Information technique Sonde de spectroscopie Raman Rxn-40

Architecture du système et spécifications

Domaine d'application

La sonde Raman Rxn-40 est une sonde à immersion scellée pour la spectroscopie Raman *in situ* d'échantillons en phase liquide dans un laboratoire ou dans une installation de process. Le raccord process du Raman Rxn-40 peut être serti, monté par compression, monté sur bride ou monté dans une cellule de débit Endress+Hauser, et est compatible NeSSI. Ces options polyvalentes permettent une insertion directe en écoulement glissant et dans des robinets de purge, des réacteurs, des boucles de circulation, des collecteurs de mélange et une tuyauterie d'entrée ou de sortie.

- Chimie: surveillance de la réaction, mélange, catalyse, alimentation et surveillance finale du produit
- Polymère: surveillance de la réaction de polymérisation, surveillance de l'extrusion, mélange de polymères
- Pétrole et gaz : toute analyse d'hydrocarbures
- Pharmaceutique: surveillance de la réaction par ionisation à pression atmosphérique (API), cristallisation, polymorphe, mélange

Caractéristiques de l'appareil

- Alliage C276, inox 316L ou titane Grade 2
- Saphir haute pureté

Principaux avantages

- Personnalisable au process
- Construction robuste avec une gamme de raccords process
- In situ / aucune ligne de transfert ou boucle rapide n'est nécessaire
- Montage plus rapide et plus simple
- Prise en charge d'une série de processus chimiques et d'exigences en matière de corrosivité
- Garantit la sécurité et répond aux exigences réglementaires
- Convient pour les environnements explosibles / classifiés

Sommaire

Principe de fonctionnement et	
architecture du système	3
Domaine d'application	3
Verrouillage de sécurité laser	3
Sonde Rxn-40, configuration sans bride	3
Indicateur d'émission laser	4
Sonde Rxn-40, configuration à bride	4
Sonde Rxn-40, configuration mini	5
Compatibilité entre sonde et process	5
Montage	6
Zone de collecte de données : Courte vs longue	7
Spécifications	Ω

Température et pression	8
Température et pression des brides	9
Spécifications générales	10
Exposition maximale admissible (EMA) : exposition oculaire	11
EMA : exposition cutanée	11
Zone de danger nominale	12
Materiaux de construction	12
Certificats et agréments	13
Agrément zone Ex	13
Certifications et marquages	13
Schéma zone Ex	14

Principe de fonctionnement et architecture du système

Domaine d'application

Toute autre utilisation que celle décrite dans le présent manuel constitue une menace pour la sécurité des personnes et du système de mesure complet, et annule toute garantie.

Verrouillage de sécurité laser

La sonde Rxn-40, telle qu'elle est installée, fait partie du circuit de verrouillage. Si le câble à fibre optique est sectionné, le laser s'éteint dans les millisecondes qui suivent la rupture.

AVIS

Des dommages permanents peuvent survenir si les câbles ne sont pas acheminés de manière appropriée.

- ▶ Manipuler les sondes et les câbles avec précaution, en veillant à ne pas les plier.
- Installer les câbles à fibre optique avec un rayon de courbure minimal conformément à l'Information technique sur les câbles à fibres optiques Raman (TI01641C).

Le circuit de verrouillage est une boucle électrique à faible courant. Si la sonde Rxn-40 est utilisée dans une zone classée, le circuit de verrouillage doit passer par une barrière de sécurité intrinsèque (IS).

Sonde Rxn-40, configuration sans bride

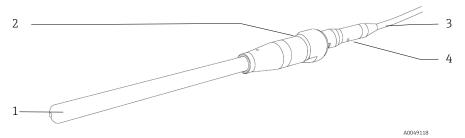


Figure 1. Configuration sans bride avec câble du type Fiber Channel

Pos.	Nom	Description
1	Extrémité	Inox 316L, alliage C276 ou titane Grade 2 Longueur d'immersion de 152, 305 ou 457 mm (6, 12 ou 18 in)
2	Corps de l'optique	Matériaux correspondant à l'extrémité de sonde, mais pas en contact avec les fluides de process
3	Câble à fibre optique	Câble : Enveloppe de PVC, structure propriétaire Raccords : électro-optiques propriétaires Corps du connecteur : Inox série 300
4	Indicateur laser à LED	Allumé lorsque le laser est excité

Indicateur d'émission laser

L'emplacement de l'indicateur d'émission laser dépend du type d'ensemble.

- Configuration droite (figure 1) : L'indicateur est situé sur l'ensemble. Lorsque le laser est susceptible d'être mis sous tension, le voyant s'allume.
- Configurations à connecteur EO à angle droit (figures 2 à 4). L'indicateur est situé sur la coque de raccordement de la fibre. Lorsque le laser est susceptible d'être mis sous tension, le voyant s'allume.

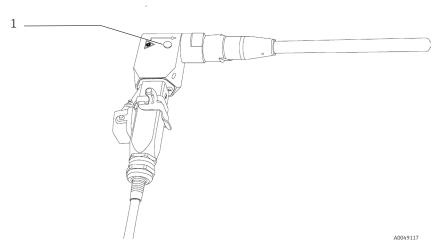


Figure 2. Indicateur laser à LED (1) sur le connecteur fibre EO à angle droit

Sonde Rxn-40, configuration à bride

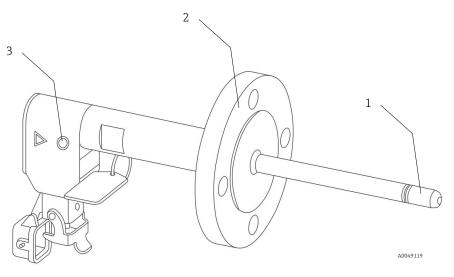


Figure 3. Configuration à bride de la sonde Rxn-40

Pos.	Nom	Description
1	Extrémité	Inox 316L, alliage C276 ou titane Grade 2
		Longueur d'immersion de 36 mm (1.42 in)
2	Bride	Bride pour raccord process (p. ex. 316L, C276, titane Grade 2)
3	Indicateur laser à LED	Allumé lorsque le laser est excité

Sonde Rxn-40, configuration mini

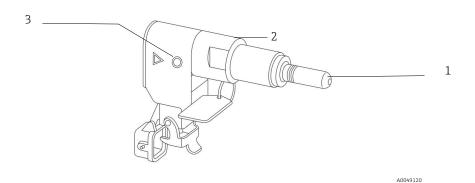


Figure 4. Configuration mini de la sonde Rxn-40

Pos.	Nom	Description
1	Extrémité	Inox 316L, alliage C276 ou titane Grade 2 Longueur d'immersion de 36,07 mm (1.42 in)
2	Corps de l'optique	Matériaux correspondant à l'extrémité de sonde, mais pas en contact avec les fluides de process
3	Indicateur laser à LED	Allumé lorsque le laser est excité

Compatibilité entre sonde et process

Avant le montage, l'utilisateur doit vérifier que les valeurs nominales de pression et de température de la sonde, ainsi que les matériaux à partir desquels la sonde est fabriquée, sont compatibles avec le process dans lequel elle est insérée.

Les sondes doivent être montées en utilisant des techniques d'étanchéité (p. ex. brides, raccords à compression) appropriées et typiques pour la cuve ou la conduite.

A AVERTISSEMENT

Si la sonde doit être montée dans un process à haute température ou à haute pression, des précautions de sécurité supplémentaires doivent être prises pour éviter d'endommager l'équipement ou de mettre en danger la sécurité.

- Il est fortement recommandé d'utiliser un dispositif de protection contre l'éclatement, conformément aux normes de sécurité locales.
- Il incombe à l'utilisateur de déterminer si des dispositifs de protection contre l'éclatement sont nécessaires et de s'assurer qu'ils sont fixés aux sondes lors du montage.

A AVERTISSEMENT

Si la sonde montée est en titane, l'utilisateur doit savoir que des chocs ou des frottements excessifs peuvent provoquer une étincelle ou une inflammation.

 L'utilisateur doit s'assurer que des précautions sont prises lors du montage et de l'utilisation d'une sonde en titane afin d'éviter un tel incident.

Montage

Avant l'installation dans le process, la quantité maximale de puissance laser émise doit être vérifiée pour s'assurer qu'elle ne dépasse pas la quantité spécifiée dans l'évaluation des équipements pour zones explosibles (4002266) ou une évaluation équivalente.

Les précautions standard de sécurité sur le plan oculaire et cutané concernant les produits laser de classe 3B (conformément à EN 60825/IEC 60825-14) doivent être observées. En outre, tenir compte de ce qui suit :

A AVERTISSEMENT	Les sondes sont conçues avec des limites d'étanchéité spécifiques.
	 Les spécifications de pression de la sonde ne sont valables que si l'étanchéité est réalisée sur le dispositif d'étanchéité prévu (tige, bride, etc.).
	► Les caractéristiques de service peuvent inclure des limi-tations pour les raccords, les brides, les boulons et les joints. L'installateur doit comprendre ces limitations et utiliser le matériel et les procédures d'assemblage appropriés pour obtenir un joint sûr et étanche à la pression.
	Les précautions habituelles pour les produits laser doivent être respectées.
	 Les sondes doivent toujours être recouvertes ou orientées à l'écart des personnes vers une cible diffuse si elles ne sont pas installées dans une chambre à échantillon.
ATTENTION	Si de la lumière parasite pénètre dans une sonde inuti- lisée, elle interfère avec les données recueillies par une sonde utilisée et peut entraîner une défaillance de l'étalonnage ou des erreurs de mesure.
	 Les sondes non utilisées doivent TOUJOURS être recouvertes pour éviter que la lumière parasite ne pénètre dans la sonde.
AVIS	Une torsion excessive du câble à l'intérieur du connecteur peut rompre une connexion fibre, rendant la sonde Rxn-40
	inopérante.
	 Veiller à installer la sonde de manière à ce qu'elle mesure l'échantillon qui s'écoule ou la région d'intérêt de l'échantillon.

Zone de collecte de données : Courte vs longue

La sonde Rxn-40 est équipée d'une zone de collecte de données courte (S) ou longue (L), selon la version choisie.

Une zone de collecte de données courte est généralement utilisée pour les échantillons opaques tels que les gels, les boues et les peintures. Une zone de collecte de données longue est préférable pour les échantillons transparents, tels que les hydrocarbures et les solvants, celle-ci maximisant l'intensité du signal en utilisant l'ensemble du cylindre focal effectif.

Figure 5. Zone de collecte de données courte (à gauche) vs longue (à droite) (1)

Spécifications

Température et pression

Les spécifications de température et de pression pour la sonde de Rxn-40 varient en fonction des matériaux de construction. En plus :

- La pression max. est calculée selon ASME B31.3, édition 2020, pour le matériau et la géométrie de la sonde à la température nominale maximale.
- Les pressions maximales de service n'incluent pas les pressions nominales des raccords ou des brides utilisés pour monter la sonde dans le système de process. Ces éléments doivent faire l'objet d'une évaluation indépendante et peuvent réduire la pression de service maximale de la sonde.
- Pression nominale minimale : Toutes les sondes ont une pression nominale minimale de 0 bara (vide complet). Cependant, sauf indication contraire, elles ne sont pas conçues pour un faible dégazage dans des conditions de vide élevé.
- La rampe de température est ≤ 30 °C/min (≤ 54 °F/min).

Composant	Matériaux de construction	Temp. min.	Temp. max.	Pression de service max.
Sonde Rxn-40, diamètre ½ in	Inox 316L	−30 °C (−22 °F)	120 °C (248 °F)	142,4 barg (2066 psig)
	Alliage C276	−30 °C (−22 °F)	280 ℃ (536 ℉)	158,1 barg (2293 psig)
	Titane Grade 2	−30 °C (−22 °F)	315 ℃ (599 ℉)	65,2 barg (946 psig)
Sonde Rxn-40, diamètre ¾ in	Inox 316L	−30 °C (−22 °F)	120 °C (248 °F)	169,5 barg (2458 psig)
	Alliage C276	−30 °C (−22 °F)	280 ℃ (536 ℉)	182,8 barg (2651 psig)
	Titane Grade 2	−30 °C (−22 °F)	315 ℃ (599 ℉)	72,2 barg (1047 psig)
Sonde Rxn-40, diamètre 1 in	Inox 316L	−30 °C (−22 °F)	120 °C (248 °F)	169,5 barg (2458 psig)
	Alliage C276	−30 °C (−22 °F)	280 ℃ (536 ℉)	182,8 barg (2651 psig)
	Titane Grade 2	−30 °C (−22 °F)	315 ℃ (599 ℉)	72,2 barg (1047 psig)
Sonde Rxn-40, configuration mini	Inox 316L	−30 °C (−22 °F)	120 °C (248 °F)	157,1 barg (2279 psig)
	Alliage C276	−30 °C (−22 °F)	150 °C (302 °F)	199,3 barg (2890 psig)
	Titane Grade 2	−30 °C (−22 °F)	150 °C (302 °F)	153,6 barg (2228 psig)
Câble et connecteur	Câble : Enveloppe de PVC, structure propriétaire Raccords : électro-optiques propriétaires	−40 °C (−40 °F)	70 °C (158 °F)	Sans objet

Température et pression des brides

Les spécifications de température pour les brides de sonde varient en fonction du matériau de construction. La pression nominale maximale d'une bride de sonde varie en fonction de la température nominale maximale. Les brides dont les matériaux de construction sont différents sont couvertes par des normes différentes. Les valeurs nominales des brides pour l'acier inoxydable 316L et l'acier C276 sont basées sur la norme ASME B16.5-2018. Les valeurs nominales des brides pour le titane Grade 2 sont basées sur la norme ASME BPVC VIII.1-2021, Annexe 2. Les valeurs nominales des brides DIN sont basées sur la norme EN 1092-1:2013-04.

Les valeurs nominales des brides peuvent être différentes de celles des sondes. La valeur nominale de toute sonde munie d'une bride doit être la plus faible entre la valeur nominale de la sonde et celle de la bride. Tout essai hydrostatique ou autre doit être effectué à la pression nominale de l'élément limitant.

La sonde Rxn-40, configuration mini, n'est pas disponible avec un raccord process à bride.

Matériaux de construction	Temp. min.	Temp. max.	Classe	Pression de service max.
	Valeurs nomina	ales des brides ASME B16.	5-2018	<u>, </u>
Inox 316L			150	12,8 barg (185 psig)
	−30 °C (−22 °F)	120 °C (248 °F)	300	33,4 barg (484 psig)
			600	66,9 barg (970 psig)
Alliage C276			150	10,9 barg (158 psig)
	−30 °C (−22 °F)	280 °C (536 °F)	300	44,2 barg (642 psig)
			600	88,5 barg (1283 psig)
	ASME BPVC VIII.1	-2021, Annexe 2 Valeurs i	nominales	
Titane Grade 2			150	6,2 barg (90 psig)
	−30 °C (−22 °F)	316 °C (600 °F)	300	16,2 barg (235 psig)
			600	32,3 barg (469 psig)
	Valeurs nominales	s des brides DIN EN 1092-	1:2013-04	•
Inox 316L			10	9,0 barg (130 psig)
	−30 °C	120°C	16	14,5 barg (210 psig)
	(−22 °F)	(250 °F)	25	22,7 barg (329 psig)
			40	36,4 barg (527 psig)

Spécifications générales

Les spécifications générales pour la sonde $\mbox{\sc Rxn-40}$ sont énumérées ci-dessous.

Caractéristique		Description	
Longueur d'onde l	aser	532 nm, 785 nm ou 993 nm	
Couverture spectrale		La couverture spectrale de la sonde est limitée par la couverture de l'analyseur utilisé	
Température ambiante		Environnements non explosifs : $-30 \ \grave{a} \ 150 \ °C \ / \ -22 \ \grave{a} \ 302 \ °F$ Environnements explosibles : $T4: -20 \ \grave{a} \ 70 \ °C \ / \ -4 \ \grave{a} \ 158 \ °F$ $T6: -20 \ \grave{a} \ 65 \ °C \ / \ -4 \ \grave{a} \ 149 \ °F$ Limité \ \grave{a} \ la température ambiante normale IEC 60079-0 pour la Corée	
Puissance laser m sonde	aximale dans la	< 499 mW	
Humidité de proce	ess	Jusqu'à 95 % d'humidité relative, sans condensation	
Purge du corps de	sonde	Hélium	
Herméticité du co	rps de sonde	Taux de fuite de l'hélium de purge < 1 × 10 ⁻⁷ mbar·L/s	
Résistance chimiq	[ue	Limitée par des matériaux de construction	
Matériau de la fer	nêtre	Saphir haute pureté	
Distance de travai sortie de la sonde		Courte: 0 mm (0 in) Longue: 3 mm (0.12 in)	
Classification IEC	60529	IP65	
Longueur de sonde immersible	Rxn-40 en configuration sans bride	Longueurs standard : 152, 305 ou 457 mm (6, 12 ou 18 in) Titane Grade 2 : 150 à 350 mm (5.9 à 13.8 in)	
	Rxn-40 en configuration à bride	150 à 380 mm (5.9 à 15.0 in)	
	Rxn-40 en configuration mini	36 mm (1.42 in)	
Diamètre extérieur de la tige d'immersion	Rxn-40 en configuration sans bride	12,7 mm (0.5 in) en standard ; des diamètres personnalisés sont disponibles	
	Rxn-40 en configuration à bride	12,7, 19,05, ou 25,4 mm (0.5, 0.75 ou 1 in) en standard ; des diamètres personnalisés sont disponibles	
	Rxn-40 en configuration mini	12,7 mm (0.5 in) en standard ; des diamètres personnalisés sont disponibles	
Câble à fibre optique (câble vendu séparément ; longueurs limitées par l'application)	longueur	Câble EO disponible de 5 m à 200 m par incréments de 5 m (16.4 ft à 656.2 ft par incréments de 16.4 ft) Extensions EO mâle vers EO femelle disponibles de 5 m à 200 m par incréments de 5 m (16.4 ft à 656.2 ft par incréments de 16.4 ft) Câble FC disponible de 5 m à 50 m par incréments de 5 m (16.4 ft à 164.0 ft par incréments de 16.4 ft)	
	construction	Enveloppe de PVC, structure propriétaire	
	Résistance à la traction	204 kg (450 lb)	
Rayon de courbure minimal		152,4 mm (6 in)	
Résistance à la flamme du câble à fibre optique		Certifié : CSA-C/US AWM I/II, A/B, 80C, 30V, FT1, FT2, VW-1, FT4 Évalué : AWM I/II A/B 80C 30V FT4	

(EMA): exposition oculaire

Exposition maximale admissible La norme ANSI Z136.1 fournit des moyens pour effectuer une évaluation de la valeur EMA pour l'exposition oculaire. Se référer à la norme pour calculer les niveaux EMA pertinents dans le cas d'une exposition au laser par la sonde Rxn-40 et dans le cas improbable d'une exposition au laser par la rupture d'une fibre optique.

Valeur EMA pour l'exposition oculaire ponctuelle à un faisceau laser				
Longueur d'onde	Durée de l'exposition	Calcul de la valeur EMA		
λ (nm)	t (s)	(J·cm ⁻²)	(W·cm⁻²)	
532	10 ⁻¹³ à 10 ⁻¹¹	1,0 × 10 ⁻⁷	-	
	10 ⁻¹¹ à 5 × 10 ⁻⁶	2,0 × 10 ⁻⁷	-	
	5 × 10⁻⁶ à 10	$1.8 t^{0.75} \times 10^{-3}$	-	
	10 à 30 000	-	1 × 10 ⁻³	

Valeur EMA pour l'exposition oculaire ponctuelle à un faisceau laser					
Longueur d'onde Durée de		Calcul de la valeur EMA			
λ (nm)	l'exposition t (s)	(J·cm⁻²)	(W·cm⁻²)	$ extstyle{C_{ m A}}$	
	10 ⁻¹³ à 10 ⁻¹¹	$1.5 C_{\rm A} \times 10^{-8}$	-		
785 et 993	10 ⁻¹¹ à 10 ⁻⁹	2,7 C _A t ^{0,75}	-	532: C _A = 1,000 785: C _A = 1,479	
	10 ⁻⁹ à 18 × 10 ⁻⁶	5,0 C _A × 10 ⁻⁷	-		
	18 x 10 ⁻⁶ à 10	$1.8 C_{\rm A} t^{0.75} \times 10^{-3}$	-	993: C _A = 3,855	
	10 à 3 × 10 ⁴	-	$C_{\rm A} \times 10^{-3}$		

EMA: exposition cutanée

Le tableau ci-dessous, tiré de la norme ANSI Z136.1, permet de calculer l'EMA pour l'exposition de la peau à un faisceau laser.

Valeur EMA pour l'exposition cutanée à un faisceau laser					
Longueur d'onde	Durée de l'exposition	Calcul de la valeur EMA			
λ (nm)	t (s)	(J·cm ⁻²)	(W·cm⁻²)	$C_{\mathbb{A}}$	
	10 ⁻⁹ à 10 ⁻⁷	$2 C_{\rm A} \times 10^{-2}$	-	532: C _A = 1,000	
532, 785 et 993	10 ⁻⁷ à 10	$1,1 C_{\rm A} t^{0,25}$	-	785: C _A = 1,479	
	10 à 3 x 10 ⁴	-	0,2 C _A	993: C _A = 3,855	

Zone de danger nominale

Utiliser les informations ci-dessous pour calculer la zone de danger nominale à l'extrémité de la sonde. Voir le manuel de mise en service de l'analyseur Raman Rxn2 ou Raman Rxn4 pour les informations spécifiques à l'analyseur concernant les calculs de la zone de danger nominale.

Diamètre du faisceau (b ₀)	Longueur focale (f_0)	Équation de la distance oculaire critique nominale (NOHD)	
5 mm (0.20 in)	9 mm (0.35 in)	$r_{\text{NOHD}} = (f_0/b_0)(4\Phi/\pi\text{EMA})^{1/2}$	
		Φ = Puissance de sortie laser en watts	

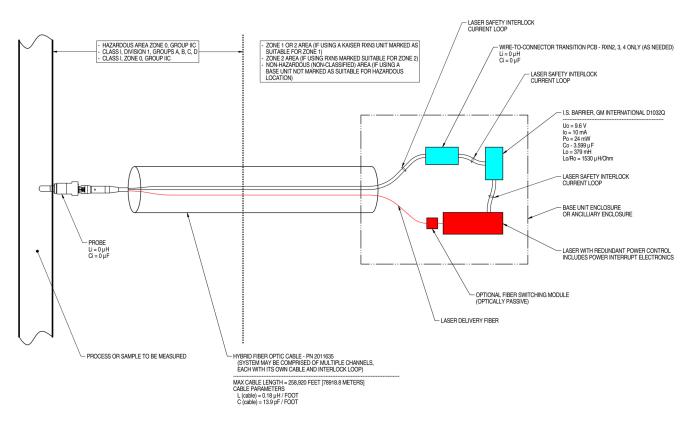
Materiaux de construction

Les matériaux de construction pour la sonde Rxn-40 sont énumérés ci-dessous.

Matériau	Version		
	Alliage C276 [UNS N10276]	316L [UNS S31603]	Titane [UNS R50400]
Pièces en contact avec le process	Alliage C276	Inox 316L	Titane Grade 2
	Saphir haute pureté	Saphir haute pureté	Saphir haute pureté
Pas en contact avec le produit	Alliage C276	Inox 316L	Titane Grade 2
	Inox 316/316L	Inox 316/316L	Inox 316/316L
	Inox 303/304	Inox 303/304	Inox 303/304
	Cuivre exempt d'oxygène	Cuivre exempt d'oxygène	Cuivre exempt d'oxygène
	Époxy haute température	Époxy haute température	Époxy haute température

Certificats et agréments

Agrément zone Ex


Voir les *Conseils de sécurité – Sonde de spectroscopie Raman Rxn-40 (XA02749C)* pour obtenir des informations détaillées sur la certification et l'agrément.

Certifications et marquages

Pour la sonde Rxn-40, Endress+Hauser propose des certifications conformément aux normes. Lors de l'achat, s'assurer que la ou les certifications souhaitées sont sélectionnées afin d'obtenir des étiquettes de sonde marquées de manière appropriée. Sélectionner la/les certification(s) souhaitée(s), et la sonde ou son étiquette sera dotée du marquage correspondant. Voir la documentation *Conseils de sécurité – Sonde de spectroscopie Raman Rxn-40 (XA02749C)* pour plus d'informations sur les certifications.

Schéma zone Ex

Le schéma de montage en zone explosible (4002396) figure ci-dessous.

NOTES:

- 1. CONTROL EQUIPMENT CONNECTED TO THE ASSOCIATED APPARATUS MUST NOT USE OR GENERATE MORE THAN 250 VRMS OR VDC.
- 2. INSTALLATION IN THE U.S. SHOULD BE IN ACCORDANCE WITH ANSI/ISA RP12.6 "INSTALLATION OF INTRINSICALLY SAFE SYSTEMS FOR HAZARDOUS (CLASSIFIED) LOCATIONS" AND THE NATIONAL ELECTRICAL CODE® (ANSI/NFPA 70) SECTIONS 504 AND 505.
- 3. INSTALLATION IN CANADA SHOULD BE IN ACCORDANCE WITH THE CANADIAN ELECTRICAL CODE, CSA C22.1, PART 18, APPENDIX J18.
- 4. ASSOCIATED APPARATUS MANUFACTURER'S INSTALLATION DRAWING MUST BE FOLLOWED WHEN INSTALLING THIS EQUIPMENT.
- FOR U.S. INSTALLATIONS, THE PROBE MODELS RXN-30 (AIRHEAD), RXN-40 (WETHEAD) AND RXN-41 (PILOT) ARE APPROVED FOR CLASS I, ZONE 0 APPLICATIONS.
- 6. NO REVISION TO DRAWING WITHOUT PRIOR CSA APPROVAL.
- 7. WARNING: SUBSTITUTION OF COMPONENTS MAY IMPAIR INTRINSIC SAFETY.

A0049010

Figure 6. Schéma de montage en zone explosible (4002396 version X6)

