Technical Information **BCU Basic Control Unit**

GMS800 Series

Described Product

Product name: BCL

Basic device: GMS800 series gas analyzers

Manufacturer

Endress+Hauser SICK GmbH+Co. KG Bergener Ring 27 01458 Ottendorf-Okrilla Germany

Legal information

This work is protected by copyright. Any rights derived from the copyright shall be reserved for Endress+Hauser SICK GmbH+Co. KG. Reproduction of this document or parts of this document is only permissible within the limits of the legal determination of Copyright Law. Any modification, abridgment or translation of this document is prohibited without the express written permission of Endress+Hauser SICK GmbH+Co. KG.

The trademarks stated in this document are the property of their respective owner.

© Endress+Hauser SICK GmbH+Co. KG. All rights reserved.

Original document

This document is an original document of Endress+Hauser SICK GmbH+Co. KG.

Contents

1	Abo	ut this d	ocument		7		
	1.1	Warning	symbols		7		
	1.2	Warning	; levels / sig	gnal words	7		
	1.3	Informat	tion symbo	ls	7		
2	Important information						
	2.1	Respons	sibility of us	ser	8		
		2.1.1	Intended	users	8		
		2.1.2	Special le	ocal requirements	8		
	2.2	Addition	al docume	ntation/information	8		
3	SOPAS ET connection						
	3.1	System	requiremer	nts	9		
	3.2	IP addre	ess		9		
	3.3	Creating	ga network	connection	9		
		3.3.1	Connect	a PC directly (Peer-to-Peer)	9		
		3.3.2	Connect	a PC via a network (Ethernet/LAN)	9		
4	Fund	ction ove	erview		11		
	4.1	Menu tr	ee in SOPA	S ET	11		
5	Ope	rating fu	inctions		13		
	5.1	Measuri	ng screen		13		
		5.1.1	Selecting	g a measuring screen	13		
		5.1.2	Measurir	ng screen colors	13		
		5.1.3	Function	s in the measuring screen "Chart recorder"	13		
	5.2	Diagnos	is		14		
		5.2.1	Viewing t	he logbook	14		
		5.2.2	Checking	g the status	15		
		5.2.3	Displayin	g the system overview	16		
		5.2.4	Checking	g the I/O modules	17		
		5.2.5	Adjustme	ent results	17		
			5.2.5.1	Adjustment	17		
			5.2.5.2	Validation	18		
6	Maintenance functions						
	6.1	I/O tests	3		19		
		6.1.1	Testing d	ligital inputs (Dli)	19		
		6.1.2	Testing d	ligital outputs (DOi)	20		
		6.1.3	Testing a	nalog inputs (Ali)	21		
		6.1.4	Testing a	nalog outputs (AOi)	22		
	6.2	System	functions (I	BCU)	23		
	6.3						
	6.4						
	6.5	Starting adjustment/validation (operator commands)					
	6.6						
7	Basi	c setting	gs		28		

	7.1	Checking	g Modbus activation	28			
	7.2	Configur	ing device (BCU) parameters	28			
	7.3	Measurii	ng screens in SOPAS ET	29			
		7.3.1	Configuring measuring screen contents	29			
		7.3.2	Configuring single measuring screens	31			
	7.4	Controlli	ng the pump	32			
	7.5	Check sy	stem (measuring system)/enter user identifier	33			
8	Conf	iguring t	the I/O	34			
	8.1		tion to configuring the I/O	34			
		8.1.1	Number of I/O connections	34			
		8.1.2	Live view	34			
		8.1.3	Tags and formulas in I/O parameters	34			
		8.1.4	Source of an output signal	34			
	8.2		nctions for configuring I/O	34			
		8.2.1	Configuring digital inputs (Dli)	34			
		8.2.2	Configuring digital outputs (DOi)	35			
		8.2.3	Configuring analog inputs (Ali)	37			
		8.2.4	Configuring analog outputs (AOi)	38			
9			functions	40			
	9.1		ing test gases (Test gas Table)	40			
	9.2	Performing manual adjust					
	9.3		ic adjustments/validations	45			
		9.3.1	Function of automatic adjustments/validations	45			
		9.3.2	Start options	45			
		9.3.3	Programming automatic adjustments/validations	45			
10	Mea	sured va	llue configuration	47			
	10.1	Function	s for measured values	47			
		10.1.1	Programming measured values (information)	47			
		10.1.2	Displaying measured values	47			
		10.1.3	Limit values	47			
		10.1.4	Measured value mask	47			
	10.2	Configur	ing measured values	48			
	10.3	Measurii	ng point automatic	49			
		10.3.1	Function of the measuring point automatic	49			
		10.3.2	Prerequisites for the measuring point automatic	49			
		10.3.3	Configuring the measuring point automatic	50			
	10.4		ing help values	50			
11	Mod	bus fund	ctions	52			
			tion to the Modbus protocol	52			
	11.2		specifications with the BCU Basic Control Unit	52			
	11.2	11.2.1	Installing the Modbus connection	52			
			_				
		11.2.2	Modbus parameters	53 53			
	44.0	11.2.3	Data formats and Modbus identification	53			
	11.3		codes supported	53			
	_11.4	เขเดตทนร	addresses	54			

Endress+Hauser

		11.4.1	Standardized register assignment for Modbus outputs	54
		11.4.2	Modbus outputs, configurable individually	56
			11.4.2.1 Addresses of individual Modbus outputs	56
			11.4.2.2 Configuring Modbus outputs	57
		11.4.3	Modbus inputs, configurable individually	60
			11.4.3.1 Addresses of the individual Modbus inputs	60
			11.4.3.2 Identifying Modbus inputs	60
		11.4.4	Assignment for communication in accordance with VDI 4201-3	63
12	OPC			65
	12.1	OPC inte	rface	65
13	Spec	ification	ns	67
	13.1	Status fl	ags	67
	13.2	Task cod	les of adjustment and validation functions	67
	13.3	Formula	elements	67
		13.3.1	Applicable values and states (read tags)	68
		13.3.2	Programmable values and states (write tags)	69
		13.3.3	Operators in formulas	70
		13.3.4	Conditions	71
		13.3.5	Formula combinations	71
		13.3.6	Mathematical functions in formulas	71
		13.3.7	Priority of formula operations	71
	13.4	Technica	ıl data	72
		13.4.1	General data	72
		13.4.2	Ethernet parameters	72
		13.4.3	Electronic system integration	72
		13.4.4	Auxiliary power supply	72
14	Form	nulas		73
	14.1	Introduc	tion to formulas	73
		14.1.1	Function of formulas	73
		14.1.2	Application options for formulas	73
		14.1.3	Formula elements (overview)	73
		14.1.4	Variables	73
		14.1.5	Value types	73
		14.1.6	Activation variables	74
		14.1.7	Formula examples	74
	14.2	Menu fu	nctions for formulas	74
		14.2.1	Formula Table	74
		14.2.2	Adding a formula group	76
		14.2.3	Programming a formula	76
	14.3	Defining	variables	77
		14.3.1	Floating point variables (RVi)	77
		14.3.2	Integer variables (IVi)	78
		14.3.3	Boolean variables (BVSi) - input signals (system)	79
		14.3.4	Boolean variables (BVIi) - input signals	81
		14.3.5	Boolean variables (BVOi) – output signals	82

		14.3.6	Boolean variables (BVi)	83
	14.4	Program	ming the Function buttons	83
15	Sequ	ience co	ntrol programs	85
	15.1	Introduct	tion to sequence control programs	85
		15.1.1	How sequence control programs function	85
		15.1.2	Starting sequence control programs	85
		15.1.3	Aborting sequence control programs	85
		15.1.4	Program flow	85
	15.2	Determin	ning the number of sequence control programs	86
	15.3	Program	ming sequence control programs	87
		15.3.1	Programming flow conditions	87
		15.3.2	Programming a program section	88
	15.4	Timers		90
		15.4.1	Setting a cyclic trigger	90
		15 4 2	Setting countdown timers	91

BCU Basic Control Unit

About this document

1 About this document

1.1 Warning symbols

DANGER

Hazard (general)

1.2 Warning levels / signal words

CAUTION

Hazard or unsafe practice which could result in less severe or minor injuries.

Notice

Hazard which could result in property damage.

Note

Hints

1.3 Information symbols

NOTICE

Important technical information for this product

NOTE

Hint, link to information at another place

2 Important information

2.1 Responsibility of user

2.1.1 Intended users

This Technical Information is aimed at competent persons who are familiar with GMS800 series gas analyzers and, based on their device-specific training and knowledge as well as knowledge of the relevant regulations, can assess the tasks given and recognize the dangers involved.

NOTE

This Manual is only valid in combination with the "GMS800 Operating Instructions".

NOTE

Observe all safety information in the "GMS800 Operating Instructions".

2.1.2 Special local requirements

Follow all local laws, regulations and company-internal operating directives applicable at the respective installation location of the equipment.

2.2 Additional documentation/information

This document supplements the Operating Instructions for GMS800 series gas analyzers. It extends the "GMS800 Series Operating Instructions" with technical information on the BCU Basic Control Unit running with SOPAS ET.

▶ Observe the Operating Instructions provided for the "GMS800 Series Gas Analyzers" and "BCU Basic Control Unit".

NOTE

The "GMS800 Series Gas Analyzers" Operating Instructions also specify all further documents belonging to the individual device.

NOTICE

Pay primary attention to any individual information provided.

BCU Basic Control Unit SOPAS ET connection

3 SOPAS ET connection

3.1 System requirements

- Network: Ethernet (LAN)
- To connect via switch or hub: Standard LAN cable (1:1, RJ45 plug-in connector)
- For direct connection to a PC: Crossover LAN cable or standard LAN cable with crossover adapter

NOTE

There is a risk of unauthorized changes ("hacks") when the BCU is run within an Ethernet network.

Only connect the BCU to networks properly protected (e.g. with a firewall).

3.2 IP address

Each device in a network must have an individual address. Two options are available to specify the IP address for the BCU:

Option	Procedure	Instructions
Manual setting:	Set a suitable IP address with a menu function on the BCU display.	→ Operating Instructions "BCU Basic Control Unit"
Automatic set- ting:	► Set the IP address using SOPAS ET.	see "Creating a network connection", page 9

NOTE

The BCU supports the "Auto-IP" function to set the IP address via the network.

3.3 Creating a network connection

3.3.1 Connect a PC directly (Peer-to-Peer)

- 1. Connect the Ethernet interface of the GMS800 (see the Supplementary Operating Instructions of the enclosure used) to the LAN interface of the PC.
 - ▶ Use either a crossover cable or a standard LAN cable + crossover adapter.

NOTE

If the PC is fitted with an Ethernet controller that can switch to "crossover" electronically, it may be possible to connect using a standard LAN cable.

- 2. Start SOPAS ET on the PC.
- 3. In SOPAS ET:
 - Select Device search when the device search does not start automatically.
 - b) Locate and connect the GMS800.

NOTE

- Use the Search settings when no device is found even though these are connected.
- Further information on searching for devices and on the search settings → Help function in SOPAS ET

3.3.2 Connect a PC via a network (Ethernet/LAN)

- Connect the Ethernet interface of the GMS800 (see the Supplementary Operating Instructions of the enclosure used) to the hub/switch/router/gateway of the network (standard LAN cable).
- 2. Connect the PC to the network.
- 3. Start SOPAS ET on the PC.

SOPAS ET connection BCU Basic Control Unit

4. In SOPAS ET:

- a) Select Device search when the device search does not start automatically.
- b) Locate and connect the GMS800.

NOTE

- Use the Search settings when no device is found even though these are connected.
- $\,\blacksquare\,$ Further information on searching for devices and on the search settings \to Help function in SOPAS ET

4 Function overview

4.1 Menu tree in SOPAS ET

User level:

- O = This menu can be accessed in user level "Operator".
- A = This menu can be accessed in user level "Authorized Customer".

Access rights:

- O = User can view the function.
- User can set/start the function.

BCU/ menu level	0	Α	Explanation
Measuring screen			
Measuring screen 1 8	0	0	see "Selecting a measuring screen", page 13
Diagnosis			
Logbook	0	0	see "Viewing the logbook", page 14
Status	0	0	see "Checking the status", page 15
System overview	-	0	see "Displaying the system overview", page 16
I/O module	0	0	see "Checking the I/O modules", page 17
Adjustment results			
Adjustment	0	0	see "Adjustment", page 17
Validation	0	0	see "Validation", page 18
Parameter			
Measuring screen			
Measuring screen 1 8	-	•	see "Measuring screens in SOPAS ET", page 29
1/0			
Digital inputs (Dli)	0	•	see "Configuring digital inputs (Dli)", page 34
Digital outputs (DOi)	0	•	see "Configuring digital outputs (D0i)", page 35
Analog inputs (Ali)	0	•	see "Configuring analog inputs (Ali)", page 37
Analog outputs (AOi)	0	•	see "Configuring analog outputs (AOi)", page 38
Modbus inputs (MBIi)	0	•	see "Identifying Modbus inputs", page 60
Modbus outputs (MBOi)	0	•	see "Configuring Modbus outputs", page 57
Formulas			
Formulas	0	•	see "Formulas", page 73
Function buttons	0	0	see "Programming the Function buttons", page 83
Timers			
Cyclic trigger (CTi)	0	•	see "Setting a cyclic trigger", page 90
Countdown (SCCDi)	0	•	see "Setting countdown timers", page 91
Variables			
Real values (RVi)	0	•	see "Floating point variables (RVi)", page 77
Integer values (IVi)	0	•	see "Integer variables (IVi)", page 78
Boolean values (BVSi) - input signals (system)	0	•	see "Boolean variables (BVSi) - input signals (system)", page 79
Boolean values (BVIi) – input signals	0	•	see "Boolean variables (BVIi) – input signals", page 81
Boolean values (BVOi) – output signals	0	0	see "Boolean variables (BVOi) – output signals", page 82
Boolean values (BVi)	0	•	see "Boolean variables (BVi)", page 83
Help values (SjHVk)	0	•	see "Configuring help values", page 50
Sequence control programs			

CU/	. menu level	0	Α	Explanation
	Number	0	•	see "Determining the number of sequence control programs", page 86
	Sequence control programs			
	Sequence control 1 4 (SC1 SC4) ¹	0	•	see "Programming sequence control programs", page 87
Me	easured values (MVi)	0	•	see "Configuring measured values", page 48
Ме	easuring point automatic	0	•	see "Measuring point automatic", page 49
Te	st Gas Table	0	•	see "Configuring test gases (Test gas Table)", page 40
Ad	justment / validation	0	•	see "Automatic adjustments/validations", page 45
Pu	mp control	0	•	see "Controlling the pump", page 32
Мо	odbus	0	0	see "Checking Modbus activation", page 28
De	vice	0	0/•	see "Configuring device (BCU) parameters", page 28
System		0		see "Check system (measuring system)/enter user identifier", page 33
ainte	enance			
Te	ets			
	Digital inputs	-	0	see "Testing digital inputs (DIi)", page 19
	Digital outputs	-	•	see "Testing digital outputs (DOi)", page 20
	Analog inputs	-	0	see "Testing analog inputs (Ali)", page 21
	Analog outputs	-	•	see "Testing analog outputs (AOi)", page 22
Sy	stem functions	0	•	see "System functions (BCU)", page 23
Ma	aintenance mode	0	0/•	see "Signaling maintenance mode", page 24
Fu	nction buttons	0	0	see "Using the Function buttons", page 24
Operator commands		-	•	see "Starting adjustment/validation (operator commands)", page 25
Ma	anual adjust	•	•	see "Performing manual adjust", page 42
Da	ta backup			
	User settings	-	•	see "Backing up/restoring data", page 26
	Factory settings	-	•	see "Backing up/restoring data", page 26

¹ When a corresponding number is set

5 Operating functions

5.1 Measuring screen

5.1.1 Selecting a measuring screen

Function

This selection only applies to the measuring screens in SOPAS ET. Measuring screens on the BCU display are not affected.

NOTE

- Configuring measuring screen contents, see "Configuring measuring screen contents", page 29
- Configuring single measuring screens, see "Configuring single measuring screens", page 31
- Setting display contents → "BCU Basic Control Unit" Operating Instructions

Procedure

- 1. Call up menu: BCU/Measuring screen.
- 2. Select desired measuring screen.

NOTE

- If menu branch Measuring screen is not displayed:
 Configure at least one measuring screen (see "Configuring measuring screen contents", page 29).
- Measuring screens are refreshed at one second intervals.

5.1.2 Measuring screen colors

The measuring screen color identifies the current measured value status.

Table 1: Colors for measured value status

Color	Status flag ¹
None / green	-
Yellow	M C U ²
Red	F ³

- Explanation, see "Status flags", page 67
- ² At least one of these status flags must be activated.
- 3 Has priority over other status flags.

5.1.3 Functions in the measuring screen "Chart recorder"

NOTE

The measuring screen "Chart recorder" serves to record current measured values and then display these values later.

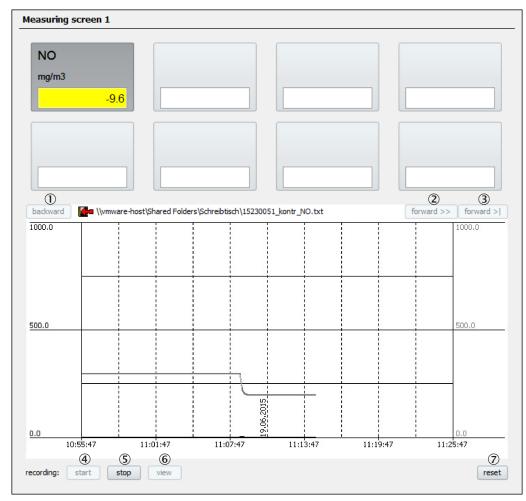


Figure 1: Measuring screen "Chart recorder" (example)

- ① Shift the displayed time interval backwards.
- Shift the displayed time interval forwards.
- 3 Shift the displayed time interval forwards to the current time.
- 4 Start recording current measured values:
 - ▶ Select the storage location for the recorded data (select path, enter file name).
- Stop recording current measured values.
- 6 View recorded measured values:
 - ► Select file containing the desired data (path, file name)
- **6**¹ Stop display of recorded measured values.
- Start current display again.
- ¹ "Live view" appears instead of "view" when recorded measured values are displayed.

5.2 Diagnosis

NOTE

General information about the BCU, see "Configuring device (BCU) parameters", page 28

5.2.1 Viewing the logbook

Function

The Logbook Table contains the last 50 internal function and error messages. The context help explains error classes and error numbers.

Procedure

1. Call up menu: BCU/Diagnosis/Logbook.

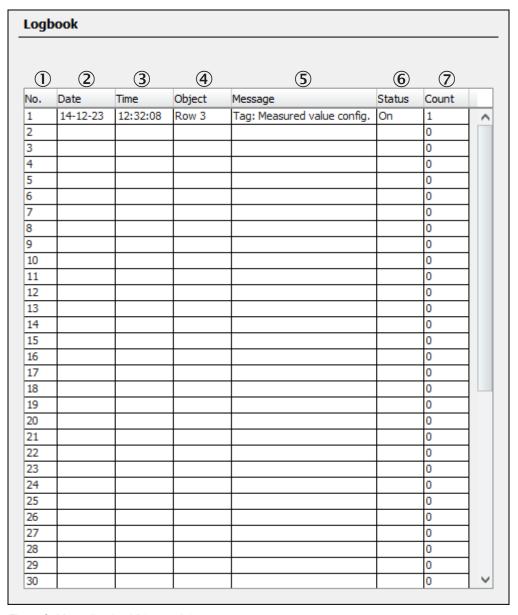


Figure 2: Menu "Logbook" (example)

- ① Sequential number in Logbook
- 2 Time of last message change
- Time of last message change
- 4 Message source
- S Message description and classification
- 6 Current message status (on/off)
- 7 Total count of activations
- ► To delete existing logbook entries: Select **Delete all entries**.

5.2.2 Checking the status

Function

Five LED symbols indicate the current operating state of the complete GMS800.

Procedure

► Call up BCU/Diagnosis/Device info.



Figure 3: Menu "Status"

Status	Significance	Consequence
1	GMS800 in correct operating state.	Normal measuring operation running.
2	Malfunction: At least one output signal is permanently invalid.	GMS800 defective. Arrange for repair.
3	Maintenance request: Output signal is still valid but the wear limit will soon be reached.	► Arrange for maintenance.
4	At least one output signal is temporarily invalid. GMS800 is in a specifically induced operating state.	GMS800 measured values do not represent the real values. Inform locations affected as required.
\$	Self-monitoring: Current operating conditions or internal malfunctions probably make measurement uncertainty higher than expected.	Normal measuring operation not possible at this time. Check ambient temperature. Check peripheral devices. Check measuring conditions.

5.2.3 Displaying the system overview

Function

Menu function System overview displays:

- Internal components
- Associated tags (identification character)
- Module delivering the component values.

Procedure

► Call up menu: BCU/Diagnosis/System overview.

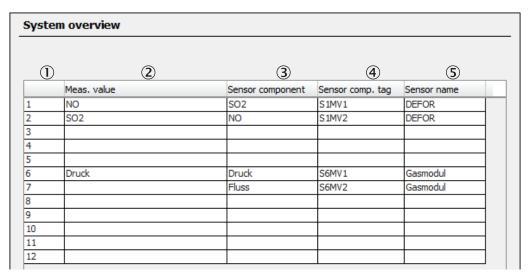


Figure 4: Menu "System overview" (example)

- ① Consecutive number
- 2 Measuring component name in the BCU
- 3 Component name in the Sensor module
- Sensor component tag in the BCU
- (5) Identifier of the Sensor module from which the measured value originates

5.2.4 Checking the I/O modules

Function

Menu function I/O-Module displays which I/O modules are connected. I/O module 2 is an option.

Procedure

► Call up menu: BCU/Diagnosis/I/O Module.

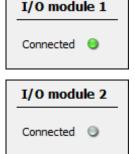


Figure 5: Menu "I/O overview" (example)

LED symbol Green Connected and usable Gray Not present / not connected properly / not ready for operation

5.2.5 Adjustment results

Function

Menu function "Adjustment results" displays the adjustment or validation results.

5.2.5.1 Adjustment

Procedure

1. Call up menu: BCU/Diagnosis/Adjustment results/Adjustment.

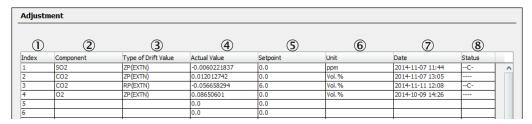


Figure 6: Menu "Adjustment" – List (example)

- ① Consecutive number
- 2 Measuring component of the Sensor module
- 3 Zero point or reference point and type of test medium
 - · ZP: Zero point
 - RP: Reference point
 - EXTN: External test medium was used for the adjustment (test gas).
 - INTN: Internal test medium (adjustment cuvette)
- Actual measured value measured for the component before the drift correction
- Set point value specified in the Test gas Table (test gas or adjustment cuvette concentration)
- 6 Unit for component
- Date and time when adjustment was completed
- NAMUR status of the measuring component during completion (see "Checking the status", page 15)

5.2.5.2 Validation

Procedure

1. Call up menu: BCU/Diagnosis/Adjustment results/Validation.

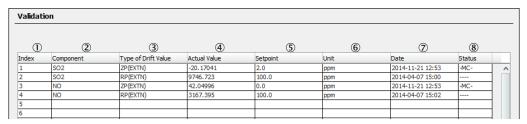


Figure 7: Menu "Validation" – List (example)

- ① Consecutive number
- ② Measuring component of the Sensor module
- 3 Zero point or reference point and type of test medium
 - · ZP: Zero point
 - RP: Reference point
 - EXTN: External test medium was used for the validation (test gas).
 - INTN: Internal test medium (adjustment cuvette)
- Actual measured value measured for the component before the drift correction
- Set point value specified in the rows Test gas Table (test gas or adjustment cuvette concentration)
- 6 Unit for component
- Date and time when validation was completed
- NAMUR status of the measuring component during completion (see "Checking the status", page 15)

6 Maintenance functions

NOTE

Manual adjust (adjustment function), see "Performing manual adjust", page 42

6.1 I/O tests

6.1.1 Testing digital inputs (Dli)

Function

These menus serve to view the current state of each digital input of the GMS800. Internal assignment and programmed switching logic are displayed.

Procedure

1. Call up menu: BCU/Maintenance/Tests/Digital inputs.

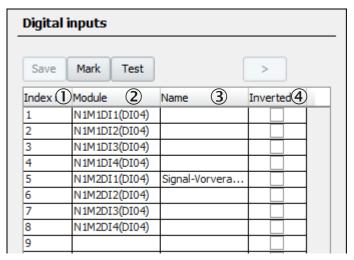


Figure 8: Menu "Digital inputs" – list (example)

- ① Consecutive number
- 2 Internal identifier of digital input¹
- 3 Internal name of connection²
- ④

 ☑= logical input status is inverse to electronic status²
- Only digital inputs with a module identifier are present in the GMS800 (see "Number of I/O connections", page 34).
- ² Parameter, see "Configuring digital inputs (Dli)", page 34.
- 2. Mark one or several Table rows.
- 3. Select Test.

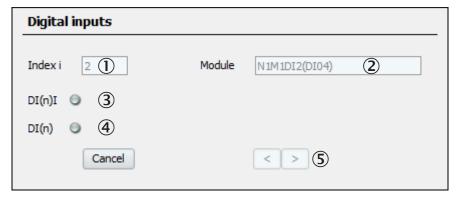


Figure 9: Menu "Digital inputs" - Menu (example)

- ① Index number of digital input
- 2 Internal identifier of digital input
- 3 Current electronic state of digital input:
 - Green LED symbol: Input electronically activated.
 - Gray LED symbol: Input not electronically activated.
- 4) Current logical state of digital input:
 - Green LED symbol: Input internally regarded as activated.
 - Gray LED symbol: Input not internally regarded as activated.
- S Calls up the menu for a different digital input.¹
- Only when several Table rows were selected.

6.1.2 Testing digital outputs (D0i)

Function

These menus serve to control and test each single digital output of the BCU. This allows testing the function of these outputs and the interaction with connected devices. Internal assignment and programmed switching logic are displayed.

The test function is only used on one single digital output at a time. All the other digital outputs remain in operation during this time.

CAUTION

Risk for connected systems

The operating function of the selected digital output is deactivated as long as the Test menu is called up for a digital output. When the menu for processing the single digital outputs is open (see figure 11, page 21), the electronic state of the digital output corresponds to the selected test value.

Ensure the digital output test does not cause any problems on connected locations.

Procedure

1. Call up menu: BCU/Maintenance/Tests/Digital outputs.

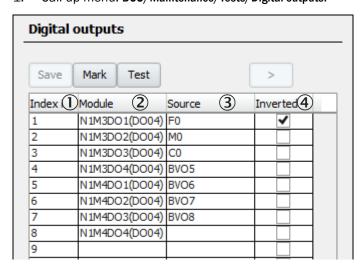


Figure 10: Menu "Digital outputs" - List (example)

- (1) Consecutive number
- 2 Internal identifier of digital output¹
- 3 Tag of assigned signal source²
- Only digital inputs with a module identifier are present in the GMS800 (see "Number of I/O connections", page 34).
- Parameters, see "Configuring digital outputs (D0i)", page 35.

- 2. Mark one or several Table rows.
- 3. Select Test.
- 4. To invert the current state of the digital output: Activate Test value.

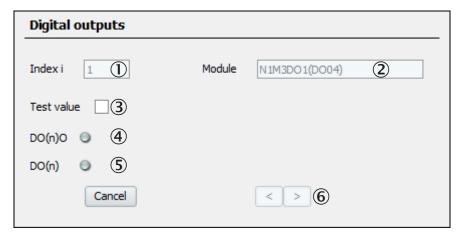


Figure 11: Menu "Digital outputs" - Menu (example)

- ① Index number of digital output
- 2 Internal identifier of digital output
- \square = output activated logically
- 4 Current electronic state of digital output:
 - Green LED symbol: Output is electronically activated (relay energized).
 - Gray LED symbol: Output not electronically activated.
- S Current logical state of digital output:
 - Green LED symbol: Output internally regarded as activated.
 - Gray LED symbol: Output not internally regarded as activated.
- 6 Calls up the menu for a different digital output.¹
- Only when several Table rows were selected.

6.1.3 Testing analog inputs (Ali)

Function

These menus serve to view the current input signal of each analog input of the GMS800. The assigned physical measurement span and the current physical input value according to this conversion are also displayed.

Procedure

1. Call up menu: BCU/Maintenance/Tests/Analog inputs.

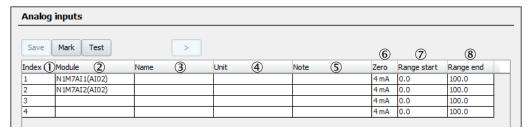


Figure 12: Menu "Analog inputs" – List (example)

- (1) Consecutive number
- 2 Internal identifier of analog input¹
- 3 Name of input variable²
- Physical unit²
- S Comment²
- 6 Electronic zero point of the input signal (0/2/4 mA)²
- Physical value corresponding to electronic zero point

- Physical value corresponding to input signal "20 mA"
- Only analog inputs with a module identifier are present in the GMS800 (see "Number of I/O connections", page 34).
- ² Setting, see "Configuring analog inputs (Ali)", page 37.
- 2. Mark one or several Table rows.
- 3. Select Test.

Figure 13: Menu "Analog inputs" - Menu (example)

- Index number of digital input
- 2 Internal identifier of digital input
- 3 Current electronic input signal
- 4 Input signal in physical unit after programmed conversion¹
- © Calls up the menu for a different analog input.2
- Under consideration of the electronic zero point.
- ² Only when several Table rows were selected.

6.1.4 Testing analog outputs (AOi)

Function

These menus serve to test the analog outputs of the GMS800 by setting the desired output value. The electronic zero point and the usage parameters are displayed.

CAUTION

Risk for connected systems

The operating function of the selected analog output is deactivated as long as the Test menu is called up for a digital output. When the menu for processing the single analog outputs is open (see figure 15, page 23), the electronic state of the analog output corresponds to the selected test value.

▶ Ensure the analog output test can not cause any problems on connected locations.

Procedure

1. Call up menu: BCU/Maintenance/Tests/Analog outputs.

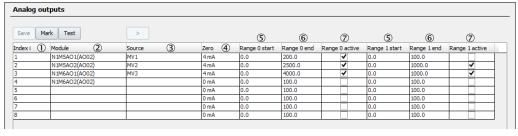


Figure 14: Menu "Analog outputs" - List (example)

① Consecutive number

- ② Internal identifier of analog output¹
- 3 Tag of assigned signal source²
- 4 Electronic zero point of output signal (0/2/4 mA)²
- 5 Physical value corresponding to electronic zero point
- 6 Physical value corresponding to output signal "20 mA"
- Only analog outputs with a module identifier are present in the GMS800 (see "Number of I/O connections", page 34).
- Parameters, see "Configuring analog outputs (AOi)", page 38.
- 2. Mark one or several Table rows.
- 3. Select Test.
- 4. Enter desired output value in field "Test value [phys. unit]".

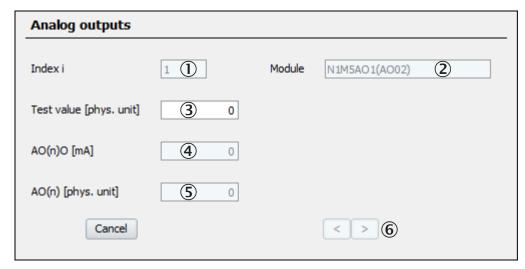


Figure 15: Menu "Analog outputs" – Menu (example)

- Index number of analog output
- 2 Internal identifier of analog output
- Input field for desired output value of analog output
- 4 Current electronic output signal of analog output
- (5) Current output signal of analog output in physical unit
- 6 Calls up the menu for a different analog output.¹

6.2 System functions (BCU)

Warm start

Function	Usage
Restart the BCU.	When unclear malfunctions occur.

Parameter upload

Function	Usage
Load all parameters and process values of the connected modules in the BCU.	When module parameters have been changed using SOPAS ET or when a module has been added. ¹

Not necessary when the BCU has been started again afterwards.

Update mode

Service function. Updates may only be carried out by a trained Service technician.

When the "Active" display is yellow, a firmware update can be carried out via the serial interface. Service access rights are required for this function.

Only when several Table rows were selected.

Procedure

- 1. Call up menu: BCU/Maintenance/System functions.
- 2. Activate the desired function.

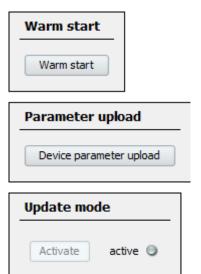


Figure 16: Menus in "System functions"

6.3 Signaling maintenance mode

Function

Maintenance mode can be activated and deactivated by setting the checkmark.

When "Maintenance mode" is activated, the "MAINTENANCE REQUEST" LED is on and status flag "CO" of the BCU is activated (see "Applicable values and states (read tags)", page 68). If this status flag triggers a digital output, an external location can be signaled that the GMS800 is not in normal measuring operation.

Procedure

1. Call up menu: BCU/Maintenance/Maintenance mode.

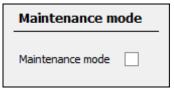


Figure 17: Menu "Maintenance mode"

2. Activate/deactivate Maintenance mode.

6.4 Using the Function buttons

Function

Service buttons are only available when programmed by trained personnel.

Many different data assignments and function calls are possible and should only be configured with appropriate technical knowledge. Additional documentation is necessary when Function buttons are configured on the device.

A maximum of 8 Function buttons are available. Each Function button executes a function that can be individually programmed (see "Defining variables", page 77).

Only those Function buttons with a name and function are displayed.

Procedure

Call up menu: BCU/Maintenance/Function buttons.

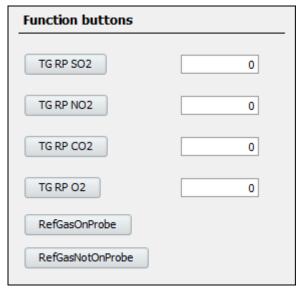


Figure 18: Menu "Function buttons" (example)

- 2. Select desired Function button.
- ✓ The programmed function of the Function button is performed.

Example

In the example shown (see figure 18, page 25), the span gases for the corresponding components (1 - 4) can be assigned concentration values and span gas feed assigned or activated via the sampling probe (activation of the corresponding valve) (5 - 6).

When numeric values are entered, the value shown next is always zero because the current value can not be read out for technical reasons.

6.5 Starting adjustment/validation (operator commands)

Function

Menu **Operator commands** serves to start programmed adjustment or validation procedures manually (see "Automatic adjustments/validations", page 45). Procedures marked as "active" are available. The buttons show the respective function. The button names can be set as required and are taken directly from the "Adjustment / Validation" Table.

A running adjustment or validation procedure can be aborted with a mouse click.

- 1. Call up menu: BCU/Maintenance/Operator commands.
- 2. To run the desired function: Click the appropriate button.

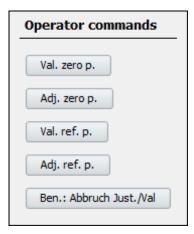


Figure 19: Menu "Operator commands" (example)

NOTE

The procedure phases are displayed on the BCU display.

Function rules

- Only one procedure can run at any one time.
- Clicking the button starts or aborts the procedure immediately.
- A running procedure cannot be started again (start command is ignored).
- A start command for a different procedure does not abort the running procedure.

6.6 Backing up/restoring data

Functions

Function	Effect
Backup	 A copy of the current settings is stored as "last backup". The previous "last backup" (If present) is renamed as "next to last backup".
Restore last user settings ¹	Current settings are replaced by the last saved copy.
Restore next to last user settings ¹	A warm start is then done automatically.

Only available when a backup has been created (see entries for date and time).

Restore factory settings	Current settings are replaced by the original factory settings.
	A warm start is then done automatically.

- 1. Call up menu: BCU/Maintenance/User settings.
- 2. Select desired function.
- ✓ The function is performed.

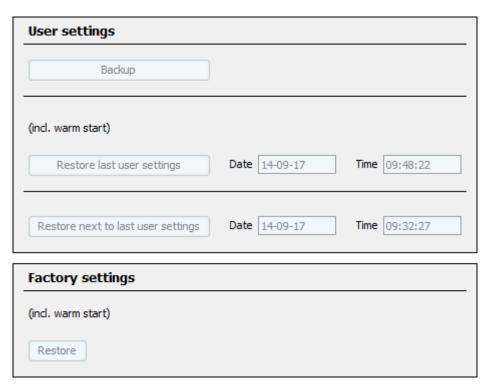


Figure 20: Menu "User settings"

Basic settings BCU Basic Control Unit

7 Basic settings

7.1 Checking Modbus activation

Function

This function shows which parameters are set for the Modbus functions of the GMS800. The Modbus functions are deactivated in state **0ff**.

Procedure

► Call up menu: BCU/Parameter/Modbus.

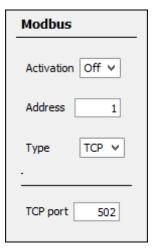


Figure 22: Menu "Modbus" (example 2)

Figure 21: Menu "Modbus" (example 1)

NOTE

Modbus parameters can be changed in user level Service.

7.2 Configuring device (BCU) parameters

Function

Menu **Device** serves to set the individual designation **Location** which can serve to identify the GMS800 in SOPAS ET. Certain internal information is also shown in this menu.

NOTICE

Memory storage (buffer) for the internal clock

Clock settings are retained for 3 ... 5 days after shutdown or mains failure.

▶ If the GMS800 has been out of operation longer than 3 ... 5 days: Set the internal clock again after start-up.

Only observe this note when

- Logbook entries (see "Viewing the logbook", page 14) are evaluated using their time
- Procedures to be started by the internal clock are set up (e.g. automatic adjustments, sequence control programs with start by cyclic triggers).

BCU Basic Control Unit Basic settings

Procedure

► Call up menu: BCU/Parameter/Device.

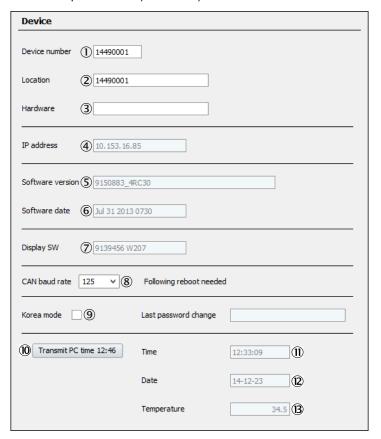


Figure 23: Menu "Device" (example)

- Determined automatically
- ② Freely selectable text
- 3 Hardware identifier of BCU fitted
- 4 Current IP address of BCU¹
- Software version of BCU
- 6 Software version date
- ⑦ Display version
- Transfer speed on internal CAN bus²
- 9 Korea mode
- Transfer PC time to the BCU
- ① Current time in GMS800 (in the BCU)
- © Current date in GMS800 (in the BCU)
- Current temperature in GMS800 (in the BCU)
- Explanation and setting, see "IP address", page 9
- ² Can be set in user level "Service".

7.3 Measuring screens in SOPAS ET

7.3.1 Configuring measuring screen contents

Function

- 8 different settings for measuring screens can be stored.
- 8 different layouts are available.
- Individual settings for data to be displayed.

NOTE

These settings are only valid for measuring screens in SOPAS ET and not for the display in the GMS800.

- 1. Call up menu: BCU/Parameter/Measuring Screen/Measuring screen X (X = 1 ... 8).
- 2. Select desired layout for the measuring screen.
- ✓ The layout fields are shown symbolically (example, see figure 24, page 30).
- 3. Enter the name of the tag (identification character sequence) of the value or state in the measured value field to be displayed there (Tag list, see "Applicable values and states (read tags)", page 68).
- 4. Select Save.

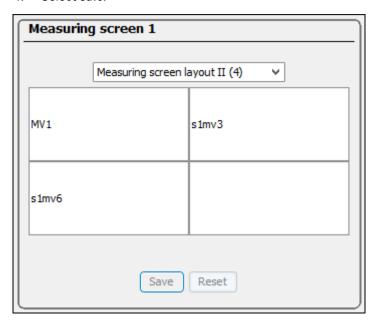
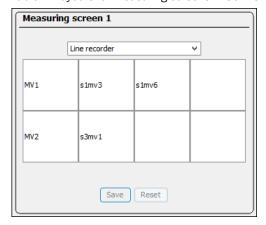
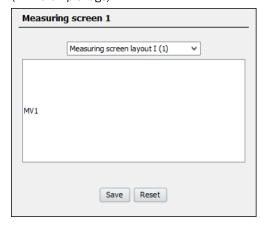
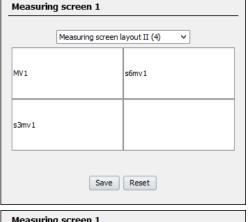
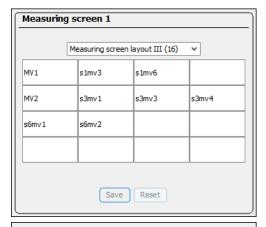
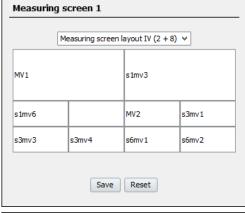
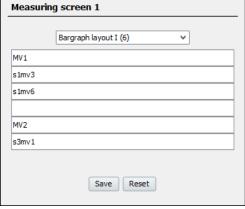




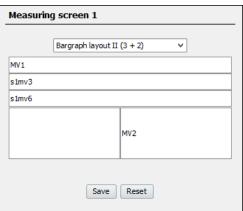
Figure 24: Menu "Measuring screen" (example)

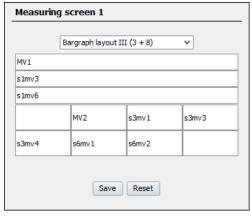

Designation (example)	Significance
MV1	Measured value No. 1, calculated by the BCU software
s1mv3	Measured value No. 3 from Sensor module No. 1


Table 2: Layouts for measuring screens in SOPAS ET (with example tags)






BCU Basic Control Unit Basic settings



7.3.2 Configuring single measuring screens

Function

The following can be set for each single measuring screen:

- · Font color for name and physical unit
- Number of decimal places
- Display area for bargraphs.

These settings are not stored permanently. The measured value configuration (see "Configuring measured values", page 48) overwrites the number of decimal places setting.

- 1. Select a measuring screen (see "Selecting a measuring screen", page 13).
- 2. Doubleclick in the upper area of the measuring screen.
- 3. Make the desired settings.
- 4. Select Save.

Basic settings BCU Basic Control Unit

Figure 25: Menu for configuring a single measuring screen (example)

- (1) Font color for name and physical unit
- ② "1": Decimal format
 - "2": Exponential format for basis E6
 - Negative number: Number of decimal places
- 3 Start value for bargraph display and chart recorder¹
- 4 End value for bargraph display and chart recorder¹
- ¹ For this measured value. Has no effect on numeric measuring screens.

7.4 Controlling the pump

Functions

- The pump can be switched off with a menu function.
- The capacity supply for the fitted pump (option) is adjustable. This serves to determine the pump flow rate.

- 1. Call up menu: BCU/Parameter/Pump control.
- 2. Make the desired settings.

BCU Basic Control Unit Basic settings

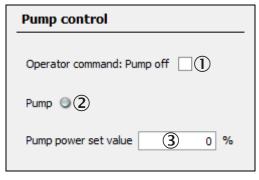


Figure 26: Menu "Pump control" (example)

- ② LED symbol "on" = pump switched on
- 3 Electronic set point value for pump capacity¹
- Set the set point value so that the desired volume flow is attained.

NOTICE

Even when the pump is switched on in this menu, the pump can actually be deactivated by further safety functions.

NOTE

If the GMS800 has a sample gas pump fitted:

Use this menu function to set the desired sample gas volume flow.

This minimizes the pump load as far as possible and lengthens the service life.

7.5 Check system (measuring system)/enter user identifier

Function

This menu displays the serial number and production date of the GMS800. An individual user identifier can be entered.

- 1. Call up menu: BCU/Parameter/System.
- 2. As required: Enter text for Tag Number.

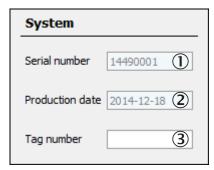


Figure 27: Menu "System" (example)

- Serial number
- 2 Production date
- 3 User identifier for this GMS800¹
- Any text. Not used internally.

8 Configuring the I/O

8.1 Introduction to configuring the I/O

8.1.1 Number of I/O connections

The number of inputs and outputs available depends on whether the GMS800 is fitted with one or two I/O modules (display, see "Checking the I/O modules", page 17). Menus are automatically adapted accordingly.

8.1.2 Live view

If the "Live view" option is activated in the menus, the menus always show the current GMS800 parameters, even when the parameters are changed by an external location (e.g. via the BCU display).

"Live view" must be deactivated when the parameters are to be changed using SOPAS ET.

8.1.3 Tags and formulas in I/O parameters

For some parameters for inputs and outputs, the internal values and states of the tags (identification characters) are used. Apart from that, it is possible to use parameters determined by the programmed formulas.

NOTE

Recommendation:

► Read the Section "Introduction to formulas" before configuring I/O parameters (see "Introduction to formulas", page 73).

8.1.4 Source of an output signal

The current state of a digital or analog output corresponds to the current value of the assigned "source".

Rules

- Input is only possible when the "Live view" is deactivated.
- Usable tags are shown in the context help.

Calculated value as source

How to use a value calculated with a formula as "source":

- Define the desired value calculation as assignment to a variable (for digital outputs: BVi, for analog outputs: MVi).
 Schema: XVi=Iformelterml
- 2. Enter this variable as "source" during configuration.

NOTE

A calculated value in a formula assigned directly to an output has no effect.

8.2 Menu functions for configuring I/O

8.2.1 Configuring digital inputs (Dli)

Function

The internal switching logic of the digital inputs (switching inputs) can be inverted. Each digital input can be named for identification.

BCU Basic Control Unit Configuring the I/O

NOTE

The current state of the digital inputs can be processed in formulas with tags "Dli" and "Dlil" (see "Applicable values and states (read tags)", page 68).

Procedure

1. Call up menu: BCU/Parameter/I/O/Digital inputs (Dli).

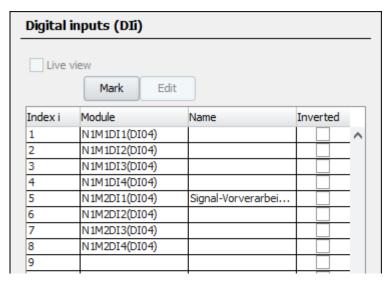


Figure 28: Menu "Digital inputs (Dli)" - Table (example)

- 2. Deactivate Live View.
- 3. Mark desired Table rows.
- 4. Select Edit.

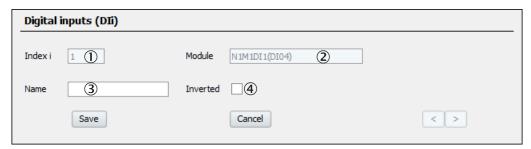


Figure 29: Menu "Digital inputs (Dli)" - Edit (example)

- ① Connection number (1 = DI1, 2 = DI2 etc.)
- 2 Internal I/O address¹
- 3 Connection name (freely selectable text, max. 16 characters)
- ④

 ☑= logical input status is inverse to electronic status
- Only digital inputs with a module identifier are present in the GMS800 (see "Number of I/O connections", page 34).
- 5. Enter desired data.
- 6. Select Save.

8.2.2 Configuring digital outputs (D0i)

Function

Digital outputs are activated by an internal "source" (see table 3, page 37). The activation logic can be inverted (see "Switching logic", page 35). Each digital output can be named for identification.

Switching logic

Each digital output can function with normal or inverted activation logic:

- Normal activation logic: The digital output is activated electronically (open-circuit principle) when the associated switching function is in an active state.
- Inverse activation logic: The digital output is activated electronically (closed-circuit principle) when the associated switching function is logically inactive. The switching output is in an inactive electronic state when the switching function is logically active.

CAUTION

Risks for connected devices/systems

- ▶ Before using the digital outputs, clarify the safety-relevant consequences of the following operational malfunctions:
 - BCU power failure (e.g. local power failure or accidental switching-off or defective fuse)
 - Electronic defect on switching output
 - Interruption of the electrical connection
- Select the switching logic considering safety aspects:
 - Switching outputs with normal activation logic signal that the respective switching function is not active when the mains voltage fails.
 - Switching outputs with inverse activation logic signal that the respective switching function is triggered when the mains voltage fails.
- ► Carefully clarify the consequences and make sure no dangerous situation can arise when a failure or defect occurs.

Procedure

1. Call up menu: BCU/Parameter/I/O/Digital outputs (D0i).

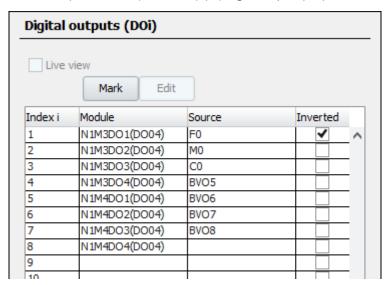


Figure 30: Menu "Digital outputs (DOi)" - Table (example)

- 2. Deactivate Live view.
- 3. Mark desired Table rows.
- 4. Select Edit.

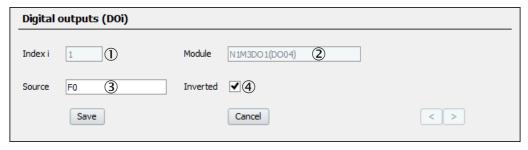


Figure 31: Menu "Digital outputs (DOi)" – Edit (example)

BCU Basic Control Unit Configuring the I/O

- ① Connection number (1 = DO1, 2 = DOI2 etc.)
- 2 Internal I/O address¹
- 3 Source, the state of which controls the output (see table 3)
- ④

 ≡ electronic output status is inverse to logical source status

Table 3: Sources for digital output control

Tag	Function	Indices
ХО	Group status for "X" messages (BCU status)	X = C/E/F/M/U
AOiR	Current measuring range of analog output AOi ¹	i = 1 8
BVi	Value of Boolean variable BVi (see "Variables", page 73)	i = 1 24
BVOi	Value of Boolean variable BVOi (see "Boolean variables (BVOi) – output signals", page 82)	i = 1 24
MPS	Operating state for measuring point switchover ²	-
MPiS	Operating state of measuring point i ³	i = 0 8
MPiPPS	Advance extraction	i = 0 8
MViLlj	Limit value message for measured value MVi – limit value j	i = 1 12 j = 1 2
MViXO	Group status for "MViXj" messages	i = 1 12 X = C/E/F/M/U
SiX0	Group status for "SiXj" messages	i = 1 6 X = C/E/F/M/U

Measuring range 1 : AOiR = 0; measuring range 2: AOiR = 1

- 5. Enter desired data.
- 6. Select Save.

8.2.3 Configuring analog inputs (Ali)

Function

The analog inputs cover the signal range 0 \dots 20 mA. The input signal can be used in measuring screens and formulas, either as electronic value (0 \dots 20 mA) or as physical value according to the conversion (see "Applicable values and states (read tags)", page 68).

NOTE

The NAMUR status of each measured value is provided as information.

- 0 mA: Failure (F0)
- 2 mA: Check (CO)
- 4 20 mA: Measured value in selected display range

Conversion

- The "Live Zero" (zero) of the input signal is adjustable (0/2/4 mA or 4 mA, F = 0 mA, C = 2 mA).
- The following formula calculates the physical input value (Ali) internally:

Ali =
$$\left[(MB \text{ Ende - MB Anfang}) * \frac{Alil [mA] - Zero [mA]}{20 - Zero [mA]} \right] + MB Anfang$$

Procedure

1. Call up menu: BCU/Parameter/I/O/Analog inputs (Ali).

Only digital inputs with a module identifier are present in the GMS800 (see "Number of I/O connections", page 34).

² "0" = flush, "1" = measure.

^{3 &}quot;0" = off, "1" = active.

Figure 32: Menu "Analog inputs (Ali)" - Table (example)

- 2. Deactivate Live View.
- 3. Mark desired Table rows.
- 4. Select Edit.

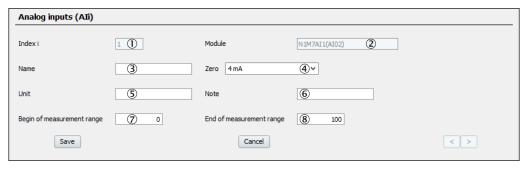


Figure 33: Menu "Analog inputs (Ali)" - Edit (example)

- ① Connection number (1 = AI1, 2 = AI2 etc.)
- 2 Internal I/O address¹
- 3 Name (freely selectable text, max. 16 characters)²
- 4 Electronic zero point of the input signal (0/2/4 mA) or 4 mA, F = 0 mA, C = 2 mA
- 5 Physical unit (freely selectable text, max. 16 characters)
- 6 Comment (freely selectable text, max. 16 characters)
- Physical value corresponding to electronic zero point
- Physical value corresponding to input signal "20 mA"
- Only analog inputs with a module identifier are present in the GMS800 (see "Number of I/O connections", page 34).
- ² Recommendation: Use the designation of the physical variable (e.g. "pressure").
- 5. Enter desired data.
- 6. Select Save.

8.2.4 Configuring analog outputs (AOi)

Function

The following can be set for each analog output:

- Measured value to be output (internal source of the measured value)
- Whether one or two output ranges are to be used
- Start and end values of the output ranges
- The "live zero" (zero)

Procedure

1. Call up menu: BCU/Parameter/I/O/Analog outputs (AOi).

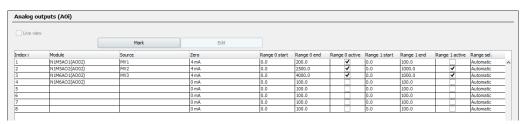


Figure 34: Menu "Analog outputs (AOi)" – Table (example)

- Deactivate Live View.
- 3. Mark desired Table rows.
- 4. Select Edit.

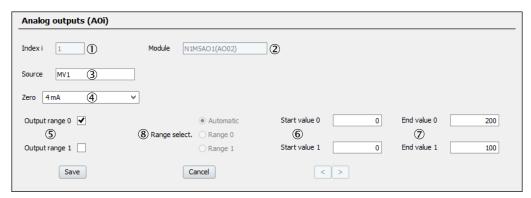


Figure 35: Menu "Analog outputs (AOi)" - Edit (example)

- ① Connection number connection (1 = AO1, 2 = AO2 etc.)
- 2 Internal I/O address¹
- Internal source of output value (see table 4, page 39)
- 4 Electronic zero point of output signal²
- \square = output range X used during operation³
- 6 Physical value corresponding to electronic zero point
- Physical value corresponding to output signal "20 mA"⁴
- 8 Automatic, see "Range selection automatic", page 39 Range 0/Range 1 = output range set fixed
- Only analog outputs with a module identifier are present in the GMS800 (see "Number of I/O connections", page 34).
- 4 mA (F: 0 mA / C: 2 mA) means: Analog output outputs 0 mA when status flag "F" (fault) is activated. Analog output outputs 2 mA when status flag "C" (check) is activated.
- Output range 1 is used automatically when no output range is marked "active"; automatic output range switch-over is active when both output ranges are "active" (see "Range selection automatic", page 39).
- ⁴ For automatic output range switch-over, end value 1 must be larger than end value 0.

Table 4: Signal value sources for analog outputs

Tag	Function	Indices
MVi	Current measured value MVi ¹	i = 1 12
MViMPj	Measured value MVi from measuring point MPj ¹	i = 1 12 j = 1 8

- 1 Explanations, see "Measured value configuration", page 47.
- 5. Enter desired data.
- 6. Select Save.

Range selection automatic

- The smallest output range is used automatically when the current measured value is within this output range (resp. in the output range with the smallest measurement span).
- The larger output range is activated automatically when the measured value exceeds the smaller output range.
- The smaller output range is activated again when the measured value is within the smaller output range again and underflows the limit of the smaller output range by 10% (relative to the measurement span of the smaller output range).

9 Adjustment functions

9.1 Configuring test gases (Test gas Table)

Function

The Test gas Table is the basis for adjustments. 12 different test gas settings can be programmed. Each test gas setting can be used for up to 8 components. The test gas settings can also be used for validation measurements.

NOTE

- The same real test gas can be used in several test gas settings. This allows using a certain test gas for different adjustment procedures.
- Recommendation: Only program one adjustment or validation function in each test gas setting.
- Suitable test gas settings are normally programmed at the manufacturer's factory.

Procedure

1. Cal up menu: BCU/Parameter/Test Gas Table.

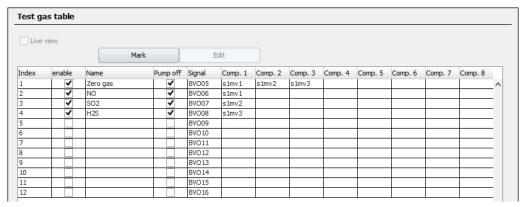


Figure 36: Menu "Test Gas Table" - Table (example)

- 2. Deactivate Live View
- 3. Mark desired Table rows.
- 4. Select Edit.

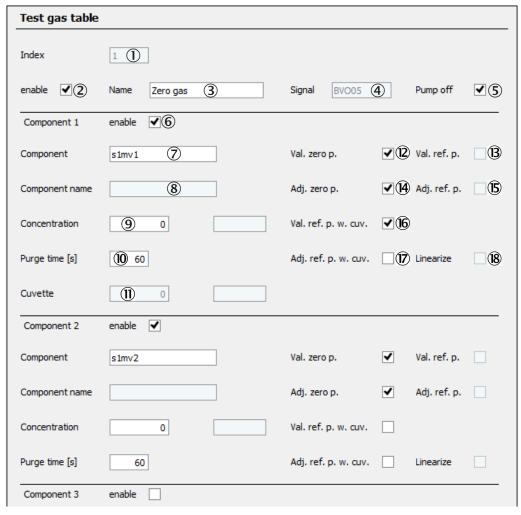


Figure 37: Menu "Test gas Table" – Edit (example)

- 1 Test gas number (cannot be changed).
- 2 \square = this test gas can be used for adjustments/validations.
- (3) Test gas name (freely selectable text, max. 20 characters).
- 4 Boolean variable for controlling this test gas (cannot be changed).
- (5) \square = gas pump switched off automatically when this test gas is used.
- **(6**) \square = this test gas can be used for the components specified.
- Tag of component for which this test gas is to be used.1 7
- **(8**) Component name in Sensor module (cannot be changed).
- **(9**) Test gas set point value in the measuring component physical unit.
 - ▶ Use the decimal point (.) as decimal character.
- 10 Wait time after switching to this test gas. The measurement for the adjustment / validation first starts after the flush time / wait time.2
- (11) Cuvette concentration of the adjustment cuvette
- (12) \square = test gas used for zero point validations.
 - Simultaneous use for reference point validations not possible.
- (13) \square = test gas used for reference point validations. Simultaneous use for zero point validations or reference point validations with
- (14) \square = test gas used for zero point adjustments.

adjustment cell not possible.

- Simultaneous use for reference point adjustments not possible.
- (15) \square = test gas used for reference point adjustments. Simultaneous use for zero point adjustments or reference point adjustments with adjustment cell not possible.
- **16**) \square = test gas used for reference point validations with adjustment cuvette. Simultaneous use for reference point validations not possible.

- **(17**) \square = test gas used for reference point adjustments with adjustment cuvette.
 - Simultaneous use for reference point adjustments not possible.
- (18) \square = test gas used for linearity adjustments. Simultaneous use for other adjustments not possible.
- Tag schema: SiMVj (i = Sensor module number, j = measured value number in Sensor module)
- The longest flush time is effective when the test gas is used for several components.

NOTE

Settings are first effective after Save has been selected.

9.2 Performing manual adjust

Function

For "manual adjust", a single adjustment or validation procedure is selected and started manually.

NOTE

The standard setting with checkbox "Automatic" selected (see figure 38, page 43) runs with the test gas fed automatically via solenoid valves controlled by the digital outputs of the device. The controlling output is defined in each test gas setting ("Action on start", see "Configuring test gases (Test gas Table)", page 40). The test gas can however also be fed manually.

Procedure

- Inform connected stations that measuring operation will be interrupted.
- Call up menu: BCU/Maintenance/Manual adjust.
- Select the measuring component for which this procedure is to be applicable ([<<]
- 3. Select desired function ([<<] [>>]).
- The Start button is active when a suitable test gas setting has been found for the measuring component and function combination.
- Select Start.

With manual test gas feed

- Current status = Test gas
- 5 Feed suitable test gas into the sample gas inlet of the device.
- 7 Feed the sample gas again into the sam ple gas inlet.1
- 8 Wait until Stop is shown as current status.
- Manual adjust is completed.
- Alternative (if a further manual adjust should follow): The test gas for the next manual adjust

Table 5: Process flow phases during manual adjust

Actual state	Internal function	
Stop	Function paused	
Test gas Wait until flush time elapses (after switching to test		
Measure	Determine measured values with test gas	
Calculate	Determine the mean value during the measurement time, calculate deviation from set point value, adapt adjustment	
Sample gas	Wait until flush time elapses (after switching to sample gas)	

With automatic test gas feed

- The automatic procedure starts. Current status = part of the procedure actually running (see table 5, page 42)
- 6 Wait until Sample gas is shown as current 5 Wait until Stop is shown as current status.
 - Manual adjust is completed.

Table 6: Information in menu Manual adjust during the procedure

Designation	Significance	
Actual state	Part of procedure currently running (see table 5, page 42)	
Measured value	Current measured value of component	
Actual countdown (SCCGi)	Name of active countdown timer	
Remaining time	Remaining time of active countdown timer	

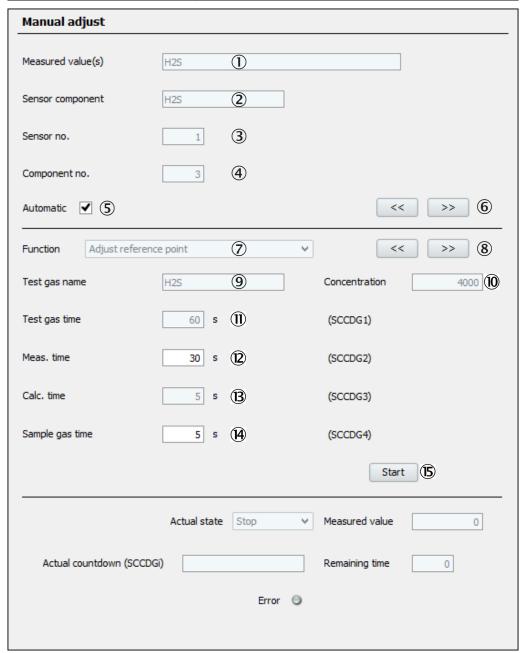


Figure 38: Menu "Manual adjust" (example)

- ① Name of measured values calculated from this sensor component
- ② Measuring component for which this manual adjust is applicable
- 3 Number of Sensor module with which the measuring component is measured
- 4 Number of the sensor component in the Sensor module
- \square = standard setting: Adjustment runs with preset time sequences.
 - ☐ = adjustment steps started singly by the user (manual test gas feed).Select measured value(s)
- ② Adjustment or validation to be performed (options, see figure 37, page 41)
- Select function

6

- Name of test gas to be used¹
- Set point of test gas / concentration of adjustment cuvette
- ① Delay time after switching to the test gas; measurement starts when this delay has elapsed
- Determines how long measured values of the test gas are measured²
- Internal interval to compute the values measured
- Delay time after switching to sample gas; the manual adjust has then completed after this time has elapsed
- **(b)** Start selected manual adjust
- Empty box: No suitable test gas setting programmed for the selected function
- 2 Actual value for the adjustment = mean value of measured values within the measuring duration

Result

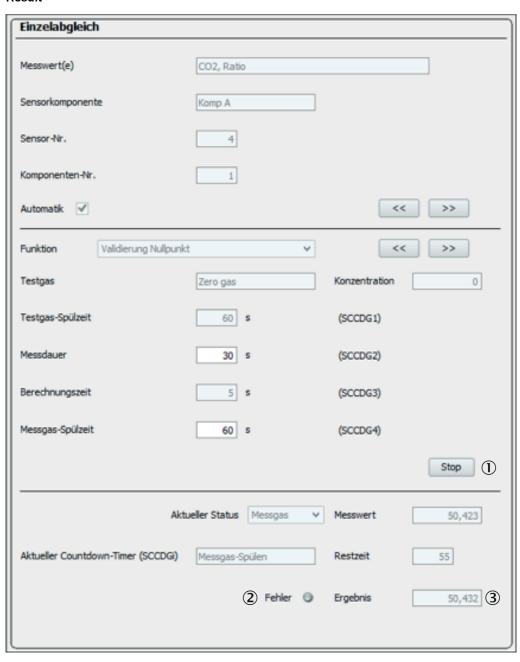


Figure 39: Menu "Manual adjust" with result (example)

- ① Cancel active manual adjust
- 2 Error is displayed when no result is available. Erroneous sequence or drift exceeded.
- The measured actual measured value

9.3 Automatic adjustments/validations

9.3.1 Function of automatic adjustments/validations

8 adjustment and validation procedures that can run fully automatically can be programmed. Each procedure uses one of the test gases for which parameters have been set in the Test Gas Table (see "Configuring test gases (Test gas Table)", page 40).

Which measuring components are to be adjusted or validated with the procedure and which adjustment or validation function is to be performed can be programmed. Several components can be adjusted in one function.

9.3.2 Start options

- Manual start:
 - Use menu **Operator commands** (see "Starting adjustment/validation (operator commands)", page 25).
- Automatic start (in regular intervals):
 Use a cyclic trigger in the start condition (see "Setting a cyclic trigger", page 90).
- Remote controlled start:
 Use the value of a Boolean variable (BVIi) to control the value of a digital input (see "Boolean variables (BVIi) input signals", page 81).
- Programmed start conditions:
 Calculate the value of a Boolean variable (BVIi) with a formula (see "Boolean variables (BVIi) input signals", page 81).

Layout of adjustment and validation results, see "Adjustment results", page 17.

9.3.3 Programming automatic adjustments/validations

1. Call up menu: BCU/Parameter/Adjustment/Validation.

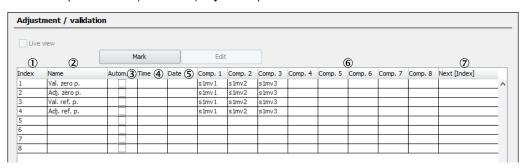


Figure 40: Menu "Adjustment/Validation" - Table (example)

- ① Index number of adjustment or validation procedure
- ② Programmed name
- 4 Start time of next automatic function
- Start date of next automatic function
- 6 Component X addressed by the respective function
- Number of the next sequential function that starts (only when procedures are chained)
- 2. Deactivate Live View.
- 3. Mark desired Table rows.
- 4. Select Edit.

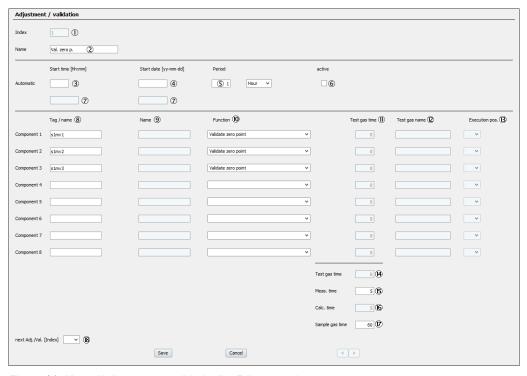


Figure 41: Menu "Adjustment / validation" – Edit (example)

- ① Index number of adjustment or validation procedure
- 2 Name of this procedure (freely selectable text)

Settings for automatic starts of this procedure:

- Time of first start of this procedure (format: hh:mm = hours:minutes)
- Date of first start of this procedure (format: yy:mm:dd = year-month-day)
- ⑤ Time interval in which this procedure starts automatically (hours, days or weeks).
- **6** \square = starts are activated (time-controlled starts).
- The fields under Start time and Start date show the next start.

Component X (up to 8 components can be managed by this procedure.):

- 8 Component tag
- Component name in the Sensor module
- (10) Function selected for this component¹
- (II) Flush time set in test gas settings (information)
- Test gas name in test gas settings (information)
- Sequence in procedure execution²
- Test gas flush time for this adjustment/validation procedure³
- Duration of measurements (seconds)⁴
- (6) Internal processing time (drift calculation, data storage)
- (f) Flush time with sample gas after the adjustment (seconds)⁵
- As required: Index number of procedure to be started automatically after this procedure.⁶
- When the same function is selected for all components and the same test gas is planned, the function is performed within the procedure simultaneously for all components. Otherwise the functions are performed sequentially within the procedure.
- ² Functions with identical "execution pos." run at the same time.
- ³ When the same test gas is used for all functions: The longest individual test gas flush time (will be used automatically by the procedure). Otherwise: "0" (= individual test gas flush times are applicable).
- 4 The mean value of the measured values during the measuring time is used as actual value for the measurement.
- ⁵ Procedure status is first terminated after this flush time.
- 6 Starts immediately after this procedure has terminated.

Layout of adjustment and validation results, see "Adjustment results", page 17.

10 Measured value configuration

10.1 Functions for measured values

10.1.1 Programming measured values (information)

All measured values displayed and output by the BCU are created by the assignment of a value to an internal measured value variable (MVi). The value is normally the measurement signal of a Sensor module (assignment: MVi = SiMVj).

Formulas can however also be programmed to define a measured value. This allows conversions, e.g. with constant factors or dynamic computations with other measured variables, e.g. with the pressure or an external measured value.

NOTE

These options are also available with "help values" (see "Configuring help values", page 50).

10.1.2 Displaying measured values

Hiding a measured value

Measured values not marked as "active" are neither displayed nor output.

Decimal places

The number of decimal places with which a measured value is displayed on the BCU can be set in a menu. This entry is also valid for the measuring screens in SOPAS ET.

NOTE

- Configuring measuring screens, see "Measuring screens in SOPAS ET", page 29
- Selecting a measuring screen, see "Measuring screen", page 13

10.1.3 Limit values

Two limit values can be programmed for each measured value. A message is activated when the measured value is beyond a limit value. The status flag to be activated can be set respectively.

10.1.4 Measured value mask

A measured value mask serves to "hide" measured values in a certain value range. The constant "hold value" is then output instead of a current measured value within the range set.

The measured value mask affects the analog output of the measured value, digital outputs and measured value displays.

CAUTION

Risk of undesired effects with connected stations

The measured value displayed within the masked range does not normally correspond to the current measured value. All measuring screens display the current measured value again immediately as soon as the measured value leaves the masked range. This effect also occurs in the reverse direction.

► Consider the effect of the measured value mask when the measured value is used by external controllers.

10.2 Configuring measured values

Procedure

1. Call up menu: BCU/Parameter/Measured values (MVi).

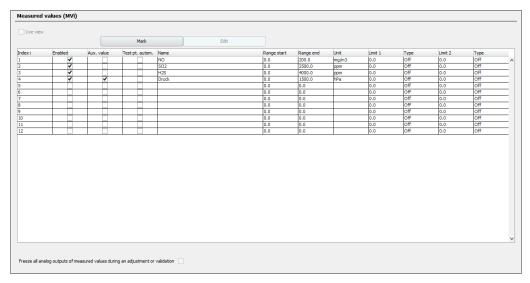


Figure 42: Menu "Measured values (MVi)" – Table (example)

- 2. Deactivate Live View.
- 3. Mark desired Table rows.
- 4. Select Edit.

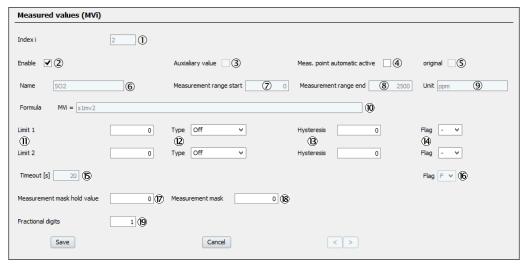


Figure 43: Menu "Measured values (MVi)" – Edit (example)

- ① Consecutive number (1 = BV01, 2 = BV02 etc.)

- (5) The measured value configuration relative to name, unit and measured value follow the source (sensor measured value)
- 6 Programmed name of measured value
- The start value of physical measuring range
- 8 End value of physical measuring range
- Programmed physical unit for measured value
- 10 Formula for assigning or calculating measured value²
- ① Limit value³

- Off: Limit value not active
 - Overflow (+): Limit value message is active when the measured value is greater than the limit value
 - Underflow (+): Limit value message is active when the measured value is less than the limit value
- B Hysteresis³⁴
- This flag is activated for the measured value when the measured value is beyond the limit value ("-" in flag = no flag activation).
- Programmed time limit value for an internal failure of the measurement signal or the source value for this measured value.
- 6 Activated flag when time limit value overflown.
- Start value³ for using the measured value mask. Also serves as output value in the measurement value mask range.⁵
- B Effective range³ of the measured value mask. Valid as from the start value; positive or negative value possible.
- Number of decimal places.
- 1 Explanation, see "Function of the measuring point automatic", page 49
- Explanation, see "Functions for measured values", page 47
- 3 In the physical unit.
- Determines the switching point at which the limit value message is deactivated again. The effective direction is automatically correct for "overflow" and "underflow".
- 5 Explanation, see "Measured value mask", page 47
- 5. Enter desired data.
- 6. Select Save.

10.3 Measuring point automatic

10.3.1 Function of the measuring point automatic

Measuring point switching

Measuring points are extraction points for sample gas. Using the "measuring point automatic", the BCU can control up to eight measuring points automatically (prerequisites, see "Prerequisites for the measuring point automatic", page 49).

Hold functions for analog outputs

When the measuring point automatic is activated for a measured value (see "Configuring measured values", page 48), internal additional measured values of the measuring points (MViMPj) also exists apart from the measured value (MVi). These measured values of the measuring points can be output via analog outputs. During the measuring duration of the measuring point (see "Configuring the measuring point automatic", page 50), the current value measured by the GMS800 is output as measured value. The last measured value measured with this measuring point is output constantly during the remaining time.

NOTE

An identifier of the current measuring point is shown in the measuring screens and on the BCU display when measuring point automatic is active.

10.3.2 Prerequisites for the measuring point automatic

- The GMS800 has a digital output for each measuring point. The digital output is configured for the measuring point (see "Configuring digital outputs (D0i)", page 35).
- A mechanism is installed outside the GMS800 that switches the sample gas path for the measuring point (e.g. a solenoid valve). The associated digital output controls this mechanism.
- At least two measuring points are configured and switched to "active" (see "Configuring the measuring point automatic", page 50).

NOTE

Digital outputs for measuring point automatic are controlled with tag MPiS (see "Configuring digital outputs (DOi)", page 35).

10.3.3 Configuring the measuring point automatic

Procedure

1. Call up menu: BCU/Parameter/Measuring point automatic".



Figure 44: Menu "Measuring point automatic" - Table (example)

- 2. Deactivate Live View.
- 3. Mark desired Table rows.
- 4. Select Edit.

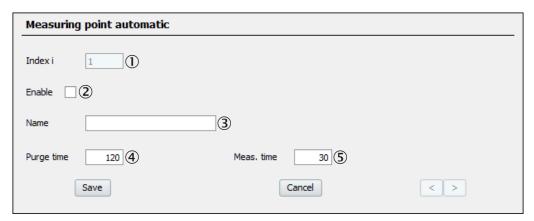


Figure 45: Menu "Measuring point automatic" – Edit (example)

- ① Consecutive number $(1 = MP1, 2 = MP2 \text{ etc.})^1$
- \square = this measuring point is used by the measuring point automatic
- 3 Measuring point name
- 4 Wait time after switching to this measuring point²
- Measuring time with sample gas from this measuring point^{3 4}
- Determines measuring point sequence during switching.
- ² Criterion: Response time + T₉₀%.
- 3 Select as required.
- 4 Flush time + measuring time = activation time for the digital output = total time for this measuring point.
- 5. Enter desired data.
- 6. Select Save.

10.4 Configuring help values

Function

Some Sensor modules need measured values from other sources for their measuring function, e.g. the current pressure. Such measured values are "help values".

The menu for a help value defines:

- Measured value source
- Target to which the help value is sent internally.

Requirements

The following must be known to configure the help values:

- Which fitted Sensor module needs which help values
- Tags of the respective measured values of the Sensor module
- The associated help value number in the Sensor module
- Help value source tag.

Procedure

1. Call up menu: BCU/Parameter/Variables/Help values (SjHVk).

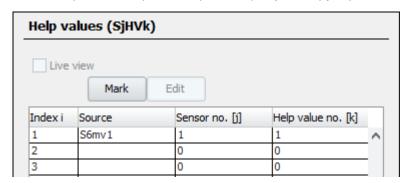


Figure 46: Menu "Help values (SjHVk)" – Table (example)

- 2. Deactivate Live View.
- 3. Mark desired Table rows.
- 4. Select Edit.

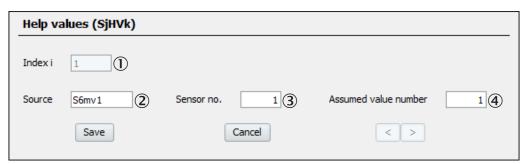


Figure 47: Menu "Help values (SjHVk)" – Edit (example)

- ① Consecutive number (1 = HV1, 2 = HV2 etc.)
- (2) Internal identifier (tag) of the help value source¹
- 3 Internal identifier of the Sensor module
- 4 Help value identifier in the Sensor module
- Explanation, see "Functions for measured values", page 47.
- 5. Enter desired data.
- 6. Select Save.

Modbus functions BCU Basic Control Unit

11 Modbus functions

11.1 Introduction to the Modbus protocol

Function

Modbus is a communication standard for digital controls to create a connection between a "Master" device and several "Slave" devices. The Modbus protocol only defines the communication commands, not their electronic transfer. It can therefore be used with differing digital interfaces.

Command structure

Device address	Function code	Function data	Checksum
(address)	(function)	(data)	(check sum)

- The device address is set individually for each connected device.
- Function codes are specified by the Modbus standard. For example, they order the slave to output device data (Read) or to change internal states (Force).
- The function data contain the additional information concerning the function code. This information is device-specific, i.e. it has to be defined by the manufacturer. Function code + function data form the command to be performed by the slave.
- The checksum is used to validate the transmitted data. It is automatically calculated by sender and receiver. If the results are identical, data transmission was correct.

Slave device response

Normally, the slave will respond to a command by sending an echo with the same function code and the function data containing the requested information. For error messages, the function code is modified and the function data contain the error code.

NOTE

Further information on the Modbus protocol: http://www.modbus.org.

11.2 Modbus specifications with the BCU Basic Control Unit

11.2.1 Installing the Modbus connection

Operating modes / interfaces supported

The Modbus can be operated

- in TCP mode via the Ethernet interface
- in RTU mode via the RS485 interface.

Interface	Parameter	Specification
LAN/Ethernet (TCP)	Port:	Adjustable ¹
RS485	Mode:	RTU
	Baud rate:	9600 or 19200
	Parity:	Even, uneven or none

 $^{^{1}}$ Via SOPAS ET or via the display (\rightarrow see "BCU Basic Control Unit" Operating Instructions).

Procedure

- Check which Modbus mode is set (see "Checking Modbus activation", page 28).
- 2 When TCP is set:
 - ► Connect the external Modbus system to the Ethernet interface¹ (see "Creating a network connection", page 9).
- 2 When RTU is set:
 - ► Connect the external Modbus system to the RS485 interface¹.
 - ► Match the interface parameters on all connected devices.

Position \rightarrow see Additional Operating Instructions of the enclosure.

11.2.2 Modbus parameters

- The GMS800 with the BCU runs as Slave.
- Maximum 5 Modbus commands per second are allowed (Modbus interval > 200 ms).
- 3 different addressing options are available:
 - 1 Standardized register assignment for Modbus outputs (already programmed) (see "Standardized register assignment for Modbus outputs", page 54)
 - 2 Modbus registers that can be set individually for specific information (see "Modbus outputs, configurable individually", page 56 as well as see "Modbus inputs, configurable individually", page 60)
 - 3 Interface in accordance with VDI 4201-3 (see "Assignment for communication in accordance with VDI 4201-3", page 63)
- The Modbus parameters can be configured in user level "Service" (see "Checking Modbus activation", page 28)

NOTE

The complete Address Table can be obtained from the product management.

11.2.3 Data formats and Modbus identification

Туре	Description
String	Length: 32 bytes; Storage: In 16 registers. All registers receive a register address so that they can be accessed with the read and write functions for Holding registers.
Float	Length: 32 bits; Storage: In 2 registers (IEEE 754). Register n: SEEEEEEE EMMMMMM, Register n+1: MMMMMMM MMMMMMM (S = Sign-Bit, E = Exponent, M = Mantissa)
USShort	Length: 16 bits. Storage: In 1 register.
USLong	Length: 32 bits. Storage: In 2 registers. Both registers receive a register address so that they can be accessed with the read and write functions for registers.
Boolean	Length: 1 bit. The group of 5 status bits belonging to the measured value are stored in a register. Each status bit receives a coil address to enable accessing via the read and write functions for coils. In addition, the common register receives a register address. This allows reading out and writing measured values together with status bits in one block with the read and write functions for Holding registers.

Modbus identification

Register address (holding and input)	Туре	Function	Access ¹
0001 0016	String	Sensor identification	R
0017 0032	String	Software identification	R
0033 0048	String	Device identification	R

R = Read (value can be retrieved via Modbus).
W = Write (value can be changed via Modbus).

Modbus control word

Register address (holding and input)	Coil address	Туре	Function	Access ¹
1369 1370	16444 16475	USLong / Boolean	Control word	R/W

R = Read (value can be retrieved via Modbus).
 W = Write (value can be changed via Modbus, only for Holding registers).

11.3 Function codes supported

Code	Designation	Function
0x01	Read Coils Status	Read binary values
0x03	Read Holding Registers	Read 16 bit values

Code	Designation	Function
0x04	Read Input Registers	Read 16 bit values
0x2B	Read Device Identification	Request for software version, serial number, device name and measuring components including display range end value from the Master to the Slave
0x08	Diagnostics ¹	0x00: Echo
		0x0A: Reset all counters
		0x0C: Number of CRC errors
		0x0D: Number of error replies
		0x0E: Number of inquiries
0x0F	Write multiple Coils	Write binary values
0x10	Write multiple Registers	Write 16 bit values

Only when connected via an RS485 interface

11.4 Modbus addresses

11.4.1 Standardized register assignment for Modbus outputs

Information on individual measuring components

Register assignment in the Table page 54 has already been implemented in all GMS800 devices as from software version 4.0. The measured value sequence depends on the GMS800 configuration.

"Function code $0\mathrm{x}04$ - Read Input Registers" is used in the standardized register assignment.

NOTE

• The Modbus function must be activated (see "Checking Modbus activation", page 28).

Output	Register address (input)	Туре	Function	Remark	Acce ss ¹
Meas-	5000 5001	Float	Measured value	Measured values	R
ured value 1	5002	USShort	Status	Status ²	R
value 1	5003	USShort	Free		R
	5004 5005	Float	Zero point value	Measured value of zero point adjustment	R
	5006 5007	Float	Reference point value	Measured value of reference point adjustment	R
	5008 5009	Float	Measuring range start		R
	5010 5011	Float	Measuring range end		R
Meas-	5050 5051	Float	Measured value		R
ured value 2	5052	USShort	Status		R
Value 2	5053	USShort	Free		R
	5054 5055	Float	Zero point value		R
	5056 5057	Float	Reference point value		R
	5058 5059	Float	Measuring range start		R
	5060 5061	Float	Measuring range end		R

etc..↓

Meas-	5550 5551	Float	Measured value	R
ured value	5552	USShort	Status	R
12	5553	USShort	Free	R
	5554 5555	Float	Zero point value	R
	5556 5557	Float	Reference point value	R
	5558 5559	Float	Measuring range start	R
	5560 5561	Float	Measuring range end	R

R = Read (value can be retrieved via Modbus).
 W = Write (value can be modified via Modbus).

Status information for individual measured values

The associated status information is made available for each measured value in register 5xx2, decoded in single bits.

Bit No.	Function	Remark
0	Failure	Bit = 1: active
1	Maintenance request	Bit = 1: active
2	Function check	Bit = 1: active
3	Uncertain	Bit = 1: active
4	Extended information	Bit = 1: active
5	Measuring range underflown (by more than 10%)	Bit = 1: active
6	Measuring range overflown (by more than 10%)	Bit = 1: active
7	Maintenance mode	Bit = 1: active
8	Free	Bit = 1: active
9	Limit value	Bit = 1: active
10	Free	Bit = 1: active
11	UV lamp intensity alarm	Bit = 1: active, only for DEFOR
12	Adjustment	Bit = 1: active
13	Validation	Bit = 1: active
14	Free	Bit = 1: active
15	Measuring component activated	Bit = 1: active

Information on complete device

Information on the complete analyzer is shown in address are 6000 ... 6015.

² Status: Bit field, see "Status information for individual measured values", page 55

Output	Register address (Input)	Туре	Function	Remark	Acce ss
Com-	6000	USShort	Year of current date	> 2000	R
mon OUT	6001	USShort	Month of current date	1 - 12	R
001	6002	USShort	Day of current month	1-31	R
	6003	USShort	Hour of current time	0 - 23	R
	6004	USShort	Minute of current time	0 - 59	R
	6005	USShort	Second of current time	0 - 59	R
	6006 6007	USLong	Failure [complete]	Bit Field ¹	R
	6008 6009	USLong	Maintenance necessary [complete]	Bit Field ¹	R
	6010 6011	USLong	Function check [complete]	Bit Field ¹	R
	6012 6013	USLong	Uncertain [complete]	Bit Field ¹	R
	6014 6015	USLong	Extended information [complete]	Bit Field ¹	R

¹ These data fields/register addresses contain additional information. This allows capturing to which Measuring module the message is to be assigned (see following Table).

Bit No.	Function	Remark
0	BCU (System)	Bit = 1: active, collective signal
1	Sensor/Module 1	Bit = 1: active, collective signal
2	Sensor/Module 2	Bit = 1: active, collective signal
3	Sensor/Module 3	Bit = 1: active, collective signal
4	Sensor/Module 4	Bit = 1: active, collective signal
5	Sensor/Module 5	Bit = 1: active, collective signal
6	Sensor/Module 6	Bit = 1: active, collective signal

11.4.2 Modbus outputs, configurable individually

Individual information can be communicated via Modbus using a further address space.

NOTE

This function must be configured in SOPAS ET.

• Information on the Modbus inputs that can be configured individually (see "Modbus inputs, configurable individually", page 60)

11.4.2.1 Addresses of individual Modbus outputs

Output	Register address (hold- ing and input)	Coil address	Туре	Function	Access ¹
MB01	67 68	-	USLong	Integer value	R
	69 70	-	Float	Floating-point value	R
	71 (Bit 0)	262	Boolean	Failure (F)	R
	71 (Bit 1)	263	Boolean	Maintenance request (M)	R
	71 (Bit 2)	264	Boolean	Function check (C)	R
	71 (Bit 3)	265	Boolean	Uncertain (U)	R
	71 (Bit 4)	266	Boolean	Extended information (E)	R

[&]quot;Function code 0x03 - Holding Registers" is used in the individually configurable register assignment.

BCU Basic Control Unit Modbus functions

Output	Register address (hold- ing and input)	Coil address	Туре	Function	Access ¹
MB02	88 89	_	USLong	Integer value	R
	90 91	-	Float	Floating-point value	R
	92 (Bit 0)	523	Boolean	Failure (F)	R
	92 (Bit 1)	524	Boolean	Maintenance request (M)	R
	92 (Bit 2)	525	Boolean	Function check (C)	R
	92 (Bit 3)	526	Boolean	Uncertain (U)	R
	92 (Bit 4)	527	Boolean	Extended information (E)	R

etc.

MB024	550 551	-	USLong	Integer value	R
	552 553	-	Float	Floating-point value	R
	554 (Bit 0)	6265	Boolean	Failure (F)	R
	554 (Bit 1)	6266	Boolean	Maintenance request (M)	R
	554 (Bit 2)	6267	Boolean	Function check (C)	R
	554 (Bit 3)	6268	Boolean	Uncertain (U)	R
	554 (Bit 4)	6269	Boolean	Extended information (E)	R

R = Read (value can be retrieved via Modbus).
W = Write (value can be changed via Modbus).

11.4.2.2 Configuring Modbus outputs

Function

The data the GMS800 sends via the Modbus interface after an inquiry command can be programmed. Here, the outputs (Modbus outputs, MBO) are assigned the desired variables and values. Available are:

- The measured values
- All available variables, see "Defining variables", page 77

24 data outputs can be configured.

NOTE

- The Modbus function must be activated (see "Checking Modbus activation", page 28).
- Technical information on the Modbus interface, see "Modbus functions", page 52.

The following Figure (see figure 48, page 58) shows the assignment of the outputs preprogrammed at the factory. This configuration can be adapted to individual customer requirements.

Procedure

1. Call up menu: BCU/Parameter/I/O/Modbus outputs (MBOi).

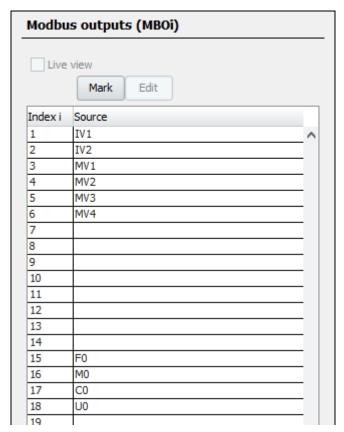


Figure 48: Menu "Modbus outputs" - Table (example)

- 2. Deactivate Live View.
- 3. Mark desired Table rows.
- 4. Select Edit.

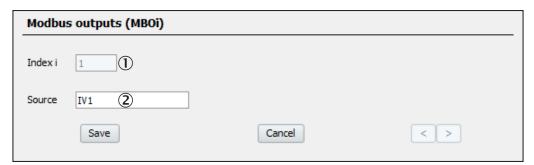


Figure 49: Menu "Modbus outputs" – Edit (example)

- ① Modbus output number
- 2 Possible sources, see context help in SOPAS ET
- 5. Enter desired source code.
- 6. Select Save.

The measured values (MVi) are assigned directly to the outputs. The status of a measured value can also be recorded using the Read Coils.

Example

The status of the complete device is to be shown in a variable.

- Call up menu: BCU/Parameter/Formulas/Formulas (see "Menu functions for formulas", page 74)
- 2. Define variable: IV1=(F0)|(M0<<1)|(C0<<2)|(U0<<3)

BCU Basic Control Unit Modbus functions

Figure 50: Example: Configure Modbus output (Part 1)

- 3. Call up menu: BCU/Parameter/I/0/Modbus outputs (MBOi)
- 4. Assign defined variable to Modbus output: MBO1 = IV1

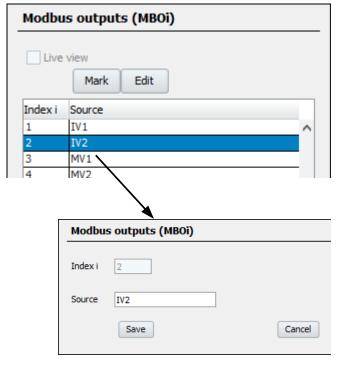


Figure 51: Example: Configure Modbus output (Part 2)

11.4.3 Modbus inputs, configurable individually

Individual information can be communicated via Modbus using a further address space.

NOTE

This function must be configured in SOPAS ET.

• Information on the Modbus outputs that can be configured individually (see "Modbus outputs, configurable individually", page 56)

11.4.3.1 Addresses of the individual Modbus inputs

Function

Additional register addresses are available to enter external signals.

NOTE

After the information has been assigned to the register, an internal identifier should be defined for the documentation (see "Identifying Modbus inputs", page 60).

Input	Register address (holding and input)	Coil address	Туре	Function	Access ¹
MBI1	1371 1372	-	Float	Floating-point value	R/W
	1373 (Bit 0)	16476	Boolean	Failure (F)	R/W
	1373 (Bit 1)	16477	Boolean	Maintenance request (M)	R/W
	1373 (Bit 2)	16478	Boolean	Function check (C)	R/W
	1373 (Bit 3)	16479	Boolean	Uncertain (U)	R/W
	1373 (Bit 4)	16480	Boolean	Extended information (E)	R/W
MBI2	1374 1375	-	Float	Floating-point value	R/W
	1376 (Bit 0)	16481	Boolean	Failure (F)	R/W
	1376 (Bit 1)	16482	Boolean	Maintenance request (M)	R/W
	1376 (Bit 2)	16483	Boolean	Function check (C)	R/W
	1376 (Bit 3)	16484	Boolean	Uncertain (U)	R/W
	1376 (Bit 4)	16485	Boolean	Extended information (E)	R/W

etc.

MBI24	1440 1441	-	Float	Floating-point value	R/W
	1442 (Bit 0)	16591	Boolean	Failure (F)	R/W
	1442 (Bit 1)	16592	Boolean	Maintenance request (M)	R/W
	1442 (Bit 2)	16593	Boolean	Function check (C)	R/W
	1442 (Bit 3)	16594	Boolean	Uncertain (U)	R/W
	1442 (Bit 4)	16595	Boolean	Extended information (E)	R/W

¹ R = Read (value can be retrieved via Modbus) W = Write (value can be modified via Modbus), only for Holding registers.

11.4.3.2 Identifying Modbus inputs

Function

An individual identifier can be entered for each Modbus input.

NOTE

Consider the send procedure with the function code according to section 11.3

Procedure

1. Call up menu: BCU/Parameter/I/O/Modbus inputs (MBIi).

BCU Basic Control Unit Modbus functions

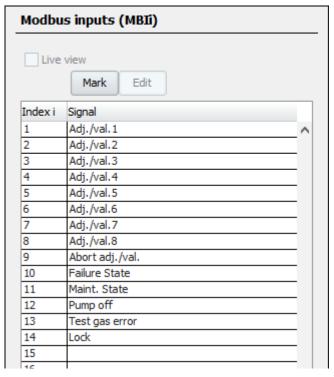


Figure 52: Menu "Modbus inputs" – Table (example)

- 2. Deactivate Live View.
- 3. Mark desired Table rows.
- 4. Select Edit.
- 5. As required: Enter text for signal.



Figure 53: Menu "Modbus inputs" – Edit (example)

- Modbus input number
- 2 User identifier for this Modbus input¹
- Any text. Not used internally.

The signal processing of the Modbus inputs (MBIi) within the Analyzer must then be configured.

Example

The first adjustment function within the device is to be configured with the Modbus input (MBIi).

The input signals via the Modbus (Modbus inputs, MBIi) must be assigned the Boolean values (BVi) (see "Formulas", page 73). This is normally done by the Service technician during start-up.

- 1. Call up menu: BCU/Parameter/Formulas/Formulas (see "Menu functions for formulas", page 74)
- 2. Define variable and assign to the Modbus output: BV1 = MBI1

Modbus functions BCU Basic Control Unit

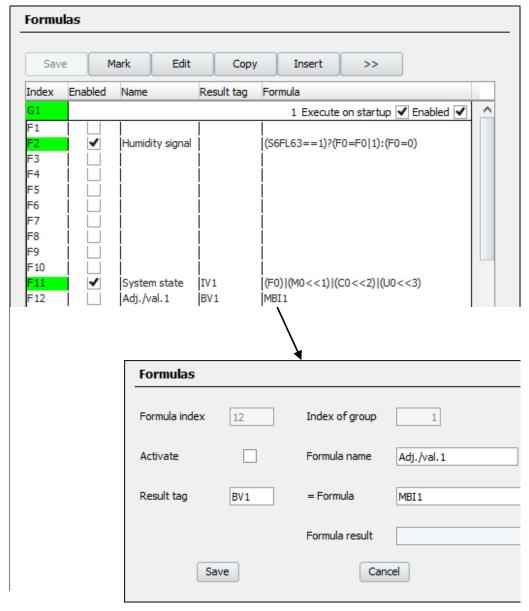


Figure 54: Example: Configure Modbus inputs (Part 1)

- 3. Call up menu: BCU/Parameter/Variables/Boolean values input signals
- 4. Select defined variable BVI as source and assign the Boolean values Input signal: BVI1 = BV1

BCU Basic Control Unit Modbus functions

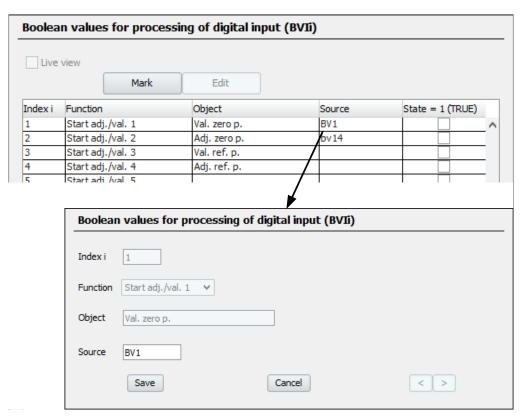


Figure 55: Example: Configure Modbus input (Part 2)

figure 55 shows as an example how "adjustment/validation 1" is started by the Modbus input, the source for BVI1 is BV1 (MBI1).

5. To start adjustment function 1 via Modbus input 1 (MBI1), write the value 1.0 (MBI1 = 1) in the register of the Modbus input 1 (1371 ... 1372).

11.4.4 Assignment for communication in accordance with VDI 4201-3

VDI 4201-3 describes the minimum requirements on automatic measuring and electronic evaluate equipment for monitoring emissions within the framework of using a digital interface with the Modbus protocol.

The GMS800 supports the required function code 43 and provides the information in accordance with the Modbus specification (http://www.modbus-ida.org).

Function code	Function	Significance
0x2B (43)	Read Device Identification	Request for software version, serial number, device name and measuring components including display range end value from the Master to the Slave

Table 7: Address assignment of device parameters for function code 43

Name	Register count	Object ID	Coding	Explanation	Contents example
Vendor Name	16	0x00	String32	Manufacturer name	Endress+Hauser
ProductCode	16	0x01	String32	Manufacturer-specific device identifier	1234567
MajorMinorRevision	16	0x02	String32	Software version	9342231_V3.00 7
ProductName	16	0x04	String32	Device identifier	GMS810
SerialNumber	16	0x80	String32	Serial number	1434005
ComponentNumber	1	0x81	16 Bit integer	Number of measured variables	8
BasisM	1	0x82	16 Bit integer	Base address of measuring block	4.000
BasisS	1	0x83	16 Bit integer	Base address of simulation data	4.200

Name	Register count	Object ID	Coding	Explanation	Contents example
BasisR	1	0x84	16 Bit integer	Base address of reference material data	4.400
Component1_Name	16	0x85	String32	Designation of the measuring component 1_Serial number_Sensor address (1-6)_Sensor type_Software address	C02 12345678_1_93 42231_3007
Component1_Range_ Start	2	0x86	32 Bit float	Physical measuring range start 11)	-
Component1_Range_ End	2	0x87	32 Bit float	Physical measuring range end 1 ¹⁾	500
Component1_Unit	16	0x88	String32	Unit of measuring component 1	mg/m3
Component2_Name	16	0x89	String32	Identifier of measuring component 2	S02
Component2_Range_ Start	2	0x90	32 Bit float	Physical measuring range start 2 ¹⁾	-
Component2_Range_ End	2	0x91	32 Bit float	Physical measuring range end 2 ¹⁾	750
Component2_Unit	16	0x92	String32	Unit of measuring component 2	mg/m2
Component3_Name	16	0x93	String32	Identifier of measuring component 3	02
etc.					

According to VDI 4201, the display range start or end of the measuring component should be output. The display range on the display of the Measuring module and the output range on the analog output can be freely configured and therefore the physical measuring range start or end is defined here.

Refer to the VDI 4201-3 standard for further information.

BCU Basic Control Unit OPC

12 OPC

NOTICE

Observe the license conditions specified in the documentation provided.

- OPC (Openness Productivity Collaboration) is a standardized software interface that allows applications from differing manufacturers to exchange data.
- The SOPAS OPC server uses DCOM technology (Distributed Component Object Model) for communication between the applications. This allows the SOPAS OPC server to exchange data with a local process or also with a remote computer connected via Ethernet (TCP/IP).
- The OPC server collects the process data from the GMS800 and makes the data available as OPC objects.
- The OPC client accesses the data made available by the OPC Server and then processes the data further.

NOTE

Installing the OPC server and "first steps" → Online Help of the OPC servers

12.1 OPC interface

Item 2	Item 3	Item 4	Comment		
Item 1: Device Login:			Login for a user level		
Run			Login for this user level with the password for this user level		
AuthorizedClien	t		Login for this user level with the password for this user level		
Service			Login for this user level with the password for this user level		
Item 1: Measur	ing_Device_1:		The physical analyzer system GMS800		
			General data of the sensor / analyzer device. For complex systems it was defined by VDI4201 working group, that only the highest level of the system will be described.		
	Device_Manufa	cturer	Manufacturer of the device		
	Software_Revis	ion	Software Version of the BCU, for example 9150883_4.000		
	Device_Ser_Num		Serial number of the system		
	Device_Name				
			Entry parameter mounting position (configurable in SOPAS ET, page: parameter - device parameter)		
		Failure_1	Status of the class Failure, for mapping see next item		
	Location	Check_1	Status of the class Check, for mapping see next item		
General_Data	Location	Out Of Spec_1	Status of the class Out Of Spec, for mapping see next item		
		Maintenance Request_1	Status of the class Maintenance Request, for mapping see next item		
		Extended_1	Status of the class Extended, for mapping see next item		
		Initiate_Maintenance			
	Maintenance	Status_Maintenance	Source of / Reason for maintenance mode, for mapping see next item		
		Description_Status_Mainte- nance			
	Initiate Restart				
	Time				
	Sample_Point_Description		Measuring point		

Item 2	Item 3	Item 4	Comment
		Component_Name	Name of measuring component
		Range_Start	Start of measuring range; number refers to physical unit
		Range_End	End of measuring range; number refers to physical unit
		Unit	Unit of measuring component
		Qualifier	
		Sample_Point	Number of current measuring point [18], when this component is enabled, measuring point automatic is running and measuring point automatic enabled for this component, otherwise 0
		Value	Measuring signal scaled to [-10000; +10000], Zero at 0; refreshing rate : minimum once per second.
		Value_Unscaled_Live	Measuring value fitting to the physical unit (requested from Nexus). In usual measuring mode: same value as "Value_Unscaled_Hold"-item
			Bit 00: Failure Bit 01: Check Bit 02: MaintenanceRequest Bit 03: OutOfSpec Bit 04: Simulation
		Status	Status of the class Failure, for mapping see item Description_Failure_1
		Otatus	Status of the class Check, for mapping see item Description_Check_1
			Status of the class Out Of Spec, for mapping see item Description_OutOfSpec_1
			Status of the class Maintenance Request, for mapping see item Description_MaintenanceRequest_1
			Status of the class Extended, for mapping see item Description_Extended_1
Measur-	Component_1	Simulation_Value	Simulated measuring signal scaled to [-10000; +10000], Zero at 0; this value is only shown via OPC. On the OPC interface it only concerns the value item (not the value_unscaled)
ing_Value		Simulation_Request	Allows switching between the submission of the actual measuring value and the simulated value:
		Control Point 4	Validation zero point
			Absolute deviation in the given unit (s. "Unit" item below), Expected_Value_Out - Current_Value
			Actual value, measured value during adjustment/validation
			Format: yyyy-mm-dd hh:mm time stamp
			False = the values of the items of this control point are not valid True = the values of the items of this control point are valid
		Control_Point_1	Set value (expected value)
			Meaning of Control_Point
Í			Unit for "Expected_Value_In", "Expected_Value_Out", "Deviation" and "Current_Value"
			New set value (expected value), only written on changing of Input_Switch from False to True
			False = do nothing True = writes the new set value (expected value = Expected_Value_In) on changing of Input_Switch from False to True
Í		Control_Point_2	Adjustment zero point
		Control_Point_3	Validation reference point
Í		Control_Point_4	Adjustment reference point
		Cal_Type_Zero	False = zero point adjustment is generally not possible True = zero point adjustment is generally possible
		Cal_Type_Span	False = reference point adjustment is generally not possible True = reference point adjustment is generally possible
	Component 2-12 correspond to Component 1		
			Test gases (only test gases, no cuvettes), only one test gas can be activated at same time
			Test gas 1
Reference	Material_1	Status	Status of gas switching False = Measuring gas True = Reference material (test gas)
		Initiate	Demand for gas switching False = Measuring gas True = Reference material (test gas)
	Material 2-12 c	orrespond to Material 1	Test gas 2

13 Specifications

13.1 Status flags

Flag	Significance		j¹
F	Failure	Error (unsafe operating state)	1
М	Maintenance request	Maintenance request	2
С	Function check	Internal function sequence ² (measuring function interrupted) / state "Maintenance"	3
U	Uncertain	Unsure state	4
E	Extended information	Extended message	
S	Group message	Group status for all associated F/M/C/U/E flags	

¹ In formula tags.

² e.g. adjustment procedure.

NOTE

Flag for limit value messages, see "Measured value configuration", page 47.

13.2 Task codes of adjustment and validation functions

Tasks (functions)

No.	Function	Reference variable	Point of the characteristic curve				
1	Validation measurement	Test gas					
2	Adjustment	Test gas	Zero point				
(3)1	(Validation measurement) ¹	Adjustment unit?	Zero point				
(4) ¹	(Adjustment) ¹	Adjustment unit ²					
5	Validation measurement	Took doe					
6	Adjustment	Test gas	Deference reint				
7	Validation measurement	Adjustment unit ²	Reference point				
8	Adjustment	Adjustinent unit					
9	Adjustment	Test gas	Linearity				
0	None of the functions running ³						
≥ 10	Abort/terminate the running function						

¹ These functions are not available for the present sensor.

Task States (sequence phases)

0	Idle
1	Flush
2	Measure
3	Calculate
4	Accept

13.3 Formula elements

Only for Sensor modules with adjustment unit (option).

Only relevant in a read tag.

13.3.1 Applicable values and states (read tags)

2

Values and states that can be used in formulas and measuring screens but can not be modified by formulas.

Exception: Variables identified with W = Write can also be written. (Remark: Variables only identified with R = Read can only be read out.)

Tag	Function	R/W¹	Type ²	Indices			
Variables ³	/ariables ³						
BVi	Value of Boolean variable BVi (BVi=[term])	R/W	В	i = 1 24			
BVSi	Value of Boolean variable BVSi ⁷	R	В	i = 1 32			
BVGi	Value of Boolean variable BVGi ⁴	R	В				
BVIi	Value of Boolean variable BVIi ⁵	R	В	i = 1 16			
BVOi	Value of Boolean variable BVOi ⁶	R	В				
IVi	Integer value (IVi=[term]) R/W		I	- i = 1 24			
RVi	Real value (RVi=[term])	R/W	R	71-124			
Process va	alues (raw values) of sensor Si						
SiMVj	Measured value j						
SiMVjRL	Measuring range start of measured value j	R	R	i = 1 6 i = 1 10			
SiMVjRU	Measuring range end of measured value j			j 1 10			
BCU statu	BCU status						
ХО	BCU group status for messages in category X	R/W	В	X =F/M/C/U ⁸			

- R = read (read/process) / W = write (write/modify, see "Programmable values and states (write tags)", page 69).
- R = floating point value (real), I = integer value (integer), B = Boolean value.
- Explanation, see "Defining variables", page 77.

 Corresponds to function status of relevant "operator settings" (see "Starting adjustment/validation (operator commands)", page 25).
- Explanation, see "Boolean variables (BVIi) input signals", page 81.
- Explanation, see "Boolean variables (BVOi) output signals", page 82.
- Explanation, see "Boolean variables (BVSi) input signals (system)", page 79.
- Explanation, see "Status flags", page 67.

Tag	Function	R/W¹	Type ²	Indices		
Input/Out	put					
Ali	Physical value ³ of analog input i					
Alil	Electronic value (0 20 mA) of analog input i	_ K	1 – 1 4			
AOi	Physical value of analog output i ⁴					
AOiO	Electronic value (0 20 mA) of analog output i	R	R	i = 1 8		
AOiR	Current output range of analog output i5					
Dli	Logical status of digital input i (after inverse.6)					
DIiI	Electronic status of digital input i	R	В	i = 1 16		
DOi	Logical state of digital output i (before inverse.6)4	K	В			
DOiO	Electronic state of digital output i ⁴					
MBIi	Value on Modbus input register	R	R	i = 1 24		
MBOi	Value on Modbus output register ⁴	R	K	1 = 1 24		
Adjustme	nts					
SiMVj- TAkTG	Test gas concentration (set point value)	R/W	R	i = 116 ⁷ j = 1 10 ⁷ k = 1/2/5/6/9 ⁷		
Status information						
MPiS	Activation state of measuring point i ⁹	R B i = 18				
MPS	Operating state for measuring point automatic ⁸	R	В			

Tag	Function	R/W¹	Type ²	Indices
MPiPPS	Activation state of measuring points advance extraction ¹⁰	R	В	i = 1 8
MPiM	Switch-on state/mode of measuring point ¹¹	R/W	В	i = 1 8
Measuring s	creen			
MVi	Measured value i	R	R	i = 1 12
MViMPj	Measured value i from measuring point j	R	R	i = 1 12 j = 1 8
MViXO	(Overall) message status of measured value i	R	В	i = 1 12 X = F/M/C/U/E/S ¹²
MViLlj	Limit value message for measured value i – limit value j	R	В	i = 1 12 j = 1 2
MViRL	Measuring range start value of measured value i	R	R	i = 1 12
MViRU	Measuring range end value of measured value i	R	R	i = 1 12

- 1 R = read (read/process) / W = write (write/modify, see "Programmable values and states (write tags)", page 69).
- R = floating point value (real), I = integer value (integer), B = Boolean value, T = (date &) time
- According to conversion programmed (see "Configuring analog inputs (Ali)", page 37).
- 4 Only usable for measuring screens (see "Configuring measuring screen contents", page 29). Use the "source" instead in formulas.
- "0" = measuring range 1, "1" = measuring range 2.
- When logical inversion is activated.
- Description of indices according to this Table (see "Description of indices for adjustments/validations", page 69)
- 8 "0" = flush, "1" = measure.
- 9 "0" = not active, "1" = currently active.
- "0" = not active, "1" = currently active. (see "Measuring point automatic", page 49)
- "0" = switched off, "1" = switched on. (see "Measuring point automatic", page 49)
- 12 Explanation, see "Status flags", page 67

Description of indices for adjustments/validations

- i = index of automatic adjustment/validation
- j = component (n-number) of automatic adjustment/validation i

k = (adjustment) function of component (n-number) of automatic adjustment/validation i (see "Tasks (functions)", page 67)

13.3.2 Programmable values and states (write tags)

Tag	Function	R/W ¹	Type ²	Indices				
Variables ³	Variables ³							
BVi	Value of a Boolean variable (BVi = [term])	R/W	В	i = 1 24				
IVi	Integer value (IVi = [term])	R/W	1					
RVi	Real value (RVi=[term])	R/W	R					
Adjustment								
SiMVj- TAkTG= [Value]	Write test gas concentration (set point) [value] = concentration (floating point value)	W	R	i = 1 16 ⁴ j = 1 10 ⁴ k = 1/2/5/6/9 ⁴				
Measuring so	Measuring screen, sequence control programs, status information							
MPiM	Switch-on state/mode of measuring point ⁵	R/W	В	i = 1 8				
BCU status				_				

Tag	Function	R/W¹	Type ²	Indices
XO	BCU group status for messages in category X	R/W	В	X =F/M/C/U ⁶

- $$\label{eq:R} \begin{split} R &= \text{read (read/process)} \: / \: W = \text{write (write/modify)}. \\ R &= \text{floating point value (real), I = integer value (integer), B = Boolean value.} \end{split}$$
- 3 Explanation, see "Defining variables", page 77
- Description of indices, see "Description of indices for adjustments/validations", page 69 "0" = switched off, "1" = switched on. (see "Measuring point automatic", page 49)
- Explanation, see "Status flags", page 67

13.3.3 Operators in formulas

Char- acters	Usage ¹	Value ²	Function				
Mathem	Mathematical operators						
+	[op1]+[op2]	R, I	Addition				
-	-[op]	R, I	Value: Inverted sign				
	[op1]-[op2]	R, I	Operation: Subtraction				
*	[op1]*[op2]	R, I	Multiplication				
/	[op1]/[op2]	R, I	Division				
**	[op1]**[op2]	R, I	Power				
%	[op1]%[op2]	R, I	Modulo (rest from division of two integer values)				
<	[op1]<[op2]	R, I, B	Less than				
>	[op1]>[op2]	R, I, B	Greater than				
<=	[op1]<=[op2]	R, I, B	Less than/equal to				
>=	[op1]>=[op2]	R, I, B	Greater than/equal to				
==	[op1]==[op2]	R, I, B	Equal to				
!=	[op1]!=[op2]	R, I, B	Unequal				
++	++[op]	R, I	[op] increment				
	[op]	R, I	[op] decrement				
()		R, I	Combination of terms (see "Priority of formula operations", page 71)				
Logical	operators	l					
&&	[op1]&&[op2]	I, B	AND				
- 11	[op1] [op2]	I, B	OR				
^^	[op1]^^[op2]	I, B	Exclusive OR (XOR)				
!	![op]	В	NOT				
Operato	rs for Boolean va	lues					
//	//[op]	В	[op] invert (toggle)				
>+	>+[op]	В	 Boolean value: Activate [op] Time variable:Start [op]³ 				
>-	>-[op]	В	 Boolean value: Activate [op] Time variable: Stop [op] (value is retained)³ 				
!+	!+[op]	В	Time variable: Restart [op] as from start value ³				
!-	!-[op]	В	Time variable: Reset [op] to start value ³				
~	~[op]	В	Build complement (invert single bits, e.g. 10 → 01)				
Substitu	tion operators (as	ssignmer	nts)				
=	[op1]=[op2]	R, I, B	Assign [op1] the value or result from [op2]				
	[op1]=[term1]		[op1] is the result from [term1]				
+=	[op1]+=[op2]	R, I	Assign with addition ([op1] = [op1]+[op2])				
-=	[op1]-=[op2]	R, I	Assign with subtraction ([op1] = [op1]-[op2])				

Char- acters	Usage ¹	Value ²	Function
=	[op1]=[op2]	R, I	Assign with multiplication ([op1] = [op1]*[op2])
/=	[op1]/=[op2]	R, I	Assign with division ([op1] = [op1]/[op2])
%=	[op1]%=[op2]	I	Assign with Modulo ([op1] = ([op1] % [op2])
&=	[op1]&=[op2]	I, B	Assign with AND ([op1] = [op1] AND [op2])
=	[op1] =[op2]	I, B	Assign with OR ([op1] = [op1] OR [op2])
^=	[op1]^=[op2]	I, B	Assign with exclusive OR ([op1] = [op1] XOR [op2])
Bit oper	ators		
<<	[op1]<<[op2]	I	Left shift
>>	[op1]>>[op2]	I	Right shift
&	[op1]&[op2]	I	AND
^	[op1]^[op2]	I	Exclusive OR
I	[op1] [op2]	I	Inclusive OR

^{1 [}op] = tag (e.g. "RV12", see "Programmable values and states (write tags)", page 69 and see "Applicable values and states (read tags)", page 68)

13.3.4 Conditions

Characters	Usage	Function
()?():()		When [term1] is TRUE, [term2] is performed otherwise [term3] is performed → (if) ? (then) : (else)

13.3.5 Formula combinations

Several terms can be performed after each other in formulas.

Terminology	Function
[term1]; [term2];; [termX]	Formula flag from several terms performed after each other. The result of the last term is the result of the formula.

13.3.6 Mathematical functions in formulas

Characters ¹	Function	Type ²
sqrt([op])	[op]-2 (square root of [op])	R
exp([op])	e ^[op]	R
log10([op])	log ₁₀ ([op]) (logarithm of base 10 of [op])	R
log([op])	log _e ([op]) (logarithm of base e of [op])	R
frac([op])	Decimal places for [op]	R
abs([op])	Absolute value for [op]	R/I
sgn([op])	Sign for [op]	I
ceil([op])	Round up [op] (example: $1.1 \rightarrow 2.0$)	I
floor([op])	Round down [op] (example: $1.9 \rightarrow 1.0$)	I
bnd([op])	 When [op] < -1: → -1 When [op] > +1: → +1 When [op] = -1 +1: No change 	R/I

^{1 [}op] = operand.

13.3.7 Priority of formula operations

The sequence of operations depends on the priority of the operators. As in mathematics, operators can be combined in brackets to regulate the sequence.

² R = floating point value (real), I = integer value (integer), B = Boolean value.

³ Usable for countdown timer and cyclic trigger.

² R = floating point value (real), I = integer value (integer).

1	()	10	^
2	++ + - ~! >- >+!-!+// (type)	11	I
3	**	12	&&
4	*/%	13	^^
5	+ -	14	П
6	<< >>	15	?:
7	< <= > >=	16	= += -= *= /= %= &= ^= =
8	== !=	17	,
9	&	18	;

13.4 Technical data

13.4.1 General data

Display:	LCD, monochrome, 63 mm x 63 mm
Operating temperature:	0 +50 °C
Storage temperature:	-25 +85°C
Degree of protection:	IP 20 ¹
Weight:	0.53 kg ²
Connection to interface module:	Ribbon cable, 26 poles, ERNI SMC plugs on both ends Max. length: 50 cm, Part No.: 6029960 (20 cm)

- ¹ Higher degree of protection depending on fitting type.
- 2 Incl. front panel.

13.4.2 Ethernet parameters

Parameter	Specification	Example
Transfer type:	TCP/IP Peer-to-Peer	
Transfer parameter:	10 Mbit/s full duplex	
Address:	Freely selectable ¹	192.168.0.1
Subnet mask:	Selectable in value ¹	255.255.255.0
Port:	2112	

 $^{^{1} \}quad \text{Must match the allowable address range of the network used; set using the menu functions on the display of the BCU (\rightarrow "BCU Basic Control Unit" "Operating Instructions").}$

NOTE

Modbus specifications, see "Modbus specifications with the BCU Basic Control Unit", page 52

13.4.3 Electronic system integration

Internal data traffic:	CAN bus
Network interface:	Ethernet connection on/in GMS800 enclosure

13.4.4 Auxiliary power supply

Voltage supply:	24 VDC
Power input:	4 W

14 Formulas

14.1 Introduction to formulas

14.1.1 Function of formulas

BCU "formulas" are programmable mathematical or logical functions.

- Mathematical functions serve to compute internal values or values from external sources.
- Logical functions serve, for example, to link internal messages or messages from external sources, or to control functions or processes.

Formulas can be used

- In the Formula Table (see "Formula Table", page 74)
- During other parameter settings where allowed (e.g. in sequence control programs)

14.1.2 Application options for formulas

- Assign measured values and other process values to analog signal connections
- Assign switching functions to digital signal connections
- Process and activate electronic states
- Start and control processes (e.g. adjustment procedures)
- Process conditions (if-then-else)
- Convert and calculate process values
- Activate and deactivate formulas

14.1.3 Formula elements (overview)

Tags that can be used in formulas Usable as required:	see "Formula elements", page 67
Operators to link tags	see "Operators in formulas", page 70
Variables	see "Variables", page 73
 Activation variables 	see "Activation variables", page 74
 Mathematical functions 	see "Mathematical functions in formulas",
	page 71
 Conditions 	see "Conditions", page 71
 Formula combinations 	see "Formula combinations", page 71

14.1.4 Variables

- A variable can be assigned to a formula term. If the variable tag is used in a formula, the variable then substitutes the tag with the last result from the assigned formula term
- Boolean variables represent a logical (binary) state or the result from a logical link or condition. Boolean variables can, for example, control digital outputs and can be used in formula conditions.
- 24 variables can be used (RVi/IVi/BVi, see "Programmable values and states (write tags)", page 69) for each value type (R/I/B, see "Value types", page 73). Variables can be given a name and a physical unit (see "Defining variables", page 77), and displayed as measured values (see "Measuring screens in SOPAS ET", page 29).

14.1.5 Value types

3 value types can be used in terms:

Value type		Rules	Example
Floating point value (real value)	R	Operations with a floating point value and an integer value have a floating point value as result.	Term: 8/5.0 Result: 1.6

Value type		Rules	Example
Integer value	I	Operations with two integer values have an integer value as result.	Term: 8/5 Result: 1
		The decimal places are truncated when a floating point value is converted to an integer value. This is also valid for results from operations where integer variables (IVi) are assigned.	Term: IV08 = RV08 Value: RV08 = 1.9 Result: IV08 = 1
Boolean value	В	The rules for Boolean algebra apply here (logical links).	-

!

NOTICE

Use the decimal point (.) as decimal character. Example: 0.25

14.1.6 Activation variables

An "activation variable" is a Boolean variable that can activate or deactivate a particular formula or formula group. The associated formula or group is deactivated when the value "0" is assigned to the activation variable. Value "1" activates the respective formula or group.

This serves to activate and deactivate each formula or formula group with a different formula.

14.1.7 Formula examples

Formula	Function	
frac(2.456)	Result: 0.456	
floor(RV09=2.5764)	1 Value "2.5764" is assigned to variable RV09. 2 The value is rounded down.	
	Result: 2	
(S5S==3)?(BV7=1):(BV7=0)	Condition-dependent control of a logical parameter. Result:	
	 When the operating state of sensor 5 is 3; logical variable BV7 = 1. Otherwise: logical variable BV7 = 0. 	
RV02 = RV01*(RV20/273.15)/(RV21/1013.25) Same meaning: RV02 = RV01*RV20/273.15/(RV21/1013.25) RV02 = RV01*RV20/273.15/RV21*1013.25	Conversion of a measured gas concentration to normal conditions (T = 0 °C = 273.15 K, p = 1013.25 hPa). Values: RV01= current measured value RV20 = current temperature [K] RV21 = current pressure [hPa]	
	Result: RV02 = scaled measured value	

NOTICE

- Observe the sequence of operators (see "Priority of formula operations", page 71).
- Use brackets to determine the correct sequence of operations.

14.2 Menu functions for formulas

14.2.1 Formula Table

Function

40 formulas can be programmed. "Active" formulas are valid continuously and are recalculated every 1 second during operation (in "Index" number sequence). Results are immediately effective. Non-active formulas are not considered during operation, but remain stored.

Formulas can be combined in "groups"; formulas in a group can be activated or deactivated together. Formulas and formula groups can be activated and deactivated through other formulas.

Procedure

Menu: BCU/Parameter/Formulas/Formulas

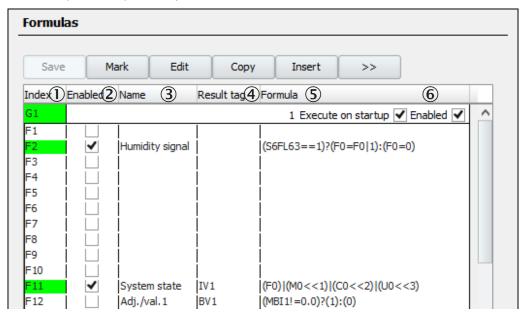


Figure 56: Menu "Formulas" - Table (example))

- ① Name of group (G) or formula (F)
 - Green text = formula being performed (is active).
- ②/⑥ Status of group (see "Adding a formula group", page 76) or formula (see "Programming a formula", page 76)
- 3 Formula name (freely selectable text, max. 16 characters)
- 4 Variable assigned to the formula result
- ⑤ Programmed formula term

Functions in menu "Formulas"

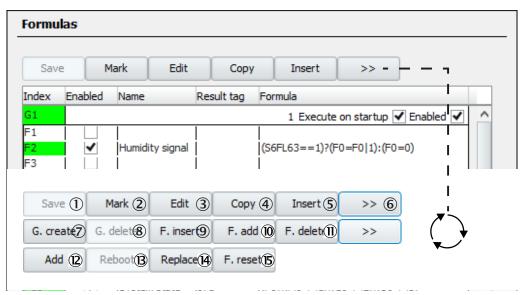


Figure 57: Functions in menu Formulas

- ① Save current state of formulas and groups
- 2 Select several groups/formulas

- 3 Call up the settings menu for groups/formulas
- 4 Save a copy of the selected group/formula in intermediate storage
- Insert a copy of the selected formula
- 6 Call up the next function group
- ⑦ Create a group
- 8 Delete a group
- Insert a new or selected formula
- Attach a new formula at the end of the Formula Table
- (1) Delete the selected formula
- Insert the copied formula after the selected formula
- (B) Trigger a warm start
- Insert the settings of the copied formula in the marked formula
- © Delete all individual settings of the selected formula

NOTE

Buttons highlighted gray can not be used.

14.2.2 Adding a formula group

1. Select (click) the formula in the Table to be the first formula in the new group.

NOTE

All formulas between the new group and the next group in the Table belong to the new group.

- 2. Select G. create.
- 3. Select the new group in the Table and select Edit.

Figure 58: Menu "Formulas" – Edit group (example)

- ① Group number
- ② \square = all formulas of this group are performed once and activated after start-up of the GMS800 and after a restart¹
- 4 Name of the group (freely selectable text, max. 16 characters)
- 1 The formulas in the group are only performed when **Execute on start** and **Activate** are activated.
- 4. Enter desired data.
- 5. To save the current settings: Select Save.

14.2.3 Programming a formula

- 1. Mark desired Table rows.
- 2. Select Edit.

Figure 59: Menu "Formulas" – Edit formula (example)

- (1) Formula number
- 2 Number of the group to which the formula belongs
- 4 Formula name (freely selectable text, max. 16 characters)
- (\$\text{S}\) Variable (see "Variables", page 73) to which the result of the formula term is assigned?
- 6 Formula term (see "Introduction to formulas", page 73)
- (7) Current result of the formula term
- Only when the associated group is also activated through Execute on startup.
- 2 Use as required; the complete formula can also be entered in the Formula field.

NOTE

Context help (available variables, operators, functions) is displayed in the SOPAS ET program window as long as the cursor is positioned to the **Formula** field.

- 3. Enter desired data.
- 4. To test a formula (when desired): Select Test.
- To save the current settings: Select Save.

NOTICE

The numbers of all following groups are changed automatically when a new group is inserted.

 When groups are used in formulas: Check/adjust group numbers in formulas after inserting a new group.

14.3 Defining variables

14.3.1 Floating point variables (RVi)

Function

24 floating point variables (RVi, real values) can be calculated and used in formulas. Floating point variables have

- three descriptive names
- an adjustable start value
- an internal status evaluation the same as a measured value

The current value of a floating point variable can be

- displayed with "name" and "unit" the same as a measured value
- output the same as a measured value.

Procedure

1. Call up menu: BCU/Parameter/Variables/Real values (RVi).

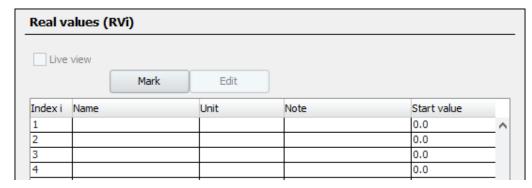


Figure 60: Menu "Real values (RVi)" - Table (example)

- 2. Deactivate Live View.
- 3. Mark desired Table rows.
- 4. Select Edit.

Figure 61: Menu "Real values (RVi)" - Edit (example)

- ① Consecutive number (1 = RV01, 2 = RV02 etc.)
- 2 Value name (freely selectable text, max. 16 characters)
- 3 Value unit (freely selectable text, max. 16 characters)
- 4 Comment (freely selectable text, max. 16 characters)
- (5) Variable value after start-up/restart
- 5. Enter desired data.
- 6. Select Save.

14.3.2 Integer variables (IVi)

Function

Integer variables (IVi, integer values) function the same as floating point variables (see "Floating point variables (RVi)", page 77) but however with integer values. The "name" can be programmed as a descriptive name.

Procedure

1. Call up menu: BCU/Parameter/Variables/Integer values (IVi).

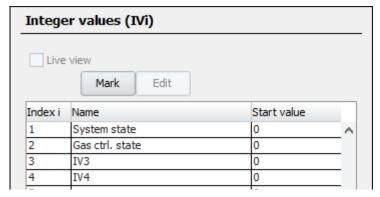


Figure 62: Menu "Integer values (IVi)" - Table (example)

- 2. Deactivate Live View.
- 3. Mark desired Table rows.
- 4. Select Edit.

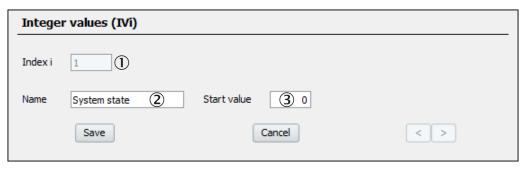


Figure 63: Menu "Integer values (IVi)" - Edit (example)

- ① Consecutive number (1 = IV01, 2 = IV02 etc.)
- 2 Value name (freely selectable text, max. 16 characters)
- 3 Variable value after start-up/restart for programmed calculations
- 5. Enter desired data.
- 6. Select Save.

14.3.3 Boolean variables (BVSi) - input signals (system)

Function

Boolean variables for input signals (system) serve to prepare and process internal and external signals, e.g.:

- Internal: Humidity (Gas module), flow rate (Gas module)
- External: Condensate container, temperature

These variables, their function and status can be viewed by authorized operators. The state of the variables is saved when the device is switched off.

The function can be changed in two ways:

- a) The value of the relevant Boolean variable (BVSi) is determined with a formula. The respective result from the formula controls or starts the function.
- b) The function is assigned to a source. The source state controls or starts the function.

Procedure

1. Call up menu: BCU/Parameter/Variables/Boolean values (BVSi) - Input signals (system).

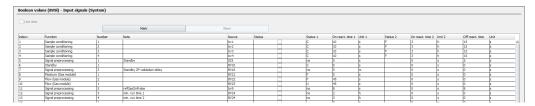


Figure 64: Menu "Boolean values (BVSi) - Input signals (system)" - Table (example)

- 2. Deactivate Live View.
- 3. Mark desired Table rows.
- 4. Select Show.

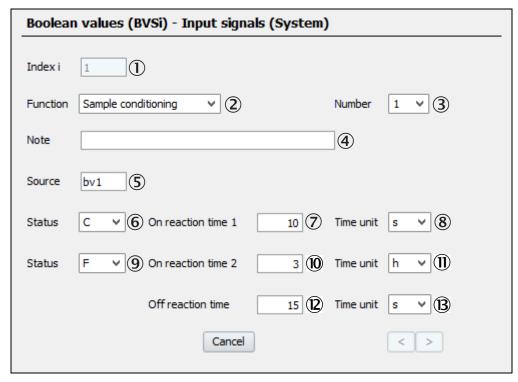


Figure 65: Menu "Boolean values (BVSi) - Input signals (system)" - Edit (example)

- (1) Consecutive number (1 = BVSi1, 2 = BVSi2 etc.)
- ② Function name
- 3 Number
- 4 Note
- Select source
- 6 Set status for 1
- Reaction time on 1. The status of the variables is first changed after the signal is present for the selected time.
- Time unit
- Set status for 2
- Reaction time on 2. The status of the variables is first changed after the signal is present for the selected time.
- (11) Time unit
- Reaction time off. The signal first disappears when the signal is not present for the specified time.
- (13) Time unit
- 5. Enter desired data.
- 6. Select Save.

Example

The desired status for the sensor is defined which the sensor should assume after the specified reaction time has elapsed. After the first reaction time with the first desired status, a second reaction time with a further status can then follow. The reaction times imply a delay of the respective output signal.

The specifications made in the input screen (see figure 65, page 80) mean:

- Reaction time on 1 = 10 s: The status of the sensor is first set to C (Check) when the signal is present for 10 seconds.
- Reaction time on 2 = 3 h: The status change from C to F (Failure) is first made when the signal is present for a further 3 hours.
- Reaction time off = 15 s: The status is first reset when the signal is NO longer present for 15 seconds.

14.3.4 Boolean variables (BVIi) – input signals

Function

The Boolean variables for input signals control adjustment and validation procedures, and device functions. The tabular menu shows the respective function.

The function is assigned to a source. The source state controls or starts the function.

Table 8: Sources for Boolean values for signal processing of digital inputs

Tag	Internal function	Indices
Dli	Current logical state of digital input i	i = 1 16
BVi	Current value of Boolean variable BVi	i = 1 24

Procedure / Assigning a source

1. Call up menu: BCU/Parameter/Variables/Boolean values (BVIi) - Input signals.

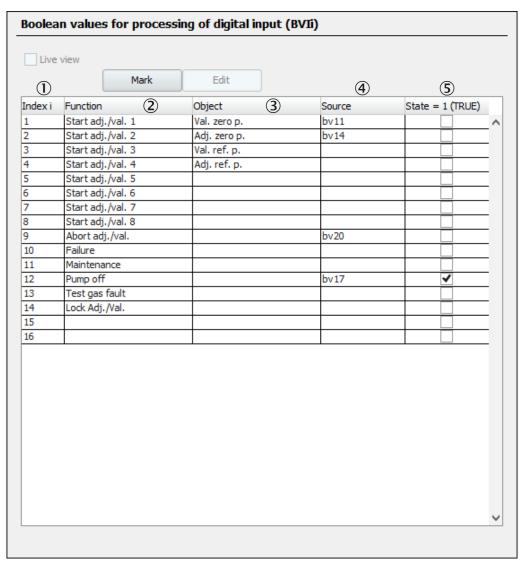


Figure 66: Menu "Boolean values for processing signals of digital inputs (BVIi)") – Table (example)

- ① Consecutive number (1 = BVI1, 2 = BVI2 etc.)¹
- 2 Internal name of function¹
- 3 Programmed name of function
- Programmed source for control (see table 8, page 81)
- ⑤ Current state (☑ = activated)

^{1 ...8} correspond to the programmed automatic adjustment/validation functions (see "Programming automatic adjustments/validations", page 45).

- 2. Deactivate Live View.
- 3. Mark desired Table rows.
- 4. Select Edit.

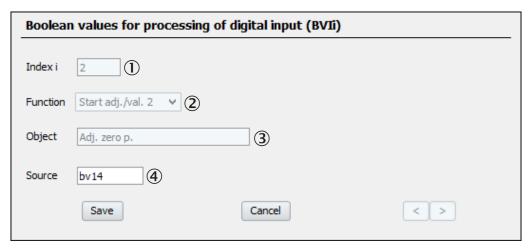


Figure 67: Menu "Boolean values for processing of digital input (BVIi)") – Edit (example)

- ① Consecutive number (1 = BVI1, 2 = BVI2 etc.)
- 2 Internal name of function
- 3 Programmed name of function
- 4 Internal source that determines the function state (see table 8, page 81)
- 5. Enter desired data.
- 6. Select Save.

14.3.5 Boolean variables (BVOi) – output signals

Function

Boolean values for output signals are internal state variables for adjustment and validation procedures, and control functions. The tabular menu shows the current state of the functions (monitor function).

Procedure

1. Call up menu: BCU/Parameter/Variables/Boolean values (BVOi) - Output signals.

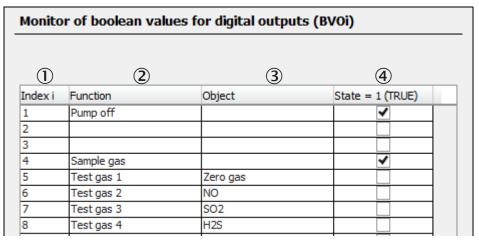


Figure 68: Menu "Boolean values (BVOi) - Output signals" - Table (example)

- ① Consecutive number $(1 = BVO1, 2 = BVO2 \text{ etc.})^1$
- 2 Internal name of function¹
- 3 Programmed name of function¹
- ④ Current state (☑ = activated)
- 1 5 ...16 correspond to test gas settings 1 ...12 (see "Configuring test gases (Test gas Table)", page 40).

14.3.6 Boolean variables (BVi)

Function

Boolean variables indicate a state. A Boolean variable has an integer value "0" or "1":

Table 9: Significance of Boolean values

Boolean value	Logical state	Electronic state
0	False	OFF/not activated
1	True	ON/activated

Procedure

- 1. Call up menu: BCU/Parameter/Variables/Boolean values (BVi).
- 2. Deactivate Live View.
- 3. Mark desired Table rows.
- Select Edit.
- 5. Enter desired data.
- 6. Select Save.

NOTICE

When the Boolean variable is used to control a digital output: Select the "start value" suitable for the switching logic (see "Configuring digital outputs (DOi)", page 35).

14.4 Programming the Function buttons

Function

"Function buttons" are programmable formula terms to be performed when the respective "Function button" is clicked (see "Using the Function buttons", page 24). Name and function are freely programmable.

Many different data assignments and function calls are possible and should only be configured with appropriate technical knowledge. Additional documentation is necessary when Function buttons are configured on the device.

A maximum of 8 Function buttons are available. Each Function button executes a function that can be individually programmed (see "Defining variables", page 77).

Procedure

Call up menu: BCU/Parameter/Formulas/Function buttons.

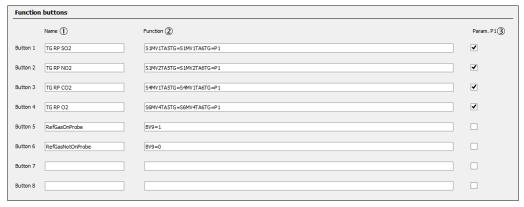


Figure 69: Menu "Function buttons" (example)

- ① Button name (max. 32 characters)
- ② Formula term (see "Introduction to formulas", page 73)
- - \square = a function is started using the respective Function button.

Formulas BCU Basic Control Unit

- 2. Enter desired data.
- ✓ The programmed functions are then available (see "Basic settings", page 28).

15 Sequence control programs

15.1 Introduction to sequence control programs

15.1.1 How sequence control programs function

Sequence control programs support automatic conditional processes. 4 sequence control programs can be programmed in the BCU. 32 program sections can be programmed for each sequence control program. Each program section contains an "action" that can be linked to a "condition". Program sections are chained into a program according to their "step" number, see "Program flow", page 85).

NOTE

Adjustment and validation sequences are already programmed in the BCU at the manufacturer's factory (see "Adjustment functions", page 40).

15.1.2 Starting sequence control programs

- A sequence control program starts automatically when its "start condition" and "enable condition" are met. These conditions are checked every second during operation when the sequence control program is idle. The sequence control program runs continuously when the start and enable conditions are set to "true".
- Sequence control programs can be started directly with a tag in a formula term (see "Programmable values and states (write tags)", page 69).
- Sequence control programs can also be started directly using the **Start** button in the Edit function, e.g. for test purposes (see "Programming flow conditions", page 87).

15.1.3 Aborting sequence control programs

Running sequence control programs can be aborted with a Stop command in a formula term. This allows aborting a sequence control program automatically when a certain condition occurs, e.g. when an internal status or the status of a digital input changes.

The **step (state) after abort** specifies which program step automatically follows after a stop. Normally, a process that reestablishes the normal operating state is linked.

NOTE

Sequence control programs can also be aborted using the **Stop** button in the Edit function (see "Programming flow conditions", page 87).

15.1.4 Program flow

Step numbers

Each program section is assigned a step number. This step number is the address of the program section within the sequence control program. It does not have to be identical with the index number of the program section.

Step numbers are principally freely selectable within the range 1 ... 32. It is however advantageous from a technical viewpoint when the step numbers are in consecutive sequence.

Rules for step numbers

- Sequence control programs call up the program section with step number "1" automatically when starting.
- Each program section has a next step this is the step number of the program section to be called next.
- Next step "0" means: The sequence control program stops after the action.
- Next step "-1" means: Abort the sequence control program and execute the step (state) after abort (see "Programming flow conditions", page 87).

NOTICE

- Assign step number "1" to the program section with which the sequence control program should start.
- ► Enter a subsequent step in each program section.

NOTE

Next step "0" instructs the sensors to continue measuring operation (corresponds to term "SiMVjTAkS=0", see "Programmable values and states (write tags)", page 69). This prevents the sensors being blocked by an ongoing action.

Program sections with the same step number

Several program sections can have the same step number. This results in alternative program steps that are valid in their "Index" number sequence. When a certain step number is called and several program sections with this step number exist, the sequence control program initially attempts to execute the first of these program sections (program section with the lowest "Index" number).

- ► This program section is then performed when the start and enable conditions are met; then the "next step" is called.
- ▶ If the start and enable conditions for the program section are not met, the next program section with the same step number is called (in "Index" number sequence).

This flow is valid for all program sections with the same step number.

Process flow control with a countdown timer

To create a delay time or time lag in a sequence control program:

- Start one of the countdown timers (SCCDi) as action (see "Setting countdown timers", page 91). Enter the step number of the next program section as next step.
- 2. Define a **start condition** in the next program section that starts the **action** as soon as the countdown times has reached the desired state.

Regular start using a cyclic trigger

Starting a sequence control program in regular intervals:

- 1. Set a cyclic trigger accordingly (see "Setting a cyclic trigger", page 90).
- 2. Inquire the status of this cyclic trigger in a sequence control program as **start condition** (formula term: "CTi!= 0").

15.2 Determining the number of sequence control programs

Function

The number of sequence control programs available for selection is adjustable (maximum 4).

Procedure

1. Call up menu: BCU/Parameter/Sequence control programs/Number.

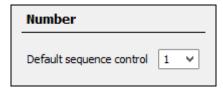


Figure 70: Menu "Number"

- 2. Select desired count.
- 3. Select Save to save the setting and exit the menu.

15.3 Programming sequence control programs

NOTE

Detailed explanation on sequence control programs, see "Introduction to sequence control programs", page 85

Procedure

1. Call up menu: "BCU/Parameter/Sequence control programs/Sequence control programs/Overview i (SCi)

(i = number of the sequence control program, see "Determining the number of sequence control programs", page 86).

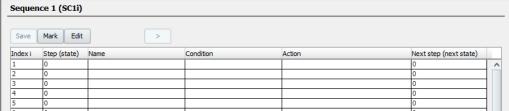
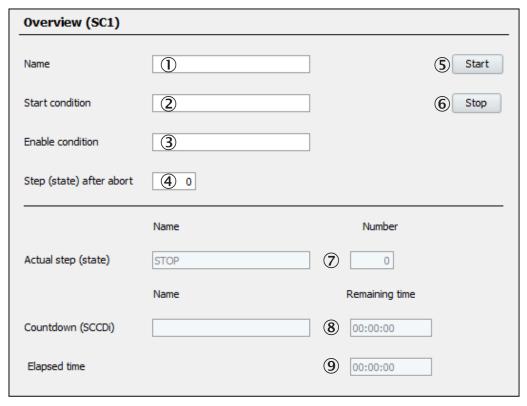


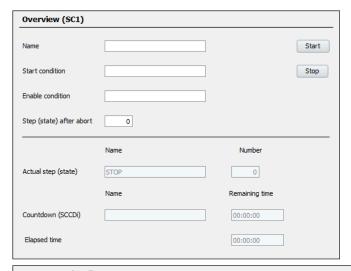
Figure 71: Menu "Sequence control program x (SCx)"

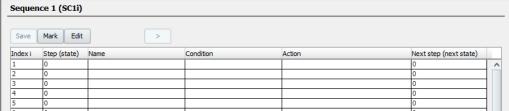
15.3.1 Programming flow conditions

Procedure

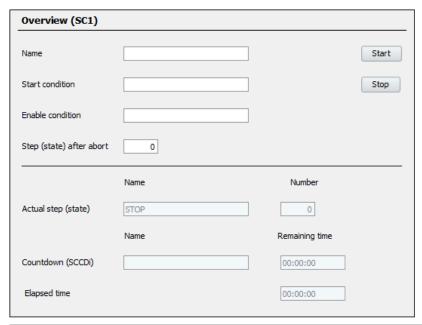
- 1. Select Start condition i (SCi).
- 2. Enter desired data.




Figure 72: Menu "Sequence controls x (SCx)" - "Start conditions" (example)


- ① Sequence control program name (freely selectable text, max. 32 characters)
- Formula term defining a logical or mathematical relation. The "enable condition" is checked when this term is "true".¹
- Formula term defining a logical or mathematical relation. The sequence control program starts when this term and the "start condition" are "true".¹
- 4 Step number of the program section to be called when the sequence control program has been aborted²
- Starts the sequence control program (without considering start and enable conditions)
- **©** Terminates the sequence control program immediately Information during process flow:
- Name: Programmed identifier of the program step currently running Number: Programmed step number of the program step currently running
- Name: Name of the currently active countdown timer
 Residual time: Current residual time³ of the currently active countdown timer
- 9 Current running time for the sequence control program⁴
- Enter "True" or "1" when the condition is to be permanently TRUE.
- Recommendation: Start a program sequence that reestablishes the normal operating state reliably.
 Example: Reset valves and wait for a delay time to elapse before status "Maintenance" is deactivated again.
- When the countdown timer has run down: "ZERO"
- When all countdown timers have run down: "0:00"

15.3.2 Programming a program section


Procedure

Call up menu: BCU/Parameter/Sequence control programs/Sequence control programs/Overview i (SCi).

- 2. Select desired program section.
- 3. Select Edit.

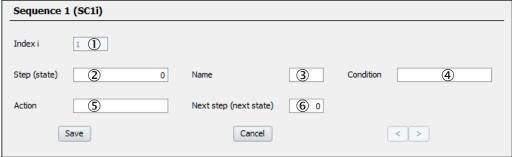


Figure 73: Menu "Program i (SCI)" – Table (example)

① Index number of this program section

- Step number of this program section (0 ... 32; explanation, see "Program flow", page 85)
- 3 Any text
- Formula term defining a logical or mathematical condition. The action is executed when this condition is true.
- ⑤ Formula term (max. 64 characters) to be executed when the "condition" is true
- Step number of the program section to be called after the action has been executed.
- 4. Enter desired data.
- 5. Select Save.

NOTE

Note on term **State**: In the theoretical model of the "automat", a certain status of the parameters of the automat is regarded as a "state". A change in the parameters leads to a **resulting state**. A **step** in a sequence control program represents a "state".

15.4 Timers

15.4.1 Setting a cyclic trigger

Function

Cyclic triggers can be used in formulas to start a process in regular intervals or to change a state regularly. The next timepoint and time interval (cycle) are programmable.

The start of adjustment and validation functions has already been programmed at the manufacturer's factory and provided in the BCU (see "Adjustment functions", page 40).

NOTE

Application example, see "Regular start using a cyclic trigger", page 86.

Procedure

1. Call up menu: BCU/Parameter/Timers/Cyclic trigger (CTi).

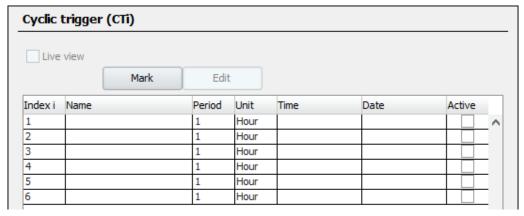


Figure 74: Menu "Cyclic trigger" – Table (example)

- 2. Deactivate Live View.
- 3. Mark desired Table rows.
- 4. Select Edit.

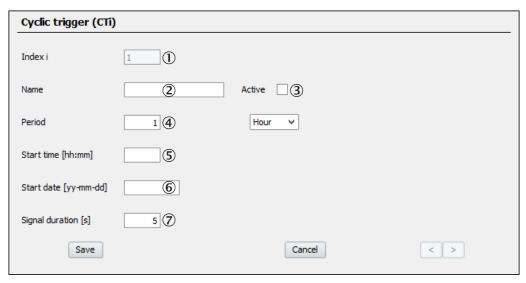


Figure 75: Menu "Cyclic trigger" – Edit (example)

- Cyclic trigger number
- 2 Cyclic trigger name (freely selectable text, max. 32 characters)
- \square = this cyclic trigger is running
- Interval for automatic starts (hours/days/weeks selectable)
- 5 Time when the next automatic start runs¹
- 6 Calendar day for which the start time is applicable
- Duration of the start status (seconds) after the start time has been reached²
- The further start points determine the "cycle". Setting the internal clock, see "Configuring device (BCU) parameters", page 28.
- ² Standard: 2 ... 5 seconds
- 5. Enter desired data.
- 6. Select Save.

NOTE

The next start time can however be deferred by resetting the start time and start date.

15.4.2 Setting countdown timers

Function

Countdown timers are needed for time controls in sequence control programs. There are 16 countdown timers.

NOTE

- Countdown timers can be paused and continued with formula tags (see "Programmable values and states (write tags)", page 69).
- The current remaining time of the countdown timers can be used in formulas.

Procedure

1. Call up menu: BCU/Parameter/Timers/Countdown (SCCDi).

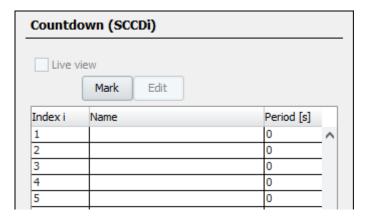


Figure 76: Menu "Countdown timer (SCCDi)" - Table (example)

- 2. Deactivate Live View.
- 3. Mark desired Table rows.
- 4. Select Edit.

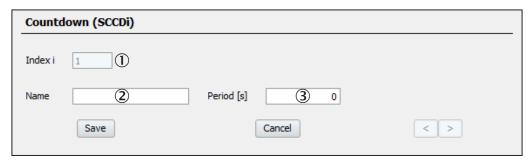


Figure 77: Menu "Countdown timer (SCCDi)" - Edit (example)

- ① Countdown timer number
- ② Name (freely selectable text, max. 16 characters)
- 3 Countdown runtime (seconds)
- 5. Enter desired data.
- 6. Select Save.

Endress+Hauser

8030730/1TBI/V3-1/2025-09 www.addresses.endress.com

Endress + Hauser
People for Process Automation