Operating Instructions **MCS200HW Ex p**

Multicomponent Gas Analyzer

Described product

MCS200HW Ex p

Manufacturer

Endress+Hauser SICK GmbH+Co. KG Bergener Ring 27 01458 Ottendorf-Okrilla Germany

Legal information

This work is protected by copyright. Any rights derived from the copyright shall be reserved for Endress+Hauser SICK GmbH+Co. KG. Reproduction of this document or parts of this document is only permissible within the limits of the legal determination of Copyright Law. Any modification, abridgment or translation of this document is prohibited without the express written permission of Endress+Hauser SICK GmbH+Co. KG.

The trademarks stated in this document are the property of their respective owner.

© Endress+Hauser SICK GmbH+Co. KG. All rights reserved.

Original document

This document is an original document of Endress+Hauser SICK GmbH+Co. KG.

CE

Contents

1	About this document				
	1.1	Functior	of this document	6	
	1.2	Scope o	f application	6	
	1.3	Target g	roups	6	
	1.4	Further i	information	6	
	1.5	Symbols	and document conventions	6	
		1.5.1	Warning symbols	7	
		1.5.2	Information symbols	7	
	1.6	Data inte	egrity	8	
2	Safe	ty inform	nation	Q	
2	2 1	Pocio co	fatuinformation	9 0	
	2.1			9	
		2.1.1		10	
		2.1.2	Electrical safety	10	
	<u> </u>	∠.⊥.3	bangerous substances	10	
	2.2	warning	Information on device	11	
	2.3	Intended		11	
	2.4	Requirer	ments on the personnel's qualification	12	
3	Proc	luct des	cription	14	
	3.1	Product	identification	14	
	3.2	Gas sup	ply terminology	14	
	3.3	Layout a	nd function	15	
		3.3.1	System overview	15	
		3.3.2	Analyzer cabinet	16	
		3.3.3	Gas sampling unit	18	
		3.3.4	Sample gas line	18	
		3.3.5	Hose bundle line	18	
		3.3.6	Instrument air conditioning	19	
	3.4	Extende	d interfaces (option)	19	
4	Tran	sport an	d storage	20	
	4.1	Transpor	rt	20	
	4.2	Storage.		20	
		8			
5	Mou	nting		21	
	5.1	Safety		21	
	5.2	Scope o	f delivery	21	
	5.3	Overviev	v of mechanical and electrical installation	21	
	5.4	Installat	ion sequence	21	
		5.4.1	Mounting at target location	21	
		5.4.2	Installing the sample gas line	22	
		5.4.3	Installing the stainless steel screw fitting	23	
		5.4.4	Using a push-in fitting (pneumatic)	23	
		5.4.5	Laying the hose bundle line	24	
		5.4.6	Setting the pressure reducer module	25	
		5.4.7	Connecting the valve block	25	

		5.4.8	Connecting the span gases	26
		5.4.9	Connecting the exhaust gas outlet	27
		5.4.10	Filling the siphon of the cooling unit	28
6	Elect	trical ins	tallation	29
	6.1	Safety		29
	6.2	Disconn	ecting device	29
	6.3	Socket f	or Service work	29
	6.4	Connect	ing the voltage supply	29
7	Com	mission	ing	30
	7.1	Prerequi	sites for switching on	30
	7.2	Switchin	g on	30
	7.3	Recogniz	zing the safe operating state	30
	7.4	Adjusting	g	31
		7.4.1	Performing zero point adjustment	31
		7.4.2	Performing reference point adjustment	31
8	Oper	ration		33
	8.1	Operatin	g concept	33
	8.2	User gro	ups	33
	8.3	Display	·	34
	8.4	Tiles		34
	8.5	Measuri	ng Screen	35
9	Men	us		37
	9.1	Passwor	d	37
	9.2	Menu tre	ee	37
10	Mair	ntenance	a	41
	10.1	Safety		41
	10.2	Cleaning	۶	42
	10.2	10.2.1	Clean surfaces and parts with media contact	42
		10.2.2	Cleaning the display	43
	10.3	Mainten	ance nlan	43
	10.4	Checking	of the system	44
	1011	10.4.1	Check assemblies	44
		10.4.2	Check external instrument air supply	44
		1043	Check span gases	44
		1044	Check environment	44
		1045	Check gas sampling unit	44
		1046	Performing the leak tightness check	44
		10.4.7	Check measured values (when system in operation)	45
		1048	Checking the overpressure	45
	10.5	Maintair	ning the instrument air conditioning	46
	_0.0	10.5 1	Maintaining the instrument air conditioning (ontion)	46
		10.5 2	Maintaining the external instrument air conditioning (option)	46
	10.6	Maintair	ning the cooling unit	46
11	Trou	bleshoo	ting	47

4

	11.1	Safety		47
	11.2	Error mes	ssages and possible causes	48
	11.3	Replacing	g the Electronics module filter pad	52
12	Deco	ommissio	oning	53
	12.1	Switching	g off	53
		12.1.1	Switching off	53
		12.1.2	Shutdown	53
	12.2	Return de	elivery	53
		12.2.1	Shipping for repair	53
		12.2.2	Cleaning the device before returning	54
	12.3	Transport	t	54
	12.4	Disposal.		54
13	Tech	nical dat	a	56
	13.1	Dimensic	nal drawings	56
	13.2	Technica	l data	57
		13.2.1	Measured values	57
		13.2.2	Ambient conditions	58
		13.2.3	Housing	58
		13.2.4	Interfaces and protocols	58
		13.2.5	Power supply	59
		13.2.6	Gas supply	59
		13.2.7	Tube connections	60
		13.2.8	Sample gas conditions	60
		13.2.9	Connections in analyzer	61
		13.2.10	Heated sample gas line	62
		13.2.11	Switching on the circuit breakers again	62
		13.2.12	Torques for screw fittings	62
14	Spar	e parts		64
15	Anne	Эх		65
	15.1	Conformi	ties	65
	15.2	Licenses		65
		15.2.1	Liability disclaimer	65
		15.2.2	Software licences	65
		15.2.3	Source codes	65

1 About this document

1.1 Function of this document

These Operating Instructions describe:

- Device components
- Mounting and electrical installation
- Commissioning
- Operation
- Maintenance work required for reliable operation
- Troubleshooting
- Decommissioning

1.2 Scope of application

These Operating Instructions are only applicable for the measuring device described in the product identification.

They are not applicable to other Endress+Hauser measuring devices.

The standards referred to in these Operating Instructions are to be observed in the respective valid version.

1.3 Target groups

This Manual is intended for persons who install, commission, operate and maintain the device.

1.4 Further information

The following information is included in the project documentation:

- System documentation
- Cooling Unit Operating Instructions
- Operating Instructions for Pressurized Enclosure Control Unit
- Option: Instrument Air Conditioning Operating Instructions

Component	Manufacturer
Pressurized enclosure control unit (type: F830)	Gönnheimer
Gas sampling unit	JCT Analysentechnik GmbH
Cooling unit	Refrind s.r.l.
Pressurized enclosure instrument air conditioning	Norgren GmbH
Analyzer instrument air conditioning	Donaldson Company, Inc.

1.5 Symbols and document conventions

The following symbols and conventions are used in this document

Warnings and other notes

DANGER

Indicates a situation presenting imminent danger, which will lead to death or serious injuries if not prevented.

Indicates a situation presenting possible danger, which may lead to death or serious injuries if not prevented.

6

CAUTION

Indicates a situation presenting possible danger, which may lead to moderate or minor injuries if not prevented.

NOTICE

Indicates a situation presenting possible danger, which may lead to property damage if not prevented.

i NOTE

Highlights useful tips and recommendations as well as information for efficient and trouble-free operation.

Instructions to action

- The arrow denotes instructions to action.
- 1. The sequence of instructions is numbered.
- 2. Follow the order in which the numbered instructions are given.
- \checkmark The tick denotes the results of an action.

1.5.1 Warning symbols

Table 1: Warning symbols

Symbol	Significance
	Hazard (general)
4	Hazard by electrical voltage
	Hazard by acidic substances
	Hazard by toxic substances
	Hazard through hot surface
	Hazard for the environment/nature/organic life

1.5.2 Information symbols

Table 2: Information symbols

Symbol Significance		
!	Important technical information for this product	
4	Important information for electrical or electronic functions	

1.6 Data integrity

Endress+Hauser uses standardized data interfaces, such as standard IP technology, in its products. The focus here is on the availability of the products and their properties.

Endress+Hauser always assumes the integrity and confidentiality of data and rights affected in connection with the use of the products are ensured by the customer.

In all cases, the customer is responsible for the implementation of safety measures suitable for the respective situation, e.g., network separation, firewalls, virus protection and Patch Management.

2 Safety information

2.1 Basic safety information

- ► Read and observe these Operating Instructions.
- ▶ Observe all safety information.
- If there is something you do not understand: Contact Endress+Hauser Customer Service.

Retention of documents

These Operating Instructions

- Must be available for reference.
- Must be passed on to new owners.

Correct project planning

- This Manual presumes that the measuring device has been delivered as specified during project planning and with the relevant delivery state of the measuring device (see delivered system documentation).
 - Contact Endress+Hauser Customer Service if you are not sure whether the measuring device corresponds to the state defined during project planning or to the delivered System Documentation.

Correct use

- Use the device only as described in "Intended use".
 The manufacturer assumes no responsibility for any other use.
- Carry out the specified maintenance work.
- Do not carry out any work or repairs on the device that are not described in this Manual.

Do not remove, add or change any components in or on the device unless such changes are officially allowed and specified by the manufacturer.

Use only original spare parts and wear and tear parts from Endress+Hauser. If you do not observe this:

- The manufacturer's warranty becomes void.
- The device could become dangerous.
- The device no longer complies with the approval for the hazardous area.

Special local conditions

In addition to the information in this Manual, follow all local laws, technical rules and company-internal operating and installation directives applicable wherever the device is installed.

2.1.1 Explosion protection

Risk of explosion due to improper execution of the work described in these Operating Instructions.

Improper execution of work in the potentially explosive atmosphere can cause serious damage to people and the plant.

- Maintenance and commissioning tasks as well as tests should only be carried out by experienced/trained personnel with knowledge of the rules and regulations for potentially explosive atmospheres, especially:
 - Ignition protection types
 - Installation regulations
 - Zone classification
- Explosion-proof devices may only be repaired by qualified persons with official recognition.

9

Explosive atmosphere

Danger of explosions. Serious injuries or death.

- Pressurized enclosure.
- Do not open the enclosure when an explosive atmosphere is present.
- The voltage supply may only be switched on after the pre-purge phase has been completed. The conditions for pre-purge are indicated on the warning label attached to the pressurized enclosure.
- The door of the pressurized enclosure must not be opened until 15 minutes after the voltage supply has been interrupted.
- The pressurized enclosure contains devices with a battery, which remain connected even after the external power has been turned off. Removal of the batteries should be considered when the pressurized enclosure is not active for an extended period of time.
- All electrical power isolating switches must be switched to the OFF position in the event of an Ex p alarm and during the pre-purge phase.
- Perform a leak test in appropriate intervals.

2.1.2 Electrical safety

Hazard through electrical shock

There is a risk of electric shock when working on the measuring device with the voltage supply switched on.

- Before starting work on the measuring device, ensure the power supply can be switched off using a power isolating switch or circuit breaker in accordance with the valid standard.
- Make sure the power isolating switch is easily accessible.
- An additional disconnecting device is mandatory when the power isolating switch cannot be accessed or only with difficulty after installation of the device connection.
- Switch off the power supply before carrying out any work on the measuring device.
- After completion of the work or for test purposes, calibration, the voltage supply may only be activated again by authorized personnel complying with the safety regulations.

Endangerment of electrical safety through power line with incorrect rating

Electrical accidents can occur when the specifications for installation of a power line have not been adequately observed.

- Always observe the exact specification in the Manual when installing a power cable (see "Technical data", page 56).
- The user must ensure that the power cable is designed in accordance with the applicable standards.

2.1.3 Dangerous substances

Danger through leaks in the gas path with toxic gases

A leak, e.g., in purge air supply, can represent an acute danger for persons.

- Regularly check all gas-carrying components for leaks.
- Take suitable safety measures. E.g.:
 - Marking the measuring device with warning signs.
 - Marking the operating area with warning signs.
 - Ventilating the operating room sufficiently.
 - Safety-related instruction of personnel who could be in the vicinity of the installation site.

Danger through caustic condensate

Health hazard due to toxic compounds in the condensate

- Observe all safety regulations for the application.
- Take appropriate protective measures for work (e.g., by wearing a safety mask, protective gloves and acid resistant clothes).
- ► In case of contact with the skin or eyes, rinse the affected parts immediately with clear water and consult a doctor.

2.2 Warning information on device

Warning information on device

The following safety symbols are on the device:

Table 3: Warning symbols

Symbol	Significance		
	Warning of general hazard		
4	Warning of hazard by electric voltage, possibly also by residual electric voltage		
	Warning of hazard through hot surfaces		
	GEFAHR! Gefährliche Gase! In regelmäßigen Abständen Druck- und Dichtigkreitstests durchführen. Betriebsanleitung beachten.		
WARNING WARNING	PRESSURIZED ENCLOSURE. DO NOT OPEN DOOR OF ENCLOSURE WHEN AN EXPLOSIVE ATMOSPHERE IS DRESENT		
WARNING	- DO NOT OPEN DOOR OF HAIL BY THEOLANT EXPLOSIVE ATMOSPHERE IS PRESENT. IF DISPLAY OF HMI IS DAMAGED DISCONNECT WHOLE SYSTEM FROM POWER AND REPLACE HMI, BEFORE RESTORING POWER.		
WARNING	- POWER SHALL NOT BE RESTORED AFTER ENCLOSURE HAS BEEN OPENED UNTIL ENCLOSURE HAS BEEN PURGED FOR 18:25 MINUTES AT A FLOW RATE OF 10.9 LITERS PER SECOND.		
WARNING	- DO NOT OPEN ANY DOOR OR COVER FOR 15 MINUTES AFTER REMOVING POWER.		
WARNING	- LIVE PARTS LOCATED INSIDE THIS EQUIPMENT.		
WARNING	- THIS PRESSURIZED ENCLOSURE CONTAINS A BATTERY WHICH REMAINS CONNECTED AFTER THE EXTERNAL POWER HAS BEEN ISOLATED. CONSIDERATION SHOULD BE GIVEN TO THE REMOVAL OF THE BATTERY IF THE ENCLOSURE IS TO REMAIN UNPROTECTED BY EX P FOR A SIGNIFICANT TIME.		

If you need to work on an assembly marked with such a symbol:

- Read the relevant Section in these Operating Instructions
- Observe all the safety information in the relevant Section

2.3 Intended use

The measuring device is a multicomponent analysis system for continuous flue gas monitoring of industrial combustion plants (emission measuring system). The sample gas is extracted at the measuring point and fed through the analysis system (extractive measurement).

The sample gas must be neither ignitable nor combustible.

The analysis system is suitable for installation in an explosive atmosphere according to ATEX Zone 2, IIC, T3.

The device identification of the components is as follows:

- Analyzer cabinet:II 3G Ex dc ec ic [ic] mc nC pzc IIC T3 Gc (-20 °C ≤ Tamb ≤ +50 °C)
- Gas sampling unit: II 3G Ex ec IIC T3 Gc (-40 °C ≤ Tamb ≤ +70 °C)
- Sample gas line: II 2G Ex 60079-30-1 eb IIC T3 Gb (-20 °C ≤ Tamb ≤ +50 °C)

Special conditions for safe operation in potentially explosive atmospheres:

- If the pressurized enclosure with the inert gas fails (an alarm is triggered by the control system of the pressurized enclosure and transmitted to the operator), immediate operator intervention is required to restore the pressure or to disconnect all power supplies and external signal connections that do not comply with EPL Gc. Restoration of the pressurized enclosure should be completed as soon as possible, but in any case within 24 hours. During the time that the pressurized enclosure is not functioning, measures should be taken to ensure no combustible gases or vapors enter the enclosure.
- The bypass of the pressurized enclosure control unit may only be actuated when there is no risk of formation of an explosive atmosphere.
- The heated gas sampling probe must be installed and operated so that the maximum surface temperature on its protective cover does not exceed 80 °C. Necessary protective measures such as sun protection, heat protection or similar must be provided by the operator. Operation of the gas sampling probe with the protective cover open is not permitted.
- The measuring device must never be used in areas where strong charges are generated, mechanical friction and cutting processes take place or the spraying of electrons (e.g. in the vicinity of electrostatic coating equipment) occurs or dust is transported pneumatically.
- Only clean the surfaces of non-metallic parts by gentle wiping with a damp or antistatic cloth.

The analysis system is designed for indoor or outdoor installation, depending on the cabinet version.

See the System Documentation delivered for the configuration of your device.

2.4 Requirements on the personnel's qualification

 Table 4: Qualification requirements

Tasks	User groups	Qualification
Mounting	Qualified personnel	 General knowledge in measurement technology, specialist device knowledge (possibly customer training at E+H) Knowledge of rules and regulations for potentially explosive atmospheres (experienced/trained persons).
Electrical installation	Qualified personnel	 Authorized electrician (authorized skilled electrician or person with similar train- ing) General knowledge in meas- urement technology, special- ist device knowledge (possi- bly customer training at E+H) Knowledge of rules and reg- ulations for potentially explo- sive atmospheres (experi- enced/trained persons).

12 OPERATING INSTRUCTIONS 8029892/1SIK/V1-1/2025-06

Tasks	User groups	Qualification
Initial commissioning Recommissioning	Authorized operator Θ	 General knowledge in measurement technology, specialist device knowledge (possibly customer training at E+H) Knowledge of rules and regulations for potentially explosive atmospheres (experienced/trained persons).
Decommissioning	Operator / system integrator	General knowledge in meas-
Operation Troubleshooting	• Authorized operator (Second	 a special- ist device knowledge (possi- bly customer training at E+H) Authorized electrician (authorized skilled electrician or person with similar train- ing) Service training Knowledge of rules and reg- ulations for potentially explo- sive atmospheres (experi- enced/trained persons).
Maintenance	 Operator / system integrator Authorized operator 	 General knowledge in measurement technology, specialist device knowledge (possibly customer training at E+H) Service training Knowledge of rules and regulations for potentially explosive atmospheres (experienced/trained persons).
Maintenance	 Operator / system integrator Authorized operator <i>S</i> 	• Explosion-proof devices may only be repaired by qualified persons with official recogni- tion.

3 Product description

3.1 Product identification

Overview

Product name	MCS200HW Ex p
Manufacturer	Endress+Hauser SICK GmbH+Co. KG Bergener Ring 27 · D-01458 Ottendorf-Okrilla · Germany
Type plate	The type plate is located on the right side of the device. The type plate on the mounting plate in the analyzer cabinet identi- fies the integrated measuring modules.

Type plates of complete devices

Endress+Hauser Sick GmbH	+Co. KG, Bergener Ring 27, 01458 Otterhold-Oxcila
MCS200HW	Ex p
Serial no.: Part no.:	
Project: NPS: UPS:	
(Ex)	Mado in Germany
<u>(</u>)	Ĩ @ ĽK □

Figure 1: Type plate of complete device, schematic representation

Type plates

Endress+Hauser SICK GmbH+Cc. KG Bergnener Ring 27, 01458 Ottendorf-Okrilla Made in Germany device name - <xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx< th=""><th>E</th><th>Measuring modules</th></xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx<>	E	Measuring modules
Part no.: 1234567 additional additional Serial no.: YYWW1234 information information Pmax: 100 mW information information Unom: 24 V information information Ta: -40+60 °C Decem	IPxx ber 2023	□ NH3 □ CH4 □ H20 □ NH3(low)□ NO2 □ O2 □ C0 □ SO2 □ TOC
(€∑⊚ ⊮		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Figure 2: Type plate of complete device, schematic representation

Analyzer type plate

Endress+Hau Bergener Rin Made in Gerr device	user SICK GmbH+Co. K g 27, 01458 Ottendorf- nany name - <xxx< th=""><th>^{G Okrilla} Enc XXXXXXXX</th><th><u>dress+Ha</u> ×></th><th>auser 🖽</th></xxx<>	^{G Okrilla} Enc XXXXXXXX	<u>dress+Ha</u> ×>	auser 🖽
Part no.: Serial no.: Pmax: Unom: fnom: Ta	1234567 YYWW1234 100 mW 24 V 10 Hz1 kHz -40 +60 °C	additional information	additional information	IPxx
CE	<u>×</u>	UK CA		

Figure 3: Analyzer type plate, schematic representation

3.2 Gas supply terminology

Definition of utility gases:

- Zero gas: Gas to adjust the zero point. Instrument air or nitrogen (N₂)
- Span gas: Gas to adjust the measuring range full scale value
- Instrument air: Compressed air free of oil, water and particles

3.3 Layout and function

Overview

1	Gas sampling unit	
2	Heated sample gas line	
3	Hose bundle line	
4	Analyzer cabinet	
5	Voltage supply	
6	Interfaces	1 x Ethernet: Connections Customer-specific analog and digital inputs and outputs, see wiring diagram
7	Instrument air inlet Option: Instrument air conditioning	Observe the quality of the operator's instrument air. A separate instrument air supply can also be connected as zero gas (IR components) or span gas (O_2 sensor).
8	Exhaust gas outlet	

Measuring principle

- IR components: Single-beam infrared photometer with interference filter and gas filter correlation method
- Oxygen: Zirconium dioxide sensor

Measuring components

Output of measured values in mg/m³ or percentage volume, relative to humid flue gas.

It is possible to output measured values in relation to dry sample gas.

Refer to the system documentation provided for the configuration of your system.

Function

- The system operates independently.
- Sampling of flue gas at the measuring point with a heated gas sampling unit
- Sample gas feed to the analyzer in a heated sample gas line
- Heating temperature of gas sampling probe 165 °C
- Heating temperature of sample gas line 170 °C

- Heating temperature of parts in contact with the sample gas in the analyzer 200 °C
- Pump: Ejector pump in cell (operated with instrument air)
- Ignition protection type of gas sampling probe: Flameproof enclosure and increased safety
- Ignition protection type of heated sample gas line: Increased safety and temperature limitation
- Ignition protection type of system cabinet: Pressurized enclosure; components not switched off according to own component marking
- The analysis system uses status indicators to signal the current operating state:
- The analysis system switches to operating state "System Stop" automatically when a malfunction occurs

"System Stop" corresponds to classification "Failure":

- The sample gas line and the sample gas path in the analyzer are automatically purged with instrument air in this mode.
- Measured values are updated further.

Check (validation) and adjustment

- Zero point adjustment
- Reference point adjustment
- Adjustment with internal adjustment filter

Operating using the display

The display is located behind a protective window which is also integrated into the pressurized enclosure of the cabinet. The window may only be opened when it has been ensured beforehand that there is no explosive atmosphere.

Operation via external PC (optional)

Operator menus and measured value displays are also available on an external PC via the Ethernet connection (with Google Chrome browser and SOPAS Air).

3.3.2 Analyzer cabinet

Overview

The analyzer cabinet contains:

- Control unit
- Measurement technology
- Analog and digital interfaces

View

Analyzer module

- ① Cell module
 - Ejector pump
 - Inlet filter
- 2 Optics module
- 3 Electronics module

Analyzer cabinet

- ④ Sample gas inlet
- (5) Web display with protection window
- 6 Cooling unit
- ⑦ Pressurized enclosure control unit
- (8) Valve block
- (9) Span gas valves
- 10 Temperature limiter
- ① Instrument air conditioning
- 2 Pressure reducer module
- 1/0 modules
- () Terminals of sample gas line and gas sampling unit
- 15 Fuses
- 16 Heating
- ⑦ Connection unit
- 18 Temperature sensor
- Sample gas outlet
 External instrument air conditioning for purge air (option)

3.3.3 Gas sampling unit

Function

The gas extraction unit extracts flue gas from the stack via the gas sampling tube. After filtration, the flue gas is passed to a measuring device for analysis.

Characteristics

- The gas sampling tube is unheated and without pre-filter
- The gas sampling unit is thermostatically controlled.
- The heating of the probe is self-limiting. The temperature of the probe is transmitted to the analyzer via an Ex e Pt100.
- When no voltage is applied, the gas sampling unit, heated sample gas line and analyzer are purged with instrument air.

Related topics

• Gas Sampling Unit Operating Instructions

3.3.4 Sample gas line

Function

The heated sample gas line leads the flue gas from the gas sampling unit to the measuring device.

Characteristics

- The sample gas line is thermostatted to prevent condensation of the flue gas.
- The measuring device regulates the heating.
- When free from voltage, the heated sample gas line is purged with instrument air.
- A safety temperature limiter prevents the permissible surface temperature being exceeded.

3.3.5 Hose bundle line

Overview

- ① Voltage supply
- 2 PA hose blue DN6/8
- ③ PA hose black DN6/8
- ④ PTFE hose DN4/6
- (5) Grounding conductor
- 6 Signal cable

Function

The hose bundle line connects the gas sampling unit with the measuring device. The hose bundle line contains the power supply line, signal lines and gas lines.

3.3.6 Instrument air conditioning

Overview

If the supplied instrument air does not meet the required quality, an instrument air conditioner must be connected upstream from the pressure reducer module.

Important information

NOTICE

Malfunction of the measuring device due to unsuitable instrument air

Operation with air not satisfying the specifications voids the warranty and does not ensure proper functioning of the measuring device.

- Only feed conditioned instrument air to the measuring device.
- The instrument air quality must meet the specification.

Function

The instrument air conditioning serves to condition the compressed air provided by the operator.

Additional information

A separate instrument air supply as zero gas or span gas can be connected as an alternative.

Related topics

- Instrument Air Conditioning Operating Instructions
- Instrument air quality: see "Gas supply", page 59

3.3.7.1 Cooling unit

The analyzer is operated with a cooling unit. It covers a temperature range of -20 $^\circ C$... +50 $^\circ C.$

The analyzer can be additionally equipped with a heater.

Additional information

Cooling Unit Operating Instructions

3.4 Extended interfaces (option)

As standard, analog and digital signals are used for device communication with customer peripherals. Alternatively, output can be performed using the Modbus-TCP protocol.

Optionally, Endress+Hauser offers various converter modules that are installed by the customer and communicate with the device via Modbus® TCP.

Optionally available

PROFIBUS / PROFINET

Modbus

Modbus® is a communication standard for digital controls to create a connection between a »Master« device and several »Slave« devices. The Modbus protocol defines the communication commands only but not their electronic transfer; therefore it can be used with different digital interfaces (Ethernet).

The measuring device has a digital interface for data transmission in accordance with VDI 4201 Part 1 (General requirements) and Part 3 (Specific requirements for Modbus). The assignment of the Modbus registers can be found in the supplied documentation (Modbus signal list). Parameter settings must be carried out by Endress+Hauser Service.

4 Transport and storage

!

4.1 Transport

Overview

Transport and install the device with suitable hoisting equipment (e.g. a crane or jack lift with adequate lifting capacity).

Important information

NOTICE

The measuring device may only be transported and installed by qualified persons who, based on their training and knowledge as well as knowledge of the relevant regulations, can assess the tasks given and recognize the dangers involved.

Transport via crane

Analyzer cabinets are transported safely with delivered lifting lugs.

4.2 Storage

Protective measures for long-term storage

- When gas lines have been unscrewed: Close all gas connections (with sealing plugs) to protect internal gas paths against moisture, dust or dirt penetrating
- Close off open electrical connections dust-tight
- Protect the display against sharp-edged objects. Possibly attach a suitable protective cover (e.g. made of cardboard or hard foam)
- Select a dry, well-ventilated room for storage
- Wrap the device (e.g. with stretch foil)
- When high air humidity can be expected: Include a drying agent (Silica-Gel) in the packing

5 Mounting

5.1 Safety

Qualification

The measuring device may only be installed by trained specialists.

5.2 Scope of delivery

Please see the delivery documents for the scope of delivery.

5.3 Overview of mechanical and electrical installation

Important information

☐ Observe the order of assembly.

If the assembly sequence is incorrect, there is a risk of contamination of the gas sampling unit. This can cause exhaust gas to enter the unheated analyzer and condense out.

- First connect instrument air and voltage supply.
- Only then install the gas sampling unit in the flue gas duct.

Installation sequence

- Install the analyzer cabinet
- Connect the signal lines to the analyzer
- Fit the gas sampling unit
- Connect the sample gas line to the gas sampling unit
- Air and gas connections on analyzer cabinet
- Lay and install the sample gas line
- Safely discharge the sample gas output
- Electrical connections on analyzer cabinet

5.4 Installation sequence

5.4.1 Mounting at target location

Prerequisites

- Adequate clearances for the heated sample gas line.
- Installation location is in a well ventilated environment
- Adherence to the ambient conditions

Procedure

- 1. Install the analyzer cabinet on a ground with sufficient load capacity.
- 2. Install the analyzer cabinet horizontally.
- 3. Remove the cover from the base.
- 4. Fasten the analyzer cabinet using 4x M10 screw connections (to the ground).

Related topics

• Ambient conditions: see "Ambient conditions", page 58

5.4.2.2

5.4.2 Installing the sample gas line

5.4.2.1 Laying the sample gas lines

Important information

!	NO Pro	TICE tect the line from damage (chafing through vibration, mechanical load).
!	NO The wal	TICE e sample gas line must not be insulated at the position of the Pt100 or led through a II, as otherwise the sample gas line may be damaged.
!	NO The cor	TICE e sample gas line must not be subjected to any bending stress in the marked area of the nnection sleeves and the Pt100.
Procedure		ocedure
	1.	Lay the end with the electrical connection to the measuring device.
	2.	Lay the end without the electrical connection to the gas sampling unit.
	3.	Observe a minimum bending radius of 400 mm.
	4.	Roll up excess length at the gas sampling unit. Leave enough length for pulling the gas sampling unit.
	5.	Fasten the sample gas line accordingly (e.g. on cable trays).
Connecting	the h	neated sample gas line to the analyzer

Important information

DANGER

There is a risk of explosion when electrical devices and lines without explosion protection are installed outside the pressurized analyzer cabinet.

- ► The heated sample gas line must be led into the pressurized enclosure and all connections must be made inside the pressurized enclosure.
- After completion of all connection work, the wall bushing of the heated sample gas line must be sealed evenly all around by heat-bonding shrinkage using a hot air blower.

Procedure

- 1. Feed the sample gas line together with the electrical connections through the shrink cable guide on the left-hand side of the cabinet.
- 2. Unscrew cell cover and remove.
- 3. Fit the end cap of the sample gas line in the mounting clamp above the cell so that the end cap touches the cell.
- 4. Remove protective cap from sample gas line.
- 5. Shorten the excess hose length so that the hose can be fitted to the compression fitting inside the cell.
- 6. Insert the metal support sleeve into the end of the hose and screw the hose to the clamping ring screw connection.
- 7. Close cell again.
- 8. Connect the power supply, Pt100 and grounding in accordance with the system documentation. Lay the electrical cables and signal cables in the cable duct.
- 9. Shrink the sample gas line with the shrink cable gland.
- 10. Carry out an insulation test. (Target \geq 20 M Ω)
- 11. The heating element resistance should be approximately 25 Ω over 20 m.
- 12. Carry out the Pt100 performance test.

5.4.3 Installing the stainless steel screw fitting

Overview

Figure 4: Stainless steel screw fitting

- 1 Tube
- 2 Cap nut
- ③ Fitting body
- ④ Tube screw fitting
- \bigcirc Position: $1^{1}/_{4}$ revolution
- 6 Sectional view: Screw connection fixed

Procedure

- 1. Push the hose into the tube screw fitting to the stop.
- 2. During initial fitting: Hold the fitting bolt steady and tighten the cap nut with 3/4 revolutions.
- 3. During refitting: Tighten the cap nut to the previous position (the resistance increases noticeably) and then tighten slightly.

5.4.4 Using a push-in fitting (pneumatic)

Overview

Figure 5: Push-in fitting with retaining ring (example shown)

- ① Retaining ring
- 2 Tube

Procedure

Fitting the tube

1. Push the tube in.

Removing the tube

- 1. Press the retaining ring in.
- 2. Pull the tube out.

5.4.5 Laying the hose bundle line

Important information

There is a risk of explosion when electrical devices and lines without explosion protection are installed outside the pressurized analyzer cabinet.

- The hose bundle line must be inserted into the gas sampling unit via the explosionproof terminal box provided for this purpose and all connections must be made inside this terminal box.
- Then close the cable entry tightly and screw the cover of the terminal box back on tightly.
- On the other side, the hose bundle line must be led into the pressurized enclosure and all connections must be made inside the pressurized enclosure.

NOTICE

I

Protect the line from damage (chafing through vibration, mechanical load).

Procedure

- 1. Lay the hose bundle line from the gas sampling unit to the measuring device.
 - An additional length of 2 m is required at the gas sampling unit for the internal lines.
 - An additional length of 1.5 m is required as from the enclosure inlet of the measuring device for the internal lines.
- 2. Observe a minimum bending radius of 300 mm.

Figure 6: Lines – clearance and bending radius

3. Fasten the hose bundle line accordingly (e.g. on cable trays).

5.4.6.1 Connecting the signal lines in the analyzer cabinet

Important information

There is a risk of explosion when electrical devices and lines without explosion protection are installed outside the pressurized analyzer cabinet.

- The signal cables must be led into the pressurized enclosure and all connections must be made inside the pressurized enclosure.
- The operator must ensure all signal paths can be manually disconnected at all poles outside the analyzer cabinet in the event of a fault in the pressurized enclosure. Alternatively, the signals can be designed on-site in EPL Gc (ignition protection type ic).

Procedure

Connect the signal lines according to the wiring diagram.

5.4.6 Setting the pressure reducer module

Overview

The external air supply is fitted on the pressure reducer module.

The instrument air is used as both induction air for the ejector (cell) and zero/control air.

There are two possibilities of connecting instrument air:

- One (1) shared instrument air supply for ejector air and zero/control air (inlet 1)
- Separate instrument air supply for:
 - Ejector air (inlet 2)
 - and zero/control air (inlet 1)

- ① Inlet of instrument air with zero gas quality
- 2 Inlet of instrument air solely as induction air for ejector
- 3 Manual valve for instrument air selection (closed position)
- ④ Pressure reducer (adjustable)

Important information

NOTE INSTRUMENT AIR QUALITY

The quality requirement for instrument air used exclusively as ejector air is lower than for usage as zero/control air (zero gas quality).

Procedure

i

Connection of shared instrument air supply

- 1. Connect instrument air with zero gas quality on inlet 1.
- 2. Set manual valve to position "open".

Connection of separate instrument air supply

- 1. Connect instrument air supply with zero gas quality on inlet 1.
- 2. Connect instrument air supply for ejector on inlet 2.
- 3. Set manual valve to position "closed".

Related topics

Requirements for instrument air quality: see "Gas supply", page 59

5.4.7 Connecting the valve block

Overview

The following are located on the valve block

Gas connections of the gas sampling unit hose bundle line

- ① Inlet: Zero gas
- 2 Outlet: Zero gas measuring point 1
- ③ Outlet: Zero gas measuring point 2 (option)
- ④ Outlet: Control air measuring point 1
- (5) Outlet: Backflush air measuring point 1
- 6 Outlet: Control air measuring point 2 (option)
- ⑦ Outlet: Backflush air measuring point 2 (option)
- (8) Inlet: Control/backflush air (option)
- (9) Inlet: Auxiliary control air

Important information

WARNING

Hazard when pressure is too high

Hoses can burst when the pressure is too high.

• The maximum permissible operating pressures must not be exceeded.

Related topics

• Specification of the pressures to be used: see "Gas supply", page 59

5.4.8 Connecting the span gases

Overview

The span gases are connected to the span gas unit.

Figure 7: Span gas unit connections

- Span gas connection 1
- 2 Span gas connection 2
- ③ Instrument air to purge the span gas valve

The Figure serves as example. It is also possible to connect more than two span gas valves.

Prerequisites

• The span gases are switched off.

Procedure

- 1. Lead the span gas lines through the right side panel into the enclosure.
- 2. Connect the span gas lines to the span gas unit.
- 3. Open the span gas cylinder and set the pressure to approx. 3.5 bar.
- 4. Check the lines for leak tightness.

5.4.9 Connecting the exhaust gas outlet

Important information

💧 WARNING

Noxious and aggressive exhaust gases

The exhaust gases may contain harmful or irritating components.

- Safely discharge the gas output of the measuring system.
- Do not connect the exhaust gas line with the exhaust gas line of sensitive assemblies. Aggressive gases could damage these assemblies as a result of diffusions.

NOTICE

I

!

Condensate could accrue in the exhaust gas line.

- Use a suitable hose line to run the condensate outlet into an open condensate container or a waste disposal line.
- Lay the line so that it always runs downwards.
- Keep the line opening free from any blockages or liquids.
- Protect the line from frost.

NOTICE

Discharging the exhaust gas under pressure can cause equipment damage.

Discharge exhaust gases without pressure.

Procedure

- 1. Connect the exhaust gas outlet at the intended place.
- 2. Lay the exhaust gas line in a suitable manner:
 - The gas outlet must be open to the ambient pressure; in waste disposal lines it can be laid with a light partial vacuum.
 - Do not bend or crimp exhaust gas lines.

5.4.10 Filling the siphon of the cooling unit

Overview

The condensate outlet of the cooling unit represents a connection of the interior of the cabinet to the outside. Therefore, the siphon must be filled with water so that overpressure can be built up in the cabinet.

Procedure

1. Fill the siphon with water until water runs out of the outlet.

6 Electrical installation

6.1 Safety

Qualification

The measuring device may only be installed by trained specialists.

6.2 Disconnecting device

Important information

A DANGER

There is a risk of explosion when electrical devices and lines without explosion protection are installed outside the pressurized analyzer cabinet.

- The voltage supply cables must be led into the explosion-proof terminal boxes provided for this purpose on the outer wall of the pressurized enclosure and all connections must be made inside these terminal boxes.
- Then close the cable entries tightly and screw the covers of the terminal boxes back on tightly.

Disconnecting device

Power isolating switches are integrated in the terminal box on the cabinet to separate the voltage supplies.

The Ex p unit and heater are switched on as soon as the voltage supply is applied to the terminal box and switched on by the customer. The switch-on procedure must be followed (see "", page 30).

6.3 Socket for Service work

A socket is integrated in the cabinet light for service work on the unit.

6.4 Connecting the voltage supply

Overview

The connection for the voltage supply is located on the external connection unit.

As an option, the system can be supplied with voltage by a UPS. Refer to the delivered wiring diagram for information on how to install it.

Important information

I NOTICE

- The onsite wiring system to the power source of the system must be installed and fused according to the relevant regulations.
- Always connect a protective ground to PE.

Procedure

1. Refer to the wiring diagram for the installation of the voltage supply.

7 Commissioning

DANGER

 Δ There is a risk of explosion when the protective window is open.

• Only open the protective window when there is no explosive atmosphere.

7.1 Prerequisites for switching on

Procedure

- 1. Check the measuring device.
- 2. Instrument air must be connected and open.
- 3. If the instrument air has changed: Check the instrument air quality.
- 4. Check pressure settings on the purge air unit pressure regulator (on the outside of the cabinet) and on the pressure reducer unit.

Related topics

- Measuring device check: see "Checking the system", page 44
- Instrument air quality: see "Gas supply", page 59
- Pressure reducer unit setting: see "Setting the pressure reducer module", page 25

7.2 Switching on

Procedure

- 1. Switch on the external power disconnection unit.
- \checkmark The cabinet heater (optional) goes into operation.
- ✓ The pressurized enclosure goes into operation.
- ✓ When an overpressure of 0.8 mbar(g) is reached, the analyzer cabinet pre-purge starts. The pre-purge takes 18:25 minutes at a flow rate of 10.9 liters per second.
- During pre-purge, the overpressure must be at least 7 mbar(g).
- 2. When the pre-purge is complete: Switch on the two main switches on the connection unit on the outer wall of the cabinet.
- \checkmark The overpressure in the chamber should be permanently approx. 5 mbar(g).
- ✓ SOPASair loading screen is displayed.
- \checkmark A countdown is shown on the display, counting down from 80.
- ✓ The start screen opens. Display: System initialization
- ✓ The measuring device heats up: Display: System heats. The status indicator is orange. Heating process can take up to 2 hours.
- ✓ Display: Premeasure. The status indicator is orange.
- ✓ The status indicator is green. Display: Measure. The measuring device is ready for operation.
- 3. When the yellow or red status indicator is on: Display logbook and clear error.
- \checkmark The measuring device is in operation.

Related topics

• Error list: see "Error messages and possible causes", page 48

7.3 Recognizing the safe operating state

The system is in proper operation when:

- A system check has been carried out according to the Maintenance plan before commissioning and in running operation.
- The green status indicator on the pressurized enclosure control unit lights up.
- Only the green status indicator is on and Measuring is shown in the status bar. When the yellow or red status indicator is on: Display logbook and clear error.

Related topics

- Checking the system: see "Checking the system", page 44
- Error list: see "Error messages and possible causes", page 48

7.4 Adjusting

7.4.1 Performing zero point adjustment

Overview

Menu: Tasks \rightarrow Zero point adjustment

As standard, the zero point adjustment is used to adjust the zero points of the measured values while instrument air is fed.

Zero point adjustment runs cyclically (preset) but can also be started manually.

If the deviation is higher than a specified limit value, the system switches to classification "Maintenance request" and the zero point is however corrected.

Procedure

- 1. Click tile "Zero point adjustment".
- The operating state switches to zero point adjustment.
- \checkmark The respective active step is displayed.
- ✓ The time elapsed and the remaining time of the state and of the respective active step is displayed.
- 2. The system switches back to original state automatically when adjustment has been completed.

7.4.2 Performing reference point adjustment

7.4.2.1 Adjustment with internal adjustment filter

Overview

Menu: Tasks \rightarrow Adjustment with internal adjustment filter

During adjustment, concentrations of measuring components are adjusted with an adjustment filter.

Procedure

- 1. Click tile "Adjustment with internal adjustment filter".
- ✓ The operating state switches to adjustment with internal adjustment filter.
- \checkmark The respective active step is displayed.
- ✓ The time elapsed and the remaining time of the state and of the respective active step is displayed.
- 2. The system switches back to original state automatically when adjustment has been completed.

7.4.2.2 Adjustment with span gas

Overview

Menu: Tasks \rightarrow Reference point adjustment

During adjustment, the concentrations of the respective measuring component are adjusted using span gas.

Procedure

- Compare the span gas concentration set with the certificate of the span gas cylinder and, when necessary, change it in the device: Tasks→ Reference point adjustment -Concentrations.
- 2. Perform manual update.
- 3. Use the arrow button to go to the next Figure.

- 4. Start adjustment with "Reference point adjustment".
- ✓ The operating state switches to reference point adjustment.
- ✓ The time elapsed and the remaining time of the state and of the respective active step is displayed.
- 5. The system switches back to original state automatically when adjustment has been completed.

7.4.2.3 O₂ adjustment

Overview

Menu: 2 adjustment \rightarrow 1 adjustment \rightarrow 02 adjustment

During adjustment, the concentrations of the respective measuring component are adjusted using instrument air as standard.

Procedure

- 1. Start adjustment with "02 adjustment".
- ✓ The operating state switches to 02 adjustment.
- ✓ The time elapsed and the remaining time of the state and of the respective active step is displayed.
- 2. The system switches back to original state automatically when adjustment has been completed.

8 Operation

8.1 Operating concept

Important information

DANGER

There is a risk of explosion when the protective window is open.

> Only open the protective window when there is no explosive atmosphere.

Operation

The analysis system is equipped with a display with touchscreen. The display is located behind a protective window integrated into the pressurized enclosure of the cabinet and prevents explosive atmospheres from reaching the display. The protective window may only be opened and the display operated when there is no explosive atmosphere.

- All menus and functions are shown on the display.
- The menus and functions are called up using the tiles.
- The current operating state is displayed by the status indicator (Namur).

8.2 User groups

Depending on the user group, different menus are visible on the device.

User group	Task
Operator	System monitoring regarding measured values and status
Authorized client	Configuration, simple error clearance and maintenance

8.3 Display

Overview

- ① Quick access
- 2 Search box
- 3 Editing and updating tools
- (4) Display and selection screen
- (5) Display of time and date
- 6 Status indicator (Namur)
- ⑦ Display of operating state
- ⑧ Display of user
- Display of menu path

Significance of status indicator (Namur)

Color	Status signal	Significance
	Normal	Valid output signal
	Maintenance request	Maintenance necessary, valid output signal
	Outside specification	Signal outside specified range
	Function check	Sporadically no valid output signal
	Failure	No valid output signal

8.4 Tiles

Symbol	Name	Function
	Login symbol	Calls up the Login menu.
	Menu symbol	Calls up the menu.
	Home symbol	Goes back to start screen (measured value over- view).

Symbol	Name	Function
	Quick access to tasks	Calls up the task menu where the most important functions for the operator are contained.
	Quick access to logbook	Calls up the device logbook.
$\mathbf{\Sigma}$	Quick access to Measuring Screen	Selection of saved Measuring Screens using a drop- down menu.
Q	Search box	Enter a search term to call up the relevant display.
Э	History	Selection of the last six displayed pages using a drop-down menu.
\mathbf{C}	Refresh	Reloads the called up page.
	Edit	Activates editing on the input pages.

8.5 Measuring Screen

Overview

Figure 8: Measuring Screen

- ① Legend of displayed measured values
- 2 Measured value concentration
- 3 Measuring time and date
- ④ Tiles

Measuring Screen tiles

Symbol	Name	Function
۲	Visibility	Switches the visibility of the measured value curve on and off.

Endress+Hauser

Symbol	Name	Function
∢	Move left	Shifts the time axis of the measured value curve.
₩	Move right	Shifts the time axis of the measured value curve.
₩	Current value	Jumps to the current measured value of the meas- ured value curve on the time axis.
	Stop	Stops update of measured values.
1	Adjust y-axis	Displays the largest preset range of component con- centrations of visible components.
↔	Adjust x-axis	Displays preset range of time.
Ð	Increase	Increases display of time axis.
Q	Reduce	Reduces display of time axis.

9 Menus

9.1 Password

Configuration is only possible on level "Authorized Client". Login is performed using tile "Login" and a password prompt.

Password for "Authorized Client": HIDE (preset)

9.2 Menu tree

	Menu level	Explanation
1	Tasks	Quick access to the most important func- tions for the operator
2	Adjustment	
2.1	Adjustment	
2.1.1	Zero point adjustment	The measured value zero points are adjusted while instrument air is fed.
2.1.2	Adjustment with internal adjustment filter	The concentrations of measuring compo- nents are adjusted with an adjustment filter.
2.1.3	Reference point adjustment	The concentrations of measuring compo- nents are adjusted while span gas is fed.
2.1.4	02 adjustment	The zero and reference point is adjusted while instrument air is fed.
2.1.5	Pressure adjustment	Adjustment of pressure sensors.
2.2	Validation	
2.2.1	Zero point validation	The measured value zero points are checked while instrument air is fed, but not adjusted.
2.2.2	Validation with internal adjustment filter	The concentrations of measuring compo- nents are adjusted with an adjustment filter, but not adjusted.
2.2.3	Reference point validation	The concentrations of measuring compo- nents are checked while span gas is fed, but not adjusted.
2.3	Span gas feed	Different reference materials can be con- trolled. No adjustment or validation is performed.
2.4	Results	
2.4.1	Adjustment factors	Displays the adjustment factors for span gas and adjustment with internal adjustment filter.
2.4.2	Zero point drift	Displays the determined percentage devi- ation after zero point validation.
2.4.3	Reference point drift (internal adjustment filter)	Displays the determined percentage devi- ation of measuring component concen- tration after validation with an adjust- ment filter.

2.4.4	Reference point drift (span gas)	Displays the determined percentage devi- ation of measuring component concen- tration after validation with span gas.
2.5	Settings	
2.5.1	Span gas concentrations	Entry fields for updating the span gas concentrations.
2.5.2	Component-specific parameters	Displays the parameters of the individual measuring components.
2.5.3	Parameters	Displays general parameters and param- eters relevant for adjustment.
2.5.4	Cyclic triggers	Displays configured start times of sequences.
3 Dia	agnosis	
3.1	Status	Displays device information and the cur- rent status.
3.2	Logbooks	
3.2.1	Device logbook	Logbook of pending messages and sta- tus with start and end date.
3.2.2	Customer protocol	Tile "Edit" allows entries by operator and maintenance personnel.
3.3	Device state data	
3.3.1	Operating hours counter	Displays operating hours.
3.3.2	Temperatures	Displays temperatures and their status.
3.3.3	IR source	Displays IR source status.
3.3.4	Motors	Displays motor values.
3.3.5	Pressure	Displays current pressures.
3.3.6	Flow rate	Displays flow rates and their status.
3.3.7	Hardware monitoring	Displays values and hardware status.
3.3.8	02 sensor	Displays values and 02 sensor status.
3.3.9	Reference energy	Displays reference energy of the individ- ual measuring components.
3.3.10	Intensity	Displays intensities of measuring filters and reference filters.
3.4	Interfaces	
3.4.1	Analog outputs	Displays current mA of the individual analog outputs.
3.4.2	Analog inputs	Displays current mA of the individual analog inputs.
3.4.3	Digital outputs	Displays digital output status. Digital out- puts switched off are marked with "." , those switched on with "I".

3.4.4	Digital inputs	Displays digital input status. Digital inputs switched off are marked with "." , those switched on with "I".
3.4.5	Modbus outputs	Displays values of the individual Modbus outputs.
3.4.6	Modbus inputs	Displays values of the individual Modbus inputs.
3.5	Signals	
3.5.1	Measuring signals	Displays measuring signals of the meas- uring components.
3.5.2	Boolean values	
3.5.3	Real values	
3.5.4	Filtered values	
3.5.5	Integer values	
3.5.6	Real constants	
3.6	Diagnosis files	
3.6.1	Export of measured value history	Option for exporting the Measuring Screen history.
4 Pa	rameters	
4.1	Display settings	Tile "Edit" serves to adjust the Measuring Screen layout.
4.1.1	Measuring Screen 1	
4.1.2	Measuring Screen 2	
4.1.3	Measuring Screen 3	
4.1.4	Measuring Screen 4	
4.1.5	Measuring Screen 5	
4.1.6	Measuring Screen 6	
4.1.7	Measuring Screen 7	
4.1.8	Measuring Screen 8	
4.2	Measuring components	Displays definitions of measuring compo- nents and monitoring limits.
4.3	laste afe e e e	Displays information on the different
	Interraces	interfaces.
4.3.1	Analog outputs	interfaces.
4.3.1 4.3.2	Analog outputs Analog inputs	interfaces.
4.3.1 4.3.2 4.3.3	Analog outputs Analog inputs Digital outputs	interfaces.
4.3.1 4.3.2 4.3.3 4.3.4	Analog outputs Analog inputs Digital outputs Digital inputs	interfaces.

4.3.6	Modbus inputs	
4.3.7	Modbus	
4.3.8	OPC outputs	
4.3.9	LAN	
4.3.10	Hardware plan (CAN)	
4.4	Date and time	Set date and time.
4.5	Device information	Displays device information.
5	Measuring Screen	Displays individual preset Measuring Screens.
5.1	Measuring Screen 1	
5.2	Measuring Screen 2	
5.3	Measuring Screen 3	
5.4	Measuring Screen 4	
5.5	Measuring Screen 5	
5.6	Measuring Screen 6	
5.7	Measuring Screen 7	
5.8	Measuring Screen 8	
6	Maintenance	
6.1	Maintenance signal	Switch Maintenance signal on and off.
6.2	Restart	Restart the device.
6.3	Data backup	
6.3.1	Backup	
6.3.2	Restore	
6.4	Protocol	Tile "Edit" allows entries by operator and maintenance personnel.
6.5	Functions	Trigger sequences and states.
		 A sequence can be started from any state except standby. States must be terminated or changed actively.
6.6	Reset	
6.6.1	Confirm active messages	
7	Settings	Tile "Edit" serves to make settings.

10 Maintenance

10.1 Safety

Requirements for the maintenance personnel

- Only allow an authorized electrician to work on the electrical system or electrical assemblies.
- The technician must be familiar with explosion protection.
- Explosion-proof devices may only be repaired by qualified persons with official recognition.
- The technician must be familiar with the exhaust gas technology of the operator's plant (hazard by overpressure and toxic and hot flue gases) and be able to avoid hazards when working on gas ducts.
- The technician must be familiar with handling compressed gas cylinders (span gases).
- The technician must be able to avoid hazards caused by noxious span gases.
- The technician must be familiar with gas lines and their screw fittings (be able to ensure gas-tight connections).

Explosion protection

DANGER RISK OF EXPLOSION

Risk of explosion when working on the device.

- Ensure no explosive atmosphere is present when working on the device.
- Set the operating mode of the pressurized enclosure on the control unit to Bypass mode, see the associated Operating Instructions (the factory code for Bypass mode is: 0002).
- As long as the Bypass mode is activated, the operator must ensure that an explosive atmosphere cannot occur in the vicinity of the pressurized enclosure at any time. After the check is complete, return the pressurized enclosure Bypass mode to the normal operating mode.

Electric voltage

DANGER

Danger to life through electric shock

There is a risk of electric shock when working on the device with the voltage supply switched on.

- Before starting work on the device, ensure the voltage supply can be switched off in accordance with the valid standard using a power isolating switch/circuit breaker.
- Switch off the voltage supply before starting any work on the device.
- After completion of the work or for test purposes or calibration, the power supply may only be activated again by authorized personnel complying with the safety regulations.

NOTICE

!

Risk of destruction of electronic components by electrostatic discharge (ESD)

When electronic assemblies are touched, there is a risk of the assembly being destroyed by electrical equipotential bonding.

Make sure you have the same electric potential as the assembly (e.g. by grounding) before touching the assembly.

NOTICE

Observe voltage variant

Some spare parts are available in different voltage variants, 115 V or 230 V. The power voltage of your system is shown on the type plate.

• Check spare parts for voltage dependency before fitting:

Sample gases and exhaust gases

Risk of chemical burns by acid gas

Acid condensate could escape when working on the sample gas lines and the associated assemblies.

- Take appropriate protective measures for work (e.g., by wearing a safety mask, protective gloves and acid resistant clothes)
- In case of contact with the eyes, rinse immediately with clear water and consult a doctor.

NOTICE

Risk of contamination of analyzer

The gas sampling unit and analyzer are flushed with instrument air when the system is not in measuring operation. When the instrument air is switched off, there is the risk of contamination of the analyzer.

Pull the gas sampling unit out of the exhaust duct when instrument air is not available for a longer period of time.

Surfaces

CAUTION DANGER OF BURNS DUE TO HOT SURFACES

Danger of burns due to hot surfaces

- Wear suitable protective clothes, for example, heat-resistant gloves.
- Switch off the device and allow the components to cool down.

Span gases

CAUTION

Before working on span gas cylinders or span gas lines: Relieve the span gas pressure

- Shut off the span gas cylinder. ►
- Open the span gas valve: Menu: 2 Adjustment \rightarrow 3 Span gas feed.
- Wait for about 1 minute until the pressure in the lines has been relieved.
- Close the span gas valve: Menu: 2 Adjustment \rightarrow 3 Span gas feed.

Please note:

- After working on the gas path: Perform a leak tightness check.
- After exchanging a span gas cylinder: Check the compliance with the span gas concentration set in the menu: 2 Adjustment \rightarrow 5 Settings \rightarrow 1 Concentrations

10.2 Cleaning

10.2.1 Clean surfaces and parts with media contact

NOTICE

Important information

Device damage through incorrect cleaning.

Incorrect cleaning can lead to device damage.

- Only use recommended cleaning agents.
- Do not use sharp objects for cleaning.

Procedure

- 1. Remove loose contamination with compressed air.
- 2. Remove adhering contamination with a mild soap solution and a soft cloth. Ensure the electric parts do not come into contact with liquids.
- 3. Avoid electrostatic charging of components.

10.2.2 Cleaning the display

Overview

The display must be cleaned regularly from the outside to ensure heat dissipation and thus operation.

Important information

NOTICE

Device damage through incorrect cleaning.

Incorrect cleaning can lead to device damage.

- Only use recommended cleaning agents.
- Do not use sharp objects for cleaning.

Procedure

- 1. Wipe the surface with a damp soft cloth and wipe again with a dry soft cloth.
- 2. If the frames are heavily soiled, do not use acidic or abrasive cleaners, as these attack the surface structure. Use neutral soap sud or limescale remover specially suitable for the surface.
- 3. Use 2-propanol/isopropanol (isomeric alcohol) for disinfection.

10.3 Maintenance plan

Overview

This Maintenance plan describes the maintenance work specified by the manufacturer.

Perform checks in accordance with the guidelines to be applied by the operator in accordance with the intervals described therein.

Maintenance intervals

Table 5: Maintenance intervals

Interval	Maintenance work	Remark				
Quarterly	Check filter element and seals.Clean or renew if necessary.	See Gas Sampling Unit Operating Instructions				
	Instrument air (option): ► Replace filter elements if required.	See Instrument Air Conditioning Operating Instructions				
	Note Depending on the system, it may be necessary to perform the following maintenance tasks more frequently:					
	Check the analysis system.					
	 Instrument air (option): Check oil and water. Clean drains if required. Clean filter housing if required. Check pressure. 	See Instrument Air Conditioning Operating Instructions				
	Cooling unitCheck the filter.Clean if necessary.					
Every 6 months	Gas sampling unit: ► Replace the filter element and seals.	See Gas Sampling Unit Operating Instructions				

Related topics

- Gas Sampling Unit Operating Instructions
- Analyzer Instrument Air Conditioning Operating Instructions
- Purge Air Instrument Air Conditioning Operating Instructions

10.4 Checking the system

10.4.1 Check assemblies

Procedure

- 1. Check complete measuring system (from sample gas sampling to exhaust gas) for outer damage.
- 2. Check sample gas outlet for continuity.
- 3. Check system cabinet for cleanness, dryness and freedom from corrosion.
- 4. Check grounding conductors are free from corrosion.
- 5. Check valve block and pressure reducer unit for leak tightness:
 - No permanent hissing noise should be noticeable.
 - Check no air is escaping from the connections, e.g., with leakage spray

10.4.2 Check external instrument air supply

Procedure

- 1. Check pressure, oil, particle and water content according to the specification.
- 2. If an external instrument air conditioning is provided: Check condition of filters.

Related topics

- Specification of utility gases: see "Gas supply", page 59
- Filter conditions: See Instrument Air Conditioning Operating Instructions

10.4.3 Check span gases

Procedure

- 1. Check use-by date.
- 2. Check fill level.
- 3. Check cylinder pressure.
- 4. Check condition of cylinders.

10.4.4 Check environment

Procedure

- 1. Check ventilation of the room when the cabinet is installed in a room.
- 2. Check ambient conditions of analyzer and gas sampling unit: Temperature, humidity, vibrations

10.4.5 Check gas sampling unit

Procedure

- 1. Visually check state from the outside and clean as necessary.
- 2. Check sample gas line for outside damage.

10.4.6 Performing the leak tightness check

Overview

During the pressure test, all pipelines and hoses up to the gas appliances must be tested for leaks with an overpressure of 150 mbar using air or helium. The pipelines are considered to be tight when, after temperature compensation, the test pressure does not drop more than $\Delta p < 25$ mbar during the subsequent test period of 10 min.

The tests must be documented.

Prerequisites

- The measuring system has cooled down to ambient temperature.
- The sample gas supply is closed.
- The sample gas outlet is closed.

Procedure

- 1. Start measurement.
- 2. Evaluate measurement result.
- 3. If a leak in gas-carrying lines is detected with a gas detector or with foam-forming agents according to DIN EN 14291, this must be sealed by suitable measures.
- 4. Document and save the measurement result in the log.

10.4.7 Check measured values (when system in operation)

Procedure

- 1. Check display for pending error messages.
- 2. Check measured values for plausibility.
- 3. Check external instrument air conditioning (optional).

10.4.8 Checking the overpressure

Important information

DANGER RISK OF EXPLOSION

Risk of explosion when working on the device.

Ensure no explosive atmosphere is present when working on the device.

Procedure

- 1. Check overpressure.
- \checkmark The overpressure should be permanently 4 ... 5 mbar(g).
- 2. When the pressure is lower:
- 3. Set the operating mode of the pressurized enclosure on the control unit to Bypass mode, see the associated Operating Instructions (the factory code for Bypass mode is: 0002).

As long as the Bypass mode is activated, the operator must ensure that an explosive atmosphere cannot occur in the vicinity of the pressurized enclosure at any time.

- 4. Open cabinet.
- 5. By changing the purge air flow during normal operation of the pressurized enclosure, the internal pressure in the pressurized enclosure can be changed. The adjustment is made directly on the purge valve which is electrically controlled by the pressurized enclosure control unit. For this purpose, this purge medium valve has a bypass screw in its valve body, the position of which can be readjusted.
- 6. Close cabinet.
- 7. Check overpressure.
- 8. If the overpressure cannot be adjusted within the required range, then the pressurized enclosure has too many leaks. In this case, carefully check for major leakage:
 - Door seal
 - Cable and wire entries
 - Purge air outlet valves

Also check the correct setting of the purge air pressure regulator. The recommended setting value is 2.5 bar(g) and may be increased to max. 4.5 bar(g).

9. After the check is complete, return the pressurized enclosure Bypass mode to the normal operating mode.

Related topics

Pressurized Enclosure System Operating Instructions

10.5 Maintaining the instrument air conditioning.

10.5.1 Maintaining the instrument air conditioning (option)

Overview

Depending on the instrument air quality:

- Internal instrument air conditioning for analyzer
- External instrument air conditioning for purge air

Prerequisites

The quality requirements for instrument air are met.

Procedure

- 1. Switch on the analyzer maintenance signal: Tasks \rightarrow Maintenance signal on/off
- 2. Flush system for 10 minutes in this state.
- 3. Close off operator's instrument air supply.

The probe tube is not purged when no instrument air is available.

- Only close off the instrument air supply for a short time (several minutes).
- 4. Perform maintenance on the instrument air conditioning according to the provided manufacturer's instructions.
- 5. Open instrument air supply again.
- 6. Switch the maintenance signal off again.

Related topics

- Analyzer Instrument Air Conditioning Operating Instructions
- Purge Air Instrument Air Conditioning Operating Instructions

10.5.2 Maintaining the external instrument air conditioning (option)

Prerequisites

• The quality requirements for instrument air are met.

Procedure

1. Check the external instrument air conditioning for correct function.

10.6 Maintaining the cooling unit

Procedure

- 1. Switch on the analyzer maintenance signal: Tasks → Maintenance signal on/off
- 2. Perform maintenance on the cooling unit according to the provided manufacturer's instructions.
- 3. Switch the maintenance signal off again.

Related topics

• Cooling Unit Operating Instructions

11 Troubleshooting

11.1 Safety

Requirements for the maintenance personnel

- Only allow an authorized electrician to work on the electrical system or electrical assemblies.
- The technician must be familiar with explosion protection.
- Explosion-proof devices may only be repaired by qualified persons with official recognition.
- The technician must be familiar with the exhaust gas technology of the operator's plant (hazard by overpressure and toxic and hot flue gases) and be able to avoid hazards when working on gas ducts.
- The technician must be familiar with handling compressed gas cylinders (span gases).
- The technician must be able to avoid hazards caused by noxious span gases.
- The technician must be familiar with gas lines and their screw fittings (be able to ensure gas-tight connections).

Explosion protection

DANGER RISK OF EXPLOSION

Risk of explosion when working on the device.

- Ensure no explosive atmosphere is present when working on the device.
- Set the operating mode of the pressurized enclosure on the control unit to Bypass mode, see the associated Operating Instructions (the factory code for Bypass mode is: 0002).
- As long as the Bypass mode is activated, the operator must ensure that an explosive atmosphere cannot occur in the vicinity of the pressurized enclosure at any time. After the check is complete, return the pressurized enclosure Bypass mode to the normal operating mode.

Electric voltage

DANGER

Danger to life through electric shock

There is a risk of electric shock when working on the device with the voltage supply switched on.

- Before starting work on the device, ensure the voltage supply can be switched off in accordance with the valid standard using a power isolating switch/circuit breaker.
- Switch off the voltage supply before starting any work on the device.
- After completion of the work or for test purposes or calibration, the power supply may only be activated again by authorized personnel complying with the safety regulations.

NOTICE

!

Risk of destruction of electronic components by electrostatic discharge (ESD)

When electronic assemblies are touched, there is a risk of the assembly being destroyed by electrical equipotential bonding.

Make sure you have the same electric potential as the assembly (e.g. by grounding) before touching the assembly.

NOTICE

Observe voltage variant

Some spare parts are available in different voltage variants, 115 V or 230 V. The power voltage of your system is shown on the type plate.

• Check spare parts for voltage dependency before fitting:

Sample gases and exhaust gases

Risk of chemical burns by acid gas

Acid condensate could escape when working on the sample gas lines and the associated assemblies.

- Take appropriate protective measures for work (e.g., by wearing a safety mask, protective gloves and acid resistant clothes)
- In case of contact with the eyes, rinse immediately with clear water and consult a doctor.

NOTICE

Risk of contamination of analyzer

The gas sampling unit and analyzer are flushed with instrument air when the system is not in measuring operation. When the instrument air is switched off, there is the risk of contamination of the analyzer.

• Pull the gas sampling unit out of the exhaust duct when instrument air is not available for a longer period of time.

Surfaces

CAUTION DANGER OF BURNS DUE TO HOT SURFACES

Danger of burns due to hot surfaces

- Wear suitable protective clothes, for example, heat-resistant gloves.
- Switch off the device and allow the components to cool down.

Span gases

CAUTION

Before working on span gas cylinders or span gas lines: Relieve the span gas pressure

- Shut off the span gas cylinder.
- Open the span gas valve: Menu: 2 Adjustment \rightarrow 3 Span gas feed.
- ▶ Wait for about 1 minute until the pressure in the lines has been relieved.
- Close the span gas valve: Menu: 2 Adjustment \rightarrow 3 Span gas feed.

Please note:

- After working on the gas path: Perform a leak tightness check.
- After exchanging a span gas cylinder: Check the compliance with the span gas concentration set in the menu: 2 Adjustment \rightarrow 5 Settings \rightarrow 1 Concentrations

11.2 Error messages and possible causes

Overview

Current pending messages are shown on the device display.

Display of current device state data: Logbook.

The following Table only includes those messages with classification "X" that are important for information.

Messages not included in the following Table have no further significance for operation.

Important information

Messages with status "F" must be cleared first.

Close the logbook and open it again to check whether the error is cleared.

Trigger: System

- C = Classification
- F = Failure
- M = Maintenance request

Table 6: Error codes - System

Code	Error text	ĸ	Description	Possible clearance
S001 Temperature too high F		F	Measuring cell temperature too high	When $T \ge 360.7$ °C: Check plug-in connectors. When ok: Call E+H Service.
				When T < 360.7 °C: Call E+H Service.
			Optic head temperature too high	When $T \ge 151.2$ °C: Check plug-in connectors. When ok: Call E+H Service.
				When T < 151.2 °C: When cabinet temperature \geq 55 °C: Check cabinet fan / replace filter pad. Otherwise call E+H Service.
			Temperature of heating for an assembly too high	Check device documentation to clarify which assembly is affected.
				When $T \ge 360.7$ °C: Check plug-in connectors. When ok: Call E+H Service.
				When T < 360.7 °C: Call E+H Service.
			LPMS01 (1/2 control) temperature too high	When enclosure temperature ≥ 55 °C: Check cabinet fan / replace filter pad.
				When enclosure temperature < 55 °C: Check fan of elec- tronics unit / clean or replace filter pad. Otherwise call E+H Service.
			LPMS02 (power electronics) temperature too high	When enclosure temperature \geq 55 °C: Check cabinet fan / replace filter pad.
				When enclosure temperature < 55 °C: Call E+H Service.
			LPMS03 temperature too high	When no error message for optic head temperature: Call E+H Service. Otherwise, see optic head error clearance
S002	Temperature too low	F		Check system documentation to clarify which assembly is affected (heating circuit 17).
				Check circuit breaker
				 Circuit breaker has triggered: Check all affected lines for damage. Check the plugs. When ok: Perform reset of circuit breaker. Check all plugs are plugged correctly. Circuit breaker has not triggered:
				When heating hose affected: Connect new PT100. Otherwise call E+H Service.
S004	Flow too low	F		When pressure error, clear it first. Sample gas flow too low and purge/zero gas flow ok: Check/replace sampling filter
				Sample gas flow and purge/zero gas flow too low: Call E+H Service
				Purge/zero gas flow too low and sample gas flow ok: Check all hose connections. When ok: Call E+H Service.

Code	Error text	ĸ	Description	Possible clearance
S005	Cell pressure too high	F		Only sample gas pressure too high:
				• Ensure sample gas pressure within device specifica-
				tion. If not possible: Call E+H Service
				In the possible. Our Entrocements the high:
				Exhaust das bass arimped /blocked?
				Counter-pressure in exhaust duct too high?
				 Check all hose connections.
				When ok: Call F+H Service.
				Only purge/zero gas pressure too high:
				• Set correct pressure on pressure reducer unit.
				Call E+H Service.
S006	Cell pressure too low	F		Call E+H Service.
S008	Chopper	F	Chopper frequency not regulated.	Call E+H Service.
S009	Motor filterwheel 1	F	Filterwheel motor does not detect reference	Call E+H Service.
S010	Motor filterwheel 2	1	position.	
S011	Motor filterwheel 3			
S012	IR source	F	Voltage or current outside tolerance	Call E+H Service.
S013	5 Volt power	F	Outside tolerance	Call E+H Service.
S014	24 Volt power	F	Outside tolerance	Call E+H Service.
S015	Detector signal	F		Call E+H Service.
S016	Ref.energy too low	F		Call E+H Service.
S018	O_2 sensor failure	F		Check plug connection.
	-			When ok: Call E+H Service.
S019	O ₂ adj. factor too high	F		Perform O_2 adjustment again.
				When message is still present: Call E+H Service.
S024	No active component	F	When "active" checkmarks of all components are inactive	When current backup available: Load backup. Otherwise call E+H Service.
S025	Evaluation module fail-	F	Evaluation module can not be started.	When current backup available: Load backup.
	ure			Otherwise call E+H Service.
S026	Evaluation mod. file error	F	Files for evaluation module not created	When current backup available: Load backup. Otherwise call E+H Service.
S027	No result	F		When current backup available: Load backup. Otherwise call E+H Service.
35	Sample gas line 1 Over-	F	Overtemperature shutdown of sample gas line	Check sample gas line for damage
	temp.		by temperature limiter Jumo	Check setting on temperature controller
				When no error is found: Call E+H Service.
37	Sample gas line 2 Over- temp.	F	Overtemperature shutdown of sample gas line by temperature limiter Jumo	Check sample gas line for damage Check setting on temperature controller
				When no error is found: Call E+H Service.
Mainter	ance			
30	Overpressure Fault	M	Pressurized enclosure error	Check all openings are correctly closed. Perform a leak test.
31	Temperature cabinet	М	Control cabinet temperature too high	Check functionality of cooling unit Match ambient conditions with specified data
32	Fault air conditioner	M	Cooling unit error	See Cooling Unit Operating Instructions
S033	Dev. zero point too high	м	Parameters set for measured component	Check zero gas for pressure and cleanness.
	,			Perform maintenance on compressed air conditioning
				Perform manual zero point adjustment twice (menu:
				2 Adjustment \rightarrow 1 Adjustment \rightarrow 1 Zero point adjust-
				ment). When message occurs again during next automatic zero
				point adjustment: Call E+H Service

Code	Error text	к	Description	Possible clearance
S034	Config. I/O mod.	М	Configuration error, found module does not correspond to that of the nominal configura- tion	Check IO modules, check plug connectors and voltage supply, load backup if necessary. Otherwise call E+H Service.
S035	Ref.energy too low	м		Call E+H Service.
S036	O ₂ sensor failure	м		Call E+H Service.
S038	Current invalid	м	Analog output: Desired current not reached.	Check connections on the Analog module.
S039	Current invalid	м	Analog input: Current outside valid range.	
S040	Flow too high	М		Call E+H Service.
S041	Flow too low	М		When pressure error, clear it first. Sample gas flow too low and purge/zero gas flow ok: Check/replace sampling filter
				Sample gas flow and purge/zero gas flow too low: Call E+H Service
				Purge/zero gas flow too low and sample gas flow ok: Check all hose connections. Check zero gas needle valve setting. When ok: Call E+H Service.
S043	IR source weak	м	Voltage or current outside tolerance	Call E+H Service.
S045	Dev. span adjust too high	М	Gas adjustment not performed because it is outside the tolerable range; parameters set for measured component	Check that correct span gas is connected, span gas con- centration is entered correctly and the certificate is still valid. Perform new span gas adjustment, when message is still present: Call E+H Service.
S046	Dev. int. adjust too high	М	Adjustment with internal adjustment filters not performed because it is outside the tolerable range; parameters set for measured compo- nent	Check instrument air and zero gas quality. Perform adjustment again with internal adjustment filters. When message is still present: Call E+H Service.
S047	Dev. O ₂ adjust too high	М	O ₂ adjustment not performed because it is outside the tolerable range; parameters set for measured component	Perform O_2 adjustment again, when message is still pending: Call E+H Service.
S048	Alarm O ₂ measured value	М	The current O_2 measured value is outside the alarm limits.	
S049	SD card not detected	м		Check the SD-card position. When ok: Call E+H Service.
S050	Adjust factor is zero	м		Check entry of span gas concentration.
S055	O ₂ adjust factor too high	м	O ₂ adjustment factor is above warning limit.	Call E+H Service.
Error				
S113	Check sum error	F	Error in communication between CAN node and I/O module	Check I/O modules, cable damage.
S114	Communication error	F	Interruption in communication between CAN node and I/O module	
S116	Connection was interr.	F	Signals that the output was switched free from current because of the time-out.	Check I/O modules, cable damage.

11.3 Replacing the Electronics module filter pad

Figure 9: Electronic housing (right side)

Important information

NOTICE

!

Dirt can get into the device when replacing the filter pad.

• Only replace the filter pad when the device is switched off.

Prerequisites

• The device is switched off.

Procedure

- 1. Pull cover ① off.
- 2. Replace the filter pad inside.

12 Decommissioning

12.1 Switching off

12.1.1 Switching off

Important information

NOTICE

Risk of contamination of analyzer

The gas sampling unit and analyzer are flushed with instrument air when the system is not in measuring operation. When the instrument air is switched off, there is the risk of contamination of the analyzer.

• Pull the gas sampling unit out of the exhaust duct when instrument air is not available for a longer period of time.

Procedure

- 1. Switch off all poles of the system at the two main switches on the connection unit.
- 2. Purge system with instrument air for a minimum of 10 minutes.
- 3. Switch the calibration gases off.
- 4. Ensure no sample gas reaches the analyzer.
- 5. Ensure that no gas can enter the analyzer system via the exhaust gas line.
- 6. The cabinet door must not be opened until 15 minutes after shutdown when an explosive atmosphere is present.

DANGER

After switching off the voltage supply, some parts inside the analyzer cabinet may have high temperatures that could lead to ignition of an explosive atmosphere.

- 7. Switch off the external (on-site) power disconnection unit.
- 8. The system contains a battery that is charged after shutdown. Should the system remain without explosion protection for a significant time, the battery should be removed.

12.1.2 Shutdown

Prerequisites

• System is switched off.

Procedure

- 1. Ensure the gas sampling unit can not be contaminated (e.g. by pulling the probe tube)
- 2. Switch external instrument air off.
- 3. Close off gas inlets and outlets gas-tight

Related topics

Switching the system off: see "Switching off", page 53

12.2 Return delivery

12.2.1 Shipping for repair

Overview

You can find all information on the repair flat rates, Repair Form (incl. Non-Risk Declaration and return information) at www.endress.com/Downloads.

Important information

NOTE

i

Without the Non-Risk Declaration, the device will either be cleaned by a third-party company at the customer's expense or the package will not be accepted.

Procedure

- 1. Contact your local Endress+Hauser representative. Addresses: See back of the Operating Instructions.
- 2. Clean device.
- 3. Fill in the Repair form including Non-Risk Declaration and send in advance to the Endress+Hauser representative by e-mail.
- 4. Pack the unit carefully and shockproof in the original packaging for transport.
- 5. Enclose the Repair Form and attach it to the outside of the packaging.

12.2.2 Cleaning the device before returning

Important information

NOTICE

☐ Device damage through incorrect cleaning.

- Close the housing before cleaning so that no fluid can penetrate.
- Do not use a high-pressure cleaner, aggressive mechanical or chemical cleaning agents.

Prerequisites

Device is voltage-free.

Procedure

Clean surfaces and parts with media contact

- 1. Remove loose contamination with compressed air.
- 2. Remove adhering contamination with a mild soap solution and a soft cloth.
- 3. Do not clean optical surfaces.

12.3 Transport

Procedure

- 1. Protect the device before transport.
- 2. Use the original packaging for transport or alternatively a suitable padded stable packaging.
 - A transport container with adequate stability can also be used.
- 3. Protect the device with padding from shocks and vibrations.
- 4. Thoroughly secure the device in place inside the transport container. Make sure there is sufficient space between the analyzer and the walls of the transport container.

12.4 Disposal

Important information

The following subassemblies contain substances that may have to be disposed of separately:

- Electronics: Capacitors, rechargeable batteries, batteries.
- Display: Liquid of LC display.
- All parts with media contact can be contaminated with harmful substances.

Disposal of the device

The device can easily be disassembled into its components which can then be sent to the respective raw material recycling facilities.

- Dispose of electronic components as electronic waste.
- Check which materials having contact with the pipeline must be disposed of as hazardous waste.
- Batteries must not be disposed of with household waste. The battery and the device must be disposed of separately in accordance with local waste disposal regulations.

13 Technical data

13.1 Dimensional drawings

!

Important information

```
NOTICE
```

Observe clearances at the installation site:

- Top: 100 cm
- Side 100 cm

Dimension drawing

Figure 10: MCS200HW Ex p (dimensions in mm)

13.2 **Technical data**

13.2.1 **Measured values**

Table 7: Measured variables

Number of measured variables		
Number of measured variables	10 IR components + O_2	

Table 8: Measuring method

I

Measuring method	
Measuring method	Hot extractive

Table 9: Sample volume

Sample volume	
Sample volume	200 400 l/h

Table 10: Measuring ranges

Measuring component	Measuring range
HCI	0 9 ppm; 0 1840 ppm
NH ₃	0 9 ppm / 0 650 ppm
СО	0 24 ppm / 0 8,000 ppm
NO	0 37 ppm / 0 1,865 ppm
CH ₄	0 70 ppm; 0 700 ppm
NO ₂	0 25 ppm; 0 240 ppm
C0 ₂	0 25% by volume; 0 50% by volume
SO ₂	0 26 ppm; 0 875 ppm
H ₂ O	0 40% by volume
02	0 25% by volume
N ₂ O	0 23 ppm / 0 1,015 ppm

Table 11: Certified measuring ranges in accordance with EN15267-3

Measuring compo- nent	Module name	Certified measuring ranges	Additional measuring ranges
HCI	HCI	0 15 mg/m ³	0 3,000 mg/m ³
NH ₃	NH ₃	0 10 mg/m ³	0 500 mg/m ³
NH ₃	NH ₃ (low)	0 7 mg/m ³	0 500 mg/m ³
СО	СО	0 75 mg/m ³	0 10,000 mg/m ³
СО	CO (low)	0 30 mg/m ³	0 10,000 mg/m ³
NO	NO	0 150 mg/m ³	0 2,500 mg/m ³
NO	NO (low)	0 50 mg/m ³	0 2,500 mg/m ³
CH ₄	CH ₄	0 50 mg/m ³	0 500 mg/m ³
NO ₂	NO ₂	0 50 mg/m ³	0 500 mg/m ³
SO ₂	SO ₂	0 75 mg/m ³	0 2,500 mg/m ³
N ₂ 0	N ₂ O	0 100 mg/m ³	0 2,000 mg/m ³
N ₂ 0	N ₂ O (low)	0 45 mg/m ³	0 2,000 mg/m ³
C0 ₂	C0 ₂	0 25% by volume	-
H ₂ 0	H ₂ O	0 40% by volume	_
02	02	0 25% by volume	-

Table 12: Measured value characteristics

Measured value characteristics		
Measuring principle	Photometric	

Measured value characteristics		
Measuring precision	< 2% of the respective full scale value	
Detection limit	< 2% of the respective full scale value	
Sensitivity drift	< 2% of the respective full scale value per week	
Zero point drift	< 2% of the respective full scale value per week	
Span drift	< 2% of the respective full scale value per week	
Setting time t ₉₀	< 200 s, total measuring path as from probe extraction	

13.2.2 Ambient conditions

Table 13: Operation

Ambient conditions in operation		
Installation location	Indoor and outdoor installation	
Ambient temperature	-20 +50 °C	
Explosion protection	II 3G Ex dc ec ic [ic] mc nC pzc IIC T3 Gc	
Relative humidity	< 90% (without condensate)	
Air pressure	850 1100 hPa	

Table 14: Storage

Ambient conditions in storage		
Ambient temperature	-20 +55 °C	
Relative humidity	< 90% (without condensate)	

13.2.3 Housing

Table	15:	Design
-------	-----	--------

Design		
Design	1 x stand-alone enclosure	
Material, general	Stainless steel AISI 304 (1.4301) Optional: GRP, sheet steel	
Dimensions	see "Dimensional drawings", page 56	
Installation	Upright	
Weight	Approx. 400 kg	
Materials with media contact	Stainless steel 1.4571PTFEAluminium (coated)	
Enclosure rating	IP65	
Impact resistance	IK08	

13.2.4 Interfaces and protocols

Table 16: Interfaces and protocols

Operation and interfaces		
Operation	Via display or Google Chrome browser with SOPASair soft- ware, several operating levels, password-protected	
Display and input	Foiled color display with touchscreen	
Analog inputs/outputs	Optional	
Digital inputs/outputs	Optional	
Data interface	1 x Modbus TCP/IP	
Profibus	Configurable	
Profinet	Configurable	
PC operation	Browser Google Chrome with SOPASair via Ethernet	

13.2.5 Power supply

Table 17: Voltage supply

Voltage supply			
Po	wer input	Power input	
•	Analyzer	•	Approx. 1000 VA
•	Heated sample gas line	٠	Approx. 90 VA/m
•	Gas sampling unit	•	200 600 VA
•	Cooling unit	٠	1300 VA

Table 18: Optional interfaces

Interfaces (optional)		
Digital outputs	4 outputs, 24 V, 0.5 A	
Digital inputs	Electrically isolated, 24 V, 0.3 A	

Table 19: Cable glands

Cable glands		
Hose bundle line	M50x1.5 D23 - D35 Ex PA-SW	
Main power supply	M25x1.5 D7 - D17 Ex PA-SW	
UPS power supply	M25x15 D7 - D17 Ex PA-SW	
External I/O lines (digital/analog)	M25x1.5 D7 - D17 Ex PA-SW	
Ethernet interface	M20x1.5 D4 - D13 Ex PA-SW	

13.2.6 Gas supply

Important information

NOTICE

!

Malfunction of the measuring device due to unsuitable instrument air

Operation with air not satisfying the specifications voids the warranty and does not ensure proper functioning of the measuring device.

- Only feed conditioned instrument air to the measuring device.
- ► The instrument air quality must meet the specification.

Supply gases

Table 20: Supply gases

Gas	Quality	Inlet pressure	Flow rate
Instrument air (zero gas quality)	Particle size max. 5 µm Pressure dew point max40 °C Oil content max. 0.01 mg/m ³ ISO 8573-1:2010 [1:2:2]	600 700 kPa (6.0 7.0 bar)	Approx. 350 NI/h Approx. 1300 NI/h (with backflush)
Inlet of instrument air solely as induction air for ejector	Particle size max. 5 µm Pressure dew point max. +3 °C Oil content max. 0.1 mg/m ³ ISO 8573-1:2010 [1:4:3]	500 700 kPa (5.0 7.0 bar)	Approx. 1300 NI/h
Air dryer (option)	With the air dryer option, approx. 2,250 NI/h of addi- tional instrument air is required (at a primary pressure of 7 bar).		
External span gas	Span gas must comply with the specifications of the standards to be applied.	Max. 400 kPa (3.5 bar)	Approx. 350 NI/h

Gas	Quality	Inlet pressure	Flow rate
Instrument air for pressurized enclo- sure	Particle size max. 40 µm, Pressure dew point max20 °C Oil content max. 1 mg/m ³ ISO 8573-1:2010 [5:3:3]	600 700 kPa (6.0 7.0 bar)	500 1000 NI/h

13.2.7 Tube connections

Table 21: Tube connections

Connection	Dimension
Sample gas inlet	Clamping ring screw connection (hose fitting) 6 mm inner diameter 8 mm outer diameter
Instrument air	Standard: DN 8/10 Optionally, other diameters are possible.
Connection of air dryer (option)	DN 8/10
Span gas inlet	Clamping ring screw connection (hose fitting) 4 mm inner diameter 6 mm outer diameter
Gas outlet	Standard: DN 8/10 Optional: DN 10/12 for longer exhaust gas lines

13.2.8 Sample gas conditions

Table 22: Sample gas characteristics

Sample gas at sampling point	Characteristic
Process temperature	10 550 °C
Sample gas temperature assembly:	Temperature:
 Sample gas probe Sample gas line Parts in contact with sample gas in the analyzer 	 Approx. 165 °C Approx. 170 °C Approx. 200 °C
Process pressure	-200 +200 hPa relative
Dust load	< 1 g/m ³

- 13.2.9 Connections in analyzer
- 13.2.9.1 Connections for interfaces and SD card
 Overview

ETHO ETH1		N PROFIBUS)00()0
		RS422/RS485 RS232 K	
PT100	DIGITAL INPUTS 7.8) [1.2.3.4.5.6.7. 15.16] [9.10.11.12.13.14.15	DIGITAL OUTPUTS .8. 1.2.3.4.5.6 1.1. .8. 7.8.9.10.11.12 9.5	VALVE OUTPUTS 2-3-4-5-6-7-8- 0-11-12-13-14-15-18

Data interfaces - overview

Table 23: Data interfaces - overview

Plug	Connection for
ETHO	Ethernet (e.g. SOPAS ET), MPR (remote maintenance), communication via Modbus TCP - line is led upwards
ETH1	Internal
USB	Internal
SD card	SD card (on the right, next to USB)
CAN1	Internal
CAN2	Internal
RS422, RS485	Internal
RS232 (top plug)	Internal
02 (bottom plug)	O ₂ sensor
DISP (top plug)	Display
I/O-MOD (bottom plug)	Internal

Table 24: Connection terminal - CAN interface, RS485 interface

Wire	Cross-section in mm ²	Cross-section in AWG	Tightening torque Nm
rigid	0.14 1.5	28 16	
flexible with ferrules	0.25 1.5	26 16	0.22 0.25
flexible with ferrules with insulat- ing collar	0.25 0.75	26 19	

13.2.10 Heated sample gas line

Table 25: Sample gas line - characteristics

Sample gas line	
Length	Max. 50 m certified, longer sample gas lines on request
Ambient temperature	-20 +50 °C
Working temperature	Max. 170 °C
Temperature control	1 x Pt100
	1 x Pt100 for temperature limiter
Voltage supply	230 V
	Optional 115 V
Power consumption	90 VA/m
Explosion protection	II 2G Ex 60079-30-1 eb IIC T3 Gb

13.2.11 Switching on the circuit breakers again

Overview

The circuit breakers are located at the bottom of the electronics unit.

The circuit breakers are labeled.

Procedure

When a circuit breaker has triggered

- 1. Press the circuit breaker pin back in again.
- 2. If this does not switch the circuit breaker on again, wait a few minutes (cooling down phase) and press the pin back in again.
- 3. If this does not switch the circuit breaker on again, check the assembly and replace when necessary.

13.2.12 Torques for screw fittings

Overview

Tighten all screw connections, for which no tightening torque or no pretension force is specified in drawings or Assembly Instructions, according to VDI 2230.

Exceptions to this rule are all connections with screws that are not screw connections in the real sense. This includes hose clips, cable glands, screw fittings, gas connections, screws for circuit boards etc. Tighten these screw fittings as evenly as possible with a much lower torque (hose clips 1 Nm, other screw fittings according to manufacturer specifications).

Select the next lowest torque valid for the screw for mixed materials and special screws such as relieved screws.

The basic friction coefficient is (screw fittings without lubrication) $\mu k = \mu G = 0.14$. The calculated values are valid for room temperature (T=20°C).

Torques

Table 26: Torques

Dimension	Slope P	Tightening torque $M_{\text{A}}\left(\text{Nm}\right)$ according to strength class (see screw head)							
		3.6	4.6 A2-50 A4-50	5.6 Alu	A2-70 A4-70	A2-80 A4-80	8.8 Titan	10.9	12.9
M 1.6	0.4	0.05	0.05	0.05	0.11	0.16	0.19	0.26	0.31
M 2	0.45	0.1	0.1	0.11	0.22	0.32	0.39	0.55	0.66
M 2.5	0.45	0.21	0.22	0.23	0.46	0.67	0.81	1.13	1.36
М З	0.5		0.54	1	1.2	1.39	1.51	1.98	2.37
M 3.5	0.6		0.85	1.3	1.54	1.75	1.9	2.6	3.2
M 4	0.7		1.02	2	2.5	3	3.3	4.8	5.6
M 5	0.8		2	2.7	4.2	5.6	6.5	9.5	11.2
M 6	1		3.5	4.6	7.3	9.7	11.3	16.5	19.3
M 8	1.25		8.4	11	17.5	23.3	27.3	40.1	46.9
M 10	1.5		17	22	35	47	54	79	93
M 12	1.75		29	39	60	79	93	137	160
M 14	2		46	62	94	126	148	218	255
M 16	2		71	95	144	192	230	338	395
M 18	2.5		97	130	199	266	329	469	549
M 20	2.5		138	184	281	374	464	661	773
M 22	2.5		186	250	376	508	634	904	1057
M 24	3		235	315	485	645	798	1136	1329
M 27	3		350	470	708	947	1176	1674	1959
M 30	3.5		475	635	969	1289	1597	2274	2662
M 33	3.5		645	865	1319	1746	2161	3078	3601
M 36	4		1080	1440	1908	2350	2778	3957	4631
M 39	4		1330	1780	2416	3016	3597	5123	5994

14 Spare parts

Description	Wearing part	Part number
High performance filter	Filter element	5349691
	Automatic drain with metal nut - metric version	5349692
	Container (metal with sight glass and automatic drain - PIF 6 mm)	5349693
Compressed air filter	Filter element	5349694
	Container (metal with sight glass and automatic drain - PIF 6 mm)	5349695

Purge air instrument air conditioning

Analyzer instrument air conditioning

Description	Wearing part	Part number
Instrument air conditioning	Service kit	5342058

Gas sampling unit

Description	Part number
Wearing parts kit comprising 1x O-ring A and B, 1x filter element ceramic 2 µm, 2x flat gasket Viton for filter element	5332627

15 Annex

15.1 Conformities

Conformities

- EMC Directive (Electromagnetic Compatibility) 2014/30/EU
- EN 61349-2: Low voltage switchgear assemblies
- ATEX Directive: 2014/34/EU

Further standards and directives: See Declaration of Conformity provided with the device.

15.2 Licenses

15.2.1 Liability disclaimer

The firmware for this device has been developed using Open Source Software. Any changes to the Open-Source components are in the general responsibility of the user. All warranty claims are excluded in this case.

The following exclusion of liability applies to the GPL components in relation to the rights holders: This program is distributed in the hope that it will be of use, but with no guarantee of this; neither is there any implied guarantee of marketability or suitability for a particular purpose. Refer to the GNU General Public License for details.

With regard to the other Open-Source components, we refer to the liability disclaimers of the copyright holders in the licence texts on the CD delivered.

15.2.2 Software licences

In this product, Endress+Hauser uses unchanged and, as far is necessary and in compliance with relevant licence conditions, changed Open Source Software.

The firmware of this device is therefore subject to the copyrights listed on the CD delivered. Please refer to the storage medium delivered for a complete list of the Open Source programs used as well as the relevant licence conditions.

15.2.3 Source codes

The source codes for the Open Source programs used in this device can be requested using the following email address: Please enter "Open Source Software" as subject.

8029892/1SIK/V1-1/2025-06

www.addresses.endress.com

