Betriebsanleitung **Prosonic S FMU95 PROFIBUS DP**

Ultraschallmesstechnik Füllstandsmessung 5 oder 10 Sensoren

Inhaltsverzeichnis

T	Wichtige Hinweise zum Dokument 4
1.1 1.2 1 3	Dokumentfunktion4Verwendete Symbole4Dokumentation6
1.4	Eingetragene Marken
2	Grundlegende Sicherheitshinweise 7
2.1 2.2 2.3	Bestimmungsgemäße Verwendung7Montage, Inbetriebnahme, Bedienung7Betriebssicherheit und Prozesssicherheit7
3	Produktbeschreibung 8
3.1 3.2 3.3 3.4	Produktaufbau: Feldgehäuse Polycarbonat
,	
4	fizierung 11
41	Warenannahme 11
4.2 4.3	Produktidentifizierung
5	Montage 13
5.1	Montage Feldgehäuse Polycarbonat 13
5.2 5.3	Montage Feldgehause Aluminium 15 Montage Hutschienengehäuse 17
5.4	Montage abassetztes Anzeige- und Bedien-
	montage abgesetztes Anzeige und Deuten
5.5	modul
5.5 5.6	modul18Montage der Sensoren19Montagekontrolle19
5.5 5.6 6	modul18Montage der Sensoren19Montagekontrolle19Elektrischer Anschluss20
5.5 5.6 6 6.1	modul 18 Montage der Sensoren 19 Montagekontrolle 19 Elektrischer Anschluss 20 Anschlussbedingungen 20 Garät angebließen 20
5.5 5.6 6 6.1 6.2 6.3	modul18Montage der Sensoren19Montagekontrolle19Elektrischer Anschluss20Anschlussbedingungen20Gerät anschließen20Spezielle Anschlusshinweise24
5.5 5.6 6 6.1 6.2 6.3 7	modul18Montage der Sensoren19Montagekontrolle19Elektrischer Anschluss20Anschlussbedingungen20Gerät anschließen20Spezielle Anschlusshinweise24Bedienmöglichkeiten37
5.5 5.6 6 6.1 6.2 6.3 7.1	modul
5.5 5.6 6 6.1 6.2 6.3 7 7.1 7.2	modul18Montage abgesetztes Anzeige und Bedienmodul18Montage der Sensoren19Montagekontrolle19Elektrischer Anschluss20Gerät anschließen20Gerät anschließen20Spezielle Anschlusshinweise24Bedienmöglichkeiten37Aufbau und Funktionsweise des Bedienmenüs37Zugriff auf das Bedienmenü via Vor-Ort- Anzeige38
5.5 5.6 6 6.1 6.2 6.3 7 7.1 7.2 8	modul18Montage abgesetztes Anzeige und Bedienmodul18Montage der Sensoren19Montagekontrolle19Elektrischer Anschluss20Anschlussbedingungen20Gerät anschließen20Spezielle Anschlusshinweise24Bedienmöglichkeiten37Aufbau und Funktionsweise des Bedienmenüs37Zugriff auf das Bedienmenü via Vor-Ort- Anzeige38Systemintegration42
5.5 5.6 6 6.1 6.2 6.3 7 7.1 7.2 8 8.1	modul

9	Inbetriebnahme	45
9.1	Vorbereitungen	45
9.2	Messgerät einschalten	45
9.3	Messgerät konfigurieren	45
9.4	Erweiterte Einstellungen	52
9.5	Simulation	57
9.0		57
	Zugiiii	וכ
10	Diagnose und Störungsbehebung	59
10.1	Allgemeine Störungsbehebung	59
10.2	Übersicht zu Diagnoseinformationen	62
10.3	Firmware-Historie	66
11	Wartung	67
11.1	Außenreinigung	67
		•
12	Reparatur	68
12.1	Allgemeine Hinweise	68
12.2	Ersatzteile	68
12.3	Rücksendung	69
12.4	Entsorgung	69
12	7uhehör	70
10.1		70
13.1 12.2	Kommunikationsspezifisches Zubehör	70
15.2	Geratespezifisches Zubenor	70
14	Bedienmenü	74
14 1	Menü "Füllstand → Füllstand (FST N)"	74
14.2	Menü "Sicherheitseinstellungen"	75
14.3	Übersicht Menü "Ausgänge/Berech." (PROFI-	
	BUS DP)	75
14.4	Übersicht Menü "Gerätekonfig."	76
14.5	Menü "Diagnose/Info"	76
14.6	Menü "Anzeige"	77
14.7	Menü "Sensorverwaltung"	78

1 Wichtige Hinweise zum Dokument

1.1 Dokumentfunktion

Diese Anleitung liefert alle Informationen, die in den verschiedenen Phasen des Lebenszyklus des Geräts benötigt werden:

- Produktidentifizierung
- Warenannahme
- Lagerung
- Montage
- Anschluss
- Bedienungsgrundlagen
- Inbetriebnahme
- Störungsbeseitigung
- Wartung
- Entsorgung

1.2 Verwendete Symbole

1.2.1 Warnhinweissymbole

GEFAHR

Dieser Hinweis macht auf eine gefährliche Situation aufmerksam, die, wenn sie nicht vermieden wird, zu Tod oder schwerer Körperverletzung führen wird.

WARNUNG

Dieser Hinweis macht auf eine gefährliche Situation aufmerksam, die, wenn sie nicht vermieden wird, zu Tod oder schwerer Körperverletzung führen kann.

A VORSICHT

Dieser Hinweis macht auf eine gefährliche Situation aufmerksam, die, wenn sie nicht vermieden wird, zu leichter oder mittelschwerer Körperverletzung führen kann.

HINWEIS

Dieser Hinweis enthält Informationen zu Vorgehensweisen und weiterführenden Sachverhalten, die keine Körperverletzung nach sich ziehen.

1.2.2 Elektrische Symbole

\sim

Wechselstrom

Gleich- und Wechselstrom

_ _ _

Gleichstrom

÷

Erdanschluss

Eine geerdete Klemme, die vom Gesichtspunkt des Benutzers über ein Erdungssystem geerdet ist.

🖶 Schutzerde (PE: Protective earth)

Erdungsklemmen, die geerdet werden müssen, bevor andere Anschlüsse hergestellt werden dürfen.

Die Erdungsklemmen befinden sich innen und außen am Gerät:

- Innere Erdungsklemme: Schutzerde wird mit dem Versorgungsnetz verbunden.
- Äußere Erdungsklemme: Gerät wird mit dem Erdungssystem der Anlage verbunden.

1.2.3 Werkzeugsymbole

€ Kreuzschlitzschraubendreher

• Schlitzschraubendreher

O 🖉 Torxschraubendreher

⊖ ∉ Innensechskantschlüssel

ିଏ Gabelschlüssel

1.2.4 Symbole für Informationstypen und Grafiken

🖌 Erlaubt

Abläufe, Prozesse oder Handlungen, die erlaubt sind

V Zu bevorzugen

Abläufe, Prozesse oder Handlungen, die zu bevorzugen sind

Verboten Abläufe, Prozesse oder Handlungen, die verboten sind

Tipp Kennzeichnet zusätzliche Informationen

Verweis auf Dokumentation

Verweis auf Abbildung

►

Zu beachtender Hinweis oder einzelner Handlungsschritt

1., 2., 3.

Handlungsschritte

L Ergebnis eines Handlungsschritts

Sichtkontrolle

Bedienung via Bedientool

Schreibgeschützter Parameter

1, 2, 3, ... Positionsnummern

A, B, C, ... Ansichten

$\underline{\mathbf{A}} \rightarrow \mathbf{\mathbf{B}}$ Sicherheitshinweis

Beachten Sie die Sicherheitshinweise in der zugehörigen Betriebsanleitung

Temperaturbeständigkeit Anschlusskabel Gibt den Mindestwert für die Temperaturbeständigkeit der Anschlusskabel an

1.3 Dokumentation

Im Download-Bereich der Endress+Hauser Internetseite (www.endress.com/downloads) sind folgende Dokumenttypen verfügbar:

Eine Übersicht zum Umfang der zugehörigen Technischen Dokumentation bieten:

- W@M Device Viewer (www.endress.com/deviceviewer): Seriennummer vom Typenschild eingeben
 - *Endress+Hauser Operations App*: Seriennummer vom Typenschild eingeben oder 2D-Matrixcode (QR-Code) auf dem Typenschild einscannen

1.3.1 Technische Information (TI)

Planungshilfe

Das Dokument liefert alle technischen Daten zum Gerät und gibt einen Überblick, was rund um das Gerät bestellt werden kann.

1.3.2 Kurzanleitung (KA)

Schnell zum 1. Messwert

Die Anleitung liefert alle wesentlichen Informationen von der Warenannahme bis zur Erstinbetriebnahme.

1.3.3 Sicherheitshinweise (XA)

Abhängig von der Zulassung liegen dem Gerät bei Auslieferung Sicherheitshinweise (XA) bei. Diese sind integraler Bestandteil der Betriebsanleitung.

Auf dem Typenschild ist angegeben, welche Sicherheitshinweise (XA) für das jeweilige Gerät relevant sind.

1.4 Eingetragene Marken

PROFIBUS®

Eingetragene Marke der PROFIBUS Nutzerorganisation e.V., Karlsruhe, Deutschland

2 Grundlegende Sicherheitshinweise

2.1 Bestimmungsgemäße Verwendung

Prosonic S FMU95 ist ein Messumformer für die Ultraschallsensoren FDU90, FDU91, FDU91F, FDU92, FDU93 und FDU95. Um bestehende Installationen zu unterstützen, können auch folgende Sensoren angeschlossen werden: FDU80, FDU80F, FDU81, FDU81F, FDU82, FDU83, FDU84, FDU85, FDU86, FDU96.

Typische Messaufgaben

- Anzeige von bis zu 10 Messwerten
- Störechoausblendung für jeden der angeschlossenen Sensoren
- Linearisierung für jeden angeschlossenen Sensor individuell parametrierbar
- Parametrierbare Summen- und Mittelwertberechnung
- Messwertübertragung über PROFIBUS DP

2.2 Montage, Inbetriebnahme, Bedienung

Das Gerät ist nach dem Stand der Technik betriebssicher gebaut und berücksichtigt die einschlägigen Vorschriften und EU-Richtlinien. Wenn es jedoch unsachgemäß oder nicht bestimmungsgemäß eingesetzt wird, können von ihm applikationsbedingte Gefahren ausgehen, z.B. Produktüberlauf durch falsche Montage bzw. Einstellung. Deshalb darf Montage, elektrischer Anschluss, Inbetriebnahme, Bedienung und Wartung der Messeinrichtung nur durch ausgebildetes Fachpersonal erfolgen, das vom Anlagenbetreiber dazu autorisiert wurde. Das Fachpersonal muss diese Betriebsanleitung gelesen und verstanden haben und die Anweisungen befolgen. Veränderungen und Reparaturen am Gerät dürfen nur vorgenommen werden, wenn dies die Betriebsanleitung ausdrücklich zulässt.

2.3 Betriebssicherheit und Prozesssicherheit

Während Parametrierung, Prüfung und Wartungsarbeiten am Gerät müssen zur Gewährleistung der Betriebssicherheit und Prozesssicherheit alternative überwachende Maßnahmen ergriffen werden.

2.3.1 Explosionsgefährdeter Bereich

Bei Einsatz des Messsystems in explosionsgefährdeten Bereichen sind die entsprechenden nationalen Normen einzuhalten. Dem Gerät liegt eine separate Ex-Dokumentation bei, die ein fester Bestandteil dieser Dokumentation ist. Die darin aufgeführten Installationsvorschriften, Anschlusswerte und Sicherheitshinweise sind zu beachten.

- Es ist sicherzustellen, dass das Fachpersonal ausreichend ausgebildet ist.
- Die messtechnischen und sicherheitstechnischen Auflagen an die Messstellen sind einzuhalten.

Der Messumformer darf nur in geeigneten Bereichen montiert werden. Sensoren mit Zulassung für explosionsgefährdete Bereiche dürfen an Messumformer ohne Ex-Zulassung angeschlossen werden.

3 Produktbeschreibung

3.1 Produktaufbau: Feldgehäuse Polycarbonat

Gültig für:

Bestellmerkmal 030 (Gehäuse, Werkstoff) Option 1 (Feldmontage PC, IP66 NEMA4x)

🖻 1 🛛 Aufbau Prosonic S im Feldgehäuse Polycarbonat

- 1 Anschlussklemmen
- 2 Gerätebezeichnung und -identifizierung
- 3 Gehäusehalter
- 4 Typenschild
- 5 Deckel des Anschlussraums
- 6 Anzeige- und Bedienmodul
- 7 Vorgeprägte Öffnungen für Kabeleinführungen
- 8 Erdungsklemmenblock
- 9 Display-Kabel
- 10 Kurzanleitung

3.2 Produktaufbau: Feldgehäuse Aluminium

Gültig für:

Bestellmerkmal 030 (Gehäuse, Werkstoff) Option 3 (Feldmontage Aluminium, IP66 NEMA4x)

- 🖻 2 🔹 Aufbau Prosonic S im Feldgehäuse Aluminium
- 1 Feldgehäuse Aluminium, geöffnet
- 2 Typenschild
- 3 Anschlussklemme für Potentialausgleich (Schutzerde)
- 4 Anzeige- und Bedienmodul
- 5 Feldgehäuse Aluminium, geschlossen

3.3 Produktaufbau: Hutschienengehäuse

Gültig für:

Bestellmerkmal 030 (Gehäuse, Werkstoff) Option 2 (Hutschienenmontage PBT, IP20)

- Aufbau Prosonic S im Hutschienengehäuse
- 1 Anzeige- und Bedienmodul
- 2 Deckel des Anschlussraums
- 3 Typenschild
- 4 Gerätebezeichnung und -identifizierung
- 5 Kurzanleitung
- Display-Kabel
 Anschlussklemmen

3.4 Produktaufbau: Abgesetztes Anzeige- und Bedienmodul für Schaltschranktür- und Schalttafeleinbau

Gültig für:

Bestellmerkmal 040 (Bedienung) Option E (Beleuchtete Anzeige + Tastenfeld, 96x96, Schalttafeleinbau, Front IP65)

🖲 4 Aufbau Prosonic S mit abgesetztem Anzeige- und Bedienmodul

- 1 Hutschienengehäuse ohne Anzeige- und Bedienmodul
- 2 Abgesetztes Anzeige- und Bedienmodul zur Montage im Schaltschrank
- *3 Kabel (3m [9.8 ft]) ist im Lieferumfang enthalten*

Das Bild zeigt eine mögliche Ausführung des Hutschienengehäuses. Je nach Geräteausführung ist das Gehäuse schmaler oder breiter.

4 Warenannahme und Produktidentifizierung

4.1 Warenannahme

Bei Warenannahme prüfen:

- Bestellcode auf Lieferschein und Produktaufkleber identisch?
- Ware unbeschädigt?
- Entsprechen Typenschilddaten den Bestellangaben auf dem Lieferschein?
- Falls erforderlich (siehe Typenschild): Sind die Sicherheitshinweise (XA) vorhanden?

Wenn eine dieser Bedingungen nicht zutrifft: Wenden Sie sich an Ihre Endress+Hauser-Vertriebsstelle.

4.2 Produktidentifizierung

Folgende Möglichkeiten stehen zur Identifizierung des Messgeräts zur Verfügung:

- Typenschildangaben
- Bestellcode (Order code) mit Aufschlüsselung der Gerätemerkmale auf dem Lieferschein
 Seriennummer vom Typenschild in W@M Device Viewer eingeben
- (www.endress.com/deviceviewer): Alle Angaben zum Messgerät werden angezeigt.
- Seriennummer vom Typenschild in die *Endress+Hauser Operations App* eingeben oder mit der *Endress+Hauser Oprations App* den 2-D-Matrixcode (QR-Code) auf dem Typenschild scannen: Alle Angaben zum Messgerät werden angezeigt.

4.2.1 Typenschild

☑ 5 Typenschild

- 1 Schutzart
- 2 2-D-Matrixcode (QR-Code)
- 3 Verweis auf zusätzliche sicherheitsrelevante Dokumentation
- 4 Kennzeichnung nach ATEX Richtlinie 2014/34/EG und Zündschutzart
- 5 Seriennummer

4.3 Lagerung, Transport

- Für Lagerung und Transport das Messgerät stoßsicher verpacken. Dafür bietet die Originalverpackung optimalen Schutz.
- Zulässige Lagerungstemperatur: -40 ... +60 °C (-40 ... 140 °F)

5 Montage

5.1 Montage Feldgehäuse Polycarbonat

Gültig für:

Bestellmerkmal 030 (Gehäuse, Werkstoff) Option 1 (Feldmontage PC, IP66 NEMA4x)

5.1.1 Montagebedingungen

Abmessungen Feldgehäuse Polycarbonat

🖻 6 Abmessungen Prosonic S mit Feldgehäuse Polycarbonat. Maßeinheit mm (in)

- A Gehäusehalter (im Lieferumfang enthalten), dient auch als Bohrschablone
- B Feldgehäuse Polycarbonat
- C Minimaler Montageabstand

Den Gehäusehalter auf einer ebenen Unterlage montieren, so dass er sich nicht verformt. Ansonsten ist die Montage des Feldgehäuses Polycarbonat erschwert oder unmöglich.

Montageort

- Sonnengeschützte Stelle, gegebenenfalls Wetterschutzhaube verwenden.
- Bei Montage im Freien: Überspannungsschutz verwenden.
- Montagehöhe: Maximal 2 000 m (6 560 ft) über Normalhöhennull
- Mindestabstand nach links: 55 mm (2,17 in); sonst lässt sich der Gehäusedeckel nicht öffnen.

5.1.2 Gerät montieren

Wandmontage

- Der mitgelieferte Gehäusehalter dient auch als Bohrschablone.
- Gehäusehalter auf ebener Unterlage montieren, so dass er sich nicht verformt.

Image: Wandmontage Feldgehäuse Polycarbonat

1 Gehäusehalter (im Lieferumfang enthalten)

Mastmontage

🖻 8 Montageplatte für die Mastmontage des Feldgehäuses Polycarbonat

1 Gehäusehalter (im Lieferumfang enthalten)

5.2 Montage Feldgehäuse Aluminium

Gültig für:

Bestellmerkmal 030 (Gehäuse, Werkstoff) Option 3 (Feldmontage Aluminium, IP66 NEMA4x)

5.2.1 Montagebedingungen

Abmessungen Feldgehäuse Aluminium

Abmessungen Prosonic S mit Feldgehäuse Aluminium. Maßeinheit mm (in)

Montageort

- Sonnengeschützte Stelle
- Bei Montage im Freien: Überspannungsschutz verwenden
- Montagehöhe: Maximal 2 000 m (6 560 ft) über Normalhöhennull
- Mindestabstand nach links: 55 mm (2,17 in), sonst lässt sich der Gehäusedeckel nicht öffnen

5.2.2 Gerät montieren

5.3 Montage Hutschienengehäuse

Gültig für:

Bestellmerkmal 030 (Gehäuse, Werkstoff) Option 2 (Hutschienenmontage PBT, IP20)

WARNUNG

Das Hutschienengehäuse entspricht Schutzklasse IP06.

Bei beschädigtem Gehäuse: Stromschlaggefahr an spannungsführenden Teilen.

• Gerät in einem stabilen Schaltschrank installieren.

5.3.1 Montagebedingungen

Abmessungen

🗷 11 Abmessungen Prosonic S mit Hutschienengehäuse. Maßeinheit mm (in)

Montageort

- In Schaltschrank außerhalb explosionsgefährdeter Bereiche
- In ausreichender Entfernung von Hochspannungs- oder Motorleitungen sowie Schaltschützen oder Frequenzumrichtern
- Montagehöhe: Maximal 2000 m (6560 ft) über Normalhöhennull
- Mindestabstand nach links: 10 mm (0,4 in); sonst lässt sich der Gehäusedeckel nicht öffnen.

5.3.2 Gerät montieren

🖻 12 Montage/Demontage Hutschienengehäuse. Maßeinheit mm (in)

B Demontage

A Montage

5.4 Montage abgesetztes Anzeige- und Bedienmodul

Gültig für:

Bestellmerkmal 040 (Bedienung) Option E (Beleuchtete Anzeige + Tastenfeld, 96x96, Schalttafeleinbau, Front IP65)

5.4.1 Montagevarianten

Montage in geeigneter Montageöffnung

🗉 13 Montageöffnung für abgesetztes Anzeige- und Bedienmodul. Maßeinheit mm (in)

Montage in abgesetzter Anzeige von Prosonic FMU860/861/862

- Diese Montagevariante ist geeignet, wenn FMU9x das Vorgängergerät FMU86x ersetzt (beide mit abgesetztem Anzeigemodul).
- Bestellnummer Adapterplatte: 52027441

14 Montage in abgesetzter Anzeige von FMU860/861/862

- 1 Abgesetzte Anzeige des Prosonic S mit Adapterplatte
- 2 Öffnung der abgesetzten Anzeige des FMU860/861/862

5.4.2 Gerät montieren

Lieferumfang

- Anzeige- und Bedienmodul 96 x 96 mm (3,78 x 3,78 in)
- 4 Halteklammern mit zugehörigen Muttern und Schrauben
- Anschlusskabel (3 m (9,8 ft)) zum Anschluss an den Messumformer (vorkonfektioniert mit passenden Steckern)

Montageanleitung

🖻 15 Montage abgesetztes Anzeige- und Bedienmodul

A003256

5.5 Montage der Sensoren

Weiterführende Informationen und aktuell verfügbare Dokumentationen auf der Endress+Hauser- Internetseite: www.endress.com → Downloads.

- Dokumentationen der Sensoren:
- TI01469F (FDU90)
- TI01470F (FDU91)
- TI01471F (FDU91F)
- TI01472F (FDU92)
- TI01473F (FDU93)
- TI01474F (FDU95)

Die Sensoren FDU80/80F/81/81F/82/83/84/85/86/96 sind nicht mehr bestellbar. Bei bestehender Installation der Sensoren, kann der Messumformer Prosonic S weiterhin angeschlossen werden.

5.6 Montagekontrolle

Nach der Montage folgende Kontrollen durchführen:

□ Ist das Gerät unbeschädigt (Sichtkontrolle)?

□ Entspricht das Gerät den Messstellenspezifikationen wie Prozesstemperatur, -druck, Umgebungstemperatur, Messbereich usw.

□ Falls vorhanden: Sind Messstellennummer und Beschriftung korrekt?

□ Ist das Messgerät gegen Niederschlag und direkte Sonneneinstrahlung ausreichend geschützt?

🗆 Beim Feldgehäuse: Sind die Kabelverschraubungen korrekt angezogen?

□ Sitzt das Gerät fest auf der Hutschiene bzw. ist das Gerät ordnungsgemäß auf der Feldgehäusehalterung montiert (Sichtkontrolle)?

□ Sind beim Feldgehäuse die Deckelschrauben des Anschlussraumdeckels fest angezogen (Sichtkontrolle)?

6 Elektrischer Anschluss

6.1 Anschlussbedingungen

6.1.1 Kabelspezifikation

- Leiterquerschnitt: 0,2 ... 2,5 mm² (26 ... 14 AWG)
- Querschnitt der Adernhülse: 0,25 ... 2,5 mm² (24 ... 14 AWG)
- Min. Abisolierlänge: 10 mm (0,39 in)

6.2 Gerät anschließen

6.2.1 Klemmenraum Feldgehäuse Polycarbonat

🛐 Gültig für:

Bestellmerkmal 030 (Gehäuse, Werkstoff) Option 1 (Feldmontage PC, IP66 NEMA4x)

Zugang zum Klemmenraum

🖻 16 Zugang zum Klemmenraum im Feldgehäuse Polycarbonat

🖻 17 Zur einfacheren Verdrahtung: Deckel vom Feldgehäuse trennen

Kabeleinführungen

Vorgeprägte Öffnungen auf der Unterseite für folgende Kabeleinführungen:

- M20x1,5 (10 Öffnungen)
- M16x1,5 (5 Öffnungen)
- M25x1,5 (1 Öffnung)

Zum Ausschneiden der Öffnungen ein geeignetes Schneidewerkzeug verwenden.

6.2.2 Klemmenraum Feldgehäuse Aluminium

Gültig für:

Bestellmerkmal 030 (Gehäuse, Werkstoff) Option 3 (Feldmontage Aluminium, IP66 NEMA4x)

WARNUNG

Um Explosionsschutz sicherzustellen:

- Beachten, dass sich alle Anschlüsse im Feldgehäuse befinden. (Ausnahme: Klemme für Schutzerde auf der Außenseite des Feldgehäuses)
- ► Gehäuse mit lokalem Erdpotential (PAL) verbinden.
- ► Zum Durchführen der Kabel: Nur Kabelverschraubungen verwenden, die die Anforderungen an die Zündschutzart am Einsatzort erfüllen.

Zugang zum Klemmenraum

🖻 18 Zugang zum Klemmenraum im Feldgehäuse Aluminium

- 1 Feldgehäuse Aluminium, geöffnet
- 2 Typenschild
- 3 Anschlussklemme für Schutzerde
- 4 Anzeige- und Bedienmodul
- 5 Feldgehäuse Aluminium, geschlossen

Kabeleinführungen

- Auf der Unterseite des Feldgehäuses befinden sich 12 Öffnungen M20x1,5 für Kabeleinführungen.
- Für den elektrischen Anschluss: Kabel durch die Kabeleinführungen in das Gehäuse führen. Der Anschluss erfolgt dann wie beim Hutschienengehäuse.

6.2.3 Klemmenraum Hutschienengehäuse

📔 Gültig für:

Bestellmerkmal 030 (Gehäuse, Werkstoff) Option 2 (Hutschienenmontage PBT, IP20)

Zugang zum Klemmenraum

🗟 19 Zugang zum Klemmenraum bei einem einzelnen Hutschienengehäuse

🖻 20 🛛 Zugang zum Klemmenraum bei nebeneinander montierten Hutschienengehäusen

6.2.4 Klemmenbelegung

Klemmentyp

Prosonic S hat steckbare Federkraftklemmen. Starre Leiter oder flexible Leiter mit Aderendhülse können ohne Betätigung des Hebelöffners direkt in die Klemmstelle eingeführt werden und kontaktieren dort selbstständig.

Anschlussfelder

21 Anschlussfelder Prosonic S FMU95

Klemmen für Hilfsenergie (AC-Ausführung)

- Klemme 1: L (90 ... 253 V_{AC})
- Klemme 2: N
- Klemme 3: Potenzialausgleich
- Fuse: Sicherung 400 mA T

Klemmen für Hilfsenergie (DC-Ausführung)

- Klemme 1: L+ (10,5 ... 32 V_{DC})
- Klemme 2: L-
- Klemme 3: Potenzialausgleich
- Fuse: Sicherung 2AT

Klemmen für Füllstandeingänge

In allen Geräteausführungen

- Sensor 1: Klemmen 9(gelb), 10 (schwarz), 11 (rot)
- Sensor 2: Klemmen 12(gelb), 13 (schwarz), 14(rot)
- Sensor 3: Klemmen 15(gelb), 16 (schwarz), 17(rot)
- Sensor 4: Klemmen 18(gelb), 19 (schwarz), 20(rot)
- Sensor 5: Klemmen 21(gelb), 22 (schwarz), 23(rot)

In Geräteausführungen mit 10 Sensoreingängen

- Sensor 6: Klemmen 24(gelb), 25 (schwarz), 26 (rot)
- Sensor 7: Klemmen 27(gelb), 28 (schwarz), 29(rot)
- Sensor 8: Klemmen 30(gelb), 31 (schwarz), 32(rot)
- Sensor 9: Klemmen 33(gelb), 34 (schwarz), 35(rot)
- Sensor 10: Klemmen 36(gelb), 37 (schwarz), 38(rot)

Klemmen für Synchronisierung

Klemmen 39, 40: Synchronisierung mehrerer Messumformer Prosonic S

Klemmen für PROFIBUS DP

- Klemme 65: PROFIBUS A (RxT/TxD N)
- Klemme 66: PROFIBUS B (RxT/TxD P)

Weitere Elemente auf den Anschlussfeldern

- Display
 - Anschluss des Displays bzw. des abgesetzten Anzeige- und Bedienmoduls
- Service
- Service-Schnittstelle; zum Anschluss eines PC/Notebooks über die Commubox FXA291 • ពិតំ
- Verriegelungsschalter: Verriegelt das Gerät gegen Konfigurationsänderungen.
- Term.
- Busterminierung
- Address Busadresse des Geräts

6.3 Spezielle Anschlusshinweise

6.3.1 Anschluss Hilfsenergie

AVORSICHT

Um elektrische Sicherheit zu gewährleisten:

- Die Stromversorgungskabel fest verlegen, sodass sie permanent mit der elektrischen Gebäudeinstallation verbunden sind.
- Bei Anschluss an das öffentliche Versorgungsnetz einen Netzschalter für das Gerät leicht erreichbar in der Nähe des Gerätes installieren. Den Schalter als Trennvorrichtung für das Gerät kennzeichnen (IEC/EN61010).
- Bei Der Ausführung 90-253VAC: Potenzialausgleich anschließen
- Vor dem Anschließen die Versorgungsspannung ausschalten.

Anschluss Hilfsenergie im Feldgehäuse Polycarbonat

Gültig für:

Bestellmerkmal 030 (Gehäuse, Werkstoff) Option 1 (Feldmontage PC, IP66 NEMA4x)

🖻 22 Anschluss Hilfsenergie im Feldgehäuse Polycarbonat

- 1 Klemmenblock im Feldgehäuse für Potenzialausgleich
- 2 Potenzialausgleich; bei Auslieferung verdrahtet

Anschluss Hilfsenergie im Feldgehäuse Aluminium

Bestellmerkmal 030 (Gehäuse, Werkstoff) Option 3 (Feldmontage Aluminium, IP66 NEMA4x)

WARNUNG

Stromschlaggefahr und Explosionsgefahr

► Das Feldgehäuse Aluminium über die Schutzleiterklemme mit Schutzerde (PE) und/ oder lokalem Erdpotential (PAL) verbinden.

🗷 23 Anschluss der Hilfsenergie im Feldgehäuse Aluminium

- 1 Potenzialausgleich im Feldgehäuse Aluminium; bei Auslieferung verdrahtet
- 2 Schutzleiter-Reihenklemmen (mit Kontakt zur Hutschiene)
- 3 Schutzleiterklemme an der Außenseite des Feldgehäuses
- 4 Hilfsenergie

Anschluss Hilfsenergie im Hutschienengehäuse

Bestellmerkmal 030 (Gehäuse, Werkstoff) Option 2 (Hutschienenmontage PBT, IP20)

🖻 24 Anschluss Hilfsenergie im Hutschienengehäuse

- 1 Metallische Hutschiene im Schaltschrank
- 2 Reihenklemmen (ohne Kontakt zur Hutschiene)
- 3 Schutzleiter-Reihenklemmen (mit Kontakt zur Hutschiene)
- 4 Erdung über Hutschiene

6.3.2 Anschluss an ein PROFIBUS DP-Netzwerk

Informationen zum Aufbau eines PROFIBUS DP-Netzwerkes: Betriebsanleitung BA00034S, "PROFIBUS DP/PA - Leitfaden zur Projektierung und Inbetriebnahme"

Kabelspezifikation

Für Übertragungsraten bis 12 Mbit/s Kabeltyp A nach EN 50170 verwenden.

- Wellenwiderstand: 135 ... 165 Ω bei einer Messfrequenz von 3 ... 20 MHz
- Kabelkapazität: < 30 pF/m
- Aderquerschnitt: > 0,34 mm² (22 AWG)
- Adern: paarweise verdrillt, 1x2, 2x2 oder 1x4 Leiter
- Schleifenwiderstand: 110 Ω/km
- Signaldämpfung: < 9 dB über die ganze Länge des Leitungsabschnitts
- Abschirmung: Kupfer-Geflechtschirm oder Geflechtschirm und Folienschirm

i

Vorkonfektionierte Kabel sind von Endress+Hauser erhältlich.

T-Verteilerbox

Es wird empfohlen, die Anbindung des Prosonic S mithilfe von T-Verteilerboxen zu realisieren.

Geeignete Verteilerboxen sind von Endress+Hauser erhältlich.

Stichleitungen

Hinweise zu Stichleitungen

- Als Stichleitung wird die Leitung zwischen Anschlusstecker und Bustreiber im Feldgerät bezeichnet.
- Gesamtlänge aller Stichleitungen < 6,6 m (22 ft) bei max. 1,5 Mbit/s
- Stichleitungen dürfen keinen Busabschluss besitzen.
- Bei Übertragungsraten > 1,5 Mbit/s sollten keine Stichleitungen verwendet werden.
- Anlagenerfahrungen haben gezeigt, dass bei der Projektierung von Stichleitungen sehr vorsichtig vorgegangen werden sollte. Es kann nicht davon ausgegangen werden, dass bei 1,5 Mbit/s die Summe aller Stichleitungen 6,6 m (22 ft) ergeben darf. Die jeweilige Anordnung der Feldgeräte hat hierauf großen Einfluss.

6.3.3 Anschluss Sensoren

AVORSICHT

Einschränkung der elektrischen Sicherheit durch mangelhaften Potenzialausgleich

 Den gelb-grünen Schutzleiter der Sensoren FDU91F, FDU93 und FDU95 nach maximal 30 m (98 ft) an den örtlichen Potenzialausgleich anschließen. Dies kann geschehen: in einem Klemmenkasten, am Messumformer oder im Schaltschrank.

HINWEIS

Mögliche Funktionsstörungen durch Interferenzen

 Sensorkabel nicht parallel zu Hochspannungs- oder Starkstromkabeln und nicht in der Nähe von Frequenzumrichtern verlegen.

HINWEIS

Funktionsstörung durch unterbrochenen Kabelschirm

- ► Bei vorkonfektionierten Kabeln: Die schwarze Ader (Schirm) an die Klemme "BK" anschließen.
- ▶ Bei Verlängerungskabeln: Den Schirm verdrillen und an die Klemme "BK" anschließen.

WARNUNG

Explosionsgefahr

► Für die Sensoren FDU91F/93/95/96 und FDU83/84/85/86: Die Erdungsleitung (GNYE) nach maximal 30 m (98 ft) an den örtlichen Potenzialausgleich anschließen. Dies kann im Klemmenkasten geschehen oder am Messumformer bzw. im Schaltschrank, falls der Sensor nicht mehr als 30 m (98 ft) entfernt ist.

HINWEIS

Die Auswertelektronik und deren direkte Anschlüsse (Display-/Service-Stecker, Service-Interface etc.) sind galvanisch von der Stromversorgung und der Kommunikation getrennt und liegen auf dem Potential der Sensorelektronik.

- Potentialdifferenz bei geerdeten Sensoren beachten.
- Beim Entfernen des Mantels vom Sensorkabel die größte benötigte Kabellänge berücksichtigen.

Weiterführende Informationen und aktuell verfügbare Dokumentationen auf der Endress+Hauser- Internetseite: www.endress.com → Downloads.

Dokumentationen der Sensoren:

- TI01469F (FDU90)
- TI01470F (FDU91)
- TI01471F (FDU91F)
- TI01472F (FDU92)
- TI01473F (FDU93)
- TI01474F (FDU95)

Die Sensoren FDU80/80F/81/81F/82/83/84/85/86/96 sind nicht mehr bestellbar. Bei bestehender Installation der Sensoren, kann der Messumformer Prosonic S weiterhin angeschlossen werden.

Anschlussdiagramm FDU9x → FMU95

- 25 Anschlussdiagramm Sensoren FDU9x; YE: gelb, BK: schwarz; RD: rot; BU: blau; BN: braun; GNYE: grüngelb
- A Erdung am Klemmenkasten
- B Erdung am Messumformer FMU95
- 1 Abschirmung des Sensorkabels
- 2 Klemmenkasten
- 3 Abschirmung des Verlängerungskabels

Potenzialausgleich metallischer Sensoren im Feldgehäuse Polycarbonat

Gültig für:

Bestellmerkmal 030 (Gehäuse, Werkstoff) Option 1 (Feldmontage PC, IP66 NEMA4x)

Gültig für folgende Sensoren

- FDU91F
- FDU93
- FDU95

Diese Sensoren sind nicht mehr erhältlich, können aber in bestehenden Installationen an Prosonic S angeschlossen werden.

- FDU96
- FDU83
- FDU84
- FDU85
- FDU86

🖻 26 🛛 Potenzialausgleich metallischer Sensoren im Feldgehäuse Polycarbonat

- 1 FDU91F/93/95/96 (FDU83/84/85/86)
- 2 Klemmenblock im Feldgehäuse für Potenzialausgleich
- 3 Potenzialausgleich Versorgungsspannung; bei Auslieferung verdrahtet.

Potenzialausgleich meatllischer Sensoren im Feldgehäuse Aluminium

Bestellmerkmal 030 (Gehäuse, Werkstoff) Option 3 (Feldmontage Aluminium, IP66 NEMA4x)

Gültig für folgende Sensoren

- FDU91F
- FDU93
- FDU95

Diese Sensoren sind nicht mehr erhältlich, können aber in bestehenden Installationen an Prosonic S angeschlossen werden.

- FDU96
- FDU83
- FDU84
- FDU85
- FDU86

🖻 27 Potenzialausgleich metallischer Sensoren im Feldgehäuse Aluminium

- 1 FDU91F/93/95/96 (FDU83/84/85/86)
- 2 Hilfsenergie
- 3 Potenzialausgleich Versorgungsspannung; bei Auslieferung verdrahtet
- 4 Schutzleiter-Reihenklemmen (mit Kontakt zur Hutschiene)
- 5 Schutzleiterklemme an der Außenseite des Feldgehäuses

Potenzialausgleich metallischer Sensoren im Hutschienengehäuse

Gültig für:

Bestellmerkmal 030 (Gehäuse, Werkstoff) Option 2 (Hutschienenmontage PBT, IP20)

Gültig für folgende Sensoren

- FDU91F
- FDU93
- FDU95

Diese Sensoren sind nicht mehr erhältlich, können aber in bestehenden Installationen an Prosonic S angeschlossen werden.

- FDU96
- FDU83
- FDU84
- FDU85
- FDU86

28 Potenzialausgleich metallischer Sensoren im Hutschienengehäuse

- 1 FDU91F/93/95/96 (FDU83/84/85/86)
- 2 Metallische Hutschiene im Schaltschrank
- *3 Erdung über Hutschiene*
- 4 Schutzleiter-Reihenklemmen (mit Kontakt zur Hutschiene)
- 5 Reihenklemmen (ohne Kontakt zur Hutschiene)

6.3.4 Verlängerungskabel für Sensoren

WARNUNG

Explosionsgefahr

- > Zum Anschluss des Verlängerungskabels Klemmenkasten verwenden.
- Wenn der Klemmenkasten in explosionsgefährdeten Bereichen installiert wird: nationale Errichterbestimmungen beachten.

Kabelspezifikationen Verlängerungskabel

- Maximale Gesamtlänge (Sensorkabel + Verlängerungskabel) 300 m (984 ft)
- Adernzahl
 - Gemäß Anschlussdiagramm
- Abschirmung
- Jeweils ein Abschirmgeflecht für die Adern YE und RD (kein Folienschirm)
- Querschnitt

0,75 ... 2,5 mm² (18 ... 14 AWG)

Widerstand

Max. 8 Ω pro Ader

- Kapazität Ader zu Schirm Max. 60 nF
- Schutzleiter (f
 ür FDU91F/93/95)
 Darf nicht innerhalb des Schirms liegen.

Geeignete Verlängerungskabel sind von Endress+Hauser erhältlich.

6.3.5 Kürzen des Sensorkabels

HINWEIS

Funktionsstörung durch fehlenden Rückleiter oder unterbrochene Adern

- ▶ Beim Entfernen der Isolation die Adern nicht beschädigen.
- Nach dem K
 ürzen das abschirmende Metallgeflecht verdrillen und an die Klemme "BK" anschließen.
- Wenn das Kabel einen Schutzleiter (GNYE) hat: Den Schutzleiter nicht mit der Abschirmung verbinden.

A Sensoren FDU90/91/92

B Sensoren FDU91F/93/95

Die Adern "BU" (blau) und "BN" (braun) sind nur bei Sensoren mit Heizung vorhanden.

6.3.6 Synchronisieranschluss

Verwendung

Der Synchronisieranschluss ist zu verwenden, wenn die Sensorkabel mehrerer Messumformer parallel verlegt sind. Die Synchronisierung verhindert, dass ein Messumformer empfängt, während ein anderer sendet. Gegenseitige Beeinflussung von Sende- und Empfangsimpulsen wird dadurch vermieden.

Zahl synchronisierbarer Messumformer

- 20 (bei FMU90/FMU95)
- 10 (bei Synchronisierung von FMU90/FMU95 mit FMU86x)

Vorgehen bei mehr als 20 Messumformern

- Gruppen von maximal 20 Messumformern bilden.
- Für Messumformer innerhalb einer Gruppe können die Sensorkabel parallel verlaufen.
- Die Sensorkabel der verschiedenen Gruppen getrennt verlegen.

Kabelspezifikation für Synchronisierung

- Max. Länge
 - 10 m (33 ft) zwischen den einzelnen Messumformern
- Querschnitt
- 2 x 0,75 ... 2,5 mm² (18 ... 14 AWG)
- Kabelschirm
 - Erforderlich für Kabel > 1 m (3,3 ft); den Schirm erden.

Anschlussdiagramm Synchronisierung

■ 30 Synchronisierung mehrerer Messumformer FMU90/FMU95

■ 31 Synchronisierung von FMU90/FMU95 mit FMU86x

6.3.7 Anschluss des abgesetzten Anzeige- und Bedienmoduls

Gültig für:

Bestellmerkmal 040 (Bedienung)

Option E (Beleuchtete Anzeige + Tastenfeld, 96x96, Schalttafeleinbau, Front IP65)

🖻 32 Anschuss des abgesetzten Anzeige- und Bedienmoduls

1 Vorkonfektioniertes Verbindungskabel 3 m (9,8 ft) mit Displaystecker (im Lieferumfang enthalten)

Minimaler Durchmesser für die Durchführung des Kabels

20 mm (0,79 in)

6.3.8 Anschlusskontrolle

□ Klemmenbelegung richtig?

Bei Feldgehäuse (Polycarbonat/Aluminium):

□ Kabelverschraubungen dicht?

Gehäusedeckel vollständig geschlossen?

Bei Feldgehäuse Aluminium:

Gehäuse mit Schutzerde (PE) und/oder lokalem Erdpotenzial (PAL) verbunden?

Wenn Hilfsenergie vorhanden:

Leuchtet Betriebszustands-LED grün?

□ Falls Anzeigemodul vorhanden: Erscheint eine Anzeige?
7 Bedienmöglichkeiten

7.1 Aufbau und Funktionsweise des Bedienmenüs

7.1.1 Untermenüs und Parameterseiten

Zusammengehörende Parameter sind im Bedienmenü auf einer Parameterseite zusammengefasst. Jede Parameterseite ist durch einen fünfstelligen Code gekennzeichnet.

33 Kennzeichnung der Parameter-Seiten:

- 2 Nummer des zugehörigen Eingangs oder Ausgangs (bei Mehrkanalgeräten)
- 3 Nummer der Parameterseite innerhalb des Untermenüs

7.1.2 Parametertypen

Anzeigeparameter

- Symbol:
- Können nicht geändert werden.

Editierparameter

- Symbol:
- Können durch Drücken von 🚛 🔜 zum Editieren geöffnet werden.

¹ Untermenü

7.2 Zugriff auf das Bedienmenü via Vor-Ort-Anzeige

7.2.1 Anzeige- und Bedienelemente

Elemente des Anzeige- und Bedienmoduls

🛃 34 Anzeige- und Bedienmodul

- 1 Softkey-Symbole
- 2 Tasten
- 3 Leuchtdiode zur Anzeige des Betriebszustands
- 4 Display Symbol
- 5 Wert des Parameters mit Einheit (hier: Hauptmesswert)
- 6 Name des angezeigten Parameters

Symbole für Betriebszustand

• (3)

Betriebszustand Benutzer:

Benutzer-Parameter sind editierbar. Service-Parameter sind gesperrt.

- Etriebszustand Diagnose:
 Service-Schnittstelle ist angeschlossen.
- Betriebszustand Service: Benutzer- und Service-Parameter sind editierbar.
- (**C**)71)

Betriebszustand Gesperrt:

Alle Parameter sind gegen Änderungen gesperrt.

Symbole für Freigabezustand des aktuellen Parameters

• 🖅

Anzeige-Parameter

Der Parameter kann im momentanen Betriebszustand des Geräts **nicht** editiert werden.

• 🖃

Editier-Parameter

Der Parameter kann editiert werden.

Scroll-Symbole

الک (💌

Scroll-Liste vorhanden

Wird angezeigt, wenn die Auswahlliste mehr Optionen enthält als auf dem Display dargestellt werden können. Durch mehrfaches Drücken von **Gest Park** oder **Gest Park** lassen sich alle Optionen der Liste erreichen.

Navigation in der Hüllkurvendarstellung (Darstellungsart "zyklisch" auswählen)

- 44
 - Verschiebung nach links
- • •
- Verschiebung nach rechts
- Horizontale Streckung
- •
- Horizontale Stauchung

Leuchtdiode für Betriebszustand

- Leuchtet grün
 - Normaler Messbetrieb; kein Fehler detektiert
- Blinkt rot

Warnung: Ein Fehler liegt vor. Die Messung wird aber fortgeführt. Die Zuverlässigkeit des Messwertes ist nicht garantiert.

Leuchtet rot

Alarm: Ein Fehler liegt vor. Die Messung wird unterbrochen. Der Messwert nimmt den vom Anwender festgelegten Wert an (Parameter "Ausgang bei Alarm").

Aus

Versorgungsspannung fehlt.

Tasten (Softkey-Bedienung)

Die aktuelle Tastenfunktionen wird durch Softkey-Symbole oberhalb der Taste angegeben.

- e **(all 1996)** Bewegt in einer Auswahlliste den Markierungsbalken nach unten.
- - Bewegt in einer Auswahlliste den Markierungsbalken nach oben.
- -
 - Öffnet das markierte Untermenü, die markierte Parameter-Seite bzw. den markierten Parameter.
 - Bestätigt den editierten Parameterwert.
- - Führt zur vorherigen Parameterseite innerhalb des Untermenüs.
- - Führt zur nächsten Parameterseite innerhalb des Untermenüs.
- 🗸
 - Wählt aus einer Auswahlliste diejenige Option, auf der sich momentan der Markierungsbalken befindet.
- —
 - Erhöht die markierte Stelle eines alphanumerischen Parameters.
- - Erniedrigt die markierte Stelle eines alphanumerischen Parameters.
- - Öffnet die Liste der momentan anstehenden Fehler.
- Bei einer anstehenden Warnung blinkt das Symbol invertiert.
- Bei einem anstehenden Alarm erscheint das Symbol permanent.

• (111)

Zeigt die nächste Messwert-Seite an (nur vorhanden, falls mehrere Messwert-Seiten parametriert wurden; s. Menü "Anzeige").

• (Info)

Öffnet das Kurzmenü, in dem die wichtigsten Anzeigeparameter zusammengefasst sind.

Öffnet das Hauptmenü, mit dem man auf **alle** Geräte-Parameter zugreifen kann.

Allgemeine Tastenkombinationen

🗷 36 Kontrast erhöhen

☑ 37 Kontrast verringern

☑ 38 Verriegelung

7.2.2 Aufrufen des Bedienmenüs vom Standardbildschirm (Messwertanzeige)

Linke Taste ("Info") : Kurzmenü

Bietet schnellen Zugriff auf die wichtigsten Parameter:

- Messstelle/Tag
- Hüllkurve
- Sprache
- Geräteinformationen
- Passwort/Rücksetzen
- Mittlere Taste: Aktuelle Fehler

Wenn die Selbstüberwachung einen oder mehrere Fehler erkannt hat, erscheint das Softkey-Symbol **Ger-Lib** über der mittleren Taste. Nach Drücken der Taste erscheint eine Liste aller momentan anstehenden Fehler.

Rechte Taste ("Menü"): Hauptmenü

Enthält alle Parameter des Geräts, gegliedert in Untermenüs und Parameterseiten.

8 Systemintegration

8.1 Übersicht zu Gerätebeschreibungsdateien

8.1.1 Gerätestammdatei (GSD)

Bedeutung

Die Gerätestammdatei enthält eine Beschreibung der Eigenschaften eines PROFIBUS-Geräts, z.B. welche Datenübertragungsgeschwindigkeit das Gerät unterstützt oder welche digitalen Informationen in welchem Format die SPS vom Gerät bekommt. Zu den GSD-Dateien gehören auch Bitmap- Dateien. Mit Hilfe dieser Dateien werden die Messstellen bildlich dargestellt. Die Gerätestammdatei sowie die entsprechenden Bitmaps werden zur Projektierung eines PROFIBUS-DP-Netzwerkes benötigt.

Dateiname

Jedes Gerät erhält von der PROFIBUS-Nutzerorganisation (PNO) eine ID-Nummer. Aus dieser leitet sich der Name der Gerätestammdatei (GSD) und der zugehörigen Dateien ab. Der Prosonic S FMU95 hat die ID-Nummer 154E (hex) = 5454 (dec).

Die Gerätestammdatei ist deswegen: EH3x154E.gsd

Bezugsquellen

- www.endress.de \rightarrow Die Suchfunktion unter "Downloads" verwenden.
- GSD library der PROFIBUS Nutzerorganisation (PNO): http://www.PROFIBUS.com
- CD-ROM mit allen GSD-Dateien zu Endress+Hauser-Geräten; Bestell-Nr.: 50097200

Verwendung

Die GSD-Dateien müssen in ein spezifisches Unterverzeichnis der PROFIBUS-DP-Konfigurationssoftware der SPS geladen werden.

Die GSD-Dateien können - abhängig von der verwendeten Software - entweder in das programmspezifische Verzeichnis kopiert werden oder durch eine Import-Funktion innerhalb der Projektierungssoftware in die Datenbank eingelesen werden.

Für Einzelheiten siehe die Dokumentation der verwendeten Projektierungssoftware.

8.2 Weitere Einstellungen

8.2.1 Geräteadresse

Wahl der Geräteadresse

- Jedem PROFIBUS-Gerät muss eine Adresse zugewiesen werden. Nur bei korrekt eingestellter Adresse wird das Messgerät vom Leitsystem erkannt.
- In einem PROFIBUS-Netz darf jede Adresse nur einmal vergeben werden.
- Gültige Geräteadressen liegen im Bereich von 0 bis 126. Alle Geräte werden ab Werk mit der Adresse 126 ausgeliefert. Diese ist per Software eingestellt.
- Die im Werk eingestellte Adresse 126 kann zur Funktionsprüfung des Gerätes und zum Anschluss an ein in Betrieb stehendes PROFIBUS-Netzwerk genutzt werden. Anschließend muss diese Adresse geändert werden, um weitere Geräte einbinden zu können.

Softwareadressierung

- Die Software-Adressierung ist wirksam, wenn der DIP-Schalter 8 auf dem PROFIBUS DP-Anschlussfeld in Position "SW (on)" steht (Werkseinstellung).
- Die Adresse kann dann über ein Bedientool (z.B. "DeviceCare" oder "FieldCare") eingestellt werden.
- Die eingestellte Adresse wird angezeigt im Parameter Ausgänge/Berechnungen → PROFIBUS DP → Geräteadresse.

Hardwareadressierung

Die Hardware-Adressierung ist wirksam, wenn DIP-Schalter 8 in Position "HW (off)" steht. Die Schalter 1 bis 7 tragen in der Position "on" zur Adresse folgenden Wert bei:

- Schalter 1: Wert = 1
- Schalter 2: Wert = 2
- Schalter 3: Wert = 4
- Schalter 4: Wert = 8
- Schalter 5: Wert = 16
- Schalter 6: Wert = 32
- Schalter 7: Wert = 64

8.2.2 Busterminierung

- A Terminierung inaktiv
- B Terminierung aktiv
- Beim letzten Gerät am Bus:

Alle vier Terminierungsschalter in die Position "on" schalten, um den Busabschlusswiderstand zu aktivieren.

9 Inbetriebnahme

9.1 Vorbereitungen

9.1.1 Rücksetzen auf Werkseinstellungen (Reset)

HINWEIS

- Durch den Reset kann es zu einer Beeinträchtigung der Messung kommen.
- ▶ Nach dem Reset einen neuen Grundabgleich durchführen.

Anwendung des Reset

Ein Reset empfiehlt sich immer, wenn ein Gerät mit unbekannter Historie eingesetzt werden soll.

Wirkungen des Reset

- Alle Parameter werden auf die Werkseinstellung zurückgesetzt.
- Die Linearisierung wird deaktiviert. Eine eventuell vorhandene Linearisierungstabelle bleibt jedoch erhalten und kann bei Bedarf wieder aktiviert werden.
- Die Störechoausblendung wird deaktiviert. Die Ausblendungskurve bleibt jedoch erhalten und kann bei Bedarf wieder aktiviert werden.

Auswirkung auf ein 5-Punkt-Linearisierungsprotokoll

Bei Erstellung eines 5-Punkt-Linearitätsprotokolls wird das Messsstem (Messaufnehmer FDU9x und Messumformer FMU9x) abgeglichen und die Messgenauigkeit auf den abzugleichenden Bereich optimiert.

Für diese Abstimmung wird der Service-Parameter **zero distance** feinjustiert. Dieser Parameter muss nach einem Reset wieder entsprechend den Angaben auf dem zugehörigen 5-Punkt-Linearitätsprotokoll des Sensors FDU9x im Servicemenü eingestellt werden. Dazu den Endress+Hauser-Kundendienst kontaktieren.

Durchführen des Reset

1. Navigieren nach Gerätekonfig → Passwort/Rücksetzen → Rücksetzen.

2. "33333" eingeben.

9.2 Messgerät einschalten

Parameter, die das Gerät beim ersten Einschalten erfragt

Sprache

- Displaysprache wählen.
- Längeneinheit
- Längeneinheit für die Distanzmessung wählen.

Temperatureinh.

Einheit für Sensortemperatur wählen.

9.3 Messgerät konfigurieren

9.3.1 Parameterseite "FST N Sensorwahl"

Navigation

Füllstand \rightarrow Füllstand (FST) N \rightarrow Grundabgleich \rightarrow FST N Sensorwahl

Parameter

- Eingang
 - Dem Kanal einen Sensor zuordnen.
- Sensorwahl

Sensortyp angeben. Für Sensoren FDU9x die Option **automatisch** wählen. Für Sensoren FDU8x die Option **manuell** wählen.

Detektiert

Nur vorhanden für **Sensorwahl** = **automatisch** Zeigt automatisch detektierten Sensortyp.

9.3.2 Parameterseite "FST N Anw. Param"

Navigation

Füllstand \rightarrow Füllstand (FST) N \rightarrow Grundabgleich \rightarrow FST N Anw. Param.

Parameter

- Tankgeometrie
 - Passende Option wählen.
- Medium Eigensch.
 - Wenn sich das Medium nicht eindeutig zuordnen lässt: Option **unbekannt** wählen.
- Messbedingungen

Für Flüssigkeits-Anwendungen, die in keine andere Gruppe passen: Option **Standard fl.** wählen.

Für Schüttgut-Anwendungen, die in keine andere Gruppe passen: Option **Standard Fest.** wählen.

🖻 40 Tankgeometrie

- A Klöpperdeckel
- *B* zyl. liegend
- C Bypass/Schwallrohr
- D offene Behält.
- E Kugeltank
- F Flachdeckel

9.3.3 Parameterseite "FST N Leer Abgl."

- 🖻 41 Leer- und Vollabgleich für Füllstandmessung
- 1 Sensor FDU9x
- 2 Messumformer FMU90/FMU95
- BD Blockdistanz
- D Abstand zwischen Sensormembran und Produktoberfläche
- E Leer E
- F Voll F
- L Füllstand

Navigation

Füllstand \rightarrow Füllstand (FST) N \rightarrow Grundabgleich \rightarrow FST N Leer Abgl.

Parameter "Leer E"

Abstand E vom Referenzpunkt des Sensors zum minimalen Füllstand (Nullpunkt) angeben. Der Nullpunkt darf nicht tiefer liegen als der Punkt, an dem die Ultraschallwelle den Tankboden trifft.

9.3.4 Parameterseite "FST N Voll Abgl."

Navigation

Füllstand \rightarrow Füllstand (FST) N \rightarrow Grundabgleich \rightarrow FST N Voll Abgl.

Parameter

Voll F

Messspanne F (Abstand vom minimalen zum maximalen Füllstand) angeben. F darf nicht in die Blockdistanz BD des jeweiligen Sensors hineinreichen.

Blockdistanz

Zeigt die Blockdistanz BD des Sensors.

9.3.5 Parameterseite "FST N Einheit"

Navigation

Füllstand \rightarrow Füllstand (FST) N \rightarrow Grundabgleich \rightarrow FST N Einheit

Parameter

Einh. Füllstand

Füllstandeinheit wählen.

Wenn keine Linearisierung durchgeführt wird, wird der Füllstand in dieser Einheit ausgegeben.

Füllstand N

Zeigt den momentan gemessenen Füllstand F (vom Nullpunkt zur Füllgutoberfläche) in der gewählten Einheit.

Sensor

Zeigt den momentan gemessenen Abstand D zwischen Sensormembran (Referenzpunkt der Messung) und Füllgutoberfläche.

- 1 Referenzpunkt der Messung
- A FDU90 ohne Überflutungsschutzhülse
- B FDU90 mit Überflutungsschutzhülse
- C FDU91/FDU91F
- D FDU92
- E FDU93
- F FDU95

9.3.6 Parameterseite "FST N Linearisier."

- 42 Linearisierungsformen
- A keine
- B Tabelle
- C Pyramidenboden
- D Konischer Boden
- E Fl. Schrägboden
- F Kugeltank
- G zyl. liegend H Zwischenhöhe

Navigation

Füllstand \rightarrow Füllstand (FST) N \rightarrow Grundabgleich \rightarrow FST N Linearisier

Parameter

- Form
 - Linearisierungsform wählen (s.o.)
- Kundeneinheit
 - Einheit für linearisierten Wert angeben.
- Endwert Messber.

Maximaler Behälterinhalt (100 %) in der gewählten Kundeneinheit angeben. Nicht vorhanden bei **Form = Tabelle**.

Bei **Form = zyl. liegend** oder **Kugeltank** muss sich **Endwert Messber.** immer auf den vollständig gefüllten Tank beziehen.

- Durchmesser
 Nur vorhanden f
 ür Form = zyl. liegend oder Kugeltank.
 Durchmesser D des Tanks angeben.
- Zwischenhöhe (H)
 Nur vorhanden bei Form = Fl. Schrägboden, Pyramidenboden oder Konischer Boden
 Zwischenhöhe H des jeweiligen Behälters angeben (s.o.).

Bearbeiten

Nur vorhanden bei **Form** = **Tabelle**.

Öffnet die Parameterseite **Bearbeiten** zur Eingabe der Linearisierungstabelle.

Status Tabelle

Aktiviert oder deaktiviert die Linearisierungstabelle.

Modus

Bestimmt, ob sich die Linearisierung auf den Füllstand oder den Leerraum bezieht.

9.3.7 Tabelleneditor

Bedingungen an die Linearisierungstabelle:

- Bis zu 32 Wertepaare "Füllstand zu Volumen"
 - Monoton steigend oder monoton fallend. (Die Monotonie wird beim Aktivieren der Tabelle gepr
 üft.)
 - Muss nach der Eingabe durch Parameter **Status Tabelle** aktiviert werden.

А	В	С
4	0.0000	
1	0,0000	0,0000
2	0,0000	0,0000
3	0,0000	0,0000
	0,0000	0,0000

A Nummer der Zeile

B Spalte für Füllstand

C Spalte für Werte

1.

2.

drücken, um zur nächsten Zeile zu springen.

🚛 💶 drücken, um zur vorherigen Zeile zu springen.

3. **The Second S**

А	В	С
1 2 3	0,0000 0,0000 0,0000 0,0000	0,0000 0,0000 0,0000

- A Nummer der Zeile
- B Spalte für Füllstand

C Spalte für Werte

3. **The second s**

P Durch Drücken von **Escape** kehrt der Benutzer zum vorherigen Schritt zurück.

A0040752

9.3.8 Parameterseite "Messwert prüfen"

- Diese Parameterseite startet die Störechoausblendung.
 - Um alle Störechos zu erfassen: Störechoausblendung bei möglichst kleinem Füllstand durchführen (ideal: leerer Behälter).
 - Falls der Behälter sich während der Inbetriebnahme nicht entleeren lässt: Vorläufige Störechoausblendung bei teilbefülltem Behälter aufnehmen. Störechoausblendung wiederholen, wenn der Füllstand das erste Mal nahezu 0 % erreicht.

43 Funktionsweise der Störechoausblendung

- A Die Echokurve (a) enthält ein Störecho und das Füllstandecho. Ohne Ausblendung wird fälschlicherweise das Störecho ausgewertet.
- *B* Die Störechoausblendung erstellt die Ausblendungskurve (b). Diese unterdrückt alle Echos, die sich innerhalb des Ausblendungsbereichs (c) befinden.
- C Anschließend werden nur noch Echos ausgewertet, die über der Ausblendungskurve liegen. Das Störecho liegt unterhalb der Ausblendungskurve und wird deswegen nicht mehr ausgewertet.

Navigation

Füllstand \rightarrow Füllstand (FST) N \rightarrow Grundabgleich \rightarrow FST N Messw. prüf.

Parameter

Aktuelle Distanz

Zeigt aktuell gemessene Distanz D zwischen Sensormembran und Produktoberfläche.

Distanz prüfen

Angezeigte Distanz mit tatsächlichem Wert vergleichen und Ergebnis des Vergleichs angeben. Anhand der Eingabe bestimmt das Gerät automatisch den Ausblendungsbereich.

Distanz = ok

Angezeigte und tatsächliche Distanz stimmen überein.

- → Weiter zur Parameterseite **FST N Dist.Ausbl.**.
- Dist. zu klein

Angezeigte Distanz ist kleiner als tatsächliche Distanz. \rightarrow Weiter zur Parameterseite **FST N Dist.Ausbl.**

- Dist. zu groß
 - Angezeigte Distanz ist größer als tatsächliche Distanz.
 - → Keine Störechoausblendung möglich.
 - → Abgleich für Sensor N beendet.
- Dist. unbekannt
 - Tatsächliche Distanz ist unbekannt.
 - → Keine Störechoausblendung möglich.
 - \rightarrow Abgleich für Sensor N beendet.
- manuell
 - Ausblendungsbereich soll manuell festgelegt werden.
 - → Weiter zur Parameterseite **FST N Dist.Ausbl.**.

9.3.9 Parameterseite "FST N Dist.Ausbl."

Navigation

Füllstand \rightarrow Füllstand (FST) N \rightarrow Grundabgleich \rightarrow FST N Dist.Ausbl.

Parameter

- Aktuelle Distanz
 - Zeigt aktuell gemessene Distanz D zwischen Sensormembran und Produktoberfläche.
- Bereich Ausblend

Bestimmt Bereich ab der Sensormembran, in dem die Ausblendung durchgeführt wird.

- Bei Distanz prüfen = Distanz = ok oder Dist. zu klein: Voreingestellten Wert bestätigen.
- Bei Distanz prüfen = manuell:
- Gewünschten Ausblendungsbereich eintragen.

Starte Ausblend.

Option **ja** wählen, um Aufnahme der Ausblendungskurve zu starten.

- \rightarrow Es erscheint die Parameterseite **FST N Status**.
- → Falls die angezeigte Distanz weiterhin zu klein ist: Iterativ weitere Störechoausblen-
- dungen aufnehmen, bis angezeigte und tatsächliche Distanz übereinstimmen.

Status

Legt den Status der Störechoausblendung fest:

- Ausbl. aktiv
 - Die Ausblendungskurve wird bei der Signalauswertung berücksichtigt.
- Ausbl. inaktiv

Die Ausblendungskurve wird bei der Signalauswertung nicht berücksichtigt, bleibt aber im Gerät gespeichert.

Ausbl. Löschen

Die Ausblendungskurve wird gelöscht.

9.3.10 Parameterseite "US Sensor N"

Bei Mehrkanalgeräten: Unbenutzte Sensoreingänge auf der Parameterseite **US Sen**sor **N** deaktivieren.

Navigation

Sensorverwaltung \rightarrow FDU Sensor N \rightarrow Sensorbetrieb

Parameter "Sensorbetrieb"

Sensor N an- oder ausschalten.

9.4 Erweiterte Einstellungen

9.4.1 Vor-Ort-Anzeige konfigurieren

Anzeigetypen

€ 44 "Typ" = "1x Wert+Bargr."

A0036765

€ 45 "Typ" = "2x Wert+Bargr."

€ 46 "Typ" = "Wert max. Gr."

☑ 47 "Typ" = "5x2 im Wechsel"

☑ 48 "Typ" = "Bargraphprofil"

Konfiguration des Anzeigetyps

- 1. Navigieren zur Parameterseite **Anzeige** → **Anzeige**.
- 2. Im Parameter **Typ** den Anzeigetyp wählen (s.o.).
- Für Typ = Wert max. Gr. oder 5x2 im Wechsel:
 Im Parameter Zeit festlegen, nach welcher Zeit jeweils die nächste Anzeige erscheint.
- 4. In den Parametern **Wert 1** ... **Wert N** jeweils einen darzustellenden Messwert wählen.
- 5. Im Parameter **Freitext 1** ... **Freitext N** jeweils einen Anzeigetext eingeben.
 - └ Der angegebene Freitext wird bei **Freitext** = **ja** (s.u.) zur Anzeige verwendet.

Konfiguration des Anzeigeformats

- **1.** Navigieren zur Parameterseite: **Anzeige** \rightarrow **Anzeigeformat**.
- 2. Im Parameter Format das Zahlenformat für Längenangaben wählen.
- 3. Im Parameter **Nachkommast.** die Anzahl der angezeigten Nachkommastellen festlegen.
- 4. Im Parameter **Trennungszeichen** festlegen, ob Dezimalbrüche durch Punkt oder Komma dargestellt werden.
- 5. Im Parameter **Freitext** festlegen, ob **Freitext 1** bis **Freitext N** (s.o.) zur Anzeige verwendet werden.

Konfiguration der Rücksprungzeit

- 1. Navigieren nach Anzeige → Rücksprungzeit → Zur Startseite
- 2. Zeit festlegen, nach der die Vor-Ort-Anzeige in die Messwertdarstellung zurückspringt.

9.4.2 Konfiguration der DI-Blöcke

Parameterseite

Ausgänge/Berechn. \rightarrow Digital Eingang \rightarrow Digital Eingang N

Parameter

Zuordnung

Schaltzustand wählen, der als binäres Signal über den DI-Block ausgegeben wird.

Verbindet den DI-Block mit einem der Relais des Gerätes.

Nach Wahl dieser Option erscheint die Funktion **Relais** zur Auswahl des Relais. **Pumpensteuerung**

- Nur vorhanden, wenn eine Pumpensteuerung konfiguriert wurde. Verbindet den DI-Block mit einem Pumpensteuerungsrelais.
- Rechensteuerung

Nur vorhanden, wenn eine Rechensteuerung konfiguriert wurde. Verbindet den DI-Block mit einem Rechensteuerungsrelais.

- keine
- Wert

Zeigt den aktuellen Schaltzustand des Relais.

Status

Zeigt den Status, der zusammen mit dem binären Wert übertragen wird.

9.4.3 Konfiguration der AI-Blöcke

Parameterseite

Ausgänge/Berechn. \rightarrow Analog Eingang \rightarrow Analog Eingang N

Parameter

Messwert N

Die Messgröße wählen, die über den AI-Block ausgegeben wird.

Wert

Zeigt den aktuellen Wert der gewählten Messgröße.

Status

Zeigt den Status, der mit dem Wert übertragen wird.

9.4.4 Konfiguration des zyklischen Datentelegramms

- Grundlagen zum zyklischen Datenaustausch zwischen dem Messgerät und einem Automatisierungssystem (z.B. SPS) sind beschrieben in Betriebsanleitung BA00034S, "PROFIBUS DP/PA - Leitfaden zur Projektierung und Inbetriebnahme".
 - Der zyklische Datenaustausch setzt voraus, dass die richtige GSD ins Automatisierungssystem geladen wurde.

Datenformat

Analoge Werte

Bei PROFIBUS DP erfolgt die zyklische Übertragung der Analogwerte zur SPS in 5 Byte langen Datenblöcken (Modulen). Der Messwert wird in den ersten 4Bytes in Form von Fließkommazahlen nach IEEE-Standard dargestellt. Das 5. Byte enthält eine zum Gerät gehörende genormte Statusinformation. Für Einzelheiten siehe BA00034S.

Digitale Werte

Bei PROFIBUS DP erfolgt die zyklische Übertragung von digitalen Werten in 2 Byte langen Blöcken (Modulen). Das erste Byte enthält den Digitalwert. Das zweite Byte enthält die zugehörige Statusinformation. Für Einzelheiten siehe BA00034S.

Module für analoge Werte

Jeder AI-Block des Prosonic S stellt für das zyklische Datentelegramm (vom Gerät zur SPS) ein fünf Byte langes Modul zur Verfügung. Entsprechend der PROFIBUS-Spezifikation"Profile for Process Control Devices" gibt es für jedes Modul zwei Optionen:

- AI (OUT)
- Das Modul wird im zyklischen Datentelegramm übertragen.
- Free Place
 - Das Modul ist nicht Teil des zyklischen Datentelegramms.

Die Auswahl der Option geschieht über das Konfigurationstool der jeweiligen SPS. Für Einzelheiten siehe die Betriebsanleitung des herstellerspezifischen Konfigurationstools.

Module für digitale Werte (DI)

Jeder DI-Block des Prosonic S stellt für das zyklische Datentelegramm (vom Gerät zur SPS) ein zwei Byte langes Modul zur Verfügung. Entsprechend der PROFIBUS-Spezifikation "Profile for Process Control Devices" gibt es für jedes Module zwei Optionen:

- AI (OUT)
 - Das Modul wird im zyklischen Datentelegramm übertragen.
- Free Place

Das Modul ist nicht Teil des zyklischen Datentelegramms.

Die Auswahl der Option geschieht über das Konfigurationstool der jeweiligen SPS. Für Einzelheiten siehe die Betriebsanleitung des herstellerspezifischen Konfigurationstools.

Module für digitale Werte (DO)

Jeder DO-Block des Prosonic S stellt für das zyklische Datentelegramm (von der SPS zum Gerät) ein zwei Byte langes Modul zur Verfügung. Entsprechend der PROFIBUS-Spezifikation "Profile for Process Control Devices" gibt es für jedes Modul folgende Optionen:

- DO (SP_D)
- DO (SP_D/CB_D)
- DO (RCAS_IN_D/RCAS_OUT_D)
- DO (RCAS_IN-D/RCAS_OUT_D/CB_D)
- Free Place

Die Auswahl der Option geschieht über das Konfigurationstool der jeweiligen SPS. Für Einzelheiten siehe die Betriebsanleitung des herstellerspezifischen Konfigurationstools.

Default-Konfiguration des zyklischen Datentelegramms (5-Kanal-Ausführung)

😭 Gültig für FMU95 - *****A...

- AI 1
 - Bytes 0 3: Füllstand 1 (IEEE754); Einheit: m
 - Byte 4: Status Füllstand 1
- AI 2
 - Bytes 5 8: Füllstand 2 (IEEE754); Einheit: m
 - Byte 9: Status Füllstand 2
- AI 3
 - Bytes 10 13: Füllstand 3 (IEEE754); Einheit: m
 - Byte 14: Status Füllstand 3
- AI 4
 - Bytes 15 18: Füllstand 4 (IEEE754); Einheit: m
 - Byte 19: Status Füllstand 4
- AI 5
 - Bytes 20 23: Füllstand 5 (IEEE754); Einheit: m
 - Byte 24: Status Füllstand 5

Default-Konfiguration des zyklischen Datentelegramms (10-Kanal-Ausführung)

Gültig für FMU95 - *****B...

- AI 1
 - Bytes 0 3: Füllstand 1 (IEEE754); Einheit: m
 - Byte 4: Status Füllstand 1
- AI 2
 - Bytes 5 8: Füllstand 2 (IEEE754); Einheit: m
 - Byte 9: Status Füllstand 2
- AI 3
 - Bytes 10 13: Füllstand 3 (IEEE754); Einheit: m
 Byte 14: Status Füllstand 3
- AI 4
 - Bytes 15 18: Füllstand 4 (IEEE754); Einheit: m
 - Byte 19: Status Füllstand 4
- AI 5
 - Bytes 20 23: Füllstand 5 (IEEE754); Einheit: m
 - Byte 24: Status Füllstand 5
- AI 6
 - Bytes 25 28: Füllstand 5 (IEEE754); Einheit: m
 - Byte 29: Status Füllstand 6
- AI 7
 - Bytes 30 33: Füllstand 7 (IEEE754); Einheit: m
 - Byte 34: Status Füllstand 7
- AI 8
 - Bytes 35 38: Füllstand 8 (IEEE754); Einheit: m
 - Byte 39: Status Füllstand 8
- AI 9
 - Bytes 40 43: Füllstand 9 (IEEE754); Einheit: m
 - Byte 44: Status Füllstand 9
- AI 10
 - Bytes 45 48: Füllstand 10 (IEEE754); Einheit: m
 - Byte 49: Status Füllstand 10

Änderung der zugeordneten Messgrößen

Parameter: Ausgänge/Berech. \rightarrow Analog Eingang \rightarrow Analog Eingang N \rightarrow Messwert N

9.5 Simulation

9.5.1 Füllstand- oder Volumensimulation

Navigation

Füllstand \rightarrow Füllstand N \rightarrow Simulation

Parameter

- Simulation
 - Zu simulierende Größe wählen (Füllstand oder Volumen)
- Sim. Füll.Wert
 - Nur vorhanden bei **Simulation = Sim. Füllstand**

Zu simulierenden Füllstand eingeben. Die Linearisierung und das Ausgangssignal folgen diesem Wert.

Sim. Volumenwert
 Nur vorhanden bei Simulation = Sim. Volumen
 Zu simulierendes Volumen eingeben. Das Ausgangssignal folgt diesem Wert.

9.6 Einstellungen schützen vor unerlaubtem Zugriff

9.6.1 Software-Verriegelung

Verriegelung

- 1. Navigieren nach **Gerätekonfig → Passwort/Rücksetzen → Code**.
- 2. Eine Zahl \neq 2 457 eingeben.

└ Das Gerät ist gegen Eingaben gesperrt.

Entriegelung

 Beim Versuch, einen Parameter zu ändern, springt das Gerät nach Passwort/Rücksetzen.

"**2 457**" eingeben.

└ Eingaben sind wieder möglich.

9.6.2 Tastenverriegelung

Verriegelung

- Alle drei Tasten gleichzeitig drücken.
 - Das Gerät ist gegen Eingaben gesperrt. Auf dem Display erscheint das Symbol
 Imm.

Entriegelung

- Beim Versuch, einen Parameter zu ändern, springt das Gerät nach Passwort/Rücksetzen. Im Parameter Status wird dort angezeigt tastenverriegelt. Alle drei Tasten gleichzeitig drücken.
 - 🕒 Eingaben sind wieder möglich.

9.6.3 Hardware-Verriegelung

A entriegelt

B verriegelt

Auf dem Basis-Anschlussfeld im Klemmenraum befindet sich ein Verriegelungsschalter, mit dem das Gerät gegen Parameteränderungen gesperrt werden kann. Bei Verriegelung erscheint das Symbol (

9.6.4 Anzeige des Verriegelungszustands

Navigation

Gerätekonfig \rightarrow Passwort/Rücksetzen \rightarrow Status

Anzeigeoptionen

- entriegelt
 - Alle Parameter (bis auf Service-Parameter) können geändert werden.
- Code verriegelt

Das Gerät wurde über das Bedienmenü verriegelt. Es kann nur durch die Eingabe des Freigabecodes in den Parameter **Geräteeinstellungen** \rightarrow **Passwort/Rücksetzen** \rightarrow **Code** wieder freigegeben werden.

Tasten verriegelt

Das Gerät wurde über die Bedientasten verriegelt. Es kann nur durch gleichzeitiges Drücken aller drei Tasten wieder freigegeben werden.

Hw verriegelt

Das Gerät wurde über den Verriegelungsschalter im Klemmenraum verriegelt. Es kann nur durch diesen Schalter wieder freigegeben werden.

10 Diagnose und Störungsbehebung

10.1 Allgemeine Störungsbehebung

10.1.1 Kalibrationsfehler

Falscher Messwert

Parameter Aktuelle Distanz prüfen.

• Aktuelle Distanz ist falsch:

- Bei Messungen in Bypass oder Schallführungsrohr: Entsprechende Option auf der Parameterseite FST N Anw.Param. einstellen.
- Störechoausblendung durchführen (Parameterseite FST N Messw. prüf.).
- Aktuelle Distanz ist richtig:
 - Parameter Leer E und Voll F prüfen und falls nötig korrigieren.
 - Linearisierung prüfen und falls nötig korrigieren.

Keine Messwertänderung beim Befüllen/Entleeren

- Störechoausblendung durchführen.
- Sensor reinigen.
- Bessere Einbauposition des Sensors wählen (Vermeidung von Störechos).

Bei unruhiger Oberfläche springt der Messwert sporadisch auf höhere Füllstände

- Störechoausblendung durchführen.
- Parameter Messbedingungen auf Oberfl.unruhig oder zus. Rührwerk einstellen.
- Andere Einbauposition und/oder größeren Sensor wählen.

Beim Befüllen/Entleeren springt der Messwert sporadisch nach unten.

- Parameter Tankgeometrie auf Klöpperdeckel bzw. zyl. liegend einstellen.
- Mittige Einbauposition des Sensors vermeiden.
- Falls möglich: Schwallrohr/Schallführungsrohr einsetzen.

Echoverlust (Fehler E xx 641)

- Alle Anwendungsparameter prüfen (Parameterseite FST N Anw.Param.)
- Andere Einbauposition und/oder größeren Sensor wählen.
- Sensor parallel zur Füllgutoberfläche ausrichten (insbesondere bei Schüttgutanwendungen).

10.1.2 Prüfung des Signals in der Hüllkurvendarstellung

Ziel der Hüllkurvendarstellung

Mit der Hüllkurvendarstellung lässt sich das Messsignal überprüfen. In der Hüllkurve lässt sich beispielsweise erkennen, ob Störechos vorliegen, und ob diese von der Störechoausblendung vollständig unterdrückt werden.

Hüllkurvendarstellung auf dem Anzeigemodul

Aufrufen der Hüllkurvendarstellung:

- **1**. Navigieren nach **Diagnose/Info** \rightarrow **Hüllkurve**.
- 2. Für Geräte mit mehreren Sensoren: Sensor wählen, dessen Hüllkurve angezeigt werden soll.

3. Wählen, welcher Kurventyp angezeigt werden soll: Hüllkurve, Echobewertungskurve (FAC), Ausblendungskurve.

4. Darstellungsart wählen: einzelne Kurve oder zyklisch.

└ Es erscheint die Hüllkurvendarstellung:

🖻 50 Hüllkurvendarstellung auf der Vor-Ort-Anzeige

- 1 Ausblendungskurve (punktierte Linie)
- 2 Echoqualität des ausgewerteten Echos (i.e. Abstand des Echopeaks von der Bewertungskurve)
- 3 Markierung des ausgewerteten Echos
- 4 Markierung des Leerabgleichs E
- 5 Rechte Grenze des Darstellungsbereichs
- 6 Distanz des ausgewerteten Echos (gemessen vom Referenzpunkt des Sensors)
- 7 Hüllkurve (durchgezogene Linie)
- 8 Linke Grenze des Darstellungsbereichs
- 9 Markierung des Vollabgleichs F

Horizontale Streckung der Hüllkurvendarstellung

- 1. Linke oder mittlere Taste drücken.
 - 🕒 In der rechten oberen Ecke des Diagramms erscheint das Symbol 🌗 oder 🜬.
- 2. Um die Darstellung zu strecken: Mittlere Taste drücken.
- 3. Um die Darstellung zu stauchen: Linke Taste drücken.

Horizontale Verschiebung der Hüllkurvendarstellung

- 1. Rechte Taste drücken.
 - 🕒 In der rechten oberen Ecke des Diagramms erscheint das Symbol 📢 oder 🕪.
- 2. Um die Darstellung nach rechts zu verschieben: Mittlere Taste drücken.
- 3. Um die Darstellung nach links zu verschieben: Linke Taste drücken.

Verlassen der Hüllkurvendarstellung

• Alle drei Tasten gleichzeitig drücken.

Hüllkurvendarstellung in FieldCare/DeviceCare

- 1. In der Menüleiste auf **F** (Funktionen) klicken.
- 2. Sensor wählen, dessen Hüllkurve dargestellt werden soll.
- 3. Zur Darstellung einer einzelnen Kurve auf die Schaltfläche **Kurve lesen** klicken.
- 4. Zur zyklischen Darstellung auf die Schaltfläche Zyklisch lesen klicken.
- 5. Im Fenster **Kurven** wählen, welcher Kurventyp angezeigt werden soll: Hüllkurve, Echobewertungskurve (FAC), Ausblendungskurve.

10.2 Übersicht zu Diagnoseinformationen

10.2.1 Fehlersignal

Anzeige von Fehlern, die während Inbetriebnahme oder Betrieb auftreten:

- Vor-Ort-Anzeige:
 - Fehlersymbol
 - Fehlercode
 - Fehlerbeschreibung
- Zyklisches Datentelegramm
- Status, der mit dem Messwert übertragen wird.
- Bedienmenü:

Diagnose/Info \rightarrow Fehlerliste \rightarrow Aktueller Fehler

10.2.2 Liste der letzten Fehler

Bedienmenü:

Diagnose / Info \rightarrow Fehlerliste \rightarrow Letzter Fehler

10.2.3 Fehlerarten

Alarm (A)

leuchtet dauerhaft.

Wert des Ausgangssignal wird durch Parameter **Ausgang bei Alarm** \rightarrow **Ausgang N** fest-gelegt:

- **Min**: -10 %
- Max : 110 %
- Halten: Letzter Wert wird gehalten.
- anwenderspez.: Definiert in Parameter Ausgangswert N.

Der Status des Ausgangswerts der betroffenen AI-Blöcke ist BAD.

Warnung (W)

blinkt.

- Das Gerät misst weiter.
- Die Betriebszustands-LED blinkt rot.
- Auf dem Display wird eine Fehlermeldung angezeigt.
- Der Status des Ausgangswerts der betroffenen AI-Blöcke ist UNCERTAIN.

10.2.4 Einfluss der Fehler auf das Status-Byte des Ausgangssignals

Die folgende Tabelle gibt an, welchen Status die Blockausgangswerte bei Vorliegen eines Fehlers annehmen. Es gibt drei mögliche Status-Werte: GOOD, UNCERTAIN und BAD. Der Status wird an den nächsten Block weitergegeben. Wenn mehrere Status-Werte zusammentreffen, überschreibt der Stärkere den Schwächeren nach folgender Rangordnung:

- BAD überschreibt UNCERTAIN und GOOD.
- UNCERTAIN überschreibt GOOD.
- GOOD überschreibt keinen anderen Status.

Am Ausgang des AI-Blocks bleibt somit der stärkste vorliegende Status-Wert übrig. Dieser wird mit dem Messwert an die SPS übertragen.

Fehler im Sensorblock (US N)

Jeder Sensorblock (US N) hat zwei Ausgänge: einen für die gemessene Distanz D, einen für die Sensortemperatur T.

• A 0x 231 Distanz: BAD Temperatur: GOOD

- A 0x 281
 Distanz: BAD
 Temperatur: BAD
- W 0x 281 Distanz: UNCERTAIN Temperatur: UNCERTAIN
- W 0x 501 Distanz: BAD
- Temperatur: BAD
 A 0x 502
- Distanz: BAD Temperatur: BAD
- W 0x 521 Distanz: UNCERTAIN Temperatur: BAD
- A 0x 641 Distanz: BAD Temperatur: GOOD
- A 0x 651
 Distanz: BAD
 Temperatur: GOOD
- W 0x 651 Distanz: UNCERTAIN Temperatur: GOOD
- A 0x 661 Distanz: BAD Temperatur: GOOD
- W 0x 661 Distanz: UNCERTAIN Temperatur: GOOD
- W 0x 691 Distanz: UNCERTAIN Temperatur: GOOD
- W 0x 802 Distanz: UNCERTAIN Temperatur: GOOD

Fehler im Füllstandblock (LE)

- W 0x 601
- Füllstand: BAD
- A 0x 604
 Füllstand: BAD
- W 0x 611
 - Füllstand: BAD
- A 0x 671
 Füllstand: BAD
- W 0x 801
 Füllstand: UNCERTAIN

Fehler in den Berechnungsblöcken (SL, AL, DL, LD, SF, AF, DF, FD)

A 00 820-832 Summe: BAD Mittelwert: BAD

10.2.5 Fehlercodes

Bedeutung der Fehlercodes

- Stelle 1:
 - Fehlerart
 - A: Alarm
 - W: Warnung
 - E: Error (Verhalten des Fehlers wird vom Anwender definiert.)
- Stellen 2 und 3:

Eingangs- bzw. Ausgangskanal

- "**00**" bedeutet, dass sich der Fehler nicht auf einen bestimmten Kanal bezieht.
- Stellen 4 bis 6:

Fehlercode gemäß folgender Tabelle

Liste der Fehlercodes

• A 00 100

Software-Version passt nicht zur Hardware-Version.

A 00 101
 Prüfsummenfehler

 \rightarrow Totalreset und Neuabgleich

• A 00 102

Prüfsummenfehler

 \rightarrow Totalreset und Neuabgleich

• W 00 103

Initialisierung - bitte warten

- \rightarrow Falls die Meldung nicht nach einigen Sekunden verschwindet: Elektronik tauschen.
- A 00 106

Download läuft - bitte warten

- \rightarrow Beendigung des Download abwarten.
- A 00 110

Prüfsummenfehler → Totalreset und Neuabgleich

A 00 111/112/114/115

Elektronik defekt

- \rightarrow Gerät aus- und wieder einschalten.
- \rightarrow Falls der Fehler weiter besteht: Endress+Hauser-Service anrufen.
- A 00 116
 - Downloadfehler

 \rightarrow Download wiederholen.

- A 00 117
 - Hardware nach Tausch nicht erkannt
- A 00 125
 - Elektronik defekt
 - \rightarrow Elektronik tauschen.
- A 00 152
 - Prüfsummenfehler
 - \rightarrow Totalreset und Neuabgleich durchführen.
- W 00 153
 - Initialisierung
 - \rightarrow Falls die Meldung nicht nach einigen Sekunden verschwindet: Elektronik tauschen.
- A 00 155
 - Elektronik defekt
 - \rightarrow Elektronik tauschen.
- A 00 164
 - Elektronik defekt Elektronik tauschen.

• A 00 171

Elektronik defekt

- Elektronik tauschen.
- A 00 180
- Synchronisation fehlerhaft
- → Synchronisiernaschluss prüfen.
- A 00 183
- Nicht unterstützte Hardware
- → Prüfen, ob die eingebauten Leiterplatten mit dem Bestellcode des Gerätes übereinstimmen.
- \rightarrow Endress+Hauser-Service anrufen.
- A xx 231
 - Sensor xx defekt Prüfe Verbindung

→ Korrekten Anschluss des Sensors prüfen.

• A xx 281

Temperaturmessung Sensor xx defekt - Prüfe Verbindung → Korrekten Anschluss des Sensors prüfen.

- Wxx 501
 - Kein Sensor ausgewählt für Eingang xx
 - → Sensor wählen (Menü **Füllstand**).
- A xx 502

Sensor xx wird nicht erkannt

- → Sensortyp manuell eingeben (Menü **Füllstand**, Untermenü **Grundabgleich**).
- A 00 511
 - Kein Werksabgleich vorhanden
- A xx 512
 - Aufnahme Ausblendung
 - \rightarrow Beendigung der Ausblendung abwarten.
- W xx 521
- Neuen Sensor xx erkannt
- W xx 601
 - Linearisierungskurve nicht monoton für Füllstand xx
 - → Linearisierung neu eingeben (Menü **Füllstand**).
- A xx 604
 - Abgleich Füllstand xx fehlerhaft
 - → Abgleich korrigieren (Menü **Füllstand**).
- W xx 611
 - Linearisierungspunkte Füllstand xx: Anzahl < 2

→ Zusätzliche Linearisierungspunkte eingeben (Menü **Füllstand**).

- E xx 641
- Kein auswertbares Echo Sensor xx

→ Grundabgleich für den Sensor überprüfen (Menü **Füllstand**).

Axx 651

Sicherheitsabst. Sensor xx erreicht - Überfüllgefahr Fehler verschwindet, wenn der Füllstand den Sicherheitsabstand wieder verlässt. → Evtl. die Funktion **Reset Selbsthalt** betätigen (Menü **Sicherheitseinstellungen**).

- E xx 661
- Temperatur Sensor xx zu hoch (max. Temp. am Sensor überschritten)
- W xx 691

Befüllgeräusch erkannt Sensor xx

- W 00 801
 - Simulation Füllstand eingeschaltet
 - → Füllstand-Simulation ausschalten (Menü **Füllstand**).
- W xx 802
 - Simulation Sensor xx eingeschaltet
 - \rightarrow Simulation ausschalten.
- A 00 820-832
- Einheiten unterschiedlich für Berechnung von Mittelwert/Summe
- \rightarrow Einheiten in den entsprechenden Grundabgleichen prüfen (Menü **Füllstand**).

10.3 Firmware-Historie

- V01.00.00 (04.2007)
 Original Software
 BA00344F/00/de/05.06
- V01.01.00 (06.2006)
 Integrartion des Sensors FDU90
 BA00344F/00/de/07.09
- V01.01.03 (05.2011)
 Neue Option: Binäre Eingänge BA00344F/00/de/13.12

11 Wartung

Es sind grundsätzlich keine speziellen Wartungsarbeiten erforderlich.

11.1 Außenreinigung

Bei der Außenreinigung darauf achten, dass das verwendete Reinigungsmittel die Gehäuseoberfläche und die Dichtungen nicht angreift.

12 Reparatur

12.1 Allgemeine Hinweise

12.1.1 Das Endress+Hauser-Reparaturkonzept

Das Endress+Hauser-Reparaturkonzept sieht vor, dass die Messgeräte modular aufgebaut sind und Reparaturen durch den Kunden durchgeführt werden können. Für weitere Informationen über Service und Ersatzteile, kontaktieren Sie bitte Ihre Endress+Hauser-Vertriebsstelle.

12.1.2 Reparatur von Ex-zertifizierten Geräten

- Eine Reparatur von Ex-zertifizierten Geräten darf nur durch sachkundiges Personal oder durch den Endress+Hauser-Service erfolgen.
- Die entsprechenden einschlägigen Normen, nationalen Ex-Vorschriften sowie die Sicherheitshinweise (XA) und Zertifikate beachten.
- Nur Original-Ersatzteile von Endress+Hauser verwenden.
- Bei Bestellung des Ersatzteiles Gerätebezeichnung auf dem Typenschild beachten. Es dürfen nur Teile durch gleiche Teile ersetzt werden.
- Reparaturen gemäß Anleitung durchführen. Nach einer Reparatur die für das Gerät vorgeschriebene Stückprüfung durchführen.
- Umbau eines zertifizierten Gerätes in eine andere zertifizierte Variante darf nur durch den Endress+Hauser-Service erfolgen.
- Jede Reparatur und jeden Umbau dokumentieren.

12.1.3 Austausch eines Geräts oder Elektronikmoduls

Nach dem Austausch eines kompletten Gerätes bzw. eines Elektronikmoduls können die Parameter über die Kommunikationsschnittstelle wieder ins Gerät gespielt werden (Download). Voraussetzung ist, dass die Daten vorher mit Hilfe von FieldCare auf dem PC abgespeichert wurden (Upload). Es kann weiter gemessen werden, ohne einen neuen Abgleich durchzuführen. Nur eine Linearisierung und Störechoausblendung müssen neu durchgeführt werden.

12.1.4 Sensortausch

Nach einem Sensortausch folgende Parameter überprüfen:

- Leer E
- Voll F
- Distanz pr
 üfen (St
 örechoausblendung)

Danach kann die Messung ohne Einschränkungen fortgesetzt werden.

12.2 Ersatzteile

Im *W@M Device Viewer* (www.endress.com/deviceviewer) werden alle Ersatzteile zum Messgerät inklusive Bestellcode aufgelistet und lassen sich bestellen. Wenn vorhanden steht auch die dazugehörige Einbauanleitung zum Download zur Verfügung.

12.3 Rücksendung

Die Anforderungen für eine sichere Rücksendung können je nach Gerätetyp und landesspezifischer Gesetzgebung unterschiedlich sein.

- 1. Informationen auf der Internetseite einholen: http://www.endress.com/support/return-material
- 2. Das Gerät bei einer Reparatur, Werkskalibrierung, falschen Lieferung oder Bestellung zurücksenden.

12.4 Entsorgung

Folgende Hinweise zur Entsorgung beachten:

- Die national gültigen Vorschriften beachten.
- Auf eine stoffliche Trennung und Verwertung der Gerätekomponenten achten.

13 Zubehör

13.1 Kommunikationsspezifisches Zubehör

13.1.1 Commubox FXA291

- Verbindet die CDI-Schnittstelle (Common Data Interface) von Endress+Hauser-Geräten mit der USB-Schnittstelle eines Computers.
- Bestellnummer: 51516983
- Weitere Informationen: Technische Information TI00405C

13.2 Gerätespezifisches Zubehör

13.2.1 Wetterschutzhaube für Feldgehäuse Polycarbonat

🗉 51 Wetterschutzhaube für Feldgehäuse Polycarbonat. Maßeinheit mm (in)

- Werkstoff: 316Ti (1.4571)
- Befestigung: Durch Gehäusehalter von Prosonic S
- Bestellnummer: 52024477

13.2.2 Montageplatte für Feldgehäuse Polycarbonat

S2 Montageplatte f
ür Feldgeh
äuse Polycarbonat

- Passend f
 ür den Geh
 äusehalter des Prosonic S
- Rohrdurchmesser: 25 ... 50 mm (1 ... 2 in)
- Abmessungen: 210 x 110 mm (8,27 x 4,33 in)

- Werkstoff: 316Ti (1.4571)
- Montagezubehör: Befestigungsschellen, Schrauben und Muttern liegen bei.
- Bestellnummer: 52024478

Montageständer, 700 mm (27,6 in) für Ausleger schwenkbar

🖻 53 Abmessungen. Maßeinheit mm (in)

Gewicht:

4,2 kg (9,26 lb)

Material 316L (1.4404)

Bestellnummer 71452327

Montageständer, 1400 mm (55,1 in) für Ausleger schwenkbar

Gewicht: 6 kg (13,23 lb)

Material 316L (1.4404)

Bestellnummer 71452326

13.2.3 Adapterplatte für abgesetzte Anzeige

55 Verwendung der Adapterplatte

1 Abgesetzte Anzeige des Prosonic S FMU9x mit Adapterplatte

2 Montageöffnung der abgesetzten Anzeige des Vorgängergeräts FMU86x
Zur Montage der abgesetzten Anzeige des Prosonic S FMU9x im Gehäuse der größeren abgesetzten Anzeige der Vorgängergeräte FMU86x

- Abmessungen: 144 x 144 mm (5,7 x 5,7 in)
- Material: 304 (1.4301)
- Bestellnummer: 52027441

13.2.4 Überspannungsschutz HAW562

Zur Abschwächen von Restgrößen der vorgelagerten Blitzschutzstufen; Begrenzung in der Anlage induzierter oder erzeugter Überspannungen Weitere Informationen: Technische Information TIO1012K

Weitere Informationen: Technische Information TI01012K

13.2.5 Verlängerungskabel für Sensoren

- Maximal zulässige Gesamtlänge (Sensorkabel + Verlängerungskabel): 300 m (984 ft)
 - Sensorkabel und Verlängerungskabel sind typgleich.

FDU90/FDU91 ohne Sensorheizung

- Kabeltyp: LiYCY 2x(0,75)
- Werkstoff: PVC
- Umgebungstemperatur: -40 ... +105 °C (-40 ... +221 °F)
- Bestellnummer: 71027742

FDU90/FDU91 mit Sensorheizung

- Kabeltyp: LiYY 2x(0,75)D+2x0,75
- Werkstoff: PVC
- Umgebungstemperatur: -40 ... +105 °C (-40 ... +221 °F)
- Bestellnummer: 71027746

FDU92

- Kabeltyp: LiYCY 2x(0,75)
- Werkstoff: PVC
- Umgebungstemperatur: -40 ... +105 °C (-40 ... +221 °F)

Bestellnummer: 71027742

FDU91F/FDU93/FDU95

- Kabeltyp: LiYY 2x(0,75)D+1x0,75
- Werkstoff: PVC
- Umgebungstemperatur: -40 ... +105 °C (-40 ... +221 °F)
- Bestellnummer: 71027743

FDU95

- Kabeltyp: Li2G2G 2x(0,75)D+1x0,75
- Werkstoff: Silikon
- Umgebungstemperatur: -40 ... +150 °C (-40 ... +302 °F)
- Bestellnummer: 71027745

14 Bedienmenü

14.1 Menü "Füllstand → Füllstand (FST N)"

14.1.1 Untermenü "Grundabgleich"

Parameterseite L1003 "FST N Sensorwahl"

- Eingang
- Sensorwahl
- Detektiert

Parameterseite L1004 "FST N Anw. Param."

- Tankgeometrie
- Medium Eigensch.
- Messbedingungen

Parameterseite L1005 "FST N Leer Abgl." Leer E

Parameterseite L 1006 "FST N Voll Abgl."

- Voll F
- Blockdistanz

Parameterseite L1007 "FST N Einheit"

- Einh. Füllstand
- Füllstand N
- Distanz

Parameterseite L1008 "FST N Linearisier"

- Form
- Kundeneinheit
- Freitext
- Endwert Messber.
- Durchmesser
- Zwischenhöhe (H)
- Modus
- Bearbeiten
- Status Tabelle

Parameterseite L100B "FST N Messw. prüf."

- akt. Distanz N
- Distanz prüfen

Parameterseite L100B "FST N Dist. ausbl."

- akt. Distanz N
- Bereich Ausblend.
- Starte Ausblend.
- Status

Parameterseite L100C "FST N Status"

- Füllstand N
- akt. Distanz N
- Status

14.1.2 Untermenü "erweit. Abgleich"

Parameterseite L1016 "FST N Dist. Ausbl."

- akt. Distanz N
- Bereich Ausblend.
- Starte Ausblend.
- Status

Parameterseite L1017 "FST N Messw. prüf." Korrektur

Parameterseite L1018 "FST N Korrektur" Füllhöhenkorrekt

Parameterseite L1020 "FST N Blockdistanz" Blockdistanz

Parameterseite L1019 "FST N Begrenzung"

- Begrenzung
- Obere Grenze
- Untere Grenze

14.1.3 Untermenü "Simulation"

Parameterseite L1022 "FST N Simulation"

- Simulation
- Sim. Füll. Wert
- Sim. Volumenwert

14.2 Menü "Sicherheitseinstellungen"

Parameterseite AX102 "Ausg.Echoverlust"

- Füllstand N
- Rampe FST N
- Wert Füllstand N

Parameterseite AX103 "Verzög. Echoverl" Verzö. Sensor N

Parameterseite AX104 "Sicherheitsabst." Sich. Abst.Sen N

Parameterseite AX105 "Im Sicherh.abst."

- In Sich.Abst.S N
- Zurücksetz.Sen N

Parameterseite AX107 "Reakt. Übertemp."

- Übertemp. Sen. N
- Max.Temp. Sen. N

Parameterseite A0000 "Defekt Temp. Sen." Def.Temp. Sen. N

-

14.3 Übersicht Menü "Ausgänge/Berech." (PROFIBUS DP)

14.3.1 Untermenü "Analog Eingang"

Parameterseite OXA01 "Analog Eingang N"

- Messwert N
- Wert
- Status

14.3.2 Untermenü "PROFIBUS DP"

Parameterseite O1C01 "PROFIBUS DP"

- Profile Version
- Geräteadresse
- Ident Number

14.4 Übersicht Menü "Gerätekonfig."

14.4.1 Untermenü "Betriebsparameter"

Parameterseite D1101 "Längeneinheit" Längeneinheit

Parameterseite D110B "Temperatureinh." Temperatureinh.

14.4.2 Untermenü "Messstelle/Tag

Parameterseite D1102 "Messstelle/Tag" Gerätebezeichn.

14.4.3 Untermenü "Sprache"

Parameterseite D1103 "Sprache" Sprache

14.4.4 Untermenü "Passwort/Rücksetz"

Parameterseite D1104 "Passwort/Rücksetz"

- Rücksetzen
- Code
- Status

14.5 Menü "Diagnose/Info"

14.5.1 Untermenü "Geräteinformation"

Parameterseite IX101 "Geräte Familie" Geräte Familie

Parameterseite IX102 "Gerätename" Gerätename

Parameterseite IX103 "Gerätebezeichn." Gerätebezeichn.

Parameterseite IX105 "Seriennummer" Seriennummer

Parameterseite IX106 "Software Version" Software Version

Parameterseite IX107 "Dev.Rev." Dev.Rev.

Parameterseite IX108 "DD Version" DD Version

14.5.2 Untermenü "Ein-/Ausgänge Info"

Parameterseite IX108 "Füllstand N"

- Eingang
- Sensorwahl
- Detektiert

Parameterseite IX11A "Analog Eingang N" Messwert N

14.5.3 Untermenü "Min/Max Werte"

Parameterseite IX302 "Füllstand → Füllstand (FST) N"

- Max. Wert
- Min. Wert
- Rücksetzen

Parameterseite IX302 "Temperatur → Temperatur Sen. N"

- Max. Wert
- Min. Wert

14.5.4 Untermenü "Hüllkurve"

Parameterseite IX126 "Hüllkurve Sen. N"

- Darstellungsart (Wahl der dargestellten Kurven)
- Darstellungsart (Wahl zwischen einzelner Kurve und zyklischer Darstellung)

14.5.5 Untermenü "Fehlerliste"

Parameterseite E1002 "Akt. Fehler"

- 1:
- **•** 2:
- ...

Parameterseite E1003 "Letzter Fehler"

- **1**:
- **2**:
- **•** ...

14.5.6 Untermenü "Diagnose"

Parameterseite E1403 "Betriebsstunden" Betriebsstunden

Parameterseite E1404 "Aktuelle Distanz" akt. Distanz N

Parameterseite E1405 "Akt. Messwert" Füllstand N

Parameterseite E1405 "Anwendungsparam." Sensor N

Parameterseite E1406 "Echoqualität Sen." Echoqualität N

14.6 Menü "Anzeige"

Parameterseite DX202 "Anzeige"

- Тур
- Wert N
- Freitext N

Parameterseite DX201 "Anzeigeformat"

- Format
- Nachkommast.
- Trennungszeichen
- Freitext

Parameterseite DX200 "Rücksprungzeit" Zur Startseite

14.7 Menü "Sensorverwaltung"

14.7.1 Untermenü "Sensorverwaltung → FDU Sensor N"

Parameterseite D1106 "US Sensor N"

- Sensorbetrieb
- Sensorpriorität
- Detektiert
- Fensterung

www.addresses.endress.com

