
Betriebsanleitung iTHERM CompactLine TM311

Metrisches/zölliges kompaktes RTD 4 ... 20 mA / IO-Link Thermometer für industrielle und hygienische Anwendungen

Inhaltsverzeichnis

1	Hinweise zum Dokument 4	1
1.1	Dokumentfunktion 4	1
1.2 1.3	Symbole	1
1.3	Dokumentation	1
2	Grundlegende Sicherheitshinweise 6	1
2.1	Anforderungen an das Personal 6	1
2.2	Bestimmungsgemäße Verwendung 6	
2.3 2.4	Betriebssicherheit 6 Produktsicherheit	1
2.5	IT-Sicherheit	1
3	Produktbeschreibung 8	1
4	Warenannahme und Produktidenti-	1 1
	fizierung 8	1
4.1	Warenannahme 8	1
4.2	Produktidentifizierung 8	1
4.3	Name und Adresse des Herstellers 9	
4.4	Lagerung und Transport	1
5	Montage	1
5.1	Montagebedingungen 10	1
5.2	Thermometer montieren	1
5.3	Montagekontrolle	1
6	Elektrischer Anschluss	1
6.1	Anschlussbedingungen	1
6.2	Messgerät anschließen	1
6.3	Schutzart sicherstellen	_
6.4	Anschlusskontrolle	1
7	Bedienungsmöglichkeiten 16	1
7.1	Protokollspezifische Daten 16	
8	Systemintegration	
8.1	Identifikation	
8.2	Prozessdaten	
8.3	Gerätedaten auslesen und schreiben 19	
9	Inbetriebnahme	
9.1	Installationskontrolle	
9.2	Messgerät konfigurieren 21	
10	Diagnose und Störungsbehebung 22	
10.1	Allgemeine Störungsbehebungen 22	
10.2	Diagnoseinformation via Kommunikations-	
10.3	schnittstelle	

10.4 10.5	Diagnoseliste	24 24
11	Wartung	24
11.1 11.2	Reinigung	24 25
12	Reparatur	25
12.1	Ersatzteile	25
12.2 12.3	Rücksendung	25 26
14.5	Entsorgung	20
13	Zubehör	26
13.1	Gerätespezifisches Zubehör	26
13.2	Kommunikationsspezifisches Zubehör	29
13.3	Onlinetools	30
13.4	Kommunikationsspezifisches Zubehör	31
13.5	Servicespezifisches Zubehör	32
13.6	Systemkomponenten	33
14	Technische Daten	33
14.1	Eingang	33
14.2	Ausgang	34
14.3	Energieversorgung	36
14.4	Leistungsmerkmale	37
14.5	Montage	41
14.6	Umgebung	44
14.7	Prozess	45
14.8	Konstruktiver Aufbau	46
14.9	Anzeige- und Bedienoberfläche	63
14.10	Zertifikate und Zulassungen	64
15	Übersicht Bedienmenü IO-Link	66
15.1	Beschreibung der Geräteparameter	68
	J	

1 Hinweise zum Dokument

1.1 Dokumentfunktion

Diese Anleitung liefert alle Informationen, die in den verschiedenen Phasen des Lebenszyklus des Geräts benötigt werden: Von der Produktidentifizierung, Warenannahme und Lagerung über Montage, Anschluss, Bedienungsgrundlagen und Inbetriebnahme bis hin zur Störungsbeseitigung, Wartung und Entsorgung.

1.2 Symbole

1.2.1 Warnhinweissymbole

▲ GEFAHR

Dieser Hinweis macht auf eine gefährliche Situation aufmerksam, die, wenn sie nicht vermieden wird, zu Tod oder schwerer Körperverletzung führen wird.

WARNUNG

Dieser Hinweis macht auf eine gefährliche Situation aufmerksam, die, wenn sie nicht vermieden wird, zu Tod oder schwerer Körperverletzung führen kann.

▲ VORSICHT

Dieser Hinweis macht auf eine gefährliche Situation aufmerksam, die, wenn sie nicht vermieden wird, zu leichter oder mittelschwerer Körperverletzung führen kann.

HINWEIS

Dieser Hinweis enthält Informationen zu Vorgehensweisen und weiterführenden Sachverhalten, die keine Körperverletzung nach sich ziehen.

1.2.2 Elektrische Symbole

Symbol	Bedeutung
	Gleichstrom
~	Wechselstrom
$\overline{\sim}$	Gleich- und Wechselstrom
≐	Erdanschluss Eine geerdete Klemme, die vom Gesichtspunkt des Benutzers über ein Erdungssystem geerdet ist.
	Anschluss Potenzialausgleich (PE: Protective earth) Erdungsklemmen, die geerdet werden müssen, bevor andere Anschlüsse hergestellt werden dürfen.
	Die Erdungsklemmen befinden sich innen und außen am Gerät: Innere Erdungsklemme: Anschluss Potenzialausgleich wird mit dem Versorgungsnetz verbunden. Äußere Erdungsklemme: Gerät wird mit dem Erdungssystem der Anlage verbunden.

1.2.3 Symbole für Informationstypen

Symbol	Bedeutung	
✓	Erlaubt Abläufe, Prozesse oder Handlungen, die erlaubt sind.	
	Zu bevorzugen Abläufe, Prozesse oder Handlungen, die zu bevorzugen sind.	

Symbol	Bedeutung
X	Verboten Abläufe, Prozesse oder Handlungen, die verboten sind.
i	Tipp Kennzeichnet zusätzliche Informationen.
	Verweis auf Dokumentation
E	Verweis auf Seite
	Verweis auf Abbildung
>	Zu beachtender Hinweis oder einzelner Handlungsschritt
1., 2., 3	Handlungsschritte
L.	Ergebnis eines Handlungsschritts
?	Hilfe im Problemfall
	Sichtkontrolle

1.2.4 Symbole in Grafiken

Symbol	Bedeutung	Symbol	Bedeutung
1, 2, 3,	Positionsnummern	1., 2., 3	Handlungsschritte
A, B, C,	Ansichten	A-A, B-B, C-C,	Schnitte
EX	Explosionsgefährdeter Bereich	×	Sicherer Bereich (Nicht explosionsgefährdeter Bereich)

1.2.5 Werkzeugsymbole

Symbol	Bedeutung
Ø	Gabelschlüssel
A0011222	

1.3 **Dokumentation**

Eine Übersicht zum Umfang der zugehörigen Technischen Dokumentation bieten:

- Device Viewer (www.endress.com/deviceviewer): Seriennummer vom Typenschild
- Endress+Hauser Operations App: Seriennummer vom Typenschild eingeben oder Matrixcode auf dem Typenschild einscannen

Im Download-Bereich der Endress+Hauser Internetseite (www.endress.com/downloads) sind folgende Dokumenttypen je nach Geräteausführung verfügbar:

Dokumenttyp	Zweck und Inhalt des Dokuments
Technische Information (TI)	Planungshilfe für Ihr Gerät Das Dokument liefert alle technischen Daten zum Gerät und gibt einen Überblick, was rund um das Gerät bestellt werden kann.
Kurzanleitung (KA)	Schnell zum 1. Messwert Die Anleitung liefert alle wesentlichen Informationen von der Warenannahme bis zur Erstinbetriebnahme.

Dokumenttyp	Zweck und Inhalt des Dokuments
Betriebsanleitung (BA)	Ihr Nachschlagewerk Die Anleitung liefert alle Informationen, die in den verschiedenen Phasen des Lebenszyklus vom Gerät benötigt werden: Von der Produktidentifizie- rung, Warenannahme und Lagerung über Montage, Anschluss, Bedie- nungsgrundlagen und Inbetriebnahme bis hin zur Störungsbeseitigung, Wartung und Entsorgung.
Beschreibung Geräteparameter (GP)	Referenzwerk für Ihre Parameter Das Dokument liefert detaillierte Erläuterungen zu jedem einzelnen Parameter. Die Beschreibung richtet sich an Personen, die über den gesamten Lebenszyklus mit dem Gerät arbeiten und dabei spezifische Konfigurationen durchführen.
Sicherheitshinweise (XA)	Abhängig von der Zulassung liegen dem Gerät bei Auslieferung Sicherheitshinweise für elektrische Betriebsmittel in explosionsgefährdeten Bereichen bei. Diese sind integraler Bestandteil der Betriebsanleitung. Auf dem Typenschild ist angegeben, welche Sicherheitshinweise (XA) für das jeweilige Gerät relevant sind.
Geräteabhängige Zusatzdokumentation (SD/FY)	Anweisungen der entsprechenden Zusatzdokumentation konsequent beachten. Die Zusatzdokumentation ist fester Bestandteil der Dokumentation zum Gerät.

2 Grundlegende Sicherheitshinweise

2.1 Anforderungen an das Personal

Das Personal für Installation, Inbetriebnahme, Diagnose und Wartung muss folgende Bedingungen erfüllen:

- Ausgebildetes Fachpersonal: Verfügt über Qualifikation, die dieser Funktion und Tätigkeit entspricht.
- ▶ Vom Anlagenbetreiber autorisiert.
- ► Mit den nationalen Vorschriften vertraut.
- ► Vor Arbeitsbeginn: Anweisungen in Anleitung und Zusatzdokumentation sowie Zertifikate (je nach Anwendung) lesen und verstehen.
- ► Anweisungen und Rahmenbedingungen befolgen.

Das Bedienpersonal muss folgende Bedingungen erfüllen:

- ► Entsprechend den Aufgabenanforderungen vom Anlagenbetreiber eingewiesen und autorisiert.
- ▶ Anweisungen in dieser Anleitung befolgen.

2.2 Bestimmungsgemäße Verwendung

- Das Gerät ist ein Kompaktthermometer für die industrielle Temperaturmessung.
- Der Hersteller haftet nicht für Schäden, die aus unsachgemäßer oder nicht bestimmungsgemäßer Verwendung entstehen.

2.3 Betriebssicherheit

Beschädigung des Geräts!

- ▶ Das Gerät nur in technisch einwandfreiem und betriebssicherem Zustand betreiben.
- ▶ Der Betreiber ist für den störungsfreien Betrieb des Geräts verantwortlich.

Umbauten am Gerät

Eigenmächtige Umbauten am Gerät sind nicht zulässig und können zu unvorhersehbaren Gefahren führen!

▶ Wenn Umbauten trotzdem erforderlich sind: Rücksprache mit dem Hersteller halten.

Reparatur

Um die Betriebssicherheit weiterhin zu gewährleisten:

- ▶ Nur wenn die Reparatur ausdrücklich erlaubt ist, diese am Gerät durchführen.
- ▶ Die nationalen Vorschriften bezüglich Reparatur eines elektrischen Geräts beachten.
- Nur Original-Ersatzteile und Zubehör verwenden.

2.4 Produktsicherheit

Das Gerät ist nach dem Stand der Technik und guter Ingenieurspraxis betriebssicher gebaut und geprüft und hat das Werk in sicherheitstechnisch einwandfreiem Zustand verlassen.

Es erfüllt die allgemeinen Sicherheitsanforderungen und gesetzlichen Anforderungen. Zudem ist es konform zu den EU-Richtlinien, die in der gerätespezifischen EU-Konformitätserklärung aufgelistet sind. Mit Anbringung der CE-Kennzeichnung bestätigt der Hersteller diesen Sachverhalt.

2.5 IT-Sicherheit

Eine Gewährleistung seitens des Herstellers ist nur gegeben, wenn das Produkt gemäß der Betriebsanleitung installiert und eingesetzt wird. Das Produkt verfügt über Sicherheitsmechanismen, um es gegen versehentliche Veränderung der Einstellungen zu schützen.

IT-Sicherheitsmaßnahmen gemäß dem Sicherheitsstandard des Betreibers, die das Produkt und dessen Datentransfer zusätzlich schützen, sind vom Betreiber selbst zu implementieren.

3 Produktbeschreibung

Auslegung		Optionen
	1: Elektrischer Anschluss, Aus- gangssignal 2: Messumfor- mergehäuse	Ihre Vorteile: • M12, 4-poliger Stecker, weniger Kosten und Zeitaufwand sowie Vermeidung einer falschen Verdrahtung • Optimaler Schutz, standardmäßig IP69 • Kompakter, integrierter Messumformer (IO-Link und 4 20 mA)
	3: Halsrohr	Optional, bei zu hoher Prozesstemperatur für die Elektronik
3—	4: Prozessan- schluss → 🖺 56	Mehr als 50 verschiedene Varianten für industrielle, hygienische und aseptische Anwendungen.
	5: Schutzrohr	 Varianten mit und ohne Schutzrohr (Messeinsatz direkt prozessberührend) Schutzrohrdurchmesser 6 mm und optimierte T- und Eckstücke
6b 6b A0039771	6: Messeinsatz mit: 6a: iTHERM Tip- Sens 6b: Pt100 (TF), Basis	Vorteile auf einen Blick: Itherm TipSens - Messeinsatz mit kürzesten Ansprechzeiten: Messeinsatz: Ø3 mm (1/8 in) oder Ø6 mm (1/4 in) Schnelle, hochpräzise Messungen, dadurch maximale Prozesssicherheit und -kontrolle Qualitäts- und Kostenoptimierung Minimierung der erforderlichen Eintauchlänge: Produktschonung durch verbesserten Prozessfluss Pt100 (TF), Basis Exzellentes Preis-Leistungs-Verhältnis

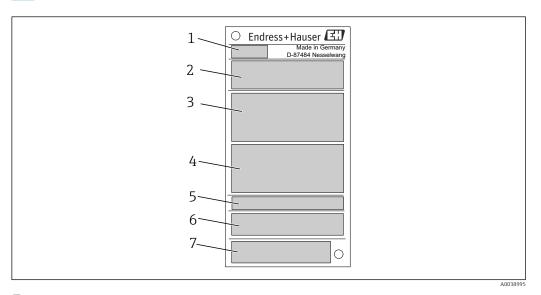
4 Warenannahme und Produktidentifizierung

4.1 Warenannahme

Nach Erhalt der Lieferung:

- 1. Verpackung auf Beschädigungen prüfen.
 - Schäden unverzüglich dem Hersteller melden. Beschädigte Komponenten nicht installieren.
- 2. Den Lieferumfang anhand des Lieferscheins prüfen.
- 3. Typenschilddaten mit den Bestellangaben auf dem Lieferschein vergleichen.
- 4. Vollständigkeit der Technischen Dokumentation und aller weiteren erforderlichen Dokumente, z. B. Zertifikate prüfen.
- Wenn eine der oben genannten Bedingungen nicht erfüllt ist: Hersteller kontaktieren.

4.2 Produktidentifizierung


Folgende Möglichkeiten stehen zur Identifizierung des Gerätes zur Verfügung:

- Typenschildangaben
- Seriennummer vom Typenschild in *Device Viewer* eingeben www.endress.com/deviceviewer: Alle Angaben zum Gerät und eine Übersicht zum Umfang der mitgelieferten Technischen Dokumentation werden angezeigt.

4.2.1 Typenschild

Das richtige Gerät?

- 1. Die Daten auf dem Typenschild des Geräts überprüfen.
- 2. Mit den Anforderungen der Messstelle vergleichen.

■ 1 Beispielgrafik

- 1 Produktwurzel, Gerätebezeichnung
- 2 Bestellcode, Seriennummer
- 3 Messstellenbezeichnung
- 4 Technische Werte: Versorgungsspannung, Stromaufnahme, Umgebungstemperatur
- 5 Schutzart
- 6 Pinbelegung
- 7 Zulassungen mit Symbolen: CE-Kennzeichnung, EAC

4.2.2 Lieferumfang

Im Lieferumfang sind enthalten:

- Kompaktthermometer
- Gedruckte Kurzanleitung
- Bestelltes Zubehör

4.3 Name und Adresse des Herstellers

Name des Herstellers:	Endress+Hauser Wetzer GmbH + Co. KG
Adresse des Herstellers:	Obere Wank 1, D-87484 Nesselwang oder www.endress.com

4.4 Lagerung und Transport

Lagerungstemperatur: -40 ... +85 °C (-40 ... +185 °F).

Bei Lagerung folgende Umgebungseinflüsse unbedingt vermeiden:

- Direkte Sonneneinstrahlung
- Nähe zu heißen Gegenständen
- Mechanische Vibration
- Aggressive Medien

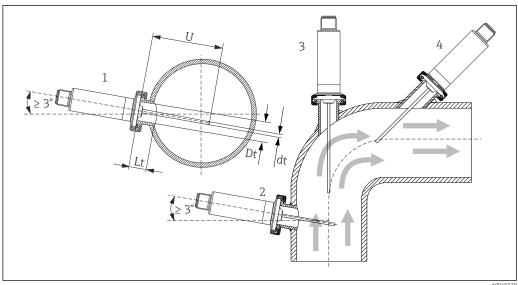
Maximale relative Luftfeuchtigkeit: < 95 %

Bei Lagerung und Transport das Gerät so verpacken, dass es zuverlässig vor Stößen und äußeren Einflüssen geschützt wird. Die Originalverpackung bietet optimalen Schutz.

5 Montage

5.1 Montagebedingungen

Informationen zu den Bedingungen, die am Einbauort herrschen müssen, um eine bestimmungsgemäße Verwendung sicherzustellen (so z. B. Umgebungstemperatur, Schutzart, Klimaklasse etc.), sowie zu den Geräteabmessungen → 🗎 33

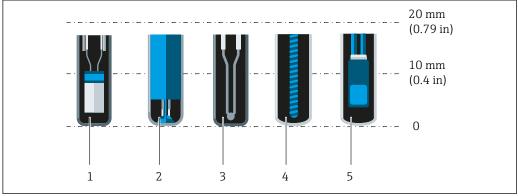

5.1.1 Einbaulage

Keine Beschränkungen, Selbstentleerung im Prozess muss aber gewährleistet sein. Wenn eine Öffnung zur Leckageerkennung am Prozessanschluss vorhanden ist, muss diese am tiefsten Punkt liegen.

5.1.2 Einbauhinweise

Die Eintauchlänge des Kompaktthermometers kann die Messgenauigkeit erheblich beeinflussen. Bei zu geringer Eintauchlänge können durch die Wärmeableitung über den Prozessanschluss und die Behälterwand Fehler in der Messung auftreten. Daher empfiehlt sich beim Einbau in ein Rohr eine Eintauchlänge, die idealerweise der Hälfte des Rohrdurchmessers entspricht.

Einbaumöglichkeiten: Rohre, Tanks oder andere Anlagenkomponenten.


- **₽** 2 Einbaubeispiele
- 1, 2 Senkrecht zur Strömungsrichtung, Einbau mit min. 3 Neigung, um Selbstentleerung zu gewährleisten
- An Winkelstücken
- Schräger Einbau in Rohren mit kleinem Nenndurchmesser
- Eintauchlänge
- Die Anforderungen nach EHEDG und 3-A Sanitary Standard müssen eingehalten werden.

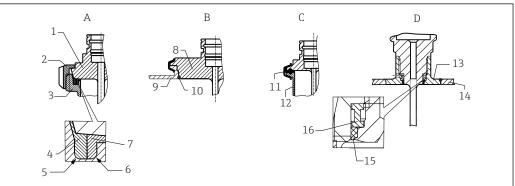
Einbauhinweis EHEDG/Reinigbarkeit: Lt ≤ (Dt-dt)

Einbauhinweis 3-A/Reinigbarkeit: Lt \leq 2 (Dt-dt)

Die genaue Position des Sensorelementes in der Thermometerspitze ist zu beachten.

Verfügbare Optionen sind abhängig von Produkt und Konfiguration.

- iTHERM StrongSens oder iTHERM TrustSens bei 5 ... 7 mm (0,2 ... 0,28 in)
- *iTHERM QuickSens bei 0,5 ... 1,5 mm (0,02 ... 0,06 in)* 2
- 3 Thermoelement (ungeerdet) bei 3 ... 5 mm (0,12 ... 0,2 in)
- 4 $Drahtgewickelter\,Sensor\,bei\,5\,\dots\,20\,mm\;(0,2\,\dots\,0,79\;in)$
- Standard Dünnfilm-Sensor bei 5 ... 10 mm (0,2 ... 0,39 in)


Um den Einfluss der Wärmeableitung so gering wie möglich zu halten und eine bestmögliche Messung zu erreichen, sollten 20 ... 25 mm (0,79 ... 0,98 in) zusätzlich zum eigentlichen Sensorelement in Kontakt mit dem Medium sein.

Daraus ergeben sich folgende empfohlene, minimale Eintauchlängen

- iTHERM TrustSens oder iTHERM StrongSens 30 mm (1,18 in)
- iTHERM QuickSens 25 mm (0,98 in)
- Drahtgewickelter Sensor 45 mm (1,77 in)
- Standard Dünnfilm-Sensor 35 mm (1,38 in)

Das ist besonders zu berücksichtigen bei T-Schutzrohren, da die Eintauchlänge konstruktiv bedingt sehr kurz ist und dadurch eine erhöhte Messabweichung zustande kommt. Es wird daher empfohlen, Eckschutzrohre mit iTHERM QuickSens-Sensoren zu verwenden.

Bei Rohren mit kleinen Nenndurchmessern empfiehlt es sich, dass die Spitze des Thermometers weit genug in den Prozess ragt, um über die Achse der Rohrleitung hinaus zu reichen. Eine andere Lösung kann ein schräger Einbau sein (4). Bei der Bestimmung der Eintauch- bzw. Einstecklänge müssen alle Parameter des Thermometers und des zu messenden Mediums berücksichtigt werden (z. B. Durchflussgeschwindigkeit, Prozessdruck).

A004034

■ 3 Detaillierte Einbauhinweise bei hygienegerechter Installation

- A Milchrohrverschraubung nach DIN 11851, nur in Verbindung mit EHEDG bescheinigtem und selbstzentrierenden Dichtring
- 1 Sensor mit Milchrohrverschraubung
- 2 Nutüberwurfmutter
- 3 Gegenanschluss
- 4 Zentrierring
- 5 RO.4
- 6 R0.4
- 7 Dichtungsring
- B Varivent® Prozessanschluss für VARINLINE® Gehäuse
- 8 Sensor mit Varivent Anschluss
- 9 Gegenanschluss
- 10 O-Ring
- C Clamp nach ISO 2852
- 11 Formdichtung
- 12 Gegenanschluss
- D Prozessanschluss Liquiphant-M G1", horizontaler Einbau
- 13 Einschweißadapter
- 14 Behälterwand
- 15 O-Ring
- 16 Druckring
- Die Gegenstücke für die Prozessanschlüsse sowie die Dichtungen oder Dichtringe sind nicht im Lieferumfang des Thermometers enthalten. Liquiphant M-Einschweißadapter mit zugehörigen Dichtungssätzen sind als Zubehör erhältlich (siehe 'Zubehör').

12

HINWEIS

Im Fehlerfall eines Dichtrings (O-Ring) oder einer Dichtung müssen folgende Maßnahmen durchgeführt werden:

- ▶ Das Thermometer muss ausgebaut werden.
- ▶ Das Gewinde und die O-Ringnut/Dichtfläche müssen gereinigt werden.
- ▶ Der Dichtring bzw. die Dichtung müssen ausgetauscht werden.
- ► CIP muss nach dem Einbau durchgeführt werden.

Bei eingeschweißten Anschlüssen müssen die Schweißarbeiten auf der Prozessseite mit der erforderlichen Sorgfalt durchgeführt werden:

- 1. Geeigneten Schweißwerkstoff verwenden.
- 2. Bündiq oder mit Schweißradius ≥ 3,2 mm (0,13 in) schweißen.
- 3. Vertiefungen, Falten, Spalten vermeiden.
- 4. Auf eine geschliffene und polierte Oberfläche, Ra \leq 0,76 µm (30 µin) achten.

Damit die Reinigungsfähigkeit nicht beeinträchtig wird, muss beim Einbau des Thermometers folgendes beachtet werden:

- 1. Der Sensor ist im eingebauten Zustand für CIP (cleaning in place) Reinigungen geeignet. Die Reinigung erfolgt zusammen mit der Rohrleitung bzw. Tank. Bei Tankeinbauten mittels Prozessanschlussstutzen ist zu gewährleisten, dass die Reinigungsarmatur diesen Bereich direkt ansprüht um ihn auszureinigen.
- 2. Die Varivent®-Anschlüsse ermöglichen eine frontbündige Montage.

5.1.3 Generelle Einbauhinweise

Wenn aufgrund von ungünstigen Verhältnissen (hohe Prozesstemperatur, hohe Umgebungstemperatur, Elektronik nahe am Prozess) eine Gerätetemperatur von 100 °C erreicht wird, gibt das Gerät die Diagnosemeldung **S825** aus. Ab einer Gerätetemperatur von 125 °C gibt das Gerät die Diagnosemeldung **F001** oder **Fehlerstrom** aus.

Umgebungstemperaturbereich

- 1	Ta	−40 +85 °C (−40 +185 °F)
- 1		

Prozesstemperaturbereich

Die Elektronik des Thermometers ist vor Temperaturen über 85 $^{\circ}$ C (185 $^{\circ}$ F) durch ein Halsrohr mit entsprechender Länge zu schützen.

Geräteausführung ohne Elektronik (Bestellmerkmal 020, Option A)

Pt100 TF, Basis, ohne Halsrohr	−50 +150 °C (−58 +302 °F)
Pt100 TF, Basis, mit Hals-rohr	−50 +150 °C (−58 +302 °F)
iTHERM TipSens, ohne Halsrohr	−50 +200 °C (−58 +392 °F)
iTHERM TipSens, mit Halsrohr	−50 +200 °C (−58 +392 °F)

Geräteausführung mit Elektronik (Bestellmerkmal 020, Option B, C)

Pt100 TF, Basis, ohne Halsrohr	−50 +150 °C (−58 +302 °F)
Pt100 TF, Basis, mit Hals-rohr	−50 +150 °C (−58 +302 °F)
iTHERM TipSens, ohne Halsrohr	−50 +150 °C (−58 +302 °F)
iTHERM TipSens, mit Halsrohr	-50 +200 °C (−58 +392 °F)

5.2 Thermometer montieren

Zur Montage des Geräts wie folgt vorgehen:

- 1. Zulässige Belastbarkeit der Prozessanschlüsse den einschlägigen Normen entnehmen.
- 2. Prozessanschluss und Klemmverschraubung müssen dem maximal angegebenen Prozessdruck entsprechen.
- 3. Gerät unbedingt vor der Anwendung des Prozessdrucks installieren und befestigen.
- 4. Belastbarkeit des Schutzrohrs entsprechend den Prozessbedingungen anpassen.
- 5. Gegebenenfalls kann eine Berechnung der statischen und dynamischen Belastbarkeit notwendig sein.
- Die mechanische Belastbarkeit in Abhängigkeit der Einbau- und Prozessbedingungen kann online im Schutzrohrberechnungstool überprüft werden: TW Sizing Modul in der Endress+Hauser Applicator-Software https://portal.endress.com/webapp/applicator.

5.2.1 Zylindrische Gewinde

HINWEIS

Für zylindrische Gewinde müssen Dichtungen verwendet werden.

Bei Zusammenbauten von Thermometer und Schutzrohr sind diese Dichtungen bereits vormontiert (je nach bestellter Ausführung).

▶ Der Betreiber der Anlage ist dazu verpflichtet, die Eignung dieser Dichtung im Hinblick auf die Einsatzbedingungen zu überprüfen.

Gewindeausführung	Anziehdrehmoment [Nm]
Kompaktthermometer mit Schutzrohr als T- oder Eckstück	5
Prozessanschluss metallisches Dichtsystem	10
Klemmverschraubung, kugelig, PEEK-Dichtung	10
Klemmverschraubung, kugelig, 316L-Dichtung	25
Klemmverschraubung, zylindrisch, Elastosil-Dichtung	5

- 1. Im Bedarfsfall durch eine geeignete Dichtung ersetzen.
- 2. Die Dichtungen nach einer Demontage ersetzen.
- 3. Da alle Gewinde fest angezogen sein müssen, die entsprechenden Anzugsmomente verwenden.

5.2.2 Kegelige Gewinde

▶ Der Betreiber muss die Notwendigkeit einer zusätzlichen Dichtung bei NPT-Gewinden oder anderen kegeligen Gewinden z. B. mittels PTFE-Band, Hanf oder einer zusätzlichen Schweißnaht überprüfen.

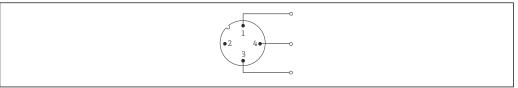
5.3 Montagekontrolle

Ist das Gerät unbeschädigt (Sichtprüfung)?
Ist das Gerät geeignet fixiert?
Entspricht das Gerät den Messstellenspezifikationen, wie z. B. Umgebungstemperatur, Messbereich usw.? $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $

6 Elektrischer Anschluss

6.1 Anschlussbedingungen

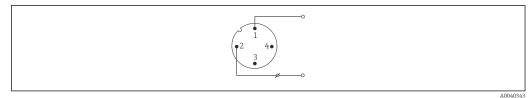
Ist 3-A-Standard gefordert, müssen elektrische Anschlussleitungen glatt, korrosionsbeständig und einfach zu reinigen sein.


6.2 Messgerät anschließen

HINWEIS

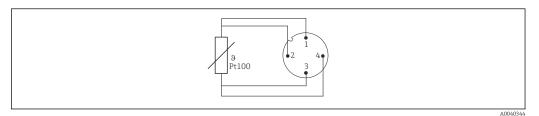
Beschädigung des Geräts!

▶ Den M12-Stecker nicht zu fest anziehen, um eine Beschädigung des Gerätes zu vermeiden. Maximales Drehmoment: 0,4 Nm (M12 Rändel)


Betriebsmodus IO-Link

A004034

- 4 Pinbelegung Gerätestecker
- 1 Pin 1 Spannungsversorgung 15 ... 30 V_{DC}
- 2 Pin 2 Nicht verwendet
- 3 Pin 3 Spannungsversorgung 0 $V_{\rm DC}$
- 4 Pin 4 C/Q (IO-Link oder Schaltausgang)


Betriebsmodus 4 ... 20 mA

Pinbelegung Gerätestecker

- 1 Pin 1 Spannungsversorgung 10 ... 30 V_{DC}
- 2 Pin 2 Spannungsversorgung 0 V_{DC}
- *3 Pin 3 Nicht verwendet*
- 4 Pin 4 Nicht verwendet

Ohne Messumformer

■ 6 Pinbelegung Gerätestecker: Pt100, 4-Leiter-Anschluss

6.3 Schutzart sicherstellen

6.4 Anschlusskontrolle

Sind Gerät und Kabel unbeschädigt (Sichtkontrolle)?
Verfügen die montierten Kabel über eine geeignete Zugentlastung?
Stimmt die Versorgungsspannung mit den Angaben auf dem Typenschild überein?

7 Bedienungsmöglichkeiten

7.1 Protokollspezifische Daten

7.1.1 IO-Link Informationen

IO-Link ist eine Punkt-zu-Punkt-Verbindung für die Kommunikation des Geräts mit einem IO-Link-Master. Die IO-Link-Kommunikationsschnittstelle ermöglicht den direkten Zugriff

auf die Prozess- und Diagnosedaten. Sie bietet außerdem die Möglichkeit, das Gerät im laufendem Betrieb zu parametrieren.

Das Gerät unterstützt folgende Eigenschaften:

IO-Link Spezifikation	Version 1.1
IO-Link Smart Sensor Profile 2nd Edition	Unterstützt: Identification Diagnosis Digital Measuring Sensor (nach SSP type 3.1)
SIO Modus	Ja
Geschwindigkeit	COM2; 38,4 kBaud
Minimale Zykluszeit	10 ms
Prozessdatenbreite	4 byte
IO-Link Data Storage	Ja
Block Parametrierung nach V1.1	Ja
Betriebsbereitschaft	0,5 s nach Anlegen der Versorgungsspannung ist das Gerät betriebsbereit (erster gültiger Messwert nach 2 s)

7.1.2 Gerätebeschreibung

Um Feldgeräte in ein digitales Kommunikationssystem einzubinden, benötigt das IO-Link System eine Beschreibung der Geräteparameter wie Ausgangsdaten, Eingangsdaten, Datenformat, Datenmenge und unterstützte Übertragungsrate.

Diese Daten sind in der Gerätebeschreibung (IODD 1) enthalten, die während der Inbetriebnahme des Kommunikationssystems dem IO-Link Master über generische Module zur Verfügung gestellt werden.

Pie IODD kann wie folgt herunter geladen werden:

• Endress+Hauser: www.endress.com

■ IODDfinder: http://ioddfinder.io-link.com

8 **Systemintegration**

8.1 Identifikation

Device ID	0x030100 (196864)						
Vendor ID	0x0011 (17)						

8.2 Prozessdaten

Wenn das Messgerät im digitalen Betrieb arbeitet, werden der Zustand des Schaltausgangs und der Temperaturwert in Form von Prozessdaten über IO-Link übertragen. Die Signalübertragung erfolgt zunächst im SIO-Mode (Standard IO-Mode). Sobald über den IO-Link

¹⁾ IO Device Description

Master der so genannte "Wake Up" Befehl durchgeführt wird, startet die digitale IO-Link Kommunikation.

- Im SIO-Modus wird der Schaltausgang am Pin 4 des M12 Steckers geschaltet. Im IO-Link-Kommunikationsbetrieb ist dieser Pin ausschließlich der Kommunikation vorbehalten.
- Die Prozessdaten des Messgeräts werden mit 32-Bit zyklisch übertragen.

Byte 1							Byte 2								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
sint16															
Tempe	eratur (mit ein	er Nacl	nkomm	astelle)									

Byte 3						Byte 4									
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
sint8				•						Enum4 I					Bool
Scale	(-1)							Schaltzu- stand							

Erklärung

Prozesswert	Werte	Bedeutung			
Temperatur	-32 000 32 000	Temperaturwert mit einer Nachkommastelle Zum Beispiel: Ein übertragener Wert von 123 ent- spricht einem gemessenen Temperaturwert von 12,3 °C			
	32764 = No measurement data	Prozesswert falls kein gültiger Messwert vorhanden ist			
	- 32760 = Out of range (-)	Prozesswert falls der Messwert unterhalb des unteren Grenzwertes ist			
	32760 = Out of range (+)	Prozesswert falls der Messwert oberhalb des oberen Grenzwertes ist			
Scale	-1	Der übertragene Messwert muss mit 10exp (Scale) multipliziert werden			
Messwertstatus [Bit 4 -	0 = Bad	Messwert ist nicht verwendbar			
3]	1 = Uncertain	Messwert ist nur bedingt verwendbar, z.B.: Gerätetemperatur außerhalb des erlaubten Bereichs (S825)			
	2 = Manual/Fixed	Messwert ist nur bedingt verwendbar, z.B.: Simulation der Messgröße aktiv (C485)			
	3 = Good	Messwert ist in Ordnung			
Messwertstatus [Bit 2 -	0 = Not limited	Messwert ohne Grenzwertverletzung			
1]	1 = Low limited	Grenzwertverletzung am unteren Ende			
	2 = High limited	Grenzwertverletzung am oberen Ende			
	3 = Constant	Messwert ist auf konstanten Wert gesetzt, z.B.: Simulation aktiv			
Schaltausgang [Bit 0]	0 = Off	Schaltausgang geöffnet			
	1 = On	Schaltausgang geschlossen			

8.3 Gerätedaten auslesen und schreiben

Gerätedaten werden immer azyklisch und auf Anfrage des IO-Link Masters über den ISDU Kommunikationskanal ausgetauscht. Der IO-Link-Master kann folgende Parameterwerte oder Gerätezustände auslesen:

8.3.1 Spezifische Gerätedaten

Die Defaultwerte gelten für Parameter, die bei der Bestellung nicht kundenspezifisch eingestellt werden.

Bezeichnung	Index (dez)	Index (hex)	Größe (Byte)	Datentyp	Zugriff	Defaultwert	Wertebereich	Data Storage
Application specific tag	24	0x0018	32	String	r/w	-	-	Ja
Order code	1054	0x041E	20	String	r/-	_	-	-
Extended order code	259	0x0103	60	String	r/-	_	-	-
Device type	256	0x0100	2	UInteger16	r/-	0x93FF	-	_
Unit	5121	0x1401	1	UInteger8	r/w	32	32 = °C 33 = °F 35 = K	Ja
Damping	7271	0x1C67	1	UInteger8	r/w	0 s	0 120 s	Ja
Sensor offset	3082	0x0C0A	4	Float	r/w	0 °C (32 °F)	-10 +10 °C (−18 +18 °F)	Ja
Operating mode switch	2050	0x0802	2	UInteger16	r/w	Hysteresis nor- mally open (0x0C9C)	Window nornmally open (0x0CFF) Window normally closed (0x0C96) Hysteresis normally open (0x0C9C) Hysteresis normally closed (0x0C99) Off (0x80EC)	Ja
Switch point value	2051	0x0803	4	Float	r/w	100 °C (212 °F)	-1E+20 1E+20	Ja
Switchback point value	2052	0x0804	4	Float	r/w	90 °C (194 °F)	-1E+20 1E+20	Ja
Switch delay	2053	0x0805	1	UInteger8	r/w	0 s	0 99 s	Ja
Switchback delay	2054	0x0806	1	UInteger8	r/w	0 s	0 99 s	Ja
4 mA value	8218	0x201A	4	Float	r/w	0°C (32°F)	−50000 50000 °C	Ja
20 mA value	8219	0x201B	4	Float	r/w	150 ℃	−50 000 50 000 °C	Ja
Current trimming 4mA	8213	0x2015	4	Float	r/w	4,00 mA	3,85 4,15 mA	Ja
Current trimming 20mA	8212	0x2014	4	Float	r/w	20,00 mA	19,85 20,15 mA	Ja
Failure mode	8234	0x202A	1	UInteger8	r/w	0 = Low alarm	0 = Low alarm 2 = High alarm	Ja
Failure current	8232	0x2028	4	Float	r/w	22,5 mA	21,5 23 mA	Ja
Operating time	6148	0x1804	4	UInteger32	r/-	-	-	Ja
Alarm delay	6147	0x1803	1	UInteger8	r/w	2 s	1 5 s	Ja
Device status	36	0x0024	1	UInteger8	r/-	-	0 = Device is OK 1 = Maintenance required 2 = Out of specification 3 = Functional check 4 = Failure	-
Detailed device status	37	0x0025	36	OctetString	r/-	_	Gemäß IO-Link-Spezifikation	-
Actual diagnostic 1	6184	0x1828	2	UInteger16	r/-	_	-	-
Actual diagnostic 2	6186	0x182A	2	UInteger16	r/-	_	-	-
Actual diagnostic 3	6188	0x182C	2	UInteger16	r/-	_	-	_

Bezeichnung	Index (dez)	Index (hex)	Größe (Byte)	Datentyp	Zugriff	Defaultwert	Wertebereich	Data Storage
Previous diagnostics 1	6214	0x1846	2	UInteger16	r/-	_	-	-
Timestamp 1	6204	0x183C	4	UInteger32	r/-	-	-	-
Previous diagnostics 2	6216	0x1848	2	UInteger16	r/-	-	-	-
Timestamp 2	6205	0x183D	4	UInteger32	r/-	-	-	-
Previous diagnostics 3	6218	0x184A	2	UInteger16	r/-	_	-	-
Timestamp 3	6206	0x183E	4	UInteger32	r/-	_	-	-
Previous diagnostics 4	6220	0x184C	2	UInteger16	r/-	-	-	-
Timestamp 4	6207	0x183F	4	UInteger32	r/-	-	-	-
Previous diagnostics 5	6222	0x184E	2	UInteger16	r/-	-	-	-
Timestamp 5	6208	0x1840	4	UInteger32	r/-	_	-	-
Current output simulation	8210	0x2012	2	UInteger16	r/w	33004 = Off	33004 = Off 33005 = On	-
Current output simulation value	8211	0x2013	4	Float	r/w	3,58 mA	3,58 23 mA	_
Sensor simulation	3109	0x0C25	1	UInteger8	r/w	0 = Off	0 = Off 1 = On	_
Sensor simulation value	3104	0x0C20	4	Float	r/w	0 °C (32 °F)	-1E+20 1E+20 ℃	_
Switch output simulation	2056	0x0808	2	UInteger16	r/w	0 = Disabled	0 = Disabled 33004 = Off 33006 = On	-
Sensor min value	3081	0x0C09	4	Float	r/-	_	-	-
Sensor max value	3080	0x0C08	4	Float	r/-	-	-	-
Lower boundary operating time sensor	3132	0x0C3C	4	UInteger32	r/-	-	-	-
Lower extended operation time sensor	3133	0x0C3D	4	UInteger32	r/-	-	-	-
Standard operating time sensor	3134	0x0C3E	4	UInteger32	r/-	-	-	_
Upper extended operating time sensor	3135	0x0C3F	4	UInteger32	r/-	-	-	-
Upper boundary operating time sensor	3136	0x0C40	4	UInteger32	r/-	-	-	-
Device temperature	4096	0x1000	4	Float	r/-	_	-	_
Device temperature min	4107	0x100B	4	Float	r/-	_	-	_
Device temperature max	4106	0x100A	4	Float	r/-	-	-	-
Lower boundary operating time device	4109	0x100D	4	UInteger32	r/-	-	-	_
Lower extended operation time device	4110	0x100E	4	UInteger32	r/-	-	-	-
Standard operating time device	4111	0x100F	4	UInteger32	r/-	-	-	-
Upper extended operating time device	4112	0x1010	4	UInteger32	r/-	-	-	-
Upper boundary operating time device	4113	0x1011	4	UInteger32	r/-	-	-	-
MDC Descriptor	16512	0x4080	11	Record	r/-	_	-	_

8.3.2 IO-Link spezifische Gerätedaten

Bezeichnung	Index (dez)	Index (hex)	Größe (Byte)	Datentyp	Zugriff	Defaultwert
Serial number	21	0x0015	16	String	r/-	-
Product ID	19	0x0013	32	String	r/-	TM311
Product Name	18	0x0012	32	String	r/-	iTHERM CompactLine TM311
Product Text	20	0x0014	32	String	r/-	Compact thermometer
Vendor Name	16	0x0010	32	String	r/-	Endress+Hauser
Vendor Text	17	0x0011	32	String	r/-	People for Process Automation
Hardware Version	22	0x0016	8	String	r/-	-
Firmware Version	23	0x0017	8	String	r/-	-
Device Access Locks	12	0x000C	2	Record	r/w	-

8.3.3 System Kommandos

Bezeichnung	Wert (dez)	Wert (hex)
Reset factory settings	130	0x82
Activate parametrization lock	160	0xA0
Deactivate parametrization lock	161	0xA1
Reset sensor min/max values	162	0xA2
Reset device temp. min/max values	163	0xA3
IO-Link 1.1 system test command 240	240	0xF0
IO-Link 1.1 system test command 241	241	0xF1
IO-Link 1.1 system test command 242	242	0xF2
IO-Link 1.1 system test command 243	243	0xF3

9 Inbetriebnahme

Bei einer Änderung einer bestehenden Parametrierung, läuft der Messbetrieb weiter.

9.1 Installationskontrolle

Vor Inbetriebnahme der Messstelle folgende Kontrollen durchführen:

- 1. Montagekontrolle durchführen mithilfe der Checkliste $\rightarrow \Box$ 15.

9.2 Messgerät konfigurieren

IO-Link-Funktionen und gerätespezifische Parameter werden über die IO-Link-Kommunikation des Gerätes konfiguriert.

Es gibt spezielle Konfigurationssets, z. B. den FieldPort SFP20. Damit kann jedes IO-Link-Gerät konfiguriert werden.

Typischerweise werden IO-Link-Geräte über das Automatisierungssystem konfiguriert (z. B. Siemens TIA Portal + Port Configuration Tool). Das Gerät unterstützt IO-Link Data Storage, dadurch wird ein einfacher Gerätetausch ermöglicht.

10 Diagnose und Störungsbehebung

10.1 Allgemeine Störungsbehebungen

Das Gerät kann aufgrund seiner Bauform nicht repariert werden. Es ist jedoch möglich, das Gerät für eine Überprüfung einzusenden. → 🗎 25

Fehler	Mögliche Ursache	Be	hebung
Gerät reagiert nicht.	Versorgungsspannung stimmt nicht mit der Angabe auf dem Typenschild überein.	•	Richtige Spannung anlegen.
	Versorgungsspannung ist falsch gepolt.	•	Versorgungssspannung umpolen.
Gerät misst falsch.	Das Gerät wurde falsch parametriert.	•	Parametrierung prüfen und korrigieren.
	Das Gerät wurde falsch angeschlossen.	•	Pinbelegung prüfen → 🗎 15.
	Einbaulage des Geräts ist fehlerhaft.	•	Gerät korrekt einbauen → 🖺 10.
	Wärmeableitung über der Mess- stelle.	•	Einbaulänge des Sensors beachten.
Keine Kommunikation	Kommunikationsleitung ist nicht verbunden.	•	Beschaltung und Kabel prüfen.
	Kommunikationsleitung ist falsch am IO-Link Master aufgelegt.		
Keine Übertragung von Prozessdaten.	Es liegt ein Fehler im Gerät vor.	•	Fehler beheben, die als Diagnoseereignis angezeigt werden.

10.2 Diagnoseinformation via Kommunikationsschnittstelle

10.2.1 Diagnosemeldung

Der Parameter **Device Status** zeigt die Ereigniskategorie der höchstprioren aktiven Diagnosemeldung an. Diese werden in der Diagnoseliste angezeigt.

Statussignale

Die Statussignale geben Auskunft über den Zustand und die Verlässlichkeit des Geräts, indem sie die Ursache der Diagnoseinformation (Diagnoseereignis) kategorisieren. Die Statussignale sind gemäß NAMUR-Empfehlung NE 107 klassifiziert: F = Failure, C = Function Check, S = Out of Specification, M = Maintenance Required

Buch- stabe	Symbol	Ereigniskategorie	Bedeutung
F	8	Betriebsfehler	Es liegt ein Betriebsfehler vor.
С	₩	Service-Modus	Das Gerät befindet sich im Service-Modus (zum Beispiel während einer Simulation).
S	A	Außerhalb der Spezifikation	Das Gerät wird außerhalb seiner technischen Spezifikationen betrieben (z. B. während des Anlaufens oder einer Reinigung).
M		Wartung erforder- lich	Es ist eine Wartung erforderlich.

10.3 Übersicht zu den Diagnoseinformationen

Diagnose- meldung	Diagnose- verhalten	IO-Link Event Quali- fier	IO-Link Event Code	Ereignistext	Ursache	Behebungsmaßnahme
F001	Alarm	IO-Link Error	0x1817	Device failure	Gerätestörung	 Gerät neu starten. Gerät ersetzen.
F004	Alarm	IO-Link Error	0x1818	Sensor defective	Sensor defekt (z.B.: Sensor- bruch oder Sensorkurzschluss)	► Gerät ersetzen.
S047	Warnung	IO-Link Warning	0x1819	Sensor limit rea- ched	Sensorlimit erreicht	 Sensor prüfen. Prozessbedingungen prüfen.
C401	Warnung	IO-Link Noti- fication	0x181F	Factory reset active	Werkreset aktiv	▶ Werkreset aktiv, bitte warten.
C402	-	-	-	Initialization active	Initialisierung aktiv	► Initialisierung aktiv, bitte warten.
C485	Warnung	IO-Link Warning	0x181A	Process variable simulation active	Simulation Prozessgröße aktiv	► Simulation ausschalten.
C491	Warnung	IO-Link Warning	0x181B	Current output simulation active	Simulation Stromausgang aktiv	► Simulation ausschalten.
C494	Warnung	IO-Link Warning	0x181C	Switch output simulation active	Simulation Schaltausgang aktiv	► Simulation ausschalten.
F537	Alarm	IO-Link Error	0x181D	Configuration invalid	Strombereich ungültig Die Differenz zwischen 4mA- Wert und 20mA-Wert muss größer gleich 10°C sein.	Geräteparametrierung prüfen. Neue Konfiguration up- und downloaden.
					Schaltpunkte ungültig Der Schaltpunkt muss größer gleich dem Rückschaltpunkt sein.	
S801	Warnung	IO-Link Warning	0x181E	Supply voltage too low	Versorgungsspannung zu nied- rig	► Versorgungsspannung erhöhen.
S804 ¹⁾	Alarm	-	-	Overload at switch output	Überlast am Schaltausgang	 Lastwiderstand am Schaltausgang erhöhen. Ausgang prüfen. Gerät austauschen.
S825	Warnung	IO-Link Warning	0x1812	Operating temperature	Betriebstemperatur der Elekt- ronik ausserhalb Spezifikation	Umgebungstemperatur prüfen. Prozesstemperatur prüfen.
S844 ²⁾	Warning	-	-	Process value out of specification	Prozesswert ausserhalb Spezi- fikation	 Prozesswert prüfen. Applikation prüfen. Sensor prüfen.

¹⁾ Diagnose nur im SIO-Mode möglich

10.3.1 Verhalten des Geräts bei Störung

Je nach gewähltem Betriebsmodus unterscheidet sich das Diagnoseverhalten des Geräts. Unabhängig vom Betriebsmodus werden alle Diagnosemeldungen im Ereignis-Logbuch (event logbook) gespeichert und können dort abgerufen werden.

IO-Link

Das Gerät zeigt Warnungen und Störungen über IO-Link an. Alle Warnungen und Störungen des Geräts dienen nur der Information und erfüllen keine Sicherheitsfunktion. Die vom

²⁾ Diagnose nur im 4...20mA Betrieb möglich.

Gerät diagnostizierten Fehler werden über IO-Link entsprechend der NE107 ausgegeben. Dabei ist zwischen folgendem Diagnoseverhalten zu unterscheiden:

Warnung

Bei diesem Diagnoseverhalten misst das Gerät weiter. Das Ausgangssignal wird nicht beeinflusst (Ausnahme: Simulation der Prozessgröße ist aktiv).

- Alarm
 - Bei dieser Fehlerart misst das Gerät nicht weiter. Das Ausgangssignal nimmt seinen Fehlerzustand an (Wert im Fehlerfall - siehe folgendes Kapitel).
 - Das PDValid Flag zeigt an, dass die Prozessdaten ungültig sind.
 - Der Fehlerzustand wird über IO-Link angezeigt.

Schaltausgang

Warnung

Der Schaltausgang verbleibt in dem Zustand, der durch die Schaltpunkte vorgegeben ist.

Alarm

Der Schaltausgang begibt sich in den Zustand offen.

4 ... 20 mA

Warnung

Der Stromausgang wird nicht beeinflusst.

Alarm

Der Stromausgang nimmt den eingestellten Fehlerstrom an.

Das Verhalten des Ausgangs bei Störung ist gemäß NAMUR NE43 geregelt.

- Der Fehlerstrom ist einstellbar.
- Der gewählte Fehlerstrom wird für alle Fehler verwendet.

10.4 Diagnoseliste

Wenn mehrere Diagnoseereignisse gleichzeitig anstehen, werden nur die 3 Diagnosemeldungen mit der höchsten Priorität in der Diagnoseliste angezeigt. Das Hauptmerkmal der Anzeigepriorität ist das Statussignal in folgender Reihenfolge: F, C, S, M. Stehen mehrere Diagnosereignisse mit demselben Statussignal an, wird die Priorität in numerischer Reihenfolge der Ereignisnummer festgelegt, z. B. F042 erscheint vor F044 und vor S044.

10.5 Ereignis-Logbuch (Event logbook)

Im **Ereignis-Logbuch** werden die Diagnosemeldungen in chronologischer Reihenfolge angezeigt. Zusätzlich wird zu jeder Diagnosemeldung ein Zeitstempel gespeichert, der auf den Betriebsstundenzähler referenziert.

11 Wartung

Es sind grundsätzlich keine speziellen Wartungsarbeiten erforderlich.

11.1 Reinigung

Das Gerät muss nach Bedarf gereinigt werden. Die Reinigung kann auch bei eingebautem Gerät erfolgen (z.B. CIP Cleaning in Place / SIP Sterilization in Place). Dabei ist vorsichtig vorzugehen, damit das Gerät bei der Reinigung nicht beschädigt wird.

HINWEIS

Schäden am Gerät und Anlage vermeiden

▶ Bei Reinigung den spezifischen IP-Code beachten.

11.2 Dienstleistungen

Service	Beschreibung
Kalibrierung	RTD Messeinsätze können je nach Anwendung driften. Eine regelmäßige Rekalibrierung zur Überprüfung der Genauigkeit wird empfohlen. Die Kalibrierung kann durch den Hersteller oder durch qualifizierte Fachkräfte mit Kalibriergeräten vor Ort erfolgen.

12 Reparatur

Das Gerät kann aufgrund seiner Bauform nicht repariert werden.

12.1 Ersatzteile

Aktuell lieferbare Ersatzteile zu Ihrem Produkt finden Sie online unter: http://www.products.endress.com/spareparts_consumables. Bei Ersatzteilbestellungen die Seriennummer des Gerätes angeben!

Тур	Bestellnummer
Verschlussschraube G1/2 1.4435	60022519
Ersatzteilkit Druckschraube TK40 G1/2 d6	71217633
Einschweissadapter G3/4, d=50, 316L, 3.1	52018765
Einschweissadapter G3/4, d=29, 316L, 3.1	52028295
Einschweissmuffe für G1/2" Dichtsystem	60021387
Schweißadapter M12x1,5 1.4435&316L	71405560
O-Ring 14,9x2,7 VMQ, FDA, 5 Stück	52021717
Einschweissadapter G3/4, d=55, 316L	52001052
Einschweissadapter G3/4, 316L, 3.1	52011897
O-Ring 21,89x2,62 VMQ, FDA, 5 Stück	52014473
Einschweissadapter G1, d=60, 316L	52001051
Einschweissadapter G1, d=60, 316L, 3.1	52011896
Einschweissadapter G1, d=53, 316L, 3.1	71093129
O-Ring 28,17x3,53 VMQ, FDA, 5 Stück	52014472
iTHERM TK40 Klemmverschraubung	TK40-
Ersatzteilkit Dichtung TK40	XPT0001-
iTHERM TT411 Schutzrohr	TT411-

12.2 Rücksendung

Die Anforderungen für eine sichere Rücksendung können je nach Gerätetyp und landesspezifischer Gesetzgebung unterschiedlich sein.

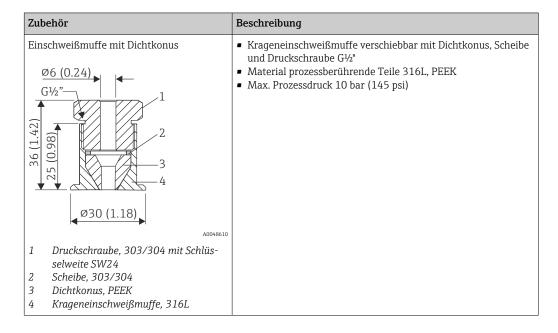
1. Informationen auf der Internetseite einholen: https://www.endress.com/support/return-material

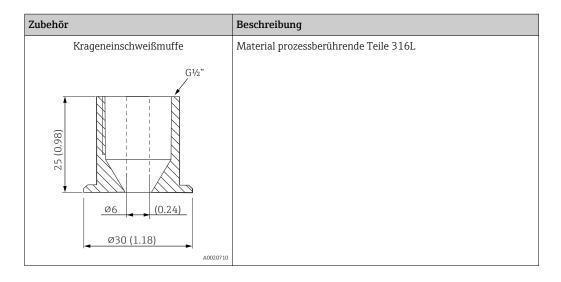
► Region wählen.

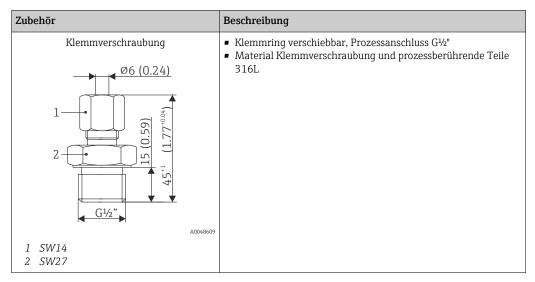
2. Bei einer Rücksendung das Gerät so verpacken, dass es zuverlässig vor Stößen und äußeren Einflüssen geschützt wird. Die Originalverpackung bietet optimalen Schutz.

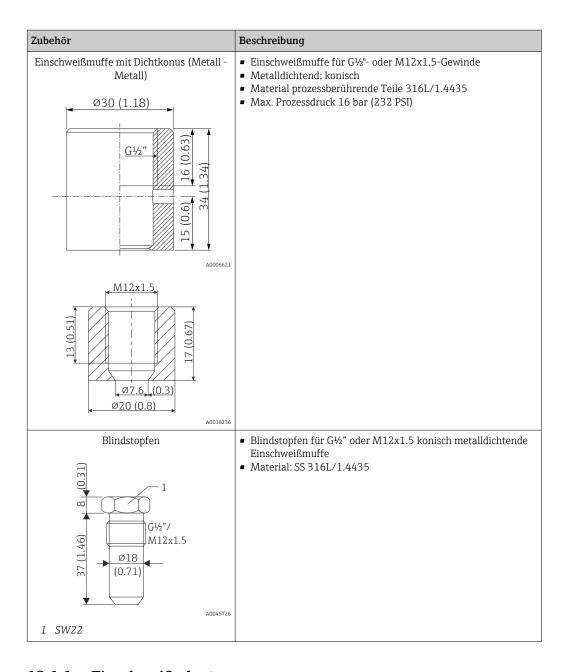
12.3 Entsorgung

Das Gerät enthält elektronische Bauteile und muss deshalb, im Falle der Entsorgung, als Elektronikschrott entsorgt werden. Beachten Sie bitte insbesondere die örtlichen Entsorgungsvorschriften Ihres Landes. Nach Möglichkeit ist auf eine stoffliche Trennung und Verwertung der Gerätekomponenten zu achten.

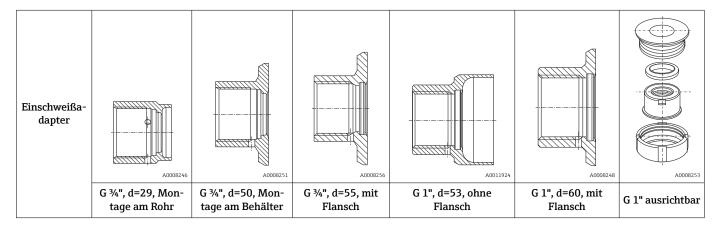

13 Zubehör


Aktuell verfügbares Zubehör zum Produkt ist über www.endress.com auswählbar:


- 1. Produkt mit Hilfe der Filter und Suchmaske auswählen.
- 2. Produktseite öffnen.
- 3. Ersatzteile und Zubehör auswählen.


13.1 Gerätespezifisches Zubehör

Alle Abmessungen in mm (in).

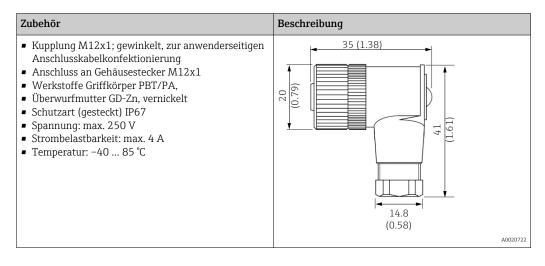


13.1.1 Einschweißadapter

Detaillierte Informationen über Bestellcode und hygienische Konformität der Adapter und Ersatzteile, siehe Technische Information (TI00426F).

Werkstoff	316L (1.4435)					
Rauhigkeit µm (µin) prozess- seitig	≤1,5 (59,1)	≤0,8 (31,5)	≤0,8 (31,5)	≤0,8 (31,5)	≤0,8 (31,5)	≤0,8 (31,5)

Maximaler Prozessdruck für die Einschweißadapter:

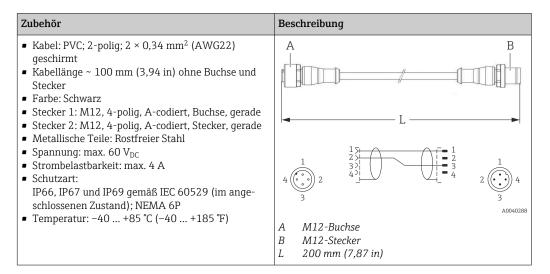

- 25 bar (362 PSI) bei maximal 150 °C (302 °F)
- 40 bar (580 PSI) bei maximal 100 °C (212 °F)

13.2 Kommunikationsspezifisches Zubehör

13.2.1 IO-Link

Zubehör	Beschreibung
FieldPort SFP20	 Mobiles Parametriertool für alle IO-Link Geräte: Der FieldPort SFP20 ist eine USB-Schnittstelle zur Konfiguration von IO-Link Geräten. Der FieldPort SFP20 kann via einem USB-Kabel an ein Laptop oder Tablet angeschlossen werden. Mit dem FieldPort SFP20 ist eine Punkt-zu-Punkt-Verbindung zwischen Laptop und IO-Link Geräte möglich. M12-Anschluss für IO-Link Feldgeräte
IO-Link Master BL20	IO-Link Master für Hutschiene von Turck unterstützt PROFINET, EtherNet/IP und Modbus TCP. Mit Webserver für eine einfache Konfiguration.
Field Xpert SMT50	Universeller, leistungsstarker Tablet PC zur Gerätekonfiguration in nicht explosionsgefährdeten Bereichen.

13.2.2 Kupplung



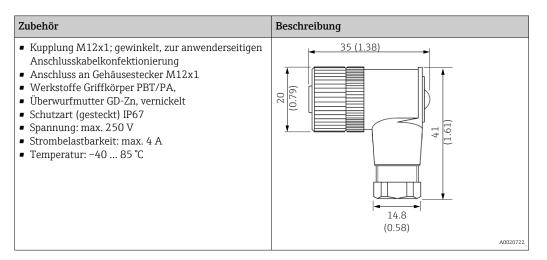
Zubehör	Beschreibung
 PVC-Kabel, 4 x 0,34 mm² (22 AWG) mit M12x1-Verschraubung, Winkelstecker, Schraubverschluss, Länge 5 m (16,4 ft) Schutzart IP69K Spannung: max. 250 V Strombelastbarkeit: max. 4 A Temperatur: -25 70 °C 	1 (BN) 2 (WH) 3 (BU) 4 (BK)
Aderfarben: 1 = BN braun 2 = WH weiß 3 = BU blau 4 = BK schwarz	A0020723

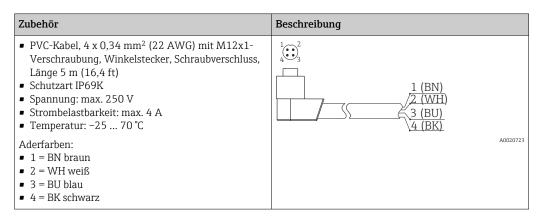
Zubehör	Beschreibung
 PVC-Kabel, 4 x 0,34 mm² (22 AWG) mit M12x1 Kupplungsmutter aus epoxidbeschichtetem Zink, gerader Buchsenkontakt, Schraubverschluss, 5 m (16,4 ft) Schutzart IP69K Spannung: max. 250 V Strombelastbarkeit: max. 4 A Temperatur: -20 105 °C 	1 (BN) 2 (WH) 3 (BU) 4 (BK)
Aderfarben: 1 = BN braun 2 = WH weiß 3 = BU blau 4 = BK schwarz	

13.2.3 Adapterkabel

Wenn ein TMR3x durch einen TM311 ersetzt wird, muss die Pin-Belegung geändert werden, da durch den IO-Link-Standard eine andere Belegung vorgesehen ist als beim TMR3x. Entweder wird die Verdrahtung im Schaltschrank angepasst oder das Adapterkabel für die Pin-Belegung zwischen Gerät und bestehender Verdrahtung verwendet.

13.3 Onlinetools

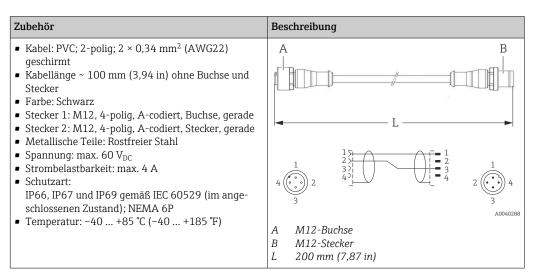

Produktinformationen über den gesamten Lebenszyklus des Geräts: www.endress.com/onlinetools


13.4 Kommunikationsspezifisches Zubehör

13.4.1 IO-Link

Zubehör	Beschreibung
FieldPort SFP20	Mobiles Parametriertool für alle IO-Link Geräte: ■ Der FieldPort SFP20 ist eine USB-Schnittstelle zur Konfiguration von IO-Link Geräten. Der FieldPort SFP20 kann via einem USB-Kabel an ein Laptop oder Tablet angeschlossen werden. ■ Mit dem FieldPort SFP20 ist eine Punkt-zu-Punkt-Verbindung zwischen Laptop und IO-Link Geräte möglich. ■ M12-Anschluss für IO-Link Feldgeräte
IO-Link Master BL20	IO-Link Master für Hutschiene von Turck unterstützt PROFINET, EtherNet/IP und Modbus TCP. Mit Webserver für eine einfache Konfiguration.
Field Xpert SMT50	Universeller, leistungsstarker Tablet PC zur Gerätekonfiguration in nicht explosionsgefährdeten Bereichen.

13.4.2 Kupplung



Zubehör	Beschreibung
 PVC-Kabel, 4 x 0,34 mm² (22 AWG) mit M12x1 Kupplungsmutter aus epoxidbeschichtetem Zink, gerader Buchsenkontakt, Schraubverschluss, 5 m (16,4 ft) Schutzart IP69K Spannung: max. 250 V Strombelastbarkeit: max. 4 A Temperatur: -20 105 °C 	1 (BN) 2 (WH) 2 (WH) 3 (BU) 4 (BK)
Aderfarben: 1 = BN braun 2 = WH weiß 3 = BU blau 4 = BK schwarz	

13.4.3 Adapterkabel

Wenn ein TMR3x durch einen TM311 ersetzt wird, muss die Pin-Belegung geändert werden, da durch den IO-Link-Standard eine andere Belegung vorgesehen ist als beim TMR3x. Entweder wird die Verdrahtung im Schaltschrank angepasst oder das Adapterkabel für die Pin-Belegung zwischen Gerät und bestehender Verdrahtung verwendet.

13.5 Servicespezifisches Zubehör

Netilion

Mit dem Netilion IIoT-Ökosystem ermöglicht Endress+Hauser, die Anlagenleistung zu optimieren, Arbeitsabläufe zu digitalisieren, Wissen weiterzugeben und die Zusammenarbeit zu verbessern. Auf der Grundlage jahrzehntelanger Erfahrung in der Prozessautomatisierung bietet Endress+Hauser der Prozessindustrie ein IIoT-Ökosystem, mit dem Erkenntnisse aus Daten gewonnen werden. Diese Erkenntnisse können zur Optimierung von Prozessen eingesetzt werden, was zu einer höheren Anlagenverfügbarkeit, Effizienz, Zuverlässigkeit und letztlich zu einer profitableren Anlage führt.

www.netilion.endress.com

Applicator

Software für die Auswahl und Auslegung von Endress+Hauser Messgeräten:

- Berechnung aller notwendigen Daten zur Bestimmung des optimalen Messgeräts: z.B.
 Druckabfall, Messgenauigkeiten oder Prozessanschlüsse.
- Grafische Darstellung von Berechnungsergebnissen

Verwaltung, Dokumentation und Abrufbarkeit aller projektrelevanten Daten und Parameter über die gesamte Lebensdauer eines Projekts.

Applicator ist verfügbar:

https://portal.endress.com/webapp/applicator

Konfigurator

Produktkonfigurator - das Tool für eine individuelle Produktkonfiguration

- Tagesaktuelle Konfigurationsdaten
- Je nach Gerät: Direkte Eingabe von messstellenspezifischen Angaben wie Messbereich oder Bediensprache
- Automatische Überprüfung von Ausschlusskriterien
- Automatische Erzeugung des Bestellcodes mit seiner Aufschlüsselung im PDF- oder Excel-Ausgabeformat
- Direkte Bestellmöglichkeit im Endress+Hauser Onlineshop

Der Konfigurator steht unter www.endress.com auf der jeweiligen Produktseite zur Verfügung:

- 1. Produkt mit Hilfe der Filter und Suchmaske auswählen.
- 2. Produktseite öffnen.
- 3. **Konfiguration** auswählen.

13.6 Systemkomponenten

Prozessanzeiger der RIA-Produktfamilie

Gut ablesbare Prozessanzeiger mit unterschiedlichen Funktionen: Schleifengespeiste Anzeiger zur Darstellung von 4 ... 20 mA-Werten, Anzeige von bis zu vier HART-Variablen, Prozessanzeiger mit Steuereinheit, Grenzwertüberwachung, Sensorspeisung und galvanischer Trennung.

Universeller Einsatz durch internationale Ex-Zulassungen, zum Schalttafeleinbau oder zur Feldmontage.

Nähere Informationen: www.endress.com

Speisetrenner der RN Series

Ein- oder zweikanalige Speisetrenner zur sicheren Trennung von 0/4 ... 20 mA Normsignalstromkreisen mit bidirektionaler HART-Übertragung. In der Option Signaldoppler wird das Eingangssignal an zwei galvanisch getrennte Ausgänge übertragen. Das Gerät verfügt über einen aktiven und einen passiven Stromeingang, die Ausgänge können aktiv oder passiv betrieben werden.

Nähere Informationen: www.endress.com

14 Technische Daten

14.1 Eingang

Mess	ber	eic	h

Pt100 (TF) Basis	−50 +150 °C (−58 +302 °F)
iTHERM TipSens	−50 +200 °C (−58 +392 °F)

14.2 Ausgang

Ausgangssignal

Bestellmerkmal 020, Option A

Sensorausgang	Pt100, 4-Leiter-Anschluss, Klasse A	
---------------	-------------------------------------	--

Bestellmerkmal 020, Option B

Analogausgang	4 20 mA; variabler Messbereich
Digtalausgang	C/Q (IO-Link oder Schaltausgang)

Bestellmerkmal 020, Option C

Analogausgang	4 20 mA; Messbereich 0 150 °C (32 302 °F)
Digtalausgang	C/Q (IO-Link oder Schaltausgang)

Schaltvermögen

- 1 × PNP Schaltausgang
- Schaltzustand EIN Ia \leq 200 mA; Schaltzustand AUS Ia \leq 10 μA
- Schaltzyklen > 10 000 000
- Spannungsabfall PNP ≤ 2 V
- Überlastsicherheit
 - Automatische Lastüberprüfung des Schaltstroms
 - Wenn im Schaltzustand EIN mehr als 220 mA fließen, wird in einen sicheren Zustand geschaltet
 - Diagnosemeldung Überlastung Schaltausgang
- Schaltfunktionen
 - Hysterese- oder Fensterfunktion
 - Öffner oder Schließer
- Im Gerät ist für den Schaltausgang kein Pull-down Widerstand integriert.

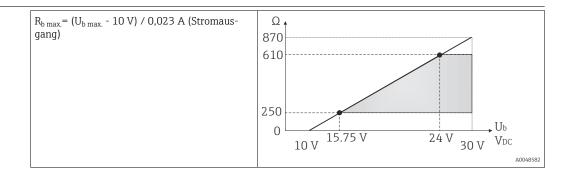
Schaltausgang

Ansprechzeit ≤ 100 ms

Ausfallinformation

Die Ausfallinformation wird erstellt, wenn die Messinformation ungültig ist oder fehlt. Das Gerät gibt eine Liste der drei höchst priorisierten Diagnosemeldungen aus.

Im Betriebsmodus IO-Link überträgt das Gerät sämtliche Ausfallinformationen digital.


Im Betriebsmodus 4 ... 20 mA überträgt das Gerät die Ausfallinformation nach NAMUR NE43 folgendermaßen:

Schaltausgang Der Schaltausgang g	eht im Fehlerzustand auf offen .
-----------------------------------	---

Messbereichsunterschreitung	Linearer Abfall von 4,0 3,8 mA
Messbereichsüberschreitung	Linearer Anstieg von 20,0 20,5 mA
Ausfall, z. B. Sensordefekt	≤ 3,6 mA (low) oder ≥ 21 mA (high), kann ausgewählt werden Die Alarmeinstellung high ist einstellbar zwischen 21,5 mA und 23 mA und bietet so die notwendige Flexibilität, um die Anforderungen verschiedener Leitsysteme zu erfüllen.

34

Bürde

Linearisierung/Übertragungsverhalten

Temperatur - linear

Dämpfung	Dämpfung Sensoreingang einstellbar	0 120 s
	Werkseinstellung	0 s

Eigenstrombedarf

- ≤ 3,5 mA für 4 ... 20 mA
- ≤ 9 mA für IO-Link

Maximale Stromaufnahme

≤ 23 mA für 4 ... 20 mA

Einschaltverzögerung

2 s

Protokollspezifische Daten

IO-Link Informationen

IO-Link ist eine Punkt-zu-Punkt-Verbindung für die Kommunikation des Geräts mit einem IO-Link-Master. Die IO-Link-Kommunikationsschnittstelle ermöglicht den direkten Zugriff auf die Prozess- und Diagnosedaten. Sie bietet außerdem die Möglichkeit, das Gerät im laufendem Betrieb zu parametrieren.

Das Gerät unterstützt folgende Eigenschaften:

IO-Link Spezifikation	Version 1.1
IO-Link Smart Sensor Profile 2nd Edition	Unterstützt: Identification Diagnosis Unigital Measuring Sensor (nach SSP type 3.1)
SIO Modus	Ja
Geschwindigkeit	COM2; 38,4 kBaud
Minimale Zykluszeit	10 ms
Prozessdatenbreite	4 byte
IO-Link Data Storage	Ja
Block Parametrierung nach V1.1	Ja
Betriebsbereitschaft	0,5 s nach Anlegen der Versorgungsspannung ist das Gerät betriebsbereit (erster gültiger Messwert nach 2 s)

Gerätebeschreibung

Um Feldgeräte in ein digitales Kommunikationssystem einzubinden, benötigt das IO-Link System eine Beschreibung der Geräteparameter wie Ausgangsdaten, Eingangsdaten, Datenformat, Datenmenge und unterstützte Übertragungsrate.

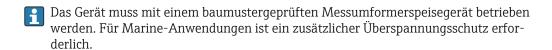
Diese Daten sind in der Gerätebeschreibung (IODD ²⁾) enthalten, die während der Inbetriebnahme des Kommunikationssystems dem IO-Link Master über generische Module zur Verfügung gestellt werden.

i

Die IODD kann wie folgt herunter geladen werden:

■ Endress+Hauser: www.endress.com

■ IODDfinder: http://ioddfinder.io-link.com


Schreibschutz für Geräteparameter

Der Software-Schreibschutz erfolgt mittels Systemkommandos.

14.3 Energieversorgung

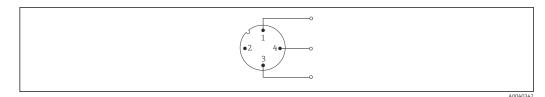
Versorgungsspannung

Elektronikvariante	Versorgungsspannung
IO-Link/4 20 mA	$U_b = 10 \dots 30 V_{DC}$, verpolungssicher
	Die IO-Link Kommunikation ist erst ab einer Versorgungsspannung von 15 V gewährleistet.
	Bei < 15 V gibt das Gerät eine Diagnosemeldung aus und deaktiviert den Schaltausgang.

Versorgungsausfall

- Um die elektrische Sicherheit nach CAN/CSA-C22.2 No. 61010-1 bzw. UL 61010-1 zu erfüllen, muss das Gerät mit einem Speisegerät mit entsprechend begrenztem Stromkreis betrieben werden gemäß UL/EN/IEC 61010-1 Kapitel 9.4 oder Class 2 gemäß UL 1310, "SELV or Class 2 circuit".
- Verhalten bei Überspannung (> 30 V)
 Das Gerät arbeitet dauerhaft bis 35 V_{DC} ohne Schaden. Die spezifizierten Eigenschaften sind bei Überschreitung der Versorgungsspannung nicht mehr gewährleistet.
- Verhalten bei Unterspannung
 Wenn die Versorgungsspannung unter den Minimalwert ~ 7 V fällt, schaltet sich das Gerät definiert ab (Zustand wie nicht versorgt).

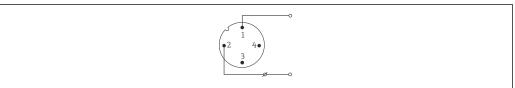
Elektrischer Anschluss


Elektrische Anschlussleitungen müssen nach 3-A Sanitary Standard und EHEDG glatt, korrosionsbeständig und einfach zu reinigen sein.

M12-Stecker mit 4 Pins und Kodierung "A", gemäß IEC 61076-2-101

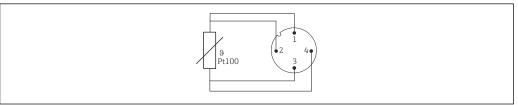
- ▶ Den M12-Stecker nicht zu fest anziehen, um eine Beschädigung des Gerätes zu vermeiden. Maximales Drehmoment: 0,4 Nm (M12 Rändel)
- Bei dem Gerät mit Elektronik wird die Gerätefunktion durch die Pin-Belegung des M12-Steckers festgelegt. Die Kommunikation ist entweder IO-Link oder 4 ... 20 mA.

Betriebsmodus IO-Link


2) IO Device Description

🖪 7 🌎 Pinbelegung Gerätestecker

- 1 Pin 1 Spannungsversorgung 15 ... 30 V_{DC}
- 2 Pin 2 Nicht verwendet
- 3 Pin 3 Spannungsversorgung 0 V_{DC}
- 4 Pin 4 C/Q (IO-Link oder Schaltausgang)


Betriebsmodus 4 ... 20 mA

A0040343

- 🛮 8 Pinbelegung Gerätestecker
- 1 Pin 1 Spannungsversorgung 10 ... 30 V_{DC}
- 2 Pin 2 Spannungsversorgung 0 V_{DC}
- 3 Pin 3 Nicht verwendet
- 4 Pin 4 Nicht verwendet

Ohne Messumformer

A0040344

■ 9 Pinbelegung Gerätestecker: Pt100, 4-Leiter-Anschluss

Überspannungsschutz

Zur Absicherung gegen Überspannung in der Spannungsversorgung und den Signal-/ Kommunikationskabeln der Thermometerelektronik bietet der Hersteller den Überspannungsableiter HAW562 für Hutschienenmontage an.

Detaillierte Informationen: Technische Informationen HAW562 Überspannungsschutz (TI01012K) .

14.4 Leistungsmerkmale

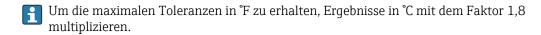
Referenzbedingungen

Abgleichtemperatur (Eisbad) 0 °C (32 °F) für Sensor		
Umgebungstemperatur	25 °C ± 3 °C(77 °F ± 5 °F) für Elektronik	
Versorgungsspannung	24 V _{DC} ± 10 %	
Relative Luftfeuchtigkeit	< 95 %	

Maximale Messabweichung

Nach DIN EN 60770 und oben angegebenen Referenzbedingungen. Die Angaben zur Messabweichung entsprechen $\pm 2~\sigma$ (Gauß'sche Normalverteilung). Die Angaben beinhalten Nichtlinearitäten und Wiederholbarkeit.

Messabweichung (nach IEC 60751) in $^{\circ}$ C = 0,15 + 0,002 | T |



|T| = Zahlenwert der Temperatur in °C ohne Berücksichtigung des Vorzeichens.

Thermometer ohne Elektronik

Standard	Bezeichnung	Messbereich	Messabweichung (±)	
			Maximal ¹⁾	Messwertbezogen ²⁾
IEC 60751	Pt100 Kl. A	−50 +200 °C (−58 +392 °F)		MA = ± (0,15 °C (0,27 °F) + 0,002 * T)

- 1) Maximale Messabweichung auf den angegebenen Messbereich.
- 2) Abweichungen von maximaler Messabweichung durch Rundung möglich.

Thermometer mit Elektronik

Standard Bezeichnung		Messbereich	Messabweichung (±)		
Stanuaru	Bezeichnung	Messbereich	Digital ¹⁾		D/A ²⁾
			Maximal	Messwertbezogen	
IEC 60751	Pt100 Kl. A	−50 +200 °C (−58 +392 °F)	≤ 0,48 °C (0,86 °F)	MA = ± (0,215 °C (0,39 °F) + 0,134% * (MW - MBA))	0,05 % (≘ 8 µA)

- 1) Mittels IO-Link übertragener Messwert.
- 2) Prozentangaben bezogen auf die konfigurierte Messspanne des analogen Ausgangssignals.

Thermometer mit Elektronik und Sensor-Transmitter-Matching / erhöhte Genauigkeit

Standard	Standard Bezeichnung Messbereich		Me	essabweichung (±)	
Standard	Bezeichnung	Messbereich	Dig	gital ¹⁾	D/A ²⁾
			Maximal	Messwertbezogen	
IEC 60751	Pt100 Kl. A	−50 +200 °C (−58 +392 °F)	≤ 0,14 °C (025 °F)	MA = ± (0,127 °C (0,23 °F) + 0,0074% * (MW - MBA))	0,05 % (≘ 8 μA)

- 1) Mittels IO-Link übertragener Messwert.
- 2) Prozentangaben bezogen auf die konfigurierte Messspanne des analogen Ausgangssignals.

MW = Messwert

MBA = Messbereichsanfang des jeweiligen Sensors

Gesamtmessabweichung des Transmitters am Stromausgang = $\sqrt{\text{(Messabweichung digital}^2 + \text{Messabweichung D/A}^2)}$

Beispielrechnung mit Pt100, Messbereich 0 ... +150 °C (+32 ... +302 °F), Umgebungstemperatur +25 °C (+77 °F), Versorqungsspannung 24 V und Sensor-Transmitter-Matching:

Messabweichung digital = $0.127 ^{\circ}\text{C} (0.229 ^{\circ}\text{F}) + 0.0074 ^{\circ}\text{x} [150 ^{\circ}\text{C} (302 ^{\circ}\text{F}) - (-50 ^{\circ}\text{C} (-58 ^{\circ}\text{F}))]$:	0,14 °C (0,25 °F)
Messabweichung D/A = $0.05 \% x 150 \degree C (302 \degree F)$	0,08 °C (0,14 °F)

38

Messabweichung digitaler Wert (IO-Link):	0,14 °C (0,25 °F)
$\textbf{Messabweichung analoger Wert (Stromausgang):} \sqrt{(\text{Messabweichung digital}^2 + \text{Messabweichung D/A}^2)}$	0,16 °C (0,29 °F)

Beispielrechnung mit Pt100, Messbereich 0 ... +150 °C (+32 ... +302 °F), Umgebungstemperatur +35 °C (+95 °F), Versorgungsspannung 30 V:

Messabweichung digital = 0,215 °C (0,387 °F) + 0,134% x [150 °C (302 °F) - (-50 °C (-58 °F))]:	0,48 °C (0,86 °F)
Messabweichung D/A = 0,05 % x 150 °C (302 °F)	0,08 °C (0,14 °F)
Einfluss der Umgebungstemperatur (digital) = $(35 - 25) \times (0,004 \% \times 200 \degree C (360 \degree F))$, mind. $0,008 \degree C (0,014 \degree F)$	0,08 °C (0,14 °F)
Einfluss der Umgebungstemperatur (D/A) = $(35 - 25) \times (0.003 \% \times 150 \degree C (302 \degree F))$	0,05 °C (0,09 °F)
Einfluss der Versorgungsspannung (digital) = $(30 - 24) \times (0.004 \% \times 200 ^{\circ}C (360 ^{\circ}F))$, mind. $0.008 ^{\circ}C (0.014 ^{\circ}F)$	0,05 °C (0,09 °F)
Einfluss der Versorgungsspannung (D/A) = (30 - 24) x (0,003 % x 150 °C (302 °F))	0,03 °C (0,05 °F)
Messabweichung digitaler Wert (IO-Link): $\sqrt{\text{(Messabweichung digital}^2 + \text{Einfluss Umgebungstemperatur (digital)}^2 + \text{Einfluss Versorgungsspannung (digital)}^2}$	0,49 °C (0,88 °F)
Messabweichung analoger Wert (Stromausgang): $\sqrt{\text{(Messabweichung digital}^2 + \text{Messabweichung D/A}^2 + \text{Einfluss Umgebungstemperatur (digital)}^2 + \text{Einfluss Umgebungstemperatur (D/A)}^2 + \text{Einfluss Versorgungsspannung (digital)}^2 + \text{Einfluss Versorgungsspannung (D/A)}^2}$	0,50 °C (0,90 °F)

Langzeitdrift		1 Monat	3 Monate	6 Monate	1 Jahr	3 Jahre	5 Jahre
	Digitalausgang IO-Link	±9 mK	± 15 mK	± 19 mK	± 23 mK	± 28 mK	±31 mK
	Stromausgang Messbereich -50 +200 °C (-58 +360 °F)		± 4,3 µA	± 5,4 μA	± 6,4 µA	± 8,0 µA	±8,8 µA

Betriebseinflüsse

Die Angaben zur Messabweichung entsprechen ±2 σσ (Gauß'sche Normalverteilung).

Standard	Bezeich- nung		Umgebungstemperatu (+-) pro 1 °C (1,8 °F) Än			Versorgungsspannung ekt (+-) pro 1 V Änder	
		Digital ¹⁾		D/A ²⁾	D	igital ¹⁾	D/A ²⁾
		Maximal 3)	Messwertbezogen 4)		Maximal 3)	Messwertbezogen ⁴⁾	
IEC 60751	Pt100 Kl. A	0,014 °C (0,025 °F)	0,004 % * (MW - MBA), mind. 0,008 °C (0,0144 °F)	0,003 % (≘0,48 μA)	0,014 °C (0,025 °F)	0,004 % * (MW - MBA), mind. 0,008 °C (0,0144 °F)	0,003 % (≘0,48 μA)

- 1) Mittels IO-Link übertragener Messwert.
- 2) Prozentangaben bezogen auf die konfigurierte Messspanne des analogen Ausgangssignals.
- 3) Maximale Messabweichung auf den angegebenen Messbereich.
- 4) Abweichungen von maximaler Messabweichung durch Rundung möglich.

MW = Messwert

MBA = Messbereichsanfang des jeweiligen Sensors

Gesamtmessabweichung des Transmitters am Stromausgang = $\sqrt{\text{(Messabweichung digital}^2 + \text{Messabweichung D/A}^2)}$

Gerätetemperatur

Die Anzeige der Gerätetemperatur hat eine maximale Messabweichung von ±8 K.

Ansprechzeit T_{63} und T_{90}

Tests in Wasser bei 0.4~m/s (1.3~ft/s) nach IEC 60751; Temperaturänderungen in Schritten von 10~K. Ansprechzeiten gemessen bei der Variante ohne Elektronik.

Ansprechzeit ohne Wärmeleitpaste

Bauform	Sensor	t ₆₃	t ₉₀
6 mm direktberührend, gerade Spitze	Pt100 (TF) Basis	5 s	< 20 s
6 mm direktberührend, gerade Spitze	iTHERM TipSens	1 s	1,5 s
6 mm Schutzrohr, gerade Spitze (4,3 × 20 mm)	iTHERM TipSens	1 s	3 s

Ansprechzeit mit Wärmeleitpaste ¹⁾

Bauform	Sensor	t ₆₃	t ₉₀
6 mm Schutzrohr, gerade Spitze (4,3 × 20 mm)	iTHERM TipSens	1 s	2,5 s

1) Zwischen dem Messeinsatz und dem Schutzrohr

Antwortzeit Elektronik

Max. 1 s

Bei der Erfassung von Sprungantworten muss berücksichtigt werden, dass sich gegebenfalls die Ansprechzeiten des Sensors zu den angegebenen Zeiten addieren.

Sensorstrom

≤ 1 mA

Kalibrierung

Kalibrierung von Thermometern

Unter Kalibrierung versteht man den Vergleich der Messwerte eines Prüflings mit denen eines genaueren Normals bei einem definierten und reproduzierbaren Messverfahren. Ziel ist es, die Messabweichungen des Prüflings vom so genannten wahren Wert der Messgröße festzustellen. Bei Thermometern wird zwischen zwei Methoden unterschieden:

- Kalibrierung an Fixpunkttemperaturen, z. B. am Eispunkt, dem Erstarrungspunkt von Wasser bei 0°C
- Vergleichskalibrierung mit einem präzisen Referenzthermometer

Das zu kalibrierende Thermometer muss dabei möglichst exakt die Fixpunkttemperatur bzw. die Temperatur des Vergleichsthermometers aufweisen. Für Thermometerkalibrierungen werden typischerweise temperierte und thermisch sehr homogene Kalibrierbäder oder spezielle Kalibrieröfen verwendet, in die der Prüfling und ggf. das Referenzthermometer hinreichend tief hineinragen können.

Sensor-Transmitter-Matching

Die Widerstands-/Temperatur-Kennlinie von Platin-Widerstandsthermometern ist standardisiert, kann in der Praxis aber kaum über den gesamten Einsatztemperaturbereich exakt eingehalten werden. Platin-Widerstandssensoren werden daher in Toleranzklassen eingeteilt, z. B. in Klasse A, AA oder B nach IEC 60751. Diese Toleranzklassen beschreiben die maximal zulässige Abweichung der spezifischen Sensorkennlinie von der Normkennlinie, d.h. den maximal zulässigen temperaturabhängigen Kennlinienfehler. Die Umrechnung gemessener Sensorwiderstandswerte bei Temperaturen in Temperaturtransmittern oder anderen Messelektroniken ist oftmals mit einem nicht unerheblichen Fehler verbunden, da sie in der Regel auf der Standardkennlinie basiert.

40

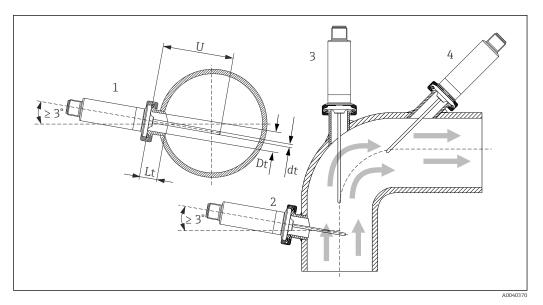
Bei Verwendung von Temperaturtransmittern lässt sich dieser Umrechnungsfehler durch ein Sensor-Transmitter-Matching deutlich verringern:

- Kalibrierung an mindestens drei Temperaturen und Ermittlung der tatsächlichen Kennlinie des Temperatursensors
- Angleichung der sensorspezifischen Polynomfunktion mit entsprechenden Calendar-van Dusen-Koeffizienten (CvD)
- Parametrierung des Temperaturtransmitters mit den sensorspezifischen CvD-Koeffizienten zur Widerstands-/Temperaturumrechnung sowie
- Weitere Kalibrierung des neu parametrierten Temperaturtransmitters mit angeschlossenem Widerstandsthermometer

Der Hersteller bietet ein solches Sensor-Transmitter-Matching als Dienstleistung an. Zudem werden die sensorspezifischen Polynomkoeffizienten von Platin-Widerstandsthermometern auf allen Kalibrierzertifikaten nach Möglichkeit mit ausgewiesen, z.B. mindestens drei Kalibrierpunkte.

Der Hersteller bietet für das Gerät standardmäßig Kalibrierungen bei einer Vergleichstemperatur von $-50 \dots +200 \,^{\circ}\text{C} \, (-58 \dots +392 \,^{\circ}\text{F})$ bezogen auf die ITS90 (Internationale Temperaturskala) an. Kalibrierungen bei anderen Temperaturbereichen sind auf Anfrage bei der jeweiligen Vertriebszentrale erhältlich. Die Kalibrierung ist rückführbar auf nationale und internationale Standards. Das Kalibrierzertifikat bezieht sich auf die Seriennummer des Gerätes

14.5 Montage


Einbaulage

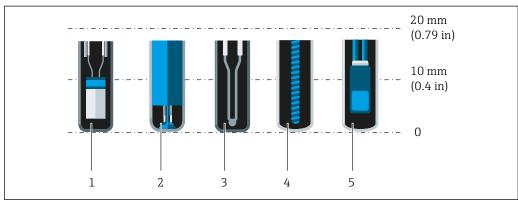
Keine Beschränkungen, Selbstentleerung im Prozess muss aber gewährleistet sein. Wenn eine Öffnung zur Leckageerkennung am Prozessanschluss vorhanden ist, muss diese am tiefsten Punkt liegen.

Einbauhinweise

Die Eintauchlänge des Kompaktthermometers kann die Messgenauigkeit erheblich beeinflussen. Bei zu geringer Eintauchlänge können durch die Wärmeableitung über den Prozessanschluss und die Behälterwand Fehler in der Messung auftreten. Daher empfiehlt sich beim Einbau in ein Rohr eine Eintauchlänge, die idealerweise der Hälfte des Rohrdurchmessers entspricht.

Einbaumöglichkeiten: Rohre, Tanks oder andere Anlagenkomponenten.

■ 10 Einbaubeispiele


- 1, 2 Senkrecht zur Strömungsrichtung, Einbau mit min. 3 Neigung, um Selbstentleerung zu gewährleisten
- 3 An Winkelstücker
- 4 Schräger Einbau in Rohren mit kleinem Nenndurchmesser
- U Eintauchlänge
- Die Anforderungen nach EHEDG und 3-A Sanitary Standard müssen eingehalten werden.

Einbauhinweis EHEDG/Reinigbarkeit: Lt ≤ (Dt-dt)

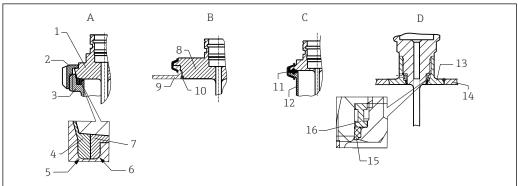
Einbauhinweis 3-A/Reinigbarkeit: Lt ≤ 2(Dt-dt)

Die genaue Position des Sensorelementes in der Thermometerspitze ist zu beachten.

Verfügbare Optionen sind abhängig von Produkt und Konfiguration.

A0041814

- $1 \hspace{0.5cm} \textit{iTHERM StrongSens oder iTHERM TrustSens bei 5 \dots 7 mm (0,2 \dots 0,28 in)} \\$
- 2 iTHERM QuickSens bei 0,5 ... 1,5 mm (0,02 ... 0,06 in)
- 3 Thermoelement (ungeerdet) bei $3 \dots 5 \text{ mm}$ (0,12 ... 0,2 in)
- 4 Drahtgewickelter Sensor bei 5 ... 20 mm (0,2 ... 0,79 in)
- 5 Standard Dünnfilm-Sensor bei 5 ... 10 mm (0,2 ... 0,39 in)


Um den Einfluss der Wärmeableitung so gering wie möglich zu halten und eine bestmögliche Messung zu erreichen, sollten 20 ... 25 mm (0,79 ... 0,98 in) zusätzlich zum eigentlichen Sensorelement in Kontakt mit dem Medium sein.

Daraus ergeben sich folgende empfohlene, minimale Eintauchlängen

- iTHERM TrustSens oder iTHERM StrongSens 30 mm (1,18 in)
- iTHERM QuickSens 25 mm (0,98 in)
- Drahtgewickelter Sensor 45 mm (1.77 in)
- Standard Dünnfilm-Sensor 35 mm (1,38 in)

Das ist besonders zu berücksichtigen bei T-Schutzrohren, da die Eintauchlänge konstruktiv bedingt sehr kurz ist und dadurch eine erhöhte Messabweichung zustande kommt. Es wird daher empfohlen, Eckschutzrohre mit iTHERM QuickSens-Sensoren zu verwenden.

Bei Rohren mit kleinen Nenndurchmessern empfiehlt es sich, dass die Spitze des Thermometers weit genug in den Prozess ragt, um über die Achse der Rohrleitung hinaus zu reichen. Eine andere Lösung kann ein schräger Einbau sein (4). Bei der Bestimmung der Eintauch- bzw. Einstecklänge müssen alle Parameter des Thermometers und des zu messenden Mediums berücksichtigt werden (z. B. Durchflussgeschwindigkeit, Prozessdruck).

A0040345

 $\blacksquare 11$ Detaillierte Einbauhinweise bei hygienegerechter Installation

- A Milchrohrverschraubung nach DIN 11851, nur in Verbindung mit EHEDG bescheinigtem und selbstzentrierenden Dichtring
- 1 Sensor mit Milchrohrverschraubung
- 2 Nutüberwurfmutter
- 3 Gegenanschluss
- 4 Zentrierring
- 5 RO.4
- 6 R0.4
- 7 Dichtungsring
- B Varivent® Prozessanschluss für VARINLINE® Gehäuse
- 8 Sensor mit Varivent Anschluss
- 9 Gegenanschluss
- 10 O-Ring
- C Clamp nach ISO 2852
- 11 Formdichtung
- 12 Gegenanschluss
- D Prozessanschluss Liquiphant-M G1", horizontaler Einbau
- 13 Einschweißadapter
- 14 Behälterwand
- 15 O-Ring
- 16 Druckring
- Die Gegenstücke für die Prozessanschlüsse sowie die Dichtungen oder Dichtringe sind nicht im Lieferumfang des Thermometers enthalten. Liquiphant M-Einschweißadapter mit zugehörigen Dichtungssätzen sind als Zubehör erhältlich (siehe 'Zubehör').

HINWEIS

Im Fehlerfall eines Dichtrings (O-Ring) oder einer Dichtung müssen folgende Maßnahmen durchgeführt werden:

- ▶ Das Thermometer muss ausgebaut werden.
- ▶ Das Gewinde und die O-Ringnut/Dichtfläche müssen gereinigt werden.
- ▶ Der Dichtring bzw. die Dichtung müssen ausgetauscht werden.
- ▶ CIP muss nach dem Einbau durchgeführt werden.

Bei eingeschweißten Anschlüssen müssen die Schweißarbeiten auf der Prozessseite mit der erforderlichen Sorgfalt durchgeführt werden:

- 1. Geeigneten Schweißwerkstoff verwenden.
- 2. Bündiq oder mit Schweißradius ≥ 3,2 mm (0,13 in) schweißen.
- 3. Vertiefungen, Falten, Spalten vermeiden.
- 4. Auf eine geschliffene und polierte Oberfläche, Ra ≤ 0,76 μm (30 μin) achten.

Damit die Reinigungsfähigkeit nicht beeinträchtig wird, muss beim Einbau des Thermometers folgendes beachtet werden:

- 1. Der Sensor ist im eingebauten Zustand für CIP (cleaning in place) Reinigungen geeignet. Die Reinigung erfolgt zusammen mit der Rohrleitung bzw. Tank. Bei Tankeinbauten mittels Prozessanschlussstutzen ist zu gewährleisten, dass die Reinigungsarmatur diesen Bereich direkt ansprüht um ihn auszureinigen.
- 2. Die Varivent®-Anschlüsse ermöglichen eine frontbündige Montage.

14.6 Umgebung

-			
Umgebungstemperaturbe- reich	Ta	−40 +85 °C (−40 +185 °F)	
Lagerungstemperatur	cken, dass es bei Lagerung (und Transport) zuverlässig vor Stößen e Originalverpackung bietet optimalen Schutz.		
	T_s	-40 +85 °C (−40 +185 °F)	
Betriebshöhe	Bis 2 000 m (6 600 ft) ü	iber Normal-Null	
Klimaklasse	Nach IEC/EN 60654-1	Klimaklasse Dx, Klasse 4K4H	
TMITIANASSE	rvacii ile, liv 00051 1,	Tallitation Da, Talobe Tit III	
Schutzart	Nach IEC/EN 60529 IP6	59	
	Abhängig von der S	Schutzart des Anschlusskabels → 🗎 29	
Stoß- und Schwingungsfes- tigkeit	Das Thermometer erfüllt die Anforderungen der IEC 60751, die eine Stoß- und Schwingungsfestigkeit von 3 g im Bereich von 10 500 Hz fordert.		
Elektromagnetische Verträglichkeit (EMV)	EMV gemäß allen relevanten Anforderungen der IEC/EN 61326-Serie und NAMUR-Empfehlung EMV (NE21). Details sind aus der Konformitätserklärung ersichtlich.		

- Maximaler Messfehler unter EMV-Tests: < 1 % der Messspanne
- Störfestigkeit nach IEC/EN 61326-Serie, Anforderungen für industrielle Bereiche
- Störaussendung nach IEC/EN 61326-Serie, Betriebsmittel der Klasse B

IO-Link

Im I/O-Link-Betrieb werden nur die Anforderungen der IEC/EN 61131-9 erfüllt.

Die Verbindung zwischen IO-Link Master und Thermometer erfolgt über eine maximal 20 m (65,6 ft) lange, ungeschirmte, 3-adrige Leitung.

4 ... 20 mA

Elektromagnetische Verträglichkeit gemäß allen relevanten Anforderungen der IEC/EN 61326 Serie und der NAMUR-Empfehlung EMV (NE21).

- Nähere Informationen dazu: siehe Konformitätserklärung.
- 1. Bei einer Anschluss-Leitungslänge von 30 m (98,4 ft): Zwingend eine geschirmte Leitung verwenden.
- 2. Generell wird der Einsatz von geschirmten Anschlussleitungen empfohlen.

Elektrische Sicherheit

- Schutzklasse III
- Überspannungskategorie II
- Verschmutzungsgrad 2

14.7 Prozess

Prozesstemperaturbereich

Die Elektronik des Thermometers ist vor Temperaturen über 85 °C (185 °F) durch ein Halsrohr mit entsprechender Länge zu schützen.

Geräteausführung ohne Elektronik (Bestellmerkmal 020, Option A)

Pt100 TF, Basis, ohne Halsrohr	−50 +150 °C (−58 +302 °F)
Pt100 TF, Basis, mit Hals- rohr	−50 +150 °C (−58 +302 °F)
iTHERM TipSens, ohne Halsrohr	−50 +200 °C (−58 +392 °F)
iTHERM TipSens, mit Halsrohr	-50 +200 °C (−58 +392 °F)

Geräteausführung mit Elektronik (Bestellmerkmal 020, Option B, C)

Pt100 TF, Basis, ohne Halsrohr	−50 +150 °C (−58 +302 °F)
Pt100 TF, Basis, mit Hals-rohr	−50 +150 °C (−58 +302 °F)
iTHERM TipSens, ohne Halsrohr	−50 +150 °C (−58 +302 °F)
iTHERM TipSens, mit Halsrohr	−50 +200 °C (−58 +392 °F)

Thermischer Schock

Thermoschockbeständig im CIP/SIP Reinigungsprozess bei einem Temperaturanstieg innerhalb 2 Sekunden von $+5 \dots +130 \,^{\circ}\text{C} \ (+41 \dots +266 \,^{\circ}\text{F}).$

Prozessdruckbereich

Der maximal mögliche Prozessdruck ist abhängig von verschiedenen Einflüssen, z. B. Bauform, Prozessanschluss und -temperatur. Maximal mögliche Prozessdrücke für die jeweiligen Prozessanschlüsse. → 🖺 56

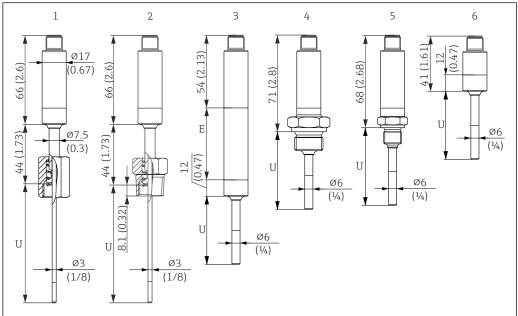
Pie mechanische Belastbarkeit in Abhängigkeit der Einbau- und Prozessbedingungen kann online im Schutzrohrberechnungstool TW Sizing Modul in der Endress+Hauser Applicator-Software überprüft werden. → 🗎 26

Messstoff - Aggregatzustand

Gasförmig oder flüssig (auch mit hoher Viskosität, z. B. Joghurt).

Konstruktiver Aufbau 14.8

Bauform. Maße

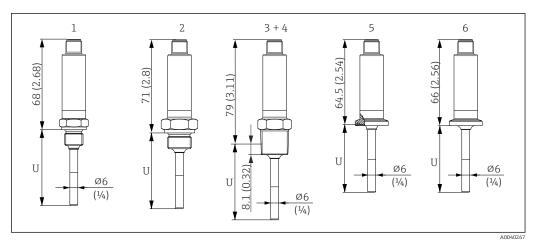

Alle Angaben in mm (in). Die Bauform des Thermometers ist abhängig von der verwendeten Schutzrohrversion:

- Thermometer ohne Schutzrohr
- Schutzrohr-Durchmesser 6 mm (½ in)
- Schutzrohrausführung als T- und Eckschutzrohr nach DIN 11865/ASME BPE zum Einschweißen
- Diverse Abmessungen, wie z. B. Eintauchlänge U, sind variable Werte und daher in den folgenden Abmessungszeichnungen als Zeichnungsposition dargestellt.

Variable Abmessungen:

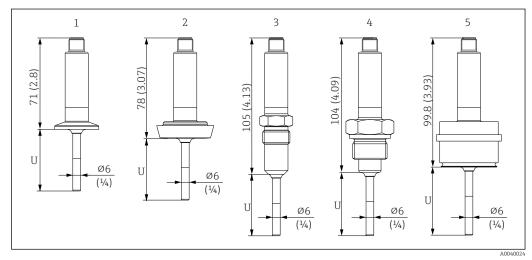
Position	Beschreibung
В	Bodendicke Schutzrohr
Е	Halsrohrlänge, optional
T	Länge Schutzrohrschaft, vordefiniert, abhängig von der Schutzrohrversion
U	Eintauchlänge variabel, je nach Konfiguration

Ohne Schutzrohr

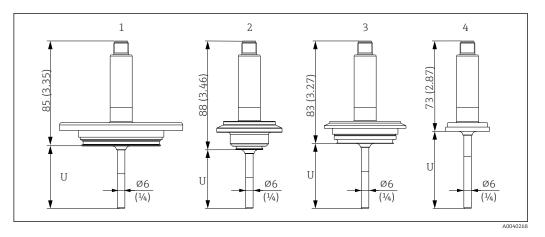

100/000

Maßeinheit mm (in)

- 1 Thermometer mit gefederter G3/8" Überwurfmutter 3 mm für existierendes Schutzrohr
- 2 Thermometer mit gefedertem NPT1/2" Aussengewinde 3 mm für existierendes Schutzrohr
- 3 Thermometer ohne Prozessanschluss für Klemmverschraubung, mit Halsrohr
- 4 Thermometer mit G½" Aussengewinde
- 5 Thermometer mit G¼" Aussengewinde
- 6 Thermometer ohne Elektronik
- Bei Verwendung eines Halsrohrs vergrößert sich die Gesamtlänge des Gerätes immer um die diesbezügliche Länge, E = 50 mm (1,97 in), unabhängig vom Prozessanschluss.

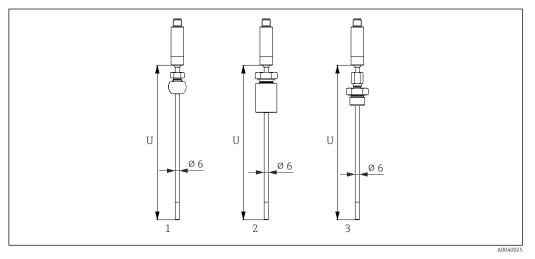

Zur Berechnung der Eintauchlänge U in ein bereits vorhandenes Schutzrohr ist folgende Gleichungen zu beachten:

Ausführung 1 (G3/8" Überwurfmutter)	$U = U_{(Schutzrohr)} + T_{(Schutzrohr)} + 3 \text{ mm} - B_{(Schutzrohr)}$
rurino di a \	$U = U_{\text{(Schutzrohr)}} + T_{\text{(Schutzrohr)}} - 5 \text{ mm}_{\text{(-8 mm Einschraubtiefe + 3mm Federweg)}} - B_{\text{(Schutzrohr)}}$

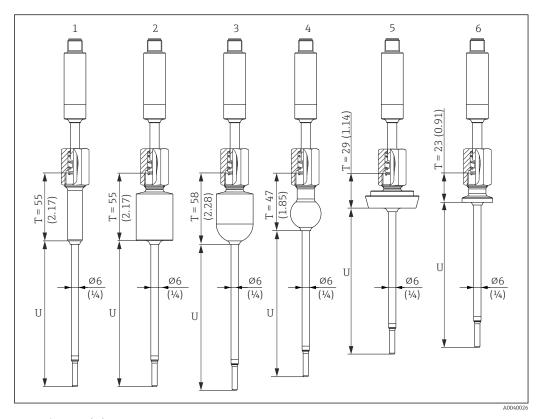

Maßeinheit mm (in)

- 1 Thermometer mit M14 Außengewinde
- 2 Thermometer mit M18 Außengewinde
- 3 Thermometer mit NPT½" Außengewinde
- 4 Thermometer mit NPT1/4" Außengewinde
- Thermometer mit Microclamp, DN18 (0.75")
 Thermometer mit Tri-Clamp, DN18 (0.75")

Maßeinheit mm (in)

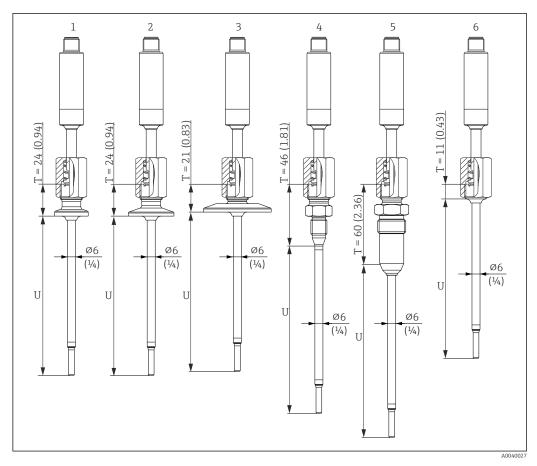

- 1 Thermometer mit Clamp ISO2852 für DN12 ... 21.3, DN25 ... 38, DN40 ... 51
- 2 Thermometer mit Milchrohrverschraubung DIN11851 für DN25/DN32/DN40/DN50
- 3 Thermometer mit metallischem Dichtsystem G½"
- 4 Thermometer mit G¾" Außengewinde ISO228 für FTL31/33/20/50 Liquiphant-Adapter
- 5 Thermometer mit D45 Prozessadapter

Maßeinheit mm (in)

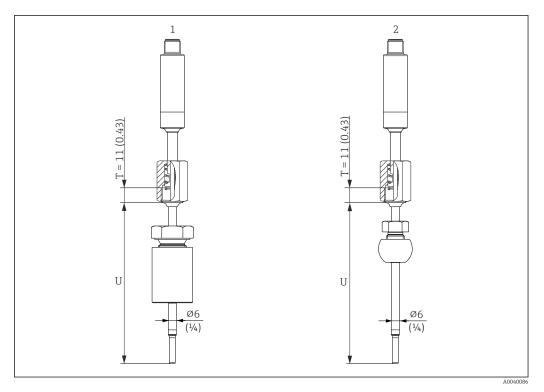

- 1 Thermometer mit APV Inline, DN50
- 2 Thermometer mit Varivent Typ B, D 31 mm
- 3 Thermometer mit Varivent Typ F, D 50 mm und Varivent Typ N, D 68 mm
- 4 Thermometer mit SMS 1147, DN25/DN38/DN51

Mit Klemmverschraubung

- l Thermometer mit Klemmverschraubung TK40 kugelförmig, PEEK/316L, Hülse, Ø 25 mm, zum Einschweissen
- 2 Thermometer mit Klemmverschraubung TK40 zylindrisch, Elastosil-Hülse, Ø 25 mm, zum Einschweissen
- 3 Thermometer mit Klemmverschraubung G½" Aussengewinde, TK40-BADA3C, 316L

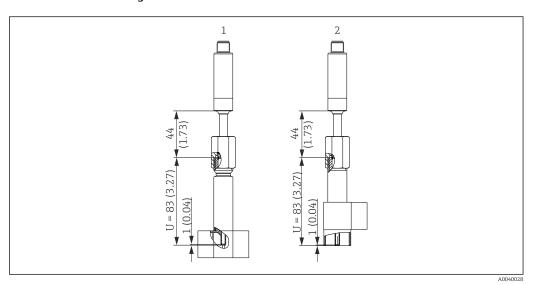

Mit Schutzrohr-Durchmesser 6 mm (1/4 in)

Maßeinheit mm (in)


- Thermometer mit Einschweissadapter zylindrisch, D 12 × 40 mm
- 2
- Thermometer mit Einschweissadapter zylindrisch, D 30 x 40 mm Thermometer mit Einschweissadapter kugelig-zylindrisch, D 30 x 40 mm 3
- 4
- Thermometer mit Einschweissadapter kugelig, D 25 mm Thermometer mit Milchrohrverschraubung DIN11851, DN25/DN32/DN40
- Thermometer mit Microclamp, DN18 (0.75")

50

Maßeinheit mm (in)


- Thermometer mit Tri-Clamp-Ausführung DN18
- 2
- Thermometer mit Clamp-Ausführung DN12 ... 21.3 Thermometer mit Clamp-Ausführung DN25 ...38/DN40 ...51 3
- Thermometer mit Ausführung metallisches Dichtsystem M12 \times 1.5
- Thermometer mit Ausführung metallisches Dichtsystem G½" Thermometer ohne Prozessanschluss

Maßeinheit mm (in)

- 1 Thermometer mit Klemmverschraubung TK40 zylindrisch, Elastosil-Hülse, Ø30 mm, zum Einschweissen
- 2 Thermometer mit Klemmverschraubung TK40 kugelförmig, PEEK/316L Hülse, Ø25 mm, zum Einschweissen

Schutzrohrausführung als T- oder Eckschutzrohr

Maßeinheit mm (in)

- 1 Thermometer mit T-Schutzrohr
- 2 Thermometer mit Eckschutzrohr
- Rohrgrößen nach DIN 11865 Reihe A (DIN), B (ISO) und C (ASME BPE)
- 3-A Kennzeichnung für Nennweiten ≥ DN25
- Schutzklasse IP69
- Material 1.4435+316L, Delta-Ferrit-Gehalt < 0,5%
- Temperaturbereich –60 ... +200 °C (–76 ... +392 °F)
- Druckbereich PN25 nach DIN11865

Aufgrund der geringen Eintauchlänge U bei kleinen Rohrdurchmessern wird der Einsatz von iTHERM TipSens Messeinsätzen empfohlen.

Mögliche Kombinationen der Schutzrohrversionen mit den verfügbaren Prozessanschlüssen

Prozessanschluss und Größe	Direktberührend, 6 mm (1/4 in)	Schutzrohr,6 mm (¼ in)
Ohne Prozessanschluss (für Einbau mit Klemmverschraubung)	Ø	Ø
Prozessadapter D45	V	-
Klemmverschraubung		
Gewinde G½"	V	V
Zylindrisch Ø30 mm	V	V
Kugelig Ø25 mm	✓	2
Gewinde		
G½"	✓	-
G1/4"	✓	-
M14x1,5	✓	-
M18x1,5	✓	-
NPT½"	✓	-
Einschweißadapter		
Zylindrisch Ø30 x 40 mm	-	V
Zylindrisch Ø12 x 40 mm	-	V
Kugelig-zylindrisch Ø30 x 40 mm	-	V
Kugelig Ø25 mm (0,98 in)	-	V
Clamps nach ISO 2852		
Microclamp/Tri-clamp DN18 (0,75 in)	✓	V
DN12 - 21,3	✓	V
DN25 -38 (1 - 1,5 in)	✓	V
DN40 - 51 (2 in)	✓	V
Milchrohrverschraubung nach DIN 11851		
DN25	✓	V
DN32	✓	V
DN40	✓	V
DN50	✓	-
Metallisches Dichtsystem		
M12x1	-	V
G½"	V	V
Gewinde nach ISO 228 für Liquiphant-Einschweißa	dapter	
G¾" für FTL20, FTL31, FTL33	<u>·</u>	-
G¾" für FTL50	✓	-
G1" für FTL50	V	-
APV Inline		
DN50	V	-
Varivent®		
Typ B, Ø31 mm	V	-
Typ F, Ø50 mm	✓	-

Prozessanschluss und Größe	Direktberührend, 6 mm (¼ in)	Schutzrohr,6 mm (1/4 in)
Typ N, Ø68 mm	$ \mathbf{V} $	-
SMS 1147		
DN25	☑	-
DN38	☑	-
DN51	✓	-

Gewicht

0,2 ... 2,5 kg (0,44 ... 5,5 lbs) für Standardausführungen

Material

Die in der folgenden Tabelle angegebenen Dauereinsatztemperaturen sind nur als Richtwerte bei Verwendung der jeweiligen Materialien in Luft und ohne nennenswerte Druckbelastung zu verstehen. In einem abweichenden Einsatzfall, insbesondere beim Auftreten hoher mechanischer Belastungen oder in aggressiven Medien, können die maximalen Einsatztemperaturen deutlich reduziert sein.

Bezeichnung	Kurzformel	Empfohlene max. Dauer- einsatztemperatur an Luft	Eigenschaften			
AISI 316L (entspricht 1.4404 oder 1.4435)	X2CrNiMo17-13-2, X2CrNiMo18-14-3	650 °C (1202 °F) 1)	 Austenitischer, nicht rostender Stahl Generell hohe Korrosionsbeständigkeit Durch Molybdän-Zusatz besonders korrosionsbeständig in chlorhaltigen und sauren, nicht oxidierenden Umgebungen (z.B. niedrig konzentrierte Phosphor- und Schwefelsäuren, Essig- und Weinsäuren) Erhöhte Beständigkeit gegen interkristalline Korrosion und Lochfraß 			
1.4435+316L, Delta-Ferrit < 1% bzw. < 0,5%	lich erfolgt die Begrenzung de	zifikationen (1.4435 sowie 316L) werden bezgl. ihrer Analysegrenzen gleichzeitig erfüllt. Zusätz- nzung des Delta-Ferrit Gehalts der prozessberührenden Teile auf <1% bzw. <0,5%. ten (in Anlehnung an die Basler Norm 2)				

1) Bei geringen Druckbelastungen und in nicht korrosiven Medien ist bedingt ein Einsatz bis zu 800 °C (1472 °F) möglich. Weitere Informationen können über die Vertriebsorganisation eingeholt werden.

Oberflächenrauigkeit

Angaben für produktberührte Flächen gemäß EN ISO 21920:

Standard Oberfläche, mechanisch poliert ¹⁾	$R_a \le 0.76 \ \mu m \ (30 \ \mu in)$
Mechanisch poliert ¹⁾ , geschwabbelt ²⁾	$R_a \le 0.38 \ \mu m \ (15 \ \mu in)^{3)}$
Mechanisch poliert ¹⁾ , geschwabbelt und elektropoliert	$R_a \le 0.38 \ \mu m \ (15 \ \mu in)^{3)} + elektropoliert$

- 1) Oder gleichwertige Bearbeitung die R_a max. gewährleistet
- 2) Nicht konform zu ASME BPE
- 3) T16% bei direktberührenden Messeinsätzen ohne Schutzrohr, nicht konform zur ASME BPE

Prozessanschlüsse

Aufgrund von Deformationen können die 316L-Klemmverschraubungen nur einmal verwendet werden. Das gilt für alle Komponenten der Klemmverschraubungen. Eine Austauschklemmverschraubung muss in einer anderen Position befestigt werden (Nuten im Schutzrohr). PEEK-Klemmverschraubungen dürfen niemals bei einer Temperatur verwendet werden, die niedriger ist als die Temperatur während des Befestigens der Klemmverschraubung, da andernfalls aufgrund der Wärmekontraktion des PEEK die Dichtigkeit verloren geht.

Für höhere Anforderungen werden SWAGELOCK oder ähnliche Befestigungen dringend empfohlen.

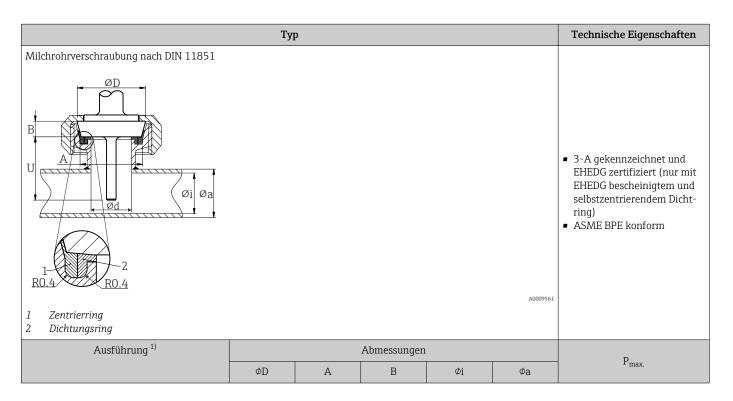
Klemmverschraubung

		Abmessungen				
Тур ТК40	Ausführung	Φdi	L	Schlüssel- weite	Technische Eigenschaften	
Maßeinheit mm (in) 1 Mutter 2 Klemmhülse 3 Prozessanschluss	G ½" , Material Hülse 316L	6 mm (0,24 in)	ca. 47 mm (1,85 in)	G½": 27 mm (1,06 in)	 P_{max.} = 40 bar (104 psi) bei T = +200 °C (+392 °F) für 316L P_{max.} = 25 bar (77 psi) bei T = +400 °C (+752 °F) für 316L Anzugsdrehmoment = 40 Nm 	

56

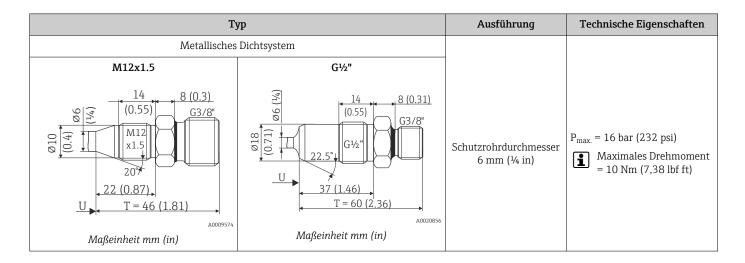
	Ausführung		Abmessungen	l	
Typ TK40 zum Einschweißen	Kugelförmig oder zylind- risch	Φdi	ΦD	h	Technische Eigenschaften ¹⁾
A0058214	Kugelförmig Material Dichtkonus 316L	6,3 mm (0,25 in) ²⁾	25 mm (0,98 in)	33 mm (1,3 in)	■ P _{max.} = 50 bar (725 psi) ■ T _{max.} für 316L Dichtkonus = +200 °C (+392 °F), Anzugsdrehmoment = 40 Nm
A0017582	Kugelförmig Material Dichtkonus PEEK Gewinde G¼"	6,3 mm (0,25 in) ²⁾	25 mm (0,98 in)	33 mm (1,3 in)	 P_{max.} = 10 bar (145 psi) T_{max.} für PEEK Dichtkonus = +150 °C (+302 °F), Anzugsdrehmoment = 10 Nm TK40 PEEK Dichtkonus ist EHEDG getestet und 3-A gekennzeichnet
Ødi Ød Ød	Zylindrisch Material Dichtkonus Elas- tosil [®] Gewinde G½"	6,2 mm (0,24 in) ²⁾	30 mm (1,18 in)	57 mm (2,24 in)	 P_{max.} = 10 bar (145 psi) T_{max.} für Elastosil® Dichtkonus = +150 °C (+302 °F), Anzugsdrehmoment = 5 Nm TK40 Elastosil Dichtkonus ist EHEDG getestet und 3-A gekennzeichnet

- 1) Alle Druckangaben gelten für zyklische Temperaturbelastung
- 2) Für Messeinsatz- oder Schutzrohrdurchmesser $\emptyset d = 6 \text{ mm } (0,236 \text{ in}).$

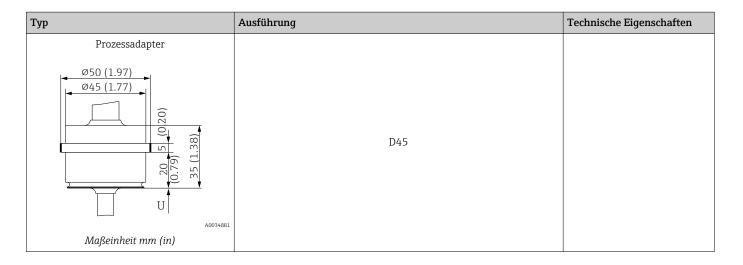

Lösbarer Prozessanschluss

	deprozessanschluss gewinde		Ausfü	hrung	Gewindelänge TL	Schlüsselweite	max. Prozessdruck
	SW/AI		M	M14x1,5	12 mm (0,47 in)	19 mm (0,75 in)	Maximaler stati-
E				M18x1,5	12 mm (0,47 in)	24 mm (0,95 in)	scher Prozessdruck für Gewindepro-
\			G 2)	G ¼" DIN/BSP	12 mm (0,47 in)	19 mm (0,75 in)	zessanschluss: 1)
1	TL	TL		G ½" DIN/BSP	14 mm (0,55 in)	27 mm (1,06 in)	400 bar (5 802 psi) bei
ML,			NPT	NPT ¼"	5,8 mm (0,23 in)	19 mm (0,75 in)	+400 °C (+752 °F)
L				NPT ½"	8 mm (0,32 in)	22 mm (0,87 in)	
■ 12	Zylindrische (links) ur führung	A0008620 nd konische (rechts) Aus-					

- 1) Maximale Druckangabe nur für das Gewinde. Berechnet ist das Ausreißen des Gewindes unter Berücksichtigung des statischen Drucks. Die Berechnung beruht auf einem vollständig eingeschraubten Gewinde (TL = Gewindelänge)
- 2) DIN ISO 228 BSPP


Tym	Ausführung	Abr	nessungen	Technische Eigenschaften	Konformität
Тур	φd ¹⁾	ΦD	Φa	Technische Eigenschaften	Komorimtat
Clamp nach ISO 2852	Microclamp ²⁾ DN8-18 (0,5"-0,75") ³⁾ , Form A	25 mm	-		-
	Tri-clamp DN8-18 (0,5"-0,75") ³⁾ , Form B	(0,98 in)	-	P _{max.} = 16 bar (232 psi), abhängig vom Clamp-Ring und der geeigneten Dichtung 3-A gekennzeichnet	angelehnt an ISO 2852 ⁴⁾
Ød Ød	Clamp DN12-21,3, Form B	34 mm (1,34 in)	16 25,3 mm (0,63 0,99 in)		ISO 2852
ØD A	Clamp DN25-38 (1"-1,5"), Form B	50,5 mm (1,99 in)	29 42,4 mm (1,14 1,67 in)	 P_{max.} = 16 bar (232 psi), abhängig vom Clamp-Ring und der geeigneten Dichtung 3-A gekennzeichnet und 	ASME BPE Typ B; ISO 2852
Form B	Clamp DN40-51 (2"), Form B	64 mm (2,52 in)	44,8 55,8 mm (1,76 2,2 in)	EHEDG zertifiziert (in Verbindung mit der Combifit-Dichtung) Kann mit "Novaseptic Connect (NA Connect)" verwendet werden, der einen frontbündigen Einbau ermöglicht	ASME BPE Typ B; ISO 2852
Form A: Konform zu ASME BPE Typ A Form B: Konform zu ASME BPE Typ B und ISO 2852					

- 1) Rohre gemäß ISO 2037 und BS 4825 Teil 1
- 2) Microclamp (nicht enthalten in ISO 2852); keine Standardrohre
- 3) DN8 (0,5") nur mit Schutzrohrdurchmesser = 6 mm ($\frac{1}{4}$ in) möglich
- 4) Durchmesser Nut = 20 mm



	Technische Eigenschaften					
DN25	44 mm (1,73 in)	30 mm (1,18 in)	10 mm (0,39 in)	26 mm (1,02 in)	29 mm (1,14 in)	40 bar (580 psi)
DN32	50 mm (1,97 in)	36 mm (1,42 in)	10 mm (0,39 in)	32 mm (1,26 in)	35 mm (1,38 in)	40 bar (580 psi)
DN40	56 mm (2,2 in)	42 mm (1,65 in)	10 mm (0,39 in)	38 mm (1,5 in)	41 mm (1,61 in)	40 bar (580 psi)
DN50	68 mm (2,68 in)	54 mm (2,13 in)	11 mm (0,43 in)	50 mm (1,97 in)	53 mm (2,1 in)	25 bar (363 psi)

1) Rohrleitungen gemäß DIN 11850

			Abmessungen		
Тур	Ausführung G	L1 Gewinde- länge	A	1 (SW/AF)	Technische Eigenschaften
Gewinde nach ISO 228 (für Liquiphant-Einschweißadapter)	G¾" für FTL20/31/33- Adapter G¾" für FTL50- Adapter	16 mm (0,63 in)	25,5 mm (1 in)	32	 P_{max.} = 25 bar (362 psi) bei max. 150 °C (302 °F) P_{max.} = 40 bar (580 psi) bei max. 100 °C (212 °F) 3-A gekennzeichnet und EHEDG getestet ASME BPE konform
A0009572	G1" für FTL50- Adapter	18,6 mm (0,73 in)	29,5 mm (1,16 in)	41	

Zum Einschweißen

Тур		Ausführung	Abmessungen	Technische Eigenschaften
Einschweißa	adapter	1: Zylindrisch	ϕ d x h = 12 mm (0,47 in) x 40 mm (1,57 in), T = 55 mm (2,17 in)	
		2: Zylindrisch	ϕ d x h = 30 mm (1,18 in) x 40 mm (1,57 in)	
h Ød T	T d d	3: Kugelig-zylindrisch	ϕ d x h = 30 mm (1,18 in) x 40 mm (1,57 in)	
h Ød T	2 T T U U 4 A0039503	4: Kugelig	φd = 25 mm (0,98 in) h = 24 mm (0,94 in)	 P_{max.} ist abhängig vom Einschweißprozess 3-A gekennzeichnet und EHEDG zertifiziert ASME BPE konform

Tem	Ausfüh-	Abmessungen					Technische Eigenschaften
Тур	rung	Ød	ΦA	ΦВ	M	h	rechnische Eigenschaften
APV-Inline							
ØB M U W A0018435	DN50	69 mm (2,72 in)	99,5 mm (3,92 in)	82 mm (3,23 in)	2xM8	19 mm (0,75 in)	 P_{max.} = 25 bar (362 psi) 3-A gekennzeichnet und EHEDG zertifiziert ASME BPE konform

Tyro	Ausfüh- Abmessungen					Te	Technische Eigenschaften		
Тур	rung	ΦD	ΦA	ΦВ	h	P _{max} .			
Varivent [®]	Тур В	31 mm (1,22 in)	105 mm (4,13 in)	-	22 mm (0,87 in)				
ØA ØB	Тур F	50 mm (1,97 in)	145 mm (5,71 in)	135 mm (5,31 in)	24 mm (0,95 in)	10 bar	3-A gekennzeichnet und		
OD OD	Тур N	68 mm (2,67 in)	165 mm (6,5 in)	155 mm (6,1 in)	24,5 mm (0,96 in)	(145 psi)	EHEDG zertifiziert ■ ASME BPE konform		
A0021307									

Der VARINLINE® Gehäuseanschlussflansch eignet sich zum Einschweißen in den Kegel- oder Klöpperboden in Tanks oder Behälter mit kleinem Durchmesser (≤ 1,6 m (5,25 ft)) und bis zu einer Wandstärke von 8 mm (0,31 in).

Tym	Augfühmung		Tashnissha Figanashaftan		
Тур	Ausführung	ΦD	ΦA	h	Technische Eigenschaften
SMS 1147 ØA	DN25	32 mm (1,26 in)	35,5 mm (1,4 in)	7 mm (0,28 in)	
ØD	DN38	48 mm (1,89 in)	55 mm (2,17 in)	8 mm (0,31 in)	
	DN51	60 mm (2,36 in)	65 mm (2,56 in)	9 mm (0,35 in)	P _{max.} = 6 bar (87 psi)
1 Überwurfmutter 2 Dichtungsring 3 Gegenanschluss					

T-Schutzrohr, optimiert (keine Schweißung, kein Totraum)

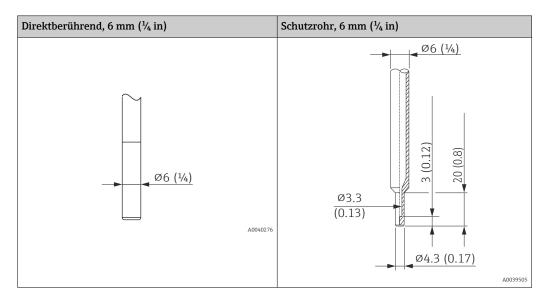
Typ		usführung	Abme	ssungen in mm	(in)	Technische Eigenschaften
Тур	Austumung		ΦD	L	s 1)	rechnische Eigenschaften
T-Schutzrohr zum Einschweißen nach DIN 11865 (Reihe A, B und C)	Reihe A	DN10 PN25	13 mm (0,51 in)			
		DN15 PN25	19 mm (0,75 in)			
G3/8"		DN20 PN25	23 mm (0,91 in)		1,5 mm (0,06 in)	
769		DN25 PN25	29 mm (1,14 in)			■ P _{max.} = 25 bar (362 psi) ■ 3-A gekennzeichnet und
<u>Ø18</u> (0.71) € 8		DN32 PN25	32 mm (1,26 in)	48 mm (1,89 in)		EHEDG zertifiziert für ≥ DN25
(0.12) s	Reihe B	DN13,5 PN25	13,5 mm (0,53 in)		1,6 mm (0,063 in)	■ ASME BPE konform für ≥ DN25
Ø4.5 (0.18)		DN17,2 PN25	17,2 mm (0,68 in)			
Ø4.5 (0.18) (0.00) L		DN21,3 PN25	21,3 mm (0,84 in)			
Maßeinheit mm (in)		DN26,9 PN25	26,9 mm (1,06 in)			

Typ	Ausführung -		Abmes	(in)	Technische Eigenschaften	
Тур			ΦD	L	s 1)	rechnische Eigenschaften
		DN33,7 PN25	33,7 mm (1,33 in)		2 mm (0,08 in)	
	Reihe C ²⁾	DN12,7 PN25 (½")	12,7 mm (0,5 in)		1,65 mm (0,065 in)	
		DN19,05 PN25 (¾")	19,05 mm (0,75 in)			
		DN25,4 PN25 (1")	25,4 mm (1 in)			
		DN38,1 PN25 (1½")	38,1 mm (1,5 in)			

- 1) Rohrwandstärke
- 2) Rohrmaße gemäß ASME BPE

Eck-Schutzrohr, optimiert (keine Schweißung, kein Totraum)

Т	A	Ausführung -		Abmessu	ıngen		Tashwissha Figanasha (tas
Тур	Aus	runrung	ΦD	L1	L2	s 1)	Technische Eigenschaften
	Reihe A	DN10 PN25	13 mm (0,51 in)	22 mm (0,86 in)	24 mm (0,95 in)	1,5 mm (0,06 in)	
		DN15 PN25	19 mm (0,75 in)	25 mm	(0,98 in)		
Eck-Schutzrohr zum Einschweißen nach		DN20 PN25	23 mm (0,91 in)	27 mm	(1,06 in)		
DIN 11865 (Reihe A, B und C)		DN25 PN25	29 mm (1,14 in)	30 mm	(1,18 in)		
G3/8"		DN32 PN25	35 mm (1,38 in)	33 mm	(1,3 in)		
	Reihe B	DN13,5 PN25	13,5 mm (0,53 in)	22 mm (0,86 in)	24 mm (0,95 in)	1,6 mm (0,063 in)	- D 25 han (2/2 mail)
Ø3.1 92		DN17,2 PN25	17,2 mm (0,68 in)	24 mm	(0,95 in)		 P_{max.} = 25 bar (362 psi) 3-A gekennzeichnet und EHEDG zertifiziert für
(0.12)		DN21,3 PN25	21,3 mm (0,84 in)	26 mm	(1,02 in)		≥ DN25 ■ ASME BPE konform für ≥ DN25
8		DN26,9 PN25	26,9 mm (1,06 in)	29 mm	(1,14 in)		
<u>Ø4.5</u> (0.18)		DN33,7 PN25	33,7 mm (1,33 in)	32 mm	(1,26 in)	2,0 mm (0,08 in)	
A0035899 Maßeinheit mm (in)	Reihe C	DN12,7 PN25 (½") ²⁾	12,7 mm (0,5 in)	22 mm (0,86 in)	24 mm (0,95 in)	1,65 mm (0,065 in)	
маугинен тт (т)		DN19,05 PN25 (¾")	19,05 mm (0,75 in)	25 mm	(0,98 in)		
		DN25,4 PN25 (1")	25,4 mm (1 in)	28 mm	(1,1 in)		
		DN38,1 PN25 (1½")	38,1 mm (1,5 in)	35 mm	(1,38 in)		


- 1) Rohrwandstärke
- 2) Rohrmaße gemäß ASME BPE

Form der Spitze

Die thermische Ansprechzeit, die Reduzierung des Strömungsquerschnitts und die auftretende mechanische Belastung im Prozess sind die Auswahlkriterien bei der Spitzenform.

Vorteile beim Einsatz von reduzierten oder verjüngten Thermometerspitzen:

- Geringere Beeinflussung des Strömungsverhaltens der mediumsführenden Rohrleitung bei kleinere Spitzenformen
- Strömungsverhalten wird optimiert
- Stabilität des Schutzrohrs wird erhöht

14.9 Anzeige- und Bedienoberfläche

Bedienkonzept

Die Konfiguration der gerätespezifischen Parameter erfolgt über IO-Link. Dafür stehen dem Benutzer spezielle, von unterschiedlichen Herstellern angebotene Konfigurationsbzw. Betriebsprogramme zur Verfügung. Die Gerätebeschreibungsdatei (IODD) wird für das Thermometer bereitgestellt.

IO-Link Bedienkonzept

Nutzerorientierte Menüstruktur für anwenderspezifische Aufgaben. Geführte Menüs mit der Unterteilung in:

- Operator
- Maintenance
- Specialist

Effizientes Diagnoseverhalten erhöht die Verfügbarkeit der Messung

- Diagnosemeldungen
- Behebungsmaßnahmen
- Simulationsmöglichkeiten

IODD Download

http://www.endress.com/download

- Bei Suchbereich **Software** auswählen
- Bei Softwaretyp Gerätetreiber auswählen IO-Link (IODD) auswählen
- Bei Textsuche den Gerätenamen eingeben

https://ioddfinder.io-link.com/

Suche nach

- Hersteller
- Artikelnummer
- Produkt-Typ

Vor-Ort-Bedienung

Am Gerät direkt sind keine Bedienelemente vorhanden. Der Temperaturtransmitter wird über Fernbedienung konfiguriert.

Vor-Ort-Anzeige

Am Gerät direkt sind keine Anzeigeelemente vorhanden. Über IO-Link kann z. B. die Messwertanzeige und Diagnosemeldungen aufgerufen werden.

Fernbedienung

IO-Link-Funktionen und gerätespezifische Parameter werden über die IO-Link-Kommunikation des Gerätes konfiguriert.

Es gibt spezielle Konfigurationssets, z. B. den FieldPort SFP20. Damit kann jedes IO-Link-Gerät konfiguriert werden.

Typischerweise werden IO-Link-Geräte über das Automatisierungssystem konfiguriert (z. B. Siemens TIA Portal + Port Configuration Tool). Parameter für den Gerätetausch können im IO-Link-Master hinterlegt werden.

14.10 Zertifikate und Zulassungen

Aktuelle Zertifikate und Zulassungen zum Produkt stehen unter www.endress.com auf der jeweiligen Produktseite zur Verfügung:

- 1. Produkt mit Hilfe der Filter und Suchmaske auswählen.
- 2. Produktseite öffnen.
- 3. **Downloads** auswählen.

MTBF

Für den Messumformer: 327 Jahre - nach Siemens-Standard SN29500

Hygiene-Standard

- EHEDG Zertifikat Typ EL Class I. EHEDG-zertifizierte/getestete Prozessanschlüsse.

 → 🖺 56
- 3-A Zertifikat Autorisierungs-Nr. 1144, 3-A Sanitary Standard 74-07. Gelistete Prozess-anschlüsse. → 🖺 56
- ASME BPE (letzte Ausgabe), Konformitätserklärung bestellbar für ausgewiesene Optionen
- FDA-konform
- Alle mediumsberührenden Oberflächen sind frei von Materialen, die von Rindern oder anderen Tieren stammen (ADI/TSE)

Lebensmittel-/produktberührende Materialien (FCM)

Die prozessberührenden Teile (FCM) entsprechen folgenden Europäischen Verordnungen:

- Verordnung (EG) Nr. 1935/2004 über Materialien und Gegenstände, die dazu bestimmt sind, mit Lebensmitteln in Berührung zu kommen, Artikel 3, Absatz 1, Art. 5 und 17.
- Verordnung (EG) Nr. 2023/2006 über die gute Herstellungspraxis für Materialien und Gegenstände, die dazu bestimmt sind, mit Lebensmitteln in Berührung zu kommen.
- Verordnung (EU) Nr. 10/2011 über Materialien und Gegenstände aus Kunststoff, die dazu bestimmt sind, mit Lebensmitteln in Berührung zu kommen.

CRN-Zulassung

Die CRN-Zulassung steht nur für bestimmte Schutzrohrausführungen zur Verfügung. Diese werden während der Konfiguration des Gerätes entsprechend gekennzeichnet und angezeigt.

Ausführliche Bestellinformationen sind bei der nächstgelegenen Vertriebsorganisation www.addresses.endress.com oder im Download-Bereich unter www.endress.com verfügbar:

- 1. Land auswählen
- 2. Downloads auswählen
- 3. Suchbereich: Zulassungen/Zulassungstyp auswählen
- 4. Produktcode oder Gerät eingeben
- 5. Suche starten

Oberflächenreinheit

Gereinigt von Öl-/Fett für O₂-Anwendungen, optional

Materialbeständigkeit

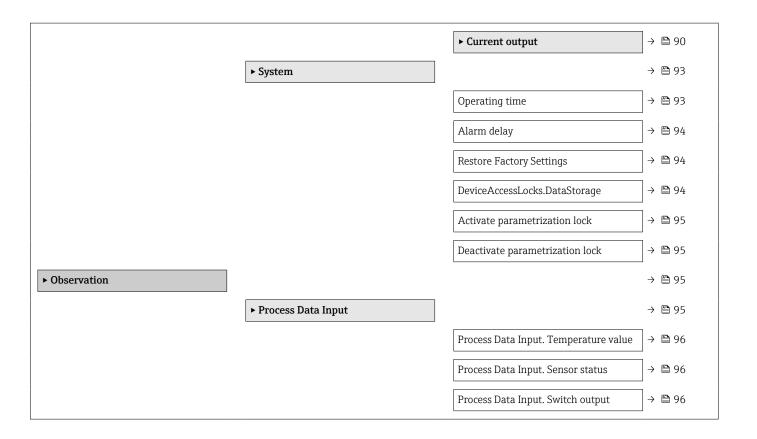
Materialbeständigkeit - inklusive Gehäuse - gegenüber folgenden Reinigungs-/Desinfektionsmitteln der Firma Ecolab:

- P3-topax 66
- P3-topactive 200
- P3-topactive 500
- P3-topactive OKTO
- Sowie demineralisiertem Wasser

15 Übersicht Bedienmenü IO-Link

In den folgenden Tabellen sind alle Parameter aufgeführt, die das Bedienmenü enthält.

Abhängig von der Parametrierung sind nicht alle Untermenüs und Parameter in jedem Gerät verfügbar.


Bedienkonzept

Dem IODD-Bedienmenü liegt ein Bedienkonzept mit unterschiedlichen Nutzerrollen zugrunde.

Nutzerrolle	Bedeutung
Operator	Der Bediener hat Leserechte auf eine eingeschränkte Auswahl von Parametern, die er während des Betriebs benötigt.
Maintenance	Der Instandhalter hat Lese- und Schreibrechte auf eine eingeschränkte Auswahl von Parametern, die er für die Instandhaltung des Geräts benötigt.
Specialist	Der Experte hat Lese- und Schreibrechte auf alle Parameter des Geräts.

► Identification			→ 🖺 68
	Application Specific Tag		→ 🖺 69
	Product Name		→ 🖺 69
	Product Text		→ 🖺 69
	Vendor Name		→ 🖺 70
	Serial Number		→ 🖺 70
	Firmware Version		→ 🖺 70
	Hardware Version		→ 🖺 71
	Order code		→ 🖺 71
	Extended order code		→ 🖺 71
	Device type		→ 🖺 72
► Diagnosis			→ 🖺 72
	► Diagnostic list		→ 🖺 72
		Actual diagnostics 1	→ 🖺 73
		Actual diagnostics 2	→ 🖺 73
		Actual diagnostics 3	 → 1 73
	► Event logbook		→ 🖺 73
		Previous diagnostics 1 5	→ 🖺 74
		Timestamp 1 5	→ 🖺 74
	► Simulation		→ 🖺 74
		Current output simulation	→ 🖺 74

		Value current output	→ 🖺 75
]
		Sensor simulation] → 🖺 75
		Sensor simulation value	→ 🖺 76
		Switch output Simulation	→ 🖺 76
	► Sensor temperature		→ 🖺 77
		Sensor max value	→ 🖺 77
		Sensor min value	→ 🗎 78
		Reset sensor min/max values] → 🖺 78
		Lower boundary operating time sensor	→ 🖺 78
		Lower extended operating time sensor] → 🖺 79
		Standard operating time sensor	→ 🖺 79
		Upper extended operating time sensor] → 🖺 79
		Upper boundary operating time sensor] → 🖺 80
	► Device temperature		→ 🖺 80
		Device temperature	→ 🖺 81
		Device temperature max] → 🖺 81
		Device temperature min] → 🖺 81
		Reset device temp. min/max values] → 🖺 82
		Lower boundary operating time device] → 🖺 82
		Lower extended operating time device] → 🖺 82
		Standard operating time device	→ 🖺 83
		Upper extended operating time device	→ 🖺 83
		Upper boundary operating time device] → 🖺 83
	► Measuring data channel		→ 🖺 84
		MDC Descriptor.Lower limit] → 🖺 84
		MDC Descriptor.Upper limit	→ 🖺 84
		MDC Descriptor.Unit code	→ 🖺 85
		MDC Descriptor.Scale) → 🖺 85
► Parameter			→ 🖺 85
	► Application		→ 🖺 86
		► Sensor] → 🖺 86
		► Switch output	→ 🖺 87

15.1 Beschreibung der Geräteparameter

Identification

15.1.1 Identification

Navigation

► Identification Application Specific Tag → 🖺 69 Product Name → 🖺 69 Product Text → 🖺 69 → 🖺 70 Vendor Name → 🖺 70 Serial Number Firmware Version → 🖺 70 Hardware Version → 🖺 71 → 🗎 71 Order code → 🖺 71 Extended order code → 🖺 72 Device type

Application Specific Tag

Navigation ☐ Identification → Application Specific Tag

Beschreibung Eingabe einer eindeutigen Bezeichnung für die Messstelle, um sie innerhalb der Anlage

schnell identifizieren zu können.

Einqabe max. 32 alphanumerische Zeichen

Werkseinstellung gemäß Bestellangaben

Zusätzliche Information *Nutzerrolle*

OperatorMaintenanceSpecialist

Product Name

Navigation ☐ Identification → Product Name

Beschreibung Anzeige des Produktnamens

Anzeige iTHERM CompactLine TM311

Zusätzliche Information Nutzerrolle

OperatorMaintenanceSpecialist

Navigation \square Identification \rightarrow Product Text

Beschreibung Anzeige des Produkttextes

Anzeige Compact thermometer

Zusätzliche Information Nutzerrolle

OperatorMaintenanceSpecialist

Vendor Name Navigation Identification → Vendor Name Beschreibung Anzeige des Herstellernamens Endress+Hauser **Anzeige Zusätzliche Information** Nutzerrolle Operator Maintenance Specialist Serial Number Identification → Serial Number Navigation Beschreibung Anzeige der Seriennummer des Geräts. Sie befindet sich auch auf dem Typenschild. Um gezielt Informationen zum Messgerät mithilfe des Device Viewer zu erhalten: www.endress.com/deviceviewer Anzeige Zeichenfolge aus Zahlen, Buchstaben und Sonderzeichen Zusätzliche Information Nutzerrolle Operator Maintenance Specialist Firmware Version Navigation Identification → Firmware Version Beschreibung Anzeige der Firmware-Version **Anzeige** Zeichenfolge aus Zahlen, Buchstaben und Sonderzeichen Zusätzliche Information Nutzerrolle Operator Maintenance Specialist

Hardware Version

Navigation ☐ Identification → Hardware Version

Beschreibung Anzeige der Hardware-Version

Anzeige Zeichenfolge aus Zahlen, Buchstaben und Sonderzeichen

Zusätzliche Information Nutzerrolle

OperatorMaintenanceSpecialist

Order code

Navigation \square Identification \rightarrow Order code

Beschreibung Anzeige des Bestellcodes

Anzeige Zeichenfolge aus Zahlen, Buchstaben und Sonderzeichen

Zusätzliche Information *Nutzerrolle*

OperatorMaintenanceSpecialist

Extended order code

Navigation \square Identification \rightarrow Extended order code

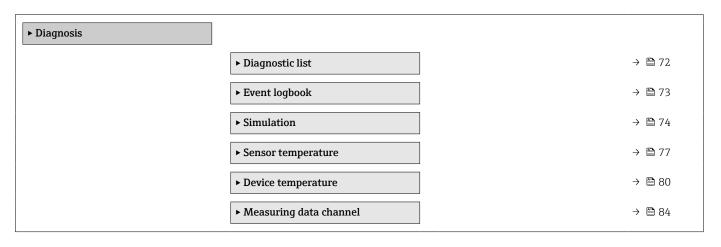
Beschreibung Anzeige des erweiterten Bestellcodes.

Der Bestellcode gibt für das Gerät die Ausprägung aller Merkmale der Produktstruktur an.

Anzeige Zeichenfolge aus Zahlen, Buchstaben und Sonderzeichen

Zusätzliche Information Nutzerrolle

OperatorMaintenanceSpecialist


Device typeNavigationIdentification \rightarrow Device typeBeschreibungAnzeige des Geräte-TypsAnzeige $37\,887\ (0x93FF)$ Zusätzliche InformationNutzerrolle

OperatorMaintenanceSpecialist

15.1.2 Diagnosis

Navigation

Diagnosis

Diagnostic list

Navigation \Box Diagnosis \rightarrow Diagnostic list

► Diagnostic list		
	Actual diagnostics 1	→ 🖺 73
	Actual diagnostics 2	→ 🖺 73
	Actual diagnostics 3	→ 🖺 73

Actual diagnostics 1 Navigation Diagnosis \rightarrow Diagnostic list \rightarrow Actual diagnostics 1 Beschreibung Anzeige der momentan aktiven Diagnosemeldung mit der höchsten Priorität. Zusätzliche Information Nutzerrolle Operator Maintenance ■ Specialist Actual diagnostics 2 **Navigation** Diagnosis → Diagnostic list → Actual diagnostics 2 Beschreibung Anzeige der momentan aktiven Diagnosemeldung mit der zweithöchsten Priorität. Zusätzliche Information Nutzerrolle Operator Maintenance ■ Specialist Actual diagnositcs 3 Navigation Diagnosis → Diagnostic list → Actual diagnosites 3 Beschreibung Anzeige der momentan aktiven Diagnosemeldung mit der dritthöchsten Priorität. Zusätzliche Information Nutzerrolle Operator Maintenance ■ Specialist Event logbook Navigation □ Diagnosis → Event logbook ► Event logbook Previous diagnostics 1 ... 5 → 🖺 74 Timestamp 1 ... 5 → 🖺 74

Previous diagnostics 1 ... 5 Navigation Diagnosis → Event logbook → Previous diagnostics 1 ... 5 Beschreibung Anzeige der in der Vergangenheit aufgetretenen Diagnosemeldungen (in chronologischer Reihenfolge). Zusätzliche Information Nutzerrolle Specialist Timestamp 1 ... 5 Navigation Diagnosis \rightarrow Event logbook \rightarrow Timestamp 1 ... 5 Beschreibung Anzeige des Zeitpunkts des Betriebsstundenzählers der letzten Diagnosemeldung. Zusätzliche Information Nutzerrolle Specialist Simulation Diagnosis → Simulation Navigation ► Simulation Current output simulation → 🖺 74 Value current output → 🖺 75 Sensor simulation → 🖺 75 Sensor simulation value → 🖺 76 Switch output Simulation → 🗎 76 **Current output simulation Navigation** Diagnosis → Simulation → Current output simulation Beschreibung Auswahl zum Ein- und Ausschalten der Simulation des Stromausgangs. Auswahl Off ■ On

Werkseinstellung

Off

Zusätzliche Information

Beschreibung

Wenn eine Simulation aktiviert ist, wird eine entsprechende Warnung über IO-Link kommuniziert (C491 - Simulation Ausgang). Die Simulation muss aktiv über das Bedienmenü beendet werden. Wenn das Gerät während der Simulation von der Spannung abgeklemmt und danach wieder mit Strom versorgt wird, bleibt der Simulationsmodus weiterhin aktiviert. Wenn das Gerät ein zweites Mal von der Spannung abgeklemmt und danach wieder versorgt wird, arbeitet das Gerät wieder im Normalbetrieb weiter.

Nutzerrolle

- Operator
- Maintenance
- Specialist

Value current output

Navigation \square Diagnosis \rightarrow Simulation \rightarrow Value current output

Beschreibung Eingabe eines Stromwerts für die Simulation. Auf diese Weise lässt sich die korrekte Jus-

tierung des Stromausgangs und die korrekte Funktion nachgeschalteter Auswertegeräte

prüfen.

Eingabe 3,58 ... 23 mA

Zusätzliche Information Nu

Nutzerrolle

- Operator
- Maintenance
- Specialist

Sensor simulation

Navigation \square Diagnosis \rightarrow Simulation \rightarrow Sensor simulation

Beschreibung Auswahl, um die Simulation der Prozessgröße zu aktivieren.

Auswahl ■ Off

On

Werkseinstellung Off

Beschreibung

Wenn eine Simulation aktiviert ist, wird eine entsprechende Warnung über IO-Link kommuniziert (C485 - Simulation Prozessgröße). Die Simulation muss aktiv über das Bedienmenü beendet werden. Wenn das Gerät während der Simulation von der Spannung abgeklemmt und danach wieder mit Strom versorgt wird, bleibt der Simulationsmodus weiterhin aktiviert. Wenn das Gerät ein zweites Mal von der Spannung abgeklemmt und danach wieder versorgt wird, arbeitet das Gerät wieder im Normalbetrieb weiter.

Nutzerrolle

- Operator
- Maintenance
- Specialist

Sensor	simul	lation	value
2611201	Simu	auon	varue

Navigation \square Diagnosis \rightarrow Simulation \rightarrow Sensor simulation value

BeschreibungEingabe eines Simulationswerts der Prozessgröße. Die nachgelagerte Messwertbearbei-

tung sowie der Signalausgang folgen diesem Wert. Auf diese Weise lässt sich die korrekte

Parametrierung des Messgeräts prüfen.

Eingabe −50 ... +200 °C

Zusätzliche Information Nutze

Nutzerrolle

- Operator
- Maintenance
- Specialist

Switch output simulation

Navigation \square Diagnosis \rightarrow Simulation \rightarrow Switch output simulation

Beschreibung Auswahl, um die Simulation des Schaltausgangs zu aktivieren und einzustellen.

Auswahl • Disabled

Off

On

Werkseinstellung Disabled

Beschreibung

Wenn eine Simulation aktiviert ist, wird eine entsprechende Warnung über IO-Link kommuniziert (C494 - Simulation Schaltausgang). Die Simulation muss aktiv über das Bedienmenü beendet werden. Wenn das Gerät während der Simulation von der Spannung abgeklemmt und danach wieder mit Strom versorgt wird, bleibt der Simulationsmodus weiterhin aktiviert. Wenn das Gerät ein zweites Mal von der Spannung abgeklemmt und danach wieder versorgt wird, arbeitet das Gerät wieder im Normalbetrieb weiter.

Nutzerrolle

- Operator
- Maintenance
- Specialist

Sensor temperature

Navigation $\blacksquare \Box$ Diagnosis \rightarrow Sensor temperature

► Sensor temperature		
33333 333 2 333	Sensor max value	→ 🖺 77
	Sensor min value	→ 🖺 78
	Reset sensor min/max values	→ 🖺 78
	Lower boundary operating time sensor	→ 🖺 78
	Lower extended operating time sensor	→ 🖺 79
	Standard operating time sensor	→ 🖺 79
	Upper extended operating time sensor	→ 🖺 79
	Upper boundary operating time sensor	→ 🖺 80

Sensor max value Navigation □ Diagnosis → Sensor temperature → Sensor max value Beschreibung Anzeige der maximalen in der Vergangenheit gemessenen Temperatur am Sensoreingang (Schleppzeiger). Zusätzliche Information Nutzerrolle

- Operator
- Maintenance
- Specialist

Sensor min value

Navigation

Diagnosis → Sensor temperature → Sensor min value

Beschreibung

Anzeige der minimalen in der Vergangenheit gemessenen Temperatur am Sensoreingang

(Schleppzeiger).

Zusätzliche Information

Nutzerrolle

- Operator
- Maintenance
- Specialist

Reset sensor min/max values

Navigation

Diagnosis → Sensor temperature → Reset sensor min/max values

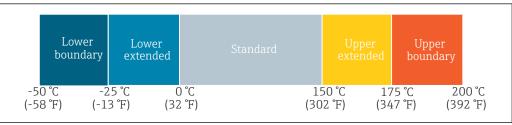
Beschreibung

Zurücksetzen des niedrigsten und höchsten gemessenen Temperaturwertes am Sensor (Zurücksetzen der Schleppzeiger für Sensortemperatur).

Zusätzliche Information

Nutzerrolle

- Operator
- Maintenance
- Specialist


Lower boundary operating time sensor

Navigation

Diagnosis \rightarrow Sensor temperature \rightarrow Lower boundary operating time sensor

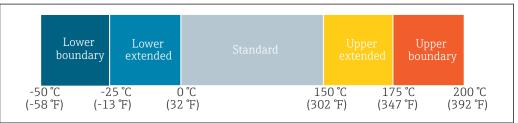
Beschreibung

Anzeige der Betriebszeit des Sensors im unteren Prozesstemperatur-Grenzbereich (Lower boundary).

Zusätzliche Information

Nutzerrolle

Specialist


Lower extended operating time sensor

Navigation

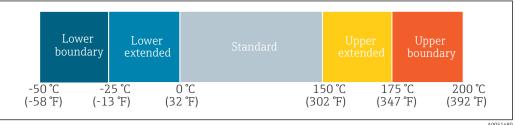
Diagnosis \rightarrow Sensor temperature \rightarrow Lower extended operating time sensor

Beschreibung

Anzeige der Betriebszeit des Sensors im unteren Prozesstemperatur-Bereich (Lower extended).

Zusätzliche Information

Nutzerrolle Specialist


Standard operating time sensor

Navigation

Diagnosis → Sensor temperature → Standard operating time sensor

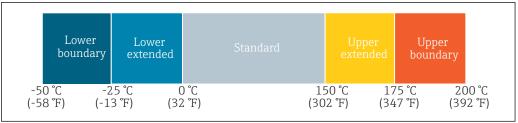
Beschreibung

Anzeige der Betriebszeit des Sensors im normalen Prozesstemperatur-Bereich (Standard).

A0051480

Zusätzliche Information

Nutzerrolle **Specialist**


Upper extended operating time sensor

Navigation

Diagnosis → Sensor temperature → Upper extended operating time sensor

Beschreibung

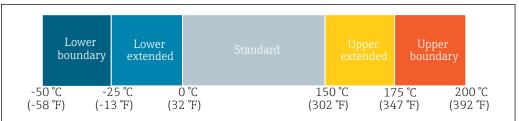
Anzeige der Betriebszeit des Sensors im oberen Prozesstemperatur-Bereich (Upper extended).

10051480

Zusätzliche Information

Nutzerrolle

Specialist


Upper boundary operating time sensor

Navigation

□ Diagnosis → Sensor temperature → Upper boundary operating time sensor

Beschreibung

Anzeige der Betriebszeit des Sensors im oberen Prozesstemperatur-Grenzbereich (Upper boundary).

A0051480

Zusätzliche Information

Nutzerrolle

Specialist

Device temperature

Navigation \square Diagnosis \rightarrow Device temperature

Device temperature

Device temperature

Device temperature max

Device temperature max

Device temperature min

Reset device temp. min/max values

Lower boundary operating time device

Lower extended operating time device

Standard operating time device

⇒ ≅ 82

Standard operating time device

⇒ ≅ 83

Upper extended operating time device	→ 🖺 83
Upper boundary operating time device	→ 🖺 83

Device temperature		
Navigation	□ Diagnosis → Device temperature → Device temperature	
Beschreibung	Anzeige der aktuellen Gerätetemperatur (Elektronik).	
Zusätzliche Information	NutzerrolleOperatorMaintenanceSpecialist	

Device temperature max	
Navigation	☐ Diagnosis → Device temperature → Device temperature max
Beschreibung	Anzeige der maximalen in der Vergangenheit gemessenen Gerätetemperatur (Schleppzeiger).
Zusätzliche Information	Nutzerrolle Operator Maintenance Specialist

Device temperature min	
Navigation	
Beschreibung	Anzeige der minimalen in der Vergangenheit gemessenen Gerätetemperatur (Schleppzeiger).
Zusätzliche Information	Nutzerrolle ■ Operator ■ Maintenance ■ Specialist

Reset device temp. min/max values

Navigation

Diagnosis → Device temperature → Reset device temp. min/max values

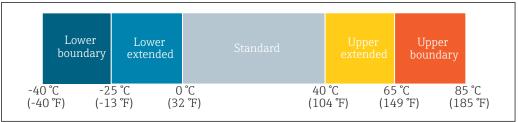
Beschreibung

Zurücksetzen der niedrigsten und höchsten gemessenen Gerätetemperatur (Zurücksetzen der Schleppzeiger für Gerätetemperatur).

Zusätzliche Information

Nutzerrolle

- Operator
- Maintenance
- Specialist


Lower boundary operating time device

Navigation

Diagnosis → Device temperature → Lower boundary operating time device

Beschreibung

Anzeige der Betriebszeit des Geräts im unteren Umgebungstemperatur-Grenzbereich Lower boundary).

Zusätzliche Information

Nutzerrolle Specialist

Lower extended operating time device

Navigation

Diagnosis → Device temperature → Lower extended operating time device

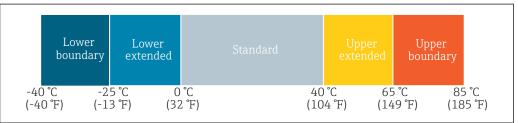
Beschreibung

Anzeige der Betriebszeit des Geräts im unteren Umgebungstemperatur-Bereich (Lower extended).

Zusätzliche Information

Nutzerrolle

Specialist


Standard operating time device

Navigation

□ Diagnosis → Device temperature → Standard operating time device

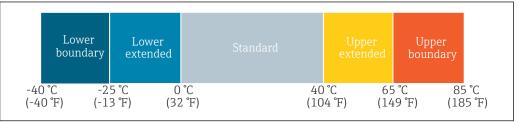
Beschreibung

Anzeige der Betriebszeit des Geräts im normalen Umgebungstemperatur-Bereich (Standard).

A0040333

Zusätzliche Information

Nutzerrolle Specialist


Upper extended operating time device

Navigation

□ Diagnosis → Device temperature → Upper extended operating time device

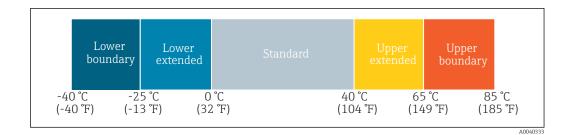
Beschreibung

Anzeige der Betriebszeit des Geräts im oberen Umgebungstemperatur-Bereich (Upper extended).

A0040333

Zusätzliche Information

Nutzerrolle Specialist


Upper boundary operating time device

Navigation

 \square Diagnosis \rightarrow Device temperature \rightarrow Upper boundary operating time device

Beschreibung

Anzeige der Betriebszeit des Geräts im oberen Umgebungstemperatur-Grenzbereich (Upper boundary).

Nutzerrolle

Specialist

Measuring data channel

► Measuring data channel		
	MDC Descriptor.Lower limit	→ 🖺 84
	MDC Descriptor.Upper limit	→ 🖺 84
	MDC Descriptor.Unit code	→ 🖺 85
	MDC Descriptor.Scale	→ 🖺 85

MDC Descriptor.Lower limit

Navigation \square Diagnosis \rightarrow Measuring data channel \rightarrow MDC Descriptor.Lower limit

Beschreibung Anzeige des unteren Werts des Messbereichs.

Gemäß Smart Sensor Profile 2nd Edition.

Zusätzliche Information Nutzerrolle

- Operator
- Maintenance
- Specialist

MDC Descriptor.Upper limit

Navigation \square Diagnosis \rightarrow Measuring data channel \rightarrow MDC Descriptor.Upper limit

Beschreibung Anzeige des oberen Werts des Messbereichs.

Gemäß Smart Sensor Profile 2nd Edition.

84

Nutzerrolle

- Operator
- Maintenance
- Specialist

MDC Descriptor.Unit code

Navigation \square Diagnosis \rightarrow Measuring data channel \rightarrow MDC Descriptor.Unit code

Beschreibung Anzeige des Unitcodes für die Einheit gemäß IO-Link.

Gemäß Smart Sensor Profile 2nd Edition.

Zusätzliche Information *Nutzerrolle*

- Operator
- Maintenance
- Specialist

MDC Descriptor.Scale

Navigation \square Diagnosis \rightarrow Measuring data channel \rightarrow MDC Descriptor. Scale

Beschreibung Anzeige der Skalierung des Messwerts (10^{scale}).

Gemäß Smart Sensor Profile 2nd Edition.

Zusätzliche Information

Nutzerrolle

- Operator
- Maintenance
- Specialist

15.1.3 Parameter

Navigation

Parameter

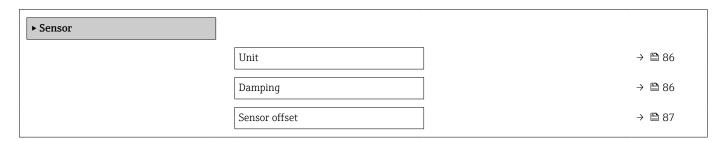
► Parameter

 $\blacktriangleright \ Application$

→ 🖺 86

▶ System

→ 🖺 93


Application

Navigation \square Parameter \rightarrow Application

► Application		
	► Sensor	→ 🖺 86
	► Switch output	→ 🖺 93
	► Current output	→ 🖺 93

Sensor

Navigation \square Parameter \rightarrow Application \rightarrow Sensor

Unit

Navigation \square Parameter \rightarrow Application \rightarrow Sensor \rightarrow Unit

Beschreibung Auswahl der Maßeinheit für alle Messwerte und Parameter.

■ K

Werkseinstellung °C

Zusätzliche Information Nutzerrolle

Operator

Maintenance

■ Specialist

Damping

Navigation \square Parameter \rightarrow Application \rightarrow Sensor \rightarrow Damping

Beschreibung Eingabe der Zeitkonstante für die Dämpfung des Messwerts.

Eingabe 0 ... 120 s

Werkseinstellung	0 s
------------------	-----

Zusätzliche Information *Nutzerrolle*

OperatorMaintenanceSpecialist

Sensor offset

Navigation \square Parameter \rightarrow Application \rightarrow Sensor \rightarrow Sensor offset

Beschreibung Eingabe der Nullpunktkorrektur (Offset) des Sensormesswerts. Der angegebene Wert wird

zum Messwert addiert.

Eingabe $-10 ... +10 \,^{\circ}\text{C} (14 ... 50 \,^{\circ}\text{F})$

Werkseinstellung 0 °C

Zusätzliche Information *Nutzerrolle*

OperatorMaintenanceSpecialist

Switch output

Navigation \square Parameter \rightarrow Application \rightarrow Switch output

► Switch output		
	Operating mode	→ 🖺 87
	Switch point value	→ 🖺 89
	Switchback point value	→ 🖺 89
	Switch delay	→ 🖺 90
	Switchback delay	→ 🖺 90

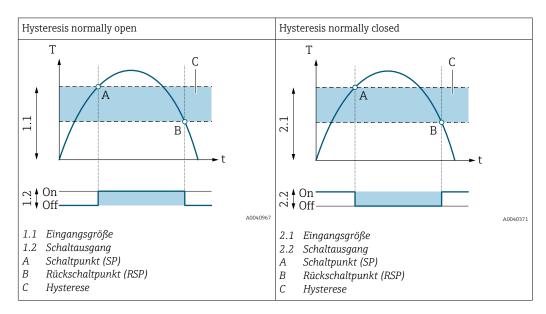
Operating mode

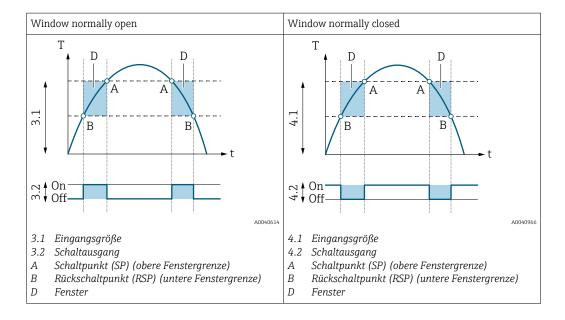
Navigation Parameter \rightarrow Application \rightarrow Switch output \rightarrow Operating mode

Beschreibung Auswahl des Schaltausgangs.

Auswahl

- Hysteresis normally open
- Hysteresis normally closed
- Window normally open
- Window normally closed
- Off


Werkseinstellung


Hysteresis normally open (oder gemäß Bestellangaben)

Zusätzliche Information

Auswahl

- Hysteresis normally open
 Der Schaltausgang wird als Schließer mit Hystereseeigenschaft festgelegt (mittels SP und RSP).
- Hysteresis normally closed
 Der Schaltausgang wird als Öffner mit Hystereseeigenschaft festgelegt (mittels SP und RSP).
- Window normally open Der Schaltausgang wird als Schließer mit Fenstereigenschaft festgelegt (mittels SP und RSP).
- Window normally closed Der Schaltausgang wird als Öffner mit Fenstereigenschaft festgelegt (mittels SP und RSP).
- Off
 Die Schalterfunktion ist nicht aktiv.

Nutzerrolle

- Operator
- Maintenance
- Specialist

C1-		1
Switch	noint	valile
O III LCLL	POLLE	·uzuc

Navigation \square Parameter \rightarrow Application \rightarrow Switch output \rightarrow Switch point value

Beschreibung Eingabe des Schaltpunkts (SP) für die Hysterese/oberer Wert für die Fensterfunktion. Der

eingegebene Wert muss größer sein als der Rückschaltpunkt (RSP).

Eingabe Gleitkommazahl mit Vorzeichen

Werkseinstellung 100 °C

Zusätzliche Information Nutzerrolle

- Operator
- Maintenance
- Specialist

Switchback point value

Navigation \square Parameter \rightarrow Application \rightarrow Switch output \rightarrow Switchback point value

Beschreibung Eingabe des Rückschaltpunkts (RSP) für die Hysterese/unterer Schaltpunkt für die Fensterfunktion. Der eingegebene Wert muss kleiner sein als der Schaltpunkt (SP).

Nutzerrolle

- Operator
- Maintenance
- Specialist

Switch delay

Navigation \square Parameter \rightarrow Application \rightarrow Switch output \rightarrow Switch delay

Beschreibung Eingabe einer Verzögerungszeit, um das Schalten bei Werten um den Schaltpunkt (SP) zu

verhindern. Wenn der Messwert den Schaltbereich während der Verzögerungszeit ver-

lässt, dann startet die Verzögerungszeit erneut.

Eingabe 0 ... 99 s

Werkseinstellung 0 s

Zusätzliche Information Nutzerrolle

Operator

Maintenance

■ Specialist

Switchback delay

Navigation \square Parameter \rightarrow Application \rightarrow Switch output \rightarrow Switchback delay

Beschreibung Eingabe einer Verzögerungszeit, um das Schalten bei Werten um den Rückschaltpunkt

(RSP) zu verhindern. Wenn der Messwert den Schaltbereich während der Verzögerungs-

zeit verlässt, dann startet die Verzögerungszeit erneut.

Eingabe 0 ... 99 s

Werkseinstellung 0 s

Zusätzliche Information Nutzerrolle

Operator

Maintenance

Specialist

Current output

Navigation \square Parameter \rightarrow Application \rightarrow Current output

► Current output

4 mA value	→ 🖺 91
20 mA value	→ 🗎 91
Current trimming 4 mA	→ 🖺 92
Current trimming 20 mA	→ 🖺 92
Failure mode	→ 🖺 92
Failure current	→ 🖺 93

4 mA value

Navigation Parameter \rightarrow Application \rightarrow Current output \rightarrow 4 mA value

Beschreibung Eingabe des Temperaturwerts, der dem 4 mA-Wert entsprechen soll. Eine Invertierung des

Stromausgangs ist möglich durch den Austausch der Zuordnung des Messbereichsan-

fangs/-endes.

Die Spanne zwischen 4 mA-Wert und 20 mA-Wert muss mindestens 10 K betragen.

= 50 000 ... +50 000 °C (−89 968 ... +90 032 °F)

Werkseinstellung 0 °C

Zusätzliche Information *Nutzerrolle*

Operator

Maintenance

■ Specialist

20 mA value

Navigation Parameter \rightarrow Application \rightarrow Current output \rightarrow 20 mA value

Beschreibung Eingabe des Temperaturwerts, der dem 20 mA-Wert entsprechen soll. Eine Invertierung

des Stromausgangs ist möglich durch den Austausch der Zuordnung des Messbereichsan-

fangs/-endes.

Pie Spanne zwischen 4 mA-Wert und 20 mA-Wert muss mindestens 10 K betragen.

Eingabe −50 000 ... +50 000 °C (−89 968 ... +90 032 °F)

Werkseinstellung 150 °C

Zusätzliche Information Nutzerrolle

Operator

Maintenance

ullet Specialist

Current trimming 4 mA

Navigation \square Parameter \rightarrow Application \rightarrow Current output \rightarrow Current trimming 4 mA

Beschreibung Eingabe des Korrekturwerts für den Stromausgang am Messbereichsanfang bei 4 mA.

Eingabe 3,85 ... 4,15 mA

Werkseinstellung 4,00 mA

Zusätzliche Information Nutzerrolle

OperatorMaintenanceSpecialist

Current trimming 20 mA

Navigation Parameter \rightarrow Application \rightarrow Current output \rightarrow Current trimming 20 mA

Beschreibung Eingabe des Korrekturwerts für den Stromausgang am Messbereichsende bei 20 mA.

Eingabe 19,85 ... 20,15 mA

Werkseinstellung 20,00 mA

Zusätzliche Information Nutzerrolle

OperatorMaintenanceSpecialist

Failure mode

Navigation Parameter \rightarrow Application \rightarrow Current output \rightarrow Failure mode

Beschreibung Auswahl des Ausfallsignalpegels, den der Stromausgang im Fehlerfall ausgibt.

Auswahl ■ 0 (Low alarm)

■ 2 (High alarm)

Werkseinstellung 0

Zusätzliche Information *Nutzerrolle*

- Operator
- Maintenance
- Specialist

Failure current

Navigation \square Parameter \rightarrow Application \rightarrow Current output \rightarrow Failure current

Beschreibung Eingabe des Stromwerts für High alarm, den der Stromausgang im Störungsfall ausgibt.

Eingabe 21,50 ... 23,00 mA

Werkseinstellung 22,5 mA

Zusätzliche Information Nutzerrolle

- Operator
- Maintenance
- Specialist

System

Navigation \square Parameter \rightarrow System

► System		
	Operating time	→ 🖺 93
	Alarm delay	→ 🖺 94
	Restore Factory Settings	→ 🖺 94
	DeviceAccessLocks.DataStorage	→ 🖺 94
	Activate parametrization lock	→ 🖺 95
	Deactivate parametrization lock	→ 🖺 95

Operating time	
Navigation	□ Parameter → System → Operating time
Beschreibung	Anzeige der Zeitdauer in Stunden (h), die das Gerät bis zum jetzigen Zeitpunkt in Betrieb ist.
Zusätzliche Information	NutzerrolleOperatorMaintenanceSpecialist

Alarm delay

Navigation \square Parameter \rightarrow System \rightarrow Alarm delay

Beschreibung Eingabe der Verzögerungzeit, um die ein Diagnosesignal unterdrückt wird, bevor eine Feh-

lermeldung ausgegeben wird.

Eingabe 0 ... 255 s

Werkseinstellung 0 s

Zusätzliche Information *Nutzerrolle*

OperatorMaintenanceSpecialist

Restore Factory Settings

Navigation □ Parameter → System → Restore Factory Settings

Beschreibung Zurücksetzen der gesamten Gerätekonfiguration auf den Auslieferungszustand.

Zusätzliche Information Nutzerrolle

Operator

Maintenance

Specialist

DeviceAccessLocks.DataStorage

Navigation \square Parameter \rightarrow System \rightarrow DeviceAccessLocks.DataStorage

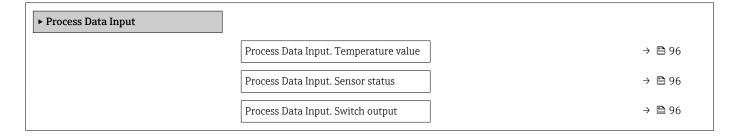
Beschreibung Auswahl zur Verriegelung des Data Storage. Standardfunktion von IO-Link.

Auswahl • Unlocked

Locked

Werkseinstellung Unlocked

Zusätzliche Information Nutzerrolle


Operator

Maintenance

Specialist

Activate parametrization lock Navigation Parameter → System → Activate parametrization lock Beschreibung Eingabe zur Verriegelung der Parametereinstellungen des Geräts. Zusätzliche Information Nutzerrolle Maintenance ■ Specialist Deactivate parametrization lock Parameter → System → Deactivate parametrization lock Navigation Beschreibung Eingabe zur Entriegelung der Parametereinstellungen des Geräts. Zusätzliche Information Nutzerrolle Maintenance ■ Specialist Observation 15.1.4 Observation Navigation ► Observation ▶ Process Data Input → 🖺 95 **Process Data Input**

Navigation ☐ Observation → Process Data Input

Process Data Input. Temperature value

Navigation riangle Observation riangle Process Data Input. Temperature value

Beschreibung Anzeige des aktuell gemessenen Temperaturwerts.

Zusätzliche Information *Nutzerrolle*

OperatorMaintenanceSpecialist

Process Data Input. Sensor status

Navigation □ Observation → Process Data Input → Process Data Input. Sensor status

Beschreibung Anzeige des aktuellen Sensorstatus.

Zusätzliche Information *Nutzerrolle*

OperatorMaintenanceSpecialist

Process Data Input. Switch output

Navigation \square Observation \rightarrow Process Data Input \rightarrow Process Data Input. Switch output

Beschreibung Anzeige des aktuellen Schaltzustands.

Anzeige ■ 0 (Off)

■ 1 (On)

Zusätzliche Information Nutzerrolle

Operator

Maintenance

Specialist

www.addresses.endress.com