Technische Information iTHERM ModuLine TT152 Vollmaterial-Schutzrohr

Solutions

Zölliges Schutzrohr für eine Vielzahl von anspruchsvollen industriellen Anwendungen

Anwendung

- Schutz des Thermometers vor mechanischen und chemischen Belastungen
- Robustes Design für anspruchsvolle Prozessbedingungen
- Druckbereich: bis 500 bar (7252 psi)
- Zur Verwendung in Rohren, Behältern oder Tanks

Vorteile auf einen Blick

- Einfache Wartung und Nachkalibrierung des Thermometers: Sensor kann ohne Prozessunterbrechung ausgetauscht werden
- iTHERM TwistWell in schraubenförmigem Design: Reduktion von wirbelinduzierten Schwingungen in Applikationen mit hoher Durchflussgeschwindigkeit
- Schaft-, Eintauch- und Gesamtlänge können je nach Prozessanforderungen ausgewählt werden
- Große Auswahl an Abmessungen, Materialien und Prozessanschlüssen
- Internationale Zertifizierungen: z. B. für Druckanwendungen

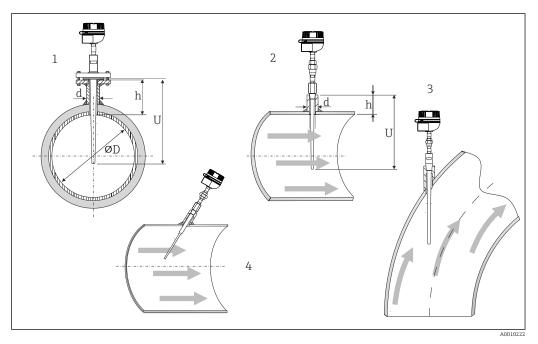
Inhaltsverzeichnis

Arbeitsweise und Systemaufbau
Gerätearchitektur
Modulares Design
Montage
Montageort
Einbaulage
Einbauhinweise
Prozess
Prozesstemperaturbereich
Prozessdruckbereich
1102c55dt dekoctelen
Konstruktiver Aufbau
Bauform, Maße
Gewicht
Werkstoffe
Thermometeranschluss
Prozessanschlüsse
Geometrie mediumberührende Teile
Schutzmantel aus korrosionsbeständigem Material 17
Oberflächenrauigkeit
Vordefinierte Ausführungen
Entlüftungsloch
Zertifikate und Zulassungen 21
Bestellinformationen
Zubehör
Gerätespezifisches Zubehör
Onlinetools
Offinite (10018
Dokumentation 22

Arbeitsweise und Systemaufbau

Gerätearchitektur

Die flexibel konfigurierbare Bauform des Schutzrohrs basiert auf der ASME B40.9. Das Schutzrohr gewährleistet eine gute Beständigkeit gegenüber typischen Industrieprozessen. Es ist aus Vollmaterial gefertigt und hat einen Wurzeldurchmesser von 5/8" bis $1\frac{1}{2}$ ". Die Spitze kann gerade, verjüngt oder gestuft sein. Das Schutzrohr kann an einem Rohr oder Behälter im System angebracht werden. Hierzu steht eine Auswahl an üblicherweise verwendeten Prozessanschlüssen zur Verfügung: mit Flansch, mit Gewinde oder zum Einschweißen.


Modulares Design

Konstruktion		Optionen
	1: Thermometeran- schluss	Innengewinde
1——————————————————————————————————————	2: Schutzrohrschaft	Eine Verlängerung, die nicht vom Schutzrohr getrennt werden kann. Durch diese Verlängerung steht mehr Einbauplatz zur Verfügung, insbesondere, wenn ein Flansch verwendet wird. Zudem kann sie den Anschlusskopf und das Elektronikmodul vor der Prozesswärme schützen.
2	3: Prozessanschluss	Verbindungsstück auf der Prozessseite. Hierbei kann es sich um jede Art von Gewinde, Flansch, Einschweißanschluss oder Schweißstutzen han- deln. Der Prozessanschluss muss so ausgelegt sein, dass er Prozessdruck, Temperatur und Medien standhält.
4	4: Schutzrohr	Der Teil des Schutzrohrs, der in das Prozessmedium eingetaucht wird. In einer Vielzahl von Durchmessern und Materialien erhältlich, um eine große Bandbreite an Anwendungen abzudecken. Material und Stärke müssen so ausgewählt werden, dass sie der statischen und dynamischen Beanspruchung, die durch die Prozessbedingungen hervorgerufen werden, standhalten. Zudem müssen sie beständig gegenüber Chemikalien, mechanischen Stößen und Vibrationen sein.
5 A0040980	5: Schutzrohrspitze	Es stehen verschiedene Spitzen zur Auswahl. Für Schutzrohre, die in Rohren mit kleinerem Durchmesser eingesetzt werden, kann eine reduzierte oder verjüngte Schutzrohrspitze ausgewählt werden, um den Strömungswiderstand zu reduzieren. Reduzierte Spitzen bedeuten auch ein schnelleres Ansprechen, während eine speziell konzipierte Spitze die kürzeste Ansprechzeit gewährleistet.

Montage

Montageort	Das Schutzrohr kann in Rohre, Tanks oder Behälter eingebaut werden.	
Einbaulage	Keine Einschränkungen. Die Selbstentleerung im Prozess je nach Anwendung gewährleisten.	
Einbauhinweise	Die Eintauchlänge des Thermometers kann sich auf die Messgenauigkeit auswirken. Wenn die Eintauchlänge zu kurz ist, kann dies zu Messfehlern führen, die durch die Wärmeleitung des Prozessanschlusses verursacht werden. Beim Einbau in ein Rohr sollte die Eintauchlänge idealerweise der Hälfte des Rohrdurchmessers entsprechen. Die Einbausituation kann je nach Prozessanforderungen	

variieren, das Messelement muss immer vollständig dem Medium ausgesetzt sein und darf nicht durch den Stutzen abgeschirmt werden. In Rohren mit kleinem Durchmesser kann ein Rohrexpander an der Messstelle montiert werden, um eine ausreichende Eintauchlänge zu gewährleisten.

■ 1 Einbaubeispiele

- 1 2 Bei Leitungen mit kleinem Querschnitt sollte die Sensorspitze bis zur Achse der Rohrleitung oder darüber hinausreichen (=L).
- 3 4 Schräger Einbau.
- Bei Rohrleitungen mit kleinen Nenndurchmessern die Spitze des Thermometers so positionieren, dass sie weit genug in den Prozess hineinragt und über die Achse der Rohrleitung hinausreicht. Alternativ kann das Thermometer schräg eingebaut werden (4). Bei der Bestimmung der Eintauchlänge oder Einbautiefe sind sämtliche Parameter des Thermometers sowie des zu messenden Mediums zu berücksichtigen, z. B. Anströmgeschwindigkeit oder Prozessdruck.

 Um die bestmögliche Installation zu erreichen folgende Regel einhalten: h ~ d; U > D/2 +h.
 - Es empfiehlt sich die Verwendung von iTHERM QuickSens Messeinsätzen für Eintauchlängen U < 70 mm (27,6 in).
- Die Gegenstücke für die Prozessanschlüsse sowie die Dichtungen oder Dichtringe sind nicht im Lieferumfang des Thermometers enthalten.

Prozess

Prozesstemperaturbereich

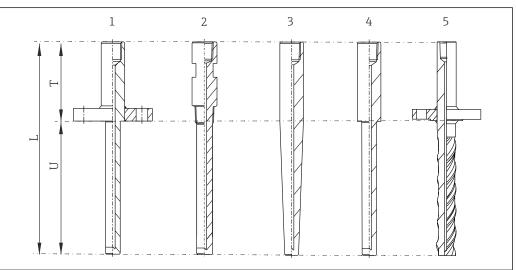
Abhängig vom verwendeten Schutzrohr und Material, max. −200 ... +1100 °C (−328 ... +2012 °F).

Prozessdruckbereich

Der maximal mögliche Prozessdruck ist abhängig von verschiedenen Einflüssen, z. B. Bauform, Prozessanschluss und -temperatur. Maximal mögliche Prozessdrücke für die jeweiligen Prozessanschlüsse siehe Kapitel "Prozessanschluss".

Die mechanische Belastbarkeit in Abhängigkeit der Einbau- und Prozessbedingungen kann im Schutzrohrberechnungstool Sizing Thermowell verifiziert werden, das im Endress+Hauser Online Tool 'Applicator' enthalten ist. Siehe Kapitel "Zubehör".

Zulässige Anströmgeschwindigkeit in Abhängigkeit von der Eintauchlänge und dem Prozessmedium


Die maximal zulässige Strömungsgeschwindigkeit, der das Schutzrohr ausgesetzt werden kann, nimmt mit zunehmender Eintauchtiefe des Schutzrohres in das strömende Messmedium ab. Sie ist

von der Geometrie des Schutzrohres, dem Prozessanschluss, der Art des Mediums, der Prozesstemperatur und vom Prozessdruck abhängig.

Prozessanschluss	Norm	max. Prozessdruck
Einschweißversion/ Schweißstutzen	NPS	≤ 500 bar (7 252 psi)
Flansch	ASME B16.5	Je nach Flansch-Druckstufe 150, 300, 600, 900/1500 oder 2500 psi bei 20 °C (68 °F)
Gewinde	ISO 965-1 / ASME B1.13M ISO 228-1 ANSI B1.20.1 DIN EN 10226-1 /	400 bar (5802 psi) bei +400 °C (+752 °F)

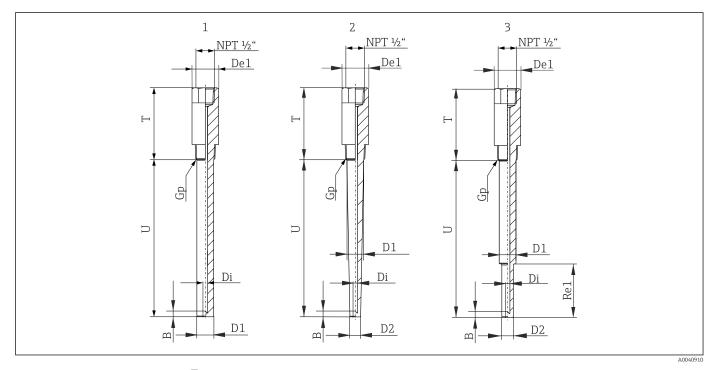
Konstruktiver Aufbau

Bauform, Maße

A005624

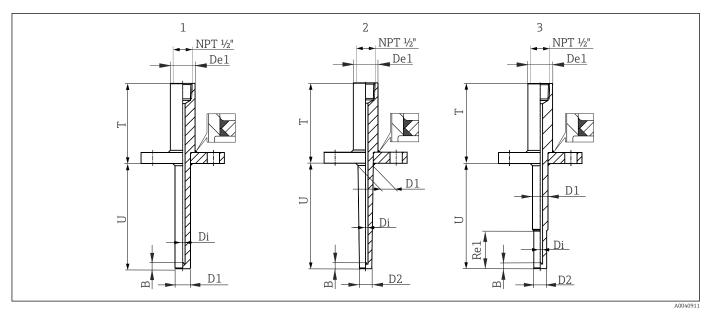
- 2 Typische ASME-Bauform, iTHERM TwistWell und Referenzen
- 1 Geflanscht, Referenzen gemäß ASME
- 2 Mit Gewinde, Referenzen gemäß ASME
- 3 Zum Einschweißen, Referenzen gemäß ASME
- 4 Schweißstutzen, Referenzen gemäß ASME
- 5 Geflanscht, Referenzen gemäß iTHERM TwistWell

Die Bauform des Thermometers ist abhängig von der Schutzrohrversion basierend auf ASME:

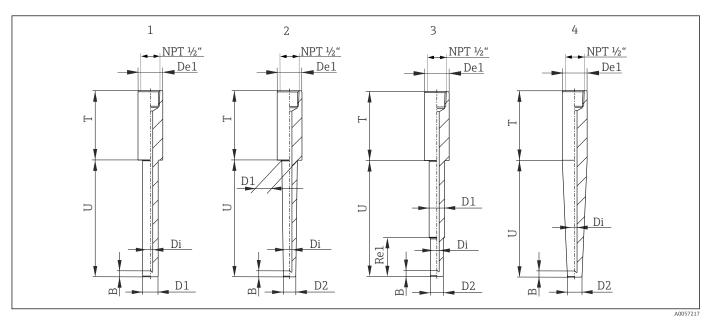

- ANSI-Flansche
- NPT-Gewinde
- Schweißstutzen und Einschweißversion
- Einige Abmessungen, wie z.B. Eintauchlänge U, sind variable Werte und daher in den folgenden Abmessungszeichnungen als Zeichnungsposition dargestellt.

Variable Abmessungen:

Pos.	Beschreibung	
L	Schutzrohrlänge (U+T)	
Gp	Gewinde Prozessanschluss	
В	Schutzrohr Bodendicke (Standardwert 6,35 mm (1/4 in)	
T	Länge des Schutzrohrschafts	


Pos.	Beschreibung
U	Eintauchlänge
D1	Wurzeldurchmesser
D2	Durchmesser Spitze
C1	Länge des verjüngten Teils
Re1	Reduzierte Länge der Spitze
Di	Bohrungsdurchmesser
De1	Durchmesser Schaft
SL	Länge der Wendel

Schutzrohre basierend auf ASME B40.9



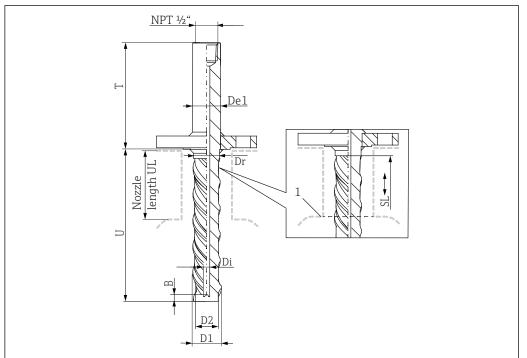
 \blacksquare 3 Schutzrohre basierend auf ASME B40.9

- 1 Gerades Schutzrohr zum Einschrauben, mit hexagonalem Schaft (optional Schaft mit Schlüsselflächen)
- 2 Verjüngtes Schutzrohr zum Einschrauben, mit hexagonalem Schaft (optional Schaft mit Schlüsselflächen)
- 3 Gestuftes Schutzrohr zum Einschrauben, mit hexagonalem Schaft (optional Schaft mit Schlüsselflächen)

- \blacksquare 4 Schutzrohre basierend auf ASME B40.9
- 1 Gerades Schutzrohr mit Flansch (optional durchgeschweißt)
- 2 Verjüngtes Schutzrohr mit Flansch (optional durchgeschweißt)
- 3 Gestuftes Schutzrohr mit Flansch (optional durchgeschweißt)

- **■** 5 Schutzrohre basierend auf ASME B40.9
- 1 Gerades Schutzrohr für Schweißstutzen
- 2 Verjüngtes Schutzrohr für Schweißstutzen
- 3 Gestuftes Schutzrohr für Schweißstutzen
- 4 Verjüngtes Schutzrohr zum Einschweißen

	Mit Gewinde	Mit Flansch	Für Schweißstutzen/verjüngt zum Einschweißen
Größe des Prozessanschlusses	 NPT ½" NPT 3¼" NPT 1" NPT 1½" NPT 1½" G½" G¾" 	 ANSI 1" von Cl. 150 bis Cl. 600 ANSI 1 - ½" von Cl. 150 bis Cl. 900/1500 ANSI 2" von Cl. 150 bis Cl. 900/1500 ANSI 3" von Cl. 150 bis Cl. 600 	■ (NPS ¾"), Ø26,7 mm ■ (NPS 1"), Ø33,4 mm ■ (NPS 1¼"), Ø42,2 mm ■ (NPS 1½"), Ø48,3 mm ■ (1¾", hygienisch), Ø34,93 mm
Werkstoff Prozessanschluss	 316/316L 304/304L Alloy 600 Alloy C276 AISI A182 F11 AISI A182 F22 AISI A182 F91 A105 Duplex S32205 	 316/316L 304/304L Alloy C276 Alloy 600 316/316L + PTFE (Teflon) beschichtet 316/316L + Tantal Hülse A105 	 316/316L 304/304L Alloy 600 Alloy C276 AISI A182 F11 AISI A182 F22 AISI A182 F91 A105 Duplex S32205


Abmessungen				
	Gerade & verjüngte Schutzrohre Gestufte Schutzrohre			
Eintauchlänge U	25,4 2 133,6 mm (1 84 in)	76,2 304,8 mm (3 12 in)		
Schaftlänge T	44,5 209,6 mm (1,7	5 8,25 in)		
Wurzeldurchmesser D1	15,88 38,1 mm (5/8 1½ in) 19,05 34,93 mm (¾ 1 3/8 in			
Durchmesser Spitze D2	12,7 38,1 mm (½ 1½ in) oder identisch mit dem Wurzeldurchmesser 12,7 38,1 mm (½ 1½ in)			
Bohrungsdurchmesser Di	• 6,6 mm (0,26 in) (Standard) • 9,78 mm (0,385 in)			
Rauigkeit	Vorgabewert 1,6 μm (63 μin); optional 0,76 μm (30 μin)			
Gestufte Länge Re1	- 6,35 406,4 mm (0,25 16 in)			
Bodendicke B	Vorgabewert 6,35 mm (0,25 in)			

Das Schutzrohr basiert auf der Norm ASME B40.9, bietet jedoch eine höhere Flexibilität, als in der ASME B40.9 festgelegt ist. In der folgenden Tabelle werden die wichtigsten Abweichungen aufgeführt.

Abmessungen	Alle Abmessungen nach dem zölligen System
Toleranzen	Gemäß ISO 2768-mK, sofern nicht ein metrisches oder vergleichbares System angegeben ist.
Terminologie und Definitionen	Gemäß Standards des Herstellers
Standardabmessungen	Das Schutzrohr bietet ein breiteres Spektrum an Abmessungen als in der Norm ASME B40.9 festgelegt ist
ASME PTC-19.3	Die Bauform erfüllt die Beschränkungen der ASME PTC-19.3
Gewinde	Das Schutzrohr bietet ein breiteres Spektrum an Gewinden als in der Norm ASME B40.9 festgelegt ist
Flansche	Das Schutzrohr bietet ein breiteres Spektrum an Flanschen als in der Norm ASME B40.9 festgelegt ist
Bauweise des Schutzrohrs	Basierend auf ASME B40.9
Werkstoffe	Das Schutzrohr bietet ein breiteres Spektrum an Werkstoffen als in der Norm ASME B40.9 festgelegt ist
ASME B40.9 Nonmanda- tory Appendix for Naval Shipboard Application	Das Schutzrohr berücksichtigt den Anhang nicht

Schutzrohr iTHERM TwistWell

Vollmaterial-Schutzrohr mit einem Schaft im patentierten Helix-Design. Diese Form verringert wirbelinduzierte Schwingungen bei Prozessanwendungen mit hoher Durchflussgeschwindigkeit.

A0052378

i

Für die Stabilität des Schutzrohrs müssen sich die Wendel im beströmten Bereich befinden. Die Länge der Wendel (SL) wird werksseitig so festgesetzt, dass sie mindestens von Spitze bis Stutzenanfang (1) reicht.

Größe des Prozessanschlusses	 ANSI 1" von 150 lbs bis 900/1500 lbs ANSI 1 ½" von 150 lbs bis 900/1500 lbs ANSI 2" von 150 lbs bis 900/1500 lbs 			
Werkstoff Prozessanschluss	316/316L			
Vollmaterial	316/316L			
Eintauchlänge U	25,4 609,6 mm (1 24 in)			
Unbeströmte Länge UL	63,5 749,3 mm (2,5 29,5 in)			
Schaftlänge T	82,55 209,55 mm (3,25 8,25 in)			
Durchmesser Schaft De1	30 mm (1,18 in)	25 mm (0,98 in)	25 mm (0,98 in)	
Wendeldurchmesser (Wurzel und Spitze) D1	30 mm (1,18 in)	25 mm (0,98 in)	22 mm (0,87 in)	
Durchmesser Wurzel Grundkörper Dr	28 mm (1,10 in)	22 mm (0,87 in)	20 mm (0,79 in)	
Durchmesser Spitze Grundkörper D2	22 mm (0,87 in)	17 mm (0,67 in)	15 mm (0,59 in)	
Bohrungsdurchmesser Di	6,6 mm (0,26 in) (Standard)			
Bodendicke B	6,35 mm (0,25 in)			
Rauigkeit	0,76 μm (30 μin)			
Anzahl Wendel	3			

Ausführungen von geflanschten Schutzrohren

Beidseitig geschweißt	Vollständig durchgeschweißt
A0052792	A0052794
 Für einen Großteil der Anwendungen geeignet Erfüllt die Anforderungen zu einem angemessenen Kosten-Nutzen-Verhältnis 	Für raue Anwendungsumgebungen geeignetStärkere Schweißverbindung

Gewicht

0,5 ... 37 kg (1 ... 82 lbs) für Standardausführungen.

Werkstoffe

Schutzrohr und Prozessanschlüsse.

Beachten: Die maximale Temperatur hängt vom eingesetzten Temperatursensor ab.

Die in der nachfolgenden Tabelle für den Dauerbetrieb angegebenen Temperaturen sind als Referenzwerte für die Verwendung der verschiedenen Materialien in Luft und ohne nennenswerte mechanische Belastung gedacht. In einem abweichenden Einsatzfall, insbesondere beim Auftreten hoher mechanischer Belastungen oder in aggressiven Medien, können die maximalen Betriebstemperaturen deutlich reduziert sein.

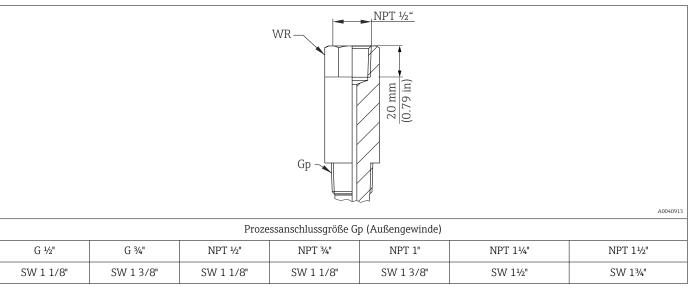
Materialbezeich- nung	Kurze Form	Empfohlene max. Tempe- ratur für den Dauerbetrieb in Luft	Eigenschaften
AISI 316L	X5CrNiMo 17-12-2	650 °C (1202 °F) ¹⁾	 Austenitischer, nicht rostender Stahl Im Allgemeinen hohe Korrosionsbeständigkeit Besonders hohe Korrosionsbeständigkeit in chlorhaltigen und säurehaltigen nicht oxidierenden Atmosphären durch Hinzufügen von Molybdän (z. B. phosphorhaltige und schwefelhaltige Säuren, Essig- und Weinsäure mit geringer Konzentration)
Alloy600/2.4816	NiCr15Fe	1100°C (2012°F)	 Eine Nickel-Chrom-Legierung mit sehr guter Beständigkeit selbst bei hohen Temperaturen gegenüber aggressiven, oxidierenden und reduzierenden Atmosphären Beständigkeit gegenüber Korrosion, die durch Chlorgase und chlorhaltige Medien sowie durch viele oxidierende Mineral- und organische Säuren, Seewasser etc. verursacht wird Korrosion durch Reinstwasser Darf nicht in schwefelhaltigen Atmosphären verwendet werden
AlloyC276/2.4819	NiMo16Cr15W	1100°C (2012°F)	 Eine nickelbasierte Legierung mit guter Beständigkeit gegen oxidierende und reduzierende Umgebungen selbst noch bei hohen Temperaturen Besonders resistent gegen Chlorgas und Chlorid sowie gegen viele oxidierende mineralische und organische Säuren

Materialbezeich- nung	Kurze Form	Empfohlene max. Tempe- ratur für den Dauerbetrieb in Luft	Eigenschaften
AISI 304/1.4301 AISI 304L/1.4307	X5CrNi18-10 X2CrNi18-9	550 ℃ (1022 ℉)	 Austenitischer, nicht rostender Stahl Gute Einsetzbarkeit in Wasser und gering verschmutzten Abwasser Gegen organische Säuren, Salzlösungen, Sulfate, alkalische Lösungen u. ä. nur bei relativ niedrigen Temperaturen beständig
AISI A105/ 1.0460	C22.8	450 °C (842 °F)	 Hitzebeständiger Stahl Beständig bei stickstoffhaltigen Atmosphären sowie Atmosphären, die arm an Sauerstoff sind; nicht geeignet bei Säuren oder anderen aggressiven Medien Häufig eingesetzt in Dampferzeugern, Wasserund Dampfleitungen, Druckbehältern
AISI A182 F11/ 1.7335	13CrMo4-5	550 ℃ (1022 ℉)	 Niedriglegierter, hitzebeständiger Stahl mit Chrom- und Molybdän-Zusätzen Bessere Korrosionsbeständigkeit im Vergleich zu unlegierten Stählen, nicht geeignet für Säuren und andere aggressive Medien Häufig eingesetzt in Dampferzeugern, Wasser- und Dampfleitungen, Druckbehältern
AISI A182 F22/ 1.7380	10CrMo9-10	580 °C (1076 °F)	 Legierter warmfester Stahl Eignet sich besonders für Dampfkessel, Kesselteile, Kesseltrommeln, Druckbehälter für den Apparatebau und ähnliche Zwecke
AISI A182 F91/ 1.4903	X10CrMoVNb9-1	650 °C (1202 °F)	 Hochwarmfester, martensitischer Stahl Gute mechanische Eigenschaften bei höheren Temperaturen Häufig eingesetzt in der Energietechnik (Turbinenbau)
Duplex S32205	X2CrNi- MoN22-5-3	300 °C (572 °F)	 Austenitischer ferritischer Stahl mit guten mechanischen Eigenschaften Hohe Beständigkeit gegenüber allgemeiner Korrosion, Lochfraß, durch Chlor verursachte oder transkristalline Spannungskorrosion Vergleichsweise gute Beständigkeit gegenüber wasserstoffinduzierter Spannungskorrosion
Ummantelung			
PTFE (Teflon)	Polytetrafluore- thylen	200 ℃ (392 ℉)	Beständig gegenüber nahezu allen ChemikalienHohe Temperaturbeständigkeit
Tantal	-	250 ℃ (482 ℉)	 Mit Ausnahme von Flusssäure, Fluor und Fluoriden zeigt Tantal eine exzellente Beständigkeit gegenüber den meisten mineralischen Säuren und Salzlösungen Anfällig für Oxidation und Versprödung bei höheren Temperaturen an Luft

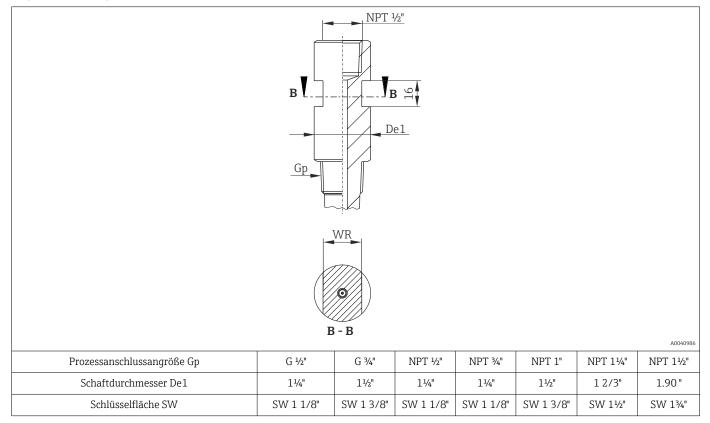
¹⁾ Bei geringen mechanischen Belastungen und in nicht korrosiven Medien ist bedingt ein Einsatz bis zu 800 $^{\circ}$ C (1472 $^{\circ}$ F) möglich. Für weitere Informationen bitte den Vertrieb des Herstellers kontaktieren.

Thermometeranschluss

Thermometeranschluss	Ge1	L_1	L_2	Norm/Klasse
Ge1 (86.0) A00409 Innengewinde	NPT ½"	17 mm (0,67 in)	20 mm (0,79 in)	ANSI B1.20.1

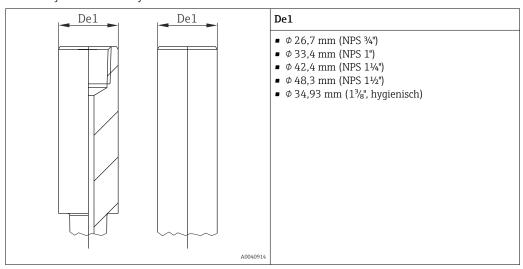

Prozessanschlüsse

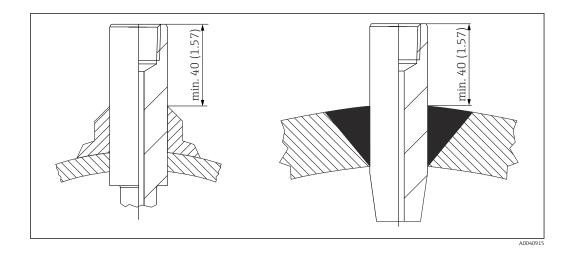
Gewinde


Gewindeprozessanschluss	Ausfü	hrung	Gewindelänge L_Gp	Norm	Max. Prozessdruck
	G	G ½"	15 mm (0,6 in)	ISO 228-1 A	Maximaler statischer Pro-
		G 3/4"	16 mm (0,63 in)		zessdruck für Gewindepro- zessanschluss: 1)
	NPT	NPT ½"	20 mm (0,79 in) L_Gp_e: 8 mm (0,32 in)	ANSI B1.20.1	400 bar (5802 psi) bei +400 °C (+752 °F)
		NPT 3/4"	20 mm (0,79 in) L_Gp_e: 8 mm (0,32 in)		
A0040916 Zylindrische (links) und konische (rechts)		NPT 1"	25 mm (0,98 in) L_Gp_e: 10 mm (0,39 in)		
Ausführung		NPT 11/4"	25,6 mm (1,01 in) L_Gp_e: 10 mm (0,39 in)		
		NPT 1½"	26 mm (1,025 in) L_Gp_e: 10 mm (0,39 in)		

¹⁾ Maximale Druckangabe gilt nur für das Gewinde. Berechnet ist das Ausreißen des Gewindes unter Berücksichtigung des statischen Drucks. Die Berechnung beruht auf einem vollständig eingeschraubten Gewinde.

SW-Größenmatrix für Einschraubschutzrohre (hexagonaler Schaft)





Einschweißen, Einschweißstutzen

Einschweißversion/Schweißstutzen

- Schweißempfehlung: Der Abstand zwischen der Schweißnaht und dem Ende des Schutzrohrs muss mindestens 40 mm (1,57 in) betragen.
- Blindverschraubung verwenden um zu vermeiden, dass sich das Gewinde verformt.

Flansche

i

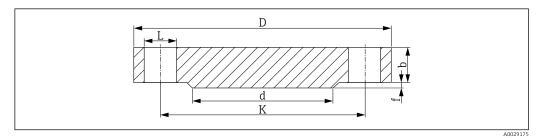
Die unterschiedlichen Werkstoffe sind entsprechend ihrer Festigkeit in Abhängigkeit von der Temperatur in der DIN EN 1092-1 Tab. 18 unter 13E0 und in der JIS B2220:2004 Tab. 5 unter 023b eingruppiert.". Die ASME Flansche sind in ASME B16.5-2013 in der Tab. 2-2.2 eingruppiert. Die Umrechung von Zoll-Einheiten in metrische Einheiten (in - mm) erfolgt mit dem Faktor 25,4. In der ASME-Norm sind die metrischen Angaben auf 0 bzw. 5 gerundet.

Ausführungen

ASME-Flansche: America Society of Mechanical Engineers ASME B16.5-2013

Geometrie der Dichtflächen

Flansche	Dichtfläche	DIN 2526 1) DIN EN 1092-1		ASME B16.5				
		Form	Rz (µm)	Form	Rz (µm)	Ra (µm)	Form	Ra (µm)
ohne Dicht- leiste		A B	- 40 160	A ²⁾	12,5 50	3,2 12,5	Flat face (FF)	3,2 6,3
i+ Di -l-+	A0043514	C	40 160	B1 ³⁾	12.5.50	22 125	D-:	(AARH 125 250
mit Dicht- leiste	U	C D E	40 160 40 16	B1 -7	12,5 50 3,2 12,5	3,2 12,5 0,8 3,2	Raised face (RF)	μin)
	A0043516							
mit Ringnut		_	-	-	-	-	Ring-type joint (RTJ)	1,6
	U 1 A0052680							


- 1) Enthalten in DIN 2527
- 2) Typisch PN2.5 bis PN40
- 3) Typisch ab PN63

Dichtleistenhöhe 1)

Norm	Flansche	Dichtleistenhöhe f	Toleranz
ASME B16.5 - 2013	≤ Class 300	1,6 (0,06)	±0,75 (±0,03)
	≥ Class 600	6,4 (0,25)	0,5 (0,02)

1) Maßangaben in mm (in)

ASME-Flansche (ASME B16.5-2013)

■ 8 Dichtleiste RF

- L Bohrungsdurchmesser
- d Durchmesser der Dichtleiste
- K Lochkreisdurchmesser
- D Flanschdurchmesser
- b Gesamtdicke des Flansches
- f Dichtleistenhöhe Class 150/300: 1,6 mm (0,06 in) bzw. ab Class 600: 6,4 mm (0,25 in)

Oberflächenbeschaffenheit der Dichtfläche Ra \leq 3,2 ... 6,3 μm (126 ... 248 $\mu in).$

Class 150 1)

DN	D	b	К	d	L	ca. kg (lbs)
1"	108,0 (4,25)	14,2 (0,56)	79,2 (3,12)	50,8 (2,00)	4xØ15,7 (0,62)	0,86 (1,9)
11/4"	117,3 (4,62)	15,7 (0,62)	88,9 (3,50)	63,5 (2,50)	4xØ15,7 (0,62)	1,17 (2,58)
1½"	127,0 (5,00)	17,5 (0,69)	98,6 (3,88)	73,2 (2,88)	4xØ15,7 (0,62)	1,53 (3,37)
2"	152,4 (6,00)	19,1 (0,75)	120,7 (4,75)	91,9 (3,62)	4xØ19,1 (0,75)	2,42 (5,34)
21/2"	177,8 (7,00)	22,4 (0,88)	139,7 (5,50)	104,6 (4,12)	4xØ19,1 (0,75)	3,94 (8,69)
3"	190,5 (7,50)	23,9 (0,94)	152,4 (6,00)	127,0 (5,00)	4xØ19,1 (0,75)	4,93 (10,87)
31/2"	215,9 (8,50)	23,9 (0,94)	177,8 (7,00)	139,7 (5,50)	8xØ19,1 (0,75)	6,17 (13,60)
4"	228,6 (9,00)	23,9 (0,94)	190,5 (7,50)	157,2 (6,19)	8xØ19,1 (0,75)	7,00 (15,44)
5"	254,0 (10,0)	23,9 (0,94)	215,9 (8,50)	185,7 (7,31)	8xØ22,4 (0,88)	8,63 (19,03)
6"	279,4 (11,0)	25,4 (1,00)	241,3 (9,50)	215,9 (8,50)	8xØ22,4 (0,88)	11,3 (24,92)
8"	342,9 (13,5)	28,4 (1,12)	298,5 (11,8)	269,7 (10,6)	8xØ22,4 (0,88)	19,6 (43,22)
10"	406,4 (16,0)	30,2 (1,19)	362,0 (14,3)	323,8 (12,7)	12xØ25,4 (1,00)	28,8 (63,50)

1) Die Maße in den nachfolgenden Tabellen sind, wenn nicht anders angegeben, in mm (in)

Class 300

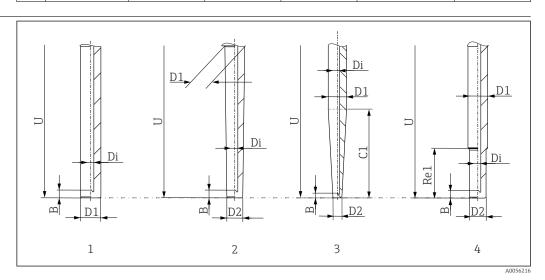
DN	D	b	K	d	L	ca. kg (lbs)
1"	124,0 (4,88)	17,5 (0,69)	88,9 (3,50)	50,8 (2,00)	4xØ19,1 (0,75)	1,39 (3,06)
11/4"	133,4 (5,25)	19,1 (0,75)	98,6 (3,88)	63,5 (2,50)	4xØ19,1 (0,75)	1,79 (3,95)
1½"	155,4 (6,12)	20,6 (0,81)	114,3 (4,50)	73,2 (2,88)	4xØ22,4 (0,88)	2,66 (5,87)
2"	165,1 (6,50)	22,4 (0,88)	127,0 (5,00)	91,9 (3,62)	8xØ19,1 (0,75)	3,18 (7,01)
21/2"	190,5 (7,50)	25,4 (1,00)	149,4 (5,88)	104,6 (4,12)	8xØ22,4 (0,88)	4,85 (10,69)
3"	209,5 (8,25)	28,4 (1,12)	168,1 (6,62)	127,0 (5,00)	8xØ22,4 (0,88)	6,81 (15,02)
31/2"	228,6 (9,00)	30,2 (1,19)	184,2 (7,25)	139,7 (5,50)	8xØ22,4 (0,88)	8,71 (19,21)
4"	254,0 (10,0)	31,8 (1,25)	200,2 (7,88)	157,2 (6,19)	8xØ22,4 (0,88)	11,5 (25,36)
5"	279,4 (11,0)	35,1 (1,38)	235,0 (9,25)	185,7 (7,31)	8xØ22,4 (0,88)	15,6 (34,4)
6"	317,5 (12,5)	36,6 (1,44)	269,7 (10,6)	215,9 (8,50)	12xØ22,4 (0,88)	20,9 (46,08)

DN	D	b	K	d	L	ca. kg (lbs)
8"	381,0 (15,0)	41,1 (1,62)	330,2 (13,0)	269,7 (10,6)	12xØ25,4 (1,00)	34,3 (75,63)
10"	444,5 (17,5)	47,8 (1,88)	387,4 (15,3)	323,8 (12,7)	16xØ28,4 (1,12)	53,3 (117,5)

Class 600

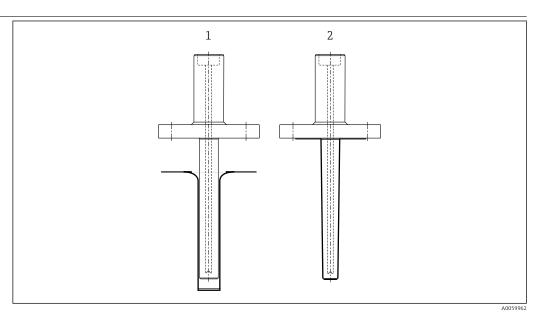
DN	D	b	K	d	L	ca. kg (lbs)
1"	124,0 (4,88)	17,5 (0,69)	88,9 (3,50)	50,8 (2,00)	4xØ19,1 (0,75)	1,60 (3,53)
11/4"	133,4 (5,25)	20,6 (0,81)	98,6 (3,88)	63,5 (2,50)	4xØ19,1 (0,75)	2,23 (4,92)
1½"	155,4 (6,12)	22,4 (0,88)	114,3 (4,50)	73,2 (2,88)	4xØ22,4 (0,88)	3,25 (7,17)
2"	165,1 (6,50)	25,4 (1,00)	127,0 (5,00)	91,9 (3,62)	8xØ19,1 (0,75)	4,15 (9,15)
21/2"	190,5 (7,50)	28,4 (1,12)	149,4 (5,88)	104,6 (4,12)	8xØ22,4 (0,88)	6,13 (13,52)
3"	209,5 (8,25)	31,8 (1,25)	168,1 (6,62)	127,0 (5,00)	8xØ22,4 (0,88)	8,44 (18,61)
31/2"	228,6 (9,00)	35,1 (1,38)	184,2 (7,25)	139,7 (5,50)	8xØ25,4 (1,00)	11,0 (24,26)
4"	273,1 (10,8)	38,1 (1,50)	215,9 (8,50)	157,2 (6,19)	8xØ25,4 (1,00)	17,3 (38,15)
5"	330,2 (13,0)	44,5 (1,75)	266,7 (10,5)	185,7 (7,31)	8xØ28,4 (1,12)	29,4 (64,83)
6"	355,6 (14,0)	47,8 (1,88)	292,1 (11,5)	215,9 (8,50)	12xØ28,4 (1,12)	36,1 (79,6)
8"	419,1 (16,5)	55,6 (2,19)	349,3 (13,8)	269,7 (10,6)	12xØ31,8 (1,25)	58,9 (129,9)
10"	508,0 (20,0)	63,5 (2,50)	431,8 (17,0)	323,8 (12,7)	16xØ35,1 (1,38)	97,5 (214,9)

Class 900


DN	D	b	K	d	L	ca. kg (lbs)
1"	149,4 (5,88)	28,4 (1,12)	101,6 (4,0)	50,8 (2,00)	4xØ25,4 (1,00)	3,57 (7,87)
11/4"	158,8 (6,25)	28,4 (1,12)	111,3 (4,38)	63,5 (2,50)	4xØ25,4 (1,00)	4,14 (9,13)
1½"	177,8 (7,0)	31,8 (1,25)	124,0 (4,88)	73,2 (2,88)	4xØ28,4 (1,12)	5,75 (12,68)
2"	215,9 (8,50)	38,1 (1,50)	165,1 (6,50)	91,9 (3,62)	8xØ25,4 (1,00)	10,1 (22,27)
21/2"	244,4 (9,62)	41,1 (1,62)	190,5 (7,50)	104,6 (4,12)	8xØ28,4 (1,12)	14,0 (30,87)
3"	241,3 (9,50)	38,1 (1,50)	190,5 (7,50)	127,0 (5,00)	8xØ25,4 (1,00)	13,1 (28,89)
4"	292,1 (11,50)	44,5 (1,75)	235,0 (9,25)	157,2 (6,19)	8xØ31,8 (1,25)	26,9 (59,31)
5"	349,3 (13,8)	50,8 (2,0)	279,4 (11,0)	185,7 (7,31)	8xØ35,1 (1,38)	36,5 (80,48)
6"	381,0 (15,0)	55,6 (2,19)	317,5 (12,5)	215,9 (8,50)	12xØ31,8 (1,25)	47,4 (104,5)
8"	469,9 (18,5)	63,5 (2,50)	393,7 (15,5)	269,7 (10,6)	12xØ38,1 (1,50)	82,5 (181,9)
10"	546,1 (21,50)	69,9 (2,75)	469,0 (18,5)	323,8 (12,7)	16xØ38,1 (1,50)	122 (269,0)

Class 1500

DN	D	b	K	d	L	ca. kg (lbs)
1"	149,4 (5,88)	28,4 (1,12)	101,6 (4,0)	50,8 (2,00)	4xØ25,4 (1,00)	3,57 (7,87)
11/4"	158,8 (6,25)	28,4 (1,12)	111,3 (4,38)	63,5 (2,50)	4xØ25,4 (1,00)	4,14 (9,13)
11/2"	177,8 (7,0)	31,8 (1,25)	124,0 (4,88)	73,2 (2,88)	4xØ28,4 (1,12)	5,75 (12,68)
2"	215,9 (8,50)	38,1 (1,50)	165,1 (6,50)	91,9 (3,62)	8xØ25,4 (1,00)	10,1 (22,27)
21/2"	244,4 (9,62)	41,1 (1,62)	190,5 (7,50)	104,6 (4,12)	8xØ28,4 (1,12)	14,0 (30,87)
3"	266,7 (10,5)	47,8 (1,88)	203,2 (8,00)	127,0 (5,00)	8xØ31,8 (1,25)	19,1 (42,12)
4"	311,2 (12,3)	53,8 (2,12)	241,3 (9,50)	157,2 (6,19)	8xØ35,1 (1,38)	29,9 (65,93)
5"	374,7 (14,8)	73,2 (2,88)	292,1 (11,5)	185,7 (7,31)	8xØ41,1 (1,62)	58,4 (128,8)


DN	D	b	K	d	L	ca. kg (lbs)
6"	393,7 (15,50)	82,6 (3,25)	317,5 (12,5)	215,9 (8,50)	12xØ38,1 (1,50)	71,8 (158,3)
8"	482,6 (19,0)	91,9 (3,62)	393,7 (15,5)	269,7 (10,6)	12xØ44,5 (1,75)	122 (269,0)
10"	584,2 (23,0)	108,0 (4,25)	482,6 (19,0)	323,8 (12,7)	12xØ50,8 (2,00)	210 (463,0)

Geometrie mediumberührende Teile

- Gerade (komplette Länge U)
- Verjüngt (komplette Länge U) Verjüngt (über Länge C1) 2
- 3
- Gestuft, Re1 = 63.5 mm (2.5 in)

Schutzmantel aus korrosionsbeständigem Material

- Tantalhülse
- PTFE-Beschichtung

Maximale Prozessdruckwerte für die jeweiligen Werkstoffe in Abhängigkeit von der Prozesstemperatur. Angaben in bar (PSI)

Temperatur in °C (°F)	Tantal	PTFE
-251 (-420)	-	80 (1160,3)
-200 (-328)	130 (1885,5)	69 (1000,7)
-100 (-148)	75 (1087,8)	46 (667,2)
0 (+32)	60 (870,2)	7,5 (108,8)

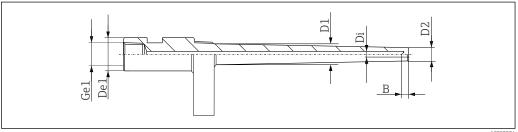
Temperatur in °C (°F)	Tantal	PTFE
+20 (+68)	57 (826,7)	6 (87)
+50 (+122)	55 (797,7)	3,75 (54,4)
+100 (+212)	49 (710,7)	2,5 (36,3)
+200 (+392)	40 (580,2)	1,1 (16)
+260 (+500)	37 (536,6)	0,9 (13,1)
+300 (+572)	35 (507,6)	-
+320 (+608)	34 (493,1)	-
+500 (+932)	29 (420,6)	-
+750 (+1382)	23 (333,6)	-
+1000 (+1832)	16,5 (239,3)	-

Par Einsatz im Vakuum wird nicht empfohlen.

Ansprechzeiten

Die Schutzummantelung beeinträchtigt den Wärmeübergang je nach Werkstoff erheblich und führt zu deutlich erhöhten Ansprechzeiten. Ansprechzeiten t_{90} von mehreren Minuten sind zu erwarten.

Oberflächenrauigkeit


Spezifikationen für mediumsberührende Oberflächen

Standardoberfläche	$R_a \le 1.6 \ \mu m \ (63 \ \mu in)$
Fein geschliffene Oberfläche, poliert	$R_a \le 0.76 \ \mu m \ (30 \ \mu in)$

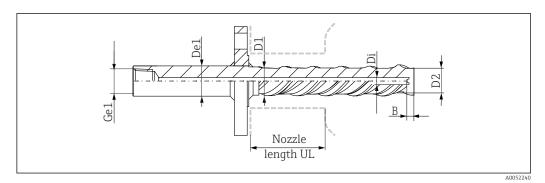
Vordefinierte Ausführungen

Sofern keine weiteren Optionen für spezielle Geometrien im Kann-Bereich der Konfiguration ausgewählt werden, gelten vordefinierte Standardgeometrien.

Thermometer mit Schutzrohr nach ASME Standard

A0052234

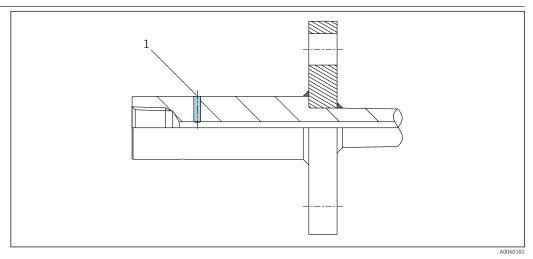
Die vordefinierten Geometrien ergeben sich aus der Kombination: Schutzrohrstandard, Prozessanschluss und Geometrie der mediumberührenden Teile


Schutzrohrs- tandard	Prozessan- schluss	Geometrie der mediumbe- rührenden Teile	Wurzel-Ø D1	Spitzen-Ø D2	Bohr-Ø Di	Bodendi- cke B	Flanschs- tirnseite	Thermo- meteran- schluss Ge1	Schaft-Ø De1
		Gerade	22,23 mm (⁷ / ₈ in)	22,23 mm (⁷ / ₈ in)					
Zöllig, ASME mit Flansch	Flansch 1"	Verjüngt	22,23 mm (⁷ / ₈ in)	15,9 mm (5% in)	6,6 mm (0,26 in)	6,35 mm (0,25 in)	RF	NPT ½"	31,75 mm (1¼ in)
		Gestuft	22,23 mm (⁷ / ₈ in)	12,7 mm (½ in)					

Schutzrohrs- tandard	Prozessan- schluss	Geometrie der mediumbe- rührenden Teile	Wurzel-Ø D1	Spitzen-Ø D2	Bohr-Ø Di	Bodendi- cke B	Flanschs- tirnseite	Thermo- meteran- schluss Ge1	Schaft-Ø De1
		Gerade	22,23 mm (% in)	22,23 mm (% in)			RF	NPT ½"	31,75 mm (1¼ in)
	Flansch 1½"	Verjüngt	27 mm (1 1/16 in)	15,9 mm (5% in)	6,6 mm (0,26 in)	6,35 mm (0,25 in)			
		Gestuft	22,23 mm (% in)	12,7 mm (½ in)					
		Gerade	22,23 mm (% in)	22,23 mm (% in)					
	Flansch 2"	Verjüngt	27 mm (1 1/16 in)	15,9 mm (% in)	6,6 mm (0,26 in)	6,35 mm (0,25 in)	RF	NPT ½"	31,75 mm (1¼ in)
		Gestuft	22,23 mm (% in)	12,7 mm (½ in)					
		Gerade	22,23 mm (% in)	22,23 mm (⁷ / ₈ in)					
	Flansch 3"	Verjüngt	27 mm (1 1/16 in)	15,9 mm (5% in)	6,6 mm (0,26 in)	6,35 mm (0,25 in)	RF	NPT ½"	31,75 mm (1¼ in)
		Gestuft	22,23 mm (% in)	12,7 mm (½ in)					
		Gerade	15,9 mm (⅓ in)	15,9 mm (% in)					
	NPT ½" Außen- gewinde	Verjüngt	15,9 mm (% in)	15,9 mm (5% in)		6,35 mm (0,25 in)	-	NPT ½"	31,75 mm (1¼ in)
		Gestuft	15,9 mm (5% in)	12,7 mm (½ in)					
		Gerade	19 mm (¾ in)	19 mm (¾ in)	6,6 mm (0,26 in)			NPT ½"	31,75 mm (1¼ in)
	NPT ¾" Außen- gewinde	Verjüngt	22,23 mm (% in)	15,9 mm (% in)		6,35 mm (0,25 in)	-		
		Gestuft	19 mm (¾ in)	12,7 mm (½ in)					
		Gerade	22,23 mm (% in)	22,23 mm (% in)		6,35 mm (0,25 in)		NPT ½"	38,1 mm (1½ in)
Zöllig, ASME	NPT 1", Außen- gewinde	Verjüngt	27 mm (1 1/16 in)	15,9 mm (5% in)	6,6 mm (0,26 in)		-		
mit Gewinde		Gestuft	22,23 mm (% in)	12,7 mm (½ in)					
		Gerade	31,75 mm (1¼ in)	31,75 mm (1¼ in)					42,4 mm (1 2/3 in)
	NPT 1¼", Außengewinde	Verjüngt	34,9 mm (1 3/8 in)	22,23 mm (% in)	6,6 mm (0,26 in)	6,35 mm (0,25 in)	-	NPT ½"	
		Gestuft	31,75 mm (1¼ in)	22,23 mm (% in)					
		Gerade	38,1 mm (1½ in)	38,1 mm (1½ in)					48,3 mm (1,90 in)
	NPT 1½", Außengewinde	Verjüngt	41,3 mm (1 5/8 in)	25,4 mm (1 in)	6,6 mm (0,26 in)	6,35 mm (0,25 in)	-	NPT ½"	
		Gestuft	38,1 mm (1½ in)	22,23 mm (% in)					
	G½", Außenge- winde ¹⁾	Gerade	15,9 mm (5/8 in)	15,9 mm (5% in)	6,6 mm (0,26 in)	6,35 mm (0,25 in)	-	NPT ½"	31,75 mm (1¼ in)

Schutzrohrs- tandard	Prozessan- schluss	Geometrie der mediumbe- rührenden Teile	Wurzel-Ø D1	Spitzen-Ø D2	Bohr-Ø Di	Bodendi- cke B	Flanschs- tirnseite	Thermo- meteran- schluss Ge1	Schaft-Ø De1
		Gestuft	15,9 mm (5% in)	12,7 mm (½ in)					
		Gerade	19 mm (¾ in)	19 mm (¾ in)					
	G¾", Außenge- winde	Verjüngt	22,23 mm (% in)	15,9 mm (% in)	6,6 mm (0,26 in)	6,35 mm (0,25 in)	-	NPT ½"	38,1 mm (1½ in)
		Gestuft	19 mm (¾ in)	12,7 mm (½ in)					
	NPS ¾" , 26,7 mm		26,7 mm (1,05 in)	15,88 mm (0,625 in)					19,05 mm (³ / ₄ in)
	NPS 1", 33,4 mm		33,4 mm (1,31 in)	15,88 mm (0,625 in)			-	NPT ½"	25,4 mm (1 in)
Zöllig, ASME zum Ein- schweißen	NPS 1¼", 42,4 mm	Verjüngt	42,2 mm (1,66 in)	25,4 mm (1 in)	6,6 mm (0,26 in)	6,35 mm (0,25 in)			31,75(1 1/4 in)
scriweriseri	NPS 1½", 48,3 mm		48,3 mm (1,9 in)	28,58 mm (1 1/8 in)	-				38,1 mm(1 ½ in)
	1 3/8", hygie- nisch		34,9 mm (1 3/8 in)	15,9 mm (5% in)	-				34,92 mm(1 3/8 in)
	NPS ¾", 26,7 mm	Gerade	19 mm (¾ in)	19 mm (¾ in)	6,6 mm (0,26 in)	6,35 mm (0,25 in)	-	NPT ½"	19,05 mm (¾ in)
		Verjüngt	22,23 mm (% in)	15,9 mm (5% in)					
		Gestuft	19 mm (¾ in)	12,7 mm (½ in)					
	NPS 1", 33,4 mm	Gerade	25,4 mm (1 in)	25,4 mm (1 in)	6,6 mm (0,26 in)	6,35 mm (0,25 in)	-	NPT ½"	25,4 mm (1 in)
		Verjüngt	25,4 mm (1 in)	15,9 mm (5% in)					
Zöllig, ASME		Gestuft	22,23 mm (% in)	12,7 mm (½ in)					
mit Ein- schweißstutzen		Gerade	31,75 mm (1¼ in)	31,75 mm (1¼ in)				NPT ½"	31,75(1 1/4 in)
	NPS 1¾", 42,4 mm	Verjüngt	31,75 mm (1¼ in)	22,23 mm (⁷ / ₈ in)	6,6 mm (0,26 in)	6,35 mm (0,25 in)	-		
		Gestuft	31,75 mm (1¼ in)	22,23 mm (⁷ / ₈ in)	_				
		Gerade	38,1 mm (1½ in)	38,1 mm (1½ in)				NPT ½"	38,1 mm(1 ½ in)
	NPS 1½", 48,3 mm	Verjüngt	38,1 mm (1½ in)	22,23 mm (% in)	6,6 mm (0,26 in)	6,35 mm (0,25 in)			
		Gestuft	38,1 mm (1½ in)	22,23 mm (% in)					

¹⁾ Verjüngte Version nicht verfügbar


Thermometer mit Schutzrohr iTHERM TwistWell

Die vordefinierte Geometrie ergibt sich aus dem iTHERM TwistWell (Variante: D1 = 30 mm (1,18 in))

Schutzrohrtyp	Prozessan- schlussgröße	Geometrie der mediumbe- rührenden Teile	Wurzel-Ø D1	Spitzen-Ø D2	Bohr-Ø Di	Bodendi- cke B	Flanschs- tirnseite	Thermo- meteran- schluss Ge1	Schaft-Ø De1
iTHERM Twist- Well, geflanscht	Jede auswähl- bare Flansch- größe	Unbeströmte Länge	30 mm (1,18 in)	22 mm (0,87 in)	6,5 mm (0,26 in)	6 mm (0,24 in)	B1/RF	NPT ½"	30 mm (1,18 in)

Entlüftungsloch

1 Entlüftungsloch

Zertifikate und Zulassungen

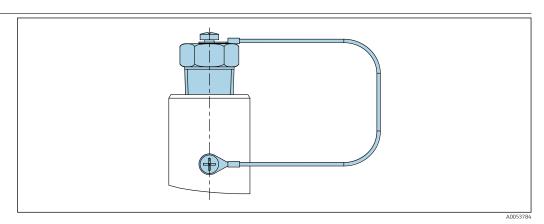
Aktuelle Zertifikate und Zulassungen zum Produkt stehen unter www.endress.com auf der jeweiligen Produktseite zur Verfügung:

- 1. Produkt mit Hilfe der Filter und Suchmaske auswählen.
- 2. Produktseite öffnen.
- 3. **Downloads** auswählen.

Bestellinformationen

Ausführliche Bestellinformationen sind bei der nächstgelegenen Vertriebsorganisation www.addresses.endress.com oder im Produktkonfigurator unter www.endress.com auswählbar:

- 1. Produkt mit Hilfe der Filter und Suchmaske auswählen.
- 2. Produktseite öffnen.


- 3. Konfiguration auswählen.
- Produktkonfigurator das Tool für individuelle Produktkonfiguration
 - Tagesaktuelle Konfigurationsdaten
 - Je nach Gerät: Direkte Eingabe von messstellenspezifischen Angaben wie Messbereich oder Bediensprache
 - Automatische Überprüfung von Ausschlusskriterien
 - Automatische Erzeugung des Bestellcodes mit seiner Aufschlüsselung im PDF- oder Excel-Ausgabeformat
 - Direkte Bestellmöglichkeit im Endress+Hauser Onlineshop

Zubehör

Aktuell verfügbares Zubehör zum Produkt ist über www.endress.com auswählbar:

- 1. Produkt mit Hilfe der Filter und Suchmaske auswählen.
- 2. Produktseite öffnen.
- 3. Ersatzteile und Zubehör auswählen.

Gerätespezifisches Zubehör

Blindstopfen f\u00fcr Schutzrohr und Kette

Onlinetools

Produktinformationen über den gesamten Lebenszyklus des Geräts sind erhältlich unter: www.endress.com/onlinetools

Dokumentation

Im Download-Bereich der Endress+Hauser Internetseite (www.endress.com/downloads) sind folgende Dokumenttypen je nach Geräteausführung verfügbar:

Dokumenttyp	Zweck und Inhalt des Dokuments
Technische Information (TI)	Planungshilfe für Ihr Gerät Das Dokument liefert alle technischen Daten zum Gerät und gibt einen Überblick, was rund um das Gerät bestellt werden kann.
Kurzanleitung (KA)	Schnell zum 1. Messwert Die Anleitung liefert alle wesentlichen Informationen von der Warenannahme bis zur Erstinbetriebnahme.
Betriebsanleitung (BA)	Ihr Nachschlagewerk Die Anleitung liefert alle Informationen, die in den verschiedenen Phasen des Lebenszyklus vom Gerät benötigt werden: Von der Produktidentifizie- rung, Warenannahme und Lagerung über Montage, Anschluss, Bedie- nungsgrundlagen und Inbetriebnahme bis hin zur Störungsbeseitigung, Wartung und Entsorgung.

Dokumenttyp	Zweck und Inhalt des Dokuments
Beschreibung Geräteparameter (GP)	Referenzwerk für Ihre Parameter Das Dokument liefert detaillierte Erläuterungen zu jedem einzelnen Parameter. Die Beschreibung richtet sich an Personen, die über den gesamten Lebenszyklus mit dem Gerät arbeiten und dabei spezifische Konfigurationen durchführen.
Sicherheitshinweise (XA)	Abhängig von der Zulassung liegen dem Gerät bei Auslieferung Sicherheitshinweise für elektrische Betriebsmittel in explosionsgefährdeten Bereichen bei. Diese sind integraler Bestandteil der Betriebsanleitung. Auf dem Typenschild ist angegeben, welche Sicherheitshinweise (XA) für das jeweilige Gerät relevant sind.
Geräteabhängige Zusatzdokumentation (SD/FY)	Anweisungen der entsprechenden Zusatzdokumentation konsequent beachten. Die Zusatzdokumentation ist fester Bestandteil der Dokumen- tation zum Gerät.

www.addresses.endress.com

