Technische Information iTHERM ModuLine TM151

Industrielles modulares Thermometer

Metrisches RTD/TC Thermometer mit Vollmaterial-Schutzrohr für eine Vielzahl von industriellen Anwendungen

Anwendungsbereich

- Universell einsetzbar
- Messbereich: -200 ... +1100 °C (-328 ... +2012 °F)
- Druckbereich: bis 500 bar (7252 psi)

Ihre Vorteile

- Einfache Wartung und Nachkalibrierung des Thermometers (Sensor kann ohne Prozessunterbrechung ausgetauscht werden)
- Dual Seal: zweite Prozessbarriere mit Störungsmeldung bietet wertvolle Informationen zum Zustand des Gerätes
- iTHERM QuickSens: kürzeste Ansprechzeiten von 1,5 s für eine optimale Prozesssteuerung
- iTHERM StrongSens: unübertroffene Vibrationsfestigkeit (>60g) für ultimative Anlagensicherheit
- iTHERM QuickNeck: kosten- und zeitsparend dank einfacher, werkzeugloser Demontage für Nachkalibrierung
- Internationale Zertifizierungen: z. B. Explosionsschutz gemäß ATEX, IECEx, CSA und INMETRO; funktionale Sicherheit (SIL)
- iTEMP Temperaturtransmitter mit allen üblichen Kommunikationsprotokollen und optionaler Bluetooth®-Konnektivität

Inhaltsverzeichnis

Hinweise zum Dokument	3
Arbeitsweise und Systemaufbau iTHERM ModuLine Messprinzip Messeinrichtung Modularer Aufbau	4 5 5
EingangMessgrößeMessbereich	10 10 10
Ausgang Ausgangssignal Temperaturtransmitter - Produktserie	10 10 10
Energieversorgung	11 11 16 16 22
Leistungsmerkmale Referenzbedingungen Maximale Messabweichung Einfluss der Umgebungstemperatur Eigenerwärmung Ansprechzeit Kalibrierung Isolationswiderstand	22 22 23 24 24 24 27 29
Montage	29 29 29
Umgebung . Umgebungstemperaturbereich . Lagerungstemperatur . Relative Luftfeuchte . Klimaklasse . Schutzart . Stoß- und Vibrationsfestigkeit . Elektromagnetische Verträglichkeit (EMV)	30 30 30 30 30 30 30 30
Prozess Prozesstemperaturbereich Prozessdruckbereich Prozessdruckbereich	31 31 31 31
Konstruktiver Aufbau Bauform, Maße Gewicht Werkstoffe Schutzrohr-/ Thermometeranschlüsse Prozessanschlüsse	32 32 41 41 43 45

Geometrie mediumberührende Teile	55
Messeinsätze	55
Oberflächenrauigkeit	
Anschlussköpfe	
Halsrohr	
Vordefinierte Ausführungen	
Zertifikate und Zulassungen	74
MID	
Bestellinformationen	74
Zubehör	74
Gerätespezifisches Zubehör	
Servicespezifisches Zubehör	
Onlinetools	
Systemkomponenten	
Systemkomponenten	/ 5

Hinweise zum Dokument

Symbole

Elektrische Symbole

Symbole für Informationstypen

Symbol	Bedeutung
✓	Erlaubt Abläufe, Prozesse oder Handlungen, die erlaubt sind.
	Zu bevorzugen Abläufe, Prozesse oder Handlungen, die zu bevorzugen sind.
X	Verboten Abläufe, Prozesse oder Handlungen, die verboten sind.
i	Tipp Kennzeichnet zusätzliche Informationen.
<u> </u>	Verweis auf Dokumentation
A=	Verweis auf Seite
	Verweis auf Abbildung
	Sichtkontrolle

Symbole in Grafiken

Symbol	Bedeutung	Symbol	Bedeutung	
1, 2, 3,	Positionsnummern	1., 2., 3	Handlungsschritte	
A, B, C,	Ansichten	A-A, B-B, C-C,	Schnitte	
EX	Explosionsgefährdeter Bereich	×	Sicherer Bereich (Nicht explosionsgefährdeter Bereich)	

Arbeitsweise und Systemaufbau

iTHERM ModuLine

Dieses Thermometer ist Teil der Produktfamilie aus modularen Thermometern für industrielle Anwendungen.

 ${\it Unterscheidungsmerk male} \ {\it zur} \ {\it Auswahl} \ {\it eines} \ {\it passenden} \ {\it Thermometers:}$

Schutzrohr	ohr Direktkontakt - ohne Schutzrohr		Schutzrohr, geschweißt		Schutzrohr aus Vollmaterial
Bauform	Metrisch				
Thermometer					TM151
	TM101	TM111	TM121	TM131	
	A0039102	A0038281	A0038194	A0038195	A0052360
FLEX-Seg- ment	F	Е	F	Е	E
Eigenschaf- ten	Hervorragendes Preis-Leistungs- Verhältnis	Messeinsätze iTHERM StrongSens und QuickSens	Hervorragendes Preis-Leistungs- Verhältnis mit Schutzrohr	 Messeinsätze iTHERM StrongSens und Quick- Sens iTHERM QuickNeck Schnell ansprechend Dual Seal Technologie Dual compartment housing 	Messeinsätze iTHERM StrongSens und iTHERM QuickSens iTHERM QuickNeck iTHERM TwistWell Schnell ansprechend Dual Seal Technologie Zweikammergehäuse
Ex-Bereich	-	EX	-	<u>/EX</u>	EX

Messprinzip

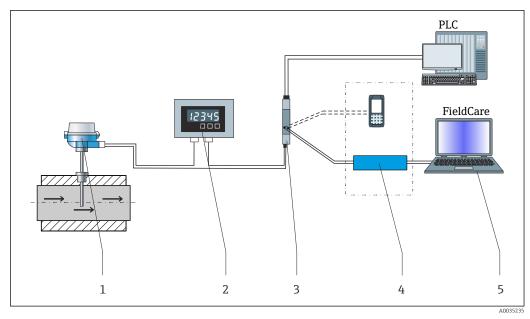
Widerstandsthermometer (RTD)

Bei diesen Widerstandsthermometern kommt als Temperatursensor ein Pt100-Element gemäß IEC 60751 zum Einsatz. Es handelt sich dabei um einen temperaturempfindlichen Platinmesswiderstand mit einem Widerstandswert von 100 Ω bei 0 °C (32 °F) und einem Temperaturkoeffizienten α = 0.003851 °C-1.

Es gibt zwei unterschiedliche Bauformen von Platinwiderstandsthermometern:

- Drahtwiderstände (WW): Hier befindet sich eine Doppelwicklung aus haarfeinem, hochreinem Platindraht in einem Keramikträger. Dieser Träger wird auf der Ober- und Unterseite mit einer Keramikschutzschicht versiegelt. Solche Widerstandsthermometer ermöglichen nicht nur Messungen, die in hohem Maße wiederholbar sind, sondern bieten auch eine gute Langzeitstabilität ihrer Widerstands-/Temperaturkennlinie in Temperaturbereichen bis zu 600 °C (1112 °F). Dieser Sensortyp ist in den Abmessungen relativ groß und vergleichsweise empfindlich gegen Vibrationen.
- Widerstandssensoren in Dünnschichtausführung (TF): Auf einem Keramiksubstrat wird im Vakuum eine sehr dünne hochreine Platinschicht von etwa 1 μm Dicke aufgedampft und anschließend fotolithografisch strukturiert. Die dabei entstehenden Platinleiterbahnen bilden den Messwiderstand. Zusätzlich aufgebrachte Abdeck- und Passivierungsschichten schützen die Platin-Dünnschicht zuverlässig vor Verunreinigungen und Oxidation selbst bei hohen Temperaturen.

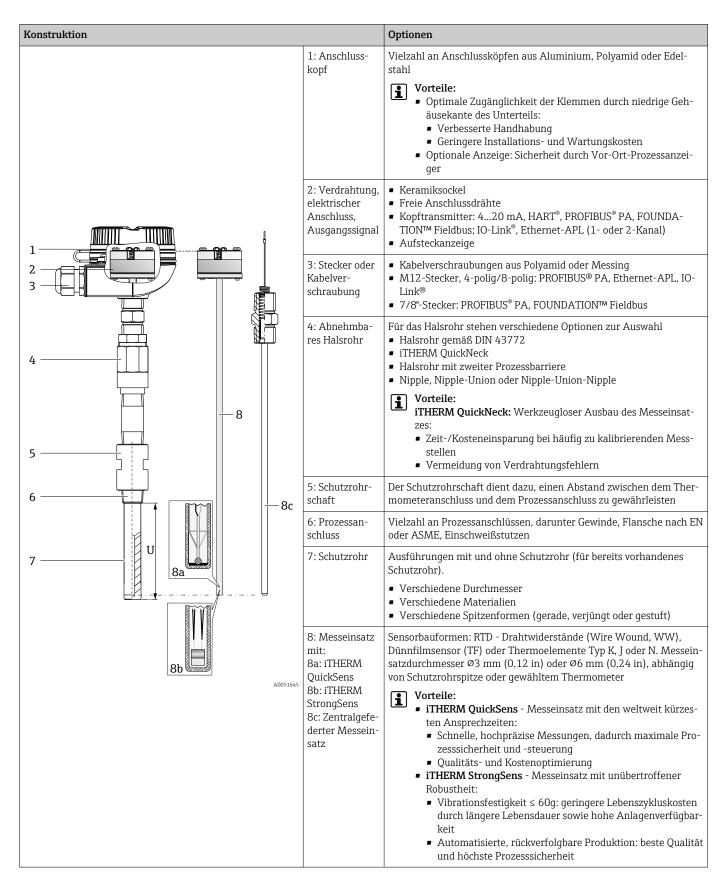
Die Hauptvorteile der Dünnschicht-Temperatursensoren gegenüber drahtgewickelten Ausführungen liegen in ihren kleineren Abmessungen und der besseren Vibrationsfestigkeit. Bei TF-Sensoren ist bei höheren Temperaturen häufig eine relativ geringe, prinzipbedingte Abweichung ihrer Widerstands-/Temperaturkennlinie von der Standardkennlinie der IEC 60751 zu beobachten. Die engen Grenzwerte der Toleranzklasse A nach IEC 60751 können dadurch mit TF-Sensoren nur bei Temperaturen bis etwa 300 $^{\circ}$ C (572 $^{\circ}$ F) eingehalten werden.

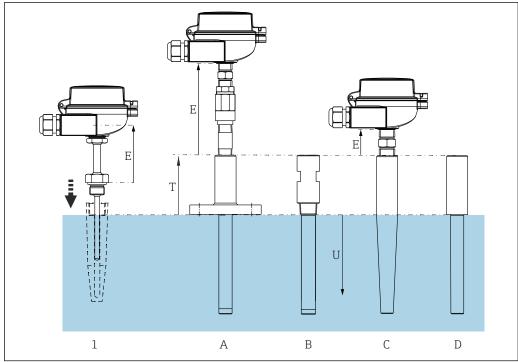

Thermoelemente (TC)

Thermoelemente sind vergleichsweise einfache, robuste Temperatursensoren, bei denen der Seebeck-Effekt zur Temperaturmessung ausgenutzt wird: Verbindet man an einem Punkt zwei elektrische Leiter unterschiedlicher Materialien, ist bei Vorhandensein von Temperaturgradienten entlang dieser Leiter eine schwache elektrische Spannung zwischen den beiden noch offenen Leiterenden messbar. Diese Spannung wird Thermospannung oder auch elektromotorische Kraft (EMK, engl.: e.m.f.) genannt. Ihre Größe ist abhängig von der Art der Leitermaterialien sowie von der Temperaturdifferenz zwischen der "Messstelle" (der Verbindungsstelle beider Leiter) und der "Vergleichsstelle" (den offenen Leiterenden). Thermoelemente messen somit primär nur Temperaturdifferenzen. Die absolute Temperatur an der Messstelle kann daraus ermittelt werden, insofern die zugehörige Temperatur an der Vergleichsstelle bereits bekannt ist bzw. separat gemessen und kompensiert wird. Die Materialpaarungen und zugehörigen Thermospannung/Temperatur-Kennlinien der gebräuchlichsten Thermoelement-Typen sind in den Normen IEC 60584 bzw. ASTM E230/ANSI MC96.1 standardisiert.

Messeinrichtung

Der Hersteller bietet ein umfassendes Portfolio an optimierten Komponenten für die Temperaturmessstelle – alles, was für eine nahtlose Integration der Messstelle in die Gesamtanlage benötigt wird. Hierzu gehören:

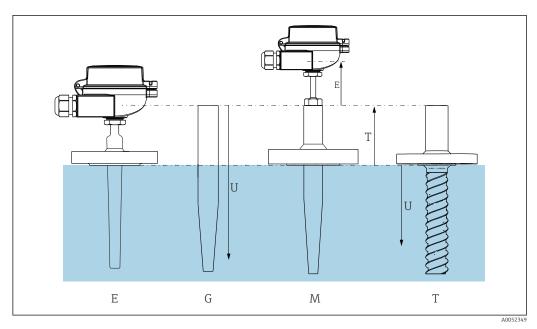

- Speisegeräte/Trenner
- Anzeigegeräte
- Überspannungsschutz



 $\blacksquare 1$ Anwendungsbeispiel, Messstellenaufbau mit zusätzlichen Komponenten des Herstellers

- 1 Installiertes iTHERM-Thermometer mit HART®-Kommunikationsprotokoll
- 2 Prozessanzeiger der RIA-Produktfamilie Der Prozessanzeiger wird in die Stromschleife eingebunden und zeigt das Messsignal oder die HART®-Prozessvariablen in digitaler Form an. Der Prozessanzeiger erfordert keine externe Spannungsversorgung. Er wird direkt über die Stromschleife gespeist.
- 3 Speisetrenner der RN Series Der Speisetrenner (17,5 V_{DC}, 20 mA) verfügt über einen galvanisch getrennten Ausgang zur Spannungsversorgung von 2-Leiter-Transmittern. Das Weitbereichsnetzteil arbeitet mit einer Netzspannung am Eingang von 24 bis 230 V AC/DC, 0/50/60 Hz, sodass der Einsatz in allen internationalen Netzen möglich ist.
- 4 Kommunikationsbeispiele: HART® Communicator (Handbediengerät), FieldXpert, Commubox FXA195 für eigensichere HART®-Kommunikation mit FieldCare über USB-Schnittstelle.
- 5 FieldCare ist ein FDT-basiertes Plant Asset Management Tool, Informationen hierzu siehe Kapitel "Zubehör".

Modularer Aufbau



₽ 2 Unterschiedliche Schutzrohr-Ausführungen verfügbar

- 1 Zum Einbau in separates Schutzrohr
- Α
- Geflanscht, Referenzen gem. ASME/Universal Mit Gewinde, Referenzen gem. ASME/Universal В
- С Zum Einschweißen, Referenzen gem. ASME/Universal
- Schweißstutzen, Referenzen gem. ASME/Universal
- Е Länge abnehmbahres Halsrohr - kann ausgetauscht werden (DIN Halsrohr, zweite Prozessbarriere, Nippel,
- T
- Länge Schutzrohrschaft Schaft oder Halsrohr, fester Bestandteil des Schutzrohres Eintauchlänge Länge des unteren Thermometerteils im Prozessmedium, üblicherweise ab Prozessanschluss U

8

■ 3 Unterschiedliche Schutzrohr-Ausführungen verfügbar

- E Geflanscht, Referenzen gem. NAMUR
- G Zum Einschweißen, Referenzen gem. DIN
- M Geflanscht, Referenzen gem. DIN
- T Geflanscht, iTHERM TwistWell
- E Länge abnehmbahres Halsrohr kann ausgetauscht werden (DIN Halsrohr, zweite Prozessbarriere, Nippel, etc.)
- T Länge Schutzrohrschaft Schaft oder Halsrohr, fester Bestandteil des Schutzrohres
- *U* Eintauchlänge Länge des unteren Thermometerteils im Prozessmedium, üblicherweise ab Prozessanschluss

Eingang

Messgröße

Temperatur (temperaturlineares Übertragungsverhalten)

Messbereich

Abhängig vom verwendeten Sensortyp

Sensortyp	Messbereich
Pt100 Dünnfilm (TF) Basis	-50 +200 °C (−58 +392 °F)
Pt100 Dünnfilm (TF), iTHERM QuickSens	-50 +200 °C (−58 +392 °F)
Pt100 Dünnfilm (TF) Standard	-50 +400 °C (−58 +752 °F)
Pt100 Dünnfilm (TF), iTHERM StrongSens, vibrationsfest > 60g	−50 +500 °C (−58 +932 °F)
Pt100 Drahtgewickelt (WW), erweiterter Messbereich	−200 +600 °C (−328 +1112 °F)
Thermoelement TC, Typ J	-40 +750 °C (-40 +1382 °F)
Thermoelement TC, Typ K	-40 +1 100 °C (-40 +2 012 °F)
Thermoelement TC, Typ N	

Ausgang

Ausgangssignal

Die Messwerte können auf zwei Arten übertragen werden:

- Direkt verdrahtete Sensoren: Weiterleitung der Sensor-Messwerte ohne iTEMP-Transmitter.
- Durch Auswahl entsprechender iTEMP-Transmitter über alle gängigen Protokolle.

Alle iTEMP-Transmitter werden direkt im Anschlusskopf montiert und mit der Sensorik verdrahtet.

Temperaturtransmitter - Produktserie

Thermometer mit iTEMP-Transmittern sind anschlussbereite Komplettgeräte zur Verbesserung der Temperaturmessung, indem sie - im Vergleich zu direkt verdrahteten Sensoren - Messgenauigkeit und Zuverlässigkeit beträchtlich erhöhen sowie Verdrahtungs- und Wartungskosten reduzieren.

4-20 mA-Kopftransmitter

Sie bieten ein hohes Maß an Flexibilität und unterstützen dadurch einen universellen Einsatz bei geringer Lagerhaltung. Die iTEMP-Transmitter lassen sich schnell und einfach am PC konfigurieren. Endress+Hauser bietet kostenlose Konfigurationssoftware an, die auf der Endress+Hauser Website zum Download zur Verfügung steht.

HART-Kopftransmitter

Der iTEMP-Transmitter ist ein 2-Leiter-Gerät mit einem oder zwei Messeingängen und einem Analogausgang. Das Gerät überträgt sowohl gewandelte Signale von Widerstandsthermometern und Thermoelementen als auch Widerstands- und Spannungssignale über die HART-Kommunikation. Schnelle und einfache Bedienung, Visualisierung und Instandhaltung unter Verwendung universaler Konfigurationssoftware wie FieldCare, DeviceCare oder FieldCommunicator 375/475. Integrierte Bluetooth®-Schnittstelle zur drahtlosen Anzeige von Messwerten und Parametrierung über Endress+Hauser SmartBlue-App, optional.

PROFIBUS PA Kopftransmitter

Universell programmierbarer iTEMP-Transmitter mit PROFIBUS PA-Kommunikation. Umformung von verschiedenen Eingangssignalen in digitale Ausgangssignale. Hohe Messgenauigkeit über den gesamten Umgebungstemperaturbereich. Die Konfiguration der PROFIBUS PA Funktionen und gerätespezifischer Parameter wird über die Feldbus-Kommunikation ausgeführt.

$FOUNDATION\ Fieldbus{}^{\mathsf{m}}\ Kopftransmitter$

Universell programmierbarer iTEMP-Transmitter mit FOUNDATION Fieldbus™-Kommunikation. Umformung von verschiedenen Eingangssignalen in digitale Ausgangssignale. Hohe Messgenauigkeit über den gesamten Umgebungstemperaturbereich. Alle iTEMP-Transmitter sind für die Verwendung in allen wichtigen Prozessleitsystemen freigegeben. Die Integrationstest werden in der 'System World' von Endress+Hauser durchgeführt.

Kopftransmitter mit PROFINET und Ethernet-APL™

Der iTEMP-Transmitter ist ein 2-Leiter-Gerät mit zwei Messeingängen. Das Gerät überträgt sowohl gewandelte Signale von Widerstandsthermometern und Thermoelementen als auch Widerstandsund Spannungssignale über das PROFINET Protokoll. Die Speisung erfolgt über den 2- Leiter Ethernet Anschluss nach IEEE 802.3cg 10Base-T1. Der iTEMP-Transmitter kann als eigensicheres Betriebsmittel in der Zone 1 explosionsgefährdeter Bereiche installiert werden. Das Gerät dient zur Instrumentierung im Anschlusskopf Form B nach DIN EN 50446.

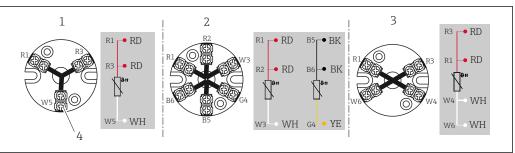
Kopftransmitter mit IO-Link

Der iTEMP-Transmitter ist ein IO-Link Gerät mit einem Messeingang und einer IO-Link Schnittstelle. Konfigurierbare, einfache und kosteneffiziente Lösung durch digitale Kommunikation über IO-Link. Die Montage erfolgt in einem Anschlusskopf Form B nach DIN EN 5044.

Vorteile der iTEMP-Transmitter:

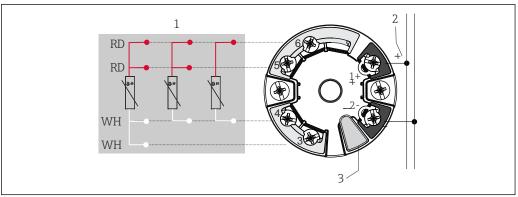
- Dualer oder einfacher Sensoreingang (optional f
 ür bestimmte Transmitter)
- Aufsteckbares Display (optional für bestimmte Transmitter)
- Höchste Zuverlässigkeit, Genauigkeit und Langzeitstabilität bei kritischen Prozessen
- Mathematische Funktionen
- Überwachung der Thermometerdrift, Backup-Funktionalität des Sensors, Diagnosefunktionen des Sensors
- Sensor-Transmitter-Matching basierend auf den Callendar-Van-Dusen-Koeffizienten (CvD).

Energieversorgung

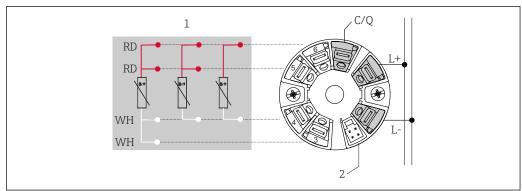


Die Sensoranschlussleitungen sind mit Kabelschuhen ausgestattet. Der Nenndurchmesser der Kabelschuhe beträgt 1,3 mm (0,05 in).

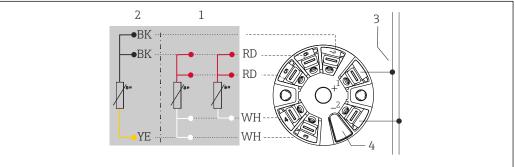
Klemmenbelegung


Typ des Sensoranschlusses RTD

3-Leiter Messung	4-Leiter Messung	
Drei Leitungen sind mit dem RTD-Sensor verbunden. Zwei Leitungen führen den Messstrom und die dritte dient zur Kompensation des Leitungswiederstands.	Vier Leitungen sind mit dem RTD-Sensor verbunden. Zwei Leitungen führen den Messstrom und zwei mes- sen die Spannung direkt am RTD-Sensor.	
Vorteil: Gute Kompensation bei symmetrischen Leitungen.	Vorteil: Höchste Genauigkeit unabhängig von der Kabellänge oder -symmetrie.	

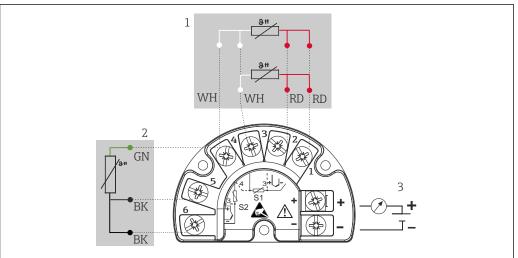

A0045453

- Montierter Anschlusssockel aus Keramik
- 1 3-Leiter
- 2 2x3-Leiter
- 3 4-Leiter
- 4 Außenschraube

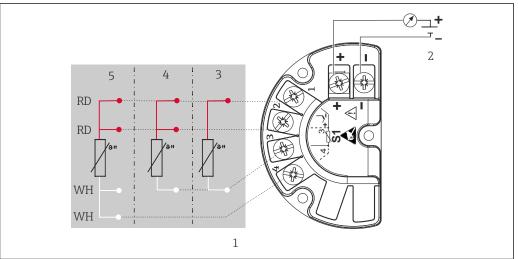

A0045464

- 5 Im Anschlusskopf montierter Transmitter iTEMP TMT7x oder iTEMP TMT31 (ein Sensoreingang)
- 1 Sensoreingang, RTD, 4-, 3- und 2-Leiter
- 2 Spannungsversorgung/Busanschluss
- 3 Display-Anschluss/CDI-Schnittstelle

A005249

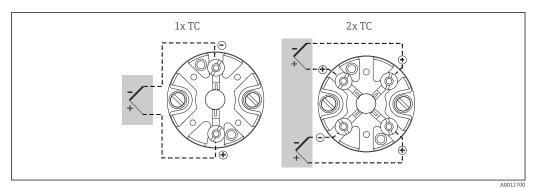

- \blacksquare 6 Im Anschlusskopf montierter Transmitter iTEMP TMT36 (ein Sensoreingang)
- 1 Sensoreingang RTD: 4-, 3- und 2-Leiter
- 2 Display-Anschluss
- L+ Spannungsversorgung 18 ... 30 V_{DC}
- L- Spannungsversorgung 0 V_{DC}
- C/Q IO-Link oder Schaltausgang

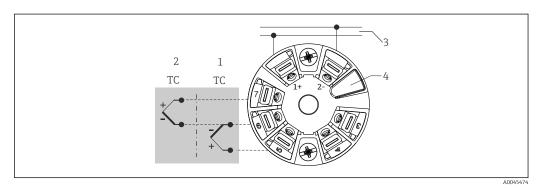
A0045466


- 7 Im Anschlusskopf montierter Transmitter iTEMP TMT8x (doppelter Sensoreingang)
- 1 Sensoreingang 1, RTD, 4- und 3-Leiter
- 2 Sensoreingang 2, RTD, 3-Leiter
- 3 Feldbus-Anschluss und Spannungsversorgung
- 4 Display-Anschluss

Montierter Feldtransmitter: Ausstattung mit Schraubklemmen

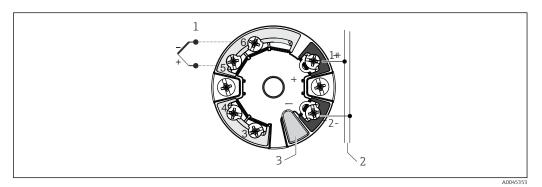
A0045732


- 8 iTEMP TMT162 (doppelter Sensoreingang)
- 1 Sensoreingang 1, RTD: 3- und 4-Leiter
- 2 Sensoreingang 2, RTD: 3-Leiter3 Spannungsversorgung Feldtrans
- 3 Spannungsversorgung Feldtransmitter und Analogausgang 4 ... 20 mA oder Feldbusanschluss

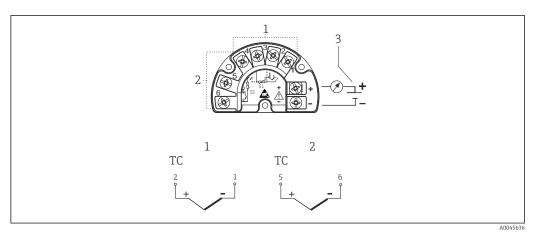

A0045733

- 9 iTEMP TMT142B (ein Sensoreingang)
- 1 Sensoreingang RTD
- 2 Spannungsversorgung Feldtransmitter und Analogausgang 4 ... 20 mA, HART®-Signal
- 3 2-Leiter
- 4 3-Leiter
- 5 4-Leiter

Typ des Sensoranschlusses Thermoelement (TC)



■ 10 Montierter Anschlusssockel aus Keramik für Thermoelemente.


 $\blacksquare~11~$ Im Anschlusskopf montierter Transmitter iTEMP TMT8x (doppelter Sensoreingang)

- 1 Sensoreingang 1
- 2 Sensoreingang 2
- 3 Feldbus-Anschluss und Spannungsversorgung
- 4 Display-Anschluss

 \blacksquare 12 Im Anschlusskopf montierter Transmitter iTEMP TMT7x oder iTEMP TMT31 (ein Sensoreingang)

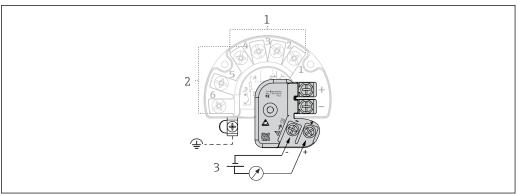
- 1 Sensoreingang
- 2 Spannungsversorgung und Busanschluss
- 3 Display-Anschluss und CDI-Schnittstelle

■ 13 Montierter Feldtransmitter iTEMP TMT162 oder iTEMP TMT142B

- 1 Sensoreingang 1
- 2 Sensoreingang 2 (nicht iTEMP TMT142B)
- Wersorgungsspannung Feldtransmitter und Analogausgang 4...20 mA oder Feldbus-Kommunikation

Thermoelement Kabelfarben

nach IEC 60584	nach ASTM E230
 Typ J: Schwarz (+), Weiß (-) Typ K: Grün (+), Weiß (-) Typ N: Rosa (+), Weiß (-) 	 Typ J: Weiß (+), Rot (-) Typ K: Gelb (+), Rot (-) Typ N: Orange (+), Rot (-)


Integrierter Überspannungsschutz

Der Überspannungsschutz ist optional bestellbar ¹⁾. Das Modul sichert die Elektronik gegen Zerstörung durch Überspannung ab. Auftretende Überspannungen in Signalleitungen (z.B. 4 ... 20 mA, Kommunikationsleitungen (Feldbusse) und Versorgungsleitungen werden gegen Erde abgeleitet. Die Funktionalität des Transmitters bleibt unbeeinflusst, da kein störender Spannungsabfall auftritt.

Anschlussdaten:

Höchste Dauerspannung (Bemessungsspannung)	$U_{C} = 36 \text{ V}_{DC}$
Nennstrom	$I = 0.5 \text{ A bei } T_{\text{Umg.}} = 80 ^{\circ}\text{C } (176 ^{\circ}\text{F})$
Stoßstrombeständigkeit Blitzstoßstrom D1 (10/350 μs) Nennableitstoßstrom C1/C2 (8/20 μs)	■ I _{imp} = 1 kA (pro Ader) ■ I _n = 5 kA (pro Ader) I _n = 10 kA (gesamt)
Temperaturbereich	-40 +80 °C (−40 +176 °F)
Serienwiderstand pro Ader	1,8 Ω, Toleranz ±5 %

¹⁾ Verfügbar für die Feldtransmitter mit HART® 7 Kommunikation

A0045614

■ 14 Elektrischer Anschluss Überspannungsschutz

- 1 Sensoranschluss 1
- 2 Sensoranschluss 2
- 3 Busanschluss und Spannungsversorgung

Das Gerät ist mit dem Potenzialausgleich über die externe Erdungsklemme zu verbinden. Die Verbindung zwischen dem Gehäuse und der örtlichen Masse muss einen Querschnitt von min. $4~\text{mm}^2$ (13 AWG) aufweisen. Alle Masseverbindungen müssen gesichert sein.

Klemmen

Ausstattung der iTEMP-Kopftransmitter mit Push-in-Klemmen, wenn nicht explizit Schraubklemmen angewählt, DualSeal ausgewählt oder ein Doppel-Sensor eingebaut wird.

Klemmenausführung	Leitungsausführung	Leitungsquerschnitt
Schraubklemmen	Starr oder flexibel	≤ 1,5 mm² (16 AWG)
Push-in-Klemmen (Kabelausfüh-	Starr oder flexibel	0,2 1,5 mm² (24 16 AWG)
rung, Abisolierlänge = min. 10 mm (0,39 in)	Flexibel mit Aderendhülsen mit/ ohne Kunststoffhülse	0,25 1,5 mm ² (24 16 AWG)

Bei Push-in-Klemmen und der Verwendung von flexiblen Leitern mit einem Leitungsquerschnitt $\leq 0.3~\text{mm}^2$ müssen Aderendhülsen verwendet werden. Ansonsten wird bei Anschluss von flexiblen Leitungen an Push-in-Klemmen empfohlen, keine Aderendhülsen zu verwenden.

Kabeleinführungen

Die Kabeleinführungen müssen während der Konfiguration des Gerätes ausgewählt werden. Unterschiedliche Anschlussköpfe bieten unterschiedliche Möglichkeiten betreffend Gewinde und die Anzahl der verfügbaren Kabeleinführungen.

Gerätestecker

Der Hersteller bietet verschiedene Gerätestecker für eine einfache und schnelle Einbindung des Thermometers in ein Prozessleitsystem. Die folgenden Tabellen zeigen die PIN-Belegungen der verschiedenen Stecker-Anschluss-Kombinationen.

Der Hersteller rät davon ab, Thermoelemente direkt an die Steckverbinder anzuschließen. Durch den direkten Anschluss der Steckerkontakte kann ein "neues Thermoelement" entstehen, das die Genauigkeit der Messung beeinflusst. Die Thermoelemente werden in Kombination mit einem iTEMP-Transmitter angeschlossen.

Abkürzungen

#1	Reihenfolge: Erster Transmitter/Messeinsatz	#2	Reihenfolge: Zweiter Transmitter/Messeinsatz
i	Isoliert. Mit 'i' markierte Leitungen sind nicht ange- schlossen und mit Schrumpfschläuchen isoliert.	YE	Gelb
GND	Geerdet. Mit "GND" markierte Leitungen sind an die interne Erdungsschraube im Anschlusskopf ange- schlossen.	RD	Rot
BN	Braun	WH	Weiß

GNYE	Grün-Gelb	PK	Rosa
BU	Blau	GN	Grün
GY	Grau	BK	Schwarz

Anschlusskopf mit einer Kabeleinführung 1)

Stecker		1x PROFIBUS PA									ON™ Fi F)	ON™ Fieldbus 1x PROFINET und Ethernet- F) APL™				ernet-
Gewinde-Stecker		M	12			7/	8"			7,	/8"		M12			
PIN-Nummer	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Elektrischer Anschlus	s (Ansch	nlussko	of)													
Freie Anschlussdrähte und TC						N	icht ang	jeschlo:	ssen (nic	cht isolie	rt)					
Anschlussklemmen- block 3-Leiter (1x Pt100)	- RD	RD	W	Н	RD	RD	W	Ή	RD	DD	W	WH				kombi- rbar
Anschlussklemmen- block 4-Leiter (1x Pt100)	- KD	ΚD	WH	WH	, KD	KD.	WH	WH	, KD	RD	WH	WH	Nicht kombi- nierbar			kombi- rbar
Anschlussklemmen- block 6-Leiter (2x Pt100)	RD (#1) ²	RD (#1)	WH	(#1)	RD (#1)	RD (#1)	WH	(#1)	RD (#1)	RD (#1)	WH	(#1)				
1x TMT 420 mA oder HART®	+	i	-	i	+	i	-	i	+	i	-	i				
2x TMT 420 mA oder HART® im Anschlusskopf mit hohem Deckel	+(#1)	+(#2)	-(#1)	- (#2)	+(#1)	+(#2)	-(#1)	- (#2)	+(#1)	+(#2)	Nicht kombinierbar			ar		
1x TMT PROFIBUS® PA	+		-	GND	+		-	GND			N	Gabe leav	a bission b			
2x TMT PROFIBUS® PA	+(#1)	i	-(#1)	3)	+	i	-	3)			N	nent kon	nbinierb	ar		
1x TMT FF				•					-	+	GND	i		C -1-+ 1	- 1- : :1-	
2x TMT FF									-(#1)	+(#1)	GND	1	IN	iiciit koi	nbinierb	ar
1x TMT PROFINET®	Ni	cht kom	binierba	ır	Ni	icht kom	binierba	ar					APL- Signal	APL- Signal +		
2x TMT PROFINET®										licht kon	kombinierbar		APL- Signal - (#1)	APL- Signal + (#1)	GND	-
PIN-Position und Farbcode	4	3	1 BN 2 GN 3 BU 4 GY		1	3	1 BN 2 GN 3 BU 4 GY	IYE	1	3	1 BU 2 BN 3 GY 4 GN	7	4		1 R 2 G	

- 1) Auswahl abhängig von Produkt und Konfiguration
- 2) Zweiter Pt100 ist nicht angeschlossen
- 3) Bei Verwendung eines Kopfes ohne Erdungsschraube, z.B. Kunststoffgehäuse TA30S oder TA30P isoliert "i" statt geerdet GND

Anschlusskopf mit einer Kabeleinführung $^{1)}$

Stecker		4-polig/8-polig								
Gewinde-Stecker				М	12					
PIN-Nummer	1	2	3	4	5	6	7	8		
Elektrischer Anschluss (Anschlusskop	rf)									
Freie Anschlussdrähte und TC			Nie	cht angeschlos	sen (nicht isol	iert)				
Anschlussklemmenblock 3-Leiter (1x Pt100)		WH								
Anschlussklemmenblock 4-Leiter (1x Pt100)	RD	RD _	WH	WH	i					
Anschlussklemmenblock 6-Leiter (2x Pt100)			WH		BK	BK YE				
1x TMT 420 mA oder HART®							i			
2x TMT 420 mA oder HART® im Anschlusskopf mit hohem Deckel	+(#1)	i	-(#1)	i	+(#2)	i	-(#2)	i		
1x TMT PROFIBUS® PA				Night Iron	nbinierbar					
2x TMT PROFIBUS® PA				MICHEROI	IIDIIIIEIDAI					
1x TMT FF				Night kon	nbinierbar					
2x TMT FF				INICIIC KOI.	iibiiiieibai					
1x TMT PROFINET®				Nicht kon	nbinierbar					
2x TMT PROFINET®	Nicht kombinierbar									
PIN-Position und Farbcode		4 0 0 3	1 BN 2 GNYE 3 BU 4 GY	A0018929		3 GN 4 YE 5 GY	2 BN 1 WH 8 RD 7 BU	A0018927		

1) Auswahl abhängig von Produkt und Konfiguration

Anschlusskopf mit einer Kabeleinführung

Stecker	cker 1x IO-Link, 4-polig							
Gewinde-Stecker	M12							
PIN-Nummer	1	2	3	4				
Elektrischer Anschluss (Anschlusskopf)								
Freie Anschlussdrähte		Nicht angeschloss	en (nicht isoliert)					
Anschlussklemmenblock 3-Leiter (1x Pt100)	RD	i	RD	WH				
Anschlussklemmenblock 4-Leiter (1x Pt100)		Nicht kom	ıbinierbar					
Anschlussklemmenblock 6-Leiter (2x Pt100)								
1x TMT 420 mA oder HART								
2x TMT 420 mA oder HART im Anschlusskopf mit hohem Deckel		Nicht kom	ıbinierbar					
1x TMT PROFIBUS PA		Nicht kom	hiniarhar					
2x TMT PROFIBUS PA		NICHE KOII	ioiiiieioai					
1x TMT FF		Night from	hiniarhan					
2x TMT FF	Nicht kombinierbar							
1x TMT PROFINET		Nicht kom	ıbinierbar					

Stecker	1x IO-Link, 4-polig						
2x TMT PROFINET							
1x TMT IO-Link	L+	-	L-	C/Q			
2x TMT IO-Link	L+ (#1)	-	L- (#1)	C/Q			
PIN-Position und Farbcode	4 3 1 BN 3 BU 4 BK						

Anschlusskopf mit zwei Ka	beleinf	ührung	jen ¹⁾													
Stecker			2	x PROF	IBUS P.	A			2x FC		ΓΙΟΝ™ (FF)	Field-	2x PROFINET und Ether- net-APL™			
Gewinde-Stecker																
#1——#2 A0021706	M12(#1)/M12(#2) 7			7/8"(#1)/7/8"(#2)			7/8"(#1)/7/8"(#2)			2)	M12 (#1)/M12 (#2)					
PIN-Nummer	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Elektrischer Anschluss (An	schluss	kopf)														
Freie Anschlussdrähte und TC	Nicht angeschlossen (nicht isoliert)															
Anschlussklemmenblock 3- Leiter (1x Pt100)	RD/i	RD/i	W.	H/i	RD/i	RD/i	W.	H/i	RD/i	RD/i	W.	H/i				
Anschlussklemmenblock 4- Leiter (1x Pt100)	RD/I	KD/I	WH/i	WH/i	KD/I	KD/I	WH/i	WH/i	KD/I	KD/I	WH/i	WH/i	Nicht l nier	kombi- rbar	W	H/i
Anschlussklemmenblock 6- Leiter (2x Pt100)	RD/B K	RD/B K	WH	I/YE	RD/B K	RD/B K	WH	I/YE	RD/B RD/B WH/YE							
1x TMT 420 mA oder HART®	+/i		-/i		+/i		-/i		+/i		-/i		+/i		-/i	
2x TMT 420 mA oder HART® im Anschlusskopf mit hohem Deckel	+ (#1)/ + (#2)	i/i	- (#1)/ -(#2)	i/i	+ (#1)/ + (#2)	i/i	- (#1)/ -(#2)	i/i	+ (#1)/ + (#2)	i/i	- (#1)/ -(#2)	i/i	+ (#1)/ +(#2)	i/i	- (#1)/ -(#2)	i/i
1x TMT PROFIBUS® PA	+/i		-/i		+/i		-/i			1						
2x TMT PROFIBUS® PA	+ (#1)/ + (#2)		- (#1)/ -(#2)	GND/ GND	+ (#1)/ + (#2)		- (#1)/ -(#2)	GND/ GND			N	icht kon	nbinierb	ar		
1x TMT FF									-/i	+/i						
2x TMT FF	Ni	icht kon	nbinierb	oar	Nicht kombinierbar			- (#1)/ -(#2)	+ (#1)/ + (#2)	i/i	GND/ GND				ar	
1x TMT PROFINET®	Ni	icht kon	nbinierb	oar	N	icht kon	nbinierb	oar	Ni	icht kon	nbinierb	ar	APL- Signal -	APL- Sig- nal +	GND	i

Stecker	2x PROF	IBUS PA	2x FOUNDATION™ Field- bus (FF)	2x PROFINET und Ether- net-APL™		
2x TMT PROFINET®	Nicht kombinierbar	Nicht kombinierbar	Nicht kombinierbar	APL- Signal - (#1) und (#2) APL- Sig- nal + (#1) und (#2)		
PIN-Position und Farbcode	3 1 BN 2 GNYE 3 BU 1 2 4 GY	1 BN 2 GNYE 3 BU 2 4 GY	1 BU 2 BN 3 GY 2 4 4 GNYE	3 1 RD 2 GN		

1) Auswahl abhängig von Produkt und Konfiguration

$Anschlusskopf\ mit\ zwei\ Kabeleinf\"uhrungen\ ^{1)}$

Stecker				4-polig/8-	polig						
Gewinde-Stecker											
#1 #2 A0021706		M12 (#1)/M12 (#2)									
PIN-Nummer	1	1 2 3 4 5 6 7 8									
Elektrischer Anschluss (Anschlusskopf)											
Freie Anschlussdrähte und TC Nicht angeschlossen (nicht isoliert)											
Anschlussklemmenblock 3- Leiter (1x Pt100)	RD/i	RD/i	W	H/i	i/i						
Anschlussklemmenblock 4- Leiter (1x Pt100)	ND/1	KD/1	WH/i	WH/i							
Anschlussklemmenblock 6- Leiter (2x Pt100)	RD/BK	RD/BK	WH	/YE							
1x TMT 420 mA oder HART®	+/i		-/i								
2x TMT 420 mA oder HART® im Anschlusskopf mit hohem Deckel	+(#1)/+(#2)	i/i	-(#1)/-(#2)	i/i							
1x TMT PROFIBUS® PA		1	1	Nicht kombir	oi aub au						
2x TMT PROFIBUS® PA				MICHE KOHIDH	lierbar						
1x TMT FF				Nicht kombir	niorbar						
2x TMT FF				MICHE KOHIDH	llervar						
1x TMT PROFINET®		Nicht kombinierbar									
2x TMT PROFINET®		Nicht kombinierbar									
PIN-Position und Farbcode		4 3	1 BN 2 GNYE 3 BU 4 GY	A0018929		3 GN 4 YE 5 GY	2 BN 1 WH 8 RD 7 BU	A0018927			

1) Auswahl abhängig von Produkt und Konfiguration

Anschlusskopf mit zwei Kabeleinführungen

Stecker	2x IO-Link, 4-polig						
Gewinde-Stecker		M12(#1)	/ M12 (#2)				
PIN-Nummer	1	2	3	4			
Elektrischer Anschluss (Anschlusskopf)							
Freie Anschlussdrähte		nicht angeschlo	ssen (nicht isoliert)				
Anschlussklemmenblock 3-Leiter (1x Pt100)	RD	i	RD	WH			
Anschlussklemmenblock 4-Leiter (1x Pt100)		nicht ko	mbinierbar				
Anschlussklemmenblock 6-Leiter (2x Pt100)	RD/BK	i	RD/BK	WH/YE			
1x TMT 420 mA oder HART							
2x TMT 420 mA oder HART im Anschlusskopf mit hohem Deckel	nicht kombinierbar						
1x TMT PROFIBUS PA		night Iro	mhiniarhar				
2x TMT PROFIBUS PA	nicht kombinierbar						
1x TMT FF	nicht kombinierbar						
2x TMT FF		HICHE RO	momeroar				
1x TMT PROFINET		night Iro	mbinierbar				
2x TMT PROFINET		HICHE RO	momeroar				
1x TMT IO-Link	L+	-	L-	C/Q			
2x TMT IO-Link	L+ (#1) und (#2) - L-		L- (#1) und (#2)	C/Q			
PIN-Position und Farbcode		4	3 1 BN 3 BU 4 BK	A0055383			

Anschlusskombination Messeinsatz - Transmitter 1)

	Transmitteranschluss ²⁾								
Messeinsatz	iTEMP TMT31	I/iTEMP TMT7x	iTEMP TMT8x						
	1x 1-Kanal	2x 1-Kanal	1x 2-Kanal	2x 2-Kanal					
1x Sensor (Pt100 oder TC), freie Anschlussdrähte	Sensor (#1): Transmitter (#1)	Sensor (#1): Transmitter (#1) (Transmitter (#2) nicht angeschlossen)	Sensor (#1): Transmitter (#1)	Sensor (#1): Transmitter (#1) Transmitter (#2) nicht ange- schlossen					
2x Sensor (2x Pt100 oder 2x TC), freie Anschlussdrähte	Sensor (#1): Transmitter (#1) Sensor (#2) isoliert	Sensor (#1): Transmitter (#1) Sensor (#2): Transmitter (#2)	Sensor (#1): Transmitter (#1) Sensor (#2): Transmitter (#1)	Sensor (#1): Transmitter (#1) Sensor (#2): Transmitter (#1) (Transmitter (#2) nicht ange- schlossen)					
1x Sensor (Pt100 oder TC) mit Anschlussklemmenblock ³⁾	Sensor (#1): Transmitter im Deckel	Nicht kombinierbar	Sensor (#1): Transmitter im Deckel	Nicht kombinierbar					

	Transmitteranschluss ²⁾								
Messeinsatz	iTEMP TMT31	/iTEMP TMT7x	iTEMP TMT8x						
	1x 1-Kanal	2x 1-Kanal	1x 2-Kanal	2x 2-Kanal					
2x Sensor (2x Pt100 oder 2x TC) mit Anschlussklemmenblock	Sensor (#1): Transmitter im Deckel Sensor (#2) nicht ange- schlossen		Sensor (#1): Transmitter im Deckel Sensor (#2): Transmitter im Deckel						
2x Sensor (2x Pt100 oder 2x TC) in Verbindung mit Merkmal 600, Option MG ⁴⁾	Nicht kombinierbar	Sensor (#1): Transmitter (#1) Sensor (#2): Transmitter (#2)	Nicht kombinierbar	Sensor (#1): Transmitter (#1) - Kanal 1 Sensor (#2): Transmitter (#2) - Kanal 1					

- 1) Auswahl abhängig von Produkt und Konfiguration
- 2) Bei Auswahl von 2 Transmittern in einem Anschlusskopf ist Transmitter (#1) auf dem Messeinsatz direkt installiert. Transmitter (#2) ist im hohen Deckel installiert. Für den zweiten Transmitter kann standardmäßig kein TAG bestellt werden. Die Busadresse ist auf den Standardwert eingestellt und muss bei Bedarf vor der Inbetriebnahme manuell geändert werden.
- Nur im Anschlusskopf mit hohem Deckel, nur 1 Transmitter möglich. Ein Keramiksockel ist automatisch auf dem Messeinsatz montiert.
- 4) Einzelne Sensoren jeweils mit Kanal 1 eines Transmitters verbunden

Überspannungsschutz

Zur Absicherung gegen Überspannungen in den Versorgungs- und den Signal-/Kommunikationsleitungen für die Thermometerelektronik bietet Endress+Hauser Überspannungsschutzgeräte der HAW-Produktfamilie an.

Weitere Informationen siehe Technische Informationen des jeweiligen Überspannungsschutzgerätes.

Leistungsmerkmale

Referenzbedingungen

Diese Angaben sind relevant zur Bestimmung der Messgenauigkeit der eingesetzten iTEMP-Transmitter. Siehe Technische Dokumentation des jeweiligen iTEMP-Transmitters.

Maximale Messabweichung RTD-Widerstandsthermometer nach IEC 60751

Klasse	max. Toleranzen (°C)	Kenndaten
RTD maxim	aler Fühlerfehler	
Kl. A	± (0,15 + 0,002 · t 1)	3.0 Max. deviation (°C)
Kl. AA, vormals 1/3 Kl. B	± (0,1 + 0,0017 · t) ¹⁾	2.5
Kl. B	± (0,3 + 0,005 · t ¹⁾)	2.0 1.5 1.0 0.5 AA AA -2.00 -1.00 0 100 200 300 400 500 600°C -1.0 -1.5 B B AA -2.0 -2.0 -2.0 -3.0 Max. deviation (°C)

1) |t| = Absolutwert Temperatur in °C

Um die maximalen Toleranzen in °F zu erhalten, Ergebnisse in °C mit dem Faktor 1,8 multiplizieren.

Temperaturbereiche

Sensortyp 1)	Betriebstemperatur- bereich	Klasse B	Klasse A	Klasse AA
Pt100 (WW)	−200 +600 °C	−200 +600 °C	−100 +450 °C	-50 +250 °C
	(−328 +1112 °F)	(−328 +1112 °F)	(−148 +842 °F)	(-58 +482 °F)
Pt100 (TF)	−50 +200 °C	-50 +200 °C	−30 +200 °C	-
Basis	(−58 +392 °F)	(-58 +392 °F)	(−22 +392 °F)	
Pt100 (TF)	−50 +400 °C	−50 +400 °C	−30 +250 °C	0 +150 °C
Standard	(−58 +752 °F)	(−58 +752 °F)	(−22 +482 °F)	(+32 +302 °F)
Pt100 (TF) iTHERM Quick- Sens	-50 +200 °C (-58 +392 °F)	-50 +200 °C (-58 +392 °F)	-30 +200 °C (-22 +392 °F)	0 +150 °C (+32 +302 °F)
Pt100 (TF) iTHERM Strong- Sens	-50 +500 °C (-58 +932 °F)	−50 +500 °C (−58 +932 °F)	-30 +300 °C (-22 +572 °F)	0 +150 °C (+32 +302 °F)

1) Auswahl abhängig von Produkt und Konfiguration

Zulässige Grenzabweichungen der Thermospannungen von der Normkennlinie für Thermoelemente nach IEC 60584 oder ASTM E230/ANSI MC96.1:

Norm	Тур	Standardtoleranz		Sondertoleranz	
IEC 60584		Klasse	Abweichung	Klasse	Abweichung
	J (Fe-CuNi)	2	±2,5 °C (-40 +333 °C) ±0,0075 t ¹⁾ (333 750 °C)	1	±1,5 °C (-40 +375 °C) ±0,004 t 1) (375 750 °C)
	K (NiCr-NiAl) N (NiCrSi-NiSi)	2	±0,0075 t ¹⁾ (333 1200 °C) ±2,5 °C (-40 +333 °C) ±0,0075 t ¹⁾ (333 1200 °C)	1	±1,5 °C (-40 +375 °C) ±0,004 t 1) (375 1000 °C)

1) $|t| = Absolutwert in ^{\circ}C$

Thermoelemente aus unedlen Metallen werden generell so geliefert, dass sie die in den Tabellen angegebenen Fertigungstoleranzen für Temperaturen > -40 °C (-40 °F) einhalten. Für Temperaturen < -40 °C (-40 °F) sind diese Werkstoffe meist nicht geeignet. Die Toleranzen der Klasse 3 können nicht eingehalten werden. Für diesen Temperaturbereich ist eine gesonderte Werkstoffauswahl erforderlich. Dies kann nicht über das Standardprodukt abgewickelt werden.

Norm	Тур	Toleranzklasse: Standard	Toleranzklasse: Spezial
ASTM E230/		Abweichung, es gilt jeweils der größere V	Vert
ANSI MC96.1	J (Fe-CuNi)	±2,2 K oder ±0,0075 t 1) (0 760 °C)	±1,1 K oder ±0,004 t ¹⁾ (0 760 °C)
	K (NiCr-NiAl) N (NiCrSi- NiSi)		±1,1 K oder ±0,004 t ¹⁾ (0 1260 °C)

1) $|t| = Absolutwert in ^{\circ}C$

Die Werkstoffe für Thermoelemente werden generell so geliefert, dass sie die in der Tabelle angegbenen Toleranzen für Temperaturen > 0°C (32°F) einhalten. Für Temperaturen < 0°C (32°F) sind diese Werkstoffe meist nicht geeignet. Die angegebenen Toleranzen können nicht eingehalten werden. Für diesen Temperaturbereich ist eine gesonderte Werkstoffauswahl erforderlich. Dies kann nicht über das Standardprodukt abgewickelt werden.

Einfluss der Umgebungstemperatur

 $Abh\"{a}ngig\ vom\ verwendeten\ Kopftransmitter.\ Details\ siehe\ jeweilige\ Technische\ Information.$

Eigenerwärmung

RTD-Elemente sind passive Widerstände, die mit einem externen Strom gemessen werden. Dieser Messstrom verursacht im RTD-Element eine Eigenerwärmung, die einen zusätzlichen Messfehler generiert. Die Größe des Messfehlers wird neben dem Messstrom auch durch die Temperaturleitfähigkeit und die Anströmgeschwindigkeit im Prozess beeinflusst. Die Eigenerwärmung ist vernachlässigbar, wenn ein iTEMP-Transmitter (extrem geringer Messstrom) von Endress+Hauser verwendet wird.

Ansprechzeit

Exemplarische Tests wurden in Wasser mit 0,4 m/s und mit einem Temperatursprung von 25 K durchgeführt, um die typischen Werte in der Tabelle zu ermitteln. Die tatsächlichen Werte hängen von Fertigungstoleranzen und Einbaubedingungen ab. Mit Standardabweichungen gemäß der Normalverteilung muss gerechnet werden.

Ansprechzeiten in Sekunden (s). Die Zeiten sind bedingt durch die mediumsberührenden Geometrien. Die Tabelle umfasst alle vordefinierten Ausführungen. Abmessungen in mm (in)

Typ des Sensoranschluss RTD

					Stan- dard Pt100 (TF)	Draht- gewi- ckelt Pt100 (WW)	iTHERM Quick- Sens	iTHERM Strong- Sens
Тур	Geomet- rie	Wurzel-Ø D1	Spitzen-Ø D2	Bohr-Ø Di	t ₉₀	t ₉₀	t ₉₀	t ₉₀
ASME	Gerade	16 mm (0,63	in)	6,5 mm (0,25 in)	71	74	54	75
		19 mm (0,75	19 mm (0,75 in)		72	75	55	76
		22,2 mm (0,	22,2 mm (0,87 in)		75	78	58	79
		25,4 mm (1	in)		80	83	64	84
	Verjüngt	16 mm (0,63 in)	15 mm (0,6 in)		71	74	54	75
		19,5 mm (0,77 in)			71	74	54	75
		22,2 mm (0,87 in)			71	74	54	75
		25,4 mm (1 in)			71	74	54	75
		26,7 mm (1,05 in)	17 mm (0,67 in)		71	74	54	75
		27 mm (1,06 in)			71	74	54	75
		33,4 mm (1,31 in)	20 mm (0,79 in)		73	76	56	77
	Gestuft	16 mm (0,63 in)	12,7 mm (0,5 in)	6,5 mm (0,25 in)	70	73	54	75
		19 mm (0,75 in)			70	73	54	75
		22,2 mm (0,87 in)			70	73	54	75
DIN	Verjüngt	18 mm (0,71 in)	9 mm (0,35 in)	3,5 mm (0,14 in)	-	-	-	-
		24 mm (0,95 in)	12,5 mm (0,49 in)	6,5 mm (0,25 in)	71	74	54	75
		26 mm (1,02 in)			71	74	54	75
NAMUR	Verjüngt	20 mm (0,79 in)	13 mm (0,51 in)	7 mm (0,28 in)> 6,1 mm (0,24 in)	27	32	19	33
iTHERM TwistWell	Verjüngt	22 mm (0,87 in)	15 mm (0,6 in)		71	74	55	75
		25 mm (0,98 in)	17 mm (0,67 in)	6,5 mm (0,25 in)	72	75	55	76
		30 mm (1,18 in)	22 mm (0,87 in)		77	80	61	82

Typ des Sensoranschluss RTD + QuickSleeve

					Pt100 (TF) + Quick- Sleeve	Pt100 (WW) + Quick- Sleeve	iTHERM QuickSens + Quick- Sleeve
Тур	Geometrie	Wurzel-Ø D1	Spitzen-Ø D2	Bohr-Ø Di	t ₉₀	t ₉₀	t ₉₀
ASME	Gerade	16 mm (0,63 in)		6,5 mm	59	62	53
		19 mm (0,75 in)		(0,25 in)	60	63	54
		22,2 mm (0,87 in)			63	66	57
		25,4 mm (1 in)			69	72	63
	Verjüngt	16 mm (0,63 in)	15 mm (0,6 in)		59	62	53
		19,5 mm (0,77 in)			59	62	53
		22,2 mm (0,87 in)			59	62	53
		25,4 mm (1 in)			59	62	53
		26,7 mm (1,05 in)	17 mm (0,67 in) 20 mm (0,79 in)	_	59	62	53
		27 mm (1,06 in)			59	62	53
		33,4 mm (1,31 in)			61	64	53
	Gestuft	16 mm (0,63 in)	12,7 mm (0,5 in)	6,5 mm (0,25 in)	58	62	53
		19 mm (0,75 in)			58	62	53
		22,2 mm (0,87 in)			58	62	53
DIN	Verjüngt	18 mm (0,71 in)	9 mm (0,35 in)	3,5 mm (0,14 in)	-	-	-
		24 mm (0,95 in)	12,5 mm (0,49 in)	6,5 mm (0,25 in)	59	62	53
		26 mm (1,02 in)			59	62	53
NAMUR	Verjüngt	20 mm (0,79 in)	13 mm (0,51 in)	7 mm (0,28 in)> 6,1 mm (0,24 in)	-	-	-
iTHERM TwistWell	Verjüngt	22 mm (0,87 in)	15 mm (0,6 in)		59	62	53
		25 mm (0,98 in)	17 mm (0,67 in)	6,5 mm (0,25 in)	60	63	54
		30 mm (1,18 in)	22 mm (0,87 in)		66	69	60

Typ des Sensoranschluss Thermoelement (TC)

					Thermoelement		
					Тур Ј	Тур К	Typ N
Тур	Geo- metrie	Wur- zel-Ø D1	Spitzen- Ø D2	Bohr-Ø Di	t ₉₀	t ₉₀	t ₉₀
ASME	Gerade	16 mm (16 mm (0,63 in)		71	71	71
		19 mm (0,75 in)		(0,25 in)	72	72	72
		22,2 mm	(0,87 in)		75	75	75
		25,4 mm	(1 in)		80	80	80
	Ver- jüngt	16 mm (0,63 in)	15 mm (0,6 in)	6,5 mm (0,25 in)	71	71	71
		19,5 mm			71	71	71
		(0,77 in)					
		22,2 mm			71	71	71
		(0,87 in)					
		25,4 mm			71	71	71
		(1 in)			, 1	/1	, 1
		26,7 mm			71	71	71
		(1,05 in)	(0,67 in)				
		27 mm (1,06 in)			71	71	71
		33,4 mm			73	73	73
		(1,31 in)	(0,79 in)				
	Gestuft	16 mm (0,63 in)	12,7 mm (0,5 in)	6,5 mm (0,25 in)	70	70	70
		19 mm (0,75 in)			70	70	70
		22,2 mm			70	70	70
		(0,87 in)					
DIN	Ver- jüngt	18 mm (0,71 in)	9 mm (0,35 in)	3,5 mm (0,14 in)	-	-	-
		24 mm (0,95 in)	12,5 mm (0,49 in)	6,5 mm (0,25 in)	71	71	71
		26 mm (1,02 in)			71	71	71
NAMUR	Ver- jüngt	20 mm (0,79 in)	13 mm (0,51 in)	7 mm (0,28 in)> 6,1 mm (0,24 in)	27	27	27
iTHERM Twist-	Ver- jüngt	22 mm (0,87 in)	15 mm (0,6 in)		71	71	71
Well		25 mm (0,98 in)	17 mm (0,67 in)	6,5 mm (0,25 in)	72	72	72
		30 mm (1,18 in)	22 mm (0,87 in)		77	77	77

Kalibrierung

Kalibrierung von Thermometern

Unter Kalibrierung versteht man den Vergleich zwischen der Anzeige eines Messmittels und dem durch das Kalibriernormal zur Verfügung gestellten wahren Wert einer Größe unter festgelegten

Bedingungen. Ziel ist es, die Messabweichungen des Prüflings vom wahren Wert der Messgröße festzustellen. Bei Thermometern werden üblicherweise nur die Messeinsätze kalibriert. Damit werden nur die Abweichung des Sensorelements, die durch den Aufbau des Messeinsatzes auftretenden Abweichungen, überprüft. In den meisten Anwendungen sind die Abweichungen, die sich aus dem Aufbau der Messstelle, dem Einbau in den Prozess, dem Einfluss der Umgebungsbedingungen und sonstigen Einflüssen ergeben, wesentlich größer als die Abweichungen des Messeinsatzes. Für die Kalibrierung von Messeinsätzen unterscheidet man zwei Methoden:

- Kalibrierung an so genannten Fixpunkttemperaturen, z. B. am Eispunkt, dem Erstarrungspunkt von Wasser bei 0°C,
- Kalibrierung im Vergleich gegen ein präzises Referenzthermometer.

Das zu kalibrierende Thermometer muss dabei möglichst exakt die Fixpunkttemperatur oder die Temperatur des Vergleichsthermometers aufweisen. Für Thermometerkalibrierungen werden typischerweise temperierte und thermisch sehr homogene Kalibrierbäder oder spezielle Kalibrieröfen verwendet. Die Messunsicherheit kann sich auf Grund von Wärmeableitungsfehler und kurzer Eintauchlängen erhöhen. Die bestehende Messunsicherheit wird auf dem individuellen Kalibrierzertifikat aufgeführt. Für akkreditierte Kalibrierungen nach ISO 17025 gilt, dass die Messunsicherheit nicht doppelt so hoch sein darf wie die akkreditierte Messunsicherheit. Ist dies überschritten, kann nur eine Werkskalibrierung durchgeführt werden.

Sensor-Transmitter-Matching

Die Widerstands-/Temperatur-Kennlinie von Platin-Widerstandsthermometern ist standardisiert, kann in der Praxis aber kaum über den gesamten Einsatztemperaturbereich exakt eingehalten werden. Platin-Widerstandssensoren werden daher in Toleranzklassen eingeteilt, z. B. in Klasse A, AA oder B nach IEC 60751. Diese Toleranzklassen beschreiben die maximal zulässige Abweichung der spezifischen Sensorkennlinie von der Normkennlinie, d. h. den maximal zulässigen temperaturabhängigen Kennlinienfehler. Die Umrechnung gemessener Sensorwiderstandswerte in Temperaturen in Temperaturtransmittern oder anderen Messelektroniken ist oftmals mit einem nicht unerheblichen Fehler verbunden, da sie in der Regel auf der Standardkennlinie basiert.

Bei Verwendung von Endress+Hauser iTEMP-Temperaturtransmittern lässt sich dieser Umrechnungsfehler durch das Sensor-Transmitter-Matching deutlich verringern:

- Kalibrierung an mindestens drei Temperaturen und Ermittlung der tatsächlichen Kennlinie des Temperatursensors,
- Angleichung der sensorspezifischen Polynomfunktion mit entsprechenden Calendar-van-Dusen-Koeffizienten (CvD),
- Parametrierung des Temperaturtransmitters mit den sensorspezifischen CvD-Koeffizienten zur Widerstand/Temperatur-Umrechnung sowie
- eine weitere Kalibrierung des neu parametrierten Temperaturtransmitters mit angeschlossenem Widerstandsthermometer.

Endress+Hauser bietet ein solches Sensor-Transmitter-Matching als Dienstleistung an. Zudem werden die sensorspezifischen Polynomkoeffizienten von Platin-Widerstandsthermometern auf allen Endress+Hauser Kalibrierzertifikaten nach Möglichkeit mit ausgewiesen, z. B. mindestens drei Kalibrierpunkte, so dass geeignete Temperaturtransmitter vom Anwender auch selbst entsprechend parametriert werden können.

Endress+Hauser bietet für das Gerät standardmäßig Kalibrierungen bei einer Vergleichstemperatur von $-80 \dots +600 \,^{\circ}\mathrm{C}$ ($-112 \dots +1112 \,^{\circ}\mathrm{F}$) bezogen auf die ITS90 (Internationale Temperaturskala) an. Kalibrierungen bei anderen Temperaturbereichen sind auf Anfrage bei einer Endress+Hauser Vertriebszentrale erhältlich. Die Kalibrierung ist rückführbar auf nationale und internationale Standards. Das Kalibrierzertifikat bezieht sich auf die Seriennummer des Gerätes. Kalibriert wird nur der Messeinsatz.

Erforderliche Mindesteintauchlänge (IL) für Messeinsätze zur Durchführung einer ordnungsgemäßen Kalibrierung

Durch Einschränkungen der Öfen-Geometrien müssen bei hohen Temperaturen Mindesteintauchlängen eingehalten werden, um eine Kalibrierung mit annehmbarer Messunsicherheit durchführen zu können. Ähnliches gilt bei Verwendung eines Kopftransmitters. Bedingt durch die Wärmeableitung müssen Mindestlängen eingehalten werden um die Funktionalität des Transmitters zu gewährleisten $-40 \dots +85$ °C $(-40 \dots +185$ °F).

Kalibriertemperatur	Mindesteintauchlänge IL in mm ohne Kopftransmitter
−196 °C (−320,8 °F)	120 mm (4,72 in) ¹⁾
-80 +250 °C (−112 +482 °F)	Keine Mindesteintauchlänge erforderlich ²⁾

Kalibriertemperatur	Mindesteintauchlänge IL in mm ohne Kopftransmitter
+251 +550 °C (+483,8 +1022 °F)	300 mm (11,81 in)
+551 +600 °C (+1023,8 +1112 °F)	400 mm (15,75 in)

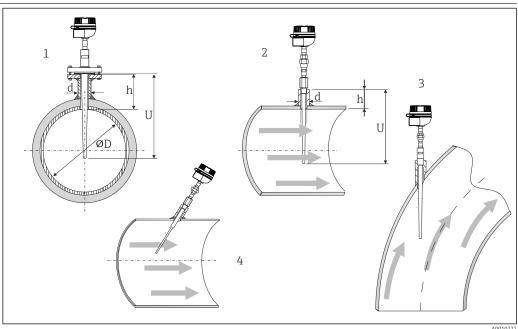
- 1) Mit iTEMP-Kopftransmitter min. 150 mm (5,91 in) erforderlich
- Bei einer Temperatur von +80 ... +250 °C (+176 ... +482 °F) ist mit iTEMP-Kopftransmitter min. 2) 50 mm (1,97 in) erforderlich

Isolationswiderstand

■ RTD:

Isolationswiderstand gemäß IEC 60751 > 100 M Ω bei +25 °C zwischen den Anschlussklemmen und dem Halsrohr gemessen mit einer Mindestprüfspannung von 100 V_{DC} .

Isolationswiderstand gemäß IEC 61515 zwischen Anschlussklemmen und Mantelwerkstoff bei einer Prüfspannung von 500 V_{DC}:


- > 1 GΩ bei +20 °C
- > 5 MΩ bei +500 °C

Montage

Einbaulage

Keine Einschränkungen. Die Selbstentleerung im Prozess je nach Anwendung gewährleisten.

Einbauhinweise

15 Einbaubeispiele

- 1 2 Bei Rohrleitungen mit kleinem Querschnitt sollte die Sensorspitze bis zur Achse der Rohrleitung oder etwas darüber hinaus reichen (=U).
- 3 4 Schräge Einbaulage.

Die Eintauchlänge des Thermometers wirkt sich auf die Messgenauigkeit aus. Bei zu geringer Eintauchlänge kommt es durch die Wärmeableitung über den Prozessanschluss und die Behälterwand zu Messfehlern. Daher empfiehlt sich beim Einbau in ein Rohr eine Eintauchlänge, die mindestens der Hälfte des Rohrdurchmessers entspricht. Eine andere Lösung kann ein schräger Einbau sein (siehe Pos. 3 und 4). Bei der Bestimmung der Eintauchlänge müssen alle Parameter des Thermometers und des zu messenden Prozesses berücksichtigt werden (z. B. Durchflussgeschwindigkeit, Prozessdruck).

Um die bestmögliche Installation zu erreichen, sollte folgende Regel eingehalten werden: h ~ d; U > D/2 + h.

Die Gegenstücke zu Prozessanschlüssen und Dichtungen sind nicht im Lieferumfang des Thermometers enthalten und müssen bei Bedarf separat bestellt werden.

Umgebung

Umgebungstemperaturbereich

Anschlusskopf	Temperatur in °C (°F)
Ohne montiertem Kopftransmitter	Abhängig vom verwendeten Anschlusskopf und Kabelverschraubung sowie Feldbus-Stecker, siehe Kapitel "Anschlussköpfe".
Mit montiertem iTEMP-Kopftransmitter	-40 +85 °C (-40 +185 °F)
Mit montiertem iTEMP-Kopftransmitter und Display	−30 +85 °C (−22 185 °F)

Lagerungstemperatur

-40 ... +85 °C (-40 ... +185 °F).

Relative Luftfeuchte

Abhängig vom verwendeten iTEMP-Transmitter. Bei Verwendung von iTEMP-Kopftransmittern:

- Betauung nach IEC 60068-2-33 zulässig
- Max. relative Feuchte: 95% nach IEC 60068-2-30

Klimaklasse

Nach EN 60654-1, Klasse C

Schutzart

Max. IP 66 (NEMA Type 4x encl.)	Abhängig von der Bauform (Anschlusskopf, Anschluss, etc.)		
Teilweise IP 68	Getestet in 1,83 m (6 ft) über 24 h		

Stoß- und Vibrationsfestigkeit

Die Messeinsätze von Endress+Hauser übertreffen die Anforderungen der IEC 60751 hinsichtlich der Stoß- und Vibrationsfestigkeit von 3g in einem Bereich von $10\dots500$ Hz. Die Vibrationsfestigkeit der Messstelle hängt vom Sensortyp und der Bauform ab:

Sensortyp 1)	Vibrationsfestigkeit für die Sensorspitze
Pt100 (WW)	
Pt100 (TF) Basis	≤ 30 m/s² (≤ 3g)
Pt100 (TF) Standard	≤ 40 m/s² (≤ 4g)
Pt100 (TF) iTHERM StrongSens	600 m/s² (60g)
Pt100 (TF) iTHERM QuickSens, Ausführung: ø6 mm (0,24 in)	600 m/s² (60g)
Pt100 (TF) iTHERM QuickSens, Ausführung: ø3 mm (0,12 in)	≤ 30 m/s² (≤ 3g)
Thermoelement TC, Typ J, K, N	$\leq 30 \text{ m/s}^2 (\leq 3g)$

1) Auswahl abhängig von Produkt und Konfiguration

Elektromagnetische Verträglichkeit (EMV)

Elektromagnetische Verträglichkeit gemäß allen relevanten Anforderungen der IEC/EN 61326-Serie und NAMUR Empfehlung EMV (NE21). Details sind aus der EU-Konformitätserklärung ersichtlich.

Maximale Messabweichung < 1% vom Messbereich.

Störfestigkeit nach IEC/EN 61326-Serie, Anforderung Industrieller Bereich

Störaussendung nach IEC/EN 61326-Serie, Betriebsmittel der Klasse B

Prozess

Prozesstemperaturbereich

Abhängig vom Sensortyp und dem eingesetzten Material des Schutzrohrs, max. $-200 \dots +1100 \,^{\circ}\text{C} \,(-328 \dots +2012 \,^{\circ}\text{F})$.

Prozessdruckbereich

Der maximal mögliche Prozessdruck ist abhängig von verschiedenen Einflüssen, dazu zählen Bauform, Prozessanschluss und -temperatur. Maximal mögliche Prozessdrücke für die jeweiligen Prozessanschlüsse siehe Kapitel "Prozessanschluss".

Die mechanische Belastbarkeit in Abhängigkeit der Einbau- und Prozessbedingungen kann im Schutzrohrberechnungstool Sizing Thermowell verifiziert werden, das im Online Tool 'Applicator' des Herstellers enthalten ist. Siehe Kapitel "Zubehör".

Zulässige Anströmgeschwindigkeit in Abhängigkeit von der Eintauchlänge und dem Prozessmedium

Die maximal zulässige Strömungsgeschwindigkeit, der das Schutzrohr ausgesetzt werden kann, nimmt mit zunehmender Eintauchtiefe des Schutzrohres in das strömende Messmedium ab. Sie ist von der Geometrie des Schutzrohres, dem Prozessanschluss, der Art des Mediums, der Prozesstemperatur und vom Prozessdruck abhängig.

Prozessanschluss	Norm	max. Prozessdruck
Einschweißversion/ Schweißstutzen	NPS	≤ 500 bar (7 252 psi)
Flansch	ASME B16.5	Je nach Flansch-Druckstufe 150, 300, 600, 900/1500 oder 2500 psi bei 20 °C (68 °F)
Gewinde	ISO 965-1 / ASME B1.13M ISO 228-1 ANSI B1.20.1 DIN EN 10226-1 /	400 bar (5802 psi) bei +400 °C (+752 °F)

Prozessdruckbereich

Der maximal mögliche Prozessdruck ist abhängig von verschiedenen Einflüssen, dazu zählen Bauform, Prozessanschluss und -temperatur. Maximal mögliche Prozessdrücke für die jeweiligen Prozessanschlüsse siehe Kapitel "Prozessanschluss".

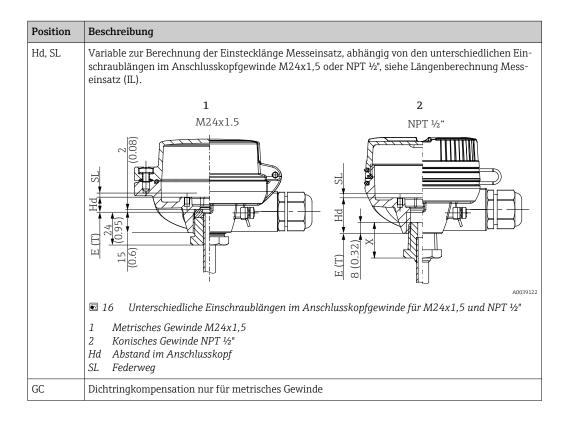
Die mechanische Belastbarkeit in Abhängigkeit der Einbau- und Prozessbedingungen kann im Schutzrohrberechnungstool Sizing Thermowell verifiziert werden, das im Online Tool 'Applicator' des Herstellers enthalten ist. Siehe Kapitel "Zubehör".

Zulässige Anströmgeschwindigkeit in Abhängigkeit von der Eintauchlänge und dem Prozessmedium

Die maximal zulässige Strömungsgeschwindigkeit, der das Schutzrohr ausgesetzt werden kann, nimmt mit zunehmender Eintauchtiefe des Schutzrohres in das strömende Messmedium ab. Sie ist von der Geometrie des Schutzrohres, dem Prozessanschluss, der Art des Mediums, der Prozesstemperatur und vom Prozessdruck abhängig.

Prozessanschluss	Norm	max. Prozessdruck
Einschweißversion/ Schweißstutzen	NPS	≤ 500 bar (7 252 psi)
Flansch	ASME B16.5	Je nach Flansch-Druckstufe 150, 300, 600, 900/1500 oder 2500 psi bei 20 °C (68 °F)
Gewinde	ISO 965-1 / ASME B1.13M ISO 228-1 ANSI B1.20.1 DIN EN 10226-1 /	400 bar (5802 psi) bei +400 °C (+752 °F)

Konstruktiver Aufbau

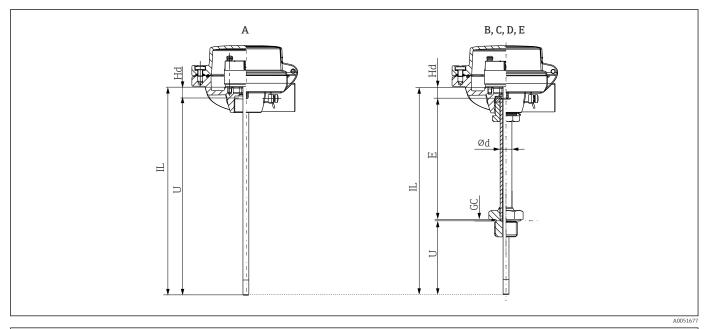

Bauform, Maße

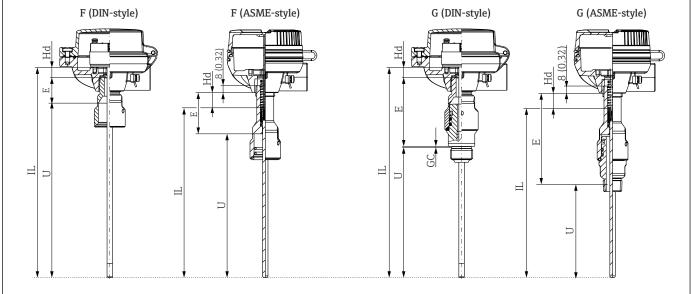
Alle Angaben in mm (in). Die Bauform des Thermometers ist abhängig vom ausgewählten Typ:

- Thermometer zum Einbau in ein separates Schutzrohr
- Thermometer mit Schutzrohr, basierend auf ASME: ANSI-Flansche, NPT-Gewinde, Schweißstutzen und Einschweißversion
- Thermometer mit Schutzrohr, basierend auf DIN: EN-Flansche, M- oder G-Gewinde, Schweißtstutzen und Einschweißversion
- Thermometer mit Schutzrohr, basierend auf NAMUR und TwistWell, Flansche
- Die mechanische Belastbarkeit in Abhängigkeit der Einbau- und Prozessbedingungen kann online im Schutzrohrberechnungstool "TW Sizing Modul" in der Endress+Hauser Applicator-Software überprüft werden. Siehe Kapitel "Zubehör".
- Diverse Abmessungen, wie z.B. Eintauchlänge U, Schutzrohrschaftlänge T und Halsrohrlänge E sind variable Werte und daher in den folgenden Abmessungszeichnungen als Zeichnungsposition dargestellt.

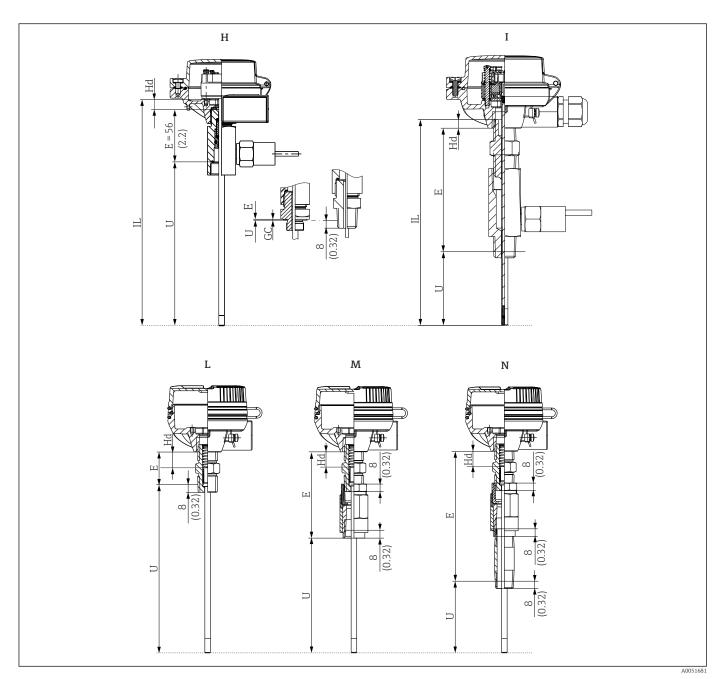
Variable Abmessungen:

Position	Beschreibung
Е	Halsrohrlänge, variabel je nach Konfiguration oder vordefiniert für die Ausführung mit iTHERM QuickNeck
IL	Einstecklänge Messeinsatz
L	Schutzrohrlänge (U+T)
Т	Länge Schutzrohrschaft: variabel bzw. vordefiniert, abhängig von der Schutzrohrausführung (siehe auch in den jeweiligen Tabellenangaben)
U	Eintauchlänge: variabel, je nach Konfiguration
L_Gp	Gewindelänge (gesamte Gewindelänge)
L_Gp_e	Einschraubtiefe des Gewindes
Gp	Gewinde Prozessanschluss
В	Schutzrohr Bodendicke (Standardwert 6 mm (0,24 in) - optional andere Dicken erhältlich)
D1	Wurzeldurchmesser
D2	Durchmesser Spitze
C1	Länge des verjüngten Teils
Re1	Gestufte Länge der Spitze
Di1	Bohrungsdurchmesser
Di2	Durchmesser Bohrung der Spitze
De1	Durchmesser Schaft
Ge1	Gewinde Thermometeranschluss


Thermometer zum Einbau in ein separates Schutzrohr


Das Thermometer wird ohne Schutzrohr geliefert, ist jedoch für den Einsatz mit Schutzrohr ausgelegt.

Diese Ausführung kann nicht zum direkten Eintauchen in das Prozessmedium verwendet werden!


Das Thermometer kann folgendermaßen konfiguriert werden

- Option A: Ohne Halsrohr (Innengewinde M24, M20x1.5 oder NPT ½") ¹⁾
 Option B, C, D, E: Abnehmbares Halsrohr; Metrisches Gewinde für Anschluss an Schutzrohr wählen.
- Option F (DIN-style): iTHERM QuickNeck Oberteil mit iTHERM TS111.
- Option F (ASME-style): iTHERM QuickNeck Oberteil mit iTHERM TS211.
- Option G (DIN-style): iTHERM QuickNeck komplett mit iTHERM TS111.
 Option G (ASME-style): iTHERM QuickNeck komplett mit iTHERM TS211.

34

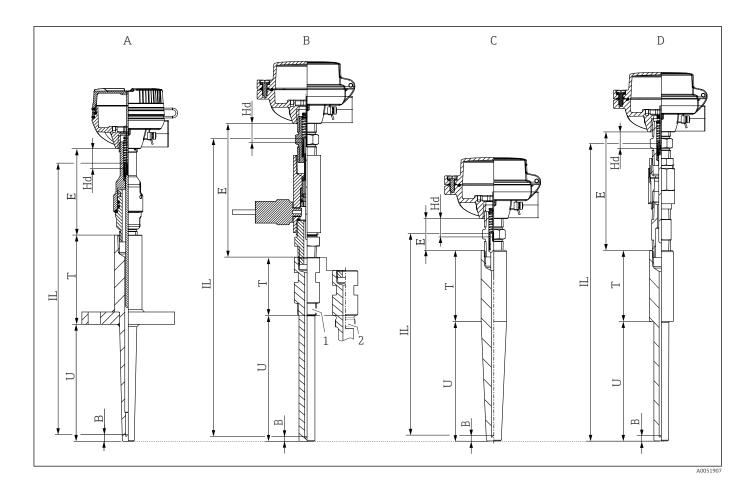
- Option H: Halsrohr mit zweiter Prozessbarriere, mit Kunststoffdichtung, austauschbarer Messeinsatz (Gewinde M24x1,5-Innenanschluss zum Schutzrohr) oder mit Außengewinde.
- Option I: Halsrohr mit zweiter Prozessbarriere, mit metallischer Dichtung, fest eingebauter Messeinsatz (Gewinde NPT1/2" Außengewinde zum Schutzrohr).
- $\bullet \ \, \text{Optionen L, M, N: NPT $\frac{1}{2}$"-Nippel, Nippel-Verschraubung oder Nippel-Verschraubung-Nippel-Verbindung.}$

1) Konfigurationsmerkmal 50: Prozess-/Schutzrohranschluss

Berechnung der Messeinsatzlänge IL

Option A: Ohne Hals	IL = U + Hd
Option A für Verwendung mit NAMUR-Schutz- rohr	Schutzrohr iTHERM ModuLine TT151 Typ NF1: $U_{TM151} = 304 \text{ mm}$ (11,97 in); IL = 315 mm (12,4 in) Schutzrohr iTHERM ModuLine TT151 Typ NF2: $U_{TM151} = 364 \text{ mm}$ (14,33 in); IL = 375 mm (14,8 in) Schutzrohr iTHERM ModuLine TT151 Typ NF3: $U_{TM151} = 424 \text{ mm}$ (16,7 in); IL = 435 mm (17,13 in)
Optionen B, C, D, E: Abnehmbares Halsrohr	Ausführung metrisches Gewinde: IL = U + E + Hd + GC Ausführung NPT-Gewinde: IL = U + E + Hd

Option F (DIN-style): iTHERM QuickNeck, Oberteil	IL = U + E + Hd Länge E = 28 mm (1,10 in) für M24x1,5 zum Anschlusskopf Länge E = 21 mm (0,83 in) für NPT ½" zum Anschlusskopf		
Option F (ASME-style): iTHERM QuickNeck, Oberteil	IL = U + E + Hd Länge E = 46 mm (1,81 in) für M24x1,5 zum Anschlusskopf Länge E = 44 mm (1,73 in) für NPT ½" zum Anschlusskopf		
Option G (DIN-style): iTHERM QuickNeck, komplett	DIN-style: Schutzrohranschluss als zylindrisches Gewinde (M14; M18; G½") IL = U + E + Hd + GC Länge E = 74 mm (2,91 in) für M24x1,5 zum Anschlusskopf Länge E = 68 mm (2,68 in) für NPT ½" zum Anschlusskopf		
Option G (ASME-style): iTHERM QuickNeck, komplett	ASME-style: Schutzrohranschluss als konisches Gewinde (NPT ½") IL = U + E + Hd + GC Länge E = 101 mm (3,98 in)		
Option H: Zweite Prozessbarriere	Schutzrohranschluss als Innengewinde M24x1.5 IL = U + E + Hd+GC Länge E = 56 mm (2,2 in) für M24x1,5 zum Anschlusskopf Länge E = 48 mm (1,89 in) für NPT ½" zum Anschlusskopf		
	Schutzrohranschluss als zylindrisches Gewinde (M14; M18; G½") IL = U + E + Hd + GC Länge E = 85 mm (3,35 in) für M24x1,5 zum Anschlusskopf Länge E = 76 mm (3 in) für NPT ½" zum Anschlusskopf		
	Schutzrohranschluss als konisches Gewinde NPT ½" IL = U + E + Hd Länge E = 147 mm (5,79 in) für Anwendung: Non-Ex, Ex ia, GP, IS Länge E = 158 mm (6,22 in) für Anwendung: Ex d, XP		
Optionen L, M, N: Nippel-Verbindung	IL = U + E + Hd E und Hd sind abhängig vom Typ des Nippels: Standard: E = 35 mm (1,38 in) Hd = -17 mm (-0,67 in) Nippel für druckfeste Kapselung: E = 47 mm (1,85 in) Hd = 10 mm (0,39 in) SL = Federvorspannung = 6 mm (0,24 in)		
Hd für Kopfgewinde M24x1,5 (TA30A, TA30D, TA30P, TA30R, TA20AB) = 11 mm (0,43 in) Hd für Kopfgewinde NPT ½" (TA30EB) = 26 mm (1,02 in) Hd für Kopfgewinde NPT ½" (TA30H) = 41 mm (1,61 in) GC Dichtungskompensation = 2 mm (0,08 in)			


Thermometer mit Schutzrohr nach ASME Standard

Das Thermometer ist immer mit Schutzrohr ausgeführt.

Das Thermometer kann folgendermaßen konfiguriert werden $^{2)}$

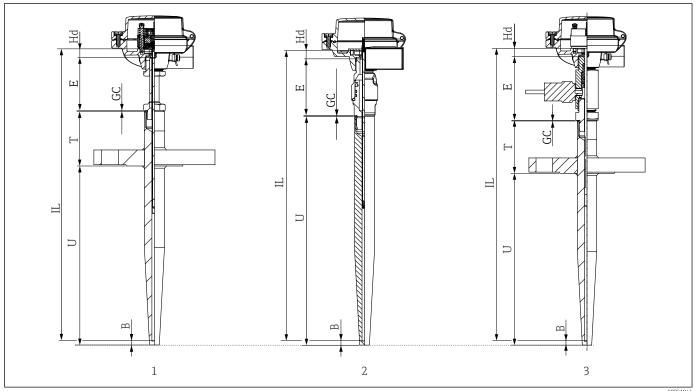
36

²⁾ Siehe auch Konfigurationsmerkmal 020/030: Schutzrohr/Thermometer Aufbau

- Option A: Angelehnt an ASME B40.9, mit Flansch.
- Option B: Angelehnt an ASME B40.9, mit Gewinde.
- 1: NPT-Gewinde.
- 2: Metrisches Gewinde.
- Option C: Angelehnt an ASME B40.9, zum Einschweißen.
- Option D: Angelehnt an ASME B40.9, mit Einschweißstutzen.

Berechnung der Messeinsatzlänge IL

		Anwendung Non-Ex / Ex ia / GP / IS	Anwendung Ex d / XP
Variante A	IL = U + T + E + Hd - B + SL SL = Federvorspannung = 6 mm (0.24 in) B = 6 mm (0.24 in)	Hd = -17 mm (-0,67 in) E = 101 mm (3,98 in)	Hd = 10 mm (0,39 in) E = 101 mm (3,98 in)
Variante B	IL = U + T + E + Hd - B + SL SL = Federvorspannung = 6 mm (0.24 in) B = 6 mm (0.24 in)	Hd = -17 mm (-0,67 in) E = 147 mm (5,79 in)	Hd = 10 mm (0,39 in) E = 158 mm (6,22 in)
Variante C	IL = U + T + E + Hd - B + SL SL = Federvorspannung = 6 mm (0.24 in) B = 6 mm (0.24 in)	Hd = -17 mm (-0,67 in) E = 35 mm (1,38 in)	Hd = 10 mm (0,39 in) E = 47 mm (1,85 in)
Variante D	IL = U + T + E + Hd - B + SL SL = Federvorspannung = 6 mm $(0,24 \text{ in})$ B = 6 mm $(0,24 \text{ in})$	Hd = -17 mm (-0,67 in) E = 142 mm (5,6 in)	Hd = 10 mm (0,39 in) E = 154 mm (6,06 in)


Die Angaben der Länge E sind Nominalwerte und können, bedingt durch die Toleranzen der NPT-Gewinde, variieren.

Thermometer mit Schutzrohr nach DIN Standard

Das Thermometer ist immer mit Schutzrohr ausgeführt.

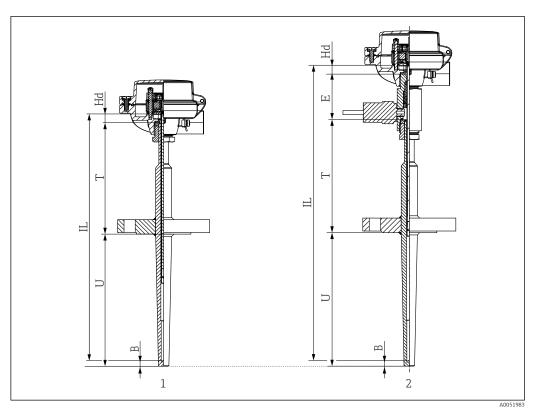
Schutzrohr, angelehnt an DIN 43772, Form 4F beschreibt einen Flansch, Form 4 die Einschweißform als Prozessanschluss.

Das Thermometer kann folgendermaßen konfiguriert werden $^{2)}$

A005194

- 1 Variante E: Ausführung mit Flansch und abnehmbaren Halsrohr.
- 2 Variante G: Ausführung zum Einschweißen mit iTHERM QuickNeck.
- 3 Variante E: Ausführung mit Flansch und Halsrohr mit zweiter Prozessbarriere.

Berechnung der Messeinsatzlänge IL

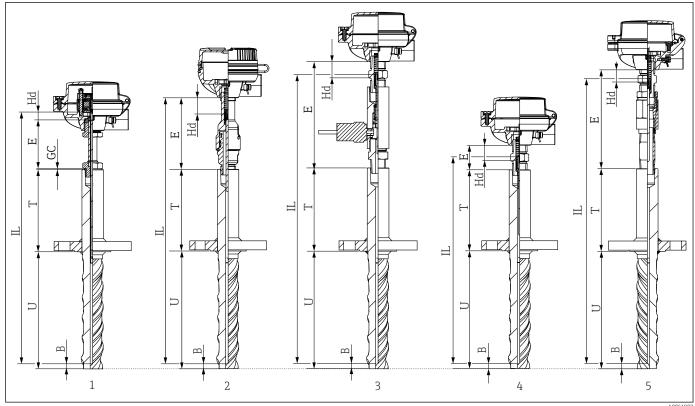

		Anwendung Non-Ex / Ex ia / GP / IS	Anwendung Ex d / XP
Variante E mit abnehmbarem Halsrohr (Merkmal 30: B, C, D)	IL = U + T + E + Hd - B + GC + SL SL = Federvorspannung = 3 mm (0,12 in) B = 6 mm (0,24 in) GC = 2 mm (0,078 in)	Hd = 11 mm (0,43 in) E = variabel	Hd = 26 mm (1,02 in) E = variabel
Variante G mit iTHERM QuickNeck (Merkmal 30: G)	IL = U + T + E + Hd - B + GC + SL SL = Federvorspannung = 3 mm (0,12 in) B = 6 mm (0,24 in) GC = 2 mm (0,078 in)	Hd = 11 mm (0,43 in) E = 74 mm (2,91 in)	Hd = 26 mm (1,02 in) E = 68 mm (2,67 in)
Variante E mit Halsrohr mit zweiter Prozessbarriere (Merkmal 30: H)	IL = U + T + E + Hd - B + GC + SL SL = Federvorspannung = 3 mm (0,12 in) B = 6 mm (0,24 in) GC = 2 mm (0,078 in)	Hd = 11 mm (0,43 in) E = 85 mm (3,35 in)	Hd = 26 mm (1,02 in) E = 76 mm (3 in)

Thermometer mit Schutzrohr nach NAMUR NE170

Das Thermometer ist immer mit Schutzrohr ausgeführt.

Das Thermometer kann folgendermaßen konfiguriert werden $^{2)}$

38


- 1 Variante M ohne Halsrohr.
- 2 Variante M, Halsrohr mit zweiter Prozessbarriere.

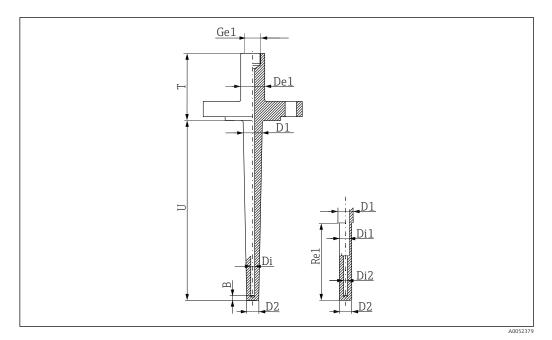
Berechnung der Messeinsatzlänge IL

		Anwendung Non-Ex / Ex ia / GP / IS	Anwendung Ex d / XP
Variante M ohne Halsrohr (Merkmal 30: A)	IL = U + T + Hd - B + SL Hd = 11 mm (0,43 in) B = 7 mm (0,28 in) SL = Federvorspannung = 3 mm (0,12 in)	-	-
Variante M, Halsrohr mit zweiter Prozessbarriere (Merkmal 30: H)	IL = U + T + E + Hd - B + SL B = 7 mm (0,28 in) SL = Federvorspannung = 3 mm (0,12 in)	Hd = 11 mm (0,43 in) E = 56 mm (2,2 in)	Hd = 26 mm (1,02 in) E = 48 mm (1,9 in)

Thermometer mit iTHERM TwistWell-Schutzrohr

Das Thermometer kann folgendermaßen konfiguriert werden: 2)

A005198


- 1 Variante T, iTHERM TwistWell, mit Flansch und abnehmbaren Halsrohr nach DIN-Standard.
- 2 Variante T; iTHERM TwistWell, mit Flansch und iTHERM QuickNeck.
- 3 Variante T; iTHERM TwistWell, mit Flansch und Halsrohr mit zweiter Prozessbarriere.
- 4 Variante T; iTHERM TwistWell, mit Flansch und Nippel Verbindung.
- 5 Variante T; iTHERM TwistWell, mit Flansch und Nippel-Union-Nippel Verbindung.

Berechnung der Messeinsatzlänge IL

		Anwendung Non-Ex / Ex ia / GP / IS	Anwendung Ex d / XP
1: Mit Flansch und abnehmbaren Halsrohr nach DIN Standard	IL = U + T + E + Hd - B + GC + SL B = 6 mm (0,24 in) SL = Federvorspannung = 3 mm (0,12 in) GC = 2 mm (0,078 in)	Hd = 11 mm (0,43 in) E = variabel	Hd = 26 mm (1,02 in) E = variabel
2: Mit Flansch und iTHERM Quick- Neck	IL = U + T + E + Hd - B + SL B = 6 mm (0,24 in) SL = Federvorspannung = 6 mm (0,24 in)	Hd = -17 mm (-0,67 in) E = 101 mm (3,98 in)	Hd = 10 mm (0,39 in) E = 101 mm (3,98 in)
3: Mit Flansch und Halsrohr mit zweiter Prozessbarriere	IL = U + T + E + Hd - B + SL B = 6 mm (0,24 in) SL = Federvorspannung = 6 mm (0,24 in)	Hd = 11 mm (0,43 in) E = 147 mm (5,79 in)	Hd = 26 mm (1,02 in) E = 158 mm (6,22 in)
4: Mit Flansch und Nippel Verbindung	IL = U + T + E + Hd - B + SL B = 6 mm (0,24 in)	Hd = -17 mm (-0,67 in) E = 35 mm (1,38 in)	Hd = 10 mm (0,39 in) E = 47 mm (1,85 in)
5: Mit Flansch und Nippel-Union- Nippel Verbindung	SL = Federvorspannung = 6 mm (0,24 in)	Hd = -17 mm (-0,67 in) E = 142 mm (5,6 in)	Hd = 10 mm (0,39 in) E = 158 mm (6,22 in)

Die Angaben der Länge E sind Nominalwerte und können, bedingt durch die Toleranzen der NPT-Gewinde, variieren.

Geschmiedetes Schutzrohr

Um geschweißte Flansch-Prozessanschlüsse zu vermeiden, kann ein geschmiedetes Schutzrohr ausgewählt werden. Es entspricht höchsten Ermüdungsbeständigkeiten gemäß ASME PTC 19.3 TW. Die Option des geschmiedeten Schutzrohres schließt Schweißnahtprüfungen und -fehler aus. Es kann in extremen Prozessumgebungen eingesetzt werden.

Dies gilt für die folgenden Schutzrohrausführungen: Geflanscht, Referenzen gem. ASME/ Universal/DIN

Ausführungen von geflanschten Schutzrohren

Beidseitig geschweißt	Vollständig durchgeschweißt	Geschmiedet - nicht geschweißt
A0052792	A0052794	A0052702
 Für einen Großteil der Anwendungen geeignet Erfüllt die Anforderungen zu einem angemessenen Kosten-Nutzen-Verhältnis 	 Für raue Anwendungsumgebungen geeignet Stärkere Schweißverbindung Höhere Kosten 	 Für raue Anwendungsumgebungen geeignet Keine Schweißung Günstigere Alternative zur vollständig durchgeschweißten Flanschverbindung

Gewicht

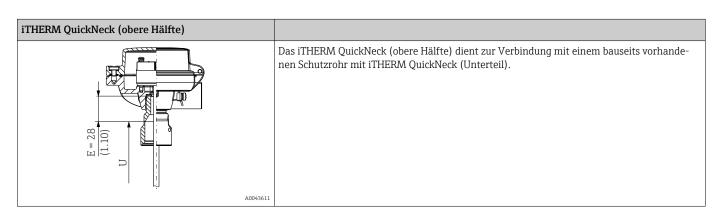
0,5 ... 37 kg (1 ... 82 lbs) für Standardausführungen.

Werkstoffe

Die in der nachfolgenden Tabelle für den Dauerbetrieb angegebenen Temperaturen sind als Referenzwerte für die Verwendung der verschiedenen Materialien in Luft und ohne nennenswerte mechanische Belastung gedacht. In einem abweichenden Einsatzfall, insbesondere beim Auftreten hoher

mechanischer Belastungen oder in aggressiven Medien, können die maximalen Betriebstemperaturen deutlich reduziert sein.

Materialbezeich- nung	Kurze Form	Empfohlene max. Tem- peratur für den Dauer- betrieb in Luft	Eigenschaften
AISI 316L	X5CrNiMo 17-12-2	650 °C (1202 °F) ¹⁾	 Austenitischer, nicht rostender Stahl Im Allgemeinen hohe Korrosionsbeständigkeit Besonders hohe Korrosionsbeständigkeit in chlorhaltigen und säurehaltigen nicht oxidierenden Atmosphären durch Hinzufügen von Molybdän (z. B. phosphorhaltige und schwefelhaltige Säuren, Essigund Weinsäure mit geringer Konzentration)
AISI 316Ti/1.4571	X6CrNi- MoTi17-12-2	700 °C (1292 °F)	 Vergleichbare Eigenschaften wie AISI316L Das Hinzufügen von Titan bedeutet erhöhte Beständigkeit gegenüber interkristalliner Korrosion selbst nach dem Verschweißen Breite Palette an Einsatzbereichen in der chemischen, petrochemischen und Ölindustrie sowie in der Kohlechemie Kann nur in beschränktem Umfang poliert werden; die Bildung von Titanschlieren ist möglich
Alloy600/2.4816	NiCr15Fe	1100°C (2012°F)	 Eine Nickel-Chrom-Legierung mit sehr guter Beständigkeit selbst bei hohen Temperaturen gegenüber aggressiven, oxidierenden und reduzierenden Atmosphären Beständigkeit gegenüber Korrosion, die durch Chlorgase und chlorhaltige Medien sowie durch viele oxidierende Mineral- und organische Säuren, Seewasser etc. verursacht wird Korrosion durch Reinstwasser Darf nicht in schwefelhaltigen Atmosphären verwendet werden
AlloyC276/2.4819	NiMo16Cr15W	1100°C (2012°F)	 Eine nickelbasierte Legierung mit guter Beständigkeit gegen oxidierende und reduzierende Umgebungen selbst noch bei hohen Temperaturen Besonders resistent gegen Chlorgas und Chlorid sowie gegen viele oxidierende mineralische und organische Säuren
AISI 347 / 1.4550	X6CrNiNb18-10	900°C (1652°F)	 Austenitischer, nicht rostender Stahl Verbesserte interkristalline Korrosionsbeständigkeit in oxidierenden Umgebungen Gute Schweißeigenschaften Für Hochtemperaturanwendungen wie Öfen
AISI 310 / 1.4845	X15CrNi25-21	1100°C (2012°F)	 Austenitischer, nicht rostender Stahl Generell gute Beständigkeit gegen oxidierende und reduzierende Atmosphären Aufgrund des höheren Chromanteils gut beständig gegen oxidierende wässrige Lösungen und neutrale, bei höheren Temperaturen schmelzende Salze Nur geringe Beständigkeit gegen schwefelhaltige Gase
AISI A105/ 1.0460	C22.8	450 °C (842 °F)	 Hitzebeständiger Stahl Beständig bei stickstoffhaltigen Atmosphären sowie Atmosphären, die arm an Sauerstoff sind; nicht geeignet bei Säuren oder anderen aggressiven Medien Häufig eingesetzt in Dampferzeugern, Wasser- und Dampfleitungen, Druckbehältern


Materialbezeich- nung	Kurze Form	Empfohlene max. Tem- peratur für den Dauer- betrieb in Luft	Eigenschaften
AISI A182 F11/ 1.7335	13CrMo4-5	550 °C (1022 °F)	 Niedriglegierter, hitzebeständiger Stahl mit Chromund Molybdän-Zusätzen Bessere Korrosionsbeständigkeit im Vergleich zu unlegierten Stählen, nicht geeignet für Säuren und andere aggressive Medien Häufig eingesetzt in Dampferzeugern, Wasser- und Dampfleitungen, Druckbehältern
Titan / 3.7035	-	600 °C (1112 °F)	 Ein Leichtmetall mit sehr hoher Korrosionsbeständigkeit und Festigkeitskennwerten Sehr gute Beständigkeit gegenüber einer Vielzahl oxidierender Mineral- und organischer Säuren, Salzlösungen, Seewasser etc. Anfällig für schnelle Versprödung bei hohen Temperaturen durch die Absorption von Sauerstoff, Stickstoff und Wasserstoff Im Vergleich zu anderen Metallen reagiert Titan schnell mit vielen Medien (O₂, N₂, Cl₂, H₂) bei höheren Temperaturen und/oder erhöhtem Druck Kann nur in Chlorgas und chlorhaltigen Medien bei vergleichsweise niedrigen Temperaturen verwendet werden (<400 °C)
1.5415	16Mo3	530 °C (986 °F)	 Legierter, kriechfester Stahl Besonders gut geeignet als Rohrmaterial für den Kesselbau, Endüberhitzerrohre, überhitzte Dampf- und Sammelrohre, Ofen- und Leitungsrohre, Wär- metauscher und für die Zwecke der erdölverarbeitenden Industrien
Duplex S32205	X2CrNi- MoN22-5-3	300 °C (572 °F)	 Austenitischer ferritischer Stahl mit guten mechanischen Eigenschaften Hohe Beständigkeit gegenüber allgemeiner Korrosion, Lochfraß, durch Chlor verursachte oder transkristalline Spannungskorrosion Vergleichsweise gute Beständigkeit gegenüber wasserstoffinduzierter Spannungskorrosion
1.7380	10CrMo9-10	580 °C (1076 °F)	 Legierter warmfester Stahl Eignet sich besonders für Dampfkessel, Kesselteile, Kesseltrommeln, Druckbehälter für den Apparate- bau und ähnliche Zwecke

Bei geringen mechanischen Belastungen und in nicht korrosiven Medien ist bedingt ein Einsatz bis zu 800 °C (1472 °F) möglich. Für weitere Informationen bitte den Vertrieb des Herstellers kontaktieren.

Schutzrohr-/ Thermometeranschlüsse

Verbindungsgewinde Metrisches Innengewinde	Ausfü	hrung	Gewindelänge TL	Schlüsselweite	
A0043558	M	M24x1,5	14 mm (0,55 in)	30 mm (1,18 in)	Das metrische Innengewinde ist nicht als Prozessan- schluss ausgelegt. Dieser Anschluss ist nur für Thermome- ter ohne Schutzrohr erhältlich.
1 Innengewinde					

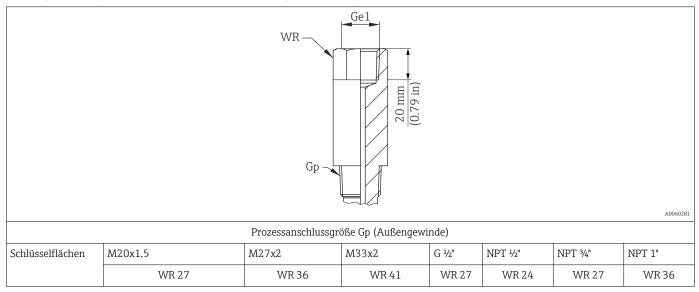
Verbindungsgewinde Konisches Innengewinde		ihrung	Gewindelänge TL	Schlüsselweite	
1 Innengewinde	NPT See See See See See See See See See Se	NPT 1/2"	8 mm (0,32 in)	22 mm (0,87 in)	Das konische Innengewinde ist nicht als Prozessan- schluss ausgelegt. Dieser Anschluss ist nur für Thermome- ter ohne Schutzrohr erhältlich.

Verbindungsgewinde Außengewinde				Gewindelänge TL	Schlüsselweite	max. Prozessdruck
	SW/AF	M	M14x1,5	12 mm (0,47 in)	22 mm (0,87 in)	Maximaler stati-
Е	E		M20x1,5	14 mm (0,55 in)	27 mm (1,06 in)	scher Prozessdruck für Gewindepro-
Y			M18x1,5	12 mm (0,47 in)	24 mm (0,95 in)	zessanschluss: 1)
	TL	G 2)	G ½" DIN/BSP	15 mm (0,6 in)	27 mm (1,06 in)	400 bar (5802 psi) bei
ML, L	A0019445	NPT	NPT ½"	8 mm (0,32 in)	22 mm (0,87 in)	+400 °C (+752 °F)
■ 17	Zylindrische (links) und konische (rechts) Ausführung					

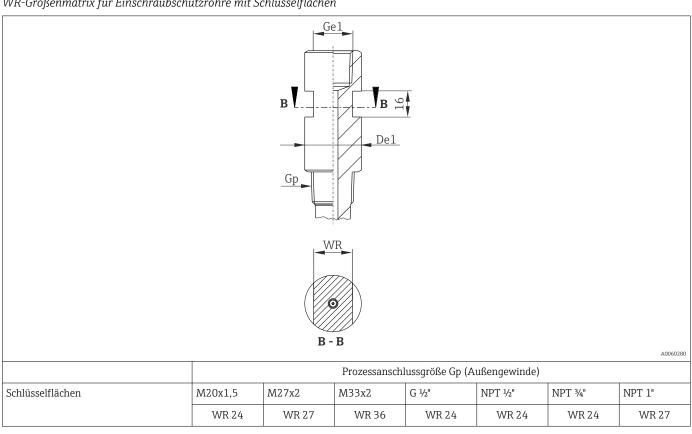
- 1) Maximale Druckangabe nur für das Gewinde. Berechnet ist das Ausreißen des Gewindes unter Berücksichtigung des statischen Drucks. Die Berechnung beruht auf einem vollständig eingeschraubten Gewinde (TL = Gewindelänge)
- 2) DIN ISO 228 BSPP

Prozessanschlüsse mit zylindrischem Außengewinde werden mit Kupfer Dichtungen nach DIN 7603 Form A mit einer Stärke von 1,5 mm ausgeliefert.

Thermometeranschluss		hrung Ge1	L_1	L_2	Norm/Klasse
Ge1	M	M14x1,5			ASME B1.13M/ISO
		M20x1,5			965-1 H6
8		M18x1,5			
L 1 1 2 25 25 (0.98)	G 1)	G 1/2" DIN/BSP] 17 mm (0,67 in)	20 mm (0,79 in)	ISO 228-1 A
	NPT	NPT ½"			ANSI B1.20.1
A0040912					
■ 18 Innengewinde					
M24x1.5 91.0) 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
■ 19 Verschiebbares Außengewinde					

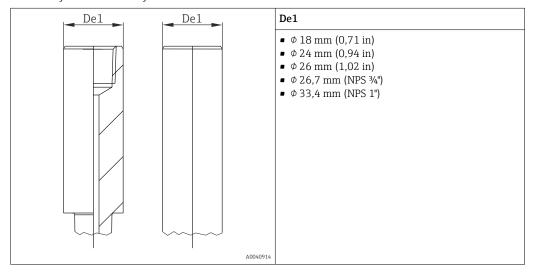

1) DIN ISO 228 BSPP

Prozessanschlüsse Gewinde

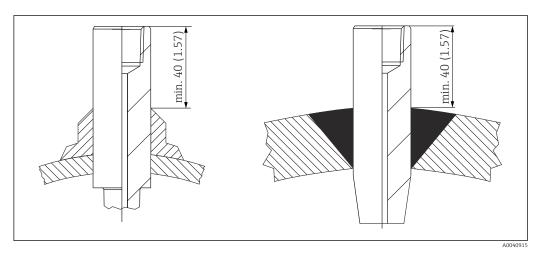

Gewindeprozessanschluss		hrung	Gewindelänge L_Gp	Norm	Max. Prozessdruck
	M	M20x1,5	14 mm (0,55 in)	ASME B1.13M	Maximaler statischer Pro-
		M27x2	16 mm (0,63 in)	ISO 965-1 g6	zessdruck für Gewindepro- zessanschluss: ¹⁾
		M33x2	18 mm (0,71 in)		400 bar (5 802 psi) bei
	G	G ½"	15 mm (0,6 in)	ISO 228-1 A] +400 °C (+752 °F)
	NPT	NPT ½"	20 mm (0,79 in)	ANSI B1.20.1	
U db e db e			L_Gp_e: 8 mm (0,32 in)		
		NPT 3/4"	20 mm (0,79 in)		
A0040916 20 Zylindrische (links) und konische (rechts)			L_Gp_e: 8 mm (0,32 in)		
Ausführung		NPT 1"	25 mm (0,98 in)		
			L_Gp_e: 10 mm (0,39 in)		

1) Maximaler Maximale Druckangabe nur für das Gewinde. Berechnet ist das Ausreißen des Gewindes unter Berücksichtigung des statischen Drucks. Die Berechnung beruht auf einem vollständig eingeschraubten Gewinde

WR-Größenmatrix für Einschraubschutzrohre (mit hexagonalem Schaft)



WR-Größenmatrix für Einschraubschutzrohre mit Schlüsselflächen



Einschweißen, Einschweißstutzen

Einschweißversion/Schweißstutzen

Schweißempfehlung: Der Abstand zwischen der Schweißnaht und dem Ende des Schutzrohrs sollte mindestens 40 mm (1,57 in) betragen. Um eine Verformung des Gewindes zu vermeiden, empfiehlt sich die Verwendung einer Blindverschraubung.

Flansche

i

Die unterschiedlichen Werkstoffe sind in ihrer Festigkeit-Temperatur-Eigenschaft in der DIN EN 1092-1 Tab.18 unter 13E0 und in der JIS B2220:2004 Tab. 5 unter 023b eingruppiert. Die ASME Flansche sind in ASME B16.5-2013 in der Tab. 2-2.2 eingruppiert. Die Umrechung von Zoll-Einheiten in metrische Einheiten (in – mm) erfolgt mit dem Faktor 25,4. In der ASME-Norm sind die metrischen Angaben auf 0 bzw. 5 gerundet.

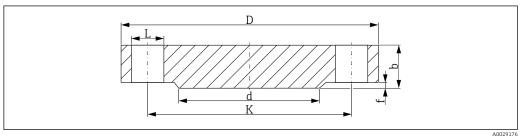
Ausführungen

- DIN-Flansche: Deutsches Institut f
 ür Normung DIN 2527
- EN-Flansche: Europäische Norm DIN EN 1092-1:2002-06 und 2007
- ASME-Flansche: America Society of Mechanical Engineers ASME B16.5-2013
- JIS-Flansche: Japanese Industrial Standard B2220:2004
- HG/T-Flansche: Chinese Chemical Standard HG/T 20592-2009 und 20615-2009

Geometrie der Dichtflächen

Flansche	Dichtfläche	DIN 2526 1)		DIN EN 109	2-1		ASME B16.5	
		Form	Rz (µm)	Form	Rz (µm)	Ra (µm)	Form	Ra (µm)
ohne Dicht- leiste	A0043514	A B	- 40 160	A 2)	12,5 50	3,2 12,5	Flat face (FF)	3,2 6,3 (AARH
mit Dicht- leiste	A0043516	C D E	40 160 40 16	B1 ³⁾ B2	12,5 50 3,2 12,5	3,2 12,5 0,8 3,2	Raised face (RF)	125 250 µin)
Feder	A0043517	F	-	С	3,2 12,5	0,8 3,2	Tongue (T)	3,2
Nut	A0043518	N		D			Groove (G)	
Vorsprung	A0043519	V 13	-	Е	12,5 50	3,2 12,5	Male (M)	3,2
Rücksprung	A0043520	R 13		F			Female (F)	
Vorsprung	U A0043521	V 14	für O-Ringe	Н	3,2 12,5	3,2 12,5	-	-
Rücksprung	U A0043522	R 14		G			-	-
mit Ringnut	A0052680	-	-	-	-	-	Ring-type joint (RTJ)	1,6

- 1)
- Enthalten in DIN 2527 Typisch PN2.5 bis PN40 Typisch ab PN63 2)
- 3)


Flansche nach alter DIN-Norm sind kompatibel zur neuen DIN EN 1092-1. Druckstufenänderung: Alte DIN-Normen PN64 \rightarrow DIN EN 1092-1 PN63.

Dichtleistenhöhe 1)

Norm	Flansche	Dichtleistenhöhe f	Toleranz
DIN EN 1092-1:2002-06	alle Typen	2 (0,08)	0
DIN EN 1092-1:2007	≤ DN 32		-1 (-0,04)
	> DN 32 bis DN 250	3 (0,12)	0 -2 (-0,08)
	> DN 250 bis DN 500	4 (0,16)	0 -3 (-0,12)
	> DN 500	5 (0,19)	0 -4 (-0,16)
ASME B16.5 - 2013	≤ Class 300	1,6 (0,06)	±0,75 (±0,03)
	≥ Class 600	6,4 (0,25)	0,5 (0,02)
JIS B2220:2004	< DN 20	1,5 (0,06) 0	-
	> DN 20 bis DN 50	2 (0,08)	
	> DN 50	3 (0,12) 0	

1) Maßangaben in mm (in)

EN-Flansche (DIN EN 1092-1)

- 21 Dichtleiste B1
- L
- Bohrungsdurchmesser Durchmesser der Dichtleiste
- K Lochkreisdurchmesser
- D Flanschdurchmesser
- b Gesamtdicke des Flansches
- Dichtleistenhöhe (generell 2 mm (0,08 in)

PN16 1)

DN	D	b	K	d	L	ca. kg (lbs)
25	115 (4,53)	18 (0,71)	85 (3,35)	68 (2,68)	4xØ14 (0,55)	1,50 (3,31)
32	140 (5,51)	18 (0,71)	100 (3,94)	78 (3,07)	4xØ18 (0,71)	2,00 (4,41)
40	150 (5,91)	18 (0,71)	110 (4,33)	88 (3,46)	4xØ18 (0,71)	2,50 (5,51)
50	165 (6,5)	18 (0,71)	125 (4,92)	102 (4,02)	4xØ18 (0,71)	2,90 (6,39)
65	185 (7,28)	18 (0,71)	145 (5,71)	122 (4,80)	8xØ18 (0,71)	3,50 (7,72)
80	200 (7,87)	20 (0,79)	160 (6,30)	138 (5,43)	8xØ18 (0,71)	4,50 (9,92)
100	220 (8,66)	20 (0,79)	180 (7,09)	158 (6,22)	8xØ18 (0,71)	5,50 (12,13)
125	250 (9,84)	22 (0,87)	210 (8,27)	188 (7,40)	8xØ18 (0,71)	8,00 (17,64)
150	285 (11,2)	22 (0,87)	240 (9,45)	212 (8,35)	8xØ22 (0,87)	10,5 (23,15)
200	340 (13,4)	24 (0,94)	295 (11,6)	268 (10,6)	12xØ22 (0,87)	16,5 (36,38)

DN	D	b	K	d	L	ca. kg (lbs)
250	405 (15,9)	26 (1,02)	355 (14,0)	320 (12,6)	12xØ26 (1,02)	25,0 (55,13)
300	460 (18,1)	28 (1,10)	410 (16,1)	378 (14,9)	12xØ26 (1,02)	35,0 (77,18)

1) Die Maße in den nachfolgenden Tabellen sind, wenn nicht anders angegeben, in mm (in)

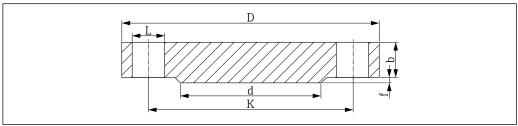
PN25

DN	D	b	K	d	L	ca. kg (lbs)
25	115 (4,53)	18 (0,71)	85 (3,35)	68 (2,68)	4xØ14 (0,55)	1,50 (3,31)
32	140 (5,51)	18 (0,71)	100 (3,94)	78 (3,07)	4xØ18 (0,71)	2,00 (4,41)
40	150 (5,91)	18 (0,71)	110 (4,33)	88 (3,46)	4xØ18 (0,71)	2,50 (5,51)
50	165 (6,5)	20 (0,79)	125 (4,92)	102 (4,02)	4xØ18 (0,71)	3,00 (6,62)
65	185 (7,28)	22 (0,87)	145 (5,71)	122 (4,80)	8xØ18 (0,71)	4,50 (9,92)
80	200 (7,87)	24 (0,94)	160 (6,30)	138 (5,43)	8xØ18 (0,71)	5,50 (12,13)
100	235 (9,25)	24 (0,94)	190 (7,48)	162 (6,38)	8xØ22 (0,87)	7,50 (16,54)
125	270 (10,6)	26 (1,02)	220 (8,66)	188 (7,40)	8xØ26 (1,02)	11,0 (24,26)
150	300 (11,8)	28 (1,10)	250 (9,84)	218 (8,58)	8xØ26 (1,02)	14,5 (31,97)
200	360 (14,2)	30 (1,18)	310 (12,2)	278 (10,9)	12xØ26 (1,02)	22,5 (49,61)
250	425 (16,7)	32 (1,26)	370 (14,6)	335 (13,2)	12xØ30 (1,18)	33,5 (73,9)
300	485 (19,1)	34 (1,34)	430 (16,9)	395 (15,6)	16xØ30 (1,18)	46,5 (102,5)

PN40

DN	D	b	К	d	L	ca. kg (lbs)
15	95 (3,74)	16 (0,55)	65 (2,56)	45 (1,77)	4xØ14 (0,55)	0,81 (1,8)
25	115 (4,53)	18 (0,71)	85 (3,35)	68 (2,68)	4xØ14 (0,55)	1,50 (3,31)
32	140 (5,51)	18 (0,71)	100 (3,94)	78 (3,07)	4xØ18 (0,71)	2,00 (4,41)
40	150 (5,91)	18 (0,71)	110 (4,33)	88 (3,46)	4xØ18 (0,71)	2,50 (5,51)
50	165 (6,5)	20 (0,79)	125 (4,92)	102 (4,02)	4xØ18 (0,71)	3,00 (6,62)
65	185 (7,28)	22 (0,87)	145 (5,71)	122 (4,80)	8xØ18 (0,71)	4,50 (9,92)
80	200 (7,87)	24 (0,94)	160 (6,30)	138 (5,43)	8xØ18 (0,71)	5,50 (12,13)
100	235 (9,25)	24 (0,94)	190 (7,48)	162 (6,38)	8xØ22 (0,87)	7,50 (16,54)
125	270 (10,6)	26 (1,02)	220 (8,66)	188 (7,40)	8xØ26 (1,02)	11,0 (24,26)
150	300 (11,8)	28 (1,10)	250 (9,84)	218 (8,58)	8xØ26 (1,02)	14,5 (31,97)
200	375 (14,8)	36 (1,42)	320 (12,6)	285 (11,2)	12xØ30 (1,18)	29,0 (63,95)
250	450 (17,7)	38 (1,50)	385 (15,2)	345 (13,6)	12xØ33 (1,30)	44,5 (98,12)
300	515 (20,3)	42 (1,65)	450 (17,7)	410 (16,1)	16xØ33 (1,30)	64,0 (141,1)

PN63


DN	D	b	K	d	L	ca. kg (lbs)
25	140 (5,51)	24 (0,94)	100 (3,94)	68 (2,68)	4xØ18 (0,71)	2,50 (5,51)
32	155 (6,10)	24 (0,94)	110 (4,33)	78 (3,07)	4xØ22 (0,87)	3,50 (7,72)
40	170 (6,69)	26 (1,02)	125 (4,92)	88 (3,46)	4xØ22 (0,87)	4,50 (9,92)
50	180 (7,09)	26 (1,02)	135 (5,31)	102 (4,02)	4xØ22 (0,87)	5,00 (11,03)
65	205 (8,07)	26 (1,02)	160 (6,30)	122 (4,80)	8xØ22 (0,87)	6,00 (13,23)

DN	D	b	K	d	L	ca. kg (lbs)
80	215 (8,46)	28 (1,10)	170 (6,69)	138 (5,43)	8xØ22 (0,87)	7,50 (16,54)
100	250 (9,84)	30 (1,18)	200 (7,87)	162 (6,38)	8xØ26 (1,02)	10,5 (23,15)
125	295 (11,6)	34 (1,34)	240 (9,45)	188 (7,40)	8xØ30 (1,18)	16,5 (36,38)
150	345 (13,6)	36 (1,42)	280 (11,0)	218 (8,58)	8xø33 (1,30)	24,5 (54,02)
200	415 (16,3)	42 (1,65)	345 (13,6)	285 (11,2)	12xØ36 (1,42)	40,5 (89,3)
250	470 (18,5)	46 (1,81)	400 (15,7)	345 (13,6)	12xØ36 (1,42)	58,0 (127,9)
300	530 (20,9)	52 (2,05)	460 (18,1)	410 (16,1)	16xØ36 (1,42)	83,5 (184,1)

PN100

DN	D	b	K	d	L	ca. kg (lbs)
25	140 (5,51)	24 (0,94)	100 (3,94)	68 (2,68)	4xØ18 (0,71)	2,50 (5,51)
32	155 (6,10)	24 (0,94)	110 (4,33)	78 (3,07)	4xØ22 (0,87)	3,50 (7,72)
40	170 (6,69)	26 (1,02)	125 (4,92)	88 (3,46)	4xØ22 (0,87)	4,50 (9,92)
50	195 (7,68)	28 (1,10)	145 (5,71)	102 (4,02)	4xØ26 (1,02)	6,00 (13,23)
65	220 (8,66)	30 (1,18)	170 (6,69)	122 (4,80)	8xØ26 (1,02)	8,00 (17,64)
80	230 (9,06)	32 (1,26)	180 (7,09)	138 (5,43)	8xØ26 (1,02)	9,50 (20,95)
100	265 (10,4)	36 (1,42)	210 (8,27)	162 (6,38)	8xØ30 (1,18)	14,0 (30,87)
125	315 (12,4)	40 (1,57)	250 (9,84)	188 (7,40)	8xØ33 (1,30)	22,5 (49,61)
150	355 (14,0)	44 (1,73)	290 (11,4)	218 (8,58)	12xØ33 (1,30)	30,5 (67,25)
200	430 (16,9)	52 (2,05)	360 (14,2)	285 (11,2)	12xØ36 (1,42)	54,5 (120,2)
250	505 (19,9)	60 (2,36)	430 (16,9)	345 (13,6)	12xØ39 (1,54)	87,5 (192,9)
300	585 (23,0)	68 (2,68)	500 (19,7)	410 (16,1)	16xØ42 (1,65)	131,5 (289,9)

ASME-Flansche (ASME B16.5-2013)

A0029175

■ 22 Dichtleiste RF

- Bohrungsdurchmesser
- Durchmesser der Dichtleiste
- Κ Lochkreisdurchmesser
- D Flanschdurchmesser
- Gesamtdicke des Flansches
- Dichtleistenhöhe Class 150/300: 1,6 mm (0,06 in) bzw. ab Class 600: 6,4 mm (0,25 in)

Oberflächenbeschaffenheit der Dichtfläche Ra \leq 3,2 ... 6,3 µm (126 ... 248 µin).

Class 150 1)

DN	D	b	K	d	L	ca. kg (lbs)
1"	108,0 (4,25)	14,2 (0,56)	79,2 (3,12)	50,8 (2,00)	4xØ15,7 (0,62)	0,86 (1,9)
11/4"	117,3 (4,62)	15,7 (0,62)	88,9 (3,50)	63,5 (2,50)	4xØ15,7 (0,62)	1,17 (2,58)

DN	D	b	K	d	L	ca. kg (lbs)
1½"	127,0 (5,00)	17,5 (0,69)	98,6 (3,88)	73,2 (2,88)	4xØ15,7 (0,62)	1,53 (3,37)
2"	152,4 (6,00)	19,1 (0,75)	120,7 (4,75)	91,9 (3,62)	4xØ19,1 (0,75)	2,42 (5,34)
2 1/2"	177,8 (7,00)	22,4 (0,88)	139,7 (5,50)	104,6 (4,12)	4xØ19,1 (0,75)	3,94 (8,69)
3"	190,5 (7,50)	23,9 (0,94)	152,4 (6,00)	127,0 (5,00)	4xØ19,1 (0,75)	4,93 (10,87)
31/2"	215,9 (8,50)	23,9 (0,94)	177,8 (7,00)	139,7 (5,50)	8xØ19,1 (0,75)	6,17 (13,60)
4"	228,6 (9,00)	23,9 (0,94)	190,5 (7,50)	157,2 (6,19)	8xØ19,1 (0,75)	7,00 (15,44)
5"	254,0 (10,0)	23,9 (0,94)	215,9 (8,50)	185,7 (7,31)	8xØ22,4 (0,88)	8,63 (19,03)
6"	279,4 (11,0)	25,4 (1,00)	241,3 (9,50)	215,9 (8,50)	8xØ22,4 (0,88)	11,3 (24,92)
8"	342,9 (13,5)	28,4 (1,12)	298,5 (11,8)	269,7 (10,6)	8xØ22,4 (0,88)	19,6 (43,22)
10"	406,4 (16,0)	30,2 (1,19)	362,0 (14,3)	323,8 (12,7)	12xØ25,4 (1,00)	28,8 (63,50)

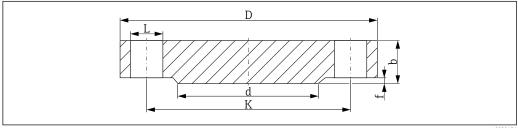
¹⁾ Die Maße in den nachfolgenden Tabellen sind, wenn nicht anders angegeben, in mm (in)

Class 300

DN	D	b	K	d	L	ca. kg (lbs)
1"	124,0 (4,88)	17,5 (0,69)	88,9 (3,50)	50,8 (2,00)	4xØ19,1 (0,75)	1,39 (3,06)
11/4"	133,4 (5,25)	19,1 (0,75)	98,6 (3,88)	63,5 (2,50)	4xØ19,1 (0,75)	1,79 (3,95)
1½"	155,4 (6,12)	20,6 (0,81)	114,3 (4,50)	73,2 (2,88)	4xØ22,4 (0,88)	2,66 (5,87)
2"	165,1 (6,50)	22,4 (0,88)	127,0 (5,00)	91,9 (3,62)	8xØ19,1 (0,75)	3,18 (7,01)
21/2"	190,5 (7,50)	25,4 (1,00)	149,4 (5,88)	104,6 (4,12)	8xØ22,4 (0,88)	4,85 (10,69)
3"	209,5 (8,25)	28,4 (1,12)	168,1 (6,62)	127,0 (5,00)	8xØ22,4 (0,88)	6,81 (15,02)
31/2"	228,6 (9,00)	30,2 (1,19)	184,2 (7,25)	139,7 (5,50)	8xØ22,4 (0,88)	8,71 (19,21)
4"	254,0 (10,0)	31,8 (1,25)	200,2 (7,88)	157,2 (6,19)	8xØ22,4 (0,88)	11,5 (25,36)
5"	279,4 (11,0)	35,1 (1,38)	235,0 (9,25)	185,7 (7,31)	8xØ22,4 (0,88)	15,6 (34,4)
6"	317,5 (12,5)	36,6 (1,44)	269,7 (10,6)	215,9 (8,50)	12xØ22,4 (0,88)	20,9 (46,08)
8"	381,0 (15,0)	41,1 (1,62)	330,2 (13,0)	269,7 (10,6)	12xØ25,4 (1,00)	34,3 (75,63)
10"	444,5 (17,5)	47,8 (1,88)	387,4 (15,3)	323,8 (12,7)	16xØ28,4 (1,12)	53,3 (117,5)

Class 600

DN	D	b	K	d	L	ca. kg (lbs)
1"	124,0 (4,88)	17,5 (0,69)	88,9 (3,50)	50,8 (2,00)	4xØ19,1 (0,75)	1,60 (3,53)
11/4"	133,4 (5,25)	20,6 (0,81)	98,6 (3,88)	63,5 (2,50)	4xØ19,1 (0,75)	2,23 (4,92)
1½"	155,4 (6,12)	22,4 (0,88)	114,3 (4,50)	73,2 (2,88)	4xØ22,4 (0,88)	3,25 (7,17)
2"	165,1 (6,50)	25,4 (1,00)	127,0 (5,00)	91,9 (3,62)	8xØ19,1 (0,75)	4,15 (9,15)
21/2"	190,5 (7,50)	28,4 (1,12)	149,4 (5,88)	104,6 (4,12)	8xØ22,4 (0,88)	6,13 (13,52)
3"	209,5 (8,25)	31,8 (1,25)	168,1 (6,62)	127,0 (5,00)	8xØ22,4 (0,88)	8,44 (18,61)
31/2"	228,6 (9,00)	35,1 (1,38)	184,2 (7,25)	139,7 (5,50)	8xØ25,4 (1,00)	11,0 (24,26)
4"	273,1 (10,8)	38,1 (1,50)	215,9 (8,50)	157,2 (6,19)	8xØ25,4 (1,00)	17,3 (38,15)
5"	330,2 (13,0)	44,5 (1,75)	266,7 (10,5)	185,7 (7,31)	8xØ28,4 (1,12)	29,4 (64,83)
6"	355,6 (14,0)	47,8 (1,88)	292,1 (11,5)	215,9 (8,50)	12xØ28,4 (1,12)	36,1 (79,6)
8"	419,1 (16,5)	55,6 (2,19)	349,3 (13,8)	269,7 (10,6)	12xØ31,8 (1,25)	58,9 (129,9)
10"	508,0 (20,0)	63,5 (2,50)	431,8 (17,0)	323,8 (12,7)	16xØ35,1 (1,38)	97,5 (214,9)


Class 900

DN	D	b	K	d	L	ca. kg (lbs)
1"	149,4 (5,88)	28,4 (1,12)	101,6 (4,0)	50,8 (2,00)	4xØ25,4 (1,00)	3,57 (7,87)
11/4"	158,8 (6,25)	28,4 (1,12)	111,3 (4,38)	63,5 (2,50)	4xØ25,4 (1,00)	4,14 (9,13)
1½"	177,8 (7,0)	31,8 (1,25)	124,0 (4,88)	73,2 (2,88)	4xØ28,4 (1,12)	5,75 (12,68)
2"	215,9 (8,50)	38,1 (1,50)	165,1 (6,50)	91,9 (3,62)	8xØ25,4 (1,00)	10,1 (22,27)
21/2"	244,4 (9,62)	41,1 (1,62)	190,5 (7,50)	104,6 (4,12)	8xØ28,4 (1,12)	14,0 (30,87)
3"	241,3 (9,50)	38,1 (1,50)	190,5 (7,50)	127,0 (5,00)	8xØ25,4 (1,00)	13,1 (28,89)
4"	292,1 (11,50)	44,5 (1,75)	235,0 (9,25)	157,2 (6,19)	8xØ31,8 (1,25)	26,9 (59,31)
5"	349,3 (13,8)	50,8 (2,0)	279,4 (11,0)	185,7 (7,31)	8xØ35,1 (1,38)	36,5 (80,48)
6"	381,0 (15,0)	55,6 (2,19)	317,5 (12,5)	215,9 (8,50)	12xØ31,8 (1,25)	47,4 (104,5)
8"	469,9 (18,5)	63,5 (2,50)	393,7 (15,5)	269,7 (10,6)	12xØ38,1 (1,50)	82,5 (181,9)
10"	546,1 (21,50)	69,9 (2,75)	469,0 (18,5)	323,8 (12,7)	16xØ38,1 (1,50)	122 (269,0)

Class 1500

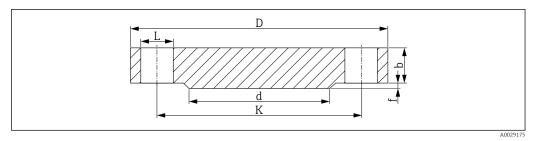
DN	D	b	K	d	L	ca. kg (lbs)
1"	149,4 (5,88)	28,4 (1,12)	101,6 (4,0)	50,8 (2,00)	4xØ25,4 (1,00)	3,57 (7,87)
11/4"	158,8 (6,25)	28,4 (1,12)	111,3 (4,38)	63,5 (2,50)	4xØ25,4 (1,00)	4,14 (9,13)
1½"	177,8 (7,0)	31,8 (1,25)	124,0 (4,88)	73,2 (2,88)	4xØ28,4 (1,12)	5,75 (12,68)
2"	215,9 (8,50)	38,1 (1,50)	165,1 (6,50)	91,9 (3,62)	8xØ25,4 (1,00)	10,1 (22,27)
21/2"	244,4 (9,62)	41,1 (1,62)	190,5 (7,50)	104,6 (4,12)	8xØ28,4 (1,12)	14,0 (30,87)
3"	266,7 (10,5)	47,8 (1,88)	203,2 (8,00)	127,0 (5,00)	8xØ31,8 (1,25)	19,1 (42,12)
4"	311,2 (12,3)	53,8 (2,12)	241,3 (9,50)	157,2 (6,19)	8xØ35,1 (1,38)	29,9 (65,93)
5"	374,7 (14,8)	73,2 (2,88)	292,1 (11,5)	185,7 (7,31)	8xØ41,1 (1,62)	58,4 (128,8)
6"	393,7 (15,50)	82,6 (3,25)	317,5 (12,5)	215,9 (8,50)	12xØ38,1 (1,50)	71,8 (158,3)
8"	482,6 (19,0)	91,9 (3,62)	393,7 (15,5)	269,7 (10,6)	12xØ44,5 (1,75)	122 (269,0)
10"	584,2 (23,0)	108,0 (4,25)	482,6 (19,0)	323,8 (12,7)	12xØ50,8 (2,00)	210 (463,0)

HG/T-Flansche (HG/T 20592-2009)

A0029176

■ 23 Dichtleiste

- L Bohrungs durch messer
- Durchmesser der Dichtleiste d
- Lochkreisdurchmesser K
- Flanschdurchmesser
- Gesamtdicke des Flansches
- Dichtleistenhöhe (generell 2 mm (0,08 in)


PN40

DN	D	b	K	d	L	ca. kg (lbs)
25	115 (4,53)	16 (0,63)	85 (3,35)	68 (2,68)	4xØ14 (0,55)	1,50 (3,31)
40	150 (5,91)	16 (0,63)	110 (4,33)	88 (3,46)	4xØ18 (0,71)	2,50 (5,51)
50	165 (6,5)	18 (0,71)	125 (4,92)	102 (4,02)	4xØ18 (0,71)	3,00 (6,62)

PN63

DN	D	b	К	d	L	ca. kg (lbs)
50	180 (7,09)	24 (0,95)	135 (5,31)	102 (4,02)	4xØ22 (0,87)	5,00 (11,03)

HG/T-Flansche (HG/T 20615-2009)

■ 24 Dichtleiste

- L Bohrungsdurchmesser
- d Durchmesser der Dichtleiste
- K Lochkreisdurchmesser
- D Flanschdurchmesser
- b Gesamtdicke des Flansches
- f Dichtleistenhöhe Class 150/300: 2 mm (0,08 in) bzw. ab Class 600: 7 mm (0,28 in)

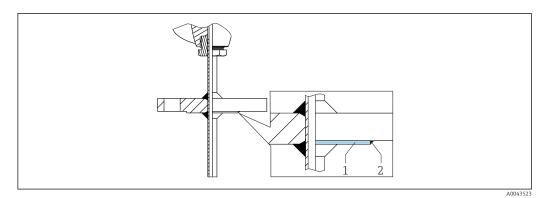
Oberflächenbeschaffenheit der Dichtfläche Ra \leq 3,2 ... 6,3 μm (126 ... 248 μin).

Class 150 1)

DN	D	b	K	d	L	ca. kg (lbs)
1"	110,0 (4,33)	12,7 (0,5)	79,4 (3,13)	50,8 (2,00)	4xØ16 (0,63)	0,86 (1,9)
11/2"	125,0 (4,92)	15,9 (0,63)	98,4 (3,87)	73,0 (2,87)	4xØ16 (0,63)	1,53 (3,37)
2"	150 (5,91)	17,5 (0,69)	120,7 (4,75)	92,1 (3,63)	4xØ18 (0,71)	2,42 (5,34)

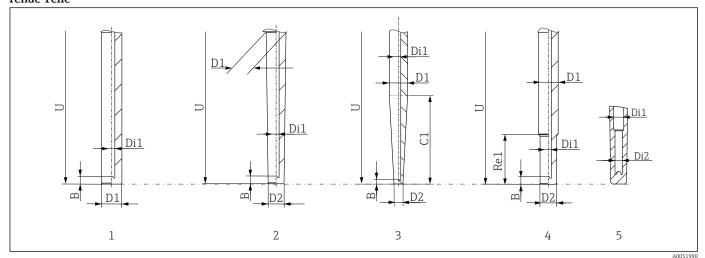
1) Die Maße in den nachfolgenden Tabellen sind, wenn nicht anders angegeben, in mm (in)

Class 300


DN	D	b	K	d	L	ca. kg (lbs)
1"	125,0 (4,92)	15,9 (0,63)	88,9 (3,50)	50,8 (2,00)	4xØ18 (0,71)	1,39 (3,06)
11/2"	155 (6,10)	19,1 (0,75)	114,3 (4,50)	73 (2,87)	4xØ22 (0,87)	2,66 (5,87)
2"	165 (6,50)	20,7 (0,82)	127,0 (5,00)	92,1 (3,63)	8xØ18 (0,71)	3,18 (7,01)

Class 600

DN	D	b	K	d	L	ca. kg (lbs)
2"	165 (6,50)	25,4 (1,00)	127,0 (5,00)	92,1 (3,63)	8xØ18 (0,71)	4,15 (9,15)


Schutzrohrmaterial auf Nickelbasis mit Flansch

Werden die Schutzrohrmaterialien Alloy600 und Alloy C276 mit einem Flansch-Prozessanschluss kombiniert, ist aus Kostengründen nicht der komplette Flansch aus der Legierung gefertigt, sondern nur die Dichtleiste. Diese ist auf einen Flansch mit dem Grundmaterial 316L aufgeschweißt. Kennzeichnung im Bestellcode mit der Werkstoffbezeichnung Alloy600 > 316L oder Alloy C276 > 316L.

- 1 Dichtleiste
- 2 Schweißung

Geometrie mediumberührende Teile

- 1 Gerade (komplette Länge U)
- 2 Verjüngt (komplette Länge U)
- 3 Verjüngt (über Länge C1)
- 4 Gestuft, Re1 = 63,5 mm (2,5 in)
- 5 Gestufter Bohrdurchmesser (Di1/Di2)

Messeinsätze

Für das Gerät sind je nach Konfiguration die Messeinsätze iTHERM TS111 oder TS211 mit unterschiedlichen RTD- und TC-Sensoren verfügbar.

Sensortyp RTD ¹⁾	Pt100 (TF), Basis Dünn- schicht	Pt100 (TF), Standard Dünnschicht	Pt100 (TF), iTHERM Strong- Sens	Pt100 (TF), iTHERM Quick- Sens ²⁾	Pt100 (WW), I	Drahtgewickelt
Sensorbauart; Schaltungsart	1x Pt100, 3- oder 4-Leiter	1x Pt100, 3- oder 4-Leiter, mineral- isoliert	1x Pt100, 3- oder 4-Leiter, mineral- isoliert	1x Pt100, 3- oder 4-Leiter • ø6 mm (0,24 in), mineralisoliert • ø3 mm (0,12 in), teflonisoliert	1x Pt100, 3- oder 4-Leiter, mineralisoliert	2x Pt100, 3-Lei- ter, mineraliso- liert

Vibrationsfes- tigkeit der Messeinsatz- spitze	≤ 3g	≤ 4g	erhöhte Vibrations- festigkeit 60g	■ ø3 mm (0,12 in) ≤ 3g ■ ø6 mm (0,24 in) ≤ 60g	≤ 3g
Messbereich; Genauigkeits- klasse	−50 +200 °C (−58 +392 °F), Klasse A oder AA	–50 +400 °C (–58 +752 °F), Klasse A oder AA	–50 +500 °C (–58 +932 °F), Klasse A oder AA	–50 +200 °C (–58 +392 °F), Klasse A oder AA	−200 +600 °C (−328 +1112 °F), Klasse A oder AA
Durchmesser	ø 3 mm (0,12 in) ø 6 mm (0,24 in)	ø 3 mm (0,12 in) ø 6 mm (0,24 in)	ø 6 mm (0,24 in)		9 3 mm (0,12 in) 9 6 mm (0,24 in)

- 1) Auswahl abhängig von Produkt und Konfiguration
- Empfohlen für Eintauchlängen U < 70 mm (2,76 in) 2)

Sensortyp TC 1)	Тур К	Тур Ј	Typ N
Bauform des Sensors	Mineralisoliert, mit Alloy600- Mantelleitung	Mineralisoliert, mit Edelstahl- Mantelleitung	
Vibrationsfestigkeit der Messeinsatzspitze	≤ 3g		
Messbereich	-40 +1 100 °C (−40 +2 012 °F)	-40 +750 °C (−40 +1382 °F)	-40 +1 100 °C (-40 +2 012 °F)
Anschlussart/Typ		Geerdet oder ungeerdet	
Temperaturempfindliche Länge	Messeinsatzlänge		
Durchmesser	ø 3 mm (0,12 in) ø 6 mm (0,24 in)		

1) Auswahl abhängig von Produkt und Konfiguration

Weiterführende Informationen zum verwendeten Messeinsatz iTHERM TS111 und TS211 mit erhöhter Vibrationsfestigkeit und schnellansprechendem Sensor siehe Technische Information (TI01014T und TI01411T).

Aktuell lieferbare Ersatzteile zum Produkt siehe online unter: http://www.products.endress.com/spareparts consumables.

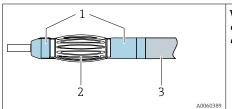
- Entsprechende Produktwurzel auswählen.
 - Bei der Bestellung von Ersatzteilen immer die Seriennummer des Gerätes angeben.

Mit Hilfe der Seriennummer wird die Einstecklänge IL automatisch berechnet.

iTHERM QuickSleeve

Die Reduzierung des Luftspalts zwischen Schutzrohr und Messeinsatz hat den größten Einfluss auf eine verbesserte Ansprechzeit des Thermometers. Die Optimierung der Bohrung im Vollmaterial-Schutzrohr ist hierfür die beste Möglichkeit, z.B. Bohrungsdurchmesser 6,1 mm (0,24 in) bei Verwendung eines 6 mm (0,24 in) Messeinsatzes.

Ist es nicht möglich die Bohrung entsprechend anzupassen, z.B. bei Verwendung vorhandener Schutzrohre oder Vorgaben zur Verwendung von Standardbohrungen, besteht die Möglichkeit das iTHERM QuickSleeve von Endress+Hauser einzusetzen.


iTHERM QuickSleeve ist ein mechanisches Federbauteil an der Spitze eines Messeinsatzes. Dieses Federbauteil verbessert den Wärmeübergang und verkürzt die Ansprechzeit von einem Vollmaterial-Schutzrohr zum Messeinsatz und letztendlich zum Sensor.

iTHERM QuickSleeve gibt es in zwei Ausführungen beim Einsatz in Vollmaterial-Schutzrohren:

- Für Bohrungsdurchmesser 6,5 mm (0,256 in)
- Für Bohrungsdurchmesser 7 mm (0,28 in)

Konstruktiver Aufbau

Ausführung	Bohrungsdurchmesser 6,5 mm (0,256 in)	Bohrungsdurchmesser 7 mm (0,28 in)
Pt100 iTHERM Quick- Sens, 3 mm (0,12 in)	6 (0.24)	6 (0.24)
	A0057223	A0057224
Pt100, WW und TF, 3 mm (0,12 in)	6 (0.24) 6 (0.24) 3 (0.12)	6 (0.24) 6 (0.24) 7 (0.60) 7 (0.12)

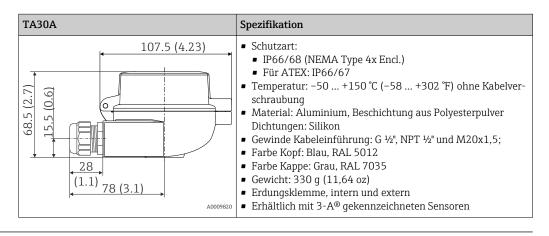
Werkstoffe

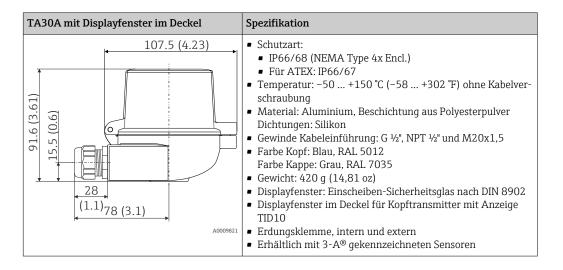
- Buchse (1) und Verstärkungsrohr (3): Edelstahl
- Feder (2): Kupferbeschichtet

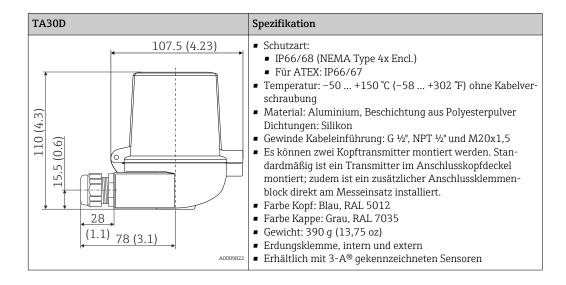
Oberflächenrauigkeit

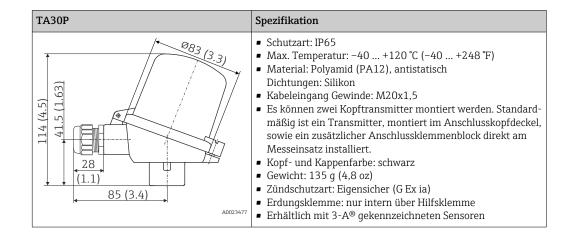
Spezifikationen für mediumsberührende Oberflächen

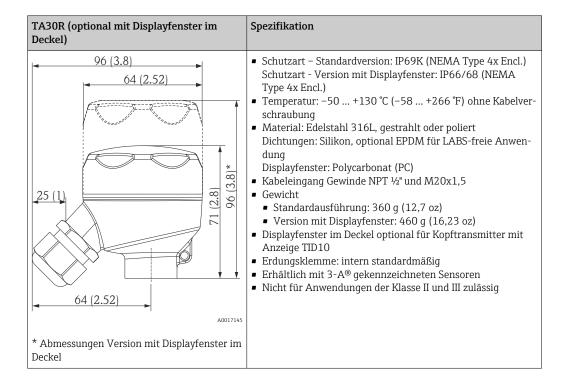
Standardoberfläche	$R_a \le 1.6 \ \mu m$ (63 μin)
Fein geschliffene Oberfläche, poliert	$R_a \le 0.76 \ \mu m \ (30 \ \mu in)$

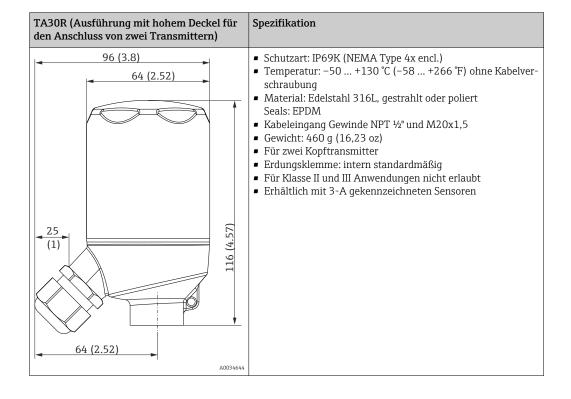

Anschlussköpfe

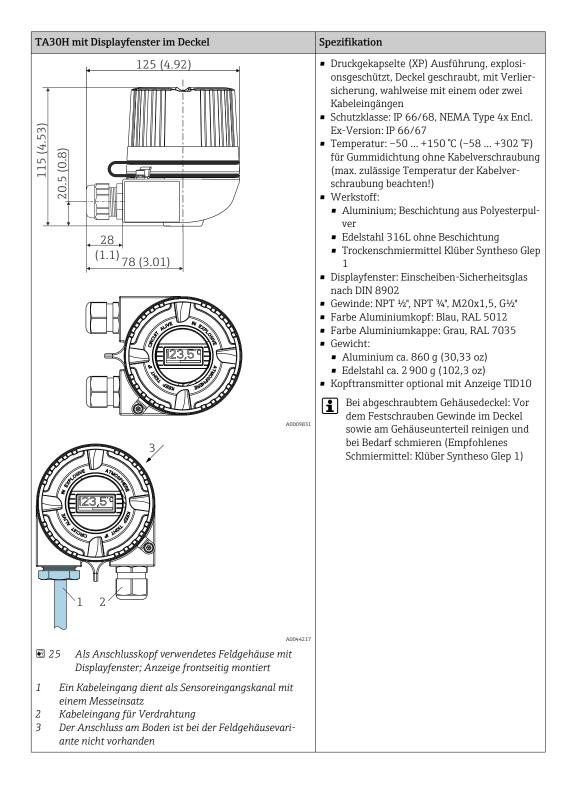

Alle Anschlussköpfe weisen eine interne Geometrie gemäß DIN EN 50446 Form B und einen Thermometeranschluss mit M24x1,5-oder ½" NPT-Gewinde auf. Alle Angaben in mm (in). Die Kabelverschraubungen in den Abbildungen entsprechen exemplarisch M20x1,5- Anschlüssen mit Non-Ex Polyamid Kabelverschraubung. Angaben ohne eingebauten Kopftransmitter. Umgebungstemperaturen mit eingebauten Kopftransmitter siehe Kapitel "Umgebungsbedingungen".

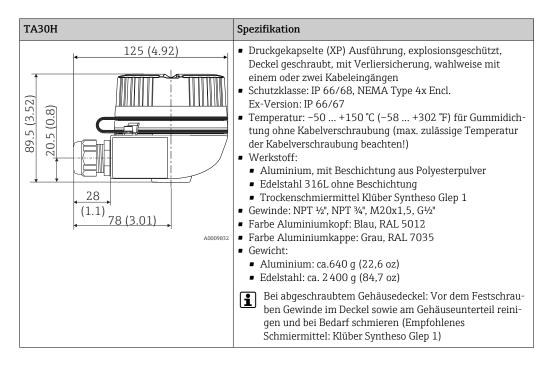

Als Besonderheit bietet Endress+Hauser Anschlussköpfe mit optimaler Zugänglichkeit der Anschlussklemmen für vereinfachte Installation und Wartung.

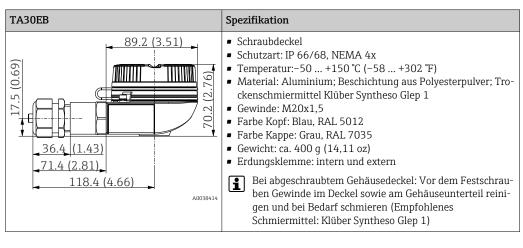


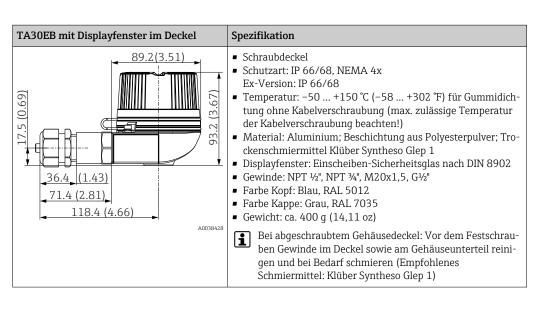

IP 68 = 1,83 m (6 ft), 24 h, mit Kabelverschraubung ohne Kabel (mit Stopfen), Type 6P gemäß NEMA250-2003

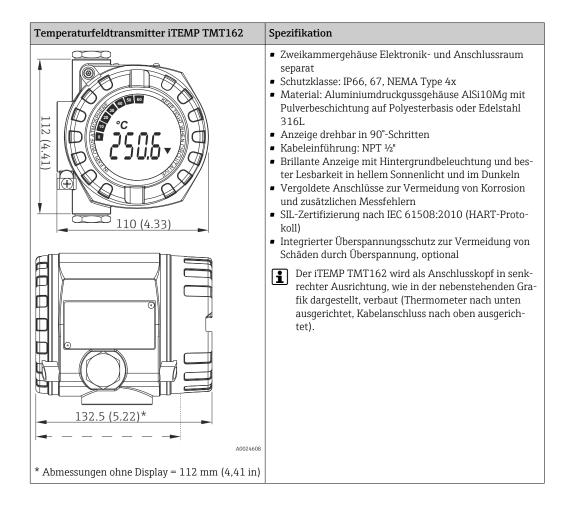


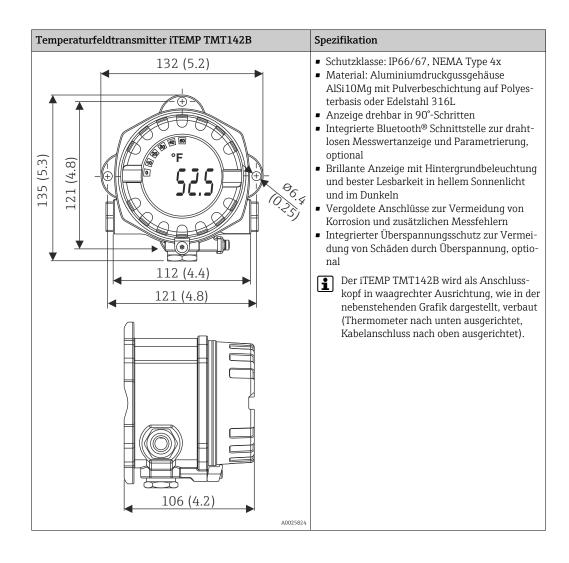












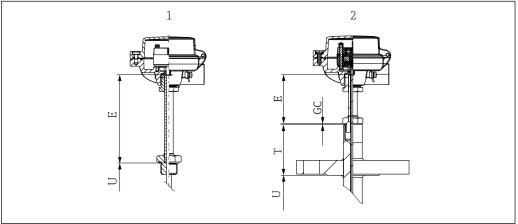
Kabelverschraubungen und Stecker 1)

Тур	Passend für Kabeleinfüh- rung	Schutzart	Temperaturbereich	Geeigneter Kabeldurchmesser
Kabelverschraubung, Polyamid, Blau (Anzeige Ex-i-Schaltung)	NPT ½"	IP68	−30 +95 °C (−22 +203 °F)	7 12 mm (0,27 0,47 in)
Kabelverschraubung, Polyamid	NPT ½", NPT ¾", M20x1,5 (optio- nal 2x Kabelein- führung)		-40 +100 °C (-40 +212 °F)	
Kaberverschraubung, Polyannu	NPT ½", M20x1,5 (optio- nal 2x Kabelein- führung)	IP69K	−20 +95 °C (−4 +203 °F)	5 9 mm (0,19 0,35 in)
Kabelverschraubung für Staub-Ex Bereich, Polyamid	NPT ½", M20x1,5	IP68	−20 +95 °C (−4 +203 °F)	
Kabelverschraubung für Staub-Ex Bereich, Messing vernickelt	M20x1,5	IP68 (NEMA Type 4x)	-20 +130 °C (-4 +266 °F)	
M12 Stecker, 4-polig, 316 (PROFIBUS® PA, Ethernet-APL™, IO-Link®)	NPT ½", M20x1,5	IP67	-40 +105 °C (-40 +221 °F)	-

Тур	Passend für Kabeleinfüh- rung	Schutzart	Temperaturbereich	Geeigneter Kabeldurchmesser
M12 Stecker, 8-polig, 316	M20x1,5	IP67	−30 +90 °C (−22 +194 °F)	-
7/8" Stecker, 4-polig, 316 (FOUNDA- TION™ Fieldbus, PROFIBUS® PA)	NPT ½", M20x1,5	IP67	-40 +105 °C (-40 +221 °F)	-

l) Auswahl abhängig von Produkt und Konfiguration

Für druckfestgekapselte Thermometer werden keine Kabelverschraubungen angeboten.

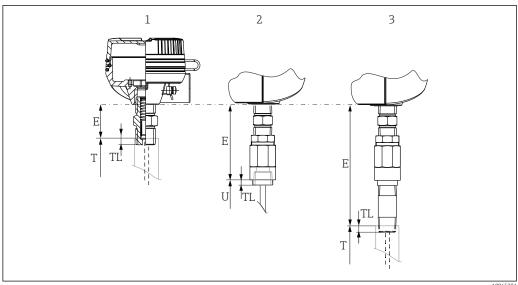

Halsrohr

Das Halsrohr ist das Bauteil zwischen Schutzrohr und Anschlusskopf. Die Bezeichnung der Länge des abnehmbaren Halsrohrs ist E.

Unterschiedliche Ausprägungen des abnehmbaren Halsrohrs sind möglich.

Abnehmbares Halsrohr nach DIN 43772

Das abnehmbare Halsrohr nach DIN hat beidseitig eine Gewindeverbindung. Ist das Thermometer mit Schutzrohr ausgelegt, ist die Verbindung gemäß dem Kapitel 'Vordefinierte Ausführungen' ausgelegt. Ist das Thermometer ohne Schutzrohr ausgelegt, zum Einbau in ein separates Schutzrohr, ist das Gewinde zum Schutzrohranschluss wählbar (Merkmal 50: Prozess-/Schutzrohranschluss)

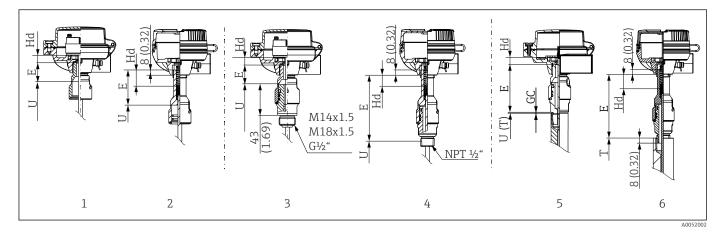


A00520

- 1 Abnehmbares Halsrohr Thermometer ohne Schutzrohr, Messeinsatz TS111
- 2 Abnehmbares Halsrohr Thermometer mit Schutzrohr, Messeinsatz TS111

Abnehmbares Halsrohr als Nippel-Verbindung

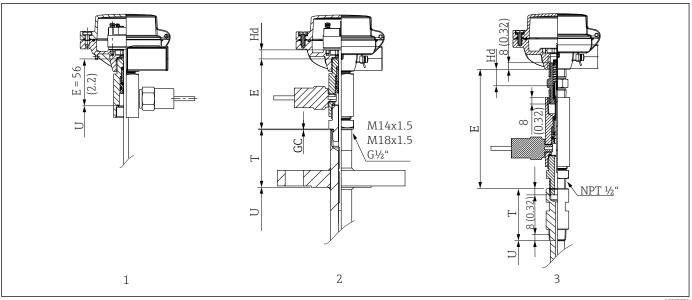
- Das abnehmbare Halsrohr kann als Nippel-Verbindung ausgeführt werden. Die Verbindung ist hierbei immer ein NPT ½"-Gewinde. Der Nippel direkt am Anschlusskopf ist hierbei Teil des Messeinsatzes TS211. Die Länge des Nippels ist nicht variabel, sie beträgt 35 mm (1,38 in) als Standardausführung und 47 mm (1,85 in) als Lamination-Nippel Ausführung für Ex d Anwendungen.
- Für die Nippel-Union Verbindung besteht zum Schutzrohr ein NPT ½"-Innengewinde. Der Nippel direkt am Anschlusskopf ist hierbei Teil des Messeinsatzes TS211. Die Gesamtlänge ist nicht variabel. Sie beträgt 93 mm (3,66 in) als Standardausführung und 105 mm (4,13 in) als Lamination-Nippel Ausführung für Ex d Anwendungen.
- Bei der Nippel-Union-Nippel Verbindung ist der Nippel direkt am Anschlusskopf Teil des Messeinsatzes TS211. Die Gesamtlänge ist nicht variabel. Sie beträgt 142 mm (5,6 in) als Standardausführung und 154 mm (6,06 in) als Ausführung für Ex d Anwendungen. Bei dieser Verbindung ist die Länge des zweiten Nippels auf Wunsch konfigurierbar.



A0045381

- 1 Halsrohr Typ N NPT ½"
- 2 Halsrohr Typ NU NPT ½"-Innengewinde
- 3 Halsrohr Typ NUN NPT ½", die Länge des unteren Nippels ist konfigurierbar

Abnehmbares Halsrohr als QuickNeck

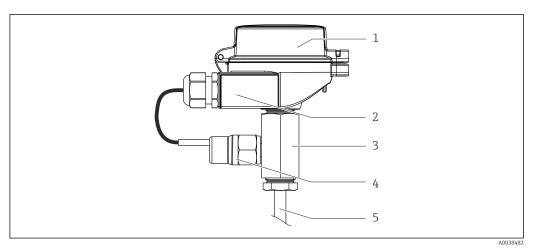

Wird das Thermometer ohne Schutzrohr ausgeführt, ist die Option QuickNeck (obere Hälfte) oder QuickNeck auszuwählen *(Merkmal 30: Thermometeraufbau)*. Die Länge des abnehmbaren Halsrohrs ist hier durch das Design vorgegeben.

- 1 iTHERM QuickNeck obere Hälfte zum Einbau in ein bestehendes Schutzrohr mit iTHERM QuickNeck nach DIN Standard
- 2 iTHERM QuickNeck obere Hälfte zum Einbau in ein bestehendes Schutzrohr mit iTHERM QuickNeck nach ASME Standard
- 3 iTHERM QuickNeck komplett zum Einbau in ein bestehendes Schutzrohr nach DIN Standard
- 4 iTHERM QuickNeck komplett zum Einbau in ein bestehendes Schutzrohr nach ASME Standard
- iTHERM QuickNeck eingebaut im Schutzrohr nach DIN Standard
- 6 iTHERM QuickNeck eingebaut im Schutzrohr nach ASME Standard

Abnehmbares Halsrohr als 'zweite Prozessbarriere'

Das abnehmbare Halsrohr kann als zweite Prozessbarriere ausgeführt werden. Die Länge des abnehmbaren Halsrohres ist hier durch das Design vorgegeben.

A005202


- 1 Halsrohr mit zweiter Prozessbarriere ohne Schutzrohr
- 2 Halsrohr mit zweiter Prozessbarriere mit Schutzrohr nach DIN Standard
- 3 Halsrohr mit zweiter Prozessbarriere mit Schutzrohr nach ASME Standard

Halsrohr mit zweiter Prozessbarriere

Als Sonderausführung des Halsrohrs steht eine zweite Prozessbarriere zur Verfügung, die als optionale Komponente zwischen das Schutzrohr und den Anschlusskopf gesetzt werden kann. Sollte es zu einem Ausfall des Schutzrohrs kommen, gelangt kein Prozessmedium in den Anschlusskopf und die Verschaltung. Das Prozessmedium wird im Schutzrohr eingeschlossen. Ein Druckschalter gibt ein Signal aus, wenn der Druck in der Komponente mit der zweiten Prozessdichtung ansteigen sollte, um das Wartungspersonal auf eine Gefahrensituation aufmerksam zu machen. Der Messbetrieb kann für eine kurze Übergangszeit, die abhängig von Druck, Temperatur und Prozessmedium ist, fortgesetzt werden, bis das Schutzrohr ausgetauscht wird.

Transmitter-Verschaltung:

- Es wird ein Endress+Hauser Temperaturtransmitter iTEMP TMT82 mit zwei Kanälen und HART®-Protokoll eingesetzt. Ein Kanal konvertiert die Signale des Temperatursensors in ein 4 ... 20 mA-Signal. Der zweite Kanal nutzt die Sensorbrucherkennung in der Konfiguration des Thermoelementes und überträgt diese Störungsinformationen über das HART®-Protokoll, wenn der Druckschalter auslöst. Andere Konfigurationen sind auf Anfrage machbar.
- Es wird ein Endress+Hauser Temperaturtransmitter iTEMP TMT86 mit zwei Kanälen und PROFI-NET® Protokoll eingesetzt. Ein Kanal konvertiert die Signale des Temperatursensors für die PROFI-NET® Kommunikation. Der zweite Kanal ist für die zweite Prozessbarriere konfiguriert und überträgt die Störungsinformation via PROFINET® Protokoll, wenn der Druckschalter auslöst.

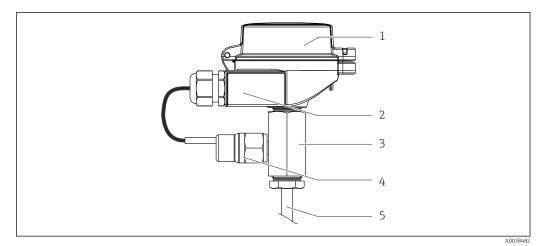
■ 26 Halsrohr mit zweiter Prozessbarriere

- Anschlusskopf mit eingebautem Temperaturtransmitter
- 2 Gehäuse mit doppelter Kabeleinführung. Für den Eingang des Druckschalters ist eine passende Kabelverschraubung verbaut. Der zweite Eingang ist nicht belegt.
- 3 Zweite Prozessharriere
- 4 Installierter Druckschalter
- 5 Oberer Teil des Schutzrohrs

Maximaler Druck	200 bar (2 900 psi)
Schaltpunkt	3,5 bar (50,8 psi)±1 bar (±14,5 psi)
Umgebungstemperaturbe- reich	-20 +80 °C (−4 +176 °F)
Prozesstemperaturbereich	Bis +400 °C (+752 °F), mindestens erforderliche Halsrohrlänge T = 100 mm (3,94 in)
Dichtungsmaterial	FKM

Die deutlich geringere Druckfestigkeit des Schutzrohres und des Prozessanschlusses sowie die Beständigkeit des Dichtungsmaterials gegenüber dem Prozessmedium bei der Auslegung beachten!

Das primäre Schutzrohr, dessen Material aus verschiedenen Edelstählen oder Nickelbasis-Werkstoffen gewählt werden kann, stellt die erste Prozessbarriere dar. Die Beständigkeit des Schutzrohrmaterials gegen die Prozessbedingungen ist sicherzustellen. Das Halsrohr stellt die zweite Prozessbarriere dar. Der Prozess wir hier mittels Dichtungen aus FKM gegenüber der Umwelt abgedichtet. Die Beständigkeit des Dichtungsmaterials gegen die Prozessbedingungen ist sicherzustellen.

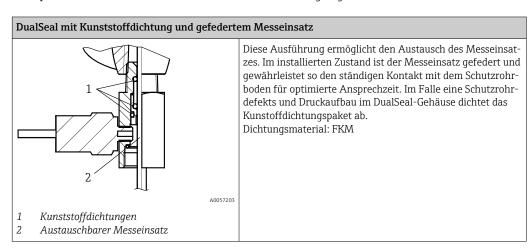

Empfehlung: Aufgrund der Alterung der internen Dichtungen empfehlen wir, die Komponenten der zweiten Prozessbarriere alle 5 Jahre auszutauschen, auch wenn keine Störung im Schutzrohr aufgetreten ist. Im Fall einer Leckage im Schutzrohr müssen die Komponenten der zweiten Prozessbarriere mit dem Schutzrohr zusammen ausgetauscht werden. Wenn der Druck im Halsrohr, aufgrund von Leckage der ersten Prozessbarriere, über den Schaltdruck des Druckschalters ansteigt, sendet der Transmitter über die HART®-Kommunikation eine Fehlermeldung "Sensorbruch" an das Leitsystem.

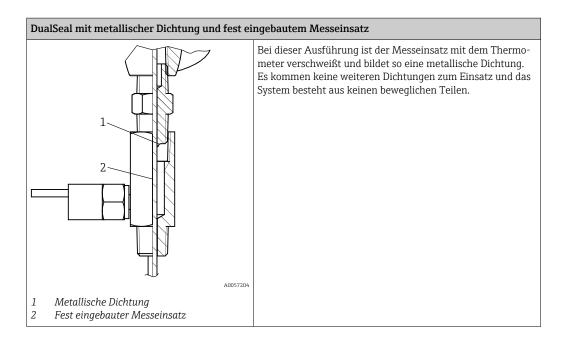
Halsrohr mit DualSeal

Als Sonderausführung des Halsrohrs steht DualSeal, eine zweite Prozessbarriere, zur Verfügung. Sie wird als optionale Komponente zwischen das Schutzrohr und den Anschlusskopf gesetzt. Sollte es zu einem Ausfall des Schutzrohrs kommen, gelangt kein Prozessmedium in den Anschlusskopf und die Verschaltung. Das Prozessmedium wird im Schutzrohr eingeschlossen. Ein Druckschalter gibt ein Signal aus, wenn der Druck in der Komponente mit der zweiten Prozessdichtung ansteigen sollte, um das Wartungspersonal auf eine Gefahrensituation aufmerksam zu machen. Der Messbetrieb kann für eine kurze Übergangszeit, die abhängig von Druck, Temperatur und Prozessmedium ist, fortgesetzt werden, bis das Schutzrohr ausgetauscht wird.

Transmitter-Verschaltung:

- Es wird ein Endress+Hauser Temperaturtransmitter iTEMP TMT82 mit zwei Kanälen und HART®-Protokoll eingesetzt. Ein Kanal konvertiert die Signale des Temperatursensors in ein 4 ... 20 mA-Signal. Der zweite Kanal nutzt die Sensorbrucherkennung in der Konfiguration des Thermoelementes und überträgt diese Störungsinformationen über das HART®-Protokoll, wenn der Druckschalter auslöst. Andere Konfigurationen sind auf Anfrage machbar.
- Es wird ein Endress+Hauser Temperaturtransmitter iTEMP TMT86 mit zwei Kanälen und PROFI-NET® Protokoll eingesetzt. Ein Kanal konvertiert die Signale des Temperatursensors für die PROFI-NET® Kommunikation. Der zweite Kanal ist für DualSeal konfiguriert und überträgt die Störungsinformation via PROFINET® Protokoll, wenn der Druckschalter auslöst.

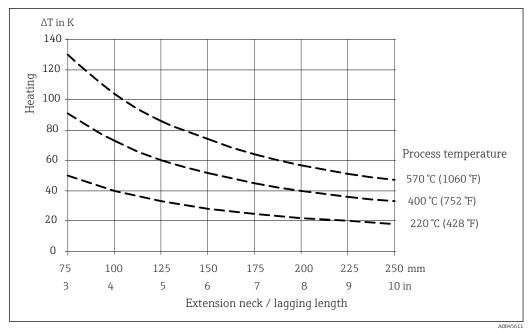



🛮 27 Halsrohr mit DualSeal

- 1 Anschlusskopf mit eingebautem Temperaturtransmitter
- 2 Gehäuse mit doppelter Kabeleinführung. Für den Eingang des Druckschalters ist eine passende Kabelverschraubung verbaut. Der zweite Eingang ist nicht belegt.
- 3 DualSeal
- 4 Installierter Druckschalter
- 5 Oberer Teil des Schutzrohrs

Gehäuse

Die Option DualSeal kann in zwei mechanischen Ausführungen gewählt werden:


Druckschalter

Der Schaltpunkt des Druckschalters kann aus zwei fest vorgegebenen Schaltpunkten gewählt werden:

- Schaltpunkt bei 0,8 bar
 - Vor allem bei kritischen Prozessen werden die maximalen Prozessdrücke auf < 1 bar gewählt. Um einen Schutzrohrdefekt bei niedrigen Drücken detektieren zu können, ist dieser niedrige Schaltpunkt notwendig. Das schränkt wegen des eingeschlossenen Gasvolumens die maximale Prozesstemperatur ein.
- Schaltpunkt bei 3.5 bar
 Um einen Schutzrohrdefekt detektieren zu können, muss der Prozessdruck > 3.5 bar sein.

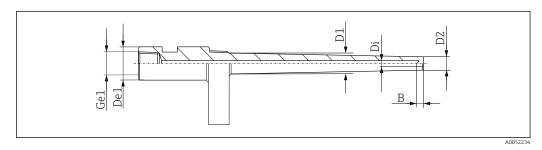
Schaltpunkt	0,8 bar (11,6 psi)	3,5 bar (50,8 psi) ±1 bar (±14,5 psi)		
Maximaler Druck	200 bar (2 900 p	si)		
Umgebungstemperaturbereich	-20 +80 °C (−4 +	176 °F)		
Prozesstemperaturbereich	Bis +180 °C (+356 °F)	Bis +400 °C (+752 °F)		
Abmessungen	Min. Halsrohrlänge T = 110 mm (4,33 in) Max. Schutzrohrlänge U = 300 mm (11,81 in) Max. Schutzrohrdurchmesser D1 = 30 mm (1,18 in)	Min. Halsrohrlänge T = 100 mm (3,94 in)		

Wie in der nachfolgenden Abbildung dargestellt, kann die Länge des Halsrohrs die Temperatur im Anschlusskopf beeinflussen. Diese Temperatur muss innerhalb der im Kapitel "Betriebsbedingungen" festgelegten Grenzwerte bleiben.

■ 28 Erwärmung des Anschlusskopfes in Abhängigkeit von der Prozesstemperatur. Temperatur im Anschlusskopf = Umgebungstemperatur 20 $^{\circ}$ C (68 $^{\circ}$ F) + ΔT

Mithilfe des Diagramms kann die Transmittertemperatur berechnet werden.

Beispiel: Bei einer Prozesstemperatur von 220 °C (428 °F) und einer gesamten Schaft- und Halsrohrlänge (T + E) von 100 mm (3,94 in) beträgt die Wärmeableitung 40 K (72 °F). Die ermittelte Transmittertemperatur ist kleiner 85 °C (maximale Umgebungstemperatur für iTEMP Temperaturtransmitter).

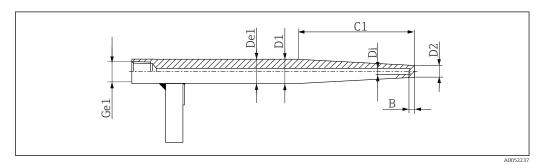

Ergebnis: Die Temperatur des Transmitters ist in Ordnung, die Schaftlänge ist ausreichend.

Vordefinierte Ausführungen

Sofern keine weiteren Optionen für spezielle Geometrien im Kann-Bereich der Konfiguration ausgewählt werden, gelten vordefinierte Standardgeometrien.

Thermometer mit Schutzrohr nach ASME Standard

Die vordefinierten Geometrien ergeben sich aus der Kombination: Schutzrohrstandard, Prozessanschluss und Geometrie der mediumberührenden Teile:


Schutzrohrs- tandard	Prozessan- schluss	Geometrie der mediumbe- rührenden Teile	Wurzel-Ø D1	Spitzen-Ø D2	Bohr-Ø Di	Bodendi- cke B	Flanschs- tirnseite	Thermo- meteran- schluss Ge1	Schaft-Ø De1
		Gerade	19 mm (0,75 in)	19 mm (0,75 in)				NPT ½"	32 mm (1,26 in)
Metrisch ASME mit Flansch	Flansch 1"/ DN25	Verjüngt	22,2 mm (0,87 in)	15 mm (0,6 in)	6,5 mm (0,26 in)	6 mm (0,24 in)	RF		
		Gestuft	19 mm (0,75 in)	12,7 mm (0,5 in)					

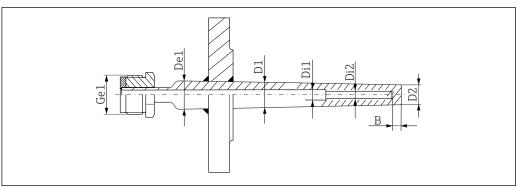
Schutzrohrs- tandard	Prozessan- schluss	Geometrie der mediumbe- rührenden Teile	Wurzel-Ø D1	Spitzen-Ø D2	Bohr-Ø Di	Bodendi- cke B	Flanschs- tirnseite	Thermo- meteran- schluss Ge1	Schaft-Ø De1
		Gerade	19 mm (0,75 in)	19 mm (0,75 in)					
	Flansch 1½"/ DN40	Verjüngt	27 mm (1,06 in)	17 mm (0,67 in)	6,5 mm (0,26 in)	6 mm (0,24 in)	RF 1)	NPT ½"	32 mm (1,26 in)
		Gestuft	19 mm (0,75 in)	12,7 mm (0,5 in)					
		Gerade	19 mm (0,75 in)	19 mm (0,75 in)				NPT ½"	32 mm (1,26 in)
	Flansch 2"/ DN50	Verjüngt	27 mm (1,06 in)	17 mm (0,67 in)	6,5 mm (0,26 in)	6 mm (0,24 in)	RF 1)		
		Gestuft	19 mm (0,75 in)	12,7 mm (0,5 in)					
		Gerade		16 mm (0,63 in)					
	NPT ½", G ½", M20 Außenge- winde	Verjüngt	16 mm (0,63 in)	15 mm (0,6 in)	6,5 mm (0,26 in)	6 mm (0,24 in)	-	NPT ½"	30 mm (1,18 in) ²⁾
		Gestuft		12,7 mm (0,5 in)					
		Gerade	19 mm (0,75 in)	19 mm (0,75 in)		6 mm (0,24 in)	-	NPT ½"	30 mm (1,18 in) ²⁾
	NPT ¾" Außen- gewinde	Verjüngt	19,5 mm (0,77 in)	15 mm (0,6 in)	6,5 mm (0,26 in)				
		Gestuft	19 mm (0,75 in)	12,7 mm (0,5 in)					
		Gerade	22,2 mm (0,87 in)	22,2 mm (0,87 in)		6 mm (0,24 in)	-	NPT ½"	35 mm (1,38 in)
Metrisch ASME mit Gewinde	NPT 1", Außengewinde	Verjüngt	27 mm (1,06 in)	17 mm (0,67 in)	6,5 mm (0,26 in)				
		Gestuft	22,2 mm (0,87 in)	12,7 mm (0,5 in)					
		Gerade	19 mm (0,75 in)	19 mm (0,75 in)					
	M27x2	Verjüngt	19,5 mm (0,77 in)	15 mm (0,6 in)	6,5 mm (0,26 in)	6 mm (0,24 in)	-	NPT ½"	35 mm (1,38 in)
		Gestuft	19 mm (0,75 in)	12,7 mm (0,5 in)					
		Gerade	22,2 mm (0,87 in)	22,2 mm (0,87 in)					
	M33x2	Verjüngt	27 mm (1,06 in)	17 mm (0,67 in)	6,5 mm (0,26 in)	6 mm (0,24 in)	-	NPT ½"	40 mm (1,57 in) ³⁾
		Gestuft	22,2 mm (0,87 in)	12,7 mm (0,5 in)					, ,
Metrisch ASME	NPS ¾" , 26,7 mm	Verjüngt	26,7 mm (1,05 in)	17 mm (0,67 in)	6,5 mm	6 mm		NIDT 1/"	26,7 mm
zum Ein- schweißen	NPS 1", 33,4 mm	Verjüngt	33,4 mm (1,31 in)	20 mm (0,79 in)	(0,26 in)	(0,24 in)	-	NPT ½"	33,4 mm
Metrisch ASME	NPS 3/4",	Gerade	19 mm (0,75 in)	19 mm (0,75 in)	6,5 mm	6 mm			
mit Ein- schweißstutzen	26,7 mm	Verjüngt	22,2 mm (0,87 in)	15 mm (0,6 in)	(0,26 in)	(0,24 in)	-	NPT ½"	26,7 mm

Schutzrohrs- tandard	Prozessan- schluss	Geometrie der mediumbe- rührenden Teile	Wurzel-Ø D1	Spitzen-Ø D2	Bohr-Ø Di	Bodendi- cke B	Flanschs- tirnseite	Thermo- meteran- schluss Ge1	Schaft-Ø De1
		Gestuft	19 mm (0,75 in)	12,7 mm (0,5 in)					
		Gerade	25,4 mm (1,0 in)	25,4 mm (1,0 in)					
	NPS 1", 33,4 mm	Verjüngt	25,4 mm (1,0 in)	15 mm (0,6 in)	6,5 mm (0,26 in)	6 mm (0,24 in)	-	NPT ½"	33,4 mm
		Gestuft	22,2 mm (0,87 in)	12,7 mm (0,5 in)					

- 1)
- Für Flansche mit Druckstufe 2500 ist die Flanschstirnseite RTJ. 27 mm (1,06 in) für Material: Kohlenstoffstahl und CrMo Stahl / Mo Stahl
- 50 mm (1,97 in) für Material: Kohlenstoffstahl und Alloy

Thermometer mit Schutzrohr nach DIN Standard

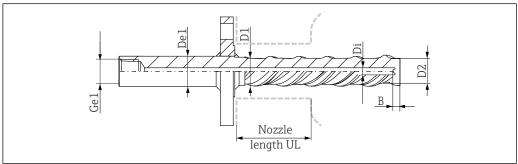
Die vordefinierten Geometrien ergeben sich aus der Kombination Schutzrohrstandard und gewähltes Halsrohr inkl. Thermometeranschluss:


Schutzrohrs- tandard	Halsrohr	Geometrie der mediumbe- rührenden Teile	Wurzel-Ø D1	Spitzen-Ø D2	Bohr-Ø Di	Bodendi- cke B	Flanschs- tirnseite	Thermo- meteran- schluss Ge1	Schaft-Ø De1
			18 mm (0,71 in)	9 mm (0,35 in)	3,5 mm (0,14 in) ¹⁾		B1	M14x1.5	18 mm (0,71 in)
DIN 43772	Standard		24 mm (0,95 in)	12,5 mm (0,5 in)	6,5 mm (0,26 in)	6 mm (0,24 in)		M18x1.5	24 mm (0,95 in)
Form 4F, geflanscht			26 mm (1,02 in)	12,5 mm (0,5 in)	6,5 mm (0,26 in)			G ½"	26 mm (1,02 in)
	QuickNeck oder mit zweiter Prozessbarriere		24 mm (0,95 in)	12,5 mm (0,5 in)	6,5 mm (0,26 in)			M18x1.5	24 mm (0,95 in)
			18 mm (0,71 in)	9 mm (0,35 in)	3,5 mm (0,14 in) ¹⁾			M14x1.5	18 mm (0,71 in)
DIN 43772	Standard		24 mm (0,95 in)	12,5 mm (0,5 in)	6,5 mm (0,26 in)			M18x1.5	24 mm (0,95 in)
Form 4, einge- schweißt			26 mm (1,02 in)	12,5 mm (0,5 in)	6,5 mm (0,26 in)			G ½"	26 mm (1,02 in)
	QuickNeck oder mit zweiter Prozessbarriere		24 mm (0,95 in)	12,5 mm (0,5 in)	6,5 mm (0,26 in)			M18x1.5	24 mm (0,95 in)

Für L > 110 mm (4,33 in) wird eine gestufte Bohrung verwendet: 6,5 mm (0,26 in) > 3,5 mm (0,14 in) 1)

72

Längenkombination nach DIN 43772							
Form 4, eingeschweißt	Form 4F, geflanscht, Standard Halsrohr						
L = 110 mm (4,3 in), C1 = 65 mm (2,56 in)	L = 200 mm (7,87 in), U = 130 mm (5,12 in), C1 = 65 mm (2,56 in)						
L = 110 mm (4,3 in), C1 = 73 mm (2,87 in)	L = 260 mm (10,24 in), U = 190 mm (7,5 in), C1 = 125 mm (4,92 in)						
L = 140 mm (5,51 in), C1 = 65 mm (2,56 in)	L = 410 mm (16,14 in), U = 340 mm (13,39 in), C1 = 275 mm (10,83 in)						
L = 170 mm (6,7 in), C1 = 133 mm (5,24 in)							
L = 200 mm (7,87 in), C1 = 125 mm (4,92 in)							


Thermometer mit Schutzrohr nach NAMUR Standard

Die vordefinierten Geometrien ergeben sich aus dem Schutzrohrstandard:

Schutzrohrstan- dard	Prozessan- schlussgröße	Geometrie der mediumberühr- enden Teile	Wurzel-Ø D1	Spitzen-Ø D2	Bohr-Ø Di (Di1 > Di2)	Bodendicke B	Flanschs- tirnseite	Thermome- teranschluss Ge1
Metrisch, auf NAMUR NE170 basierend, geflanscht	Flansch DN25- DN80	Verjüngt	20 mm (0,79 in)	13 mm (0,51 in)	Gestuft, 7 mm (0,28 in)> 6,1 mm (0,24 in)	7 mm (0,28 in)	B1	Außenge- winde M24x1.5, verschiebbar

Thermometer mit Schutzrohr iTHERM TwistWell

Die vordefinierte Geometrie ergibt sich aus dem iTHERM TwistWell (Variante D1 = 30 mm (1,18 in)):

Schutzrohrtyp	Prozessan- schlussgröße	Geometrie der mediumbe- rührenden Teile	Wurzel-Ø D1	Spitzen-Ø D2	Bohr-Ø Di	Bodendi- cke B	Flanschs- tirnseite	Thermo- meteran- schluss Ge1	Schaft-Ø De1
iTHERM Twist- Well, geflanscht	Jede auswähl- bare Flansch- größe	Unbeströmte Länge	30 mm (1,18 in)	22 mm (0,87 in)	6,5 mm (0,26 in)	6 mm (0,24 in)	B1/RF	NPT ½" ¹⁾	30 mm (1,18 in)

1) Gemäß Merkmal 030, oder NPT1/2" wenn nicht definiert

Zertifikate und Zulassungen

Aktuelle Zertifikate und Zulassungen zum Produkt stehen unter www.endress.com auf der jeweiligen Produktseite zur Verfügung:

- 1. Produkt mit Hilfe der Filter und Suchmaske auswählen.
- 2. Produktseite öffnen.
- 3. **Downloads** auswählen.

MID

Prüfschein (nur im SIL Betrieb). In Übereinstimmung mit:

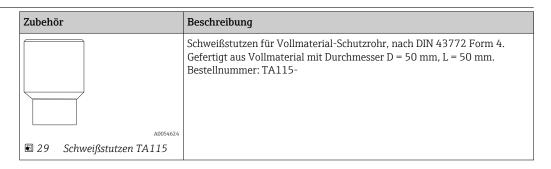
- WELMEC 8.8, "Leitfaden zu den allgemeinen und verwaltungstechnischen Aspekten des freiwilligen Systems zur modularen Bewertung von Messgeräten."
- OIML R117-1 Ausgabe 2007 (E) "Dynamisches Messsystem für andere Flüssigkeiten als Wasser".
- EN 12405-1/A2 Ausgabe 2010 "Gaszähler Umformer Teil 1: Volumenumrechnung".
- OIML R140-1 Ausgabe 2007 (E) "Messsystem für gasförmige Brennstoffe".

Bestellinformationen

Ausführliche Bestellinformationen sind bei der nächstgelegenen Vertriebsorganisation www.addresses.endress.com oder im Produktkonfigurator unter www.endress.com auswählbar:

- 1. Produkt mit Hilfe der Filter und Suchmaske auswählen.
- 2. Produktseite öffnen.
- Konfiguration auswählen.

🃭 Produktkonfigurator - das Tool für individuelle Produktkonfiguration


- Tagesaktuelle Konfigurationsdaten
- Je nach Gerät: Direkte Eingabe von messstellenspezifischen Angaben wie Messbereich oder Bediensprache
- Automatische Überprüfung von Ausschlusskriterien
- Automatische Erzeugung des Bestellcodes mit seiner Aufschlüsselung im PDF- oder Excel-Ausgabeformat
- Direkte Bestellmöglichkeit im Endress+Hauser Onlineshop

Zubehör

Aktuell verfügbares Zubehör zum Produkt ist über www.endress.com auswählbar:

- 1. Produkt mit Hilfe der Filter und Suchmaske auswählen.
- 2. Produktseite öffnen.
- 3. Ersatzteile und Zubehör auswählen.

Gerätespezifisches Zubehör

Servicespezifisches Zubehör

DeviceCare SFE100

DeviceCare ist ein Konfigurationswerkzeug für Feldgeräte von Endress+Hauser mittels folgender Kommunikationsprotokolle: HART, PROFIBUS DP/PA, FOUNDATION Fieldbus, IO/Link, Modbus, CDI und Endress+Hauser Serviceschnittstellen.

Technische Information TI01134S

www.endress.com/sfe100

FieldCare SFE500

FieldCare ist ein Konfigurationswerkzeug für Feldgeräte von Endress+Hauser und Fremdherstellern basierend auf DTM-Technologie.

Folgende Kommunikationsprotokolle werden unterstützt: HART, WirelessHART, PROFIBUS, FOUNDATION Fieldbus, Modbus, IO-Link, EtherNet/IP, PROFINET und PROFINET APL.

Technische Information TI00028S

www.endress.com/sfe500

Netilion

Mit dem Netilion IIoT-Ökosystem ermöglicht Endress+Hauser, die Anlagenleistung zu optimieren, Arbeitsabläufe zu digitalisieren, Wissen weiterzugeben und die Zusammenarbeit zu verbessern. Auf der Grundlage jahrzehntelanger Erfahrung in der Prozessautomatisierung bietet Endress+Hauser der Prozessindustrie ein IIoT-Ökosystem, mit dem Erkenntnisse aus Daten gewonnen werden. Diese Erkenntnisse können zur Optimierung von Prozessen eingesetzt werden, was zu einer höheren Anlagenverfügbarkeit, Effizienz, Zuverlässigkeit und letztlich zu einer profitableren Anlage führt.

www.netilion.endress.com

SmartBlue-App

SmartBlue ist eine von Endress+Hauser entwickelte App, welche eine einfache, drahtlose Feldgeräte-konfiguration mittels Bluetooth® oder WLAN ermöglicht. Durch die mobile Zugriffsmöglichkeit auf Diagnose- und Prozessinformationen kann der Anwender durch SmartBlue Zeit einsparen, selbst in gefährlichen und schwer zugänglichen Umgebungen.

A003320

■ 30 QR-Code zur kostenlosen Endress+Hauser SmartBlue-App

Onlinetools

Produktinformationen über den gesamten Lebenszyklus des Geräts sind erhältlich unter: www.endress.com/onlinetools

Systemkomponenten

Überspannungsschutzgeräte der HAW-Produktfamilie

Überspannungsschutzgeräte für Hutschienen- und Feldgerätemontage zum Schutz von Anlagen und Messgeräten mit Stromversorgungs- sowie Signal-/Kommunikationsleitungen.

Nähere Informationen: www.endress.com

Prozessanzeiger der RIA-Produktfamilie

Gut ablesbare Prozessanzeiger mit unterschiedlichen Funktionen: Schleifengespeiste Anzeiger zur Darstellung von 4-20mA-Werten, Anzeige von bis zu vier HART-Variablen, Prozessanzeiger mit Steuereinheit, Grenzwertüberwachung, Sensorspeisung und galvanischer Trennung.

Universeller Einsatz durch internationale Ex-Zulassungen, zum Schalttafeleinbau oder zur Feldmontage.

Nähere Informationen: www.endress.com

Speisetrenner der RN Series

Ein- oder zweikanalige Speisetrenner zur sicheren Trennung von 0/4-20mA-Normsignalstromkreisen mit bidirektionaler HART-Übertragung. In der Option Signaldoppler wird das Eingangssignal an zwei galvanisch getrennte Ausgänge übertragen. Das Gerät verfügt über einen aktiven und einen passiven Stromeingang, die Ausgänge können aktiv oder passiv betrieben werden.

Nähere Informationen: www.endress.com

Dokumentation

Im Download-Bereich der Endress+Hauser Internetseite (www.endress.com/downloads) sind folgende Dokumenttypen je nach Geräteausführung verfügbar:

Dokumenttyp	Zweck und Inhalt des Dokuments		
Technische Information (TI)	Planungshilfe für Ihr Gerät Das Dokument liefert alle technischen Daten zum Gerät und gibt einen Überblick, was rund um das Gerät bestellt werden kann.		
Kurzanleitung (KA)	Schnell zum 1. Messwert Die Anleitung liefert alle wesentlichen Informationen von der Warenannahme bis zur Erstinbetriebnahme.		
Betriebsanleitung (BA)	Ihr Nachschlagewerk Die Anleitung liefert alle Informationen, die in den verschiedenen Phasen des Lebenszyklus vom Gerät benötigt werden: Von der Produktidentifizie- rung, Warenannahme und Lagerung über Montage, Anschluss, Bedie- nungsgrundlagen und Inbetriebnahme bis hin zur Störungsbeseitigung, Wartung und Entsorgung.		
Beschreibung Geräteparameter (GP)	Referenzwerk für Ihre Parameter Das Dokument liefert detaillierte Erläuterungen zu jedem einzelnen Parameter. Die Beschreibung richtet sich an Personen, die über den gesamten Lebenszyklus mit dem Gerät arbeiten und dabei spezifische Konfigurationen durchführen.		
Sicherheitshinweise (XA)	Abhängig von der Zulassung liegen dem Gerät bei Auslieferung Sicherheitshinweise für elektrische Betriebsmittel in explosionsgefährdeten Bereichen bei. Diese sind integraler Bestandteil der Betriebsanleitung. Auf dem Typenschild ist angegeben, welche Sicherheitshinweise		
Geräteabhängige Zusatzdokumentation (SD/FY)	(XA) für das jeweilige Gerät relevant sind. Anweisungen der entsprechenden Zusatzdokumentation konsequent beachten. Die Zusatzdokumentation ist fester Bestandteil der Dokumentation zum Gerät.		

www.addresses.endress.com

