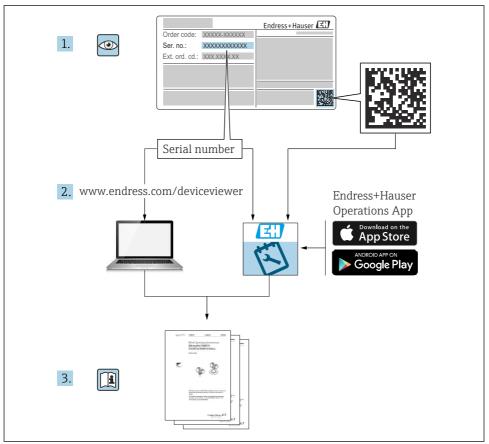
Краткое руководство по эксплуатации Deltabar PMD55B

Измерение перепада давления PROFINET через Ethernet-APL

Services


Настоящее краткое руководство по эксплуатации не заменяет собой руководство по эксплуатации прибора. Подробные сведения содержатся в руководстве по эксплуатации и дополнительной документации.

Доступно для всех версий устройства посредством:

- интернет: www.endress.com/deviceviewer:
- смартфон/планшет: приложение Operations от Endress+Hauser.

1 Сопутствующая документация

A0023555

2 Информация о настоящем документе

2.1 Назначение документа

В кратком руководстве по эксплуатации содержится наиболее важная информация от приемки оборудования до его ввода в эксплуатацию.

2.2 Символы

2.2.1 Предупреждающие символы

№ ОПАСНО

Данный символ предупреждает об опасной ситуации. Если допустить данную ситуацию, она приведет к тяжелой или смертельной травме.

№ ОСТОРОЖНО

Данный символ предупреждает о потенциально опасной ситуации. Если допустить данную ситуацию, она может привести к тяжелой или смертельной травме.

№ ВНИМАНИЕ

Данный символ предупреждает о потенциально опасной ситуации. Если допустить данную ситуацию, она может привести к травме легкой или средней степени тяжести.

УВЕДОМЛЕНИЕ

Данный символ предупреждает о потенциально опасной ситуации. Если допустить данную ситуацию, она может привести к повреждению изделия или предметов, находящихся рядом с ним.

2.2.2 Электротехнические символы

Заземление: 🖶

Клемма для подключения к системе заземления.

2.2.3 Символы для различных типов информации

Разрешено: 🗸

Разрешенные процедуры, процессы или действия.

Запрещено: 🔀

Запрещенные процедуры, процессы или действия.

Дополнительная информация: 🚹

Ссылка на документацию: 📵

Ссылка на страницу:

Серия шагов: 1., 2., 3.

Результат отдельного шага: 💵

2.2.4 Символы, изображенные на рисунках

Номера пунктов: 1, 2, 3 ...

Серия шагов: 1., 2., 3.

Виды: А, В, С, ...

2.2.5 Символы, изображенные на приборе

Указания по технике безопасности: ∧ → 📵

Соблюдайте указания по технике безопасности, содержащиеся в соответствующем руководстве по эксплуатации.

2.3 Зарегистрированные товарные знаки

PROFINET®

Зарегистрированный товарный знак организации пользователей PROFIBUS, Карлсруэ, Германия.

Bluetooth®

Текстовый знак и логотипы Bluetooth® являются зарегистрированными товарными знаками, принадлежащими Bluetooth SIG, Inc., и любое использование таких знаков компанией Endress+Hauser осуществляется по лицензии. Другие товарные знаки и торговые наименования принадлежат соответствующим владельцам.

Apple[®]

Надпись Apple, логотип Apple, надписи iPhone и iPod touch являются товарными знаками компании Apple Inc., зарегистрированными в США и других странах. App Store – знак обслуживания Apple Inc.

Android®

Надписи Android, Google Play и логотип Google Play являются товарными знаками компании Google Inc.

3 Основные требования техники безопасности

3.1 Требования к персоналу

Персонал, занимающийся монтажом, вводом в эксплуатацию, диагностикой и техническим обслуживанием, должен соответствовать указанным ниже требованиям.

- ▶ Пройти необходимое обучение и обладать соответствующей квалификацией для выполнения конкретных функций и задач.
- ▶ Получить разрешение на выполнение данных работ от руководства предприятия.
- Ознакомиться с нормами федерального/национального законодательства.
- ► Перед началом работы внимательно ознакомиться с инструкциями, представленными в руководстве, с сопроводительной документацией, а также с сертификатами (в зависимости от цели применения).
- ▶ Следовать инструкциям и соблюдать условия.

Обслуживающий персонал должен соответствовать указанным ниже требованиям.

- Пройти инструктаж и получить разрешение на выполнение данных работ от руководства предприятия.
- ▶ Следовать инструкциям, приведенным в настоящем руководстве по эксплуатации.

3.2 Назначение

Прибор Deltabar представляет собой дифференциальный преобразователь для измерения давления, расхода, уровня и дифференциального давления.

3.2.1 Использование не по назначению

Изготовитель не несет ответственности за повреждения, вызванные неправильным использованием или использованием прибора не по назначению.

Устойчивость материалов к вредному воздействию

Сведения о специальных жидкостях, в том числе жидкостях для очистки: специалисты Endress+Hauser готовы предоставить всю необходимую информацию, касающуюся коррозионной устойчивости материалов, находящихся в контакте с жидкостями, но не несут какой-либо ответственности и не предоставляют каких бы то ни было гарантий.

3.3 Техника безопасности на рабочем месте

При работе с прибором следует соблюдать следующие правила.

- ▶ В соответствии с федеральным/национальным законодательством персонал должен использовать средства индивидуальной защиты.
- ▶ Подключение прибора выполняется при отключенном сетевом напряжении.

3.4 Эксплуатационная безопасность

Опасность несчастного случая!

- Эксплуатируйте только такой прибор, который находится в надлежащем техническом состоянии, без ошибок и неисправностей.
- ▶ Ответственность за работу изделия без помех несет оператор.

Модификации датчика

Несанкционированное изменение конструкции прибора запрещено и может представлять опасность.

► Если, несмотря на это, все же требуется внесение изменений в конструкцию датчика, обратитесь в компанию Endress+Hauser.

Ремонт

Условия длительного обеспечения эксплуатационной безопасности и надежности:

- проведение ремонта прибора только при наличии специального разрешения;
- соблюдение федерального/национального законодательства в отношении ремонта электрических приборов;
- использование только оригинальных запасных частей и комплектующих производства компании Endress+Hauser.

Взрывоопасные зоны

Во избежание травмирования персонала и повреждения оборудования при использовании прибора в зоне, указанной в сертификате (например, взрывозащита, безопасность сосуда, работающего под давлением):

- информация на заводской табличке позволяет определить соответствие приобретенного прибора сертифицируемой рабочей зоне, в которой прибор будет установлен.
- см. характеристики в отдельной сопроводительной документации, которая является неотъемлемой частью настоящего руководства по эксплуатации.

3.5 Безопасность изделия

Прибор разработан в соответствии с надлежащей инженерной практикой, соответствует современным требованиям по безопасности, прошел испытания и поставляется с завода в безопасном для эксплуатации состоянии.

Он соответствует общим стандартам безопасности и требованиям законодательства. Кроме того, прибор соответствует директивам ЕС, перечисленным в декларации соответствия требованиям ЕС для конкретного прибора. Компания Endress+Hauser подтверждает это нанесением маркировки СЕ на прибор.

3.6 IT-безопасность

Гарантия компании Endress+Hauser на прибор действует только в том случае, если монтаж и эксплуатация производятся согласно инструкциям, изложенным в руководстве по эксплуатации. Прибор оснащен механизмом защиты, не допускающим непреднамеренного внесения каких-либо изменений в настройки. IT-безопасность соответствует общепринятым стандартам безопасности оператора и разработана с целью предоставления дополнительной защиты прибора, в то время как передача данных прибора должна осуществляться операторами самостоятельно.

3.7 ІТ-безопасность прибора

В приборе предусматриваются специальные функции, которые помогают оператору реализовать защитные меры. Эти функции доступны для настройки пользователем и при

правильном применении обеспечивают повышенную эксплуатационную безопасность. Обзор наиболее важных функций приведен в следующем разделе:

- Защита от записи с помощью аппаратного переключателя
- Код доступа для изменения уровня доступа (применяется для работы через Bluetooth, FieldCare, DeviceCare, инструменты управления активами (например, AMS, PDM и вебсервер)

3.7.1 Защита от записи на основе пароля

Ограничение доступа для записи к параметрам прибора реализовано при помощи различных паролей.

Ограничить доступ для записи к параметрам прибора можно с помощью местного дисплея, веб-браузера или управляющей программы (например, FieldCare, DeviceCare). Авторизация доступа однозначно регулируется посредством индивидуального пользовательского кода доступа.

Пользовательский код доступа

Ограничить доступ для записи к параметрам прибора через локальный дисплей, веббраузер или управляющую программу (например, FieldCare, DeviceCare) можно с помощью редактируемого, устанавливаемого пользователем кода доступа.

Общие указания по использованию паролей

- Перед вводом в эксплуатацию: измените код доступа после получения прибора
- При настройке и использовании кода доступа соблюдайте общие правила составления безопасного пароля
- Пользователь обязан распоряжаться и пользоваться кодом доступа с должной осторожностью

3.7.2 Доступ посредством веб-сервера

Благодаря встроенному веб-серверу эксплуатацию и настройку прибора можно осуществлять с помощью веб-браузера и PROFINET с Ethernet-APL. Помимо значений измеряемой величины отображается информация о статусе прибора, которая может использоваться для отслеживания его работоспособности. Кроме того, доступно управление данными прибора и настройка сетевых параметров.

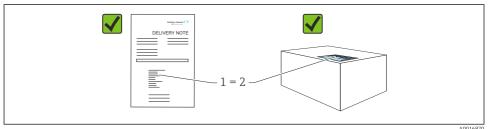
Для подключения к PROFINET с Ethernet-APL необходим доступ к сети.

Поддерживаемые функции

Обмен данными между устройством управления (например, ноутбуком) и измерительным прибором:

- Экспорт значений параметров (PDF-файл, создание документации по конфигурации точки измерения)
- Загрузка драйвера (GSDML) для системной интеграции

В поставляемых приборах веб-сервер активирован. При необходимости веб-сервер можно деактивировать с помощью параметр **Функциональность веб-сервера** (например, после ввода в эксплуатацию).


Информацию о приборе и его состоянии на странице входа в систему можно скрыть. За счет этого предотвращается несанкционированный доступ к этой информации.

Подробные сведения о параметрах прибора см. в: документе «Описание параметров прибора»

4 Приемка и идентификация изделия

4.1 Приемка

- A001007
- Совпадает ли код заказа, указанный в накладной (1), с кодом заказа, который указан на наклейке изделия (2)?
- Не поврежден ли груз?
- Совпадают ли данные, указанные на заводской табличке, с параметрами заказа и сведениями, указанными в накладной?
- Имеется ли в наличии документация?
- Если применимо (см. заводскую табличку): имеются ли указания по технике безопасности (XA)?
- Если можно ответить «нет» на любой из этих вопросов, обратитесь в компанию Fndress+Hauser

4.2 Хранение и транспортировка

4.2.1 Условия хранения

- Используйте оригинальную упаковку
- Храните измерительный прибор в чистом сухом помещении. Примите меры по защите от ударных повреждений

Диапазон температуры хранения

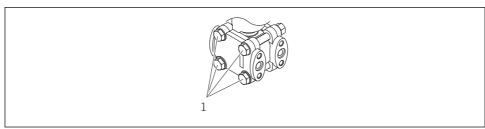
См. техническое описание.

4.2.2 Транспортировка изделия до точки измерения

А ОСТОРОЖНО

Неправильная транспортировка!

Корпус и диафрагма могут быть повреждены, существует опасность несчастного случая!


▶ Транспортировать измерительный прибор до точки измерения следует в оригинальной упаковке.

5 Монтаж

УВЕДОМЛЕНИЕ

При ненадлежащем обращении прибор может быть поврежден!

 Выворачивание винтов, обозначенных номером позиции (1), недопустимо ни при каких обстоятельствах и приводит к отмене гарантии.

5.1 Требования, предъявляемые к монтажу

5.1.1 Общие инструкции

- Не прикасайтесь к мембране (например, для очистки) твердыми и/или заостренными предметами.
- Снимайте защиту с мембраны непосредственно перед монтажом прибора.

В обязательном порядке плотно затягивайте крышку корпуса и кабельные вводы.

- 1. Затяните контргайки кабельных вводов.
- 2. Затяните соединительную гайку.

5.1.2 Инструкции по монтажу

- Чтобы обеспечить оптимальную читаемость локального дисплея, оптимизируйте положение корпуса и локального дисплея.
- Компания Endress+Hauser выпускает монтажный кронштейн для монтажа прибора на трубе или на стене.
- Для выполнения измерений в средах, содержащих твердые частицы (например, в загрязненных жидкостях), имеет смысл установить разделители и дренажные клапаны.

- Использование блока обеспечивает простоту ввода в эксплуатацию, монтажа и технического обслуживания прибора без прерывания технологического процесса.
- Во время монтажа прибора, при выполнении электрического подключения и во время эксплуатации не допускайте попадания влаги в корпус.
- Кабели и разъемы по возможности следует направлять вниз для предотвращения проникновения влаги (например, во время дождя или в результате конденсации).

5.1.3 Монтаж напорного трубопровода

- Рекомендации по прокладыванию напорных трубопроводов см. в стандарте DIN 19210
 «Напорные трубопроводы для расходомеров, работающих по принципу измерения перепада давления» или в соответствующих национальных или международных стандартах
- При прокладывании напорного трубопровода снаружи помещений следует обеспечить наличие необходимых средств защиты от замерзания, например системы обогрева труб
- Устанавливайте напорный трубопровод с равномерным уклоном не менее 10 %

5.2 Монтаж прибора

5.2.1 Измерение расхода

Измерение расхода газов

Устанавливайте прибор выше точки измерения, чтобы обеспечить слив конденсата в технологический трубопровод.

Измерение расхода паров

- Устанавливайте прибор ниже самой низкой точки измерения.
- Устанавливайте конденсатосборники на одной высоте с точками отбора давления, на одинаковом расстоянии от прибора.
- Перед вводом в эксплуатацию заполните трубопровод до высоты конденсатосборников.

Измерение расхода жидкостей

- Устанавливайте прибор ниже точки измерения, чтобы трубопровод был постоянно заполнен жидкостью и газовые пузырьки возвращались в технологический трубопровод.
- При измерении в технологической среде, содержащей твердые частицы, например в загрязненной жидкости, может быть полезной установка сепараторов и сливных клапанов для улавливания и удаления осадка.

5.2.2 Измерение уровня

Измерение уровня в открытых резервуарах

- Устанавливайте прибор ниже нижней точки измерения так, чтобы трубопровод всегда был заполнен жидкостью.
- Сторона низкого давления сообщается с атмосферой.
- При измерении в технологической среде, содержащей твердые частицы, например в загрязненной жидкости, может быть полезной установка сепараторов и сливных клапанов для улавливания и удаления осадка.

Измерение уровня в закрытых резервуарах

- Устанавливайте прибор ниже нижней точки измерения так, чтобы трубопровод всегда был заполнен жидкостью.
- Обязательно подсоединяйте сторону низкого давления выше максимально возможного уровня.
- При измерении в технологической среде, содержащей твердые частицы, например в загрязненной жидкости, может быть полезной установка сепараторов и сливных клапанов для улавливания и удаления осадка.

Измерение уровня в закрытых резервуарах с прослойкой паров над жидкостью

- Устанавливайте прибор ниже нижней точки измерения так, чтобы трубопровод всегда был заполнен жидкостью.
- Обязательно подсоединяйте сторону низкого давления выше максимально возможного уровня.
- Конденсатосборник обеспечивает постоянное давление на стороне низкого давления.
- При измерении в технологической среде, содержащей твердые частицы, например в загрязненной жидкости, может быть полезной установка сепараторов и сливных клапанов для улавливания и удаления осадка.

5.2.3 Измерение давления

Измерение давления с помощью измерительной ячейки 160 бар (2 400 фунт/кв. дюйм) и 250 бар (3 750 фунт/кв. дюйм)

- Устанавливайте прибор выше точки измерения, чтобы обеспечить обратный слив конденсата в технологический трубопровод.
- Сторона низкого давления сообщается с атмосферой через контрольные воздушные фильтры, которые вворачиваются во фланец на стороне низкого давления.

5.2.4 Измерение дифференциального давления

Измерение дифференциального давления газов и паров

Устанавливайте прибор выше точки измерения, чтобы обеспечить слив конденсата в технологический трубопровод.

Измерение дифференциального давления жидкостей

- Устанавливайте прибор ниже точки измерения, чтобы трубопровод был постоянно заполнен жидкостью и газовые пузырьки возвращались в технологический трубопровод.
- При измерении в технологической среде, содержащей твердые частицы, например в загрязненной жидкости, может быть полезной установка сепараторов и сливных клапанов для улавливания и удаления осадка.

5.2.5 Закрытие крышек корпуса

УВЕДОМЛЕНИЕ

Повреждение резьбы и крышки корпуса вследствие загрязнения!

- ▶ Удаляйте загрязнения (например, песок) с резьбы крышки и корпуса.
- Если при закрытии крышки все же ощущается сопротивление, повторно проверьте резьбу на наличие загрязнений.

Резьба корпуса

На резьбу отсека электроники и клеммного отсека может быть нанесено антифрикционное покрытие.

Следующее указание относится ко всем материалам корпуса:

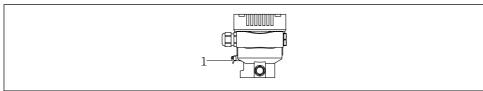
🔀 Запрещается смазывать резьбу корпуса.

6 Электрическое подключение

6.1 Требования, предъявляемые к подключению

6.1.1 Выравнивание потенциалов

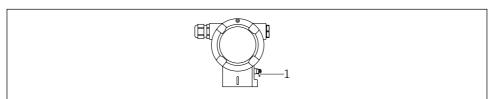
Защитное заземление на приборе подключать запрещено. При необходимости линия выравнивания потенциалов может быть подключена к внешней клемме заземления прибора до подключения прибора.


▲ ОСТОРОЖНО

Искрообразование.

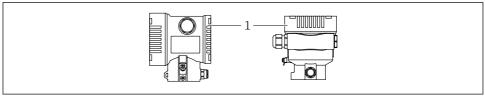
Опасность взрыва!

- Указания по технике безопасности при использовании прибора во взрывоопасных зонах приведены в отдельной документации.
- Для обеспечения оптимальной электромагнитной совместимости выполните следующие условия:
 - Используйте как можно более короткую линию выравнивания потенциалов.
 - Обеспечьте поперечное сечение не менее 2,5 мм² (14 AWG).


Корпус с одним отсеком

A0045411

1 Клемма заземления для подключения линии выравнивания потенциалов


Корпус с двумя отсеками

A0045412

Клемма заземления для подключения линии выравнивания потенциалов

6.2 Подключение прибора

A0043806

1 Крышка клеммного отсека

Резьба корпуса

На резьбу отсека электроники и клеммного отсека может быть нанесено антифрикционное покрытие.

Следующее указание относится ко всем материалам корпуса:

🔀 Запрещается смазывать резьбу корпуса.

6.2.1 Сетевое напряжение

Класс мощности APL - A (9,6 до 15 В пост. тока 540 мВт)

Устанавливаемый на приборе выключатель APL должен пройти испытания на соответствие требованиям безопасности (например, PELV, SELV, класс 2) и должен соответствовать спецификации определенного протокола.

6.2.2 Клеммы

 Клеммы сетевого напряжения и внутренняя клемма заземления Диапазон зажима: 0,5 до 2,5 мм² (20 до 14 AWG)

■ Наружная клемма заземления

Диапазон зажима: 0,5 до 4 мм² (20 до 12 AWG)

6.2.3 Технические характеристики кабелей

- Защитное заземление или заземление кабельного экрана: номинальная площадь поперечного сечения > 1 мм² (17 AWG)
 Номинальная площадь поперечного сечения от 0,5 мм² (20 AWG) до 2,5 мм² (13 AWG)
- Наружный диаметр кабеля: Ø5 до 12 мм (0,2 до 0,47 дюйм), зависит от используемого кабельного сальника (см. документ «Техническое описание»)

PROFINET c Ethernet-API.

Стандартным типом кабеля для сегментов APL является кабель цифровой шины типа A, MAU типа 1 и 3 (указан в стандарте MЭК 61158-2). Этот кабель соответствует требованиям обеспечения искробезопасности при эксплуатации согласно стандарту МЭК TS 60079-47, а также может использоваться в условиях, не требующих обеспечения искробезопасности.

Более подробные сведения представлены в руководстве по проектированию систем Ethernet-APL (https://www.ethernet-apl.org).

6.2.4 Защита от перенапряжения

Приборы без дополнительной защиты от перенапряжения

Оборудование, поставляемое компанией Endress+Hauser, соответствует требованиям производственного стандарта IEC / DIN EN 61326-1 (таблица 2, "Промышленное оборудование").

В зависимости от типа порта (источник питания постоянного тока, порт ввода / вывода) применяются различные уровни испытаний в соответствии со стандартом IEC / DIN EN в отношении переходных перенапряжений (скачков напряжения) (IEC / DIN EN 61000-4-5 Surge):

Испытательный уровень на портах питания постоянного тока и портах ввода / вывода составляет 1 000 В между фазой и землей.

Категория перенапряжения

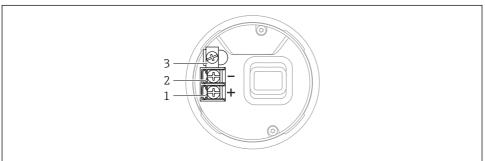
Категория перенапряжения II

6.2.5 Подключение проводов

▲ ОСТОРОЖНО

Возможно наличие сетевого напряжения!

Опасность поражения электрическим током и (или) взрыва!

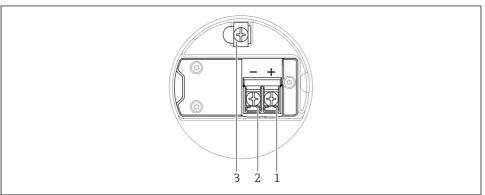

- ► При эксплуатации прибора во взрывоопасных зонах обеспечьте соблюдение национальных стандартов и технических условий, изложенных в документе "Указания по технике безопасности" (ХА). Используйте указанное кабельное уплотнение.
- ▶ Сетевое напряжение должно соответствовать техническим требованиям, указанным на заводской табличке.
- ▶ Подключение прибора выполняется при отключенном сетевом напряжении.
- При необходимости линия выравнивания потенциалов может быть подключена к внешней клемме заземления прибора до подключения линий электроснабжения.
- ▶ Для прибора должен быть предусмотрен автоматический выключатель в соответствии со стандартом IEC / EN 61010.
- Кабели должны быть должным образом изолированы с учетом сетевого напряжения и категории перенапряжения.
- Соединительные кабели должны обеспечивать достаточную температурную стабильность с учетом температуры окружающей среды.
- ▶ Эксплуатируйте прибор только с закрытыми крышками.
- ▶ В системе предусмотрены схемы безопасности для защиты от обратной полярности, влияния высокочастотных помех и скачков напряжения.

Подключите прибор в следующем порядке:

- 1. Разблокируйте фиксатор крышки (при наличии).
- 2. Выкрутите крышку.
- 3. Пропустите кабели сквозь кабельные уплотнения или кабельные вводы.
- 4. Подключите кабели.
- 5. Затяните кабельные уплотнения или кабельные вводы, чтобы обеспечить их герметичность. Затяните контргайку кабельного ввода на корпусе. Гайку кабельного уплотнения M20 следует затягивать с помощью гаечного ключа типоразмера 24/25 мм моментом 8 Нм (5,9 фунт сила фут).
- 6. Плотно затяните крышку клеммного отсека.
- 7. Если имеется: затяните фиксатор крышки шестигранным ключом $0.7 \text{ Hm} (0.52 \text{ фунт сила фут}) \pm 0.2 \text{ Hm} (0.15 \text{ фунт сила фут}).$

6.2.6 Назначение клемм

Корпус с одним отсеком



A00/250/

🗉 1 Соединительные клеммы и клемма заземления в клеммном отсеке

- 1 Плюсовая клемма
- 2 Минусовая клемма
- 3 Внутренняя клемма заземления

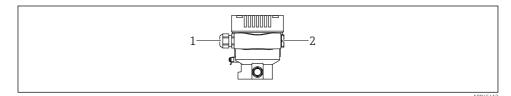
Корпус с двумя отсеками

A0042803

■ 2 Соединительные клеммы и клемма заземления в клеммном отсеке

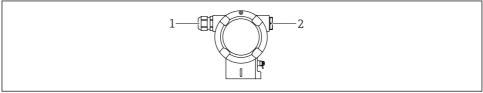
- 1 Плюсовая клемма
- 2 Минусовая клемма
- 3 Внутренняя клемма заземления

6.2.7 Кабельные вводы


Тип кабельного ввода зависит от заказанного исполнения прибора.

При прокладывании направляйте соединительные кабели вниз, чтобы влага не проникала в клеммный отсек.

При необходимости сформируйте провисающую петлю для отвода влаги или используйте защитный козырек от непогоды.


Корпус с одним отсеком

1 Кабельный ввод

Заглушка


Корпус с двумя отсеками

A0045414

- 1 Кабельный ввод
- Заглушка

6.2.8 Доступные разъемы прибора

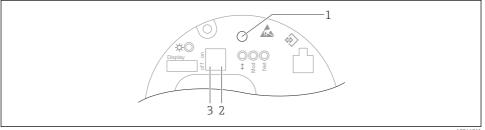
Если прибор оснащен разъемом, то вскрывать корпус для подключения не нужно. Используйте прилагаемые уплотнения, чтобы предотвратить проникновение влаги внутрь прибора.

6.3 Обеспечение требуемой степени защиты

6.3.1 Кабельные вводы

- Кабельный сальник M20, пластмасса, IP66/68, тип 4X/6P
- Кабельный сальник М20, никелированная латунь, IP66/68, тип 4X/6Р
- Кабельный сальник M20, 316L, IP66/68, тип 4X/6Р
- Резьба М20, IP66/68, тип 4X/6Р

- Резьба G 1/2, IP66/68, тип 4X/6Р Если выбрана резьба G 1/2, прибор в стандартной комплектации поставляется с резьбой M20; при этом в комплект поставки входит переходник на G 1/2 вместе с сопроводительной документацией
- Резьба NPT 1/2, IP66/68, тип 4X/6Р
- Заглушка для защиты при транспортировке: IP22, тип 2
- *Клапанная заглушка ISO4400 M16, IP65, тип 4X
- Разъем М12
 Если корпус закрыт, а соединительный кабель подключен: IP66/67, NEMA, тип 4X
 Если корпус открыт или соединительный кабель не подключен: IP20. NEMA. тип 1


УВЕДОМЛЕНИЕ

Разъем M12: ненадлежащий монтаж может привести к аннулированию класса защиты IP!

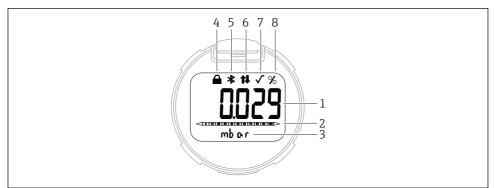
- Степень защиты действует только в том случае, если используемый соединительный кабель подключен, а уплотнение плотно затянуто.
- Степень защиты действует только в том случае, если используемый соединительный кабель соответствует классу защиты IP67, NEMA, тип 4X.
- Классы защиты IP действуют только при наличии защитной заглушки или подсоединенного кабеля.

7 Варианты управления

7.1 Кнопки управления и DIP-переключатели на электронной вставке

A0046061

- Кнопка управления для регулировки положения (коррекции нулевой точки) и сброса параметров прибора
- 2 DIP-переключатель для настройки IP-адреса службы
- 3 DIP-переключатель для блокирования и разблокирования прибора


Настройки, выполненные с помощью DIP-переключателей, приоритетны по сравнению с другими методами управления (например, с помощью ПО FieldCare/DeviceCare).

7.2 локального дисплея

7.2.1 Дисплей прибора (опционально)

Функции:

- Отображение измеренных значений, сообщений о неисправностях и уведомлений
- Чтобы упростить управление, дисплей прибора можно снять
- Дисплей прибора можно заказать с дополнительным модулем для связи по беспроводной технологии Bluetooth®.

A0047143

З Сегментный дисплей

- 1 Измеренное значение (до 5 цифр)
- 2 Шкальный индикатор (относится к указанному диапазону давления), (не для протокола PROFINET c Ethernet-APL)
- 3 Единица измерения измеренного значения
- 4 Блокировка (символ появляется, когда прибор заблокирован)
- 5 Bluetooth (при активном обмене данными через интерфейс Bluetooth символ мигает)
- 6 Передача данных по протоколу PROFINET с Ethernet-APL (символ появляется, если связь по протоколу PROFINET с Ethernet-APL включена)
- 7 Не поддерживается для протокола PROFINET с Ethernet-APL
- 8 Вывод измеренного значения в %

8 Ввод в эксплуатацию

8.1 Подготовительные шаги

Диапазон измерения и единица измерения, используемая для передачи измеренного значения, соответствуют техническим характеристикам, которые указаны на заводской табличке.

▲ ОСТОРОЖНО

Рабочее давление составляет меньше (больше) минимально (максимально) допустимого давления!

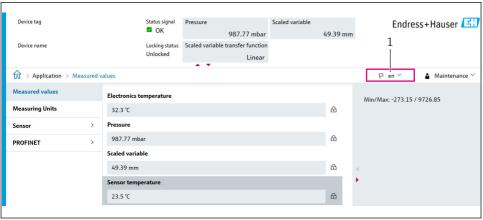
Опасность получения травмы при разлете деталей! Индикация предупреждающего сообщения в случае недопустимо высокого давления.

- ▶ Если давление прибора ниже минимально допустимого или выше максимально допустимого, выдается сообщение.
- ▶ Используйте прибор только в пределах допустимого диапазона измерений.

8.1.1 Состояние при поставке

Если не были заказаны индивидуальные настройки:

- Калибровочные значения определяются заданным номинальным значением измерительной ячейки
- DIP-переключатель находится в положении Off
- Если прибор заказан с интерфейсом Bluetooth, то режим Bluetooth включен


8.2 Функциональная проверка

Перед вводом точки измерения в эксплуатацию выполните функциональную проверку.

- Контрольный список «Проверка после монтажа» (см. раздел «Монтаж»)
- Контрольный список «Проверка после подключения» (см. раздел «Электрическое подключение»)

8.3 Настройка языка управления

8.3.1 Веб-сервер

A0048882

l Настройка языка

8.3.2 Управляющая программа

См. описание соответствующей управляющей программы.

8.4 Настройка измерительного прибора

8.4.1 Ввод в эксплуатацию с помощью кнопок на электронной вставке

Управление перечисленными ниже функциями возможно с помощью кнопок на электронной вставке:

- Регулировка положения (коррекция нулевой точки).
 Изменение ориентации прибора может вызвать сдвиг значения давления.
 Данный сдвиг можно компенсировать регулировкой положения.
- Сброс параметров прибора

Выполнение регулировки положения

- 1. Прибор установлен в требуемом положении, давление не применяется.
- 2. Нажмите кнопку Zero и удерживайте ее не менее 3 секунд.
- 3. Когда светодиод мигает дважды, имеющееся давление принято для регулировки положения.

Сброс параметров прибора

▶ Нажмите кнопку Zero и удерживайте ее не менее 12 секунд.

www.addresses.endress.com