Краткое руководство по эксплуатации

Датчик предельного уровня Liquiphant FTL63

Вибрационный принцип измерения Измерение плотности жидкостей специально для пищевой и фармацевтической отраслей

Настоящее краткое руководство по эксплуатации не заменяет собой руководство по эксплуатации прибора.

Подробные сведения приведены в руководстве по эксплуатации и другой документации.

Документацию для приборов во всех вариантах исполнения можно получить в следующих источниках:

- Интернет: www.endress.com/deviceviewer
- смартфон/планшет: приложение Endress+Hauser Operations

1 Сопроводительная документация

A0023555

2 Информация о документе

2.1 Символы

2.1.1 Символы техники безопасности

⚠ ΟΠΑCΗΟ

Этот символ предупреждает об опасной ситуации. Если не предотвратить такую ситуацию, она приведет к серьезной или смертельной травме.

№ ОСТОРОЖНО

Этот символ предупреждает об опасной ситуации. Если не предотвратить эту ситуацию, она может привести к серьезной или смертельной травме.

№ ВНИМАНИЕ

Этот символ предупреждает об опасной ситуации. Если не предотвратить эту ситуацию, она может привести к травме легкой или средней степени тяжести.

УВЕДОМЛЕНИЕ

Этот символ содержит информацию о процедурах и других данных, которые не приводят к травмам.

2.1.2 Электротехнические символы

Заземленный зажим, который заземляется через систему заземления.

Защитное заземление (РЕ)

Клеммы заземления, которые должны быть подсоединены к заземлению перед выполнением других соединений. Клеммы заземления расположены на внутренней и наружной поверхностях прибора.

2.1.3 Символы для обозначения инструментов

● Отвертка с плоским наконечником

Рожковый гаечный ключ

2.1.4 Описание информационных символов

Разрешено

Обозначает разрешенные процедуры, процессы или действия.

🔀 Запрещено

Означает запрещенные процедуры, процессы или действия.

🚹 Рекомендация

Указывает на дополнительную информацию.

📵 Ссылка на документацию

🖺 Ссылка на другой раздел

1., 2., 3. Серия шагов

2.1.5 Символы на рисунках

А, В, С ... Вид

1, 2, 3 ... Номера пунктов

🔊 Взрывоопасная зона

🔉 Безопасная зона (невзрывоопасная зона)

3 Основные правила техники безопасности

3.1 Требования к персоналу

Персонал должен соответствовать следующим требованиям для выполнения возложенной задачи, напри мер, ввода в эксплуатацию или технического обслуживания.

- Прошедшие обучение квалифицированные специалисты должны иметь соответствующую квалификацию для выполнения конкретных функций и задач.
- ▶ Получить разрешение на выполнение данных работ от руководства предприятия.
- Ознакомиться с нормами федерального/национального законодательства.
- ▶ Изучить инструкции данного руководства и сопроводительной документации.
- Следовать инструкциям и соблюдать условия.

3.2 Назначение

- Используйте прибор только для измерения плотности жидкостей.
- Ненадлежащее использование сопряжено с опасностью.
- Владелец/оператор установки должен поддерживать прибор в надлежащем рабочем состоянии в течение всего срока его службы.
- Используйте прибор только для тех сред, к воздействию которых смачиваемые части прибора достаточно устойчивы.
- Не допускайте нарушения верхних и нижних предельных значений для прибора.
 - 📵 См. техническую документацию.

3.2.1 Использование не по назначению

Изготовитель не несет ответственности за повреждения, вызванные неправильным использованием или использованием прибора не по назначению.

Остаточный риск

В результате теплообмена в ходе технологического процесса температура корпуса электроники и модулей, содержащихся в датчике, может подниматься до $80\,^{\circ}$ C ($176\,^{\circ}$ F).

Опасность ожогов при соприкосновении с поверхностями!

▶ При необходимости следует обеспечить защиту от прикосновения, чтобы предотвратить ожоги.

3.3 Техника безопасности на рабочем месте

При работе с прибором

▶ В соответствии с федеральным/национальным законодательством персонал должен использовать средства индивидуальной защиты.

3.4 Эксплуатационная безопасность

Опасность несчастного случая!

- Эксплуатируйте только такой прибор, который находится в надлежащем техническом состоянии, без ошибок и неисправностей.
- ▶ Ответственность за обеспечение работы прибора без помех несет оператор.

Модификации прибора

Несанкционированное изменение конструкции прибора запрещено и может представлять непредвиденную опасность.

► Если, несмотря на это, все же требуется внесение изменений в конструкцию прибора, обратитесь в компанию Endress+Hauser.

Ремонт

Условия длительного обеспечения эксплуатационной безопасности и надежности

- ▶ Выполняйте ремонт прибора только в том случае, если это явно разрешено.
- ► Соблюдайте федеральное/национальное законодательство в отношении ремонта электрических приборов.
- Используйте только оригинальные запасные части и комплектующие производства компании Endress+Hauser.

Взрывоопасная зона

Во избежание травмирования сотрудников предприятия при использовании прибора во взрывоопасной зоне (например, со взрывозащитой), необходимо соблюдать следующие правила.

- Определите по заводской табличке, пригоден ли заказанный прибор для использования во взрывоопасной зоне.
- Учитывайте характеристики, приведенные в отдельной сопроводительной документации, которая является неотъемлемой частью настоящего руководства.

3.5 Безопасность изделия

Описываемый прибор разработан в соответствии с современными требованиями к безопасной работе, был испытан и поставляется с завода в безопасном для эксплуатации состоянии.

Прибор соответствует применимым стандартам и нормам. Кроме того, прибор отвечает требованиям нормативных документов ЕС, перечисленных в Декларации соответствия ЕС в отношении приборов. Компания Endress+Hauser подтверждает это, нанося маркировку СЕ на прибор.

3.6 ІТ-безопасность

Гарантия на прибор действует только в том случае, если его установка и использование производятся согласно инструкциям, изложенным в руководстве по эксплуатации. В прибор встроены защитные механизмы, предотвращающие случайное изменение настроек пользователями.

Обеспечьте дополнительную защиту прибора и передачи данных с прибора/на прибор

 Меры IT-безопасности, определенные в собственной политике безопасности владельца/оператора установки, должны осуществляться самим владельцем/ оператором установки.

4 Входная приемка и идентификация продукции

4.1 Приемка

При приемке прибора проверьте следующее.	
П Совпалает ли кол заказа в транспортной наклалной с колом заказа на в	акпей

— совпадает ли код заказа в транспортнои накладной с кодом заказа на наклейке прибора?

□ Не поврежден ли прибор?

□ Совпадают ли данные, указанные на заводской табличке прибора, с данными заказа в транспортной накладной?

 \square Если это необходимо (см. данные на заводской табличке), предоставлены ли указания по технике безопасности, например XA?

Если хотя бы одно из этих условий не выполнено, обратитесь в офис продаж компании-изготовителя.

4.2 Идентификация продукции

Существуют следующие варианты идентификации прибора:

- данные, указанные на заводской табличке;
- расширенный код заказа с разбивкой по характеристикам прибора, указанный в накладной.
- ввод серийного номера с заводской таблички в программу W@M Device Viewer www.endress.com/deviceviewer: представлена полная информация о приборе вместе со списком прилагающейся технической документации.
- Ввод серийного номера с заводской таблички в приложение Endress+Hauser Operations или сканирование двухмерного штрих-кода с заводской таблички с помощью приложения Endress+Hauser Operations.

4.2.1 Заводская табличка

На заводской табличке указана информация, которая требуется согласно законодательству и относится к прибору.

4.2.2 Адрес изготовителя

Endress+Hauser SE+Co. KG Hauptstraße 1 79689 Maulburg, Германия

Место изготовления: см. заводскую табличку.

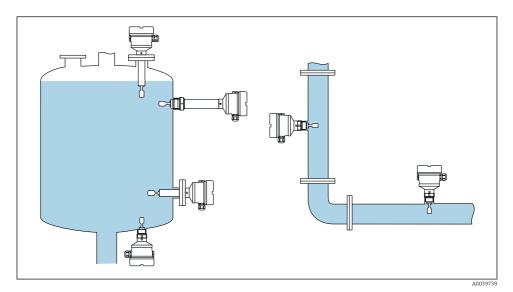
4.3 Хранение и транспортировка

4.3.1 Условия хранения

Используйте оригинальную упаковку.

Температура хранения

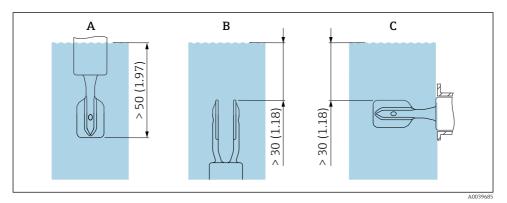
-40 до +80 °C (-40 до +176 °F)


4.3.2 Транспортировка прибора

- Транспортируйте прибор к месту измерения в оригинальной упаковке.
- Держите прибор за корпус, температурную проставку, технологическое соединение или удлинительную трубу
- Не сгибайте, не укорачивайте и не удлиняйте вибрационную вилку.

4.4 Установка

Инструкции по монтажу


- Любая ориентация для компактного варианта исполнения или варианта исполнения с длиной трубы прибл. до 500 мм (19,7 дюйм).
- Для прибора с длинной трубкой вертикальная ориентация, сверху.
- Минимальное расстояние между кончиком вилки и стенкой резервуара или трубопровода: 10 мм (0,39 дюйм).

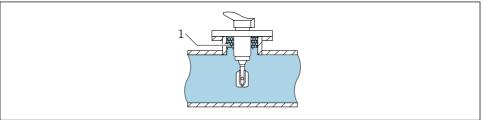
🗷 1 Примеры монтажа в резервуаре, баке или трубопроводе

4.4.1 Требования к монтажу

Монтажное положение выбирается таким образом, чтобы вибрационная вилка и мембрана были всегда покрыты рабочей средой.

🗗 2 Единица измерения: мм (дюймы)

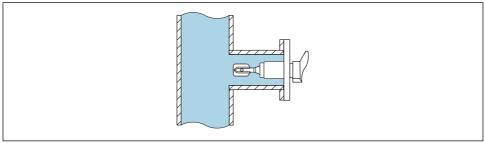
- А Монтаж сверху
- В Монтаж снизу
- С Монтаж сбоку



- Следует избегать появления пузырьков воздуха в трубопроводе или патрубке
- Обеспечьте надлежащую вентиляцию

Скорость потока – монтаж в трубопроводе

Установите вибрационную вилку в потоке технологической среды


- Скорость потока: < 2 м/с (6,56 фут/с) в секунду
- Предотвращение образования воздушных пузырьков (1)

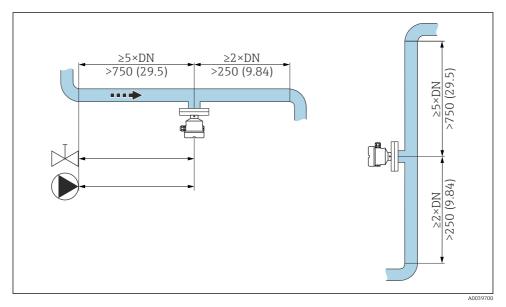
A0039718

🗷 3 Пример монтажа в потоке технологической среды в трубопроводах

Установите вибрационную вилку за пределами прямого потока технологической среды Скорость потока: < 2 м/с (6,56 фут/с)

A0020721

🗉 4 Пример монтажа за пределами прямого потока технологической среды в трубопроводах

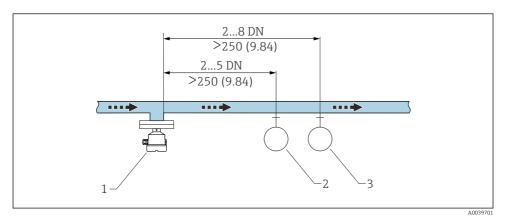

Впускные и выпускные участки

Впускной участок

По возможности устанавливайте датчик как можно выше по потоку, например на клапанах, тройниках, коленах, фланцевых отводах и т. д.

Для соблюдения требований, предъявляемых к точности, прямой участок до прибора должен отвечать следующим требованиям:

Впускной участок: ≥ 5x DN (номинальный диаметр) — мин. 750 мм (29,5 дюйм)


🗉 5 Монтаж прямого участка до прибора. Единица измерения мм (дюйм)

Выпускной участок

Для соблюдения требований, предъявляемых к точности, прямой участок после прибора должен отвечать следующим требованиям:

Выпускной участок: ≥ 2x DN (номинальный диаметр) — мин. 250 мм (9,84 дюйм)

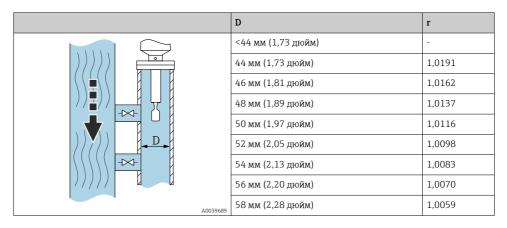
Датчики давления и температуры должны устанавливаться по направлению потока после датчика плотности Liquiphant. При установке точек измерения давления и температуры за прибором убедитесь в наличии достаточного расстояния между точкой измерения и прибором.

🛮 6 Монтаж прямого участка после прибора. Единица измерения мм (дюйм)

- 1 Датчик плотности Liquiphant
- 2 Точка измерения давления
- 3 Точка измерения температуры

Поправочный коэффициент

Если на вибрацию вилки воздействуют условия в месте монтажа, то результат измерения можно скорректировать с помощью поправочного коэффициента (r).


Стандартный вариант монтажа

Поправочный коэффициент (r) как производное от высоты (h), для ввода в электронный преобразователь FML621 или ПО ReadWin2000:

	h	r
	12 мм (0,47 дюйм)	1,0026
	14 мм (0,55 дюйм)	1,0016
	16 мм (0,63 дюйм)	1,0011
	18 мм (0,71 дюйм)	1,0008
	20 мм (0,79 дюйм)	1,0006
	22 мм (0,87 дюйм)	1,0005
<u>-</u>	24 мм (0,94 дюйм)	1,0004
A003968;	26 мм (1,02 дюйм)	1,0004
	28 мм (1,10 дюйм)	1,0004
	30 мм (1,18 дюйм)	1,0003
	32 мм (1,26 дюйм)	1,0003
	34 мм (1,34 дюйм)	1,0002
	36 мм (1,42 дюйм)	1,0001
	38 мм (1,50 дюйм)	1,0001
	40 мм (1,57 дюйм)	1,0000

Монтаж в обходном трубопроводе

Поправочный коэффициент (r) как производное от внутреннего диаметра обходного трубопровода (D), для ввода в электронный преобразователь FML621 или ПО ReadWin2000:

D	r
60 мм (2,36 дюйм)	1,0050
62 мм (2,44 дюйм)	1,0042
64 мм (2,52 дюйм)	1,0035
66 мм (2,60 дюйм)	1,0030
68 мм (2,68 дюйм)	1,0025
70 мм (2,76 дюйм)	1,0021
72 мм (2,83 дюйм)	1,0017
74 мм (2,91 дюйм)	1,0014
76 мм (2,99 дюйм)	1,0012
78 мм (3,07 дюйм)	1,0010
80 мм (3,15 дюйм)	1,0008
82 мм (3,23 дюйм)	1,0006
84 мм (3,31 дюйм)	1,0005
86 мм (3,39 дюйм)	1,0004
88 мм (3,46 дюйм)	1,0003
90 мм (3,54 дюйм)	1,0003
92 мм (3,62 дюйм)	1,0002
94 мм (3,70 дюйм)	1,0002
96 мм (3,78 дюйм)	1,0001
98 мм (3,86 дюйм)	1,0001
100 мм (3,94 дюйм)	1,0001
> 100 мм (3,94 дюйм)	1,0000

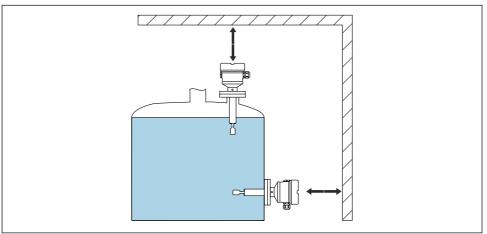
Монтаж в трубопроводе

Поправочный коэффициент (r) как производное от внутреннего диаметра трубопровода (D), для ввода в электронный преобразователь Density Computer FML621 или ПО ReadWin2000:

	D	r
	<44 мм (1,73 дюйм)	-
	44 мм (1,73 дюйм)	1,0225
	46 мм (1,81 дюйм)	1,0167
	48 мм (1,89 дюйм)	1,0125
	50 мм (1,97 дюйм)	1,0096
<u> </u>	52 мм (2,05 дюйм)	1,0075
A	0039707 54 мм (2,13 дюйм)	1,0061
	56 мм (2,20 дюйм)	1,0051
	58 мм (2,28 дюйм)	1,0044
	60 мм (2,36 дюйм)	1,0039
	62 мм (2,44 дюйм)	1,0035
	64 мм (2,52 дюйм)	1,0032
	66 мм (2,60 дюйм)	1,0028
	68 мм (2,68 дюйм)	1,0025
	70 мм (2,76 дюйм)	1,0022
	72 мм (2,83 дюйм)	1,0020
	74 мм (2,91 дюйм)	1,0017
	76 мм (2,99 дюйм)	1,0015
	78 мм (3,07 дюйм)	1,0012
	80 мм (3,15 дюйм)	1,0009
	82 мм (3,23 дюйм)	1,0007
	84 мм (3,31 дюйм)	1,0005
	86 мм (3,39 дюйм)	1,0004
	88 мм (3,46 дюйм)	1,0003
	90 мм (3,54 дюйм)	1,0002
	92 мм (3,62 дюйм)	1,0002
	94 мм (3,70 дюйм)	1,0001
	96 мм (3,78 дюйм)	1,0001
	98 мм (3,86 дюйм)	1,0001

D	r
100 мм (3,94 дюйм)	1,0001
> 100 мм (3,94 дюйм)	1,0000

Исключение налипаний

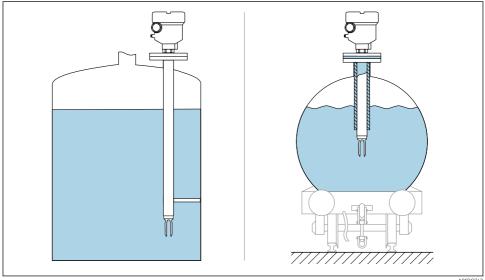

УВЕДОМЛЕНИЕ

Следует избегать скопления налипаний и развития коррозии на вибрационной вилке, так как эти факторы влияют на результат измерения!

 При необходимости установите надлежащую периодичность технического обслуживания!

Учет необходимого свободного пространства

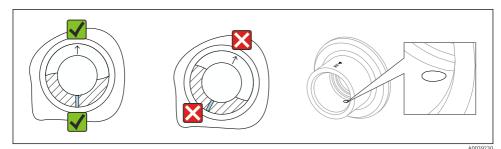
Оставьте достаточное место снаружи резервуара для установки, подсоединения и замены электронной вставки.



A0039741

🗷 7 Учет необходимого свободного пространства

Опора для прибора


При наличии динамической нагрузки необходимо обеспечить опору прибора. Максимально допустимая боковая нагрузка на трубные удлинители и датчики: 75 Нм (55 фунт сила фут).

₽8 Примеры использования опоры при динамической нагрузке

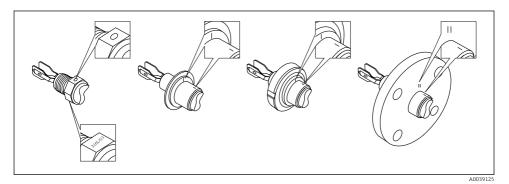
Сварной переходник с отверстием для утечек

Приварите переходник таким образом, чтобы отверстие для утечек было направлено вниз. Это позволит быстро обнаруживать любую утечку.

₽ 9 Сварной переходник с отверстием для утечек

Установка устройства 4.4.2

Требуемый инструмент


- Рожковый гаечный ключ для монтажа датчика
- Шестигранный ключ для работы со стопорным винтом корпуса

Endress+Hauser 15

A0039742

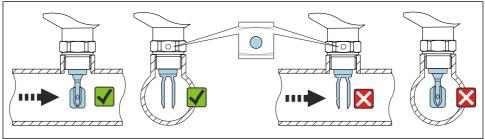
Монтаж

Выравнивание вибрационной вилки с помощью маркировки

Положение вибрационной вилки при горизонтальном монтаже в резервуаре с использованием маркировки

Монтаж прибора в трубопроводе

УВЕДОМЛЕНИЕ

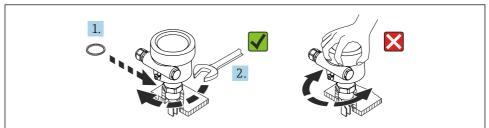

Неправильное выравнивание вибрационной вилки

Вихревые потоки и водовороты могут фальсифицировать результаты измерения.

- ▶ Выровняйте вилку по направлению потока для внутренних приспособлений в трубопроводе или резервуарах с мешалкой.
- Во время рабочего процесса скорость потока технологической среды не должна превышать 2 м/с (6,56 фут/с)
- Скорость потока > 2 м/с: отделите вибрационную вилку от прямого потока технологической среды, используя такие конструктивные элементы, как байпас или удлинительная трубка, чтобы снизить скорость потока до макс. 2 м/с (6,56 фут/с)
- У потока среды не будет существенных преград, если вибрационная вилка будет правильно сориентирована, а маркировка будет соответствовать направлению потока.
- Маркировка на технологическом соединении указывает положение вибрационной вилки.

Резьбовое соединение = точка на шестигранной головке; фланцевое соединение = две линии на фланце.

Маркировка видна при смонтированном приборе.



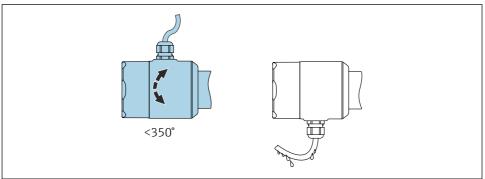
A0034851

🗷 11 Монтаж в трубопроводе (следует учитывать положение вилки и маркировку)

Вворачивание прибора

- Поворачивайте прибор только за шестигранную часть, 15 до 30 Нм (11 до 22 фунт сила фут).
- Не вращайте за корпус!

A0034852

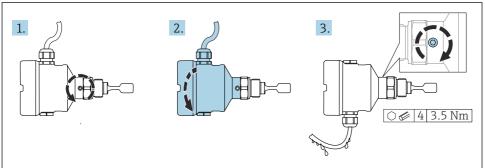

🗷 12 🛮 Вворачивание прибора

Выравнивание кабельного ввода

Любой корпус можно выравнивать.

Корпус без стопорного винта

Корпус прибора можно поворачивать на угол до 350°.


A0052359

🖪 13 Корпус без стопорного винта с ниспадающей каплеуловительной кабельной петлей

Корпус со стопорным винтом

Корпуса со стопорным винтом:

- Чтобы повернуть корпус и выровнять кабель, можно использовать стопорный винт.
- При поставке прибора стопорный винт не затянут.

A0037347

Корпус с наружным стопорным винтом и ниспадающей каплеуловительной кабельной петлей

- 1. Ослабьте наружный стопорный винт (максимум на 1,5 оборота).
- 2. Поверните корпус, выровняйте положение кабельного ввода.
 - □ Не допускайте попадания влаги в корпус, сделайте петлю, чтобы влага могла стекать.
- 3. Прикрутите стопорный винт.

УВЕДОМЛЕНИЕ

Корпус невозможно отвернуть полностью.

- Ослабьте наружный стопорный винт не более чем на 1,5 оборота. Если винт вывернуть слишком далеко или полностью (за пределы точки входа резьбы), мелкие детали (контрдиск) могут ослабнуть и выпасть.
- ▶ Затяните крепежный винт (с шестигранным гнездом 4 мм (0,16 дюйм)) моментом не более 3,5 Нм (2,58 фунт сила фут) \pm 0,3 Нм (\pm 0,22 фунт сила фут).

Закрытие крышек корпуса

УВЕДОМЛЕНИЕ

Повреждение резьбы и крышки корпуса вследствие загрязнения!

- ▶ Удаляйте загрязнения (например, песок) с резьбы крышек и корпуса.
- Если при закрытии крышки все же ощущается сопротивление, повторно проверьте резьбу на наличие загрязнений.

Резьба корпуса

На резьбу отсека для электроники и клеммного отсека может быть нанесено антифрикционное покрытие.

Следующее указание относится ко всем материалам корпуса:

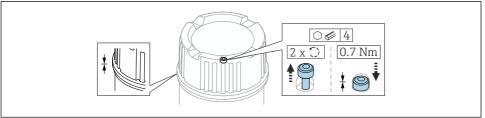
№ Не смазывайте резьбу корпуса.

5 Электрическое подключение

5.1 Требуемый инструмент

- Отвертка для электрического подключения
- Шестигранный ключ для стопорного винта крышки

5.2 Требования к подключению


5.2.1 Крышка с крепежным винтом

В приборах, предназначенных для использования во взрывоопасных зонах с определенной степенью взрывозащиты, крышка фиксируется крепежным винтом.

УВЕДОМЛЕНИЕ

Если стопорный винт расположен ненадлежащим образом, надежная герметизация крышки не будет обеспечена.

- Откройте крышку: ослабьте стопорный винт крышки не более чем на 2 оборота, чтобы винт не выпал. Установите крышку и проверьте уплотнение крышки.
- Закройте крышку: плотно заверните крышку на корпус и убедитесь в том, что стопорный винт расположен должным образом. Между крышкой и корпусом не должно быть зазора.

A0039520

🖪 15 Крышка с крепежным винтом

5.2.2 Подключение защитного заземления (РЕ)

Если прибор используется во взрывоопасных зонах, вне зависимости от рабочего напряжения, защитный заземляющий проводник должен быть подключен к линии выравнивания потенциалов измерительной системы. Это можно сделать путем подключения к внутреннему или внешнему соединению защитного заземления (РЕ).

5.3 Подключение прибора

Pe Pe

Резьба корпуса

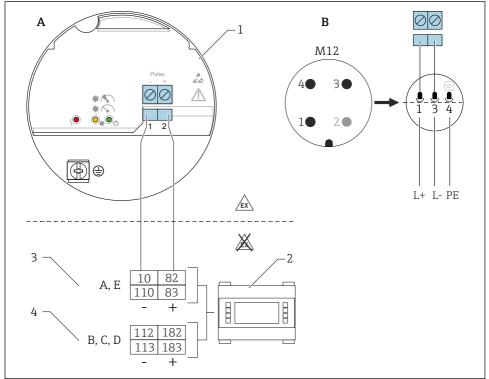
На резъбу отсека для электроники и клеммного отсека может быть нанесено антифрикционное покрытие.

Следующее указание относится ко всем материалам корпуса:

№ Не смазывайте резьбу корпуса.

5.3.1 2-проводное подключение (электронная вставка FEL60D) для измерения плотности

УВЕДОМЛЕНИЕ


Эксплуатация с другими коммутационными устройствами не допускается.

Выход из строя электронных компонентов.

► Запрещается устанавливать электронную вставку FEL60D в приборы, которые раньше использовались как датчики предельного уровня.

Назначение клемм

Выходной сигнал датчика плотности основан на технологии передачи импульсов. Посредством этого сигнала информация о частоте колебания вилки непрерывно поступает в электронный преобразователь FML621.

A0036059

■ 16 Схема подключения: соединение электронной вставки FEL60D с электронным преобразователем FML621

- А Соединительные кабели с клеммами
- В Соединительные кабели с разъемом М12 в корпусе согласно стандарту EN 61131-2
- 1 Электронная вставка FEL60D
- 2 Электронный преобразователь Density Computer FML621
- 3 Разъемы A, E с дополнительными платами расширения (уже установленными в основной блок)
- 4 Разъемы В, С, D с платами расширения (опционально)

Напряжение питания

U = 24 В пост. тока $\pm 15\%$, подходит только для подключения к электронному преобразователю FML621

👔 Источник питания прибора должен относиться к категории CLASS 2 или SELV.

Потребляемая мощность

Р < 160 мВт

Потребление тока

I < 10 MA

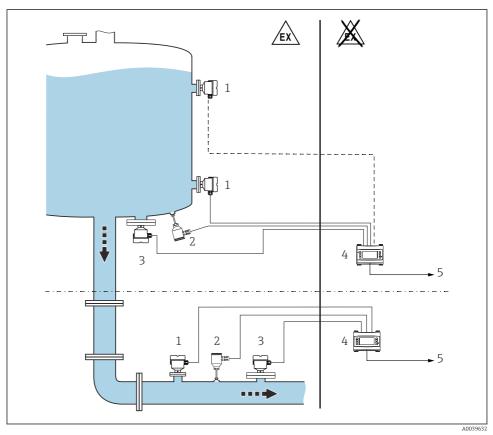
Защита от перенапряжения

Категория перенапряжения I

Регулировка

Предусмотрено три различных типа регулировки.

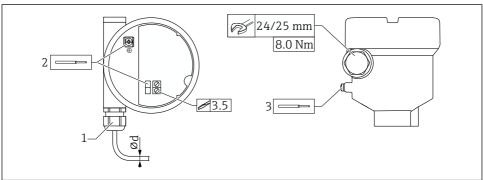
- Стандартная регулировка (конфигурация в рамках заказа)
 Два параметра вилки, описывающие характеристики датчика, определяются на заводе-изготовителе и предоставляются в виде отчета о калибровке, который прилагается к изделию. Эти параметры необходимо сохранить в памяти электронного преобразователя Density Computer FML621.
- Специальная регулировка (следует выбрать в конфигураторе выбранного продукта)
 Три параметра вилки, описывающие характеристики датчика, определяются на заводе-изготовителе и предоставляются в виде отчета о калибровке, который прилагается к изделию. Эти параметры необходимо сохранить в памяти электронного преобразователя Density Computer FML621.
- Этот тип регулировки в результате дает еще более высокий уровень точности. Регулировка по месту эксплуатации При регулировке по месту эксплуатации значение плотности, определенное пользователем, передается в прибор FML621.
- Все необходимые параметры прибора Liquiphant Density задокументированы в отчете о регулировке и паспорте датчика.


Эти документы входят в комплект поставки.

Дополнительные сведения и документацию, которая имеется в настоящее время, можно получить на веб-сайте компании Endress+Hauser: www.endress.com \rightarrow «Документация».

Измерение плотности

Прибор Liquiphant Density служит для измерения плотности жидкой среды в трубах и резервуарах. Прибор пригоден для использования со всеми ньютоновскими жидкостями (жидкостями, вязкость которых не зависит от скорости деформации). Кроме того, прибор пригоден для использования во взрывоопасных зонах.


🗷 17 Измерение плотности в сочетании с электронным преобразователем Density Computer FML621

- 1 Liquiphant Density → импульсный выход
- 2 Датчик температуры, например, выход 4 до 20 мА
- 3 Выход преобразователя давления 4 до 20 мА, необходимый при изменении давления >6 бар
- 4 Электронный преобразователь Liquiphant Density Computer FML621 с дисплеем и блоком управления
- **5** ПЛК
- 🛂 На результат измерения могут влиять следующие факторы:
 - пузырьки воздуха на поверхности датчика;
 - неполное погружение блока в среду;
 - налипание твердых частиц среды на датчик;
 - высокая скорость потока в трубопроводах;
 - сильная турбулентность в трубопроводе при слишком коротких входных и выходных участках;
 - коррозия вилки;
 - неньютоновская среда (вязкость которой зависит от скорости деформации).

5.3.2 Подключение кабеля

Необходимые инструменты

- Плоская отвертка (0,6 мм х 3,5 мм) для клемм
- Подходящий инструмент с размером под ключ AF24/25 (8 Нм (5,9 фунт сила фут)) для кабельного ввода M20

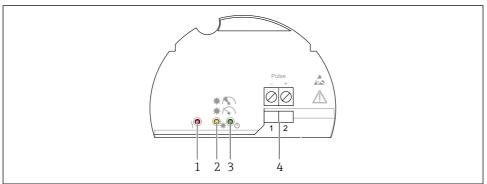
.....

🗷 18 Пример соединения с кабельным вводом, электронная вставка с клеммами

- 1 Муфта М20 (с кабельным вводом), пример
- 2 Максимальное сечение провода 2,5 мм² (AWG 14), клемма заземления внутри корпуса + клеммы на электронике
- 3 Максимальное сечение провода 4,0 мм² (AWG 12), внешняя клемма заземления (пример пластикового корпуса с внешним защитным заземлением (PE))
- Ød Никелированная латунь 7 до 10,5 мм (0,28 до 0,41 дюйм)
 Пластмасса 5 до 10 мм (0,2 до 0,38 дюйм)
 Нержавеющая сталь 7 до 12 мм (0,28 до 0,47 дюйм)
 Нержавеющая сталь, гигиеничная 9 до 12 мм (0,35 до 0,47 дюйм)

При использовании муфты M20 обратите внимание на следующее После ввода кабеля:

- Затяните контргайку муфты
- Затяните накидную гайку муфты моментом 8 Нм (5,9 фунт сила фут)
- Вкрутите прилагаемую муфту в корпус моментом 3,75 Нм (2,76 фунт сила фут)


6 Опции управления

6.1 Обзор опций управления

6.1.1 Принцип управления

Управление с помощью электронного преобразователя Density Computer FML621. Подробные сведения см. в документации к электронному преобразователю Density Computer FML621.

6.1.2 Элементы на электронной вставке

A0039683

■ 19 Электронная вставка FEL60D

- 1 Красный светодиод для предупреждений и аварийных сигналов
- 2 Желтый светодиод, указывающий на стабильность измерения
- 3 Зеленый светодиод, обозначающий рабочее состояние (прибор включен)
- 4 Клеммы импульсного выхода

7 Ввод в эксплуатацию

7.1 Функциональная проверка

Прежде чем вводить точку измерения в эксплуатацию, убедитесь в том, что выполнены «проверки после монтажа» и «проверки после подключения» (по контрольным спискам, которые приведены в руководстве по эксплуатации).

7.2 Включение прибора

- Включение
 - Зеленый светодиод загорается, а желтый светодиод мигает 2-3 раза.

Если измерение проходит стабильно, то после этого оба светодиода (зеленый и желтый) непрерывно горят.

www.addresses.endress.com