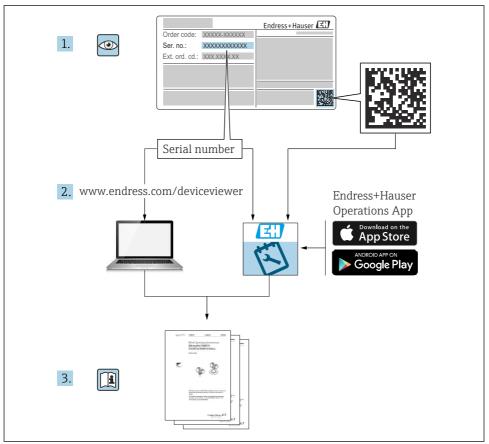
Краткое руководство по эксплуатации **Cerabar PMC51B**

Измерение рабочего давления Аналоговый сигнал 4-20 мА


Настоящее краткое руководство по эксплуатации не заменяет собой руководство по эксплуатации прибора. Подробные сведения содержатся в руководстве по эксплуатации и дополнительной документации.

Доступно для всех версий устройства посредством:

- интернет: www.endress.com/deviceviewer:
- смартфон/планшет: приложение Operations or Endress+Hauser.

1 Сопутствующая документация

A0023555

2 Информация о настоящем документе

2.1 Назначение документа

В кратком руководстве по эксплуатации содержится наиболее важная информация от приемки оборудования до его ввода в эксплуатацию.

2.2 Символы

2.2.1 Предупреждающие символы

№ ОПАСНО

Данный символ предупреждает об опасной ситуации. Если допустить данную ситуацию, она приведет к тяжелой или смертельной травме.

№ ОСТОРОЖНО

Данный символ предупреждает о потенциально опасной ситуации. Если допустить данную ситуацию, она может привести к тяжелой или смертельной травме.

№ ВНИМАНИЕ

Данный символ предупреждает о потенциально опасной ситуации. Если допустить данную ситуацию, она может привести к травме легкой или средней степени тяжести.

УВЕДОМЛЕНИЕ

Данный символ предупреждает о потенциально опасной ситуации. Если допустить данную ситуацию, она может привести к повреждению изделия или предметов, находящихся рядом с ним.

2.2.2 Электротехнические символы

Заземление: 🖶

Клемма для подключения к системе заземления.

2.2.3 Символы для различных типов информации

Разрешено: 🗸

Разрешенные процедуры, процессы или действия.

Запрещено: 🔀

Запрещенные процедуры, процессы или действия.

Дополнительная информация: 🚹

Ссылка на документацию: 📵

Ссылка на страницу: 🖺

Серия шагов: 1., 2., 3.

Результат отдельного шага: 💵

2.2.4 Символы, изображенные на рисунках

Номера пунктов: 1, 2, 3 ...

Серия шагов: 1., 2., 3.

Виды: А, В, С, ...

2.2.5 Символы, изображенные на приборе

Указания по технике безопасности: ∧ → 📵

Соблюдайте указания по технике безопасности, содержащиеся в соответствующем руководстве по эксплуатации.

2.3 Зарегистрированные товарные знаки

KALREZ®

Зарегистрированный товарный знак компании DuPont Performance Elastomers L.L.C., Уилмингтон. США

3 Основные требования техники безопасности

3.1 Требования к персоналу

Персонал, занимающийся монтажом, вводом в эксплуатацию, диагностикой и техническим обслуживанием, должен соответствовать указанным ниже требованиям.

- ▶ Пройти необходимое обучение и обладать соответствующей квалификацией для выполнения конкретных функций и задач.
- ▶ Получить разрешение на выполнение данных работ от руководства предприятия.
- Ознакомиться с нормами федерального/национального законодательства.
- ► Перед началом работы внимательно ознакомиться с инструкциями, представленными в руководстве, с сопроводительной документацией, а также с сертификатами (в зависимости от цели применения).
- Следовать инструкциям и соблюдать условия.

Обслуживающий персонал должен соответствовать указанным ниже требованиям.

- ▶ Пройти инструктаж и получить разрешение на выполнение данных работ от руководства предприятия.
- ▶ Следовать инструкциям, приведенным в настоящем руководстве по эксплуатации.

3.2 Назначение

Прибор Cerabar представляет собой преобразователь для измерения уровня и давления.

3.2.1 Использование не по назначению

Изготовитель не несет ответственности за повреждения, вызванные неправильным использованием или использованием прибора не по назначению.

Устойчивость материалов к вредному воздействию

Сведения о специальных жидкостях, в том числе жидкостях для очистки: специалисты Endress+Hauser готовы предоставить всю необходимую информацию, касающуюся коррозионной устойчивости материалов, находящихся в контакте с жидкостями, но не несут какой-либо ответственности и не предоставляют каких бы то ни было гарантий.

3.3 Техника безопасности на рабочем месте

При работе с прибором следует соблюдать следующие правила.

- ► В соответствии с федеральным/национальным законодательством персонал должен использовать средства индивидуальной защиты.
- ▶ Подключение прибора выполняется при отключенном сетевом напряжении.

3.4 Эксплуатационная безопасность

Опасность несчастного случая!

- Эксплуатируйте только такой прибор, который находится в надлежащем техническом состоянии, без ошибок и неисправностей.
- ▶ Ответственность за работу изделия без помех несет оператор.

Модификации датчика

Несанкционированное изменение конструкции прибора запрещено и может представлять опасность.

 Если, несмотря на это, все же требуется внесение изменений в конструкцию датчика, обратитесь в компанию Endress+Hauser.

Ремонт

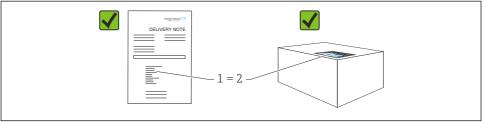
Условия длительного обеспечения эксплуатационной безопасности и надежности:

- проведение ремонта прибора только при наличии специального разрешения;
- соблюдение федерального/национального законодательства в отношении ремонта электрических приборов;
- использование только оригинальных запасных частей и комплектующих производства компании Endress+Hauser.

Взрывоопасные зоны

Во избежание травмирования персонала и повреждения оборудования при использовании прибора в зоне, указанной в сертификате (например, взрывозащита, безопасность сосуда, работающего под давлением):

- информация на заводской табличке позволяет определить соответствие приобретенного прибора сертифицируемой рабочей зоне, в которой прибор будет установлен.
- см. характеристики в отдельной сопроводительной документации, которая является неотъемлемой частью настоящего руководства по эксплуатации.


3.5 Безопасность изделия

Прибор разработан в соответствии с надлежащей инженерной практикой, соответствует современным требованиям по безопасности, прошел испытания и поставляется с завода в безопасном для эксплуатации состоянии.

Он соответствует общим стандартам безопасности и требованиям законодательства. Кроме того, прибор соответствует директивам ЕС, перечисленным в декларации соответствия требованиям ЕС для конкретного прибора. Компания Endress+Hauser подтверждает это нанесением маркировки СЕ на прибор.

4 Приемка и идентификация изделия

4.1 Приемка

A0016870

- Совпадает ли код заказа, указанный в накладной (1), с кодом заказа, который указан на наклейке изделия (2)?
- Не поврежден ли груз?
- Совпадают ли данные, указанные на заводской табличке, с параметрами заказа и сведениями, указанными в накладной?
- Имеется ли в наличии документация?
- Если применимо (см. заводскую табличку): имеются ли указания по технике безопасности (XA)?
- Если можно ответить «нет» на любой из этих вопросов, обратитесь в компанию Endress+Hauser.

4.2 Хранение и транспортировка

4.2.1 Условия хранения

- Используйте оригинальную упаковку
- Храните измерительный прибор в чистом сухом помещении. Примите меры по защите от ударных повреждений

Диапазон температуры хранения

См. техническое описание.

4.2.2 Транспортировка изделия до точки измерения

▲ ОСТОРОЖНО

Неправильная транспортировка!

Корпус и диафрагма могут быть повреждены, существует опасность несчастного случая!

 Транспортировать измерительный прибор до точки измерения следует в оригинальной упаковке.

5 Монтаж

5.1 Требования, предъявляемые к монтажу

5.1.1 Общие инструкции

- Не прикасайтесь к мембране (например, для очистки) твердыми и/или заостренными предметами.
- Снимайте защиту с мембраны непосредственно перед монтажом прибора.

В обязательном порядке плотно затягивайте крышку корпуса и кабельные вводы.

- 1. Затяните контргайки кабельных вводов.
- 2. Затяните соединительную гайку.

5.1.2 Инструкции по монтажу

- Правила монтажа приборов аналогичны правилам монтажа манометров (DIN EN837-2).
- Чтобы обеспечить оптимальную читаемость локального дисплея, оптимизируйте положение корпуса и локального дисплея.
- Компания Endress+Hauser выпускает монтажный кронштейн для монтажа прибора на трубе или на стене.
- Если есть вероятность налипания технологической среды или засорения присоединения к процессу, используйте промывочные кольца для фланцев
 - Промывочное кольцо зажимается между присоединением к процессу и технологическим оборудованием
 - Накопившийся материал перед технологической мембраной можно смывать через два боковых промывочных отверстия; при этом данные отверстия также используются для вентиляции напорной камеры.
- Для выполнения измерений в средах, содержащих твердые частицы (например, в загрязненных жидкостях), имеет смысл установить разделители и дренажные клапаны.
- Использование вентильного обеспечивает простоту ввода в эксплуатацию, монтажа и технического обслуживания прибора без прерывания технологического процесса.
- Во время монтажа прибора, при выполнении электрического подключения и во время эксплуатации не допускайте попадания влаги в корпус.
- Кабели и разъемы по возможности следует направлять вниз для предотвращения проникновения влаги (например, во время дождя или в результате конденсации).

5.1.3 Инструкции по монтажу для резьбового соединения

■ Прибор с резьбой G 1 ½"

Установите плоское уплотнение на уплотняемую поверхность присоединения к процессу.

Избегайте дополнительной нагрузки на мембрану: не уплотняйте резьбу пенькой или подобными материалами.

- Прибор с резьбой NPT
 - Оберните резьбу фторопластовой лентой, чтобы уплотнить ее.
 - Затягивайте прибор только за шестигранный участок; не поворачивайте его за корпус.
 - При заворачивании не прикладывайте избыточного усилия; заверните резьбу NPT на необходимую глубину согласно стандарту.
- Для перечисленных ниже присоединений к процессу предписан момент затяжки не более 40 Нм (29,50 фунт сила фут).
 - Резьба ISO 228 G ½", с установленной заподлицо мембраной
 - Резьба DIN 13 M20 x 1,5, с установленной заподлицо мембраной
 - Резьба NPT 3/4", с установленной заподлицо мембраной

Монтаж приборов с резьбой PVDF

▲ ОСТОРОЖНО

Опасность повреждения присоединения к процессу!

Опасность несчастного случая!

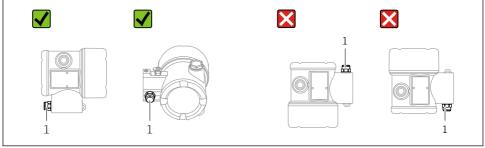
- ▶ Приборы с резьбой PVDF необходимо устанавливать с помощью монтажного кронштейна из комплекта поставки!
- ▶ Резьба PVDF не предназначена для применения в сочетании с металлами!

▲ ОСТОРОЖНО

Усталость материала вследствие воздействия давления и температуры!

Опасность получения травмы при разлете деталей! Высокое давление и высокая температура могут привести к срыву резьбы.

- ▶ Регулярно проверяйте резьбовое соединение на наличие утечек.
- ▶ Для уплотнения резьбы ½" NPT используйте фторопластовую ленту.


5.1.4 Ориентация

УВЕДОМЛЕНИЕ

Повреждение прибора!

Если нагретый измерительный прибор охладить в процессе очистки (например, холодной водой), то на короткое время в нем создается вакуум. В результате влага может проникнуть в измерительную ячейку через фильтр-компенсатор давления (1).

▶ Устанавливайте прибор следующим образом.

A0038723

- Не допускайте загрязнения фильтра-компенсатора давления (1).
- Смещение нулевой точки в зависимости от положения (если при пустом резервуаре измеренное значение отличается от нуля) можно исправить.
- При установке рекомендуется использование отсечных устройств и (или) сифонов.
- Ориентация зависит от условий измерения.

5.2 Монтаж прибора

5.2.1 Измерение давления газа

Установите прибор и отсечное устройство выше точки отбора давления, чтобы образующийся конденсат стекал внутрь технологического оборудования.

5.2.2 Измерение давления пара

Учитывайте максимально допустимую температуру окружающей среды для измерительного преобразователя!

Монтаж:

- Прибор с кольцевым сифоном рекомендуется устанавливать под точкой отбора давления.
 - Кроме того, прибор можно устанавливать выше точки отбора давления.
- Перед вводом в эксплуатацию сифон необходимо наполнить жидкостью.

Преимущества использования сифонов:

- Защита измерительного прибора от горячих сред под давлением путем образования и накопления конденсата.
- Подавление гидравлических ударов.
- Воздействие водного столба ограниченной высоты приводит к минимальной (пренебрежимо малой) погрешности измерения и минимальному (незначительному) тепловому влиянию на прибор.

Технические характеристики (например, материалы изготовления и каталожные номера) см. в дополнительном документе SD01553P.

5.2.3 Измерение давления жидкости

Установите прибор с отсечным устройством ниже точки отбора давления или вровень с ней.

5.2.4 Измерение уровня

- Прибор следует обязательно устанавливать ниже самой низкой точки измерения.
- Запрещается устанавливать прибор в следующих местах:
 - в потоке загружаемой среды;
 - на выходе из резервуара;
 - в зоне всасывания насоса:
 - в точке резервуара, на которую могут воздействовать импульсы давления мешалки.
- Для упрощения функционального тестирования и калибровки прибор следует устанавливать за отсечным устройством.

5.2.5 Закрытие крышек корпуса

УВЕДОМЛЕНИЕ

Повреждение резьбы и крышки корпуса вследствие загрязнения!

- ▶ Удаляйте загрязнения (например, песок) с резьбы крышки и корпуса.
- ▶ Если при закрытии крышки все же ощущается сопротивление, повторно проверьте резьбу на наличие загрязнений.
- i

Резьба корпуса

На резьбу отсека электроники и клеммного отсека может быть нанесено антифрикционное покрытие.

Следующее указание относится ко всем материалам корпуса:

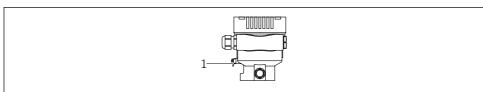
🔀 Запрещается смазывать резьбу корпуса.

6 Электрическое подключение

6.1 Требования, предъявляемые к подключению

6.1.1 Выравнивание потенциалов

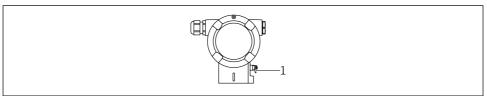
Защитное заземление на приборе подключать запрещено. При необходимости линия выравнивания потенциалов может быть подключена к внешней клемме заземления прибора до подключения прибора.


▲ ОСТОРОЖНО

Искрообразование.

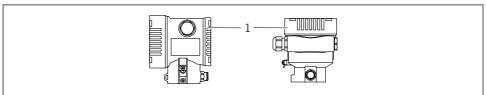
Опасность взрыва!

- ► Указания по технике безопасности при использовании прибора во взрывоопасных зонах приведены в отдельной документации.
- Для обеспечения оптимальной электромагнитной совместимости выполните следующие условия:
 - Используйте как можно более короткую линию выравнивания потенциалов.
 - Обеспечьте поперечное сечение не менее 2,5 мм² (14 AWG).

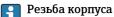

Корпус с одним отсеком

A0045411

1 Клемма заземления для подключения линии выравнивания потенциалов


Корпус с двумя отсеками

A00/45/412


Клемма заземления для подключения линии выравнивания потенциалов

6.2 Подключение прибора

A004380

l Крышка клеммного отсека

На резьбу отсека электроники и клеммного отсека может быть нанесено антифрикционное покрытие.

Следующее указание относится ко всем материалам корпуса:

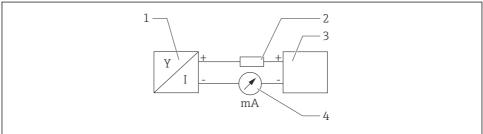
🔀 Запрещается смазывать резьбу корпуса.

6.2.1 Сетевое напряжение

- Ex d, Ex e, без взрывозащиты: сетевое напряжение: 10,5 до 35 В пост. тока
- Ех і: сетевое напряжение: 10,5 до 30 В пост. тока
- Блок питания должен пройти испытания на соответствие требованиям безопасности (например, PELV, SELV, класс 2) и должен соответствовать спецификации определенного протокола. Для 4−20 мА действуют те же требования, что и для HART.

6.2.2 Клеммы

 Клеммы сетевого напряжения и внутренняя клемма заземления Диапазон зажима: 0,5 до 2,5 мм² (20 до 14 AWG)


• Наружная клемма заземления

Диапазон зажима: 0,5 до 4 мм² (20 до 12 AWG)

6.2.3 Технические характеристики кабелей

- Защитное заземление или заземление кабельного экрана: номинальная площадь поперечного сечения > 1 мм² (17 AWG)
 Номинальная площадь поперечного сечения от 0,5 мм² (20 AWG) до 2,5 мм² (13 AWG)
- Наружный диаметр кабеля: Ø5 до 12 мм (0,2 до 0,47 дюйм), зависит от используемого кабельного сальника (см. документ «Техническое описание»)

6.2.4 4-20 MA

A0028908

■ 1 Блок-схема

- 1 Прибор
- 2 Нагрузка
- 3 Электропитание
- 4 Мультиметр

6.2.5 Защита от перенапряжения

Приборы без дополнительной защиты от перенапряжения

Оборудование, поставляемое компанией Endress+Hauser, соответствует требованиям производственного стандарта IEC / DIN EN 61326-1 (таблица 2, "Промышленное оборудование").

В зависимости от типа порта (источник питания постоянного тока, порт ввода / вывода) применяются различные уровни испытаний в соответствии со стандартом IEC / DIN EN в отношении переходных перенапряжений (скачков напряжения) (IEC / DIN EN 61000-4-5 Surge):

Испытательный уровень на портах питания постоянного тока и портах ввода / вывода составляет 1 000 В между фазой и землей.

Категория перенапряжения

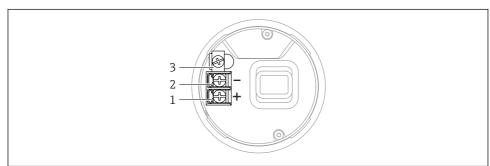
Категория перенапряжения II

6.2.6 Подключение проводов

▲ ОСТОРОЖНО

Возможно наличие сетевого напряжения!

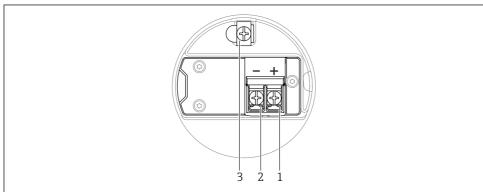
Опасность поражения электрическим током и (или) взрыва!


- ► При эксплуатации прибора во взрывоопасных зонах обеспечьте соблюдение национальных стандартов и технических условий, изложенных в документе "Указания по технике безопасности" (ХА). Используйте указанное кабельное уплотнение.
- Сетевое напряжение должно соответствовать техническим требованиям, указанным на заводской табличке.
- ▶ Подключение прибора выполняется при отключенном сетевом напряжении.
- ▶ При необходимости линия выравнивания потенциалов может быть подключена к внешней клемме заземления прибора до подключения линий электроснабжения.
- ▶ Для прибора должен быть предусмотрен автоматический выключатель в соответствии со стандартом IEC / EN 61010.
- Кабели должны быть должным образом изолированы с учетом сетевого напряжения и категории перенапряжения.
- ► Соединительные кабели должны обеспечивать достаточную температурную стабильность с учетом температуры окружающей среды.
- ▶ Эксплуатируйте прибор только с закрытыми крышками.
- ▶ В системе предусмотрены схемы безопасности для защиты от обратной полярности, влияния высокочастотных помех и скачков напряжения.

Подключите прибор в следующем порядке:

- 1. Разблокируйте фиксатор крышки (при наличии).
- 2. Выкрутите крышку.
- 3. Пропустите кабели сквозь кабельные уплотнения или кабельные вводы.
- 4. Подключите кабели.
- 5. Затяните кабельные уплотнения или кабельные вводы, чтобы обеспечить их герметичность. Затяните контргайку кабельного ввода на корпусе. Гайку кабельного уплотнения M20 следует затягивать с помощью гаечного ключа типоразмера 24/25 мм моментом 8 Нм (5,9 фунт сила фут).
- 6. Плотно затяните крышку клеммного отсека.
- 7. Если имеется: затяните фиксатор крышки шестигранным ключом 0,7 Нм (0,52 фунт сила фут) ±0,2 Нм (0,15 фунт сила фут).

6.2.7 Назначение клемм


Корпус с одним отсеком

A0042594

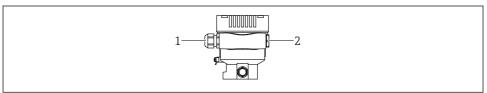
- 2 Соединительные клеммы и клемма заземления в клеммном отсеке
- 1 Плюсовая клемма
- 2 Минусовая клемма
- 3 Внутренняя клемма заземления

Корпус с двумя отсеками

A0042803

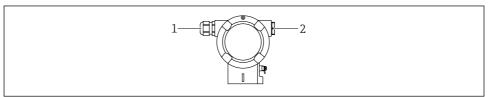
- 🛮 3 Соединительные клеммы и клемма заземления в клеммном отсеке
- 1 Плюсовая клемма
- 2 Минусовая клемма
- 3 Внутренняя клемма заземления

6.2.8 Кабельные вводы


Тип кабельного ввода зависит от заказанного исполнения прибора.

При прокладывании направляйте соединительные кабели вниз, чтобы влага не проникала в клеммный отсек.

При необходимости сформируйте провисающую петлю для отвода влаги или используйте защитный козырек от непогоды.

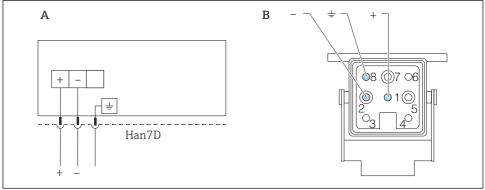

Корпус с одним отсеком

A0045413

- 1 Кабельный ввод
- 2 Заглушка

Корпус с двумя отсеками

A0045414


- 1 Кабельный ввод
- 2 Заглушка

6.2.9 Доступные разъемы прибора

Если прибор оснащен разъемом, то вскрывать корпус для подключения не нужно. Используйте прилагаемые уплотнения, чтобы предотвратить проникновение влаги внутрь прибора.

Приборы с разъемом Harting модели Han7D

A0041011

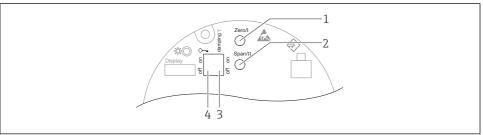
- A Электрическое подключение для приборов с разъемом Harting Han7D
- В Внешний вид разъема на приборе
- Коричневый
- ± Зеленый / желтый
- + Синий

6.3 Обеспечение требуемой степени защиты

6.3.1 Кабельные вводы

- Кабельный сальник M20, пластмасса, IP66/68, тип 4X/6P
- Кабельный сальник М20, никелированная латунь, IP66/68, тип 4X/6P
- Кабельный сальник М20. 316L, IP66/68, тип 4X/6Р
- Резьба М20, IP66/68, тип 4X/6Р
- Резьба G 1/2, IP66/68, тип 4X/6Р
 Если выбрана резьба G 1/2, прибор в стандартной комплектации поставляется с резьбой M20; при этом в комплект поставки входит переходник на G 1/2 вместе с сопроводительной документацией
- Резьба NPT 1/2, IP66/68, тип 4X/6P
- Заглушка для защиты при транспортировке: IP22, тип 2
- *Кабель 5 м, IP66/68, тип 4X/6Р, компенсация давления по кабелю
- *Клапанная заглушка ISO4400 M16, IP65, тип 4X
- Разъем НАN7D, 90 градусов, IP65, NEMA, тип 4X
- Разъем М12

Если корпус закрыт, а соединительный кабель подключен: IP66/67, NEMA, тип 4X Если корпус открыт или соединительный кабель не подключен: IP20, NEMA, тип 1


УВЕДОМЛЕНИЕ

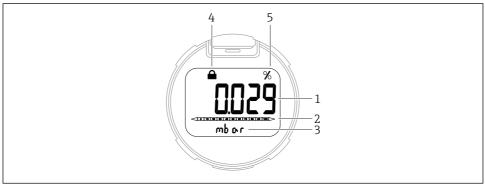
Разъем M12 и разъем HAN7D: ненадлежащий монтаж может привести к аннулированию класса защиты IP!

- Степень защиты действует только в том случае, если используемый соединительный кабель подключен, а уплотнение плотно затянуто.
- ► Степень защиты действует только в том случае, если используемый соединительный кабель соответствует классу защиты IP67, NEMA, тип 4X.
- Классы защиты IP действуют только при наличии защитной заглушки или подсоединенного кабеля.

7 Варианты управления

7.1 Кнопки управления и DIP-переключатели на электронной вставке

A003934


- 1 Кнопка управления для нижнего значения диапазона (Zero)
- 2 Кнопка управления для верхнего значения диапазона (Span)
- 3 DIP-переключатель для демпфирования
- 4 DIP-переключатель для блокирования и разблокирования прибора
- Настройки, выполненные с помощью DIP-переключателей, приоритетны по сравнению с другими методами управления (например, с помощью ПО FieldCare/DeviceCare).

7.2 локального дисплея

7.2.1 Дисплей прибора (опционально)

Функции:

- Отображение измеренных значений, сообщений о неисправностях и уведомлений
- Чтобы упростить управление, дисплей прибора можно снять
- Дисплей прибора можно заказать с дополнительным модулем для связи по беспроводной технологии Bluetooth®.

₩ 4 Сегментный дисплей

- 1 Измеренное значение (до 5 цифр)
- Шкальный индикатор (относится к указанному диапазону давления), пропорциональный току на выходе
- 3 Единица измерения измеренного значения
- 4 Блокировка (символ появляется, когда прибор заблокирован)
- Вывод измеренного значения в %

8 Ввод в эксплуатацию

8.1 Подготовительные шаги

Диапазон измерения и единица измерения, используемая для передачи измеренного значения, соответствуют техническим характеристикам, которые указаны на заводской табличке.

▲ ОСТОРОЖНО

Рабочее давление составляет меньше (больше) минимально (максимально) допустимого давления!

Опасность получения травмы при разлете деталей! Индикация предупреждающего сообщения в случае недопустимо высокого давления.

- ▶ Если давление прибора ниже минимально допустимого или выше максимально допустимого, выдается сообщение.
- ▶ Используйте прибор только в пределах допустимого диапазона измерений.

8.1.1 Состояние при поставке

Если не были заказаны индивидуальные настройки:

- Калибровочные значения определяются заданным номинальным значением измерительной ячейки
- Для тока аварийного сигнала устанавливается минимальное значение (3,6 мА) (только в том случае, если при заказе не была выбрана другая опция)
- DIP-переключатель находится в положении Off

8.2 Функциональная проверка

Перед вводом точки измерения в эксплуатацию выполните функциональную проверку.

- Контрольный список «Проверка после монтажа» (см. раздел «Монтаж»)
- Контрольный список «Проверка после подключения» (см. раздел «Электрическое подключение»)

8.3 Настройка языка управления

8.3.1 Управляющая программа

См. описание соответствующей управляющей программы.

8.4 Настройка измерительного прибора

8.4.1 Ввод в эксплуатацию с помощью кнопок на электронной вставке

Управление перечисленными ниже функциями возможно с помощью кнопок на электронной вставке:

- Регулировка положения (коррекция нулевой точки).
 Изменение ориентации прибора может вызвать сдвиг значения давления.
 Данный сдвиг можно компенсировать регулировкой положения.
- Настройка нижнего и верхнего значений диапазона
 Фактическое давление должно быть в пределах диапазона номинального давления для датчика (см. технические характеристики, указанные на заводской табличке)
- Сброс параметров прибора

Выполнение регулировки положения

- 1. Прибор установлен в требуемом положении, давление не применяется.
- 2. Одновременно нажмите кнопки Zero и Span и удерживайте их не менее 3 секунд.
- 3. Когда светодиод загорается на короткое время, имеющееся давление принято для регулировки положения.

Установка нижнего значения диапазона (давления или масштабируемой переменной)

- 1. На прибор воздействует необходимое давление, которое соответствует нижнему значению диапазона.
- 2. Нажмите кнопку Zero и удерживайте ее не менее 3 секунд.
- 3. Когда светодиод загорается на короткое время, имеющееся давление принято для нижнего значения диапазона.

Установка верхнего значения диапазона (давления или масштабируемой переменной)

- 1. На прибор воздействует необходимое давление, которое соответствует верхнему значению диапазона.
- 2. Нажмите кнопку Span и удерживайте ее не менее 3 секунд.
- 3. Когда светодиод загорается на короткое время, имеющееся давление принято для верхнего значения диапазона.
- 4. Светодиод на электронной вставке не загорелся?
 - Давление, соответствующее верхнему значению диапазона, не принято.
 "Влажная" калибровка невозможна, если в параметр Назначить РV опция Масштаб.переменная и в параметр Передаточная функция масштаб.переменной выбрана опция Таблица.

Проверка настроек (давления или масштабируемой переменной)

- 1. Кратковременно нажмите кнопку Zero (приблизительно 1 секунду) для отображения нижнего значения диапазона.
- 2. Кратковременно нажмите кнопку Span (приблизительно 1 секунду) для отображения верхнего значения диапазона.
- 3. Кратковременно нажмите одновременно кнопки Zero и Span (приблизительно 1 секунду) для отображения смещения калибровки.

Сброс параметров прибора

Нажмите одновременно кнопки Zero и Span и удерживайте их не менее 12 секунд.

www.addresses.endress.com