
Natural gas processing: H₂S in solid scavenger outlet

Solid scavenger vessel for H₂S removal

Gas sweetening using a solid scavenger

Raw natural gas extracted from different geological formations contains varying amounts of acid gases (H₂S and CO₂). While amine treatment is the most widely used gas sweetening process, a solid scavenger is sometimes used to remove low to medium concentrations of H2S and mercaptans. Iron oxide (Fe₂O₃) is one type of solid scavenger which reacts with H₂S in the gas stream to form Fe₂S₃. This process is used remove H₂S to meet specifications for gas transmission pipelines. The maximum allowable concentration of H₂S in natural gas is typically < 5 ppm.

On-line measurement of H₂S

The solid scavenger material in the vessel must be changed out or regenerated periodically. An iron oxide scavenger bed may be regenerated using air. Monitoring the $\rm H_2S$ concentration in gas exiting the scavenger vessel ensures the gas meets specifications for pipeline transmission and provides an indication of scavenger condition.

Endress+Hauser's solution

Tunable diode laser absorption spectroscopy (TDLAS) is a SpectraSensors technology proven highly effective for this important measurement. WITH Tunable diode laser absorption spectroscopy (TDLAS), a SpectraSensors technology, has proven highly effective for this important measurement. TDLAS analyzers have an exceptionally fast response to changes in H₂S concentration, an important performance characteristic for monitoring the efficiency of the scrubbing process and quality of the resulting natural gas product. Endress+Hauser's patented differential spectroscopy technique enables detection and quantitation of low ppm levels of H₂S in the outlet of a solid scavenger vessel. Laser and detector components are isolated and protected from the process gas and entrained contaminants avoiding fouling and corrosion, and ensuring stable long-term operation and accurate measurements.

Benefits at a glance

- Fast response to H₂S concentration changes
- Laser-based measurement is highly selective and accurate for H₂S in natural gas
- Patented differential spectroscopy technique measures H₂S at low ppmv
- levels in natural gas
- Low maintenance and OPEX costs – no cylinders of carrier and combustion gases, or lead acetate tape

Application data			
Target component (analyte)	H ₂ S in solid scavenger vessel outlet		
Typical measurement ranges*	0-10, 0-20, 0-50, 0-100 ppmv		
Typical repeatability	SS2100, SS2100i: \pm 250 ppbv or \pm 2% of reading JT33: \pm 100 ppbv or \pm 1% of reading		
Typical accuracy	SS2100, SS2100i: ±500 ppbv at 4 ppmv or 16 ppmv JT33: ± 200 ppbv @ 4ppmv and ± 500 ppbv @ 16 ppmv		
Measurement response time	<5 seconds		
Principle of measurement	Tunable diode laser absorption spectroscopy		
Validation	Binary cal gas bottle with methane or nitrogen background (Nitrogen is optional with auto-validation)		

^{*} These low ppm measurements are performed by differential TDLAS.

Typical background stream composition				
Component	Minimum (Mol%)	Typical (Mol%)	Maximum (Mol%)	
Hydrogen sulfide (H ₂ S)	0	<2 ppmv	10 ppmv	
Water (H ₂ O)	0	50 ppmv	5,000 ppmv	
Nitrogen (N ₂)	0	0.1	3	
Oxygen (O ₂)	0	0	1	
Carbon dioxide (CO ₂)	0	1	3	
Methane (C ₁)	50	95	100	
Ethane (C ₂)	0	3	20	
Propane (C ₃)	0	1	15	
Butanes(C ₄)	0	0.5	5	
Pentanes and heavier (C ₅ +)	0	0.4	2	

The background stream composition must be specified for proper calibration and measurement performance. Specify the normal composition, along with the minimum and maximum expected values for each component, especially H_2S , the measured component. Other stream compositions may be allowable with approval from Endress+Hauser.

www.addresses.endress.com