KA01194G/46/KO/06.23-00

71637821

사용 설명서 요약 Micropilot NMR81

탱크 게이징

이 설명서는 사용 설명서(요약본)이며, 기기별 사용 설명서를 대체하지 않습니다.

기기에 대한 자세한 정보는 사용 설명서와 기타 문서를 참조하십시오.

모든 기기 버전에 대해 제공:

- 인터넷: www.endress.com/deviceviewer
- 스마트폰/태블릿: Endress+Hauser Operations App

A0023555

목차

1 1.1 1.2	문서 정보 기호	4
2 2.1 2.2 2.3 2.4 2.5	기본 안전 지침 작업자 준수사항	7 .7 .8 .8
3	제품 설명	9
3.1	제품 디자인	9
4	입고 승인 및 제품 식별	10
4.1	입고 승인	10
4.2	제품 식별	10
4.3	보관 및 운송	10
5	설치	12
5.1	설치 조건	12
6	전기 연결	16
6.1	단자 할당	16
6.2	연결 요구사항 .	31
6.3	방진방수 등급 보장 .	32
7 .1	시운전	33
7.2	작동 방법	36
7.3	탱크 측정 관련 용어	37
7.4	초기 설정	39
7.5	레이다 측정 설정	40
7.6	탱크 변수 에 측정값 연결	48
7.7	일람 설정(한계 평가)	49
7.8	신호 출력 설정	50

1 문서 정보

1.1 기호

1.1.1 안전 기호

🛕 위험

위험 상황을 알리는 기호입니다. 이 상황을 방지하지 못하면 심각한 인명 피해가 발생할 수 있습니다.

🛕 경고

위험 상황을 알리는 기호입니다. 이 상황을 방지하지 못하면 심각한 인명 피해가 발생할 수 있습니다.

🛕 주의

위험 상황을 알리는 기호입니다. 이 상황을 방지하지 못하면 경미한 부상이나 중상을 당할 수 있습니다.

주의

신체적 상해가 발생하지 않는 과정 및 기타 요인에 대해 알려주는 기호입니다.

1.1.2 전기 기호

 \sim

교류

\sim

직류 및 교류

직류

Ŧ

접지 연결

접지 시스템을 통해 접지되었다고 작업자가 인지하고 있는 단자

🖶 보호 접지(PE)

다른 연결을 설정하기 전에 접지에 연결해야 하는 접지 단자

접지 단자는 계기 내부와 외부에 있습니다.

■ 내부 접지 단자: 보호 접지가 주전원에 연결됩니다.

• 외부 접지 단자:계기가 플랜트 접지 시스템에 연결됩니다.

1.1.3 공구 기호

\$6⁄

십자형 스크류드라이버

0

일자형 스크류드라이버

0

Torx 스크류드라이버

$\bigcirc \mathscr{O}$ 육각 렌치 Ŕ 단구 렌치 특정 정보 및 그래픽 관련 기호 1.1.4 ✓ 허용 허용된 절차, 프로세스 또는 작업입니다. ✓✓ 우선 우선 순위가 높은 절차, 프로세스 또는 작업입니다. 🔀 금지 금지된 절차, 프로세스 또는 작업입니다. **ਜ** 티 추가 정보를 알려줍니다. 설명서 참조 그래픽 참조 따라야 할 주의 사항 또는 개별 단계 1., 2., 3. 일련의 단계 한 단계의 결과 ۲ 육안 검사 작업 도구를 통한 작동 æ 쓰기 보호 파라미터 1, 2, 3, ... 항목 번호 A, B, C, ... 보기 ▲ → 💷 안전 지침

해당 사용 설명서의 안전 지침을 준수하십시오.

□ € 연결 케이블의 온도 저항 연결 케이블의 온도 저항 최소 값을 지정합니다.

1.2 문서

Endress+Hauser 웹 사이트의 다운로드 섹션(www.endress.com/downloads)에서 다음 유형의 문서를 제공합니다.

- 💽 관련 기술 문서의 범위는 다음을 참조하십시오.
 - Device Viewer (www.endress.com/deviceviewer): 명판의 일련 번호를 입력하십시오.
 - Endress+Hauser Operations 앱: 명판의 일련 번호를 입력하거나 명판의 매트릭스 코 드를 스캔하십시오.

1.2.1 기술 정보(TI)

계획 수립 지원

이 문서는 기기에 관한 모든 기술 데이터와 기기에 사용할 수 있는 액세서리 및 기타 제품에 대한 개략적인 정보를 제공합니다.

1.2.2 사용 설명서(요약본)(KA)

1차 측정 값을 신속하게 도출하도록 도와주는 가이드

사용 설명서(요약본)은 입고 승인에서 최초 시운전에 이르는 모든 필수 정보를 제공합니다.

1.2.3 사용 설명서(BA)

사용 설명서는 제품 식별, 입고 및 보관에서 설치, 연결, 작동 및 시운전과 문제 해결, 유지보 수 및 펴 기에 이르기까지 제품의 전체 수명 주기에서 필요한 모든 정보를 제공합니다.

또한 작업 메뉴의 각 파라미터에 대한 상세한 설명도 포함되어 있습니다(**Expert** 메뉴 제외). 이 문서의 대상은 수명 주기 전체에 걸쳐 계기를 사용하고 특정한 구성을 수행하는 사용자입 니다.

1.2.4 계기 파라미터 설명서(GP)

계기 파라미터 설명서는 작업 메뉴의 2번째 부분(Expert 메뉴)에 있는 각 파라미터에 대한 상세한 설명을 제공합니다. 여기에는 모든 계기 파라미터가 포함되어 있고 특정 코드를 입력 해 파라미터에 직접 액세스할 수 있습니다. 이 문서의 대상은 수명 주기 전체에 걸쳐 계기를 사용하고 특정한 구성을 수행하는 사용자입니다.

1.2.5 안전 지침(XA)

승인에 따라 다음 안전 지침(XA)이 기기와 함께 제공됩니다. 안전 지침은 사용 설명서의 필 수 요소입니다.

📳 명판에서는 기기와 관련된 안전 지침(XA)을 보여줍니다.

1.2.6 설치 설명서(EA)

설치 설명서는 결함이 있는 장치를 동일한 유형의 정상 장치로 교체하는 데 사용됩니다.

2 기본 안전 지침

2.1 작업자 준수사항

작업자는 다음과 같은 작업별 요건을 충족해야 합니다.

▶ 일정 교육을 받은 전문가가 기능 및 작업에 대한 자격을 보유해야 함

- ▶ 설비 소유자 및 작업자의 승인을 받아야 함
- ▶ 연방 및 국가 규정을 숙지하고 있어야 함
- ▶ 작업을 시작하기 전에 작업 내용에 따라 매뉴얼과 보조 자료 및 인증서에 나온 지침을 읽 고 숙지해야 함
- ▶ 지침을 준수하고 기본 조건을 충족해야 함

2.2 용도

애플리케이션 및 측정 물질

이 사용 설명서에서 설명하는 계기는 액체의 레벨을 비접촉식으로 연속 측정하는 용도로 사 용해야 합니다. 이 계기는 밀펴된 금속 탱크나 강화 콘크리트 탱크 또는 이에 상응하는 감쇠 재료를 사용한 유사한 외함 구조물에 설치해야 합니다. 작동 시 인간과 동물에게 완전히 무 해합니다.

주문한 버전의 일부에서는 계기가 폭발성, 가연성, 독성, 산화성 유체도 측정할 수 있습니다. 방폭 지역, 위생 용도 또는 프로세스 압력에 의한 위험이 증가하는 경우에 사용하는 계기는 명판에 해당 내용이 표시됩니다.

계기가 작동 시간 동안 올바른 상태를 유지하게 하려면 다음과 같이 하십시오.

- ▶ 명판의 데이터와 사용 설명서 및 보조 자료의 일반 조건을 완전히 충족하는 계기만 사용 하십시오.
- ▶ 주문한 계기를 승인 관련 영역(예: 방폭, 압력 탱크 안전)에서 지정된 용도로 사용할 수 있는지 확인하려면 명판을 참조하십시오.
- ▶ 프로세스 유체에 닿는 재질이 충분한 저항성을 갖는 유체에만 계기를 사용하십시오.
- ▶ 계기가 상온에서 작동하지 않을 경우 해당 계기 문서에 명시되어 있는 기본 조건을 준수 하는지 확인하십시오.
- ▶ 환경 영향에 의한 부식으로 계기가 영구적으로 손상되지 않도록 조치하십시오.
- ▶ "기술 정보"의 제한 값을 준수하십시오.

지정되지 않은 용도로 사용하여 발생하는 손상에 대해서는 제조사가 책임을 지지 않습니다.

잔여 위험

작동 중에 센서가 측정 물질의 온도 근처에서 온도를 추정할 수 있습니다.

가열된 표면으로 인한 화상 위험!

▶ 높은 프로세스 온도: 화상을 예방하기 위해 접촉 방지 장치를 설치하십시오.

2.3 작업장 안전

계기 작업 시:

▶ 국가 규정에 따라 필수 개인 보호 장비를 착용하십시오.

2.4 작동 안전

부상 위험이 있습니다!

- ▶ 기술적 조건이 적절하고 오류와 결함이 없는 경우에만 계기를 작동하십시오.
- ▶ 계기의 무간섭 작동은 오퍼레이터의 책임입니다.

방폭 지역

계기를 방폭 지역에서 사용할 때 사람과 시설에 대한 위험을 방지하려면 다음과 같이 하십시 오.

- ▶ 주문한 계기가 방폭 지역에서 지정된 용도로 사용할 수 있는지 확인하려면 명판을 확인하 십시오.
- ▶ 이 설명서의 필수 요소인 별도의 보조 문서에 명시된 사양을 준수하십시오.

2.5 제품 안전

이 계기는 최신 안전 요건을 충족시키기 위해 우수한 엔지니어링 관행에 따라 설계 및 테스 트되었으며, 작동하기에 안전한 상태로 공장에서 출하되었습니다. 일반 안전 기준 및 법적 요건을 충족합니다.

주의

습한 환경에서 기기를 열 때 보호 등급의 손실

▶ 습한 환경에서 기기를 열면 명판에 표시된 보호 등급이 더 이상 유효하지 않습니다. 이는 또한 기기의 안전한 작동을 저해할 수도 있습니다.

2.5.1 CE 마크

이 측정 시스템은 해당 EU 지침의 법적 요건을 준수합니다. 이는 해당 EU 적합성 선언에 적용 표준과 함께 명시되어 있습니다.

제조사는 CE 마크를 부착해 계기를 성공적으로 테스트했음을 확인합니다.

2.5.2 EAC 적합성

이 측정 시스템은 관련 EAC 가이드라인의 법적 요건을 준수합니다. 이는 해당 EAC 적합성 선 언에 적용 표준과 함께 명시되어 있습니다.

제조사는 EAC 마크를 부착해 계기를 성공적으로 테스트했음을 확인합니다.

3 제품 설명

3.1 제품 디자인

- 1 Micropilot NMR81의 디자인
- 1 전자 장치 하우징
- 2 디스플레이 및 작동 모듈(커버를 열지 않고 작동 가능)
- 3 안테나 정렬 장치 100 mm (4 in)
- 4 레벨 공구(안테나의 정렬 상태를 점검하는 데 사용)
- 5 프로세스 연결부(플랜지)
- 6 안테나 50 mm (2 in)
- 7 안테나 80 mm (3 in)
- 8 안테나 100 mm (4 in)

4 입고 승인 및 제품 식별

4.1 입고 승인

제품 수령 시 다음 사항을 확인하십시오.

- 납품서와 제품 스티커의 주문 코드가 동일합니까?
- 제품이 손상되지 않았습니까?
- 명판 데이터가 납품서의 주문 정보와 일치합니까?
- 필요한 경우(명판 참조): 안전 지침(XA)이 동봉되어 있습니까?

📭 이 조건 중 하나라도 충족되지 않으면 Endress + Hauser 세일즈 센터에 연락하십시오.

4.2 제품 식별

계기 식별을 위해 다음 옵션을 사용할 수 있습니다.

- 명판 사양
- Device Viewer (www.endress.com/deviceviewer)에 명판의 일련 번호를 입력하십시오. 계 기와 관련된 모든 정보와 계기와 함께 제공된 기술 문서의 개요가 표시됩니다.
- 명판의 일련 번호를 Endress+Hauser Operations App에 입력하거나 Endress+Hauser
 Operations App으로 명판의 2D 매트릭스 코드(QR 코드)를 스캔하십시오. 계기에 관한 모
 든 정보와 계기와 관련된 기술 문서가 표시됩니다.
- 🚹 관련 기술 문서의 범위는 다음을 참조하십시오.
 - Device Viewer (www.endress.com/deviceviewer): 명판의 일련 번호를 입력하십시오.
 - Endress+Hauser Operations 앱: 명판의 일련 번호를 입력하거나 명판의 매트릭스 코 드를 스캔하십시오.

4.2.1 제조사 주소

Endress+Hauser SE+Co. KG Hauptstraße 1 79689 Maulburg, Germany 제조 장소: 명판을 참조하십시오.

4.3 보관 및 운송

4.3.1 보관 조건

- 보관 온도: -50~+80 °C (-58~+176 °F)
- 계기를 원래 포장에 보관하십시오.

4.3.2 운송

▲주의

하우징이나 안테나가 손상되거나 파손될 수 있습니다.

부상 위험

- ▶ 계기를 원래 포장에 담거나 프로세스 연결부를 잡고서 측정 포인트로 운반하십시오.
- ▶ 리프팅 장치(호이스팅 슬링, 리프팅 아이 등)를 하우징이나 안테나가 아니라 프로세스 연 결부에 고정하십시오. 계기가 기울어지지 않도록 계기의 질량 중심을 고려하십시오.
- ▶ 18 kg (39.6 lb) 이상 계기의 경우 안전 지침과 운반 조건을 준수하십시오(IEC 61010).

설치 5

설치 조건 5.1

설치 위치 5.1.1

일반 조건

- 탱크 중앙에 설치하지 마십시오.
- 충진 스트림 위에 설치하지 마십시오.
- 신호 빔 내부에 탱크 설치물(예: 리미트 스위치, 온도 프로브)이 있지 않게 하십시오.

최소 벽 거리

측정 범위		최소 벽 거리	
	안테나 50mm/2" ¹⁾	안테나 80mm/3" ²⁾	안테나 100mm/4" ³⁾
5 m (16 ft)	0.3 m (0.98 ft)	0.17 m (0.55 ft)	0.13 m (0.44 ft)
10 m (33 ft)	0.6 m (1.9 ft)	0.33 m (1.1 ft)	0.27 m (0.87 ft)
15 m (49 ft)	0.9 m (2.9 ft)	0.5 m (1.6 ft)	0.4 m (1.3 ft)
20 m (66 ft)	1.2 m (3.9 ft)	0.67 m (2.2 ft)	0.53 m (1.7 ft)
25 m (82 ft)	1.5 m (4.9 ft)	0.83 m (2.7 ft)	0.67 m (2.2 ft)
30 m (98 ft)	1.8 m (5.9 ft)	1.0 m (3.3 ft)	0.8 m (2.6 ft)

주문 항목 100 "안테나", 옵션 AB 주문 항목 100 "안테나", 옵션 AC 주문 항목 100 "안테나", 옵션 AD 1)

2)

зí

노즐 설치 5.1.2

A0032956

노즐 내경(ØD)	최대 노즐 길이(H _{max}) ¹⁾			
	안테나 AB ²⁾ : 50mm/2"	안테나 AC: 80mm/3"	안테나 AD: 100mm/4"	
> 45 mm (1.77 in); ≤ 75 mm (2.95 in)	600 mm (24 in)	-	-	
> 75 mm (2.95 in); ≤ 95 mm (3.74 in)	1000 mm (40 in)	1 700 mm (68 in)	-	
> 95 mm (3.74 in); ≤ 150 mm (5.91 in)	1250 mm (50 in)	2 150 mm (86 in)	2 850 mm (114 in)	
> 150 mm (5.91 in)	1850 mm (74 in)	3 200 mm (128 in)	4300 mm (172 in)	

노즐 길이가 더 길면 측정 성능이 감소할 수 있습니다. 제품 구조의 항목 100 1) 2)

5.1.3 50mm (2") 및 80mm (3") 안테나의 수직 정렬

최적의 측정 정확도를 위해서는 안테나를 유체 표면에 직각으로 설치해야 합니다. 정렬을 위 해 조정식 씰을 사용할 수 있습니다.

조정식 씰

🖻 2 조정식 씰을 사용해 계기를 ±8°정렬

설치

5.1.4 100mm(4") 안테나의 수직 정렬

최적의 측정 정확도를 위해서는 안테나를 유체 표면에 직각으로 설치해야 합니다. 이를 위해 100mm(4") 안테나에는 항상 정렬 장치가 있습니다. 올바르게 정렬되었는지 표시하는 레벨 공구를 정렬 공구에 장착합니다.

🖻 3 100mm(4") 안테나의 정렬 장치

- 1 올바르게 정렬되었는지 표시하는 레벨 공구
- α 정렬 각도; α_{max} = 25 °

6 전기 연결

6.1 단자 할당

🖻 4 단자부(일반적인 예)와 접지 단자

🚹 하우징 나사

전자장치와 연결부의 나사에는 마찰 방지 코팅이 적용되었을 수 있습니다. 모든 하우징 재질에는 다음이 적용됩니다. ※하우징 나사를 윤활하지 마십시오.

단자 영역 A/B/C/D(I/O 모듈용 슬롯)

모듈: 주문 코드에 따라 최대 4개의 I/O 모듈

- 단자가 4개인 모듈은 아무 슬롯에나 끼울 수 있습니다.
- 단자가 8개인 모듈은 슬롯 B 또는 C에 끼울 수 있습니다.

🎦 모듈을 슬롯에 정확하게 할당하는 방법은 계기 버전에 따라 다릅니다 → 🗎 20.

단자 영역 E

모듈: HART Ex i/IS 인터페이스

- E1: H+
- E2: H-

단자 영역 F

원격 디스플레이

- F1: V_{cc} (원격 디스플레이의 단자 81에 연결)
- F2: 신호 B (원격 디스플레이의 단자 84에 연결)
- F3: 신호 A (원격 디스플레이의 단자 83에 연결)
- F4: Gnd (원격 디스플레이의 단자 82에 연결)

- G1: N
- G2: 연결되지 않음
- G3: L

단자 영역 G(저전압 DC 전원 공급 장치용)

- G1: L-
- G2: 연결되지 않음
- G3:1+

단자 영역: 보호 접지

모듈: 보호 접지 연결(M4 나사)

🛃 5 단자 영역: 보호 접지

전원 공급 6.1.1

A0033413

- G1 N
- G2 연결되지 않음
- G3 L
- 녹색 LED: 전원 공급 표시 4

😭 명판에는 공급 전압도 표시되어 있습니다.

공급 전압

고전압 AC 전원 공급 장치:

작동 값: $100 \sim 240 V_{AC}$ (- 15 % + 10 %) = 85 $\sim 264 V_{AC}$, 50/60 Hz

저전압 AC 전원 공급 장치:

작동 값: 65 V_{AC} (- 20 % + 15 %) = 52~75 V_{AC} , 50/60 Hz

저전압 DC 전원 공급 장치:

작동 값: 24~55 V_{DC} (- 20 % + 15 %) = 19~64 V_{DC}

소비 전력

최대 전력은 모듈 구성에 따라 다릅니다. 이 값은 최대 피상 전력을 나타내므로 이에 따라 적 절한 케이블을 선택하십시오. 실제 소비되는 유효 전력은 12 W입니다.

고전압 AC 전원 공급 장치:

28.8 VA

저전압 AC 전원 공급 장치:

21.6 VA

저전압 DC 전원 공급 장치:

13.4 W

6.1.2 원격 디스플레이 및 작동 모듈 DKX001

🖻 6 탱크 게이징 계기(NMR8x, NMS8x, NRF8x)에 원격 디스플레이 및 작동 모듈 DKX001 연결

- 1 원격 디스플레이 및 작동 모듈
- 2 연결 케이블
- 3 탱크 게이징 계기(NMR8x, NMS8x, NRF8x)
- 1 원격 디스플레이와 작동 모듈 DKX001은 액세서리로 제공됩니다. 자세한 정보는 SD01763D를 참조하십시오.
- 측정값은 DKX001에 표시되고 로컬 디스플레이와 작동 모듈에서 동시에 표시됩니다.
 - 두 모듈에서 동시에 작업 메뉴에 액세스할 수 없습니다. 두 모듈 중 하나에서 작업 메 뉴에 들어간 경우 다른 모듈은 자동으로 잠깁니다. 첫 번째 모듈에서 메뉴를 닫을 때 까지(측정값 표시로 돌아감) 잠금 상태가 유지됩니다.

6.1.3 HART Ex i/IS 인터페이스

- E1 H+
- E2 H-

3 주황색 LED: 데이터 통신 표시

 I) 이 인터페이스는 항상 연결된 HART 슬레이브 트랜스미터의 메인 HART 마스터로 동작 합니다. 아날로그 I/O 모듈을 HART 마스터나 슬레이브로 구성할 수 있습니다 →
 ⇒ ≅ 26.

6.1.4 1/0 모듈용 슬롯

단자부에는 4개의 I/O 모듈용 슬롯(A, B, C, D)이 있습니다. 계기 버전(주문 항목 040, 050, 060)에 따라 슬롯에 다른 I/O 모듈을 끼울 수 있습니다. 계기별 슬롯 할당은 디스플레이 모듈 의 뒤 커버에 부착된 라벨에도 표시되어 있습니다.

A0030070

- 1 슬롯 A ~ D에 끼울 수 있는 모듈이 표시된 라벨.
- A 슬롯 A용 케이블 인입구
- B 슬롯 B용 케이블 인입구
- C 슬롯 C용 케이블 인입구
- D 슬롯 D용 케이블 인입구

계기 버전에 따라 "Modbus" 및/또는 "V1" 또는 "WM550" 모듈을 단자부의 다른 슬롯에 끼울 수 있습니다. 작업 메뉴에서 "Modbus" 및 "V1" 또는 "WM550" 인터페이스는 해당 슬롯과 이 슬롯 안의 단자로 표시합니다(A1-4, B1-4, C1-4, D1-4).

"Modbus" 모듈의 단자

작업 메뉴에서 모듈의 지정기호: Modbus X1-4; (X = A, B, C or D)

- X1¹⁾
 - 단자 이름: S
 - 설명: 커패시터를 통해 EARTH에 연결된 케이블 차펴
- X2¹⁾
 - 단자 이름: 0V
 - 설명: 공통 기준
- X3¹⁾
 - 단자 이름: B-
 - 설명: 비반전 신호선
- X4 ¹⁾
 - 단자 이름: A+
 - 설명: 반전 신호선

¹⁾ 여기에서 "X"는 슬롯 "A", "B", "C", "D" 중 하나를 나타냅니다.

"V1" 및 "WM550" 모듈의 단자

작업 메뉴에서 모듈의 지정기호: **V1 X1-4** 또는 **WM550 X1-4**; (X = A, B, C, D) • X1²⁾

- 단자 이름: S
- 설명: 커패시터를 통해 EARTH에 연결된 케이블 차펴
- X2¹⁾
 - 단자 이름: -
 - 설명: 연결되지 않음
- X3¹⁾
 - 단자 이름: B-
 - 설명: 프로토콜 루프 신호 -
- X4¹⁾
 - 단자 이름: A+
 - 설명: 프로토콜 루프 신호 +

²⁾ 여기에서 "X"는 슬롯 "A", "B", "C", "D" 중 하나를 나타냅니다.

6.1.6 수동 사용을 위한 "아날로그 I/O" 모듈 연결

- 수동 사용에서는 외부 전원을 통해 통신선의 공급 전압을 공급해야 합니다.
 - 배선은 아날로그 I/O 모듈의 의도된 작동 모드를 따라야 합니다. 아래 도면을 참조하 십시오.
 - 4...20mA 신호선에는 차펴 케이블을 사용해야 합니다.

"작동 모드" = "4..20mA output" 또는 "HART slave +4..20mA output"

▶ 8 출력 모드에서 아날로그 I/O 모듈의 수동 사용

- a 전원공급
- b HART 신호 출력
- c 아날로그 신호 평가

"작동 모드" = "4..20mA input" 또는 "HART master+4..20mA input"

- 🖻 9 입력 모드에서 아날로그 I/O 모듈의 수동 사용
- a 전원공급
- b 4...20mA 및/또는 HART 신호 출력이 있는 외부 계기

"작동 모드" = "HART 마스터"

A0027934

🖻 10 HART 마스터 모드에서 아날로그 I/O 모듈의 수동 사용

- a 전원 공급
- b HART 신호 출력이 있는 최대 6개의 외부 계기

6.1.7 능동 사용을 위한 "아날로그 I/O" 모듈 연결

- 능동 사용에서는 계기 자체에서 통신선의 공급 전압을 공급합니다. 따라서 외부 전원
 공급 장치가 필요하지 않습니다.
 - 배선은 아날로그 I/O 모듈의 의도된 작동 모드를 따라야 합니다. 아래 도면을 참조하 십시오.
 - 4...20mA 신호선에는 차펴 케이블을 사용해야 합니다.
- 연결된 HART 계기의 최대 소비 전류: 24 mA
 (예: 6개의 계기가 연결된 경우 계기당 4 mA).
 - Ex-d 모듈의 출력 전압: 17.0 V@4 mA ~ 10.5 V@22 mA
 - Ex-ia 모듈의 출력 전압: 18.5 V@4 mA ~ 12.5 V@22 mA

"작동 모드" = "4..20mA output" 또는 "HART slave +4..20mA output"

🖻 11 출력 모드에서 아날로그 I/O 모듈의 능동 사용

a HART 신호 출력

b 아날로그 신호 평가

"작동 모드" = "4..20mA input" 또는 "HART master+4..20mA input"

- 🖻 12 입력 모드에서 아날로그 I/O 모듈의 능동 사용
- a 4...20mA 및/또는 HART 신호 출력이 있는 외부 계기

"작동 모드" = "HART 마스터"

- ☑ 13 HART 마스터 모드에서 아날로그 I/O 모듈의 능동 사용
- a HART 신호 출력이 있는 최대 6개의 외부 계기
- 1 연결된 HART 계기의 최대 소비 전류는 24 mA입니다(예: 6개의 계기가 연결된 경우 계 기당 4 mA).

6.1.8 RTD 연결

A 4선식 RTD 연결

B 3선식 RTD 연결

C 2선식 RTD 연결

6.1.9 "디지털 I/O" 모듈의 단자

🖻 14 디지털 입력 또는 출력의 지정기호(예)

- 각 디지털 IO 모듈은 2개의 디지털 입력 또는 출력을 제공합니다.
- 작업 메뉴에서 각 입력 또는 출력은 해당 슬롯과 이 슬롯 안의 단자 2개로 표시합니다. 예 를 들어, A1-2는 슬롯 A의 단자 1 및 2를 나타냅니다. 슬롯에 디지털 IO 모듈이 있을 경우 슬롯 B, C 및 D에도 동일하게 적용됩니다.
- 이 단자 쌍 각각에 대해 작업 메뉴에서 다음 작동 모드 중 하나를 선택할 수 있습니다.
 - 비활성화
 - 수동 출력
 - 수동 입력
 - 능동 입력

6.2 연결 요구사항

6.2.1 케이블 사양

단자

전선 단면적 0.2~2.5 mm² (24~13 AWG) 신호 및 전원 공급 기능이 있는 단자에 사용 ■ 스프링 단자(NMx8x-xx1...) ■ 나사 단자(NMx8x-xx2...)

전선 단면적 최대 2.5 mm² (13 AWG) 단자부에서 접지 단자 기능이 있는 단자에 사용

전선 단면적 최대 4 mm² (11 AWG) 하우징에서 접지 단자 기능이 있는 단자에 사용

전원 공급선

전원선으로 표준 계기 케이블이면 충분합니다.

아날로그 신호선

다음에는 차펴 케이블을 사용해야 합니다.

- 4~20 mA 신호 라인.
- RTD 연결.

디지털 I/O 신호 라인

- 릴레이를 사용할 경우 차펴 케이블을 권장합니다.
- 플랜트의 접지 규정을 준수하십시오.

HART 통신선

HART 프로토콜을 사용할 경우 차펴 케이블을 권장합니다. 플랜트의 접지 규정을 준수하십 시오.

Modbus 통신선

- TIA-485-A, Telecommunications Industry Association의 케이블 조건을 준수하십시오.
- 추가 조건: 차펴 케이블을 사용하십시오.

V1 통신선

- 2선식 연선, 차펴 또는 비차펴 케이블
- 케이블 1개의 저항: ≤ 120 Ω
- 선간 커패시턴스: ≤ 0.3 µF

WM550 통신 라인

- 2선식 연선, 비차펴 케이블
- 단면적 최소 0.5 mm² (20 AWG)
- 최대 총 케이블 저항: ≤ 250 Ω
- 저 정전용량 케이블

6.3 방진방수 등급 보장

지정된 보호 등급을 보장하려면 전기 연결 후 다음 단계를 수행하십시오.

- 하우징 씰이 깨끗하고 올바르게 끼워진 상태인지 확인하십시오. 필요하면 씰을 건조, 청소 또는 교체하십시오.
- 2. 모든 하우징 나사와 나사 커버를 조이십시오.
- 3. 케이블 글랜드를 단단히 조이십시오.
- 케이블 인입구에 습기가 발생하지 않게 하려면 케이블 인입구 앞에서 케이블이 아래로 늘어지도록 배선하십시오("워터 트랩").

5. 계기의 안전 등급에 적합한 블라인드 플러그를 끼우십시오(예: Ex d/XP).

7 시운전

7.1 작동 방법

7.1.1 로컬 디스플레이를 통한 작동

🖻 15 디스플레이 및 작동 요소

- 1 LCD(Liquid Crystal Display)
- 2 광학 키; 커버 글래스를 통해 작동 가능. 커버 글래스 없이 사용할 경우 활성화를 위해 광학 센서 앞에 손가락을 살짝 대십시오. 세게 누르지 마십시오.

기본 보기(측정값 표시)

■ 16 일반적인 기본 보기 모양(측정값 표시)

- 1 디스플레이 모듈
- 2 계기태그
- 3 상태 영역
- 4 측정값 표시 영역
- 5 측정값 및 상태 기호 표시 영역
- 6 측정값상태기호

🎦 디스플레이 기호의 의미는 계기 사용 설명서(BA)를 참조하십시오.

기본 보기에서 키의 기능

7	의미
	엔터 키 ■ 키를 짧게 누르면 작업 메뉴가 열립니다. ■ 키를 2 s 동아 누르며 커텍스트 메뉴가 열립니다

탐색 보기(작업 메뉴)

작업 메뉴(탐색 보기)에 액세스하는 방법은 다음과 같습니다.

- 1. 기본 보기에서 E를 2초 이상 누릅니다.
 - ▶ 컨텍스트 메뉴가 나타납니다.
- 2. 컨텍스트 메뉴에서 버튼 잠김 해제를 선택하고 E를 눌러 확인합니다.
- 3. E를 다시 눌러 작업 메뉴로 들어갑니다.

- 🖻 17 탐색 보기
- 1 현재 하위 메뉴 또는 마법사
- 2 빠른 액세스 코드
- 3 탐색 표시 영역

7.1.2 서비스 인터페이스 및 FieldCare/DeviceCare를 통한 작동

- ☑ 18 서비스 인터페이스를 통한 작동
- 1 서비스 인터페이스(CDI = Endress+Hauser Common Data Interface)
- 2 Commubox FXA291
- 3 "FieldCare" 또는 "DeviceCare" 작업 도구와 "CDI Communication FXA291" COM DTM이 설치된 컴퓨터

7.2 탱크 측정 관련 용어

☑ 19 레이다 탱크 측정 관련 용어

- 1 Gauge reference height
- 2 Empty
- 3 Datum plate
- 4 Tank ullage
- 5 탱크레벨
- 6 Tank reference height
- 7 거리
- 8 Dipping reference

7.3 초기설정

7.3.1 표시 언어 설정

디스플레이 모듈을 통한 표시 언어 설정

- 1. 기본 보기에서() E를 누릅니다. 필요한 경우 컨텍스트 메뉴에서 **버튼 잠김 해제**를 선택 하고 "E"를 다시 누릅니다.
 - └ Language가 나타납니다.
- 2. Language를 열고 표시 언어를 선택합니다.

작업 도구(예: FieldCare)를 통한 표시 언어 설정

- 1. 경로: 셋업 → 고급 설정 → 디스플레이 → Language
- 2. 표시 언어를 선택합니다.

1 이 설정은 디스플레이 모듈의 언어에만 적용됩니다. 작업 도구의 언어를 설정하려면 FieldCare 또는 DeviceCare의 언어 설정 기능을 사용하십시오.

7.3.2 실시간 시계 설정

디스플레이 모듈을 통한 실시간 시계 설정

- 1. 경로: 셋업 → 고급 설정 → Date / time → 날짜 설정
- 2.
 다음 파라미터를 사용해 실시간 시계를 현재 날짜 및 시간으로 설정합니다: Year, Month, Day, Hour, Minutes.

작업 도구(예: FieldCare)를 통한 실시간 시계 설정

1. 경로: 셋업 → 고급 설정 → Date / time

날짜 설정으로 가서 시작을 선택합니다.

3.	Date/time: 🗘	2016-04-20 09:34:25
	Set date: ?	Please select
	Year:	2016
	Month:	4
	Day:	20
	Hour:	9
	Minute:	34

다음 파라미터를 사용해 날짜 및 시간을 설정합니다: Year, Month, Day, Hour, Minutes.

4.	Date/time: 🔁	2016-04-20 09:35:49
	Set date: ? 🕨	Please select
	Year:	Please select Abort
	Month:	Start
	Day:	Confirm time
	Hour:	9
	Minute:	34

날짜 설정으로 가서 Confirm time을 선택합니다.

▶ 실시간 시계가 현재 날짜 및 시간으로 설정되었습니다.

7.4 레이다 측정 설정

7.4.1 기본 설정

하위 메뉴: 셋업

파라미터	의미 / 작업	
기기 태그	플랜트 내에서 측정 포인트를 식별하려는 이름을 정의합니다.	
Units preset	길이, 압력 및 온도 단위를 선택합니다.	
Empty	계기 플랜지의 하단 모서리에서 datum plate까지의 거리를 입력합니다.	
탱크 레벨	측정 레벨을 표시합니다. 표시된 값이 실제 레벨과 일치하는지 확인합니다.	
Set level	측정 레벨의 일정 이동을 보정하는 데 사용할 수 있습니다. 표시된 레벨이 실제 레벨과 일치하지 않을 경우 이 파라미터에 실제 레벨을 입력합니다. 그러면 측정 레벨의 오프셋이 자동으로 적용됩니다.	
	Set level 파라미터은 일정 레벨 오류를 보정하는 데만 사용할 수 있습니다. 간섭 반향으로 인한 오류를 제거하려면 간섭 반향 억제(맵)를 사용하십시오.	

7.4.2 간섭 반향 억제(맵)

하위 메뉴: 셋업	
파라미터	의미 / 작업
거리	플랜지의 하단 모서리에서 제품 표면까지의 측정 거리를 표시합니다. 이 값이 올바른지 확인합니다.
거리 확인	측정 거리가 실제 거리와 일치하는지 지정합니다.
현재 매핑	매핑이 이미 기록된 거리를 표시합니다.
매핑 끝점	거리 확인 = 수동 매핑 인 경우에만 표시됩니다. 새 매핑이 기록되는 거리를 결정합니다. 거리 확인 에서의 선택에 따라 이 파라미터에 적절한 값이 사전 설정됩니다. 일반적으로 이 값을 변경할 필요가 없습니다.
매핑 기록	거리 확인 = 수동 매핑 인 경우에만 표시됩니다. 매핑 기록 을 선택합니다. 그러면 새 맵의 기록이 시작됩니다.

7.5 입력 설정

7.5.1 HART 입력 설정

HART 계기 연결 및 주소 지정

🖻 20 가능한 HART 루프 단자

- B 슬롯 B의 아날로그 I/O 모듈(계기 버전에 따라 사용 가능)
- C 슬롯 C의 아날로그 I/O 모듈(계기 버전에 따라 사용 가능)
- E HART Ex is 출력(모든 계기 버전에서 사용 가능)

HART 계기는 Micropilot NMR8x에 연결하기 전에 자체 사용자 인터페이스를 통해 고유 한 HART 주소를 구성하고 지정해야 합니다³⁾.

하위 메뉴: 셋업 → 고급 설정 → Input/output → Analog I/O		
파라미터	의미 / 작업	
작동 모드	선택: ■ 이 루프에 하나의 HART 계기만 연결된 경우 HART master+420mA input 을 선택합니다. 이 경우 HART 신호에 더해 4-20mA 신호를 사용할 수 있습니다. ■ 이 루프에 최대 6개의 HART 계기가 연결된 경우 HART 마스터 를 선택합니다.	

³⁾ 현재 소프트웨어는 주소가 0인 HART 계기를 지원하지 않습니다.

하위 메뉴: 셋업 → 고급 설정 → Input/output → HART devices → HART Device(s) ^{1) 2)}		
파라미터	의미 / 작업	
Output pressure	 계기가 압력을 측정할 경우: 압력이 포함된 HART 변수(PV, SV, TV, QV)를 선택합니다. 그렇지 않을 경우 기본 설정(No value)을 유지합니다. 	
Output density	 계기가 밀도를 측정할 경우: 밀도가 포함된 HART 변수(PV, SV, TV, QV)를 선택합니다. 그렇지 않을 경우 기본 설정(No value)을 유지합니다. 	
Output temperature	 계기가 온도를 측정할 경우: 온도가 포함된 HART 변수(PV, SV, TV, QV)를 선택합니다. 그렇지 않을 경우 기본 설정(No value)을 유지합니다. 	
Output vapor temperature	 계기가 증기 온도를 측정할 경우: 증기 온도가 포함된 HART 변수(PV, SV, TV, QV)를 선택 합니다. 그렇지 않을 경우 기본 설정(No value)을 유지합니다. 	
Output level	 계기가 레벨을 측정할 경우: 레벨이 포함된 HART 변수(PV, SV, TV, QV)를 선택합니다. 그렇지 않을 경우 기본 설정(No value)을 유지합니다. 	

연결된 HART 계기마다 "HART Device(s)"가 있습니다. 연결된 Prothermo NMT5xx 및 NMT8x 또는 Micropilot FMR5xx의 경우 측정값 유형이 자동으로 식별되기 때문 에 이 설정을 건너뛸 수 있습니다. 1) 2)

7.5.2 4-20mA 입력 설정

图 21 4-20mA 입력으로 사용할 수 있는 아날로그 I/O 모듈 위치. 계기 주문 코드에 따라 실제로 존재 하는 모듈이 결정됩니다.

하위 메뉴: 셋업 → 고급 설정 → Input/output → Analog I/O ¹⁾		
파라미터	의미 / 작업	
작동 모드	420mA input 또는 HART master+420mA input을 선택합니다.	
Process variable	연결된 계기에 의해 전송되는 프로세스 변수를 선택합니다.	
Analog input 0% value	입력 전류 4 mA와 일치하는 프로세스 변수 값을 정의합니다.	
Analog input 100% value	입력 전류 20 mA와 일치하는 프로세스 변수 값을 정의합니다.	
Process value	표시된 값이 실제 프로세스 변수 값과 일치하는지 확인합니다.	

1) 계기의 아날로그 I/O 모듈마다 "Analog I/O"가 있습니다.

☑ 22 4-20mA 입력을 프로세스 변수로 조정

- 1 Input value in mA
- 2 Process value

7.5.3 연결된 RTD 설정

8 23 RTD를 연결할 수 있는 아날로그 I/O 모듈 위치. 계기 주문 코드에 따라 실제로 존재하는 모듈이 결정됩니다.

하위 메뉴: 셋업 → 고급 설정 → Input/output → Analog IP		
파라미터	의미 / 작업	
RTD type	연결된 RTD의 유형을 지정합니다.	
RTD connection type	RTD의 연결 유형(2, 3 또는 4선식)을 지정합니다.	
Input value	표시된 값이 실제 온도와 일치하는지 확인합니다.	
Minimum probe temperature	연결된 RTD의 최소 승인 온도를 지정합니다.	
Maximum probe temperature	연결된 RTD의 최대 승인 온도를 지정합니다.	
Probe position	RTD의 설치 위치를 입력합니다(datum plate로부터 측정).	

- 1 Datum plate
- 2 RTD
- 3 Probe position

7.5.4 디지털 입력 설정

☑ 24 가능한 디지털 I/O 모듈 위치(예); 주문 코드에 따라 디지털 입력 모듈의 개수와 위치가 결정됩니다.

계기의 디지털 I/O 모듈마다 Digital Xx-x이 있습니다. "X"는 단자부의 슬롯을 가리키고, "x-x" 는 이 슬롯 안의 단자를 가리킵니다. 이 하위 메뉴에서 가장 중요한 파라미터는 **작동 모드**와 Contact type입니다.

하위 메뉴: 셋업 → 고급 설정 → Input/output → Digital Xx-x	
파라미터	의미 / 작업
작동 모드	작동 모드를 선택합니다(아래 그림 참조). ■ Input passive DIO 모듈은 외부 소스에 의해 공급되는 전압을 측정합니다. 외부 스위치의 상태에 따라 이 전압은 0 이거나(스위치 열림) 특정 한계 전압을 초과합니다(스위치 닫힘). 이 두 상태는 디지털 신호를 나타 냅니다. ■ Input active DIO 모듈은 전압을 공급하고 이를 사용해 외부 스위치가 열렸는지 아니면 닫혔는지 감지합니다.
Contact type	외부 스위치의 상태가 DIO 모듈의 내부 상태와 어떻게 매핑되는지 결정합니다(아래 표 참조). 그런 다 음 디지털 입력의 내부 상태를 디지털 출력으로 전송하거나 측정을 제어하는 데 사용할 수 있습니다.

- "작동 모드" = "Input passive" "작동 모드" = "Input active" А
- В

외부 스위치의 상태	DIO 모듈의 내부 상태	
	Contact type = Normally open	Contact type = Normally closed
열림	비활성	활성화
닫힘	활성화	비활성
특수한 상황에서의 동작:		
시작 중	알 수 없음	알 수 없음
측정 오류	에러	에러

7.6 탱크 변수에 측정값 연결

탱크 게이징 애플리케이션에서 측정값을 사용하기 전에 탱크 변수에 측정값을 연결해야 합 니다.

애플리케이션에 따라 이 파라미터들이 모두 특정 상황에서 관련이 있는 것은 아닙니다.

하위 메뉴: 셋업 → 고급 설정 → 애플리케이션 → Tank configuration → 레벨		
파라미터	다음 탱크 변수의 소스를 정의합니다.	
Water level source	저층수 레벨	

하위 메뉴: 셋업 → 고급 설정 → 애플리케이션 → Tank configuration → 온도	
파라미터	다음 탱크 변수의 소스를 정의합니다.
Liquid temp source	제품의 평균 및 스폿 온도
Air temperature source	탱크 주변의 공기 온도
Vapor temp source	제품 위의 증기 온도

하위 메뉴: 셋업 → 고급 설정 → 애플리케이션 → Tank configuration → 압력	
파라미터	다음 탱크 변수의 소스를 정의합니다.
P1 (bottom) source	하부 압력(P1)
P3 (top) source	상부 압력(P3)

7.7 알람 설정(한계 평가)

최대 4개의 탱크 변수에 대해 한계 평가를 설정할 수 있습니다. 값이 상한을 초과하거나 하한 보다 낮아지면 한계 평가가 알람을 발생시킵니다. 한계 값은 사용자가 정의할 수 있습니다.

🖻 25 한계 평가 원리

- A Alarm mode = ON
- B Alarm mode = Latching
- 1 HH alarm value
- 2 H alarm value
- 3 L alarm value
- 4 LL alarm value
- 5 HH alarm
- 6 H alarm
- 7 L alarm
- 8 LL alarm
- 9 "Clear alarm" = "예" 또는 전원 꺼졌다 켜짐
- 10 Hysteresis

알람을 설정하려면 다음 파라미터에 적절한 값을 할당합니다.

하위 메뉴: 셋업 → 고급 설정 → 애플리케이션 → Alarm → Alarm 1~4		
파라미터	의미 / 작업	

A0029539

Alarm mode	 OFF 알람이 발생하지 않습니다. ON 알람 조건이 더 이상 존재하지 않으면 알람이 사라집니다(히스테리시스 고려). Latching 사용자가 Clear alarm = 예를 선택할 때까지 모든 알람은 활성 상태를 유지합니다.
입력 선택기	한계를 위반하는지 확인할 프로세스 변수를 선택합니다.
 HH alarm value H alarm value L alarm value LL alarm value 	적절한 한계 값을 할당합니다(위의 그림 참조).

7.8 신호 출력 설정

7.8.1 아날로그 출력 4~20 mA 출력

▣ 26 4~20 mA 출력으로 사용할 수 있는 아날로그 I/O 모듈 위치. 계기 주문 코드에 따라 실제로 존재

하는 모듈이 결정됩니다.

계기의 각 아날로그 I/O 모듈을 4~20 mA 아날로그 출력으로 설정할 수 있습니다. 그러려면 다음 파라미터에 적절한 값을 할당합니다.

셋업 → 고급 설정 → Input/output → Analog I/O	
파라미터	의미 / 작업
작동 모드	420mA output 또는 HART slave +420mA output을 선택합니다. ¹⁾ → 🗎 52.
Analog input source	아날로그 출력을 통해 전송되는 탱크 변수를 선택합니다.

Analog input 0% value	출력 전류 4 mA와 일치하는 탱크 변수 값을 지정합니다.
Analog input 100% value	출력 전류 20 mA와 일치하는 탱크 변수 값을 지정합니다.

 "HART slave +4..20mA output"은 아날로그 I/O 모듈이 최대 4개의 HART 변수를 주기적으로 HART 마스터로 보 내는 HART 슬레이브로 동작한다는 의미입니다. HART 출력 설정:

7.8.2 HART 출력

이 선택은 **작동 모드 = HART slave +4..20mA output**에만 유효합니다.

셋업 → 고급 설정 → 통신 → HART output → 설정	
파라미터	의미 / 작업
System polling address	계기의 HART 통신 주소를 설정합니다.
■ SV 지정 ■ 3차 변수 (TV) 지정 ■ 4차 변수 (QV) 지정	HART 변수에 의해 전송될 탱크 변수를 선택합니다. 기본적으로 PV는 아날로그 출력과 같은 변수를 전송하고 할당할 필요가 없습니다.

7.8.3 Modbus, V1 또는 WM550 출력

图 27 가능한 Modbus 또는 V1 모듈 위치(예);계기 버전에 따라 이 모듈들을 슬롯 B 또는 C에도 끼울 수 있습니다.

주문 코드에 따라 계기에 하나 또는 두 개의 Modbus 또는 V1 통신 인터페이스가 있습니다. 이는 다음 하위 메뉴에서 설정합니다.

Modbus

셋업 → 고급 설정 → 통신 → Modbus X1-4 → 설정

V1

- 셋업 → 고급 설정 → 통신 → V1 X1-4 → 설정
- 셋업 → 고급 설정 → 통신 → V1 X1-4 → V1 input selector

WM550

- 셋업 → 고급 설정 → 통신 → WM550 X1-4 → 설정
- 셋업 → 고급 설정 → 통신 → WM550 X1-4 → WM550 input selector

www.addresses.endress.com

