
Natural gas processing H₂S in amine scrubber outlet

Amine treatment unit

Benefits at a glance

- Fast response to H₂S concentration changes
- Patented differential spectroscopy technique measures H₂S at low ppm levels in natural gas
- Low maintenance and OPEX costs – no cylinders of carrier and combustion gases or lead acetate tape
- Laser-based measurement is highly selective and accurate for H₂S in natural gas

Amine treatment and gas sweetening

Raw natural gas extracted from different geological formations contains varying amounts of acid gases (H_2S and CO_2). Natural gas that contains H_2S in excess of pipeline-quality gas is generally considered sour gas. Gas sweetening processes remove acid gases from sour gas to meet specifications for gas transmission pipelines. Amine treatment units are commonly used in gas processing plants to scrub H_2S from natural gas.

Process control and optimization

In operation, sour gas is contacted with an aqueous amine solution which removes $\rm H_2S$ by chemical reaction and absorption. Measuring the $\rm H_2S$ concentration in sour gas at the inlet and sweet gas at the outlet of an amine treatment unit is important for control and optimization of the treatment process.

Endress+Hauser's solution

Tunable diode laser absorption spectroscopy (TDLAS) is a SpectraSensors technology used for this critical gas processing measurement. TDLAS analyzers have an exceptionally fast response to changes in H₂S concentration, an important performance characteristic for monitoring the efficiency of the amine treatment process and quality of the resulting natural gas product. Endress+Hauser's patented differential spectroscopy technique enables detection and quantitation of low ppm levels of H₂S in the outlet gas stream of an amine treatment unit. Laser and detector components are isolated and protected from the process gas and entrained contaminants avoiding fouling and corrosion and ensuring stable long-term operation and accurate measurements in the field.

Application data			
Target components (Analyte)	H ₂ S in amine treatment unit outlet		
Typical measurement ranges	0-10, 0-20, 0-50, 0-100 ppmv		
Typical repeatability	SS2100, SS2100i: \pm 250 ppbv or \pm 2% of reading JT33: \pm 100 ppbv or \pm 1% of reading		
Typical accuracy	SS2100, SS2100i: ±500 ppbv at 4 ppmv or 16 ppmv JT33: ± 200 ppbv @ 4 ppmv and ± 500 ppbv @ 16 ppmv		
Measurement update time	<5 seconds*		
Principle of measurement	Differential tunable diode laser absorption spectroscopy (TDLAS) (H ₂ S scrubber included)		
Validation	Binary cal gas bottle with methane or nitrogen background (Nitrogen is optional with auto-validation)		

^{*} Total system response dependent on flow and sample volume.

Typical background stream composition				
Component	Minimum (Mol%)	Typical (Mol%)	Maximum (Mol%)	
Hydrogen sulfide (H ₂ S)	0	<2 ppmv	10 ppmv	
Water (H ₂ O)	0	<1 ppmv	10 ppmv	
Nitrogen (N ₂)	0	0.1	3	
Oxygen (O ₂)	0	0	1	
Carbon dioxide (CO ₂)	0	1	3	
Methane (C1)	50	95	100	
Ethane (C2)	0	3	20	
Propane (C3)	0	1	15	
Butanes (C4)	0	0.5	5	
Pentanes and heavier (C5+)	0	0.4	2	

The background stream composition must be specified for proper calibration and measurement performance. Specify the normal composition, along with the minimum and maximum expected values for each component, especially H_2S , the measured component. Other stream compositions may be allowable with approval from Endress+Hauser.

www.addresses.endress.com