KA01499D/31/PL/03.22-00

71592050 2022-08-01

Skrócona instrukcja obsługi **Przepływomierz Proline 10**

Przetwornik Modbus RS485 z czujnikiem elektromagnetycznym

Niniejsza skrócona instrukcja obsługi **nie** zastępuje pełnej instrukcji obsługi wchodzącej w zakres dostawy przyrządu.

Skrócona instrukcja obsługi, część 2 z 2: Przetwornik zawiera informacje dotyczące przetwornika.

Skrócona instrukcja obsługi, część 1 z 2: Czujnik → 🗎 3

Skrócona instrukcja obsługi przepływomierza

Układ pomiarowy składa się z przetwornika pomiarowego i czujnika przepływu.

Proces uruchamiania tych dwóch elementów opisany jest w dwóch oddzielnych częściach skróconej instrukcji obsługi przepływomierza:

- Skrócona instrukcja obsługi, część 1: Czujnik
- Skrócona instrukcja obsługi, część 2: Przetwornik

Podczas uruchamiania przyrządu należy zapoznać się z obiema częściami skróconej instrukcji obsługi, ponieważ ich treści wzajemnie się uzupełniają:

Skrócona instrukcja obsługi, część 1: Czujnik

Skrócona instrukcja obsługi czujnika przepływu jest przeznaczona dla specjalistów odpowiedzialnych za montaż czujnika.

- Odbiór dostawy i identyfikacja produktu
- Transport i składowanie
- Warunki pracy: montaż

Skrócona instrukcja obsługi, część 2: Przetwornik

Skrócona instrukcja obsługi przetwornika jest przeznaczona dla specjalistów odpowiedzialnych za uruchomienie, konfigurację i parametryzację urządzenia jako całości (do momentu uzyskania pierwszej wartości zmierzonej).

- Opis produktu
- Warunki pracy: montaż
- Podłączenie elektryczne
- Warianty obsługi
- Integracja z systemami automatyki
- Uruchomienie
- Komunikaty diagnostyczne

Dokumentacja uzupełniająca

Niniejsza skrócona instrukcja obsługi to **skrócona instrukcja obsługi, część 2: przetwornik**.

"Skrócona instrukcja obsługi część 1: czujnik" jest dostępna:

- za pośrednictwem strony internetowej: www.endress.com/deviceviewer
- do pobrania na smartfon / tablet z zainstalowaną aplikacją: *Endress+Hauser Operations*

Szczegółowe dane dotyczące urządzenia można znaleźć w instrukcji obsługi oraz w innej dokumentacji dostępnej do pobrania:

- za pośrednictwem strony internetowej: www.endress.com/deviceviewer
- na smartfon / tablet z zainstalowaną aplikacją: Endress+Hauser Operations

Spis treści

1 1.1	Informacje o niniejszym dokumencie Symbole	5.5
2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11	Zalecenia dotyczące bezpieczeństwa . Wymagania dotyczące personelu technicznego . Wymagania dotyczące personelu obsługi . Odbiór dostawy i transport . Etykiety samoprzylepne, zawieszki i wygrawerowane napisy . Warunki pracy: środowisko i proces . Bezpieczeństwo pracy . Warunki pracy: montaż . Podłączenie elektryczne . Temperatura powierzchni . Uruchomienie . Przeróbki urządzenia .	• 6 • 6 • 7 • 7 • 7 • 7 • 7 • 7 • 7 • 7 • 7 • 8 • 8
3 3.1 3.2	Informacje o produkcie Przeznaczenie przyrządu Konstrukcja przyrządu	8 8 8 8
4 4.1 4.2	Montaż Obracanie obudowy przetwornika Kontrola po wykonaniu montażu	11 12 13
5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11	Podłączenie elektryczne Wskażówki dotyczące podłączenia Wymagania dla przewodów podłączeniowych Wymagania dotyczące przewodów uziemiających Wymagania dotyczące przewodów podłączeniowych Podłączenie przewodu Podłączenie przetwornika pomiarowego Zapewnienie wyrównania potencjałów Promag D, P, W Zapewnienie wyrównania potencjałów Promag H Demontaż przewodu Przykłady zacisków elektrycznych Kontrola po wykonaniu podłączeń elektrycznych	14 15 15 16 18 27 31 31 40 41 43
6 6.1 6.2 6.3	Obsługa Przegląd wariantów obsługi Obsługa lokalna Aplikacja SmartBlue	44 44 44 51
7	Integracja z systemami automatyki	53
8 8.1 8.2 8.3 8.4	Uruchomienie Kontrola po wykonaniu montażu i po wykonaniu podłączeń elektrycznych Włączenie przyrządu Uruchomienie przyrządu Zabezpieczenie ustawień przed nieuprawnionym dostępem	53 53 54 55 57 57
9 9.1	Komunikaty diagnostyczne na wskaźniku lokalnym	57

1 Informacje o niniejszym dokumencie

1.1 Symbole

1.1.1 Ostrzeżenia

A NIEBEZPIECZEŃSTWO

Ten symbol ostrzega przed pojawiającą się nagle niebezpieczną sytuacją. Zlekceważenie tego zagrożenia spowoduje poważne uszkodzenia ciała lub śmierć.

▲ OSTRZEŻENIE

Ten symbol ostrzega przed potencjalnie niebezpieczną sytuacją. Zlekceważenie tego ostrzeżenia i narażenie na niebezpieczeństwo tego typu może spowodować poważne obrażenia ciała lub śmierć.

A PRZESTROGA

Ten symbol ostrzega przed potencjalnie niebezpieczną sytuacją. Zlekceważenie tego ostrzeżenia i narażenie na niebezpieczeństwo tego typu może spowodować niewielkie lub lekkie obrażenia ciała.

NOTYFIKACJA

Ten symbol ostrzega przed potencjalnymi uszkodzeniami. Zlekceważenie tego ostrzeżenia i narażenie na niebezpieczeństwo tego typu może skutkować uszkodzeniem instalacji lub obiektów znajdujących się w jej pobliżu.

1.1.2 Moduł elektroniki

- --- Prąd stały
- \sim Prąd przemienny
- Zacisk podłączenia linii wyrównania potencjałów

1.1.3 Komunikacja przyrządu

- Bluetooth jest włączony.
- Dioda LED wyłączona.
- 🔀 🛛 Dioda LED pulsuje.
- Dioda LED świeci.

1.1.4 Narzędzia

- Śrubokręt płaski
- 🔾 🏉 🛛 Klucz sześciokątny
- 💅 🛛 Klucz płaski

1.1.5 Typy informacji

- Zalecane procedury, procesy lub działania
- Dozwolone procedury, procesy lub działania
- Niedozwolone procedury, procesy lub działania
- 1 Informacje dodatkowe
- Odsyłacz do dokumentacji
- Odsyłacz do strony
- 💽 🛛 Odsyłacz do rysunku
- Środki lub indywidualne działania, które należy podjąć
- 1., 2.,... Kolejne kroki procedury
- └→ Wynik kroku
- Pomoc w razie problemu
- Kontrola wzrokowa
- A Parametr zabezpieczony przed zapisem
- 1.1.6 Ochrona przeciwwybuchowa
- 🔊 Strefa zagrożona wybuchem
- 🔉 🔰 Strefa niezagrożona wybuchem

2 Zalecenia dotyczące bezpieczeństwa

2.1 Wymagania dotyczące personelu technicznego

- Montaż, podłączenie elektryczne, uruchomienie, diagnostykę i konserwację przyrządu może wykonywać wyłącznie przeszkolony i wykwalifikowany personel upoważniony przez właściciela/operatora obiektu.
- Przed rozpoczęciem pracy, personel ten musi dokładnie zapoznać się z instrukcją obsługi, dokumentacją dodatkową i certyfikatami przyrządu oraz przestrzegać zawartych w nich zaleceń.
- ▶ Personel musi przestrzegać lokalnych przepisów bezpieczeństwa.

2.2 Wymagania dotyczące personelu obsługi

- Personel obsługi powinien zostać przeszkolony w zakresie wymagań związanych z wykonywanym zadaniem i posiadać upoważnienie wydane przez właściciela/operatora obiektu.
- Przed rozpoczęciem pracy, personel obsługi musi dokładnie zapoznać się z instrukcją obsługi i dokumentacją dodatkową przyrządu oraz przestrzegać zawartych w nich zaleceń.

2.3 Odbiór dostawy i transport

- ▶ Przyrząd należy transportować w prawidłowy i odpowiedni sposób.
- Nie usuwać elementów zabezpieczających przyłącza procesowe, aż do momentu bezpośrednio poprzedzającego montaż.

2.4 Etykiety samoprzylepne, zawieszki i wygrawerowane napisy

 Należy zwrócić uwagę na wszystkie instrukcje bezpieczeństwa i piktogramy umieszczone na przyrządzie.

2.5 Warunki pracy: środowisko i proces

- ▶ Przyrządu należy używać tylko do pomiarów wskazanych mediów.
- Przestrzegać podanego zakresu ciśnień i temperatur medium.
- ▶ Chronić przyrząd przed korozją i niekorzystnym wpływem czynników środowiskowych.

2.6 Bezpieczeństwo pracy

- Zawsze należy mieć nałożony niezbędny sprzęt ochrony osobistej, określony w przepisach krajowych.
- ▶ Niedopuszczalne jest uziemianie urządzenia spawalniczego z wykorzystaniem przyrządu.
- ► W przypadku dotykania urządzenia mokrymi rękami należy założyć rękawice ochronne.

2.7 Warunki pracy: montaż

- Nie usuwać elementów zabezpieczających przyłącza procesowe, aż do momentu bezpośrednio poprzedzającego montaż.
- ▶ Nie uszkodzić ani nie demontować okładziny kołnierzy.
- Zachować maksymalne momenty dokręcenia.

2.8 Podłączenie elektryczne

- Zachować zgodność z obowiązującymi przepisami dotyczącymi instalacji.
- Użyć przewodów o odpowiednich parametrach.
- Sprawdzić, czy przewody nie są uszkodzone.
- Jeśli przyrząd jest używany w strefach zagrożonych wybuchem, stosować się do zaleceń podanych w instrukcji bezpieczeństwa Ex.
- ► Wykonać instalację połączeń wyrównawczych.
- Wykonać instalację uziemienia.

2.9 Temperatura powierzchni

Media o podwyższonej temperaturze mogą powodować nagrzewanie się powierzchni przyrządu. W związku z tym, należy przestrzegać następujących zaleceń:

- zamontować odpowiednie osłony chroniące przed dotykiem,
- nakładać rękawice ochronne.

2.10 Uruchomienie

- Urządzenie można zamontować wyłącznie wtedy, gdy jest sprawne technicznie i wolne od usterek i wad.
- Urządzenie można uruchomić wyłącznie po przeprowadzeniu kontroli po wykonaniu montażu i kontroli po wykonaniu podłączeń elektrycznych.

2.11 Przeróbki urządzenia

- Modyfikacje i naprawy można wykonywać tylko po uprzedniej konsultacji z działem serwisu Endress+Hauser.
- ► Części zamienne i akcesoria montować zgodnie ze wskazówkami montażowymi.
- ► Używać wyłącznie oryginalnych części zamiennych i akcesoriów Endress+Hauser.

3 Informacje o produkcie

3.1 Przeznaczenie przyrządu

Ten przyrząd jest przeznaczony wyłącznie do pomiaru przepływu cieczy i gazów.

Zależnie od zamówionej wersji, może również służyć do pomiaru przepływu cieczy potencjalnie wybuchowych, łatwopalnych, trujących i utleniających.

Przepływomierze przeznaczone do stosowania w strefach zagrożonych wybuchem, w zastosowaniach higienicznych lub tych, w których występuje zwiększone ryzyko spowodowane ciśnieniem medium, zostały odpowiednio oznaczone na tabliczce znamionowej.

Niewłaściwe zastosowanie lub zastosowanie niezgodne z przeznaczeniem może zagrażać bezpieczeństwu. Producent nie bierze żadnej odpowiedzialności za szkody spowodowane niewłaściwym zastosowaniem lub zastosowaniem niezgodnym z przeznaczeniem.

3.2 Konstrukcja przyrządu

3.2.1 Wersja kompaktowa

Przetwornik i czujnik tworzą mechanicznie jedną całość.

🖻 1 Główne części składowe przyrządu

- 1 Pokrywa obudowy
- 2 Wyświetlacz
- 3 Obudowa przetwornika
- 4 Czujnik

3.2.2 Wersja rozdzielna

Przetwornik jest montowany w innym miejscu niż czujnik przepływu.

- 🖻 2 Główne części składowe przyrządu
- 1 Pokrywa obudowy
- 2 Wyświetlacz
- 3 Obudowa przetwornika
- 4 Czujnik
- 5 Obudowa przedziału podłączeniowego czujnika
- 6 Przewód podłączeniowy, w tym przewód zasilania cewki i przewód elektrody
- 7 Pokrywa przedziału podłączeniowego

4 Montaż

Dodatkowe wskazówki dotyczące montażu czujnika podano w skróconej instrukcji obsługi czujnika → 🗎 3

4.1 Obracanie obudowy przetwornika

Pozycja kodu zam. "Obudowa", opcja "Aluminium"

Pozycja kodu zam. "Obudowa", opcja "Poliwęglan"

 Odkręcić wkręty mocujące po obu stronach obudowy przetwornika.

2. NOTYFIKACJA

Ryzyko nadmiernego obrócenia obudowy przetwornika! Przewody wewnętrzne mogą zostać

uszkodzone.

 Obudowę przetwornika można obrócić maksymalnie o 180° w każdym kierunku.

Obrócić obudowę przetwornika do żądanego położenia.

- Dokręcić śruby w odwrotnej kolejności niż przy ich odkręcaniu.
- 1. Odkręcić śruby pokrywy obudowy.
- 2. Otworzyć pokrywę obudowy.
- Odkręcić śrubę uziemienia (pod wyświetlaczem).
- Odkręcić wkręty mocujące po obu stronach obudowy przetwornika.

5. NOTYFIKACJA

Ryzyko nadmiernego obrócenia obudowy przetwornika!

Przewody wewnętrzne mogą zostać uszkodzone.

 Obudowę przetwornika można obrócić maksymalnie o 180° w każdym kierunku.

Obrócić obudowę przetwornika do żądanego położenia.

6. Dokręcić śruby w odwrotnej kolejności niż przy ich odkręcaniu.

4.2 Kontrola po wykonaniu montażu

Czy przyrząd nie jest uszkodzony (kontrola wzrokowa)?	
Czy przyrząd odpowiada parametrom w punkcie pomiarowym?	
 Przykładowe parametry: temperatura medium procesowego, ciśnienie medium procesowego, temperatura otoczenia, zakres pomiarowy. 	
Czy wybrano odpowiednią pozycję montażową przyrządu?	
Czy kierunek wskazywany przez strzałkę na przyrządzie jest zgodny z kierunkiem przepływu medium?	
Czy przyrząd został zabezpieczony przed opadami atmosferycznymi i bezpośrednim nasłonecznieniem?	
Czy śruby zostały dokręcone odpowiednim momentem?	

5 Podłączenie elektryczne

5.1 Wskazówki dotyczące podłączenia

5.1.1 Uwagi dotyczące podłączenia elektrycznego

A OSTRZEŻENIE

Podzespoły pod napięciem!

Nieprawidłowe wykonywanie prac przy podłączeniach elektrycznych może spowodować porażenie prądem.

- Podłączenie elektryczne może być wykonywane wyłącznie przez przeszkolony personel techniczny, uprawniony do wykonywania tych prac przez użytkownika obiektu.
- Przestrzegać obowiązujących przepisów krajowych.
- ▶ Przestrzegać krajowych i lokalnych przepisów BHP.
- Podłączenie wykonywać w odpowiedniej kolejności: zawsze upewnić się, czy najpierw do wewnętrznego zacisku uziemienia podłączone zostało uziemienie ochronne (PE).
- W przypadku pracy w strefie zagrożonej wybuchem, stosować się do zaleceń podanych w "Instrukcjach dotyczących bezpieczeństwa".
- ▶ Starannie wykonać podłączenie przyrządu do uziemienia i wyrównania potencjałów.
- ▶ Podłączyć uziemienie ochronne do wszystkich zewnętrznych zacisków uziemienia.

5.1.2 Dodatkowe środki ochrony

Wymagane jest zastosowanie następujących środków ochronnych:

- Zainstalować urządzenie odłączające (przełącznik lub wyłącznik zasilania), aby łatwo odłączyć przyrząd od napięcia.
- Oprócz bezpiecznika przyrządu należy zainstalować w instalacji obiektu zabezpieczenie nadprądowe o maks. prądzie znamionowym 10 A.
- Zaślepki uszczelniające z tworzywa sztucznego służą jako zabezpieczenie tylko na czas transportu i należy je zastąpić odpowiednimi elementami z indywidualnie zatwierdzonego materiału.
- Przykłady podłączenia: →
 [™] 41

5.1.3 Podłączenie ekranu przewodu

- Aby uniknąć prądów wyrównawczych o częstotliwości zasilania (sieci zasilania) na ekranie przewodu, należy w instalacji zapewnić wyrównanie potencjałów. Jeżeli wyrównanie potencjałów w instalacji nie jest możliwe, należy podłączyć ekran przewodu do przyrządu tylko z jednej strony. W takim przypadku, ekranowanie zabezpieczające przed zakłóceniami elektromagnetycznymi jest zapewnione tylko częściowo.
- 1. Podłączenie odizolowanych skrętek ekranowanych do wewnętrznego zacisku uziemienia powinno być tak krótkie, jak to możliwe.
- 2. Przewody powinny posiadać pełne ekranowanie na całej długości.
- 3. Podłączyć ekran przewodu do wyrównania potencjałów instalacji, na obu końcach.

5.2 Wymagania dla przewodów podłączeniowych

5.2.1 Bezpieczeństwo elektryczne

Zgodnie z obowiązującymi przepisami krajowymi.

5.2.2 Dopuszczalny zakres temperatur

- Przestrzegać wytycznych dotyczących instalacji obowiązujących w danym kraju.
- Przewody należy dobrać pod kątem spodziewanych minimalnych i maksymalnych temperatur w miejscu instalacji.

5.2.3 Przewód zasilania (w tym przewód podłączony do wewnętrznego zacisku uziemienia)

- Standardowy przewód instalacyjny jest wystarczający.
- Zapewnić uziemienie zgodnie z obowiązującymi przepisami krajowymi.

5.2.4 Przewód sygnałowy

- Modbus RS485: Zalecany jest przewód typu A wg normy EIA/TIA-485
 Wyjście prądowe 4 ... 20 mA:
- wyjscie prądowe 4 ... 20 mA: Standardowy przewód instalacyjny

5.3 Wymagania dotyczące przewodów uziemiających

Przewód miedziany: min. 6 mm² (0,0093 in²)

5.4 Wymagania dotyczące przewodów podłączeniowych

🖻 3 Przekrój przewodu

- a Przewód elektrody
- b Przewód zasilania cewki
- 1 Żyła
- 2 Izolacja żyły
- 3 Ekran żyły
- 4 Płaszcz żyły
- 5 Powłoka wzmacniająca żyły
- 6 Ekran przewodu
- 7 Płaszcz zewnętrzny

Wstępnie zarobione przewody podłączeniowe

W Endress+Hauser można zamówić dwie wersje przewodów podłączeniowych o stopniu ochrony IP68:

- Przewód już jest podłączony do czujnika.
- Przewód podłącza użytkownik (zapewnia narzędzia do zapewnienia uszczelnienia przedziału podłączeniowego czujnika).

Zbrojone przewody podłączeniowe

W Endress+Hauser można zamówić zbrojony przewód podłączeniowy w dodatkowym wzmacniającym oplocie metalowym. Zbrojone przewody podłączeniowe stosuje się:

- gdy przewód jest układany bezpośrednio w ziemi,
- jeśli występuje ryzyko uszkodzenia przez gryzonie
- gdy stopień ochrony przyrządu jest niższy niż IP68

5.4.1 Przewód elektrody

Konstrukcja	$3 \times 0.38 \text{ mm}^2$ (20 AWG) ze wspólnym, miedzianym ekranem (Ø ~ 9,5 mm (0,37 in)) oraz oddzielnie ekranowanymi żyłami Jeśli stosowana jest funkcja detekcji pustej rury (DPR): $4 \times 0.38 \text{ mm}^2$ (20 AWG)) ze wspólnym, miedzianym ekranem (Ø ~ 9,5 mm (0,37 in)) oraz oddzielnie ekranowanymi żyłami
Rezystancja żył	≤ 50 Ω/km (0,015 Ω/ft)
Pojemność żyła/ekran	≤ 420 pF/m (128 pF/ft)
Długość przewodu	W zależności od przewodności medium: maks. 200 m (656 ft)
Możliwe do zamówienia długości przewodu	5 m (15 ft), 10 m (30 ft), 20 m (60 ft) lub zróżnicowana długość: maks. 200 m (656 ft) Zbrojone przewody: zróżnicowana długość do maks. 200 m (656 ft)
Temperatura pracy	–20 +80 °C (–4 +176 °F)

5.4.2 Przewód zasilania cewki

Konstrukcja	3×0,38 mm² (20 AWG) ze wspólnym, miedzianym ekranem (Ø ~ 9,5 mm (0,37 in)) oraz oddzielnie ekranowanymi żyłami
Rezystancja żył	≤ 37 Ω/km (0,011 Ω/ft)
Pojemność żyła/ekran	≤ 120 pF/m (37 pF/ft)
Długość przewodu	W zależności od przewodności medium, maks. 200 m (656 ft)
Możliwe do zamówienia długości przewodu	5 m (15 ft), 10 m (30 ft), 20 m (60 ft) lub zróżnicowana długość do maks. 200 m (656 ft) Zbrojone przewody: zróżnicowana długość do maks. 200 m (656 ft)
Temperatura pracy	–20 +80 °C (–4 +176 °F)
Napięcie probiercze izolacji żył	≤ 1 433 V AC (wartość skuteczna) 50/60 Hz lub ≥ 2 026 V DC

5.5 Podłączenie przewodu

5.5.1 Przygotowanie przewodu podłączeniowego

Przewód zasilający cewki

Promag D, P, W

1 Tulejki czerwone ϕ 1,0 mm (0,04 in)

- 1. Zaizolować jedną żyłę przewodu 3-żyłowego na wysokości wzmocnienia. Wymagane jest podłączenie tylko 2 żył.
- 2. A: Zarobić przewód zasilający cewki, zdjąć izolację z przewodów wzmacnianych (*).
- 3. B: Nałożyć tulejki na przewody linkowe i docisnąć.
- 4. Zaizolować ekran przewodu od strony przetwornika, np. koszulką termokurczliwą.

Promag H

- 1 Tulejki czerwone \$\phi1,0 mm (0,04 in)
- 1. Zaizolować jedną żyłę przewodu 3-żyłowego na wysokości wzmocnienia. Wymagane jest podłączenie tylko 2 żył.
- 2. A: Zarobić przewód zasilający cewki.
- 3. B: Nałożyć tulejki na przewody linkowe i docisnąć.
- 4. Przełożyć ekran przewodu od strony czujnika przez osłonę zewnętrzną.
- 5. Zaizolować ekran przewodu od strony przetwornika, np. koszulką termokurczliwą.

Przewód elektrody

Promag D, P, W

- 1 Tulejki czerwone ϕ 1,0 mm (0,04 in)
- 2 Tulejki białe Φ0,5 mm (0,02 in)
- 1. Tulejki kablowe nie powinny stykać się z ekranem przewodu od strony czujnika pomiarowego. Odległość minimalna = 1 mm (wyjątek: zielony przewód "GND")
- 2. A: Zarobić przewód zasilający cewki, zdjąć izolację z przewodów wzmacnianych (*).
- 3. B: Nałożyć tulejki na przewody linkowe i docisnąć.
- 4. Zaizolować ekran przewodu od strony przetwornika, np. koszulką termokurczliwą.

Promag H

- Tulejki kablowe nie powinny stykać się z ekranem przewodu od strony czujnika pomiarowego. Odległość minimalna = 1 mm (wyjątek: zielony przewód "GND")
- 2. A: Zarobić przewód elektrody.
- 3. B: Nałożyć tulejki na przewody linkowe i docisnąć.
- 4. Przełożyć ekran przewodu od strony czujnika przez osłonę zewnętrzną.
- 5. Zaizolować ekran przewodu od strony przetwornika, np. koszulką termokurczliwą.

5.5.2 Podłączenie przewodu podłączeniowego

Przyporządkowanie zacisków przewodu podłączeniowego

Promag D, P, W

- 1 Zacisk uziemienia, zewnętrzny
- 2 Obudowa przetwornika: wprowadzenie przewodu zasilania cewki
- 3 Przewód zasilania cewki
- 4 Obudowa przetwornika: wprowadzenie przewodu elektrody
- 5 Przewód elektrody
- 6 Obudowa przedziału podłączeniowego czujnika: wprowadzenie przewodu elektrody
- 7 Zacisk uziemienia, zewnętrzny
- 8 Obudowa przedziału podłączeniowego czujnika: wprowadzenie przewodu zasilania cewki

Promag H

- 1 Zacisk uziemienia, zewnętrzny
- 2 Obudowa przetwornika: wprowadzenie przewodu zasilania cewki
- 3 Przewód zasilania cewki
- 4 Obudowa przetwornika: wprowadzenie przewodu elektrody
- 5 Przewód elektrody
- 6 Obudowa przedziału podłączeniowego czujnika: wprowadzenie przewodu elektrody
- 7 Zacisk uziemienia, zewnętrzny
- 8 Obudowa przedziału podłączeniowego czujnika: wprowadzenie przewodu zasilania cewki

Podłączenie obudowy przedziału podłączeniowego czujnika

NOTYFIKACJA

Niewłaściwe podłączenie może spowodować uszkodzenie podzespołów elektronicznych!

- ▶ Należy podłączać czujniki i przetworniki o jednakowych numerach seryjnych.
- Podłączyć obudowę przedziału podłączeniowego czujnika oraz obudowę przetwornika do linii wyrównywania potencjałów na obiekcie za pomocą zacisku uziemienia.
- Podłączyć czujnik i przetwornik do tego samego potencjału.

Aluminiowa obudowa przedziału podłączeniowego czujnika

- 1. Poluzować kluczem imbusowym zacisk mocujący.
- Otworzyć pokrywę przedziału podłączeniowego obracając ją w kierunku przeciwnym do ruchu wskazówek zegara.

NOTYFIKACJA

Jeśli brakuje pierścienia uszczelniającego, obudowa nie jest szczelna!

Uszkodzenie urządzenia.

- Nie wyjmować pierścienia uszczelniającego z dławika kablowego.
- Przełożyć przewód zasilający cewki i przewód elektrody przez odpowiedni dławik kablowy.
- 4. Dopasować długość przewodów.
- 5. Podłączyć ekran przewodu do wewnętrznego zacisku uziemienia.
- 6. Zdjąć izolację z przewodu oraz poszczególnych żył.
- 7. Nałożyć tulejki na przewody linkowe i docisnąć.
- 8. Podłączyć przewód zasilający cewki i przewód elektrody według przyporządkowania zacisków.
- 9. Dokręcić dławiki kablowe.
- 10. Zamknąć pokrywę przedziału podłączeniowego.
- 11. Przymocować zacisk mocujący.

Przedział podłączeniowy czujnika ze stali kwasoodpornej

1. Poluzować śrubę sześciokątną pokrywy przedziału podłączeniowego czujnika.

2. Zdjąć pokrywę przedziału podłączeniowego czujnika.

NOTYFIKACJA

Jeśli brakuje pierścienia uszczelniającego, obudowa nie jest szczelna!

Uszkodzenie urządzenia.

- Nie wyjmować pierścienia uszczelniającego z dławika kablowego.
- Przełożyć przewód zasilający cewki i przewód elektrody przez odpowiedni dławik kablowy.
- 4. Dopasować długość przewodów.
- 5. Podłączyć ekran przewodu do zacisku na uchwycie odciążającym.
- 6. Zdjąć izolację z przewodu oraz poszczególnych żył.
- Nałożyć tulejki na przewody linkowe i docisnąć.
- 8. Podłączyć przewód zasilający cewki i przewód elektrody według przyporządkowania zacisków.
- 9. Dokręcić dławiki kablowe.
- 10. Zamknąć pokrywę przedziału podłączeniowego.

Podłączenie obudowy przetwornika

NOTYFIKACJA

Niewłaściwe podłączenie może spowodować uszkodzenie podzespołów elektronicznych!

- ▶ Należy podłączać czujniki i przetworniki o jednakowych numerach seryjnych.
- Podłączyć obudowę przedziału podłączeniowego czujnika oraz obudowę przetwornika do linii wyrównywania potencjałów na obiekcie za pomocą zacisku uziemienia.
- ▶ Podłączyć czujnik i przetwornik do tego samego potencjału.

- 1. Poluzować kluczem imbusowym zacisk mocujący.
- Otworzyć pokrywę przedziału podłączeniowego obracając ją w kierunku przeciwnym do ruchu wskazówek zegara.

NOTYFIKACJA

Jeśli brakuje pierścienia uszczelniającego, obudowa nie jest szczelna!

Uszkodzenie urządzenia.

- Nie wyjmować pierścienia uszczelniającego z dławika kablowego.
- Przełożyć przewód zasilający cewki i przewód elektrody przez odpowiedni dławik kablowy.
- 4. Dopasować długość przewodów.
- 5. Podłączyć ekran przewodu do wewnętrznego zacisku uziemienia.
- 6. Zdjąć izolację z przewodu oraz poszczególnych żył.
- 7. Nałożyć tulejki na przewody linkowe i docisnąć.
- 8. Podłączyć przewód zasilający cewki i przewód elektrody według przyporządkowania zacisków.
- 9. Dokręcić dławiki kablowe.
- 10. Zamknąć pokrywę przedziału podłączeniowego.
- 11. Przymocować zacisk mocujący.

5.6 Podłączenie przetwornika pomiarowego

5.6.1 Podłączenie zacisków przetwornika

A0043283

- 1 Wprowadzenie przewodu zasilania: napięcie zasilania
- 2 Zewnętrzny zacisk uziemienia: na przetwornikach z poliwęglanu z metalowym adapterem do rur
- 3 Wprowadzenie przewodu sygnałowego
- 4 Zewnętrzny zacisk uziemienia

- 1 Wprowadzenie przewodu zasilania: napięcie zasilania
- 2 Wprowadzenie przewodu sygnałowego
- 3 Zewnętrzny zacisk uziemienia

5.6.2 Przyporządkowanie zacisków

Przyporządkowanie zacisków pokazano na etykiecie samoprzylepnej.

Możliwe przyporządkowanie zacisków:

Modbus RS485 i wyjście prądowe 4...20 mA (aktywne)

Napięcie zasilania		Wyjście 1			Wyjście 2		
1 (+)	2 (-)	26 (+) 27 (-)		24 (+)	25 (-)	22 (B)	23 (A)
L/+	N/-	Wyjście prądowe 420 mA (aktywne)		_	-	Modbus	s RS485

	Modbus RS485	i wyjście	prądowe	420	mA ((pasywne)
--	--------------	-----------	---------	-----	------	-----------

Napięcie	zasilania	Wyjście 1				Wyjście 2	
1 (+)	2 (-)	26 (+) 27 (-)		24 (+)	25 (-)	22 (B)	23 (A)
L/+	N/-	_		Wyjście 420 mA	prądowe (pasywne)	Modbus	s RS485

5.6.3 Podłączenie przetwornika

- Należy użyć odpowiedniego dławika kablowego do przewodu zasilania i przewodu sygnałowego.

 - Do komunikacji cyfrowej używać przewodów ekranowanych.

NOTYFIKACJA

Jeśli dławik kablowy jest nieprawidłowy, pogarsza to szczelność obudowy! Uszkodzenie urządzenia.

 Należy użyć odpowiednich dławików kablowych, zapewniających odpowiedni stopień ochrony.

- 1. Starannie wykonać podłączenie przyrządu do uziemienia i wyrównania potencjałów.
- 2. Podłączyć uziemienie ochronne do zewnętrznych zacisków uziemienia.

- 3. Poluzować kluczem imbusowym zacisk mocujący.
- Otworzyć pokrywę obudowy obracając ją w kierunku przeciwnym do ruchu wskazówek zegara.

- 5. Nacisnąć zaczep w uchwycie wyświetlacza.
- 6. Wyjąć wyświetlacz z uchwytu.

A0041358

- Przewód musi znajdować się w zaczepie w celu odciążenia naprężeń.
- 7. Wyświetlacz może swobodnie zwisać.

8. Usunąć zaślepki (jeśli są).

NOTYFIKACJA

Jeśli brakuje pierścienia uszczelniającego, obudowa nie jest szczelna!

Uszkodzenie urządzenia.

- Nie wyjmować pierścienia uszczelniającego z dławika kablowego.
- 9. Przeprowadzić przewód zasilania i przewód sygnałowy przez odpowiednie wprowadzenie przewodów.
- 10. Zdjąć izolację z przewodu oraz poszczególnych żył.
- 11. Nałożyć tulejki na przewody linkowe i docisnąć.
- Przyporządkowanie zacisków pokazano na etykiecie samoprzylepnej.
- 12. Podłączyć uziemienie ochronne (PE) do wewnętrznego zacisku uziemienia.
- Podłączyć przewód sygnałowy oraz przewód zasilania zgodnie z przyporządkowaniem zacisków .
- 14. Podłączyć ekran przewodu do wewnętrznego zacisku uziemienia.
- 15. Dokręcić dławiki kablowe.
- Powtórzyć procedurę, wykonując wyżej opisane czynności w odwrotnej kolejności.

Endress+Hauser

5.7 Zapewnienie wyrównania potencjałów Promag D, P, W

5.7.1 Wprowadzenie

Warunkiem wstępnym uzyskania stabilnych i wiarygodnych wyników pomiarów jest poprawne wykonanie instalacji wyrównania potencjałów (połączeń wyrównawczych). Nieodpowiednie lub wadliwe połączenie wyrównawcze może prowadzić do awarii przyrządu i stanowić zagrożenie dla bezpieczeństwa.

Dla uzyskania poprawnych wyników pomiarów należy przestrzegać spełnienia następujących wymagań:

- Medium, czujnik i przetwornik powinny mieć identyczny potencjał elektryczny.
- Należy przestrzegać zaleceń dotyczących lokalnego systemu uziemienia, materiałów i warunków uziemienia oraz potencjalnych warunków pracy rurociągu.
- Wszystkie niezbędne połączenia wyrównawcze należy wykonać za pomocą przewodów uziemiających o przekroju min. 6 mm² (0,0093 in²). Należy również używać końcówek oczkowych.
- W przypadku wersji rozdzielnej zacisk uziemienia znajduje się na czujniku a nie na przetworniku.

Pierścienie uziemiające i przewody można zamówić oddzielnie w Endress+Hauser jako akcesoria: patrz instrukcja obsługi przyrządu.

W przypadku przyrządów przeznaczonych do stosowania w obszarach zagrożonych wybuchem należy przestrzegać instrukcji podanych w dokumentacji Ex (XA).

Używane skróty

- PE (Protective Earth): potencjał na zaciskach wyrównania potencjału przyrządu
- P_P (Potential Pipe): potencjał rurociągu, mierzony na kołnierzach
- P_M (Potential Medium): potencjał medium

5.7.2 Przykład podłączenia dla typowych warunków pracy

Metalowy, uziemiony rurociąg bez wewnętrznych wykładzin

- Wyrównanie potencjałów przez podłączenie uziemienia do rury pomiarowej.
- Potencjał medium jest równy potencjałowi ziemi.

- Rurociąg poprawnie uziemiony z obu stron.
- Rury są wykonane z materiału przewodzącego i mają taki sam potencjał elektryczny jak medium
- Zacisk uziemienia przedziału podłączeniowego przetwornika lub czujnika pomiarowego podłączyć do potencjału ziemi.

Promag P, W

Rurociąg metalowy bez wewnętrznych wykładzin

- Wyrównanie potencjałów poprzez podłączenie obu kołnierzy rurociągu do zacisku uziemienia przetwornika.
- Potencjał medium jest równy potencjałowi ziemi.

- Rurociąg nie jest odpowiednio uziemiony.
- Rury są wykonane z materiału przewodzącego i mają taki sam potencjał elektryczny jak medium
- Podłączyć oba kołnierze czujnika i odpowiadające im kołnierze rurociągu do przewodu uziemienia.
- 2. Zacisk uziemienia przedziału podłączeniowego przetwornika lub czujnika pomiarowego podłączyć do potencjału ziemi.
- Dla rurociągów o średnicy DN ≤ 300 (12"): przewód uziemiający przykręcić bezpośrednio do powierzchni kołnierza.
- Dla rurociągów o średnicy DN ≥ 350 (14"): przewód uziemiający przykręcić do metalowego uchwytu transportowego. Zachować momenty dokręcenia śrub: patrz skrócona instrukcja obsługi czujnika.

Rurociąg z tworzywa sztucznego lub z wykładziną z tworzywa sztucznego

- Promag P, W: Wyrównanie potencjałów za pomocą zacisku uziemienia i pierścieni uziemiających.
- Promag D: Wyrównanie potencjałów za pomocą zacisku uziemienia i kołnierzy
- Potencjał medium jest równy potencjałowi ziemi.

- Rurociąg działa jak izolator.
- Niska impedancja uziemienia medium w pobliżu czujnika nie jest gwarantowana.
- Nie można wykluczyć przepływu prądów wyrównawczych przez medium.
 - 1. Promag P, W: Podłączyć pierścienie uziemiające do zacisku uziemienia na obudowie przedziału podłączeniowego przetwornika lub czujnika przewodem uziemiającym.
- 2. Promag D: Podłączyć kołnierze do zacisku uziemienia na obudowie przedziału podłączeniowego przetwornika lub czujnika przewodem uziemiającym.
- 3. Połączyć zacisk uziemienia z ziemią.

5.7.3 Przykład podłączenia w przypadku potencjału medium, różniącego się od uziemienia ochronnego lub bez opcji "Pomiar odizolowany od uziemienia"

W takich przypadkach potencjał medium może być różny od potencjału przyrządu.

A0042253

Metalowy, nieuziemiony rurociąg

Czujnik i przetwornik są elektrycznie izolowane od uziemienia ochronnego (PE), np. zastosowania w procesach elektrolitycznych lub systemy z ochroną katodową.

Warunki początkowe:

- Rurociąg metalowy bez wewnętrznych wykładzin
- Rury z wykładziną z materiału przewodzącego
- 1. Przewodem uziemienia połączyć kołnierze rurociągu z zaciskiem uziemienia na obudowie przetwornika.
- Poprowadzić ekranowanie przewodów sygnałowych przez kondensator (zalecana wartość 1.5 μF/50 V).
- 3. Urządzenie podłączone do zasilania w taki sposób, aby było bezpotencjałowe względem podłączenia wyrównania potencjałów (transformator izolujący). Nie jest to konieczne w przypadku podłączenia do zasilacza 24V DC bez uziemienia ochronnego PE (= zasilacz SELV).

5.7.4 Promag P, W: Przykłady podłączeń, gdy potencjał medium jest różny od potencjału podłączenia wyrównania potencjałów dla wersji z opcją "Pomiar odizolowany od uziemienia"

W takich przypadkach potencjał medium może być różny od potencjału przyrządu.

Wprowadzenie

Wersja z opcją "Pomiar odizolowany od uziemienia" zapewnia izolację galwaniczną obwodu pomiarowego od potencjału przyrządu. Dla tej wersji, szkodliwe prądy wyrównawcze spowodowane różnicą potencjałów pomiędzy medium a przyrządem są ograniczone do minimum. Wersja z opcją "Pomiar odizolowany od uziemienia" jest dostępna po wybraniu opcji CV w pozycji kodu zam. "Opcje czujnika"

Warunki pracy dla wersji z opcją "Pomiar odizolowany od uziemienia"

Wersja przyrządu	Wersja kompaktowa i rozdzielna (długość przewodu podłączeniowego ≤ 10 m)
Różnica potencjałów pomiędzy medium a przyrządem	Jak najmniejsza, rzędu kilku mV
Częstotliwości napięcia przemiennego w medium lub na zacisku uziemienia (PE)	Niższa od typowej częstotliwości sieciowej w danym kraju

Aby osiągnąć określoną dokładność pomiaru przewodności, zaleca się wykonanie kalibracji przewodności po zamontowaniu przyrządu.

Po zamontowaniu przyrządu zaleca się wykonanie adiustacji, gdy rura jest całkowicie wypełniona.

Rurociąg z tworzywa sztucznego

Czujnik i przetwornik są poprawnie uziemione. Różnica potencjałów może wystąpić pomiędzy medium a podłączeniem wyrównania potencjałów. Dla przyrządu z wybraną opcją "Pomiar odizolowany od uziemienia", prądy wyrównawcze pomiędzy P_M i PE płynące przez elektrodę odniesienia są ograniczone do minimum.

- Rurociąg działa jak izolator.
- Nie można wykluczyć przepływu prądów wyrównawczych przez medium.
 - 1. Zastosować opcję "Pomiar odizolowany od uziemienia", przestrzegając jednocześnie warunków pracy dla izolowanego galwanicznie obwodu pomiarowego.
- 2. Zacisk uziemienia przedziału podłączeniowego przetwornika lub czujnika pomiarowego podłączyć do potencjału ziemi.

Metalowy, nieuziemiony rurociąg z wykładziną

Czujnik i przetwornik są elektrycznie izolowane od przewodu ochronnego (PE). Medium i rurociąg mają różne potencjały. W wersji z opcją "Pomiar odizolowany od uziemienia", szkodliwe prądy wyrównawcze między P_M a P_P płynące przez elektrodę odniesienia są ograniczone do minimum.

Warunki początkowe:

- Rurociąg metalowy z wykładziną
- Nie można wykluczyć przepływu prądów wyrównawczych przez medium.
- 1. Przewodem uziemienia połączyć kołnierze rurociągu z zaciskiem uziemienia na obudowie przetwornika.
- Poprowadzić ekranowanie przewodów sygnałowych przez kondensator (zalecana wartość 1.5 μF/50 V).
- 3. Urządzenie podłączone do zasilania w taki sposób, aby było bezpotencjałowe względem podłączenia wyrównania potencjałów (transformator izolujący). Nie jest to konieczne w przypadku podłączenia do zasilacza 24V DC bez uziemienia ochronnego PE (= zasilacz SELV).
- 4. Zastosować opcję "Pomiar odizolowany od uziemienia", przestrzegając jednocześnie warunków pracy dla izolowanego galwanicznie obwodu pomiarowego.

5.8 Zapewnienie wyrównania potencjałów Promag H

5.8.1 Metalowe przyłącza procesowe

Metalowe przyłącza procesowe zapewniają stałe połączenie elektryczne z medium, a tym samym wymagane wyrównanie potencjałów pomiędzy czujnikiem a mierzonym medium.

5.8.2 Przyłącza procesowe z tworzywa sztucznego

W przypadku stosowania pierścieni uziemiających, należy zastosować się do poniższych wskazówek:

- W zależności od zamówionej opcji, do niektórych przyłączy procesowych zamiast pierścieni uziemiających używane są krążki z tworzywa sztucznego. Krążki z tworzywa sztucznego są w tym przypadku "elementami dystansowymi" i nie pełnią żadnej funkcji wyrównania potencjałów. Stanowią ważne uszczelnienie na styku czujnika i przyłącza procesowego. Jeśli w przyłączu procesowych nie ma metalowych pierścieni uziemiających, to takich krążków z tworzywa sztucznego i uszczelek nie wolno wyjmować. Krążki z tworzywa sztucznego i uszczelek imuszą być zawsze zamontowane.
- Pierścienie uziemiające można zamówić w Endress+Hauser oddzielnie, jako akcesoria. Pierścienie uziemiające muszą być odpowiednio dobrane pod kątem materiału elektrody, w przeciwnym razie istnieje niebezpieczeństwo, że elektrody mogą zostać zniszczone przez korozję elektrochemiczną.
- Pierścienie uziemiające wraz z uszczelkami montuje się wewnątrz przyłączy procesowych. Nie ma to wpływu na długość zabudowy.

Przykład podłączenia do wyrównania potencjałów z dodatkowym pierścieniem uziemiającym

NOTYFIKACJA

Brak wyrównania potencjałów może doprowadzić do elektrochemicznej korozji elektrod lub wpłynąć na dokładność pomiaru! Uszkodzenie urządzenia.

- Zamontować pierścienie uziemiające.
- Zapewnić (ustanowić) połączenie z wyrównaniem potencjałów.
- 1. Odkręcić śrubę z łbem sześciokątnym (1).
- Odłączyć przyłącze procesowe od czujnika (4).
- Wyjąć z przyłącza procesowego krążek z tworzywa sztucznego (3) wraz z uszczelkami (2).
- 4. Umieścić pierwszą uszczelkę (2) w rowku przyłącza procesowego.
- Umieścić metalowy pierścień uziemiający (3) w przyłączu procesowym.
- 6. Umieścić drugą uszczelkę (2) w rowku przyłącza procesowego.
- Nie przekraczać maksymalnych momentów dokręcenia śrub dla nasmarowanych gwintów: 7 Nm (5,2 lbf ft)
- 8. Podłączyć przyłącze procesowe do czujnika (4).

Przykład podłączenia do wyrównania potencjałów z elektrodami uziemiającymi

A00289

- 1 Śruby ze łbem sześciokątnym (przyłącze procesowe)
- 2 Wbudowane elektrody uziemiające
- 3 Uszczelka
- 4 Czujnik

5.9 Demontaż przewodu

I Jednostka inżynieryjna mm (in)

- 1. Przy pomocy wkrętaka płaskiego wcisnąć gniazdo znajdujące się między dwoma otworami zacisków i przytrzymać.
- 2. Z zacisku wyjąć końcówkę przewodu.

5.10 Przykłady zacisków elektrycznych

5.10.1 Modbus RS485

- 5 Przykład podłączenia dla wersji z interfejsem Modbus RS485, strefa niezagrożona wybuchem i Strefa 2; Klasa I, Podklasa 2
- 1 System sterowania (np. sterownik programowalny)
- 2 Ekran przewodu
- 3 Skrzynka rozdzielcza
- 4 Przetwornik

5.10.2 Wyjście prądowe 4...20 mA (aktywne)

- 1 System sterowania z wejściem prądowym (np. sterownik programowalny)
- 2 Wskaźnik analogowy: nie przekraczać maks. obciążenia
- 3 Przetwornik

5.10.3 Wyjście prądowe 4...20 mA (pasywne)

- *1 System sterowania z wejściem prądowym (np. sterownik programowalny)*
- 2 Separator zasilający, np. RN221N
- 3 Wskaźnik analogowy: nie przekraczać maks. obciążenia
- 4 Przetwornik

5.11 Kontrola po wykonaniu podłączeń elektrycznych

Tylko dla wersji rozdzielnej: Czy numery seryjne na tabliczkach znamionowych podłączonego czujnika i przetwornika są identyczne?		
Czy instalacja wyrównania potencjałów jest prawidłowo wykonana?		
Czy podłączenie do uziemienia ochronnego jest prawidłowe?		
Czy przewody lub przyrząd nie są uszkodzone (kontrola wzrokowa)?		
Czy przewody są zgodne ze specyfikacją?		
Czy podłączenie jest wykonane zgodnie z przyporządkowaniem zacisków?		
Czy wymieniono stare i uszkodzone uszczelki?		
Czy uszczelki są suche, czyste i prawidłowo zamontowane?		
Czy wszystkie dławiki kablowe są zamontowane, odpowiednio dokręcone i szczelne?		
Czy umieszczono zaślepki we wszystkich niewykorzystanych wprowadzeniach przewodów?		
Czy zabezpieczenia transportowe zastąpiono zaślepkami?		
Czy pokrywa obudowy została szczelnie zamknięta, a śruby obudowy odpowiednio dokręcone?		
Czy przed wprowadzeniem do dławików kablowych, przewody zostały poprowadzone od spodu?		
Czy napięcie zasilania jest zgodne ze specyfikacją na tabliczce znamionowej przyrządu?		

6 Obsługa

6.1 Przegląd wariantów obsługi

- 1 Obsługa lokalna za pomocą ekranu dotykowego
- 2 Komputer z zainstalowanym oprogramowaniem obsługowym np. FieldCare, DeviceCare, AMS Device Manager, SIMATIC PDM
- 3 Komunikator Field Xpert SFX350 lub SFX370 poprzez interfejs Bluetooth
- 4 Tablet Field Xpert SMT70 poprzez interfejs Bluetooth
- 5 Tablet lub smartfon poprzez interfejs Bluetooth
- 6 System sterowania (np. sterownik programowalny)

6.2 Obsługa lokalna

6.2.1 Odblokowanie obsługi lokalnej

Przed rozpoczęciem obsługi przyrządu za pomocą ekranu dotykowego, należy najpierw odblokować możliwość obsługi lokalnej. Aby ją odblokować, należy na ekranie dotykowym "narysować" palcem literę "L".

6.2.2 Nawigacja

Dotykając ekranu można:

- Otworzyć menu.
- Wybrać pozycję z listy.
- Potwierdzić przyciskami.
- Wprowadzić odpowiednie znaki.

du)

Przesuwając poziomo można:

Wyświetlić następną lub poprzednią stronę.

Przesuwając pionowo można:

Wyświetlić dodatkowe punkty na liście.

6.2.3 Ekran obsługi

Podczas rutynowej obsługi, wyświetlacz lokalny pokazuje ekran obsługi. Ekran obsługi składa się z kilku okien, pomiędzy którymi użytkownik może się przełączać.

Ekran obsługi można dostosować do potrzeb użytkownika: patrz opis parametrów
 $\rightarrow \ \textcircled{B}$ 47.

Ekran obsługi i nawigacja

- 1 Szybki dostęp
- 2 Symbole statusu, symbole komunikacji i symbole diagnostyki
- 3 Wartości mierzone
- 4 Obracanie strony

Symbole

Otwieranie menu głównego.

- Szybki dostęp
- 🔒 Status blokady
- * Komunikacja Bluetooth jest włączona.
- ← Komunikacja przyrządu jest włączona.
- 🐨 🛛 Sygnał statusu: sprawdzenie działania
- 🔄 🛛 Sygnał statusu: wymagana konserwacja
- 🖄 🛛 Sygnał statusu: poza specyfikacją
- 🗴 🛛 Sygnał statusu: błąd
- Sygnał statusu: aktywna diagnostyka.

6.2.4 Szybki dostęp

W menu szybkiego dostępu można wybierać określone funkcje przyrządu.

Szybki dostęp jest oznaczony trójkątem, znajdującym się u góry ekranu lokalnego wyświetlacza, pośrodku.

Szybki dostęp i nawigacja

1 Szybki dostęp

2 Menu szybkiego dostępu z określonymi funkcjami przyrządu

Dotykając ekranu można:

- Powrócić do ekranu obsługi.
- Otworzyć określone funkcje przyrządu.

Symbole

Po dotknięciu symbolu, wyświetlacz lokalny pokazuje menu z odpowiednimi, określonymi funkcjami przyrządu.

* Włączyć lub wyłączyć Bluetooth.

- ይ Podaj kod dostępu.
- 🔒 🛛 Blokada zapisu jest włączona.
- X Powrót do ekranu obsługi.

6.2.5 Menu główne

Menu główne zawiera wszystkie menu wymagane do uruchomienia, konfiguracji i obsługi przyrządu.

Menu główne i nawigacja

- 1 Otwieranie menu głównego.
- 2 Menu, które należy otworzyć, aby przejść do określonych funkcji przyrządu.

Dotykając ekranu można:

- Powrócić do ekranu obsługi.
- Otworzyć menu.

Symbole

- 合 Powrót do ekranu obsługi.
- 各 Menu Nawigacja Konfiguracja przyrządu
- menu Diagnostyka
 Wykrywanie i usuwanie usterek oraz kontrola reakcji przyrządu
- Menu Aplikacja Dostosowanie pod kątem konkretnego zastosowania
- Menu System
 Zarządzanie uprawnieniami dostępu do przyrządu
- 🖗 Ustaw język obsługi.

Podmenu i nawigacja

Im

Dotykając ekranu można:

- Otworzyć menu główne.
- Otworzyć podmenu lub parametry.
- Wybrać opcje.
- Pominąć pozycje na liście.

Przesuwając pionowo można:

Krok po korku wybierać pozycje na liście.

Symbole

- < Powrót do poprzedniego menu.
- Przejście do dołu listy.
- Przejście do góry listy.

6.2.6 Komunikaty diagnostyczne

W opcji komunikatów diagnostycznych wyświetlane są dodatkowe instrukcje lub podstawowe informacje dotyczące zdarzeń diagnostycznych.

Otwieranie komunikatu diagnostycznego

Klasa diagnostyczna jest wskazywana w prawym górnym rogu lokalnego wyświetlacza za pomocą symbolu diagnostycznego. Po dotknięciu tego symbolu lub przycisku "pomocy" otworzy się komunikat diagnostyczny.

- 1 Status przyrządu
- 2 Klasa diagnostyczna z kodem diagnostycznym
- 3 Krótki opis
- 4 Otwieranie wskazówek pomagających w wykryciu i usunięciu usterki.

6.2.7 Edytowanie widoku

Edytor i nawigacja

Edytor tekstu jest używany do wprowadzania znaków.

- 5 Pole wprowadzania
- 6 Pole wprowadzania

Dotykając ekranu można:

- Wprowadzić odpowiednie znaki.
- Wybrać następny zestaw znaków.

Przesuwając poziomo można:

Wyświetlić następną lub poprzednią stronę.

Pole wprowadzania

6.2.8 Data

Przyrząd ma wbudowany zegar czasu rzeczywistego dla wszystkich funkcji rejestrowania. W tym miejscu można skonfigurować czas.

- 1 Zwiększenie daty o 1.
- 2 Aktualna wartość
- 3 Zmniejszenie daty o 1.
- 4 Potwierdzenie ustawień.
- 5 Anulowanie edytowania.

Dotykając ekranu można:

- Wykonać ustawienia.
- Potwierdzić ustawienia.
- Anulować edytowanie.

6.3 Aplikacja SmartBlue

Przyrząd jest wyposażony w interfejs Bluetooth i może być obsługiwany oraz konfigurowany przy użyciu aplikacji SmartBlue. W tym celu, użytkownik musi pobrać i zainstalować aplikację SmartBlue na swoim terminalu. Terminal może być dowolny.

- W warunkach odniesienia zasięg wynosi 20 m (65.6 ft).
- Chroniona hasłem i szyfrowana transmisja danych zabezpiecza przed dostępem osób nieuprawnionych.
- Komunikację Bluetooth można wyłączyć.

Pobieranie	Aplikacja SmartBlue Endress+Hauser:
	Google Playstore (system Android)iTunes Apple Shop (system iOS)
	ANDROID APP ON Google Play
	Commissed on the App Store
Obsługiwane funkcje	 Konfiguracja przyrządu Dostęp do wartości mierzonych, statusu przyrządu i komunikatów diagnostycznych

Pobieranie aplikacji SmartBlue:

- 1. Zainstalować i uruchomić aplikację SmartBlue.
 - Wyświetli się lista wszystkich dostępnych przyrządów.
 Lista zawiera etykiety wszystkich urządzeń. Domyślna etykieta przyrządu to
 EH_**BB_XXYYZZ (XXYYZZ = pierwsze 6 znaków numeru seryjnego przyrządu).
- 2. W przypadku urządzeń z systemem operacyjnym Android należy aktywować pozycjonowanie GPS (nie jest to konieczne w przypadku urządzeń z systemem operacyjnym IOS)
- 3. Wybrać przyrząd z listy.
 - 🕒 Otwiera się okno logowania.
- Ze względu na oszczędność energii: jeśli przyrząd nie jest zasilany za pośrednictwem zasilacza, to jest on widoczny na liście tylko przez 10 sekund co minutę.
 - Przyrząd pojawi się natychmiast na liście po dotknięciu (na 5 s) ekranu wyświetlacza lokalnego.
 - Przyrząd o największej sile sygnału będzie wyświetlany na początku listy.

Logowanie:

- 4. Wprowadzić nazwę użytkownika: admin
- 5. Wprowadzić hasło początkowe: numer seryjny przyrządu.
 - Podczas pierwszego logowania wyświetlany jest komunikat zalecający zmianę hasła.
- 6. Zatwierdzić wprowadzaną wartość.
- 7. Opcjonalnie: zmienić hasło Bluetooth[®]: System → Connectivity [Połączenie] → Bluetooth configuration [Konfiguracja Bluetooth] → Change Bluetooth password [Zmień hasło Bluetooth]
 - W przypadku zapomnienia hasła: Prosimy o kontakt z serwisem Endress+Hauser.

Wykonanie aktualizacji oprogramowania za pomocą aplikacji SmartBlue

Wcześniej należy na wybrany terminal (np. smartfonie) przesłać plik flash.

- 1. Otworzyć system w aplikacji SmartBlue.
- 2. Otworzyć konfigurację oprogramowania.
- 3. Otworzyć aktualizację oprogramowania.
 - 🕒 Kreator poprowadzi użytkownika przez aktualizację oprogramowania.

7 Integracja z systemami automatyki

Szczegółowe informacje dotyczące integracji z systemami automatyki podano w instrukcji obsługi przyrządu.

- Informacje podane w plikach opisu urządzenia:
 - Dane aktualnej wersji przyrządu
 - Oprogramowanie narzędziowe
- Kompatybilność ze starszymi modelami
- Informacje dotyczące wersji Modbus RS485
 - Kody funkcji
 - Czas odpowiedzi
 - Mapa rejestrów Modbus

8 Uruchomienie

8.1 Kontrola po wykonaniu montażu i po wykonaniu podłączeń elektrycznych

Przed uruchomieniem, upewnić się, czy wykonane zostały czynności kontrolne po wykonaniu montażu oraz po wykonaniu podłączeń elektrycznych:

- Kontrola po wykonaniu montażu
 \rightarrow \boxplus 13
- Kontrola po wykonaniu podłączeń elektrycznych >
 ⁽¹⁾ 43

8.2 Włączenie przyrządu

- ► Włączyć zasilanie przyrządu.
 - 🕒 Wyświetlacz lokalny przełącza się z ekranu startowego na ekran obsługi.

Jeśli uruchomienie przyrządu nie powiedzie się, to przyrząd wyświetli odpowiedni komunikat błędu .

8.3 Uruchomienie przyrządu

8.3.1 Obsługa lokalna

Szczegółowe informacje na temat obsługi lokalnej:

1. Za pomocą symbolu "Menu", otworzyć menu główne.

2. Za pomocą symbolu "Język [Language]", wybrać żądany język.

3. Za pomocą symbolu "Nawigacja [Guidance]", otworzyć kreator Uruchomienie.

4. Włączyć kreator **Uruchomienie**.

- 5. Postępować zgodnie z instrukcjami na wyświetlaczu lokalnym.
 - └ Kreator kreator Uruchomienie prowadzi przez wszystkie parametry, konieczne do uruchomienia przyrządu.

Szczegółowe informacje można znaleźć w dokumencie "Opis parametrów przyrządu", dotyczącym konkretnego przyrządu.

8.3.2 Aplikacja SmartBlue

Połączenie aplikacji SmartBlue z przyrządem

- 1. Włączyć komunikację Bluetooth na mobilnym komunikatorze ręcznym, tablecie lub smartfonie.
- 2. Otworzyć aplikację SmartBlue.
 - 🕒 Wyświetli się lista wszystkich dostępnych przyrządów.
- 3. Wybrać żądany przyrząd.
 - 🛏 Aplikacja SmartBlue pokazuje ekran logowania do przyrządu.
- 4. W pozycji nazwy użytkownika, wpisać admin.
- 5. W pozycji hasła, wpisać numer seryjny przyrządu. Numer seryjny znajduje się na tabliczce znamionowej.
- 6. Potwierdzić wprowadzenia.
 - ← Aplikacja SmartBlue łączy się z przyrządem i wyświetla menu główne.

Otwieranie kreator "Uruchomienie"

- 1. Za pomocą menu Nawigacja, otworzyć kreator Uruchomienie.
- 2. Postępować zgodnie z instrukcjami na wyświetlaczu lokalnym.
 - └→ Kreator Uruchomienie prowadzi przez wszystkie parametry, konieczne do uruchomienia przyrządu.

8.4 Zabezpieczenie ustawień przed nieuprawnionym dostępem

8.4.1 Przełącznik blokady zapisu

Przełącznik blokady zapisu umożliwia zablokowanie możliwości zapisu w całym menu obsługi. Nie można zmieniać wartości parametrów. Fabrycznie, blokada zapisu jest wyłączona .

Blokadę zapisu włącza się za pomocą przełącznika blokady, znajdującego się z tyłu wyświetlacza.

Szczegółowe informacje dotyczące zabezpieczenie ustawień przed nieuprawnionym dostępem podano w instrukcji obsługi przyrządu.

9 Diagnostyka i usuwanie usterek

9.1 Komunikaty diagnostyczne na wskaźniku lokalnym

9.1.1 Komunikat diagnostyczny

Na wskaźniku wyświetlane są wskazania błędów w formie komunikatów diagnostycznych na przemian ze wskazaniami wartości mierzonych.

- A Wskazania na wyświetlaczu w stanie alarmu
- B Komunikat diagnostyczny
- 1 Klasa diagnostyczna
- 2 Sygnał statusu
- 3 Symbol klasy diagnostycznej z kodem diagnostycznym
- 4 Krótki komunikat tekstowy
- 5 Przycisk pomocy z informacją o możliwych działaniach.

i

Szczegółowe informacje dotyczące komunikatów diagnostycznych podano w instrukcji obsługi urządzenia.

71592050

www.addresses.endress.com

