~253 V_{AC})

편 13 계통도, 4선식: 4~20 mA HART(90~253 V_{AC})

- 1 평가 장치(예: PLC)
- 2 HART 통신용 저항기(≥ 250 Ω), 최대 부하 준수
- 3 Commubox FXA195 또는 FieldXpert SFX350/SFX370 연결(VIATOR Bluetooth 모뎀을 통해)
- 4 아날로그 디스플레이 장치, 최대 부하 준수
- 5 케이블 화면; 케이블 사양 준수
- 6 계기
- 7 공급 전압; 단자 전압 준수, 케이블 사양 준수

6.1.2 계기 플러그

플러그가 있는 계기 버전의 경우 신호 케이블을 연결하기 위해 하우징을 열 필요가 없 습니다.

🖻 14 M12 플러그의 핀 할당

- 1 신호+
- _____2 할당되지 않음
- 3 신호-
- 4 접지

☑ 15 7/8" 플러그의 핀 할당

- 1 신호-
- 2 신호+
- 3 할당되지 않음
- 4 차펴

6.1.3 공급 전압

2선식, 4-20mA HART, 수동

"전원 공급 장 치, 출력" ¹⁾	"승인" ²⁾	계기의 단자 전압 U	최대 부하 R, 전원 공급 장치의 공급 전압 U₀에 따라 달라짐
A: 2선식; 4-20mA HART	 Non-Ex Ex nA Ex ic CSA GP 	10.4~35 V ³⁾ 4 ^{4) 5)}	R [Ω] 500
	Ex ia / IS	10.4~30 V ^{3) 4) 5)}	0 10 10 10.4 21.4 0 0 0 0 0 0 0 0 0 0 0 0 0

"전원 공급 장 치, 출력" ¹⁾	"승인" ²⁾	계기의 단자 전압 U	최대 부하 R, 전원 공급 장치의 공급 전압 U₀에 따라 달라짐
	 Ex d(ia) / XP Ex ic(ia) Ex nA(ia) Ex ta / DIP 	13~35 V ⁵⁾⁶⁾	R [Ω] 500
	Ex ia + Ex d(ia) / IS + XP	13~30 V ^{5) 6)}	0 10 10 13 24 0 10 10 10 10 10 10 10 10 10

- 제품 구조의 항목 020 1)
- 2) 제품 구조의 항목 010

외기 온도 Ta≤ -20 ℃에서 최소 오류 전류(3.6 mA)로 계기를 시작하려면 단자 전압 ≥ U 15 V가 필요합니다. 시동 3) 전류를 구성할 수 있습니다. 계기가 I ≥ 5.5 mA의 고정 전류로 작동하는 경우(HART Multidrop 모드) 전체 외기 온도 범위에서 전압 U ≥ 10.4 V가 충분합니다.

- 전류 시뮬레이션 모드에서는 12.5 V 이상의 전압 U가 필요합니다. Bluetooth 모듈을 사용할 경우 최소 공급 전압이 3 V만큼 증가합니다. 4)
- 5)
- 외기 온도 T ≤ -20 ℃에서 최소 오류 전류(3.6 mA)로 계기를 시작하려면 단자 전압 ≥ U 16 V가 필요합니다. 6)

"전원 공급 장치, 출력" ¹⁾	"승인" ²⁾	계기의 단자 전 압 U	최대 부하 R, 전원 공급 장치의 공급 전압 U₀에 따라 달라짐
B: 2선식; 4-20 mA HART, 스위 치 출력	 Non-Ex Ex nA Ex nA(ia) Ex ic Ex ic(ia) Ex d(ia) / XP Ex ta / DIP CSA GP 	13~35 V ^{3) 4)}	R [Ω] 500 0 10 20 20 20 20 20 20 20 20 20 20 20 20 20
	 Ex ia / IS Ex ia + Ex d(ia) / IS + XP 	13~30 V ^{3) 4)}	13 24 13 24

제품 구조의 항목 020 1)

제품 구조의 항목 010 2)

3) 외기 온도 T_a≤ -30 ℃에서 최소 오류 전류(3.6 mA)로 계기를 시작하려면 단자 전압 ≥ U 16 V가 필요합니다.

Bluetooth 모듈을 사용할 경우 이 최소 공급 전압이 3 V만큼 증가합니다. 4)

"전원 공급 장치, 출 력" ¹⁾	"승인" ²⁾	계기의 단자 전압 U	최대 부하 R, 전원 공급 장치의 공급 전압 U₀에 따라 달라짐
C: 2선식; 4-20mA HART, 4-20mA	모두	13~28 V ^{3) 4)}	$ \begin{array}{c} R \left[\Omega \right] \\ 500 \\ 0 \\ 10 \\ 13 \\ 24 \\ \end{array} $

- 1) 제품 구조의 항목 020
- 2) 제품 구조의 항목 010
- 3) 외기 온도 Ta≤-30 ℃에서 최소 오류 전류(3.6 mA)로 계기를 시작하려면 단자 전압 ≥ U 16 V가 필요합니다.
- 4) Bluetooth 모듈을 사용할 경우 이 최소 공급 전압이 3 V만큼 증가합니다.

통합 극성 반전 보호	Q
f = 0 ~ 100 Hz에서 허용 잔류 리플	$U_{SS} < 1 V$
f = 100 ~ 10000 Hz에서 허용 잔류 리플	U _{SS} < 10 mV

4선식, 4-20 mA HART, 능동

"전원 공급 장치; 출력" ¹⁾	단자 전압 U	최대 부하 R _{max}
K: 4선식 90-253VAC; 4-20mA HART	90~253 V _{AC} (50~60 Hz), 과전압 카테고리 II	500 Ω
L: 4선식 10.4-48VDC; 4-20mA HART	10.4~48 V _{DC}	

1) 제품 구조의 항목 020

6.2 계기 연결

▲경고

폭발 위험!

- ▶ 관련 국가 표준을 준수하십시오.
- ▶ 안전 지침(XA)의 사양을 준수하십시오.
- ▶ 지정된 케이블 글랜드만 사용하십시오.
- 전원 공급 장치가 명판의 정보와 일치하는지 확인하십시오.
- ▶ 계기를 연결하기 전에 전원 공급 장치를 끄십시오.
- ▶ 전원을 공급하기 전에 전위 매칭 선로를 외부 접지 단자에 연결하십시오.

필수 공구/액세서리:

- 커버 잠금장치가 있는 계기: 육각 렌치 AF3
- 전선 스트리퍼
- 연선 케이블을 사용하는 경우: 연결할 전선당 페룰 1개

6.2.1 커버 열기

- 육각 렌치(3 mm)를 사용해 연결부 커버의 고정 클램프 나사를 풀고 클램프를 반시계 방향으로 90°돌리십시오.
- 2. 연결부 커버를 푼 다음 커버 씰을 확인하고 필요한 경우 교체하십시오.

6.2.2 연결

🖻 16 공학 단위: mm (in)

- 케이블 인입구를 통해 케이블을 밀어넣으십시오. 단단히 밀봉하려면 케이블 인입구에 서 밀봉 링을 제거하지 마십시오.
- 2. 케이블 시스를 제거하십시오.
- 3. 케이블 끝을 10 mm (0.4 in) 벗기십시오. 연선인 경우 페룰을 끼우십시오.
- 4. 케이블 글랜드를 단단히 조이십시오.

5. 단자 할당에 따라 케이블을 연결하십시오.

A0034682

6. 차펴 케이블을 사용할 경우 케이블 차펴를 접지 단자에 연결하십시오.

6.2.3 플러그형 스프링 단자

통합 과전압 보호 기능이 없는 계기 버전은 플러그인 스프링 단자를 통해 전기적으로 연결됩 니다. 레버를 사용하지 않고 경질 도체나 가요성 도체를 페룰과 함께 단자에 직접 끼울 수 있 고, 그러면 접점이 자동으로 생성됩니다.

🖻 17 공학 단위: mm (in)

단자에서 다시 케이블을 제거하려면

- 3 mm 이하의 일자형 스크류드라이버를 사용해 두 단자 구멍 사이에 있는 슬롯을 누르 십시오.
- 2. 동시에 케이블 끝을 단자에서 빼내십시오.

6.2.4 연결부 커버 닫기

1. 연결부 커버를 고정하십시오.

2. 고정 클램프를 시계 방향으로 90°돌리고, 육각 렌치(3 mm)를 사용해 연결부 커버의 고정 클램프 나사를 2.5 Nm으로 조이십시오.

7 작동 옵션

다음 방법으로 계기를 작동할 수 있습니다.

- 작업 메뉴를 통한 작동(디스플레이)
- DeviceCare / FieldCare, 사용 설명서 참조
- SmartBlue(앱), Bluetooth(옵션), 사용 설명서 참조

🖻 18 다운로드 링크

8 시운전

8.1 작업 메뉴의 구조 및 기능

8.1.1 디스플레이

A0012635

☑ 19 디스플레이 및 작동 모듈의 디스플레이 형식

- 1 측정값 표시(값 1개, 최대 크기)
- 1.1 태그 및 오류 기호(오류가 있는 경우)가 포함된 헤더
- 1.2 측정값기호
- 1.3 측정값
- 1.4 단위
- 2 측정값 표시(막대 그래프 + 값 1개)
- 2.1 측정값 1의 막대 그래프
- 2.2 측정값 1(단위 포함)
- 2.3 측정값 1의 측정값 기호
- 2.4 측정값 2
- 2.5 측정값 2 단위
- 2.6 측정값 2의 측정값 기호
- 3 파라미터 시각화(여기에서는 선택 목록이 있는 파라미터)
- 3.1 파라미터 이름 및 오류 기호(오류가 있는 경우)가 포함된 헤더
- 3.2 선택 목록; 오는 현재 파라미터 값 표시
- 4 숫자 입력 행렬
- 5 영숫자 및 특수 문자 입력 행렬

시운전

8.1.2 작동 요소

기능

- 측정값, 오류 및 알림 메시지 표시
- 오류 발생 시 녹색에서 빨간색으로 바뀌는 배경 조명
- 더욱 손쉬운 작동을 위해 계기 디스플레이를 제거할 수 있습니다.
- 🞦 계기 디스플레이는 추가 Bluetooth® 무선 기술 옵션과 함께 사용할 수 있습니다.

백라이트는 공급 전압과 전류 소비에 따라 켜지거나 꺼집니다.

🖻 20 디스플레이 모듈

1 작동 키

키 할당

- 키 ±
 - 선택 목록에서 아래로 이동합니다.
 - 기능 내에서 숫자 값 또는 문자를 편집합니다.
- 키 🗆
 - 선택 목록에서 위로 이동합니다.
 - 기능 내에서 숫자 값 또는 문자를 편집합니다.
- 키 E
 - 측정값 디스플레이: 키를 짧게 누르면 메뉴가 열립니다.
 - 키를 2 s 동안 누르면 컨텍스트 메뉴가 열립니다.
 - 메뉴, 하위 메뉴: 키를 짧게 누름:
 - 선택한 메뉴, 하위 메뉴 또는 파라미터가 열립니다.
 - 파라미터에서 키를 2 s 동안 누름:
 - 파라미터가 있으면 해당 파라미터의 기능에 대한 도움말 텍스트가 열립니다.
 - 텍스트 및 숫자 편집기: 키를 짧게 누름:
 - 선택한 그룹이 열립니다.
 - 선택한 작업이 실행됩니다.
 - 선택한 작업이 실행됩니다.

- 1 및 키(ESC 기능 키를 동시에 누름)
 - 메뉴, 하위 메뉴: 키를 짧게 누름:
 - 현재 메뉴 레벨에서 나가 다음 상위 레벨로 이동합니다.
 - 도움말 텍스트가 열리면 해당 파라미터의 도움말 텍스트가 닫힙니다.
 - 키를 2 s 동안 누르면 측정값 표시로 돌아갑니다("홈 위치").
 - 텍스트 및 숫자 편집기: 변경 사항을 적용하지 않고 텍스트 또는 숫자 편집기를 닫습니다.
- 키 및 E 키(키를 동시에 누름) 대비를 낮춥니다(밝게 설정).

8.2 컨텍스트 메뉴 열기

사용자는 컨텍스트 메뉴를 사용해 작동 디스플레이에서 직접 신속하게 다음 메뉴를 불러올 수 있습니다.

- Setup
- Conf. backup disp.
- Envelope curve
- Keylock on

컨텍스트 메뉴 불러오기 및 닫기

사용자의 위치는 작동 디스플레이입니다.

- 1. E 키를 2 s 동안 누르십시오.
 - ▶ 컨텍스트 메뉴가 열립니다.

2. 🕒 + 🛨 키를 동시에 누르십시오.

▶ 컨텍스트 메뉴가 닫히고 작동 디스플레이가 나타납니다.

컨텍스트 메뉴를 통한 메뉴 불러오기

- 1. 컨텍스트 메뉴를 여십시오.
- 2. 🗉 키를 눌러 원하는 메뉴로 이동하십시오.
- 3. 🗉 키를 눌러 선택을 확인하십시오.
 - ▶ 선택한 메뉴가 열립니다.

8.3 작업 메뉴

파라미터/하위 메뉴	의미	설명
Language 셋업 → 고급 설정 → 디스플레이 → Language전문 (Expert) → 시 스템 → 디스플레이 → Language	로컬 디스플레이의 언어를 지정합니다.	
셋업	이러한 설정 파라미터에 값이 설정되면 일반적으 로 측정이 완전히 구성되어야 합니다.	BA01150F - 사용 설명
셋업→매핑	간섭 반향 매핑	
셋업→고급 설정	추가적인 하위 메뉴와 파라미터를 포함합니다.	HART
	 더욱 맞춤화된 측정 설정(특수한 측정 조건에 맞게 조정) 측정값 변환(크기 조정, 선형화). 출력 신호 크기 조정 	
진단 (Diagnostics)	계기 상태 진단을 위해 가장 중요한 파라미터를 포 함합니다.	
전문 (Expert) 메뉴 고객별 액세스 코드가 지정된 경 우 액세스 코드 입력 파라미터에 0000을 입력하십시오.	계기의 모든 파라미터를 포함합니다(다른 메뉴 중 하나에 이미 있는 파라미터도 포함). 이 메뉴는 계 기의 기능 블록에 따라 구성됩니다.	GP01014F - 계기 파라 미터 설명서, FMR5x, HART

8.4 쓰기 금지 비활성화

계기가 쓰기 금지된 경우 먼저 잠금을 해제해야 합니다. 사용 설명서를 참조하십시오.

📵 BA01150F - 사용 설명서, FMR53/FMR54, HART

8.5 언어 설정

기본 설정: 영어 또는 주문한 지역의 언어

◙ 21 로컬 디스플레이의 예사용

8.6 레벨 측정 구성

- 🖻 22 액체 레벨 측정 구성 파라미터
- R 측정 기준점
- D 디스턴스
- L 레벨
- E Empty calibration (= 영점)
- F Full calibration (= 스팬)
- 1. 셋업 → 기기 태그
 - ▶ 플랜트 내에서 기기의 측정 지점을 쉽게 인식할 수 있는 고유한 이름(태그)을 입력 하십시오.
- 2. 셋업 → 디스턴스 단위
 - ▶ 기본 측정 범위 설정을 위해 사용됩니다. (Empty/Full)
- 3. 셋업 → 용기(탱크) 종류
 - ☞ 용기 종류(bin type) 별 신호 필터를 최적화합니다 주의: '워크벤치 테스트'는 모든 필터를 비활성화합니다. 이 옵션은 테스트일 경우에만 사용해야 합니다.
- 4. 셋업 → 매질 그룹
 - 나 유체 그룹을 지정합니다("수성": DK>4 또는 "기타": DK>1.9)
- 5. 셋업 → Empty calibration
 - └ 거리 E(기준점 R에서 0% 마크까지 거리)를 지정합니다.셋업 → 고급 설정 → 레 벨 → 탱크 / 싸이로 높이측정 범위가 탱크/사일로 높이와 크게 다르면, 탱크 높이 를 이 패러미터에 입력할 것을 추천합니다. 예: 탱크 위 1/3의 범위에 대해 레벨을 측정하는 경우 참고: 원뿔형 출구를 하단에 가진 탱크/사일로의 경우, 보통 Empty calibration과 탱크 높이가 동일하지 않기 때문에 이 패러미터는 변경되지 않아야 합니다.

- 8. 셋업 → 디스턴스
 나 레퍼런스 지점(프로세스커넥션 하단부)으로부터 측정 매질 표면까지의 거리
- 9. 셋업 → 신호 품질
 분석한 레벨 반향의 신호 품질을 표시합니다.
- 10. 셋업 → 매핑 → 디스턴스 확인
 ・ 간섭 반향 맵의 기록을 시작하기 위해 표시된 거리를 실제 값과 비교합니다.
- 11. 셋업 → 고급 설정 → 레벨 → 레벨 단위
 ▶ 레벨 단위 선택: %, m, mm, ft, in (기본 설정: %)
- 계기의 반응 시간은 탱크 유형 파라미터를 통해 미리 설정되어 있습니다. 고급 설정 하 위 메뉴에서 고급 설정이 가능합니다.

8.7 사용자별 애플리케이션

사용자별 애플리케이션을 위한 파라미터 설정은 다음을 참조하십시오.

👔 BA01150F - 사용 설명서, FMR53/FMR54, HART

또한 전문 (Expert) 하위 메뉴의 경우 다음을 참조하십시오.

👔 GP01014F - 계기 파라미터 설명서, FMR5x, HART

71579033

www.addresses.endress.com

