
Valid as of version 01.00.zz (Device firmware) Products Solutions

Services

Operating Instructions **Proline Promass F 100**

Coriolis flowmeter PROFINET

- Make sure the document is stored in a safe place such that it is always available when working on or with the device.
- To avoid danger to individuals or the facility, read the "Basic safety instructions" section carefully, as well as all other safety instructions in the document that are specific to working procedures.
- The manufacturer reserves the right to modify technical data without prior notice. Your Endress+Hauser sales organization will supply you with current information and updates to this manual.

Table of contents

1	About this document 6		6.2.3 Installing the measuring instrument .6.2.4 Turning the display module	
1.1 1.2	Document function 6 Symbols	6.3	Post-installation check	
1.2	1.2.1 Safety symbols 6 1.2.2 Electrical symbols 6	7	Electrical connection	28
	1.2.3 Tool symbols 6	7.1	Electrical safety	28
	1.2.4 Symbols for	7.2	Connecting requirements	28
	certain types of information		7.2.1 Required tools	
1.0	1.2.5 Symbols in graphics		7.2.2 Requirements for connection cable	
1.3	Documentation		7.2.3 Terminal assignment	
1.4	Registered trademarks 8		7.2.4 Pin assignment, device plug	
_		7.3	7.2.5 Preparing the device	
2	Safety instructions 9	7.5	7.3.1 Connecting the transmitter	
2.1	Requirements for the personnel 9	7.4	Potential equalization	
2.2	Intended use	,,,	7.4.1 Requirements	
2.3	Workplace safety	7.5	Special connection instructions	
2.4	Operational safety		7.5.1 Connection examples	
2.5 2.6	Product safety	7.6	Hardware settings	33
2.0	IT security		7.6.1 Setting the device name	
2	D. J.	7.7	Ensuring the degree of protection	
3	Product description 12	7.8	Post-connection check	36
3.1	Product design	8	Operation options	37
	communication protocol 12	8.1	Overview of operation options	37
4	Incoming acceptance and product	8.2	Structure and function of the operating menu	38
	identification		8.2.1 Structure of the operating menu	38
/. 1			8.2.2 Operating philosophy	39
4.1 4.2	Incoming acceptance	8.3	Displaying the measured values via the local	
1.2	4.2.1 Transmitter nameplate		display (optionally available)	40
	4.2.2 Sensor nameplate		8.3.1 Operational display	40
	4.2.3 Symbols on the device 16			41
	•	8.4	Access to the operating menu via the web	41
5	Storage and transport	0.1	browser	41
5.1	Storage conditions			41
5.2	Transporting the product		8.4.2 Prerequisites	42
	5.2.1 Measuring devices without lifting		3	43
	lugs 17		8.4.4 Logging on	44
	5.2.2 Measuring devices with lifting lugs 18		8.4.5 User interface	45
	5.2.3 Transporting with a fork lift 18		8.4.6 Disabling the Web server	
5.3	Packaging disposal	8.5	8.4.7 Logging out	40
		ر.ن	operating tool	47
6	Installation		8.5.1 Connecting the operating tool	47
6.1	Installation requirements 19		8.5.2 FieldCare	48
	6.1.1 Installation position 19		8.5.3 DeviceCare	48
	6.1.2 Environmental and process			
	requirements 21	9	System integration	49
<i>c</i>	6.1.3 Special installation instructions 23	9.1	Overview of device description files	
6.2	Installing the device	7.1	9.1.1 Current version data for the device	
	6.2.1 Required tools		9.1.2 Operating tools	
	0.2.2 Freparing the measuring instrument. 25		1 5	

9.2	Device master file (GSD)	50	12	Diagnostics and troubleshooting	93
	9.2.1 File name of the manufacturer-	F.O.	12.1	General troubleshooting	. 93
	specific device master file (GSD)	50	12.2	Diagnostic information via LEDs	
	9.2.2 File name of the PA Profile device	F.O.		12.2.1 Transmitter	
0.0	master file (GSD)		12.3	Diagnostic information in the web browser	
9.3	Cyclic data transmission	51		12.3.1 Diagnostic options	
	9.3.1 Overview of the modules	51		12.3.2 Calling up remedial actions	
	9.3.2 Description of the modules	51	12.4	Diagnostic information in FieldCare or	
	9.3.3 Status coding	59		DeviceCare	97
	9.3.4 Factory setting	60		12.4.1 Diagnostic options	
	9.3.5 Startup configuration	61		12.4.2 Calling up remedy information	
			12.5	Adapting the diagnostic information	
10	Commissioning	62		12.5.1 Adapting the diagnostic behavior	
10.1	Post-installation and post-connection check	62	12.6	Overview of diagnostic information	101
10.2	Identifying the device in the PROFINET			12.6.1 Diagnostic of sensor	102
	network	62		12.6.2 Diagnostic of electronic	105
10.3	Startup parameterization			12.6.3 Diagnostic of configuration	111
10.4	Connecting via FieldCare			12.6.4 Diagnostic of process	115
10.5	Setting the operating language		12.7	Pending diagnostic events	122
10.6	Configuring the device		12.8	Diagnostic list	123
	10.6.1 Defining the tag name		12.9	Event logbook	123
	10.6.2 Setting the system units	63		12.9.1 Reading out the event logbook	123
	10.6.3 Displaying the communication			12.9.2 Filtering the event logbook	124
	interface	65		12.9.3 Overview of information events	124
	10.6.4 Selecting and setting the medium	67	12.10	Resetting the device	125
	10.6.5 Configuring the low flow cut off	69		12.10.1 Function scope of the "Device reset"	
	10.6.6 Partially filled pipe detection	70		parameter	125
10.7	Advanced settings	71	12.11	Device information	126
	10.7.1 Using the parameter to enter the			Firmware history	127
	access code	71		,	
	10.7.2 Calculated process variables		13	Maintenance	128
	10.7.3 Carrying out a sensor adjustment				
		74	13.1	Maintenance work	
	10.7.5 Using parameters for device		10.0	13.1.1 Cleaning	
	administration	75	13.2	Measuring and test equipment	
10.8	Simulation	76	13.3	Maintenance services	128
10.9	Protecting settings from unauthorized access.	77			
	10.9.1 Write protection via access code	77	14	Repair	129
	10.9.2 Write protection via write protection		14.1	General notes	129
	switch	78	11.1	14.1.1 Repair and conversion concept	
	10.9.3 Write protection via startup			14.1.2 Notes for repair and conversion	
	parameterization	79	14.2	Spare parts	129
			14.3	Repair services	
11	Operation	80	14.4	Return	
	-		14.5	Disposal	130
11.1	Reading the device locking status			14.5.1 Removing the measuring	
11.2	Adjusting the operating language	80		instrument	130
11.3	Configuring the display	80		14.5.2 Disposing of the measuring	
11.4	Reading off measured values	80		instrument	130
	11.4.1 "Measured variables" submenu	80			
11 [11.4.2 "Totalizer" submenu	90	15	Accesories	121
11.5	Adapting the measuring device to the process	01			131
11 /	conditions	91	15.1	Device-specific accessories	
11.6	Performing a totalizer reset	91		15.1.1 For the sensor	
	11.6.1 Function scope of "Control Totalizer"	02	15.2	Communication-specific accessories	
	*	92	15.3	Service-specific accessories	
	11.6.2 Function range of "Reset all	02	15.4	System components	133
	totalizers" parameter	94			

16	Technical data	134
16.1	Application	134
16.2	Function and system design	134
16.3	Input	135
16.4	Output	136
16.5	Power supply	140
16.6	Performance characteristics	141
16.7	Installation	146
16.8	Environment	146
16.9	Process	147
16.10	Mechanical construction	151
16.11	Operability	154
16.12	Certificates and approvals	156
16.13	Application packages	159
	Accessories	160
16.15	Documentation	160
Indes	7	162

1 About this document

1.1 Document function

These Operating Instructions contain all the information required in the various life cycle phases of the device: from product identification, incoming acceptance and storage, to installation, connection, operation and commissioning, through to troubleshooting, maintenance and disposal.

1.2 Symbols

1.2.1 Safety symbols

⚠ DANGER

This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in serious or fatal injury.

WARNING

This symbol alerts you to a potentially dangerous situation. Failure to avoid this situation can result in serious or fatal injury.

A CAUTION

This symbol alerts you to a potentially dangerous situation. Failure to avoid this situation can result in minor or medium injury.

NOTICE

This symbol alerts you to a potentially harmful situation. Failure to avoid this situation can result in damage to the product or something in its vicinity.

1.2.2 Electrical symbols

Symbol	Meaning	
	Direct current	
~	Alternating current	
$\overline{\sim}$	Direct current and alternating current	
<u></u>	Ground connection A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system.	
	Protective earth (PE) Ground terminals that must be connected to ground prior to establishing any other connections.	
	The ground terminals are located on the interior and exterior of the device: Interior ground terminal: protective earth is connected to the mains supply. Exterior ground terminal: device is connected to the plant grounding system.	

1.2.3 Tool symbols

Symbol	Meaning
	Allen key
Ø.	Open-end wrench

1.2.4 Symbols for certain types of information

Symbol	Meaning	
✓	Permitted Procedures, processes or actions that are permitted.	
Preferred Procedures, processes or actions that are preferred.		
X	Forbidden Procedures, processes or actions that are forbidden.	
i	Tip Indicates additional information.	
1	Reference to documentation	
A	Reference to page	
Reference to graphic		
•	Notice or individual step to be observed	
1., 2., 3	Series of steps	
L	Result of a step	
?	Help in the event of a problem	
	Visual inspection	

1.2.5 Symbols in graphics

Symbol	Meaning
1, 2, 3,	Item numbers
1., 2., 3.,	Series of steps
A, B, C,	Views
A-A, B-B, C-C,	Sections
EX	Hazardous area
Safe area (non-hazardous area)	
≋➡	Flow direction

1.3 Documentation

- For an overview of the scope of the associated Technical Documentation, refer to the following:
 - Device Viewer (www.endress.com/deviceviewer): Enter the serial number from the nameplate
 - *Endress+Hauser Operations app*: Enter serial number from nameplate or scan matrix code on nameplate.

The following document types are available in the Downloads area of the Endress+Hauser website (www.endress.com/downloads), depending on the device version:

Document type	Purpose and content of the document
Technical Information (TI)	Planning aid for your device The document contains all the technical data on the device and provides an overview of the accessories and other products that can be ordered for the device.
Brief Operating Instructions (KA)	Guide that takes you quickly to the 1st measured value The Brief Operating Instructions contain all the essential information from incoming acceptance to initial commissioning.
Operating Instructions (BA)	Your reference document The Operating Instructions contain all the information that is required in various phases of the life cycle of the device: from product identification, incoming acceptance and storage, to mounting, connection, operation and commissioning through to troubleshooting, maintenance and disposal.
Description of Device Parameters (GP)	Reference for your parameters The document provides a detailed explanation of each individual parameter. The description is aimed at those who work with the device over the entire life cycle and perform specific configurations.
Safety instructions (XA)	Depending on the approval, safety instructions for electrical equipment in hazardous areas are also supplied with the device. These are an integral part of the Operating Instructions. The nameplate indicates which Safety Instructions (XA) apply to the device.
Supplementary device-dependent documentation (SD/FY)	Always comply strictly with the instructions in the relevant supplementary documentation. The supplementary documentation is a constituent part of the device documentation.

1.4 Registered trademarks

PROFINET®

Registered trademark of the PROFIBUS Nutzerorganisation e.V. (PROFIBUS User Organization), Karlsruhe, Germany

TRI-CLAMP®

Registered trademark of Ladish & Co., Inc., Kenosha, USA

8

2 Safety instructions

2.1 Requirements for the personnel

The personnel for installation, commissioning, diagnostics and maintenance must fulfill the following requirements:

- ► Trained, qualified specialists must have a relevant qualification for this specific function and task.
- ► Are authorized by the plant owner/operator.
- ► Are familiar with federal/national regulations.
- ▶ Before starting work, read and understand the instructions in the manual and supplementary documentation as well as the certificates (depending on the application).
- ► Follow instructions and comply with basic conditions.

The operating personnel must fulfill the following requirements:

- ► Are instructed and authorized according to the requirements of the task by the facility's owner-operator.
- ► Follow the instructions in this manual.

2.2 Intended use

Application and media

The measuring instrument described in this manual is intended only for the flow measurement of liquids and gases.

Depending on the version ordered, the measuring instrument can also measure potentially explosive, flammable, poisonous and oxidizing media.

Measuring instruments for use in hazardous areas, in hygienic applications, or where there is an increased risk due to pressure, are specially labeled on the nameplate.

To ensure that the measuring instrument remains in proper condition during the operating time:

- ▶ Only use the measuring instrument in full compliance with the data on the nameplate and the general conditions listed in the manual and supplementary documentation.
- ▶ Using the nameplate, check whether the ordered device is permitted for the intended use in the hazardous area (e.g. explosion protection, pressure vessel safety).
- ▶ Use the measuring instrument only for media against which the materials in contact with the process are sufficiently resistant.
- ▶ Keep within the specified pressure and temperature range.
- ► Keep within the specified ambient temperature range.
- ► Protect the measuring instrument permanently against corrosion from environmental influences.

Incorrect use

Non-designated use can compromise safety. The manufacturer is not liable for damage caused by improper or non-designated use.

▲ WARNING

Danger of breakage due to corrosive or abrasive fluids and ambient conditions!

- ▶ Verify the compatibility of the process fluid with the sensor material.
- lacktriangle Ensure the resistance of all wetted materials during the process.
- ▶ Keep within the specified pressure and temperature range.

NOTICE

Verification for borderline cases:

For special fluids and fluids for cleaning, Endress+Hauser is glad to provide assistance in verifying the corrosion resistance of fluid-wetted materials, but does not accept any warranty or liability as minute changes in the temperature, concentration or level of contamination in the process can alter the corrosion resistance properties.

Residual risks

▲ WARNING

Risk of hot or cold burns! The use of media and electronics with high or low temperatures can produce hot or cold surfaces on the device.

▶ Mount suitable touch protection.

A WARNING

Danger of housing breaking due to measuring tube breakage!

If a measuring tube ruptures, the pressure inside the sensor housing will rise according to the operating process pressure.

▶ Use a rupture disk.

A WARNING

Danger from medium escaping!

For device versions with a rupture disk: medium escaping under pressure can cause injury or material damage.

▶ Take precautions to prevent injury and material damage if the rupture disk is actuated.

2.3 Workplace safety

For work on and with the device:

Wear the required personal protective equipment according to federal/national regulations.

2.4 Operational safety

Damage to the device!

- ▶ Operate the device in proper technical condition and fail-safe condition only.
- ▶ The operator is responsible for the interference-free operation of the device.

Modifications to the device

Unauthorized modifications to the device are not permitted and can lead to unforeseeable dangers!

▶ If modifications are nevertheless required, consult with the manufacturer.

Repair

To ensure continued operational safety and reliability:

- Carry out repairs on the device only if they are expressly permitted.
- ▶ Observe federal/national regulations pertaining to the repair of an electrical device.
- Use only original spare parts and accessories.

2.5 Product safety

This state-of-the-art device is designed and tested in accordance with good engineering practice to meet operational safety standards. It left the factory in a condition in which it is safe to operate.

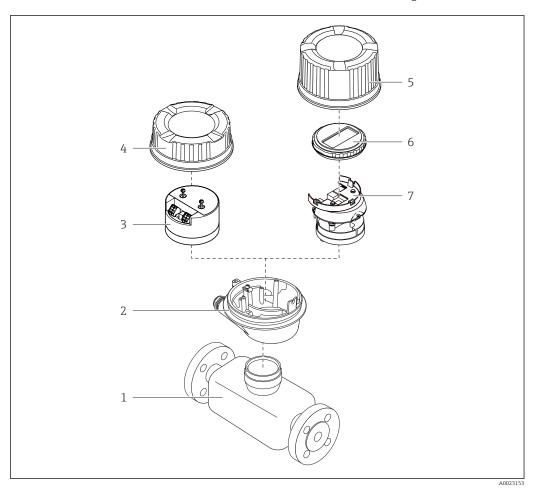
It meets general safety standards and legal requirements. It also complies with the EU directives listed in the device-specific EU declaration of conformity. The manufacturer confirms this by affixing the CE mark.

2.6 IT security

The manufacturer warranty is valid only if the product is installed and used as described in the Operating Instructions. The product is equipped with security mechanisms to protect it against any inadvertent changes to the settings.

IT security measures, which provide additional protection for the product and associated data transfer, must be implemented by the operators themselves in line with their security standards.

3 Product description


The device consists of a transmitter and a sensor.

The device is available as a compact version:

The transmitter and sensor form a mechanical unit.

3.1 Product design

3.1.1 Device version with PROFINET communication protocol

- 1 Important components of a measuring device
- 1 Sensor
- 2 Transmitter housing
- 3 Main electronics module
- 4 Transmitter housing cover
- 5 Transmitter housing cover (version for optional local display)
- 6 Local display (optional)
- 7 Main electronics module (with bracket for optional local display)

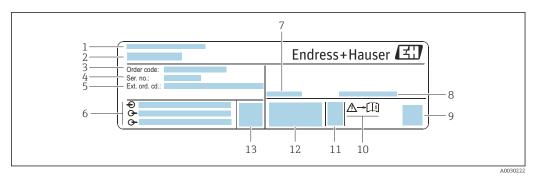
4 Incoming acceptance and product identification

4.1 Incoming acceptance

On receipt of the delivery:

- 1. Check the packaging for damage.
 - Report all damage immediately to the manufacturer. Do not install damaged components.
- 2. Check the scope of delivery using the delivery note.
- 3. Compare the data on the nameplate with the order specifications on the delivery note.
- 4. Check the technical documentation and all other necessary documents, e.g. certificates, to ensure they are complete.
- If one of the conditions is not satisfied, contact the manufacturer.

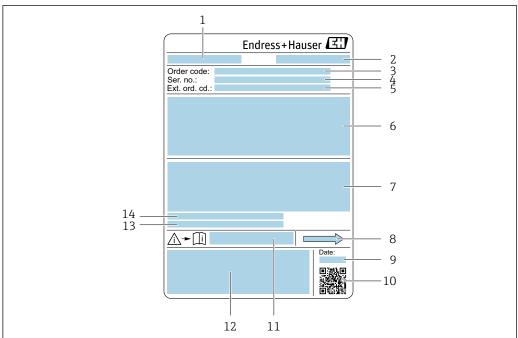
4.2 Product identification


The device can be identified in the following ways:

- Nameplate
- Order code with details of the device features on the delivery note
- Enter the serial numbers from the nameplates in the *Device Viewer* (www.endress.com/deviceviewer): all the information about the device is displayed.
- Enter the serial numbers from the nameplates into the *Endress+Hauser Operations app* or scan the DataMatrix code on the nameplate with the *Endress+Hauser Operations app*: all the information about the device is displayed.

For an overview of the scope of the associated Technical Documentation, refer to the following:

- The "Additional standard device documentation" and "Supplementary device-dependent documentation" sections
- The Device Viewer: Enter the serial number from the nameplate (www.endress.com/deviceviewer)
- The *Endress+Hauser Operations app*: Enter the serial number from the nameplate or scan the DataMatrix code on the nameplate.


4.2.1 Transmitter nameplate

■ 2 Example of a transmitter nameplate

- 1 Manufacturer address/certificate holder
- 2 Name of the transmitter
- 3 Order code
- 4 Serial number
- 5 Extended order code
- 6 Electrical connection data, e.g. available inputs and outputs, supply voltage
- 7 Permitted ambient temperature (T_a)
- 8 Degree of protection
- 9 2-D matrix code
- 11 Date of manufacture: year-month
- 12 CE mark, RCM-Tick mark
- 13 Firmware version (FW)

4.2.2 Sensor nameplate

.....

■ 3 Example of a sensor nameplate

- 1 Name of sensor
- 2 Manufacturer/certificate holder
- 3 Order code
- 4 Serial number (Ser. no.)
- 5 Extended order code (Ext. ord. cd.)
- 6 Nominal diameter of the sensor; flange nominal diameter/nominal pressure; sensor test pressure; medium temperature range; material of measuring tube and manifold; sensor-specific information: e.g. pressure range of sensor housing, wide-range density specification (special density calibration)
- 7 Approval information for explosion protection, Pressure Equipment Directive and degree of protection
- 8 Flow direction
- 9 Manufacturing date: year-month
- 10 2-D matrix code
- 11 Document number of safety-related supplementary documentation
- 12 CE mark, RCM symbol
- 13 Surface roughness
- 14 Permitted ambient temperature (T_a)

Order code

The measuring device is reordered using the order code.

Extended order code

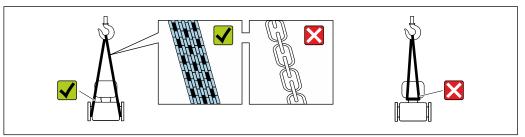
- The device type (product root) and basic specifications (mandatory features) are always listed.
- Of the optional specifications (optional features), only the safety and approvalrelated specifications are listed (e.g. LA). If other optional specifications are also ordered, these are indicated collectively using the # placeholder symbol (e.g. #LA#).
- If the ordered optional specifications do not include any safety and approval-related specifications, they are indicated by the + placeholder symbol (e.g. XXXXXX-ABCDE +).

4.2.3 Symbols on the device

Symbol	Meaning
\triangle	WARNING! This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury. Please consult the documentation for the measuring instrument to discover the type of potential danger and measures to avoid it.
<u> </u>	Reference to documentation Refers to the corresponding device documentation.
	Protective ground connection A terminal that must be connected to the ground prior to establishing any other connections.

5 Storage and transport

5.1 Storage conditions


Observe the following notes for storage:

- ► Store in the original packaging to ensure protection from shock.
- ▶ Do not remove protective covers or protective caps installed on process connections. They prevent mechanical damage to the sealing surfaces and contamination in the measuring tube.
- ▶ Protect from direct sunlight. Avoid unacceptably high surface temperatures.
- ► Store in a dry and dust-free place.
- ▶ Do not store outdoors.

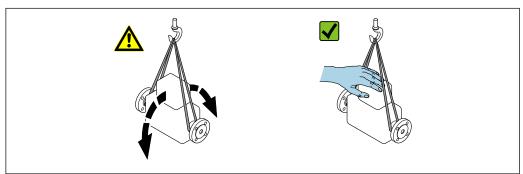
Storage temperature $\rightarrow \triangleq 146$

5.2 Transporting the product

Transport the measuring device to the measuring point in the original packaging.

A0029252

Do not remove protective covers or caps installed on process connections. They prevent mechanical damage to the sealing surfaces and contamination in the measuring tube.


5.2.1 Measuring devices without lifting lugs

A WARNING

Center of gravity of the measuring device is higher than the suspension points of the webbing slings.

Risk of injury if the measuring device slips.

- ► Secure the measuring device against slipping or turning.
- ▶ Observe the weight specified on the packaging (stick-on label).

A0029214

5.2.2 Measuring devices with lifting lugs

A CAUTION

Special transportation instructions for devices with lifting lugs

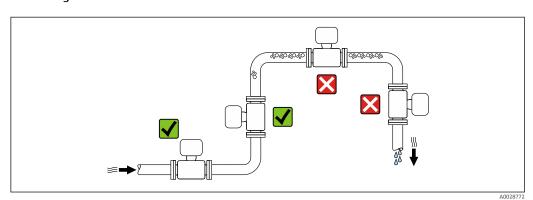
- ▶ Only use the lifting lugs fitted on the device or flanges to transport the device.
- ► The device must always be secured at two lifting lugs at least.

5.2.3 Transporting with a fork lift

If transporting in wood crates, the floor structure enables the crates to be lifted lengthwise or at both sides using a forklift.

5.3 Packaging disposal

All packaging materials are environmentally friendly and 100% recyclable:

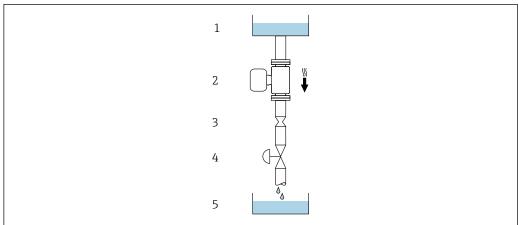

- Outer packaging of device
 Stretch wrap made of polymer in accordance with EU Directive 2002/95/EC (RoHS)
- Packaging
 - Wood crate treated in accordance with ISPM 15 standard, confirmed by IPPC logo
 - Cardboard box in accordance with European packaging guideline 94/62/EC, recyclability confirmed by Resy symbol
- Transport material and fastening fixtures
 - Disposable plastic pallet
 - Plastic straps
 - Plastic adhesive strips
- Filler material Paper pads

6 Installation

6.1 Installation requirements

6.1.1 Installation position

Mounting location



To avoid measurement errors caused by gas bubble formation in the measuring tube, avoid the following installation locations in the pipe:

- Highest point of a pipeline
- Directly upstream of a free pipe outlet in a down pipe

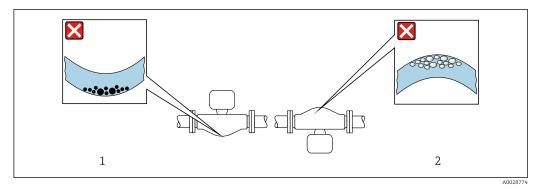
Installation in down pipes

However, the following installation suggestion allows for installation in an open vertical pipeline. Pipe restrictions or the use of an orifice with a smaller cross-section than the nominal diameter prevent the sensor running empty while measurement is in progress.

A00287

- 4 Installation in a down pipe (e.g. for batching applications)
- 1 Supply tank
- 2 Sensor
- 3 Orifice plate, pipe restriction
- 4 Valve
- 5 Filling container

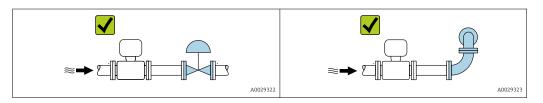
DN/NPS		Ø orifice plate, pipe restriction	
[mm]	[in]	[mm]	[in]
8	3/8	6	0.24
15	1/2	10	0.40
25	1	14	0.55
40	1 1/2	22	0.87
50	2	28	1.10
80	3	50	1.97
100	4	65	2.60
150	6	90	3.54
250	10	150	5.91


Orientation

The direction of the arrow on the sensor nameplate helps you to install the sensor according to the flow direction (direction of medium flow through the piping).

	Recommendation		
A	Vertical orientation	A0015591	√ √ 1)
В	Horizontal orientation, transmitter at top	A0015589	
С	Horizontal orientation, transmitter at bottom	A0015590	Exception: $\rightarrow \square$ 5, \square 21
D	Horizontal orientation, transmitter at side	A0015592	×

- 1) This orientation is recommended to ensure self-draining.
- Applications with low process temperatures may reduce the ambient temperature. To maintain the minimum ambient temperature for the transmitter, this orientation is recommended.
- 3) Applications with high process temperatures may increase the ambient temperature. To maintain the maximum ambient temperature for the transmitter, this orientation is recommended.


If a sensor is installed horizontally with a curved measuring tube, match the position of the sensor to the medium properties.

■ 5 Orientation of sensor with curved measuring tube

- 1 Avoid this orientation for media with entrained solids: Risk of solids accumulating
- 2 Avoid this orientation for outgassing media: Risk of gas accumulating

Inlet and outlet runs

Installation dimensions

For the dimensions and installed lengths of the device, see the "Technical Information" document, "Mechanical construction" section

6.1.2 Environmental and process requirements

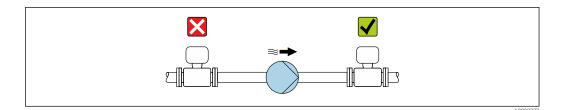
Ambient temperature range

Measuring instrument	■ -40 to +60 °C (-40 to +140 °F)
	■ Order code for "Test, certificate", option JM: -50 to +60 °C (-58 to +140 °F)

► If operating outdoors:

Avoid direct sunlight, particularly in warm climatic regions.

Static pressure


It is important that cavitation does not occur, or that gases entrained in the liquids do not outgas.

Cavitation is caused if the pressure drops below the vapor pressure:

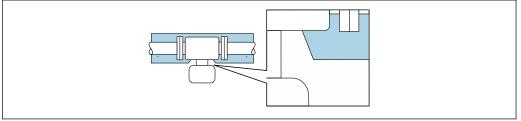
- In liquids that have a low boiling point (e.g. hydrocarbons, solvents, liquefied gases)
- In suction lines
- ► Ensure the static pressure is sufficiently high to prevent cavitation and outgassing.

For this reason, the following mounting locations are recommended:

- At the lowest point in a vertical pipe
- Downstream from pumps (no danger of vacuum)

Thermal insulation

In the case of some fluids, it is important to keep the heat radiated from the sensor to the transmitter to a low level. A wide range of materials can be used for the required insulation.


The following device versions are recommended for applications with thermal insulation:

- Version with extended neck for insulation:
 Order code for "Sensor option", option CG with an extended neck length of 105 mm (4.13 in).
- Extended temperature version:
 Order code for "Measuring tube material", option SD, SE, SF or TH with an extended neck length of 105 mm (4.13 in).

NOTICE

Electronics overheating on account of thermal insulation!

- Recommended orientation: horizontal orientation, transmitter housing pointing downwards.
- ▶ Do not insulate the transmitter housing .
- ▶ Maximum permissible temperature at the lower end of the transmitter housing: $80 \,^{\circ}\text{C} (176 \,^{\circ}\text{F})$
- ► Thermal insulation with exposed extension neck: We recommend that you do not insulate the extension neck in order to ensure optimum dissipation of heat.

 \blacksquare 6 Thermal insulation with exposed extension neck

A0034391

Heating

NOTICE

Electronics can overheat due to elevated ambient temperature!

- ▶ Observe maximum permitted ambient temperature for the transmitter.
- ▶ Depending on the medium temperature, take the device orientation requirements into account.

NOTICE

Danger of overheating when heating

- ► Ensure that the temperature at the lower end of the transmitter housing does not exceed 80 °C (176 °F).
- ► Ensure that sufficient convection takes place at the transmitter neck.
- ► Ensure that a sufficiently large area of the transmitter neck remains exposed. The uncovered part serves as a radiator and protects the electronics from overheating and excessive cooling.
- ▶ When using in potentially explosive atmospheres, observe the information in the device-specific Ex documentation. For detailed information on the temperature tables, see the separate document entitled "Safety Instructions" (XA) for the device.
- Consider the behavior of the process diagnostics "830 Ambient temperature too high" and "832 Electronics temperature too high" if overheating cannot be avoided by a suitable system design.

Heating options

If a medium requires that no heat loss should occur at the sensor, users can avail of the following heating options:

- Electrical heating, e.g. with electric band heaters ¹⁾
- Via pipes carrying hot water or steam
- Via heating jackets

Vibrations

The high oscillation frequency of the measuring tubes ensures that the correct operation of the measuring system is not influenced by plant vibrations.

6.1.3 Special installation instructions

Drainability

When installed vertically, the measuring tubes can be drained completely and protected against buildup.

Hygienic compatibility

When installing in hygienic applications, please refer to the information in the "Certificates and approvals/hygienic compatibility" section $\rightarrow \stackrel{\triangle}{=} 157$

Rupture disk

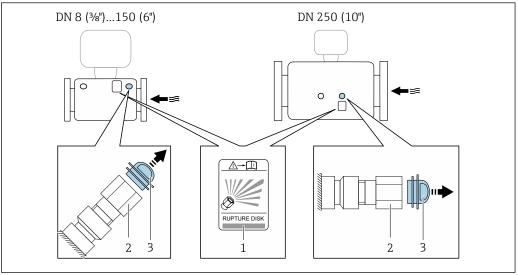
Process-related information: $\rightarrow \implies 149$.

A WARNING

Danger from medium escaping!

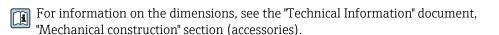
Medium escaping under pressure can cause injury or material damage.

- ► Take precautions to prevent danger to persons and damage if the rupture disk is actuated.
- ▶ Observe the information on the rupture disk sticker.
- ► Make sure that the function and operation of the rupture disk is not impeded through the installation of the device.
- ▶ Do not use a heating jacket.
- ▶ Do not remove or damage the rupture disk.


The position of the rupture disk is indicated by a sticker affixed beside it.

The use of parallel electric band heaters is generally recommended (bidirectional electricity flow). Particular considerations must be made if a single-wire heating cable is to be used. Additional information is provided in the document EA01339D "Installation instructions for electrical trace heating systems".

The transportation quard must be removed.


The existing connecting nozzles are not intended for the purpose of rinsing or pressure monitoring, but instead serve as the mounting location for the rupture disk.

In the event of a failure of the rupture disk, a drain device can be screwed onto the internal thread of the rupture disk in order to drain off any escaping medium.

A002890

- 1 Rupture disk label
- 2 Rupture disk with 1/2" NPT internal thread and 1" width across flats
- *3 Transport protection*

Zero point verification and zero adjustment

Experience shows that zero adjustment is advisable only in special cases:

- To achieve maximum measurement accuracy even with low flow rates.
- Under extreme process or operating conditions (e.g. very high process temperatures or very high-viscosity media).
- For gas applications with low pressure.
- To achieve the highest possible measurement accuracy at low flow rates, the installation must protect the sensor from mechanical stress during operation.

To get a representative zero point, ensure that

- any flow in the device is prevented during the adjustment
- the process conditions (e.g. pressure, temperature) are stable and representative

Verification and adjustment cannot be performed if the following process conditions are present:

- Gas pockets
 - Ensure that the system has been sufficiently flushed with the medium. Repeat flushing can help to eliminate gas pockets
- Thermal circulation
 - In the event of temperature differences (e.g. between the measuring tube inlet and outlet section), induced flow can occur even if the valves are closed due to thermal circulation in the device
- Leaks at the valves
 If the valves are not leak-tight, flow is not sufficiently prevented when determining the zero point

If these conditions cannot be avoided, it is advisable to keep the factory setting for the zero point.

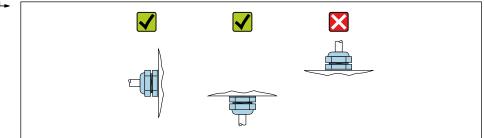
6.2 Installing the device

6.2.1 Required tools

For sensor

For flanges and other process connections: Use a suitable mounting tool.

6.2.2 Preparing the measuring instrument

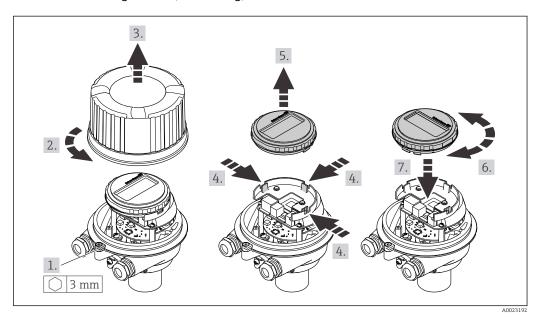

- 1. Remove all remaining transport packaging.
- 2. Remove any protective covers or protective caps present from the sensor.
- 3. Remove stick-on label on the electronics compartment cover.

6.2.3 Installing the measuring instrument

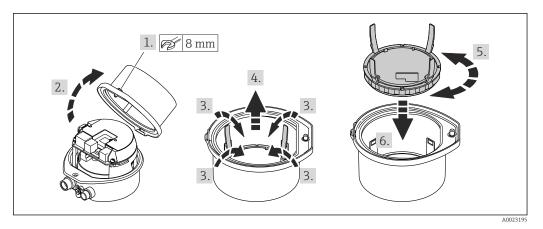
A WARNING

Danger due to improper process sealing!

- ► Ensure that the inside diameters of the gaskets are greater than or equal to that of the process connections and piping.
- ▶ Ensure that the seals and sealing surfaces are clean and undamaged.
- ► Secure the seals correctly.
- 1. Ensure that the direction of the arrow on the nameplate of the sensor matches the flow direction of the medium.
- 2. Install the measuring instrument or turn the transmitter housing so that the cable entries do not point upwards.


A0029263

6.2.4 Turning the display module


The local display is only available with the following device version: Order code for "Display; Operation", option ${\bf B}$: 4-line; lit, via communication

The display module can be turned to optimize display readability.

Aluminum housing version, AlSi10Mg, coated

Compact and ultra-compact housing version, hygienic, stainless

6.3 Post-installation check

Is the device undamaged (visual inspection)?	
Does the measuring instrument correspond to the measuring point specifications?	
For example: ■ Process temperature → 🗎 147 ■ Pressure (refer to the "Pressure-temperature ratings" section of the "Technical Information" document). ■ Ambient temperature → 🖺 146 ■ Measuring range	

Has the correct orientation for the sensor been selected $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
 According to sensor type According to medium temperature According to medium properties (outgassing, with entrained solids) 		
Does the arrow on the sensor match the direction of flow of the medium? $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
Is the tag name and labeling correct (visual inspection)?		
Is the device sufficiently protected from precipitation and direct sunlight?		
Are the securing screw and securing clamp tightened securely?		

7 **Electrical connection**

WARNING

Live parts! Incorrect work performed on the electrical connections can result in an electric shock.

- ▶ Set up a disconnecting device (switch or power-circuit breaker) to easily disconnect the device from the supply voltage.
- In addition to the device fuse, include an overcurrent protection unit with max. 16 A in the plant installation.

7.1 **Electrical safety**

In accordance with applicable national regulations.

7.2 Connecting requirements

7.2.1 Required tools

- For cable entries: Use corresponding tools
- For securing clamp (on aluminum housing): Allen screw3 mm
- For securing screw (for stainless steel housing): open-ended wrench 8 mm
- Wire stripper
- When using stranded cables: crimper for wire end ferrule

7.2.2 Requirements for connection cable

The connecting cables provided by the customer must fulfill the following requirements.

Permitted temperature range

- The installation quidelines that apply in the country of installation must be observed.
- The cables must be suitable for the minimum and maximum temperatures to be expected.

Power supply cable (incl. conductor for the inner ground terminal)

Standard installation cable is sufficient.

Signal cable

Pulse/frequency/switch output

Standard installation cable is sufficient.

PROFINET

Only PROFINET cables.

See https://www.profibus.com "PROFINET Planning guideline".

Cable diameter

Cable glands supplied: $M20 \times 1.5$ with cable Ø 6 to 12 mm (0.24 to 0.47 in)

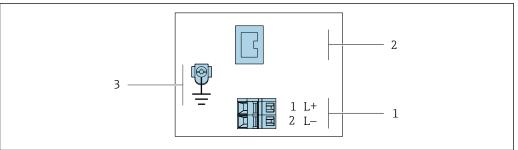
Spring terminals:

Wire cross-sections 0.5 to 2.5 mm² (20 to 14 AWG)

7.2.3 Terminal assignment

Transmitter

PROFINET connection version

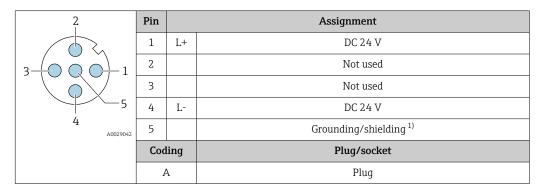

Order code for "Output", option **R**

Depending on the housing version, the transmitters can be ordered with terminals or device plugs.

Order code for "Housing"	Connection me	thods available	Dossible entines for order sede
	Output	Power supply	Possible options for order code "Electrical connection"
Options A, B	Device plug → 🖺 30	Terminals	■ Option L: plug M12x1 + thread NPT ½" ■ Option N: plug M12x1 + coupling M20 ■ Option P: plug M12x1 + thread G ½" ■ Option U: plug M12x1 + thread M20
Options A, B, C	Device plug → 🖺 30	Device plug → 🖺 30	Option I: plug M12x1

Order code for "Housing":

- Option A: compact, coated aluminum
- Option **B**: compact, hygienic, stainless
- Option **C**: ultra-compact, hygienic, stainless


№ 7 PROFINET terminal assignment

- Power supply: DC 24 V
- PROFINET 2
- Connection for cable shield (IO signals) if present and/or protective ground from the supply voltage if present. Not for option C "Ultra-compact, hygienic, stainless".

	Terminal number			
Order code for "Output"	Power	supply	Output	
	2 (L-)	1 (L+)	Device plug M12x1	
Option R	DC 24 V		PROFINET	
Order code for "Output": Option R : PROFINET				

7.2.4 Pin assignment, device plug

Supply voltage

Connection for protective ground and/or shielding from the supply voltage if present. Not for option C
"Ultra-compact, hygienic, stainless". Note: There is a metallic connection between the union nut of the M12
cable and the transmitter housing.

Device plug for signal transmission (device side)

2	Pin		Assignment
	1	+	TD +
1 3	2	+	RD +
4 A0016812	3	-	TD -
	4	-	RD -
	Cod	ing	Plug/socket
	Ι)	Socket

7.2.5 Preparing the device

NOTICE

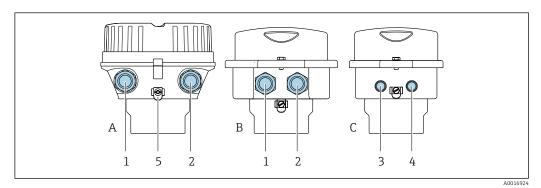
Insufficient sealing of the housing!

Operational reliability of the measuring device could be compromised.

- ▶ Use suitable cable glands corresponding to the degree of protection.
- 1. Remove dummy plug if present.
- 2. If the measuring instrument is supplied without cable glands: Provide suitable cable gland for corresponding connecting cable.
- 3. If the measuring instrument is supplied with cable glands: Observe requirements for connecting cables → \(\exists 28\).

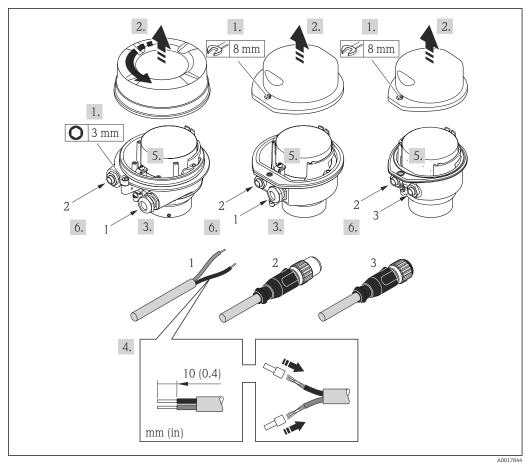
7.3 Connecting the device

NOTICE


An incorrect connection compromises electrical safety!

- ▶ Only properly trained specialist staff may perform electrical connection work.
- ▶ Observe applicable federal/national installation codes and regulations.
- Comply with local workplace safety regulations.
- ► Always connect the protective ground cable ⊕ before connecting additional cables.
- ▶ When using in potentially explosive atmospheres, observe the information in the device-specific Ex documentation.

7.3.1 Connecting the transmitter


The connection of the transmitter depends on the following order codes:

- Housing version: compact or ultra-compact
- Connection version: device plug or terminals

■ 8 Housing versions and connection versions

- A Housing version: compact, coated, aluminum
- *B* Housing version: compact, hygienic, stainless
- C Housing version: ultra-compact, hygienic, stainless
- 1 Cable entry or device plug for signal transmission
- 2 Cable entry or device plug for supply voltage
- 3 Device plug for signal transmission
- 4 Device plug for supply voltage
- 5 Ground terminal. Cable lugs, pipe clips or ground disks are recommended for optimization of the grounding/shielding.

■ 9 Device versions with connection examples

- 1 Cable
- 2 Device plug for signal transmission
- 3 Device plug for supply voltage

For device version with device plug: follow step 6 only.

- 1. Depending on the housing version, loosen the securing clamp or fixing screw of the housing cover.
- 2. Push the cable through the cable entry . To ensure tight sealing, do not remove the sealing ring from the cable entry.
- 3. Strip the cable and cable ends. In the case of stranded cables, also fit wire end ferrules.
- 4. Connect the cable in accordance with the terminal assignment or the device plug pin assignment.
- 5. Depending on the device version, tighten the cable glands or insert the device plug and tighten .

6. NOTICE

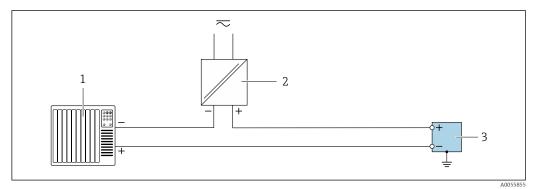
Housing degree of protection voided due to insufficient sealing of the housing.

► Screw in the screw without using any lubricant. The threads on the cover are coated with a dry lubricant.

Reassemble the transmitter in the reverse order.

7.4 Potential equalization

7.4.1 Requirements


For potential equalization:

- Pay attention to in-house grounding concepts
- Take account of operating conditions like the pipe material and grounding
- Connect the medium, sensor and transmitter to the same electric potential
- Use a ground cable with a minimum cross-section of 6 mm² (10 AWG) and a cable lug for potential equalization connections

7.5 Special connection instructions

7.5.1 Connection examples

Pulse output/frequency output/switch output

■ 10 Connection example for pulse output/frequency output/switch output (passive)

- 1 Automation system with pulse input/frequency input/switch input (e.g. PLC)
- 2 Power supply
- *3 Transmitter with pulse output/frequency output/switch output (passive)*

PROFINET

See https://www.profibus.com "PROFINET Planning guideline".

7.6 Hardware settings

7.6.1 Setting the device name

A measuring point can be quickly identified within a plant on the basis of the tag name. The tag name is equivalent to the device name (name of station of the PROFINET specification). The factory-assigned device name can be changed using the DIP switches or the automation system.

Example of device name (factory setting): EH-Promass100-XXXXX

ЕН	Endress+Hauser
Promass	Instrument family
100	Transmitter
XXXXX	Serial number of the device

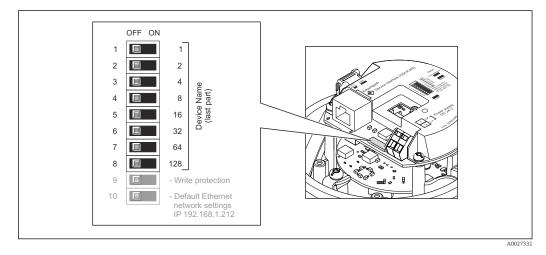
The device name currently used is displayed in Setup \rightarrow Name of station .

Setting the device name using the DIP switches

The last part of the device name can be set using DIP switches 1-8. The address range is between 1 and 254 (factory setting: serial number of the device)

Overview of the DIP switches

DIP switches	Bit	Description	
1	1		
2	2		
3	4		
4	8	Configurable part of the device name	
5	16	Configurable part of the device name	
6	32		
7	64		
8	128		
9	-	Enable hardware write protection	
10	-	Default IP address: use 192.168.1.212	


Example: set the device name EH-PROMASS100-065

DIP switches	ON/OFF	Bit
1	ON	1
26	OFF	-
7	ON	64
8	OFF	-

Setting the device name

Risk of electric shock when opening the transmitter housing.

▶ Disconnect the device from the power supply before opening the transmitter housing.

1. Depending on the housing version, loosen the securing clamp or fixing screw of the housing cover.

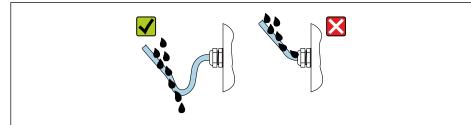
- 2. Depending on the housing version, unscrew or open the housing cover and disconnect the local display from the main electronics module where necessary → 155.
- 3. Set the desired device name using the corresponding DIP switches on the I/O electronics module.
- 4. Reverse the removal procedure to reassemble the transmitter.
- 5. Reconnect the device to the power supply. The configured device address is used once the device is restarted.
- If the device is reset via the PROFINET interface, it is not possible to reset the device name to the factory setting. The value 0 is used instead of the device name.

Setting the device name via the automation system

DIP switches 1-8 must all be set to **OFF** (factory setting) or all be set to **ON** to be able to set the device name via the automation system.

The complete device name (name of station) can be changed individually via the automation system.

- The serial number used as part of the device name in the factory setting is not saved. It is not possible to reset the device name to the factory setting with the serial number. The value 0 is used instead of the serial number.
 - When assigning the device name via the automation system, enter the device name in lower-case letters.


7.7 Ensuring the degree of protection

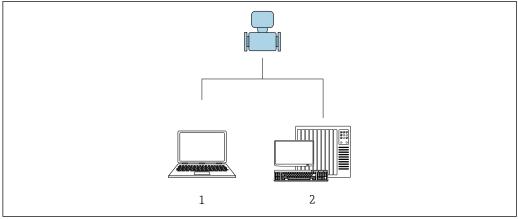
The measuring instrument fulfills all the requirements for the degree of protection IP66/67, Type 4X enclosure.

To ensure degree of protection IP66/67, Type 4X enclosure, carry out the following steps after making the electrical connection:

- 1. Check that the housing seals are clean and fitted correctly.
- 2. Dry, clean or replace the seals if necessary.
- 3. Tighten all housing screws and screw covers.
- 4. Firmly tighten the cable glands.
- 5. To ensure that moisture does not enter the cable entry:

 Route the cable so that it loops down before the cable entry ("water trap").

A0029278

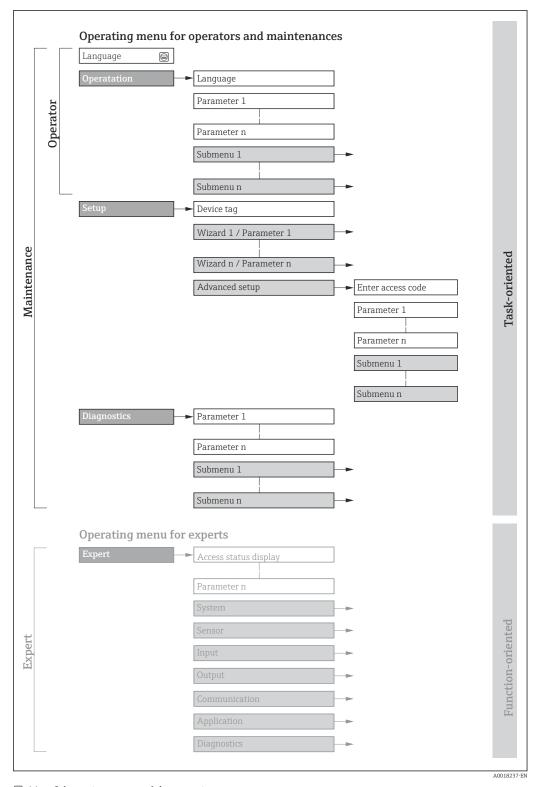

6. The supplied cable glands and plastic dummy plugs used for the threaded cable entries do not ensure degree of protection IP66/67, Type 4X enclosure. To achieve this degree of protection, cable glands and plastic dummy plugs that are not used must be replaced by threaded dummy plugs with the degree of protection IP66/67, Type 4X enclosure.

7.8 Post-connection check

Are the device and cable undamaged (visual inspection)?	
Do the cables used meet the requirements $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
Are the mounted cables strain-relieved and fixed securely in place?	
Are all cable glands installed, securely tightened and leak-tight? Cable run with "water trap" $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
Depending on the device version: Are all the device plugs firmly tightened $\Rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
Does the supply voltage match the specifications on the transmitter nameplate $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
Is the terminal assignment $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
If supply voltage is present: Is the power LED on the electronics module of the transmitter lit green $\Rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
Depending on the device version: Have the fixing screws been tightened with the correct tightening torque? Is the securing clamp securely tightened?	

8 Operation options

8.1 Overview of operation options



A0017760

- Computer with web browser or with "FieldCare" operating tool
- 2 Automation system, e.g. Siemens S7-300 or S7-1500 with Step7 or TIA portal and latest GSD file.

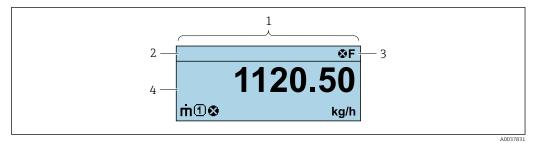
8.2 Structure and function of the operating menu

8.2.1 Structure of the operating menu

 $\blacksquare 11$ Schematic structure of the operating menu

8.2.2 Operating philosophy

The individual parts of the operating menu are assigned to certain user roles (e.g. operator, maintenance etc.). Each user role contains typical tasks within the device life cycle.


Menu/pa	arameter	User role and tasks	Content/meaning
Language	Task-	Role "Operator", "Maintenance"	Defining the operating language
Operation oriented		Tasks during operation: Configuring the operational display Reading measured values	 Defining the operating language Defining the web server operating language Resetting and controlling totalizers Configuring the operational display (e.g. display format, display contrast) Resetting and controlling totalizers
Setup		"Maintenance" role Commissioning: Configuring the measurement	Submenus for fast commissioning: Configuring the system units Defining the medium Configuring the operational display Configuring the low flow cut off Configuring the detection of partially filled and empty pipes Advanced setup For more customized configuration of the measurement (adaptation to special measuring conditions) Configuring totalizers Administration (define access code, reset measuring instrument)
Diagnostics		"Maintenance" role Troubleshooting: Diagnostics and elimination of process and device errors Measured value simulation	Contains all parameters for error detection and analyzing process and device errors: Diagnostic list Contains up to 5 currently pending diagnostic messages. Event logbook Contains event messages that have occurred. Device information Contains information for identifying the device. Measured values Contains all current measured values. Heartbeat Technology The functionality of the device is checked on demand and the verification results are documented. Simulation Used to simulate measured values or output values. Testpoints
Expert	Function- oriented	Tasks that require detailed knowledge of the function of the device: Commissioning measurements under difficult conditions Optimal adaptation of the measurement to difficult conditions Detailed configuration of the communication interface Error diagnostics in difficult cases	Contains all the parameters of the device and makes it possible to access these parameters directly using an access code. The structure of this menu is based on the function blocks of the device: System Contains all higher-level device parameters that do not affect measurement or measured value communication. Sensor Configuring the measurement. Communication Configuring the digital communication interface and the web server. Application Configuring the functions that go beyond the actual measurement (e.g. totalizer). Diagnostics Error detection and analysis of process and device errors and for device simulation and the Heartbeat Technology menu.

8.3 Displaying the measured values via the local display (optionally available)

8.3.1 Operational display

The local display is optionally available:

Order code for "Display; operation", option B "4-line, illuminated; via communication".

- 1 Operational display
- 2 Tag name
- 3 Status area
- 4 Display area for measured values (4-line)

Status area

The following symbols appear in the status area of the operational display at the top right:

- Status signals
 - **F**: Failure
 - **C**: Function check
 - **S**: Out of specification
 - M: Maintenance required
- Diagnostic behavior
 - 🐼: Alarm
 - <u></u> : Warning
- 🛱: Locking (the device is locked via the hardware)
- ←: Communication (communication via remote operation is active)

Display area

In the display area, each measured value is prefaced by certain symbol types for further description:

Measured variables

Symbol	Meaning
ṁ	Mass flow
Ü	Volume flowCorrected volume flow
ρ	DensityReference density
4	Temperature
Σ	Totalizer The measurement channel number indicates which of the three totalizers is displayed.

Measurement channel numbers

Symbol	Meaning
14	Measurement channel 1 to 4

The measurement channel number is displayed only if more than one channel is present for the same measured variable type (e.g. Totalizer 1 to 3).

Diagnostic behavior

The diagnostic behavior pertains to a diagnostic event that is relevant to the displayed measured variable. For information on the symbols

The number and display format of the measured values can only be configured via the control system or Web server.

8.3.2 User roles and related access authorization

The two user roles "Operator" and "Maintenance" have different write access to the parameters if the customer defines a user-specific access code. This protects the device configuration from unauthorized access .

Defining access authorization for user roles

An access code is not yet defined when the device is delivered from the factory. Access authorization (read and write access) to the device is not restricted and corresponds to the "Maintenance" user role.

- ▶ Define the access code.
 - The "Operator" user role is redefined in addition to the "Maintenance" user role. Access authorization differs for the two user roles.

Access authorization to parameters: "Maintenance" user role

Access code status	Read access	Write access
An access code has not yet been defined (factory setting).	V	V
After an access code has been defined.	V	✓ 1)

1) The user only has write access after entering the access code.

Access authorization to parameters: "Operator" user role

Access code status	Read access	Write access
After an access code has been defined.	V	_ 1)

- Despite the defined access code, certain parameters can always be modified and thus are excluded from the write protection as they do not affect the measurement: write protection via access code
- The user role with which the user is currently logged on is indicated by the . Navigation path:

8.4 Access to the operating menu via the web browser

8.4.1 Function range

The integrated web server can be used to operate and configure the device via a web browser service interface (CDI-RJ45) . In addition to the measured values, status information on the device is displayed and can be used to monitor device health.

Furthermore the device data can be managed and the network parameters can be configured.

For additional information on the web server, see the Special Documentation for the

8.4.2 **Prerequisites**

Computer hardware

Hardware	Interface		
	CDI-RJ45	WLAN	
Interface	The computer must have an RJ45 interface.	The operating unit must have a WLAN interface.	
Connection	Standard Ethernet cable with RJ45 connector.	Connection via Wireless LAN.	
Display	Recommended size: ≥12" (depends on the screen resolution)		

Computer software

Software	Interface		
	CDI-RJ45	WLAN	
Recommended operating systems	 Microsoft Windows 8 or higher. Mobile operating systems: iOS Android Microsoft Windows XP is supported Microsoft Windows 7 is supported. 		
Web browsers supported	 Microsoft Internet Explorer 8 or higher Microsoft Edge Mozilla Firefox Google Chrome Safari 		

Computer settings

User rights	Appropriate user rights (e.g. administrator rights) for TCP/IP and proxy server settings are necessary (for adjusting the IP address, subnet mask etc.).	
Proxy server settings of the Web browser	The web browser setting <i>Use a Proxy Server for Your LAN</i> must be deselected .	
JavaScript	JavaScript must be enabled.	
	If JavaScript cannot be enabled: Enter http://XXX.XXX.X.XX/servlet/basic.html in the address bar of the web browser, e.g. http://192.168.1.212/servlet/basic.html. A fully functional but simplified version of the operating menu structure starts in the web browser.	
Network connections	Only the active network connections to the measuring device should be used.	
	Switch off all other network connections.	

In the event of connection problems: $\rightarrow \triangleq 93$

Measuring device: Via CDI-RJ45 service interface

Device	CDI-RJ45 service interface
Measuring device	The measuring device has an RJ45 interface.
Web server	Web server must be enabled; factory setting: ON
	For information on enabling the Web server → 🖺 46

8.4.3 Connecting the device

Via service interface (CDI-RJ45)

Preparing the measuring device

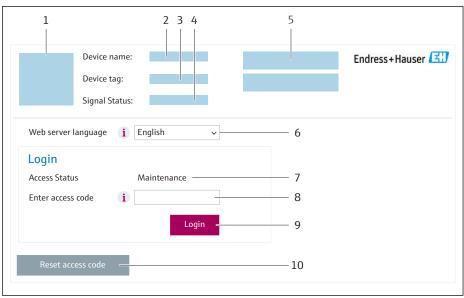
Configuring the Internet protocol of the computer

The IP address can be assigned to the measuring device in a variety of ways:

- Dynamic Configuration Protocol (DCP), factory setting:
 The IP address is automatically assigned to the measuring device by the automation system (e.g. Siemens S7).
- Hardware addressing:
 - The IP address is set via DIP switches .
- Software addressing:
 - The IP address is entered via the **IP address** parameter ($\Rightarrow \triangleq 65$).
- DIP switch for "Default IP address":
 To establish the network connection via the service interface (CDI-RJ45): the fixed IP address 192.168.1.212 is used .

The device works with the Dynamic Configuration Protocol (DCP) ex-works, i.e. the IP address of the measuring device is automatically assigned by the automation system (e.g. Siemens S7).

To establish a network connection via the service interface (CDI-RJ45): set the "Default IP address" DIP switch to **ON**. The measuring device then has the fixed IP address: 192.168.1.212. The fixed IP address 192.168.1.212 can now be used to establish the connection to the network.


- 1. Via DIP switch 2, activate the default IP address 192.168.1.212: .
- 2. Switch on the measuring device.
- 3. Connect the computer to the RJ45 plug via the standard Ethernet cable $\rightarrow \triangleq 155$.
- 4. If a 2nd network card is not used, close all the applications on the notebook.
 - Applications requiring Internet or a network, such as e-mail, SAP applications, Internet or Windows Explorer.
- 5. Close any open Internet browsers.
- 6. Configure the properties of the Internet protocol (TCP/IP) as defined in the table:

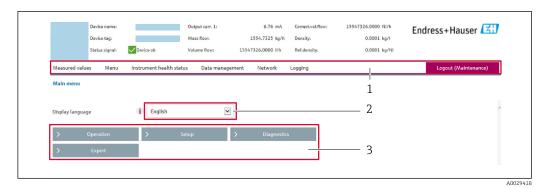
IP address	192.168.1.XXX; for XXX all numerical sequences except: 0, 212 and 255 \rightarrow e.g. 192.168.1.213
Subnet mask	255.255.255.0
Default gateway	192.168.1.212 or leave cells empty

Starting the web browser

1. Start the web browser on the computer.

- 2. Enter the IP address of the web server in the address line of the web browser: 192.168.1.212
 - ► The login page appears.

- 1 Picture of device
- 2 Device name
- 3 Device tag
- 4 Status signal
- 5 Current measured values
- 6 Operating language
- 7 User role
- 8 Access code
- 9 Login
- 10 Reset access code
- If a login page does not appear, or if the page is incomplete $\rightarrow \triangleq 93$


8.4.4 Logging on

- 1. Select the preferred operating language for the Web browser.
- 2. Enter the user-specific access code.
- 3. Press **OK** to confirm your entry.

Access code 0000 (factory setting); can be changed by customer

If no action is performed for 10 minutes, the Web browser automatically returns to the login page.

8.4.5 User interface

- 1 Function row
- 2 Local display language
- 3 Navigation area

Header

The following information appears in the header:

- Device name
- Device tag
- Device status with status signal → 🖺 96
- Current measured values

Function row

Functions	Meaning	
Measured values	Displays the measured values of the measuring instrument	
Menu	 Access to the operating menu from the measuring instrument The structure of the operating menu is the same as for the operating tools Detailed information on the "Description of Device Parameters" operating menu 	
Device status	Displays the diagnostic messages currently pending, listed in order of priority	
Data management	Data exchange between computer and measuring instrument: Device configuration: Load settings from the device (XML format, save configuration) Save settings to the device (XML format, restore configuration) Logbook - Export Event logbook (.csv file) Documents - Export documents: Export backup data record (.csv file, create documentation of the measuring point configuration) Verification report (PDF file, only available with the "Heartbeat Verification" application package) File for system integration - If using fieldbuses, upload device drivers for system integration from the measuring instrument: PROFINET: GSD file	
Network	Configuration and checking of all the parameters required for establishing the connection to the measuring instrument: Network settings (e.g. IP address, MAC address) Device information (e.g. serial number, firmware version)	
Logout	End the operation and call up the login page	

Navigation area

The menus, the associated submenus and parameters can be selected in the navigation area.

Working area

Depending on the selected function and the related submenus, various actions can be performed in this area:

- Configuring parameters
- Reading measured values
- Calling up help text
- Starting an upload/download

8.4.6 Disabling the Web server

The Web server of the measuring device can be switched on and off as required using the **Web server functionality** parameter.

Navigation

"Expert" menu \rightarrow Communication \rightarrow Web server

Parameter overview with brief description

Parameter	Description	Selection
Web server functionality	Switch the Web server on and off.	OffHTML OffOn

Function scope of the "Web server functionality" parameter

Option	Description
Off	The Web server is completely disabled.Port 80 is locked.
On	 The complete Web server functionality is available. JavaScript is used. The password is transferred in an encrypted state. Any change to the password is also transferred in an encrypted state.

Enabling the Web server

If the Web server is disabled it can only be re-enabled with the **Web server functionality** parameter via the following operating options:

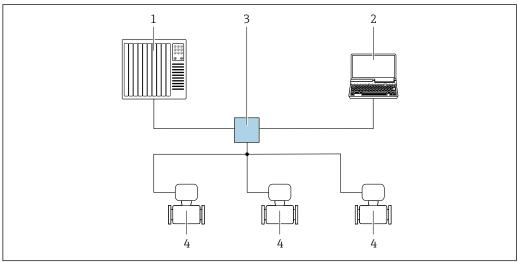
- Via Bedientool "FieldCare"
- Via "DeviceCare" operating tool

8.4.7 Logging out

- Before logging out, perform a data backup via the **Data management** function (upload configuration from device) if necessary.
- 1. Select the **Logout** entry in the function row.
 - ► The home page with the Login box appears.
- 2. Close the Web browser.
- 3. If no longer needed:

 Reset the modified properties of the Internet protocol (TCP/IP) →

 43.
- If communication with the web server was established via the default IP address 192.168.1.212, DIP switch no. 10 must be reset (from $ON \rightarrow OFF$). Afterwards, the IP address of the device is active again for network communication.


8.5 Access to the operating menu via the operating tool

8.5.1 Connecting the operating tool

Via PROFINET network

This communication interface is available in device versions with PROFINET.

Star topology



■ 12 Options for remote operation via PROFINET network: star topology

- 1 Automation system, e.g. Simatic S7 (Siemens)
- 2 Computer with web browser for accessing integrated web server or computer with operating tool (e.g. FieldCare, DeviceCare, SIMATIC PDM) with COM DTM "CDI Communication TCP/IP"
- 3 Standard Ethernet switch, e.g. Scalance X204 (Siemens)
- 4 Measuring instrument

Via service interface (CDI-RJ45)

PROFINET

A001694

Connection for order code for "Output", option R: PROFINET

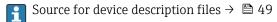
- Service interface (CDI-RJ45) and PROFINET interface of the measuring instrument with access to the integrated web server
- 2 Computer with web browser for accessing the integrated web server or with FieldCare operating tool with COM DTM "CDI Communication TCP/IP"
- 3 Standard Ethernet connecting cable with RJ45 plug

8.5.2 FieldCare

Function range

FDT-based (Field Device Technology) plant asset management tool from Endress+Hauser. It can configure all smart field units in a system and helps you manage them. By using the status information, it is also a simple but effective way of checking their status and condition.

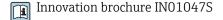
Access is via:


CDI-RJ45 service interface

Typical functions:

- Transmitter parameter configuration
- Loading and saving of device data (upload/download)
- Documentation of the measuring point
- Visualization of the measured value memory (line recorder) and event logbook

- Operating Instructions BA00027S
- Operating Instructions BA00059S



8.5.3 DeviceCare

Function range

Tool for connecting and configuring Endress+Hauser field devices.

The fastest way to configure Endress+Hauser field devices is with the dedicated "DeviceCare" tool. Together with the device type managers (DTMs) it presents a convenient, comprehensive solution.

Source for device description files $\rightarrow \triangleq 49$

System integration 9

Overview of device description files 9.1

9.1.1 Current version data for the device

Firmware version	01.00.zz	 On the title page of the manual On the transmitter nameplate Firmware version Diagnostics → Device information → Firmware version
Release date of firmware version	12.2015	-
Manufacturer ID	0x11	Manufacturer ID Diagnostics → Device information → Manufacturer ID
Device ID	0x844A	Device ID Expert → Communication → PROFINET configuration → PROFINET information → Device ID
Device type code	Promass 100	Device Type Expert → Communication → PROFINET configuration → PROFINET information → Device Type
Device revision	1	Device revision Expert → Communication → PROFINET configuration → PROFINET information → Device revision
PROFINET version	2.3.x	-

For an overview of the various firmware versions for the device

9.1.2 Operating tools

The suitable device description file for the individual operating tools is listed in the table below, along with information on where the file can be acquired.

Operating tool via Service interface (CDI-RJ45)	Sources for obtaining device descriptions	
FieldCare	 www.endress.com → Downloads area USB stick (contact Endress+Hauser) E-mail → Downloads area 	
DeviceCare	 www.endress.com → Downloads area E-mail → Downloads area 	

9.2 Device master file (GSD)

In order to integrate field devices into a bus system, the PROFIBUS system needs a description of the device parameters, such as output data, input data, data format and data volume.

These data are available in the device master file (GSD) which is provided to the automation system when the communication system is commissioned. In addition device bit maps, which appear as icons in the network structure, can also be integrated.

The device master file (GSD) is in XML format, and the file is created in the GSDML description markup language.

With the PA Profile 4.02 device master file (GSD) it is possible to exchange field devices made by different manufacturers without having to reconfigure.

Two different device master files (GSD) can be used: Manufacturer-specific GSD and PA Profile GSD.

9.2.1 File name of the manufacturer-specific device master file (GSD)

Example of the name of a device master file:

GSDML-V2.3.x-EH-PROMASS 100-yyyymmdd.xml

GSDML	Description language
V2.3.x	Version of the PROFINET specification
ЕН	Endress+Hauser
PROMASS	Instrument family
100	Transmitter
yyyymmdd	Date of issue (yyyy: year, mm: month, dd: day)
.xml	File name extension (XML file)

9.2.2 File name of the PA Profile device master file (GSD)

9.3 Cyclic data transmission

9.3.1 Overview of the modules

The following tables shows which modules are available to the measuring device for cyclic data exchange. Cyclic data exchange is performed with an automation system.

Measuring device			Direction	Control system
Modules		Slot	Data flow	Control system
Analog Input module → 🖺	1 51	1 to 14	→	
Digital Input module → 🖺	1 52	1 to 14	→	
Diagnose Input module → 🖺	1 53	1 to 14	→	
Analog Output module → 🖺	1 56	18, 19, 20	+	
Digital Output module → 🖺	1 57	21, 22	+	PROFINET
Totalizer 1 to 3 → 🖺	1 54	15 to 17	← →	
Heartbeat Verification module → 🖺	1 58	23	← →	
Totalizer 1 to 3 → €	∄ 54	15 to 17	← →	PROFINE

9.3.2 Description of the modules

The data structure is described from the perspective of the automation system:

- Input data: Are sent from the measuring device to the automation system.
- Output data: Are sent from the automation system to the measuring device.

Analog Input module

Transmit input variables from the measuring device to the automation system.

Analog Input modules cyclically transmit the selected input variables, along with the status, from the measuring device to the automation system. The input variable is depicted in the first four bytes in the form of a floating point number as per the IEEE 754 standard. The fifth byte contains status information pertaining to the input variable.

Selection: input variable

Slot	Input variables
1 to 14	■ Mass flow ■ Volume flow ■ Corrected volume flow ■ Target mass flow ¹¹ ■ Carrier mass flow ■ Density ■ Reference density ■ Concentration ■ Temperature ■ Carrier tube temperature ²¹ ■ Electronic temperature ■ Oscillation frequency ■ Oscillation amplitude ■ Frequency fluctuation ■ Oscillation damping ■ Tube damping fluctuation ■ Signal asymmetry ■ Exciter current

- 1) Only available with the Concentration application package
- 2) Only available with the Heartbeat Verification application package

Data structure

Input data of Analog Input

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
Measured value: floating point number (IEEE 754)				Status 1)

Application-specific Input module

Transmit compensation values from the measuring device to the automation system.

The Application-specific Input module cyclically transmits compensation values, including the status, from the measuring device to the automation system. The compensation value is depicted in the first four bytes in the form of a floating point number as per the IEEE 754 standard. The fifth byte contains standardized status information pertaining to the compensation value.

Assigned compensation values

The configuration is performed via: Expert \rightarrow Application \rightarrow Application specific calculations \rightarrow Process variables

Slot	Compensation value
31	Application-specific Input module
32	Application-specific Input module

Data structure

Input data of Application-specific Input module

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
Measured value: floating point number (IEEE 754)				Status 1)

1) Status coding

Failsafe mode

A failsafe mode can be defined for using the compensation values.

If the status is GOOD or UNCERTAIN, the compensation values transmitted by the automation system are used. If the status is BAD, the failsafe mode is activated for the use of the compensation values.

Parameters are available per compensation value to define the failsafe mode: Expert \rightarrow Application \rightarrow Application specific calculations \rightarrow Process variables

Fail safe type parameter

- Fail safe value option: The value defined in the Fail safe value parameter is used.
- Fallback value option: The last valid value is used.
- Off option: Failsafe mode is disabled.

Fail safe value parameter

Use this parameter to enter the compensation value which is used if the Fail safe value option is selected in the Fail safe type parameter.

Digital Input module

Transmit digital input values from the measuring device to the automation system.

Digital input values are used by the measuring device to transmit the state of device functions to the automation system.

Digital Input modules cyclically transmit discrete input values, including the status, from the measuring device to the automation system. The discrete input value is depicted in the first byte. The second byte contains standardized status information pertaining to the input value.

Selection: device function

Slot	Device function	Status (meaning)
1 to 14	Empty pipe detection	 0 (device function not active)
	Low flow cut off	1 (device function active)

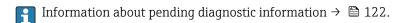
Data structure

Input data of Digital Input

Byte 1	Byte 2
Digital Input	Status 1)

1) Status coding $\rightarrow \blacksquare 59$

Diagnose Input module


Transmit discrete input values (diagnostic information) from the measuring device to the automation system.

Diagnostic information is used by the measuring device to transmit the device status to the automation system.

Diagnose Input modules transmit discrete input values from the measuring device to the automation system. The first two bytes contain the information regarding the diagnostic information number ($\Rightarrow \implies 101$). The third byte provides the status.

Selection: device function

Slot	Device function	Status (meaning)
1 to 14	Last diagnostics	Diagnostic information number
11014	Current diagnosis	(→ 🖺 101) and status

Data structure

Input data of Diagnose Input

Byte 1	Byte 2	Byte 3	Byte 4
Diagnostic information number		Status	Value 0

Status

Coding (hex)	Status
0x00	No device error is present.
0x01	Failure (F): A device error is present. The measured value is no longer valid.

Coding (hex)	Status
0x02	Function check (C): The device is in service mode (e.g. during a simulation).
0x04	Maintenance required (M): Maintenance is required. The measured value is still valid.
0x08	Out of specification (S): The device is being operated outside its technical specification limits (e.g. process temperature range).

Totalizer module

The Totalizer module consists of the Totalizer Value, Totalizer Control and Totalizer Mode submodules.

Totalizer Value submodule

Transmit transmitter value from the device to the automation system.

Totalizer modules cyclically transmit a selected totalizer value, along with the status, from the measuring device to the automation system via the Totalizer Value submodule. The totalizer value is depicted in the first four bytes in the form of a floating point number as per the IEEE 754 standard. The fifth byte contains status information pertaining to the totalizer value.

Selection: input variable

Slot	Sub-slot	Input variable
1517	1	 Mass flow Volume flow Corrected volume flow Target mass flow 1) Carrier mass flow 1)

1) Only available with the Concentration application package

Data structure of input data (Totalizer Value submodule)

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
Measured value: floating point number (IEEE 754)				Status 1)

Totalizer Control module

Transmit totalizer value from the measuring device to the automation system.

Selection: input variable

Data structure

Totalizer Control input data

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
Measure	Measured value: floating point number (IEEE 754)			

1) Status coding

Selection: output variable

Transmit the control value from the automation system to the measuring device.

Slot	Sub-slot	Value	Input variable
		1	Reset to "0"
70 to 71	1	2	Preset value
70 t0 /1	1	3	Stop
		4	Totalize

Data structure

Totalizer Control output data

Byte 1
Control variable

Totalizer Control submodule

Control the totalizer via the automation system.

Selection: control totalizer

Slot	Sub-slot	Value	Control totalizer
1517		0	Totalize
		1 Reset + hold	Reset + hold
	2.	2	Preset + hold
	Δ	3	Reset + totalize
		4	Preset + totalize
		5	Hold

Data structure of output data (Totalizer Control submodule)

	Byte 1
Cor	ntrol variable

Totalizer Mode submodule

Configure the totalizer via the automation system.

Selection: totalizer configuration

Slot	Sub-slot	Value	Control totalizer
		0	Balancing
1517	3	1	Balance the positive flow
		2	Balance the negative flow

Data structure of output data (Totalizer Mode submodule)

Byte 1	
Configuration variable	

Analog Output module

Transmit compensation values from the automation system to the measuring device.

Analog Output modules cyclically transmit compensation values, along with the status and the associated unit, from the automation system to the measuring device. The compensation value is depicted in the first four bytes in the form of a floating point number as per the IEEE 754 standard. The fifth byte contains standardized status information pertaining to the compensation value. The unit is transmitted in the sixth and seventh byte.

Assigned compensation values

•

The configuration is performed via: Expert \rightarrow Sensor \rightarrow External compensation

Slot	Compensation value
18	External pressure
19	External temperature
20	External reference density
29	External value for % S&W (sediment and water) 1)
30	External value for % Water cut ¹⁾

1) Only available with the Petroleum application package.

Available units

Pressure		Tempe	erature	Den	Density		Percent	
Unit code	Unit	Unit code	Unit	Unit code	Unit	Unit code	Unit	
1610	Ра а	1001	°C	32840	kg/Nm³	1342	%	
1616	kPa a	1002	°F	32841	kg/Nl			
1614	МРа а	1000	K	32842	g/Scm ₃			
1137	bar	1003	°R	32843	kg/Scm ₃			
1611	Pa g			32844	lb/Sft ₃			
1617	kPa g							
1615	MPa g							
32797	bar g							
1142	psi a							
1143	psi g							

Data structure

Output data of Analog Output

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
Measured value: floating point number (IEEE 754)			Status 1)	Unit	code	

1) Status coding → 🖺 59

Failsafe mode

A failsafe mode can be defined for using the compensation values.

If the status is GOOD or UNCERTAIN, the compensation values transmitted by the automation system are used. If the status is BAD, the failsafe mode is activated for the use of the compensation values.

Parameters are available per compensation value to define the failsafe mode: Expert \rightarrow Sensor \rightarrow External compensation

Fail safe type parameter

- Fail safe value option: The value defined in the Fail safe value parameter is used.
- Fallback value option: The last valid value is used.
- Off option: The failsafe mode is disabled.

Fail safe value parameter

Use this parameter to enter the compensation value which is used if the Fail safe value option is selected in the Fail safe type parameter.

Digital Output module

Transmit digital output values from the automation system to the measuring device.

Digital output values are used by the automation system to enable and disable device functions.

Digital output values cyclically transmit discrete output values, including the status, from the automation system to the measuring device. The discrete output value is transmitted in the first byte. The second byte contains status information pertaining to the output value.

Assigned device functions

Slot	Device function	Status (meaning)
21	Flow override	■ 0 (disable device function)
22	Zero adjust	■ 1 (enable device function)
24 to 26	Relay output	Relay output value: 0 1

Data structure

Output data of Digital Output

Byte 1	Byte 2
Digital Output	Status 1) 2)

- 2) If the status is BAD, the control variable is not adopted.

Heartbeat Verification module

Receive discrete output values from the automation system and transmit discrete input values from the measuring instrument to the automation system.

The Heartbeat Verification module receives discrete output data from the automation system and transmits discrete input data from the measuring instrument to the automation system.

The discrete output value is provided by the automation system to start a Heartbeat Verification. The discrete input value is depicted in the first byte. The second byte contains status information pertaining to the input value.

The discrete input value is used by the measuring instrument to send the status of the Heartbeat Verification device functions to the automation system. The module cyclically transmits the discrete input value, along with the status, to the automation system. The

discrete input value is depicted in the first byte. The second byte contains status information pertaining to the input value.

•

Only available with the Heartbeat Verification application package.

Assigned device functions

Slot	Device function	Bit	Verification status
		0	Verification has not been performed
	Verification status (input data)	1	The device has failed the verification
		2	Currently performing verification
		3	Verification finished
		Bit	Verification result
23	Verification result (input data)	4	The device has failed the verification
		5	Verification performed successfully
		6	Verification has not been performed
		7	-
	Start the verification	Verification control	
	(output data)	A stat	us change from 0 to 1 starts the verification

Data structure

Output data of Heartbeat Verification module

Byte 1	
Discrete Output	

Input data of Heartbeat Verification module

Byte 1	Byte 2
Discrete Input	Status ¹⁾

1) Status coding → 🖺 59

Concentration module

i

Only available with the Concentration Measurement application package.

Assigned device functions

Slot	Input variables
28	Selection of the liquid type

Data structure

Concentration output data

Byte 1	
Control variable	

Liquid type	Enum code
Off	0
Sucrose in water	5
Glucose in water	2
Fructose in water	1
Invert sugar in water	6
Corn syrup HFCS42	15
Corn syrup HFCS55	16
Corn syrup HFCS90	17
Original wort	18
Ethanol in water	11
Methanol in water	12
Hydrogen peroxide in water	4
Hydrochloric acid	24
Sulfuric acid	25
Nitric acid	7
Phosphoric acid	8
Sodium hydroxide	10
Potassium hydroxide	9
Ammonium nitrate in water	13
Iron(III) chloride in water	14
% mass / % volume	19
User Profile Coef Set No. 1	21
User Profile Coef Set No. 2	22
User Profile Coef Set No. 3	23

9.3.3 Status coding

Status	Coding (hex)	Meaning
BAD - Maintenance alarm	0x24	A measured value is not available because a device error has occurred.
BAD - Process related 0x28		A measured value is not available because the process conditions are not within the device's technical specification limits.
BAD - Function check	0x3C	A function check is active (e.g. cleaning or calibration)
UNCERTAIN - Initial value	0x4F	A predefined value is output until a correct measured value is available again or corrective measures have been performed that change this status.
UNCERTAIN - Maintenance demanded	0x68	Signs of wear and tear have been detected on the measuring instrument. Short-term maintenance is necessary to ensure that the measuring instrument remains ready for use. The measured value might be invalid. The use of the measured value depends on the application.
UNCERTAIN - Process related	0x78	The process conditions are not within the device's technical specification limits. This could have a negative impact on the quality and accuracy of the measured value. The use of the measured value depends on the application.

Status	Coding (hex)	Meaning
GOOD - OK	0x80	No error has been diagnosed.
GOOD - Maintenance demanded	0xA8	The measured value is valid. It is strongly recommended to service the device in the near future.
GOOD - Function check	0xBC	The measured value is valid. The measuring instrument is performing an internal function check. The function check does not have any noticeable effect on the process.

9.3.4 Factory setting

The slots are already assigned in the automation system for initial commissioning.

Assigned slots

Slot	Factory setting
1	Mass flow
2	Volume flow
3	Corrected volume flow
4	Density
5	Reference density
6	Temperature
7 to 14	-
15	Totalizer 1
16	Totalizer 2
17	Totalizer 3

9.3.5 Startup configuration

If startup configuration is enabled, the configuration of the most important device parameters is taken from the automation system and used. The following configurations are taken from the automation system.

Startup configuration (NSU)

- Management:
 - Software revision
 - Write protection
 - Web server functionality
- System units:
 - Mass flow
 - Mass
 - Volume flow
 - Volume
 - Corrected volume flow
 - Corrected volume
 - Density
 - Reference density
 - Temperature
 - Pressure
- Concentration application package:
 - Coefficients A0 to A4
 - Coefficients B1 to B3
 - Medium type
- Sensor adjustment
- Process parameter:
 - Damping (flow, density, temperature)
 - Flow override
- Low flow cut off:
 - Assign process variable
 - Switch-on/switch-off point
 - Pressure shock suppression
- Empty pipe detection:
 - Assign process variable
 - Limits
 - Response time
 - Max. damping
- Corrected volume flow calculation:
 - External reference density
 - Fixed reference density
 - Reference temperature
 - Linear expansion coefficient
 - Square expansion coefficient
- Measuring mode:
 - Medium
 - Gas type
 - Reference sound velocity
 - Temperature coefficient sound velocity
- External compensation:
 - Pressure compensation
 - Pressure value
 - External pressure
- Alarm delay
- Diagnostic settings
- Diagnostic behavior for diverse diagnostic information
- Petroleum application package:
 - Petroleum mode
 - Water density unit
 - Water reference density unit
 - Oil density unit
 - Oil sample density
 - Oil sample temperature
 - Oil sample pressure
 - Water sample density
 - Water sample temperature
 - API commodity group
 - API table selection
 - Thermal expansion coefficient

10 Commissioning

10.1 Post-installation and post-connection check

Before commissioning the device:

- ► Make sure that the post-installation and post-connection checks have been performed successfully.
- Checklist for "Post-installation" check → 🗎 26

10.2 Identifying the device in the PROFINET network

A device can be quickly identified within a plant using the PROFINET flash function. If the PROFINET flash function is activated in the automation system, the LED indicating the network status flashes and the red backlight of the onsite display is switched on.

10.3 Startup parameterization

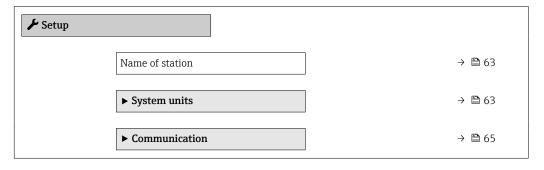
By activating the startup parameterization function (NSU: Normal Startup Unit), the configuration of the most important measuring device parameters is taken from the automation system.

i

Configurations taken from the automation system.

10.4 Connecting via FieldCare

- For connecting FieldCare
- For connecting via FieldCare
- For user interface of FieldCare


10.5 Setting the operating language

Factory setting: English or ordered local language

The operating language can be set in FieldCare, DeviceCare or via the Web server: Operation \rightarrow Display language

10.6 Configuring the device

The **Setup** menu with its submenus contains all the parameters needed for standard operation.

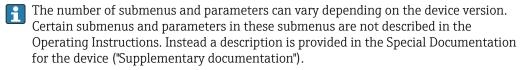
► Medium selection	→ 🖺 67
► Low flow cut off	→ 🖺 69
► Partially filled pipe detection	
► Advanced setup	→ 🖺 71

10.6.1 Defining the tag name

A measuring point can be quickly identified within a plant on the basis of the tag name. The tag name is equivalent to the device name (name of station) of the PROFINET specification (data length: 255 bytes)

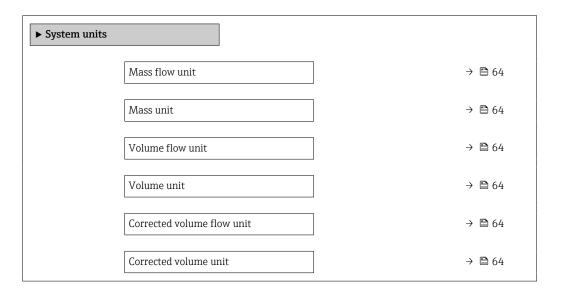
The device name currently used is displayed in the **Name of station** parameter.

Navigation


"Setup" menu → PROFINET device name

Parameter overview with brief description

Parameter	Description	User interface	Factory setting
Name of station	J	Max. 32 characters such as letters and numbers.	EH-PROMASS100 serial


10.6.2 Setting the system units

In the **System units** submenu the units of all the measured values can be set.

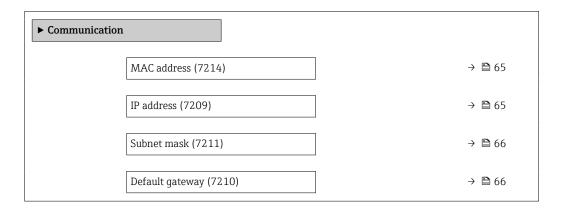
Navigation

"Setup" menu \rightarrow Advanced setup \rightarrow System units

Density unit	→ 🖺 64
Reference density unit	→ 🖺 64
Temperature unit	→ 🖺 65
Pressure unit	→ 🖺 65

Parameter overview with brief description

Parameter	Description	Selection	Factory setting
Mass flow unit	Select mass flow unit. Effect The selected unit applies to: Output Low flow cut off Simulation process variable	Unit choose list	Country-specific: kg/h lb/min
Mass unit	Select mass unit.	Unit choose list	Country-specific: kg lb
Volume flow unit	Select volume flow unit. Effect The selected unit applies to: Output Low flow cut off Simulation process variable	Unit choose list	Country-specific: l/h gal/min (us)
Volume unit	Select volume unit.	Unit choose list	Country-specific: • 1 (DN > 150 (6"): m³ option) • gal (us)
Corrected volume flow unit	Select corrected volume flow unit. Effect The selected unit applies to: Corrected volume flow parameter (→ 🖺 83)	Unit choose list	Country-specific: NI/h Sft³/min
Corrected volume unit	Select corrected volume unit.	Unit choose list	Country-specific: NI Sft³
Reference density unit	Select reference density unit.	Unit choose list	Country-specific kg/Nl lb/Sft³
Density unit	Select density unit. Effect The selected unit applies to: Output Simulation process variable Density adjustment (Expert menu)	Unit choose list	Country-specific: kg/l lb/ft³
Density 2 unit	Select second density unit.	Unit choose list	Country-specific: • kg/l • lb/ft³


Parameter	Description	Selection	Factory setting
Temperature unit	Select temperature unit. Effect The selected unit applies to: • Electronic temperature parameter (6053) • Maximum value parameter (6051) • Minimum value parameter (6052) • External temperature parameter (6080) • Maximum value parameter (6108) • Minimum value parameter (6109) • Carrier pipe temperature parameter (6027) • Maximum value parameter (6030) • Reference temperature parameter (1816) • Temperature parameter	Unit choose list	Country-specific:
Pressure unit	Select process pressure unit. Effect The unit is taken from: • Pressure value parameter (→ 🖺 68) • External pressure parameter (→ 🖺 68) • Pressure value	Unit choose list	Country-specific: • bar a • psi a

10.6.3 Displaying the communication interface

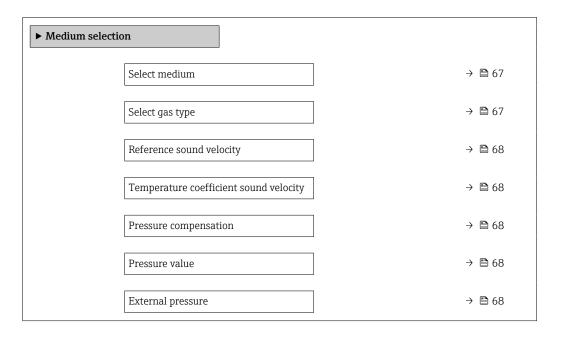
The **Communication** submenu shows all the current parameter settings for selecting and configuring the communication interface.

Navigation

"Setup" menu \rightarrow Communication

Parameter overview with brief description

Parameter	Description	User interface	Factory setting
MAC address	Displays the MAC address of the measuring instrument. MAC = Media Access Control	Unique 12-digit character string comprising letters and numbers, e.g.: 00:07:05:10:01:5F	Each measuring instrument is given an individual address.
IP address	IP address of the Web server integrated in the measuring instrument. If the DHCP client and write access are switched off, the IP address can also be	4 octet: 0 to 255 (in the particular octet)	-
	entered.		


Parameter	Description	User interface	Factory setting
Subnet mask	Displays the subnet mask. If the DHCP client and write access are switched off, the Subnet mask can also be entered.	4 octet: 0 to 255 (in the particular octet)	-
Default gateway	Displays the default gateway. If the DHCP client and write access are switched off, the Default gateway can also be entered.	4 octet: 0 to 255 (in the particular octet)	-

10.6.4 Selecting and setting the medium

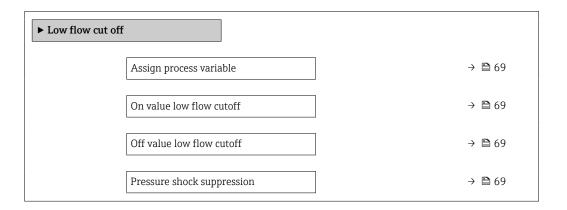
The **Select medium** wizard submenu contains parameters that must be configured in order to select and set the medium.

Navigation

"Setup" menu \rightarrow Medium selection

Parameter overview with brief description

Parameter	Prerequisite	Description	Selection / User entry
Select medium	-	Use this function to select the type of medium: "Gas" or "Liquid". Select the "Other" option in exceptional cases in order to enter the properties of the medium manually (e.g. for highly compressive liquids such as sulfuric acid).	LiquidGas
Select gas type	In the Medium selection submenu, the Gas option is selected.	Select measured gas type.	 Air Ammonia NH3 Argon Ar Sulfur hexafluoride SF6 Oxygen O2 Ozone O3 Nitrogen oxide NOx Nitrogen N2 Nitrous oxide N2O Methane CH4 Hydrogen H2 Helium He Hydrogen chloride HCl Hydrogen sulfide H2S Ethylene C2H4 Carbon dioxide CO2 Carbon monoxide CO Chlorine Cl2 Butane C4H1O Propane C3H8 Propylene C3H6 Ethane C2H6 Others


Parameter	Prerequisite	Description	Selection / User entry
Reference sound velocity	In the Select gas type parameter, the Others option is selected.	Enter sound velocity of gas at 0 °C (32 °F).	1 to 99 999.9999 m/s
Temperature coefficient sound velocity	In the Select gas type parameter, the Others option is selected.	Enter temperature coefficient for the gas sound velocity.	Positive floating-point number
Pressure compensation	-	Select pressure compensation type.	OffFixed valueExternal value
Pressure value	In the Pressure compensation parameter, the Fixed value option or the Current input 1n option is selected.	Enter process pressure to be used for pressure correction.	Positive floating-point number
External pressure	In the Pressure compensation parameter, the External value option is selected.	Shows the external, fixed process pressure value.	

10.6.5 Configuring the low flow cut off

The **Low flow cut off** submenu contains the parameters that must be set in order to configure the low flow cut off.

Navigation

"Setup" menu \rightarrow Low flow cut off

Parameter overview with brief description

Parameter	Prerequisite	Description	Selection / User entry	Factory setting
Assign process variable	-	Select process variable for low flow cut off.	 Off Mass flow Volume flow Corrected volume flow	-
On value low flow cutoff	A process variable is selected in the Assign process variable parameter ($\rightarrow \triangleq 69$).	Enter on value for low flow cut off.	Positive floating- point number	Depends on country and nominal diameter
Off value low flow cutoff	A process variable is selected in the Assign process variable parameter ($\rightarrow \implies 69$).	Enter off value for low flow cut off.	0 to 100.0 %	_
Pressure shock suppression	A process variable is selected in the Assign process variable parameter (→ 🖺 69).	Enter time frame for signal suppression (= active pressure shock suppression).	0 to 100 s	-

10.6.6 Partially filled pipe detection

The $\pmb{\text{Partially filled pipe detection}}$ submenu contains parameters that have to be set for configuring empty pipe detection.

Navigation

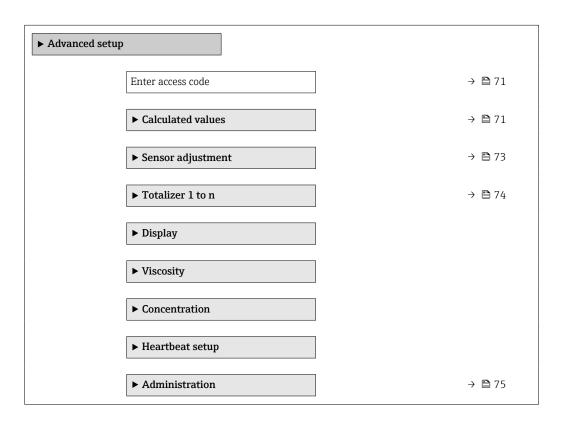
"Setup" menu \rightarrow Partially filled pipe detection

▶ Partially filled pipe detection	
Assign process variable	→ 🗎 70
Low value partial filled pipe detection	→ 🖺 70
High value partial filled pipe detection	→ 🗎 70
Response time part. filled pipe detect.	→ 🗎 70

Parameter overview with brief description

Parameter	Prerequisite	Description	Selection / User entry	Factory setting
Assign process variable	-	Select process variable for partially filled pipe detection.	 Off Density Reference density	Density
Low value partial filled pipe detection	A process variable is selected in the Assign process variable parameter $(\rightarrow \ \ \ \ \ \ \ \ \ \ \)$.	Enter lower limit value for deactivating partialy filled pipe detection.	Signed floating-point number	Depends on country: • 200 kg/m ³ • 12.5 lb/ft ³
High value partial filled pipe detection	A process variable is selected in the Assign process variable parameter $(\rightarrow \ \ \ \ \ \ \ \ \ \ \)$.	Enter upper limit value for deactivating partialy filled pipe detection.	Signed floating-point number	Depends on country: • 6000 kg/m ³ • 374.6 lb/ft ³
Response time part. filled pipe detect.	A process variable is selected in the Assign process variable parameter ($\rightarrow \boxminus 70$).	Use this function to enter the minimum time (hold time) the signal must be present before diagnostic message S962 "Pipe only partly filled" is triggered in the event of a partially filled or empty measuring pipe.	0 to 100 s	-

70


10.7 Advanced settings

The **Advanced setup** submenu with its submenus contains parameters for specific settings.

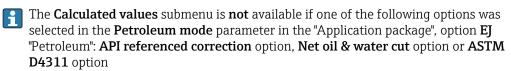
The number of submenus can vary depending on the device version, e.g. viscosity is available only with the Promass I.

Navigation

"Setup" menu → Advanced setup

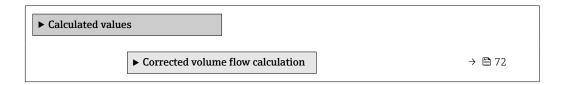
10.7.1 Using the parameter to enter the access code

Navigation


"Setup" menu → Advanced setup

Parameter overview with brief description

Parameter	Description	User entry
Enter access code	1	Max. 16-digit character string comprising numbers, letters and special characters


10.7.2 Calculated process variables

The **Calculated values** submenu contains parameters for calculating the corrected volume flow.

Navigation

"Setup" menu → Advanced setup → Calculated values

"Corrected volume flow calculation" submenu

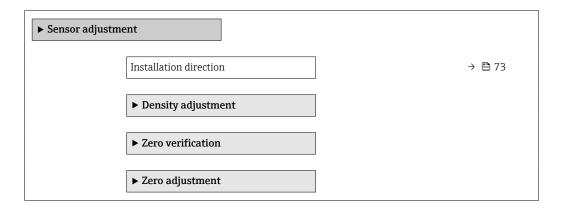
Navigation

"Setup" menu \rightarrow Advanced setup \rightarrow Calculated values \rightarrow Corrected volume flow calculation

► Corrected volume flow calculation	
Corrected volume flow calculation (1812)	→ 🖺 72
External reference density (6198)	→ 🖺 72
Fixed reference density (1814)	→ 🖺 72
Reference temperature (1816)	→ 🗎 73
Linear expansion coefficient (1817)	→ 🖺 73
Square expansion coefficient (1818)	→ 🗎 73

Parameter overview with brief description

Parameter	Prerequisite	Description	Selection / User interface / User entry	Factory setting
Corrected volume flow calculation	-	Select reference density for calculating the corrected volume flow.	 Fixed reference density Calculated reference density Reference density by API table 53 External reference density 	-
External reference density	In the Corrected volume flow calculation parameter, the External reference density option is selected.	Shows external reference density.	Floating point number with sign	-
Fixed reference density	The Fixed reference density option is selected in the Corrected volume flow calculation parameter parameter.	Enter fixed value for reference density.	Positive floating- point number	-


Parameter	Prerequisite	Description	Selection / User interface / User entry	Factory setting
Reference temperature	The Calculated reference density option is selected in the Corrected volume flow calculation parameter parameter.	Enter reference temperature for calculating the reference density.	−273.15 to 99 999 °C	Country-specific: ■ +20 °C ■ +68 °F
Linear expansion coefficient	The Calculated reference density option is selected in the Corrected volume flow calculation parameter parameter.	Enter linear, medium-specific expansion coefficient for calculating the reference density.	Signed floating-point number	-
Square expansion coefficient	The Calculated reference density option is selected in the Corrected volume flow calculation parameter parameter.	For media with a non-linear expansion pattern: enter the quadratic, medium-specific expansion coefficient for calculating the reference density.	Signed floating-point number	-

10.7.3 Carrying out a sensor adjustment

The **Sensor adjustment** submenu contains parameters that pertain to the functionality of the sensor.

Navigation

"Setup" menu \rightarrow Advanced setup \rightarrow Sensor adjustment

Parameter overview with brief description

Parameter	Description	Selection
Installation direction	J	Flow in arrow directionFlow against arrow direction

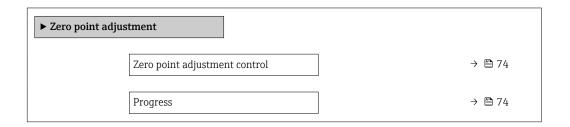
Zero verification and zero adjustment

Experience shows that zero adjustment is advisable only in special cases:

- To achieve maximum measurement accuracy even with low flow rates.
- Under extreme process or operating conditions (e.g. very high process temperatures or very high-viscosity media).
- For gas applications with low pressure.
- To achieve the highest possible measurement accuracy at low flow rates, the installation must protect the sensor from mechanical stress during operation.

To get a representative zero point, ensure that:

- any flow in the device is prevented during the adjustment
- the process conditions (e.g. pressure, temperature) are stable and representative


Zero verification and zero adjustment cannot be performed if the following process conditions are present:

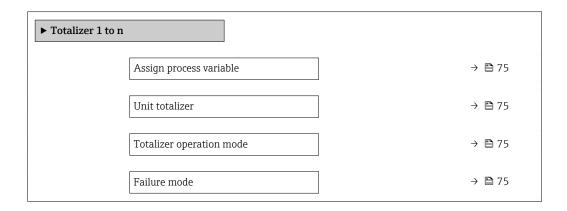
- Gas pockets
 - Ensure that the system has been sufficiently flushed with the medium. Repeat flushing can help to eliminate gas pockets
- Thermal circulation
 In the event of temperature differences (e.g. between the measuring tube inlet and outlet section), induced flow can occur even if the valves are closed due to thermal circulation in the device
- Leaks at the valves
 If the valves are not leak-tight, flow is not sufficiently prevented when determining the zero point

If these conditions cannot be avoided, it is advisable to keep the factory setting for the zero point.

Navigation

"Setup" menu \rightarrow Advanced setup \rightarrow Sensor adjustment \rightarrow Zero point adjustment

Parameter overview with brief description


Parameter	Description	Selection / User interface	Factory setting
Zero point adjustment control	Start zero point adjustment.	CancelBusyZero point adjust failureStart	-
Progress	Shows the progress of the process.	0 to 100 %	-

10.7.4 Configuring the totalizer

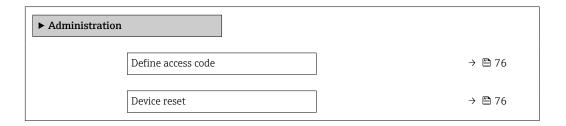
In the **"Totalizer 1 to n" submenu**, you can configure the specific totalizer.

Navigation

"Setup" menu \rightarrow Advanced setup \rightarrow Totalizer 1 to n

Parameter overview with brief description

Parameter	Prerequisite	Description	Selection	Factory setting
Assign process variable	-	Select process variable for totalizer.	Volume flowMass flowCorrected volume flow	-
Unit totalizer	One of the following options is selected in the Assign process variable parameter: Mass flow Volume flow Corrected volume flow Target mass flow Carrier mass flow Carrier mass flow	Select the unit for the process variable of the totalizer.	Unit choose list	Country-specific: • kg • lb
Totalizer operation mode	In the Assign process variable parameter, one of the following options is selected: Mass flow Volume flow Corrected volume flow Target mass flow Carrier mass flow	Select totalizer calculation mode.	 Net flow total Forward flow total Reverse flow total Last valid value 	-
Failure mode	In the Assign process variable parameter, one of the following options is selected: Mass flow Volume flow Corrected volume flow Target mass flow Carrier mass flow Carrier mass flow	Define the totalizer behavior in the event of a device alarm.	StopActual valueLast valid value	-


^{*} Visibility depends on order options or device settings

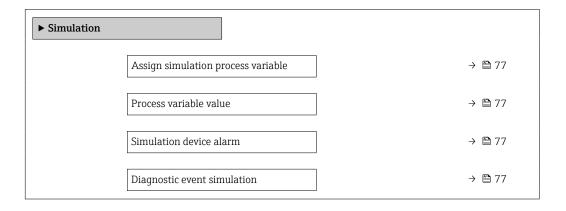
10.7.5 Using parameters for device administration

The **Administration** submenu systematically guides the user through all the parameters that can be used for device administration purposes.

Navigation

"Setup" menu \rightarrow Advanced setup \rightarrow Administration

Parameter overview with brief description


Parameter	Description	User entry / Selection
Define access code	Define release code for write access to parameters.	0 to 9999
Device reset	Reset the device configuration - either entirely or in part - to a defined state.	 Cancel To delivery settings Restart device Delete powerfail storage Delete T-DAT Delete factory data

10.8 Simulation

Via the **Simulation** submenu, it is possible to simulate various process variables in the process and the device alarm mode and verify downstream signal chains (switching valves or closed-control loops). The simulation can be performed without a real measurement (no flow of medium through the device).

Navigation

"Diagnostics" menu \rightarrow Simulation

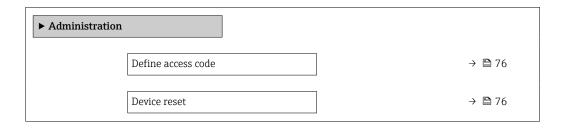
Parameter overview with brief description

Parameter	Prerequisite	Description	Selection / User entry
Assign simulation process variable	-	Select a process variable for the simulation process that is activated.	 Off Mass flow Volume flow Corrected volume flow Density Reference density Temperature Concentration Target mass flow Carrier mass flow
Process variable value	A process variable is selected in the Assign simulation process variable parameter (→ 🖺 77).	Enter the simulation value for the selected process variable.	Depends on the process variable selected
Simulation device alarm	-	Switch the device alarm on and off.	Off On
Diagnostic event category	-	Select a diagnostic event category.	SensorElectronicsConfigurationProcess
Diagnostic event simulation	-	Select a diagnostic event to simulate this event.	 Off Diagnostic event picklist (depends on the category selected)

^{*} Visibility depends on order options or device settings

10.9 Protecting settings from unauthorized access

The following options exist for protecting the configuration of the measuring device from unintentional modification after commissioning:


- Write protection via write protection switch $\rightarrow \triangleq 78$

10.9.1 Write protection via access code

With the customer-specific access code, access to the measuring instrument via the Web browser is protected, as are the parameters for the measuring instrument configuration.

Navigation

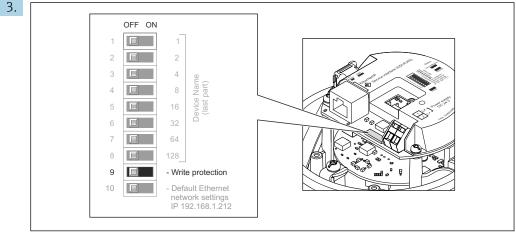
"Setup" menu \rightarrow Advanced setup \rightarrow Administration \rightarrow Define access code

Defining the access code via the web browser

- 1. Navigate to the **Define access code** parameter.
- 2. Define a 16-digit (max.) numeric code as the access code.

- 3. Enter the access code again in the to confirm.
 - ► The web browser switches to the login page.
- Disabling parameter write protection via access code .
 - If the access code is lost: Resetting the access code .
 - The **Access status tooling** parameter shows which user role the user is currently logged in with.
 - Navigation path: Operation → Access status tooling

If no action is performed for 10 minutes, the web browser automatically returns to the login page.


10.9.2 Write protection via write protection switch

The write protection switch makes it possible to block write access to the entire operating menu with the exception of the following parameters:

- External pressure
- External temperature
- Reference density
- All parameters for configuring the totalizer

The parameter values are now read only and cannot be edited any more:

- Via service interface (CDI-RJ45)
- Via PROFINET
- 1. Depending on the housing version, loosen the securing clamp or fixing screw of the housing cover.
- 2. Depending on the housing version, unscrew or open the housing cover and disconnect the local display from the main electronics module where necessary → 155.

A0028081

Setting the write protection switch on the main electronics module to the **On** position enables hardware write protection. Setting the write protection switch on the main electronics module to the **Off** position (factory setting) disables hardware write protection.

- If hardware write protection is enabled: the **Locking status** parameter displays the **Hardware locked** option; if disabled, the **Locking status** parameter does not display any option.
- 4. Reverse the removal procedure to reassemble the transmitter.

10.9.3 Write protection via startup parameterization

Software write protection can be enabled via startup parameterization. If software write protection is enabled, device configuration can only be performed via the PROFINET controller. In this case, write access is **no longer** possible via:

- Acyclic PROFINET communication
- Service interface
- Web server
- 🚹 Startup parameterization settings .

Operation 11

11.1 Reading the device locking status

Device active write protection: **Locking status** parameter

Navigation

"Operation" menu → Locking status

Function scope of "Locking status" parameter

Options	Description
Hardware locked	The write protection switch (DIP switch) for hardware locking is activated on the ${\rm I/O}$ electronic module. This prevents write access to the parameters .
Temporarily locked	Write access to the parameters is temporarily locked on account of internal processes running in the device (e.g. data upload/download, reset etc.). Once the internal processing has been completed, the parameters can be changed once again.

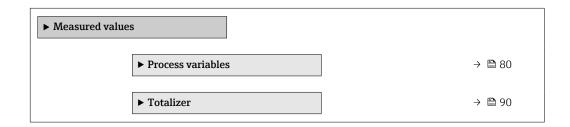
11.2 Adjusting the operating language

Petailed information:

- To configure the operating language → 🖺 62
- For information on the operating languages supported by the measuring device → 🖺 156

11.3 Configuring the display

Detailed information:


On the advanced settings for the local display

11.4 Reading off measured values

With the **Measured values** submenu, it is possible to read all the measured values.

Navigation

"Diagnostics" menu → Measured values

11.4.1 "Measured variables" submenu

The **Process variables** submenu contains all the parameters needed to display the current measured values for each process variable.

 $\begin{tabular}{ll} \textbf{Navigation} \\ \texttt{"Diagnostics" menu} \rightarrow \texttt{Measured values} \rightarrow \texttt{Measured variables} \\ \end{tabular}$

► Measured variables		
Ма	ss flow	→ 🖺 83
Vol	lume flow	→ 🖺 83
Cor	rected volume flow	→ 🖺 83
Der	nsity	→ 🖺 83
Ref	erence density	→ 🖺 83
Ter	nperature	→ 🖺 83
Pre	essure	→ 🖺 83
Cor	ncentration	→ 🖺 83
Tar	rget mass flow	→ 🖺 84
Car	rier mass flow	→ 🖺 84
Tar	rget corrected volume flow	→ 🖺 84
Car	rier corrected volume flow	→ 🖺 84
Tar	rget volume flow	→ 🖺 84
Car	rier volume flow	→ 🖺 84
СТІ		→ 🖺 84
СРІ	L	→ 🖺 84
СТЕ	PL	→ 🖺 84
S&1	W volume flow	→ 🖺 85
S&1	W correction value	→ 🖺 85
Ref	erence density alternative	→ 🖺 85
GSV	V flow	→ 🖺 85
GSV	V flow alternative	→ 🖺 85

NSV flow	→ 🖺 86
NSV flow alternative	→ 🖺 86
Oil CTL	→ 🖺 86
Oil CPL	→ 🖺 86
Oil CTPL	→ 🖺 86
Water CTL	→ 🖺 87
CTL alternative	→ 🖺 87
CPL alternative	→ 🖺 87
CTPL alternative	→ 🖺 87
Oil reference density	→ 🖺 87
Water reference density	→ 🖺 88
Oil density	→ 🖺 88
Water density	→ 🖺 88
Water cut	→ 🖺 88
Oil volume flow	→ 🖺 88
Oil corrected volume flow	→ 🖺 89
Oil mass flow	→ 🖺 89
Water volume flow	→ 🖺 89
Water corrected volume fl	ow → 🖺 89
Water mass flow	→ 🖺 89
Weighted density average	÷ ⇒ 🖺 90
Weighted temperature av	erage → 🗎 90

Parameter overview with brief description

Parameter	Prerequisite	Description	User interface	Factory setting
Mass flow	_	Displays the mass flow that is currently measured. Dependency The unit is taken from: Mass flow unit parameter (→ 64)	Signed floating-point number	_
Volume flow	-	Displays the volume flow that is currently calculated. Dependency The unit is taken from the Volume flow unit parameter (→ 64).	Signed floating-point number	-
Corrected volume flow	-	Displays the corrected volume flow that is currently calculated. Dependency The unit is taken from: Corrected volume flow unit parameter (> \exists 64)	Signed floating-point number	-
Density	-	Shows the density currently measured. Dependency The unit is taken from the Density unit parameter (→ 64).	Signed floating-point number	-
Reference density	-	Displays the reference density that is currently calculated. Dependency The unit is taken from: Reference density unit parameter (→ 🖺 64)	Signed floating-point number	-
Temperature	_	Shows the medium temperature currently measured. Dependency The unit is taken from: Temperature unit parameter (→ 🖺 65)	Signed floating-point number	-
Pressure value	-	Displays either a fixed or external pressure value. Dependency The unit is taken from the Pressure unit parameter (→ 🖺 65).	Signed floating-point number	-
Concentration	For the following order code: Order code for "Application package", option ED "Concentration" The software options currently enabled are displayed in the Software option overview parameter.	Displays the concentration that is currently calculated. Dependency The unit is taken from the Concentration unit parameter.	Signed floating-point number	_

Parameter	Prerequisite	Description	User interface	Factory setting
Target mass flow	With the following conditions: Order code for "Application package", option ED "Concentration" The software options currently enabled are displayed in the Software option overview parameter.	Displays the mass flow that is currently measured for the target medium. Dependency The unit is taken from: Mass flow unit parameter (→ 64)	Signed floating-point number	_
Carrier mass flow	With the following conditions: Order code for "Application package", option ED "Concentration" The software options currently enabled are displayed in the Software option overview parameter.	Displays the mass flow of the carrier medium that is currently measured. Dependency The unit is taken from: Mass flow unit parameter (→ 64)	Signed floating-point number	
Target corrected volume flow	-		Signed floating-point number	_
Carrier corrected volume flow	_		Signed floating-point number	_
Target volume flow	-		Signed floating-point number	_
Carrier volume flow	-		Signed floating-point number	_
CTL	For the following order code: "Application package", option EJ "Petroleum" The API referenced correction option is selected in Petroleum mode parameter. The software options currently enabled are displayed in the Software option overview parameter.	Displays the calibration factor which represents the effect of temperature on the fluid. This is used to convert the measured volume flow and the measured density to values at reference temperature.	Positive floating- point number	_
CPL	For the following order code: "Application package", option EJ "Petroleum" The API referenced correction option is selected in Petroleum mode parameter. The software options currently enabled are displayed in the Software option overview parameter.	Displays the calibration factor which represents the effect of pressure on the fluid. This is used to convert the measured volume flow and the measured density to values at reference pressure.	Positive floating- point number	-
CTPL	For the following order code: "Application package", option EJ "Petroleum" The API referenced correction option is selected in Petroleum mode parameter. The software options currently enabled are displayed in the Software option overview parameter.	Displays the combined calibration factor which represents the effect of temperature and pressure on the fluid This is used to convert the measured volume flow and the measured density to values at reference temperature and reference pressure.	Positive floating- point number	-

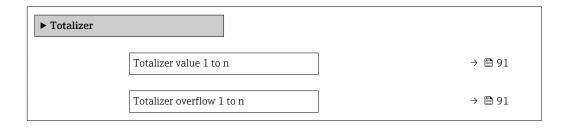
Parameter	Prerequisite	Description	User interface	Factory setting
S&W volume flow	For the following order code: "Application package", option EJ "Petroleum" The API referenced correction option is selected in Petroleum mode parameter. The software options currently enabled are displayed in the Software option overview parameter.	Displays the S&W volume flow which is calculated from the measured total volume flow minus the net volume flow. Dependency The unit is taken from: Volume flow unit parameter	Signed floating-point number	_
S&W correction value	For the following order code: "Application package", option EJ "Petroleum" The External value option or Current input 1n option is selected in the S&W input mode parameter. The software options currently enabled are displayed in the Software option overview parameter.	Shows the correction value for sediment and water.	Positive floating- point number	_
Reference density alternative	For the following order code: "Application package", option EJ "Petroleum" In the Petroleum mode parameter, the API referenced correction option is selected. The software options currently enabled are displayed in the Software option overview parameter.	Displays the fluid density at the alternative reference temperature. Dependency The unit is taken from: Reference density unit parameter	Signed floating-point number	-
GSV flow	For the following order code: "Application package", option EJ "Petroleum" The API referenced correction option is selected in Petroleum mode parameter. The software options currently enabled are displayed in the Software option overview parameter.	Displays the measured total volume flow, corrected to the reference temperature and the reference pressure. Dependency The unit is taken from: Corrected volume flow unit parameter	Signed floating-point number	_
GSV flow alternative	For the following order code: "Application package", option EJ "Petroleum" In the Petroleum mode parameter, the API referenced correction option is selected. The software options currently enabled are displayed in the Software option overview parameter.	Displays the measured total volume flow, corrected to the alternative reference temperature and the alternative reference pressure. Dependency The unit is taken from: Corrected volume flow unit parameter	Signed floating-point number	-

Parameter	Prerequisite	Description	User interface	Factory setting
NSV flow	For the following order code: "Application package", option EJ "Petroleum" The API referenced correction option is selected in Petroleum mode parameter. The software options currently enabled are displayed in the Software option overview parameter.	Displays the net volume flow which is calculated from the measured total volume flow minus the value for sediment & water and minus the shrinkage. Dependency The unit is taken from: Corrected volume flow unit parameter	Signed floating-point number	-
NSV flow alternative	For the following order code: "Application package", option EJ "Petroleum" In the Petroleum mode parameter, the API referenced correction option is selected. The software options currently enabled are displayed in the Software option overview parameter.	Displays the net volume flow which is calculated from the measured alternative total volume minus the value for sediment & water and minus the shrinkage. Dependency The unit is taken from: Corrected volume flow unit parameter	Signed floating-point number	-
Oil CTL	For the following order code: "Application package", option EJ "Petroleum" In the Petroleum mode parameter, the Net oil & water cut option is selected. The software options currently enabled are displayed in the Software option overview parameter.	Displays the correction factor which represents the effect of temperature on the oil. This is used to convert the measured oil volume flow and the measured oil density to values at reference temperature.	Positive floating- point number	-
Oil CPL	For the following order code: "Application package", option EJ "Petroleum" In the Petroleum mode parameter, the Net oil & water cut option is selected. The software options currently enabled are displayed in the Software option overview parameter.	Displays the correction factor which represents the effect of pressure on the oil. This is used to convert the measured oil volume flow and the measured oil density to values at reference pressure.	Positive floating- point number	_
Oil CTPL	For the following order code: "Application package", option EJ "Petroleum" In the Petroleum mode parameter, the Net oil & water cut option is selected. The software options currently enabled are displayed in the Software option overview parameter.	Displays the combined correction factor which represents the effect of temperature and pressure on the oil. This is used to convert the measured oil volume flow and the measured oil density to values at reference temperature and reference pressure.	Positive floating- point number	_

Parameter	Prerequisite	Description	User interface	Factory setting
Water CTL	For the following order code: "Application package", option EJ "Petroleum" In the Petroleum mode parameter, the Net oil & water cut option is selected. The software options currently enabled are displayed in the Software option overview parameter.	Displays the correction factor which represents the effect of temperature on the water. This is used to convert the measured water volume flow and the measured water density to values at reference temperature.	Positive floating- point number	_
CTL alternative	For the following order code: "Application package", option EJ "Petroleum" In the Petroleum mode parameter, the API referenced correction option is selected. The software options currently enabled are displayed in the Software option overview parameter.	Displays the correction factor which represents the effect of temperature on the fluid. This is used to convert the measured volume flow and the measured density to values at the alternative reference temperature.	Positive floating- point number	-
CPL alternative	For the following order code: "Application package", option EJ "Petroleum" In the Petroleum mode parameter, the API referenced correction option is selected. The software options currently enabled are displayed in the Software option overview parameter.	Displays the correction factor which represents the effect of pressure on the fluid. This is used to convert the measured volume flow and the measured density to values at the alternative reference pressure.	Positive floating- point number	-
CTPL alternative	For the following order code: "Application package", option EJ "Petroleum" In the Petroleum mode parameter, the API referenced correction option is selected. The software options currently enabled are displayed in the Software option overview parameter.	Displays the combined correction factor which represents the effect of temperature and pressure on the fluid. This is used to convert the measured volume flow and the measured density to values at the alternative reference temperature and the alternative reference pressure.	Positive floating- point number	_
Oil reference density	For the following order code: "Application package", option EJ "Petroleum" In the Petroleum mode parameter, the Net oil & water cut option is selected. The software options currently enabled are displayed in the Software option overview parameter.		Signed floating-point number	_

Parameter	Prerequisite	Description	User interface	Factory setting
Water reference density	For the following order code: • "Application package", option EJ "Petroleum" • In the Petroleum mode parameter, the Net oil & water cut option is selected.		Signed floating-point number	-
	The software options currently enabled are displayed in the Software option overview parameter.			
Oil density	For the following order code: "Application package", option EJ "Petroleum" In the Petroleum mode parameter, the Net oil & water cut option is selected. The software options currently enabled are displayed in the Software option overview parameter.	Displays the density of the oil currently measured.	Signed floating-point number	-
Water density	For the following order code: • "Application package", option EJ "Petroleum" • In the Petroleum mode parameter, the Net oil & water cut option is selected. The software options currently enabled are displayed in the Software option overview parameter.	Displays the density of the water currently measured.	Signed floating-point number	-
Water cut	For the following order code: "Application package", option EJ "Petroleum" In the Petroleum mode parameter, the API referenced correction option is selected. The software options currently enabled are displayed in the Software option overview parameter.	Displays the percentage water volume flow in relation to the total volume flow of the fluid.	0 to 100 %	_
Oil volume flow	For the following order code: "Application package", option EJ "Petroleum" In the Petroleum mode parameter, the Net oil & water cut option is selected. The software options currently enabled are displayed in the Software option overview parameter.	Displays the currently calculated volume flow of the oil. Dependency: Based on the value displayed in the Water cut parameter The unit is taken from: Volume flow unit parameter	Signed floating-point number	_

Parameter	Prerequisite	Description	User interface	Factory setting
Oil corrected volume flow	For the following order code: "Application package", option EJ "Petroleum" In the Petroleum mode parameter, the Net oil & water cut option is selected. The software options currently enabled are displayed in the Software option overview parameter.	Displays the currently calculated volume flow of the oil, calculated to values at reference temperature and reference pressure. Dependency: Based on the value displayed in the Water cut parameter The unit is taken from: Corrected volume flow unit parameter	Signed floating-point number	-
Oil mass flow	For the following order code: "Application package", option EJ "Petroleum" In the Petroleum mode parameter, the Net oil & water cut option is selected. The software options currently enabled are displayed in the Software option overview parameter.	Displays the currently calculated mass flow of the oil. Dependency: Based on the value displayed in the Water cut parameter The unit is taken from: Mass flow unit parameter	Signed floating-point number	_
Water volume flow	For the following order code: "Application package", option EJ "Petroleum" In the Petroleum mode parameter, the Net oil & water cut option is selected. The software options currently enabled are displayed in the Software option overview parameter.	Displays the currently calculated volume flow of the water. Dependency: Based on the value displayed in the Water cut parameter The unit is taken from: Volume flow unit parameter	Signed floating-point number	_
Water corrected volume flow	For the following order code: "Application package", option EJ "Petroleum" In the Petroleum mode parameter, the Net oil & water cut option is selected. The software options currently enabled are displayed in the Software option overview parameter.	Displays the currently calculated volume flow of the water, calculated to values at reference temperature and reference pressure. Dependency: Based on the value displayed in the Water cut parameter The unit is taken from: Corrected volume flow unit parameter	Signed floating-point number	_
Water mass flow	For the following order code: "Application package", option EJ "Petroleum" In the Petroleum mode parameter, the Net oil & water cut option is selected. The software options currently enabled are displayed in the Software option overview parameter.	Displays the currently calculated mass flow of the water. Dependency: Based on the value displayed in the Water cut parameter The unit is taken from: Mass flow unit parameter	Signed floating-point number	-


Parameter	Prerequisite	Description	User interface	Factory setting
Weighted density average	For the following order code: "Application package", option EJ "Petroleum" "Application package", option EM "Petroleum + Locking function" The software options currently enabled are displayed in the Software option overview parameter.	Displays the weighted average for the density since the last time the density averages were reset. Dependency: The unit is taken from: Density unit parameter The value is reset to NaN (Not a Number) via the Reset weighted averages parameter	Signed floating-point number	
Weighted temperature average	For the following order code: "Application package", option EJ "Petroleum" "Application package", option EM "Petroleum + Locking function" The software options currently enabled are displayed in the Software option overview parameter.	Displays the weighted average for the temperature since the last time the temperature averages were reset. Dependency: The unit is taken from: Temperature unit parameter The value is reset to NaN (Not a Number) via the Reset weighted averages parameter	Signed floating-point number	-

11.4.2 "Totalizer" submenu

The **Totalizer** submenu contains all the parameters needed to display the current measured values for every totalizer.

Navigation

"Diagnostics" menu \rightarrow Measured values \rightarrow Totalizer

Parameter overview with brief description

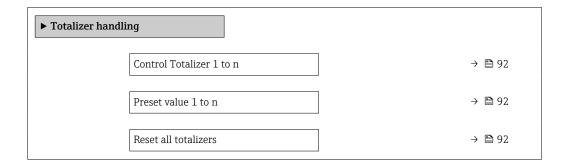
Parameter	Prerequisite	Description	User interface
Totalizer value 1 to n	One of the following options is selected in the Assign process variable parameter of the Totalizer 1 to n submenu: Volume flow Mass flow Corrected volume flow Target mass flow Carrier mass flow Carrier mass flow	Displays the current totalizer counter value.	Signed floating-point number
Totalizer overflow 1 to n	One of the following options is selected in the Assign process variable parameter of the Totalizer 1 to n submenu: Volume flow Mass flow Corrected volume flow Target mass flow Carrier mass flow Carrier mass flow	Displays the current totalizer overflow.	Integer with sign

^{*} Visibility depends on order options or device settings

11.5 Adapting the measuring device to the process conditions

The following are available for this purpose:

- Basic settings using the **Setup** menu (→ 🗎 62)
- Advanced settings using the **Advanced setup** submenu (→ 🗎 71)


11.6 Performing a totalizer reset

The totalizers are reset in the **Operation** submenu:

- Control Totalizer
- Reset all totalizers

Navigation

"Operation" menu → Totalizer handling

Parameter overview with brief description

Parameter	Prerequisite	Description	Selection / User entry	Factory setting
Control Totalizer 1 to n	A process variable is selected in the Assign process variable parameter of the Totalizer 1 to n submenu.	Control totalizer value.	 Totalize Reset + hold Preset + hold Reset + totalize Preset + totalize Hold 	_
Preset value 1 to n	A process variable is selected in the Assign process variable parameter of the Totalizer 1 to n submenu.	Specify start value for totalizer. Dependency The unit of the selected process variable is defined in the Unit totalizer parameter for the totalizer.	Signed floating-point number	Depends on country: • 0 kg • 0 lb
Reset all totalizers	_	Reset all totalizers to 0 and start.	CancelReset + totalize	-

11.6.1 Function scope of "Control Totalizer" parameter

Options	Description
Totalize	The totalizer is started or continues running.
Reset + hold	The totaling process is stopped and the totalizer is reset to 0.
Preset + hold 1)	The totaling process is stopped and the totalizer is set to its defined start value from the Preset value parameter.
Reset + totalize	The totalizer is reset to 0 and the totaling process is restarted.
Preset + totalize 1)	The totalizer is set to the defined start value in the Preset value parameter and the totaling process is restarted.

¹⁾ Visible depending on the order options or device settings

11.6.2 Function range of "Reset all totalizers" parameter

Options	Description
Cancel	No action is executed and the user exits the parameter.
Reset + totalize	Resets all totalizers to 0 and restarts the totaling process. This deletes all the previously aggregated flow values.

12 Diagnostics and troubleshooting

12.1 General troubleshooting

For local display

Fault	Possible causes	Remedial action
Local display is dark, but signal output is within the valid range	The cable of the display module is not plugged in correctly.	Insert the plug correctly into the main electronics module and display module.
Local display dark and no output signals	Supply voltage does not match the voltage specified on the nameplate.	Apply the correct supply voltage $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Local display dark and no output signals	Supply voltage has incorrect polarity.	Reverse polarity of supply voltage.
Local display dark and no output signals	No contact between connecting cables and terminals.	Check the electrical contact between the cable and terminals and correct if necessary.
Local display dark and no output signals	Terminals are not plugged into the I/O electronics module correctly.	Check terminals.
Local display dark and no output signals	I/O electronics module is defective.	Order spare part → 🖺 129.
Local display cannot be read, but signal output is within the valid range	Display is set too bright or too dark.	 Set the display brighter by simultaneously pressing ± + €. Set the display darker by simultaneously pressing □ + €.
Local display is dark, but signal output is within the valid range	Display module is defective.	Order spare part → 🗎 129.
Backlighting of local display is red	Diagnostic event with "Alarm" diagnostic behavior has occurred.	Take remedial actions $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Message on local display: "Communication Error" "Check Electronics"	Communication between the display module and the electronics is interrupted.	 Check the cable and the connector between the main electronics module and display module. Order spare part → ■ 129.

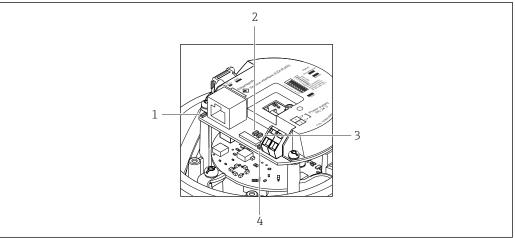
For output signals

Fault	Possible causes	Remedial action
Green power LED on the main electronics module of the transmitter is dark	Supply voltage does not match the voltage specified on the nameplate.	Apply the correct supply voltage $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Device is measuring incorrectly.	Configuration error or device is operated outside the application.	Check and correct parameter configuration. Observe limit values specified in the "Technical Data". "Technical Data".

For access

Fault	Possible causes	Remedial action
Write access to parameters is not possible.	Hardware write protection is enabled.	Set the write protection switch on the main electronics module to the OFF position $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Connection via PROFINET is not possible.	PROFINET bus cable is connected incorrectly.	Check the terminal assignment $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Connection via PROFINET is not possible.	Device plug is connected incorrectly.	Check the pin assignment of the device plugs .
Connection to the web server is not possible.	Web server is disabled.	Use the "FieldCare" or "DeviceCare" operating tool to check if the web server of the device is enabled and enable if necessary → 🖺 46.
	The Ethernet interface on the PC is incorrectly configured.	 ► Check the properties of the Internet protocol (TCP/IP). ► Check the network settings with the IT manager.

Fault	Possible causes	Remedial action	
Connection to the web server is not possible.	 The IP address on the PC is incorrectly configured. IP address is not known. 	 If addressing via hardware: open the transmitter and check the configured IP address (last octet). Check the IP address of the device with the IT specialist. If the IP address is not known, set DIP switch no. 10 to ON, restart the device and enter the factory IP address 192.168.1.212. 	
	The web browser setting "Use a proxy server for LAN" is enabled on the PC.	Disable the use of the proxy server in the LAN settings.	
	Apart from the active network connection to the measuring instrument, other network connections are also being used.	 Make sure that no other network connections are established by the computer and close other programs with network access to the computer. If using a docking station for notebooks, make sure that a network connection to another network is not active. 	
Web browser is frozen and operation no longer possible	Data transfer is active.	Wait until data transfer or current action is finished.	
	Connection lost	 Check cable connection and power supply. Refresh the web browser and restart if necessary. 	
Display of web browser content is difficult to read or incomplete.	Web browser version used is not optimal.	 Use correct web browser version → □ 42. Empty the web browser cache. Restart the web browser. 	
	Unsuitable view settings.	Change the font size/display ratio of the web browser.	
Incomplete or no display of content in the web browser	JavaScript is not enabledJavaScript cannot be enabled.	 Enable JavaScript. Enter http://XXX.XXX.X.X.XX/servlet/basic.html as the IP address. 	
Operation with FieldCare or DeviceCare via service interface CDI-RJ45 (port 8000) is not possible.	Firewall of the PC or network is blocking communication.	Depending on the settings of the firewall used on the PC or in the network, the firewall must be adapted or disabled to allow FieldCare/ DeviceCare access.	
Flashing the firmware with FieldCare or DeviceCare via service interface CDI-RJ45 (port 8000 or TFTP ports) is not possible.	Firewall of the PC or network is blocking communication.	Depending on the settings of the firewall used on the PC or in the network, the firewall must be adapted or disabled to allow FieldCare/ DeviceCare access.	


For system integration

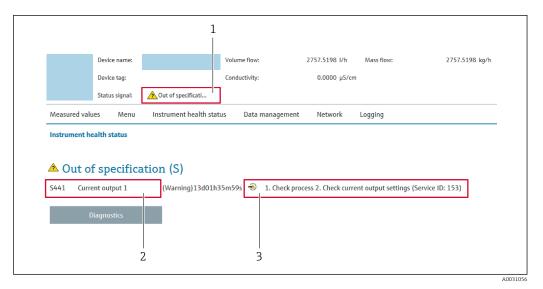
Error	Error Possible causes	
The PROFINET device name is not displayed correctly and contains coding.	A device name containing one or more underscores has been specified via the automation system.	Specify a correct device name (without underscores) via the automation system.

12.2 Diagnostic information via LEDs

12.2.1 Transmitter

Various LEDs in the transmitter provide information on the device status.

A0027678


- 1 Link/Activity
- 2 Network status
- 3 Device status
- 4 Supply voltage

LED	Color	Meaning
Supply voltage	OFF	Supply voltage is off or too low
	Green	Supply voltage is ok
Device status	Green	Device status is ok
	Flashing red	A device error of diagnostic behavior "Warning" has occurred
	Red	A device error of diagnostic behavior "Alarm" has occurred
Network status	Green	Device performing cyclic data exchange
	Flashing green	Following request from automation system: Flash frequency: 1 Hz (flash functionality: 500 ms on, 500 ms off)
		The device does not have an IP address, no cyclic data exchange Flash frequency: 3 Hz
	Red	IP address is available but no connection to the automation system
	Flashing red	Cyclic connection was established but connection was dropped Flash frequency: 3 Hz
Link/Activity	Orange	Link available but no activity
	Flashing orange	Activity present

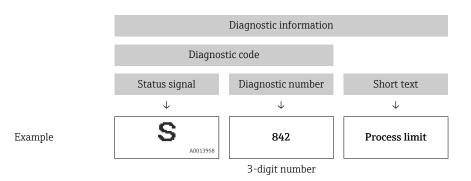
12.3 Diagnostic information in the web browser

12.3.1 Diagnostic options

Any faults detected by the measuring device are displayed in the Web browser on the home page once the user has logged on.

- 1 Status area with status signal
- 3 Remedial measures with service ID
- In addition, diagnostic events which have occurred can be shown in the **Diagnostics** menu:
 - Via parameter → 🗎 122
 - Via submenu → 🖺 123

Status signals

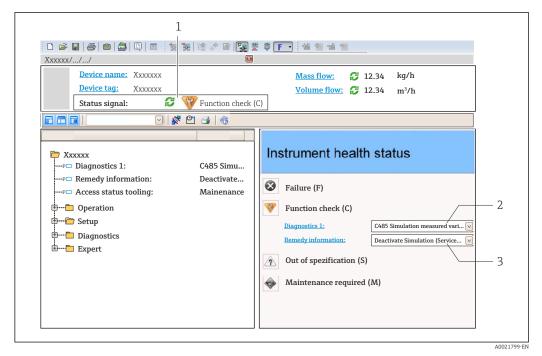

The status signals provide information on the state and reliability of the device by categorizing the cause of the diagnostic information (diagnostic event).

Symbol	Meaning
8	Failure A device error has occurred. The measured value is no longer valid.
w/	Function check The device is in service mode (e.g. during a simulation).
<u>^</u> ?	Out of specification The device is being operated: Outside its technical specification limits (e.g. outside the process temperature range)
	Maintenance required Maintenance is required. The measured value remains valid.

The status signals are categorized in accordance with VDI/VDE 2650 and NAMUR Recommendation NE 107.

Diagnostic information

The fault can be identified using the diagnostic information. The short text helps you by providing information about the fault.

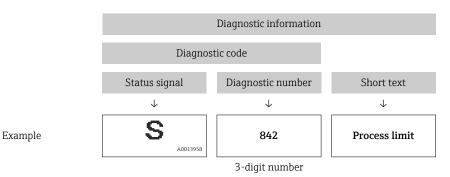

12.3.2 Calling up remedial actions

Remedial actions are provided for each diagnostic event to ensure that problems can be rectified quickly. These actions are displayed along with the diagnostic event and the related diagnostic information.

12.4 Diagnostic information in FieldCare or DeviceCare

12.4.1 Diagnostic options

Any faults detected by the measuring device are displayed on the home page of the operating tool once the connection has been established.



- 1 Status area with status signal
- 2 Diagnostic information → 🖺 96
- 3 Remedial actions with service ID
- In addition, diagnostic events which have occurred can be shown in the **Diagnostics** menu:

 - Via submenu → 🖺 123

Diagnostic information

The fault can be identified using the diagnostic information. The short text helps you by providing information about the fault.

12.4.2 Calling up remedy information

Remedy information is provided for every diagnostic event to ensure that problems can be rectified quickly:

- On the home page
 Remedy information is displayed in a separate field below the diagnostics information.
- In the **Diagnostics** menu
 Remedy information can be called up in the working area of the user interface.

The user is in the **Diagnostics** menu.

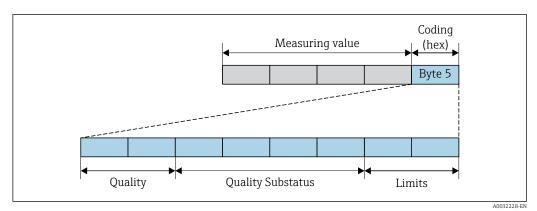
- 1. Call up the desired parameter.
- 2. On the right in the working area, mouse over the parameter.
 - ► A tool tip with remedy information for the diagnostic event appears.

12.5 Adapting the diagnostic information

12.5.1 Adapting the diagnostic behavior

Each item of diagnostic information is assigned a specific diagnostic behavior at the factory. The user can change this assignment for specific diagnostic information in the **Diagnostic behavior** submenu.

Expert \rightarrow System \rightarrow Diagnostic handling \rightarrow Diagnostic behavior


Available diagnostic behaviors

The following diagnostic behaviors can be assigned:

Diagnostic behavior	Description
Alarm	The device stops measurement. The totalizers assume the defined alarm condition. A diagnostic message is generated.
Warning	The device continues to measure. Measured value output via PROFINET and totalizers are not affected. A diagnostic message is generated.
Logbook entry only	The device continues to measure. The diagnostic message is only displayed in the Event logbook submenu (Event list submenu) and is not displayed in alternating sequence with the operational display.
Off	The diagnostic event is ignored, and no diagnostic message is generated or entered.

Displaying the measured value status

If modules with input data (e.g. Analog Input module, Discrete Input module, Totalizer module, Heartbeat module) are configured for cyclic data transmission, the measured value status is coded as per PROFINET PA Profile 4 Specification and transmitted along with the measured value to the PROFINET Controller via the status byte. The status byte is split into three segments: Quality, Quality Substatus and Limits.

■ 14 Structure of the status byte

The contents of the status byte depends on the configured failure mode in the individual function block. Depending on which failure mode has been configured, status information in accordance with PROFINET PA Profile Specification 4 is transmitted to the the PROFINET controller via the status byte status information. The two bits for the limits always have the value 0.

Supported status information

Status	Coding (hex)
BAD - Maintenance alarm	0x24
BAD - Process related	0x28
BAD - Function check	0x3C
UNCERTAIN - Initial value	0x4F
UNCERTAIN - Maintenance demanded	0x68
UNCERTAIN - Process related	0x78
GOOD - OK	0x80
GOOD - Maintenance demanded	0xA8
GOOD - Function check	0xBC

Determining the measured value status and device status via the diagnostic behavior

When the diagnostic behavior is assigned, this also changes the measured value status and device status for the diagnostic information. The measured value status and device status depend on the choice of diagnostic behavior and on the group in which the diagnostic information is located.

The diagnostic information is grouped as follows:

- Diagnostic information pertaining to the sensor: diagnostic number 000 to 199
 → 100
- Diagnostic information pertaining to the electronics: diagnostic number 200 to 399
 → 100
- Diagnostic information pertaining to the configuration: diagnostic number 400 to 599 \rightarrow 🗎 101
- Diagnostic information pertaining to the process: diagnostic number 800 to 999 \rightarrow $\stackrel{ o}{=}$ 101

Depending on the group in which the diagnostic information is located, the following measured value status and device status are firmly assigned to the particular diagnostic behavior:

Diagnostic information pertaining to the sensor: diagnostic number 000 to 199

Diagnostis hohovion	Measured value status (fixed assignment)				Dovigo dingposis
Diagnostic behavior (configurable)	Quality	Quality Substatus	Coding (hex)	Category (NE107)	Device diagnosis (fixed assignment)
Alarm	BAD	Maintenance alarm	0x24	F (Failure)	Maintenance alarm
Warning	GOOD	Maintenance demanded	0xA8	M (Maintenance)	Maintenance demanded
Logbook entry only	GOOD	ok	0x80	_	_
Off	GOOD	UK	UXOU	_	_

Diagnostic information pertaining to the electronics: diagnostic number 200 to 399

Diagnostic number 200 to 301, 303 to 399

Diagnostic behavior	IV.	leasured value sta	nment)	Device diagnostics	
(configurable)	Quality	Quality Substatus	Coding (hex)	Category (NE107)	(fixed assignment)
Alarm	BAD	Maintenance	0x24	F	Maintenance
Warning	alarm	UNZI	(Failure)	alarm	
Logbook entry only	GOOD	ok	0x80 to 0x8E		
Off	GOOD	OK	OXOU IU UXOE	_	_

Diagnostic information 302

Diagnostic behavior	N	leasured value st	Device diagnostics		
(configurable)	Quality Quality Substatus		Coding (hex)	Category (NE107)	(fixed assignment)
Alarm	BAD	Function check, local override	0x24	С	Function check
Warning	GOOD	Function check	0xBC to 0xBF	_	_

Diagnostic information 302 (device verification active) is output during internal or external Heartbeat verification.

- Signal status: Function check
- Choice of diagnostic behavior: alarm or warning (factory setting)

When the Heartbeat Verification is started, data logging is interrupted, the last valid measured value is output and the totalizer counter is stopped.

100

	Diagnostic information	pertaining to th	ne confiauration: dia	anostic number	400 to 599
--	------------------------	------------------	-----------------------	----------------	------------

Diagnostic behavior	Measured value status (fixed assignment)				
(configurable)	Quality	Quality Substatus	Coding (hex)	Category (NE107)	Device diagnosis (fixed assignment)
Alarm	BAD	Process related	0x28	F (Failure)	Invalid process condition
Warning	UNCERTA IN	Process related	0x78	S (Out of specification)	Invalid process condition
Logbook entry only	GOOD	ok	0x80	_	
Off	GOOD	UK	UXOU	_	_

Diagnostic information pertaining to the process: diagnostic number 800 to 999

Diagnostis hohovion	M	leasured value sta	Device diagnosis		
Diagnostic behavior (configurable)	Quality	Quality Substatus	Coding (hex)	Category (NE107)	(fixed assignment)
Alarm	BAD	Process related	0x28	F (Failure)	Invalid process condition
Warning	UNCERTA IN	Process related	0x78	S (Out of specification)	Invalid process condition
Logbook entry only Off	GOOD	ok	0x80	-	-

12.6 Overview of diagnostic information

- The amount of diagnostic information and the number of measured variables affected increase if the measuring device has one or more application packages.
 - All of the measured variables affected in the entire Promass instrument family are always listed under "Measured variables affected". The measured variables available for the device in question depend on the device version. When assigning the measured variables to the device functions, for example to the individual outputs, all of the measured variables available for the device version in question are available for selection.

12.6.1 Diagnostic of sensor

	Diagnostic information		Remedy instructions	Influenced measured
No.		Short text		variables
022	1		Change main electronic module	Carrier mass flow
			2. Change sensor	ConcentrationDensity
	Quality	Bad		Dynamic viscosityKinematic viscosity
	Quality substatus	Maintenance alarm		 Mass flow
	Coding (hex)	0x24 to 0x27		Sensor integrityReference density
	Status signal	F		 Corrected volume flow
	Diagnostic behavior	Alarm		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Status Volume flow

	Diagnostic information		Remedy instructions	Influenced measured
No.		Short text		variables
046	Sensor limit exceeded		1. Inspect sensor	Carrier mass flow
	Measured variable status [from the factory] 1)		2. Check process condition	ConcentrationDensity
	Quality	Good		Dynamic viscosityKinematic viscosity
-	Quality substatus	Ok		Mass flow
	Coding (hex)	0x80 to 0x83		Sensor integrityReference density
	Status signal	S		Corrected volume flow
	Diagnostic behavior	Warning		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Volume flow

1) Diagnostic behavior can be changed. This causes the overall status of the measured variable to change.

	Diagnostic information		Remedy instructions	Influenced measured
No.	S	Short text		variables
062	Sensor connection		1. Change main electronic module	 Carrier mass flow
	Measured variable status		2. Change sensor	ConcentrationDensity
	Quality	Bad		Dynamic viscosity
-	Quality substatus	Maintenance alarm		Kinematic viscosityMass flow
	Coding (hex)	0x24 to 0x27		Sensor integrityReference density
	Status signal	F		 Corrected volume flow
	Diagnostic behavior	Alarm		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Status Volume flow

	Diagnosti	cinformation	Remedy instructions	Influenced measured
No.		Short text		variables
082	Data storage		1. Check module connections	 Carrier mass flow
	Measured variable status		2. Contact service	ConcentrationDensity
	Quality Quality substatus	Bad Maintenance alarm		Dynamic viscosityKinematic viscosityMass flow
	Coding (hex)	0x24 to 0x27		 Sensor integrity Reference density
	Status signal	F		Corrected volume flowTarget mass flow
	Diagnostic behavior	Alarm		 Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Volume flow

	Diagnostic information		Remedy instructions	Influenced measured
No.		Short text		variables
083	Memory content		1. Restart device	Carrier mass flow
	Measured variable status		2. Contact service	ConcentrationDensity
	Quality	Bad		Dynamic viscosityKinematic viscosity
	Quality substatus	Maintenance alarm		 Mass flow
	Coding (hex)	0x24 to 0x27		Sensor integrityReference density
	Status signal	F		 Corrected volume flow
	Diagnostic behavior	Alarm		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Status Volume flow

	Diagnostic information		Remedy instructions	Influenced measured
No.	:	Short text		variables
140	Sensor signal		1. Check or change main electronics	 Carrier mass flow
	Measured variable status [from the factory] 1)		2. Change sensor	ConcentrationDensity
-	Quality	Good		Dynamic viscosityKinematic viscosity
	Quality substatus	Ok		Mass flow
	Coding (hex)	0x80 to 0x83		Sensor integrityReference density
	Status signal	S		 Corrected volume flow
	Diagnostic behavior	Alarm		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature

	Diagnostic information		Remedy instructions	Influenced measured variables
No.	S	hort text		variables
144	Measuring error too high		1. Check or change sensor	Carrier mass flow
	Measured variable status [fre	om the factory] ¹⁾	2. Check process conditions	ConcentrationDensityDynamic viscosityKinematic viscosity
	Quality	Good		
	Quality substatus	Ok		Mass flow
	Coding (hex)	0x80 to 0x83		Sensor integrityReference density
	Status signal	F		Corrected volume flow
	Diagnostic behavior	Alarm		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature

	Diagnostic information		Remedy instructions	Influenced measured
No.		Short text		variables
190	0 Special event 1		Contact service	Carrier mass flowConcentration
	Measured variable status			Density
	Quality	Bad		 Dynamic viscosity
		1		Kinematic viscosity
-	Quality substatus	Maintenance alarm		Mass flow
	Coding (hex)	0x24 to 0x27		Sensor integrityReference density
	Status signal	F		 Corrected volume flow
	Diagnostic behavior	Alarm		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Status Volume flow

	Diagnostic information		Remedy instructions	Influenced measured
No.	S	Short text		variables
191	Special event 5		Contact service	Carrier mass flow
	Measured variable status			ConcentrationDensity
	Quality	Bad		 Dynamic viscosity
	Quality substatus	Maintenance alarm		Kinematic viscosityMass flow
	Coding (hex)	0x24 to 0x27		Sensor integrityReference density
	Status signal F	F		 Corrected volume flow
	Diagnostic behavior	Alarm		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Status Volume flow

	Diagnostic information		Remedy instructions	Influenced measured
No.	Short text			variables
192	Special event 9		Contact service	Carrier mass flow
	Measured variable status [from the factory] 1)			ConcentrationDensity
	Quality	Good		Dynamic viscosityKinematic viscosity
	Quality substatus	Ok		 Mass flow
	Coding (hex)	0x80 to 0x83		Sensor integrityReference density
	Status signal	F		Corrected volume flow
	Diagnostic behavior	Alarm		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Status Volume flow

12.6.2 Diagnostic of electronic

	Diagnostic information		Remedy instructions	Influenced measured
No.	s	hort text		variables
201	Device failure		1. Restart device	Carrier mass flow
	Measured variable status		2. Contact service	ConcentrationDensity
	Quality	Bad		Dynamic viscosityKinematic viscosity
	Quality substatus	Maintenance alarm		Mass flow
	Coding (hex)	0x24 to 0x27		Sensor integrityReference density
	Status signal	F		 Corrected volume flow
	Diagnostic behavior	Alarm		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Status Volume flow

	Diagnostic information		Remedy instructions	Influenced measured
No.	Short text			variables
242	Software incompatible		1. Check software	Carrier mass flow
	Measured variable status		2. Flash or change main electronics module	ConcentrationDensity
	Quality	Bad		Dynamic viscosityKinematic viscosity
	Quality substatus	Maintenance alarm		Mass flow
	Coding (hex)	0x24 to 0x27		Sensor integrityReference density
	Status signal	F		 Corrected volume flow
	Diagnostic behavior	Alarm		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Status Volume flow

	Diagnostic information		Remedy instructions	Influenced measured
No.	S	hort text		variables
252	1		Check electronic modules Change electronic modules	 Carrier mass flow
	Measured variable status [from the factory] 1)			ConcentrationDensity
	Quality	Good		Dynamic viscosityKinematic viscosity
	Quality substatus	Ok		Mass flow
	Coding (hex)	0x80 to 0x83		Reference densityCorrected volume flow
	Status signal	F		 Target mass flow
	Diagnostic behavior	Alarm		 Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Status Volume flow

	Diagnostic information		Remedy instructions	Influenced measured
No.	. Short text			variables
262	62 Module connection		1. Check module connections	Carrier mass flow
	Measured variable status		2. Change main electronics	ConcentrationDensity
	Quality	Bad		 Dynamic viscosity Kinematic viscosity Mass flow Sensor integrity Reference density
	Quality substatus	Maintenance alarm		
	Coding (hex)	0x24 to 0x27		
	Status signal	F		Corrected volume flow
	Diagnostic behavior	Alarm		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Status Volume flow

	Diagnostic information		Remedy instructions	Influenced measured
No.	Short text			variables
270	Main electronic failure		Change main electronic module	Carrier mass flow
	Measured variable status			ConcentrationDensity
	Quality	Bad		Dynamic viscosityKinematic viscosity
	Quality substatus	Maintenance alarm		Mass flow
	Coding (hex)	0x24 to 0x27		Sensor integrityReference density
	Status signal	F		 Corrected volume flow
	Diagnostic behavior	Alarm		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Status Volume flow

	Diagnostic information		Remedy instructions	Influenced measured
No.	No. Short text			variables
271	Main electronic failure		Restart device Change main electronic module	Carrier mass flow
	Measured variable status			ConcentrationDensity
	Quality	Bad		Dynamic viscosityKinematic viscosity
	Quality substatus	Maintenance alarm		Mass flow
	Coding (hex)	0x24 to 0x27		Sensor integrityReference density
	Status signal	F		Corrected volume flow
	Diagnostic behavior	Alarm		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Status Volume flow

	Diagnostic information		Remedy instructions	Influenced measured
No.	Short text			variables
272	Main electronic failure		1. Restart device	Carrier mass flow
	Measured variable status		2. Contact service	ConcentrationDensity
	Quality	Bad		Dynamic viscosityKinematic viscosity
	Quality substatus	Maintenance alarm		Mass flow
	Coding (hex)	0x24 to 0x27		Sensor integrityReference density
	Status signal	F		 Corrected volume flow
	Diagnostic behavior	Alarm		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Status Volume flow

	Diagnostic information		Remedy instructions	Influenced measured
No.		Short text		variables
273	Main electronic failure		Change electronic	Carrier mass flow
	Measured variable status			ConcentrationDensity
	Quality	Bad		Dynamic viscosityKinematic viscosity
	Quality substatus	Maintenance alarm		 Mass flow
	Coding (hex)	0x24 to 0x27		Sensor integrityReference density
	Status signal	F		 Corrected volume flow
	Diagnostic behavior	Alarm		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Status Volume flow

	Diagnostic	information	Remedy instructions	Influenced measured variables
No.	Si	hort text		variables
274	Main electronic failure		Change electronic	Mass flow
	Measured variable status [from the factory] 1)			Sensor integrityCorrected volume flow
	Quality	Good		 Volume flow
	Quality substatus	Ok		
	Coding (hex)	0x80 to 0x83		
	Status signal	S		
	Diagnostic behavior	Warning		

	Diagnostic information		Remedy instructions	Influenced measured
No.		Short text		variables
283	Memory content		1. Reset device	Carrier mass flow
	Measured variable status		2. Contact service	ConcentrationDensity
	Quality	Bad		Dynamic viscosityKinematic viscosity
	Quality substatus	Maintenance alarm		 Mass flow
	Coding (hex)	0x24 to 0x27		Reference densityCorrected volume flow
	Status signal	F		■ Target mass flow
	Diagnostic behavior	Alarm		 Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Status Volume flow

	Diagnostic information		Remedy instructions	Influenced measured
No.	. Short text			variables
311			1. Reset device	Carrier mass flow
	Measured variable status		2. Contact service	ConcentrationDensity
	Quality	Bad		Dynamic viscosityKinematic viscosity
	Quality substatus	Maintenance alarm		 Mass flow
	Coding (hex)	0x24 to 0x27		Sensor integrityReference density
	Status signal	F		 Corrected volume flow
	Diagnostic behavior	Alarm		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Status Volume flow

	Diagnostic information		Remedy instructions	Influenced measured
No.	S	hort text		variables
311	Electronic failure		1. Do not reset device	Carrier mass flow
	Measured variable status		2. Contact service	ConcentrationDensity
	Quality	Bad		Dynamic viscosityKinematic viscosity
	Quality substatus	Maintenance alarm		 Mass flow
	Coding (hex)	0x24 to 0x27		Sensor integrityReference density
	Status signal	M		Corrected volume flow
	Diagnostic behavior	Warning		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Volume flow

	Diagnostic	information	Remedy instructions	Influenced measured
No.	S	hort text		variables
382	Data storage		1. Insert DAT module	Carrier mass flow
	Measured variable status		2. Change DAT module	ConcentrationDensity
	Quality	Bad		Dynamic viscosityKinematic viscosity
	Quality substatus	Maintenance alarm		Mass flow Defended a description
	Coding (hex)	0x24 to 0x27		Reference densityCorrected volume flow
	Status signal	F		■ Target mass flow
	Diagnostic behavior	Alarm		 Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Status Volume flow

	Diagnostic information		Remedy instructions	Influenced measured
No.	:	Short text		variables
383	Memory content		1. Restart device	 Carrier mass flow
	Measured variable status		2. Check or change DAT module 3. Contact service	ConcentrationDensity
	Quality	Bad		Dynamic viscosityKinematic viscosity
	Quality substatus	Maintenance alarm		Mass flow
	Coding (hex)	0x24 to 0x27		Reference densityCorrected volume flow
	Status signal	F		 Target mass flow
	Diagnostic behavior	Alarm		 Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Status Volume flow

	Diagnostic information		Remedy instructions	Influenced measured variables
No.		Short text		variables
390			Contact service	Carrier mass flowConcentration
	Measured variable status			Density
	Quality	Bad		Dynamic viscosityKinematic viscosity
	Quality substatus	Maintenance alarm		 Mass flow
	Coding (hex)	0x24 to 0x27		Sensor integrityReference density
	Status signal	F		 Corrected volume flow
	Diagnostic behavior	Alarm		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Status Volume flow

	Diagnostic information		Remedy instructions	Influenced measured
No.		Short text		variables
391			Contact service	Carrier mass flowConcentration
	Measured variable status Quality	Bad		 Density Dynamic viscosity Kinematic viscosity Mass flow Sensor integrity
	Quality substatus	Maintenance alarm		
	Coding (hex) Status signal	0x24 to 0x27 F		Reference densityCorrected volume flow
	Diagnostic behavior	Alarm		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Status Volume flow

	Diagnostic information		Remedy instructions	Influenced measured
No.	Short text			variables
392	Special event 10		Contact service	Carrier mass flow
	Measured variable status [fr	om the factory] 1)		ConcentrationDensity
	Quality	Good		Dynamic viscosityKinematic viscosity
	Quality substatus	Ok		 Mass flow
	Coding (hex)	0x80 to 0x83		Sensor integrityReference density
	Status signal	F		 Corrected volume flow
	Diagnostic behavior	Alarm		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Status Volume flow

¹⁾ Diagnostic behavior can be changed. This causes the overall status of the measured variable to change.

110

12.6.3 Diagnostic of configuration

	Diagnostic information		Remedy instructions	Influenced measured
No.		Short text		variables
410			1. Check connection	Carrier mass flow
			2. Retry data transfer	ConcentrationDensity
	Quality	Bad		Dynamic viscosityKinematic viscosity
	Quality substatus	Maintenance alarm		 Mass flow
	Coding (hex)	0x24 to 0x27		Sensor integrityReference density
	Status signal	F		 Corrected volume flow
	Diagnostic behavior	Alarm		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Volume flow

	Diagnostic information		Remedy instructions	Influenced measured
No.	S	hort text		variables
412	Processing download		Download active, please wait	 Carrier mass flow
	Measured variable status			ConcentrationDensity
	Quality	Uncertain		Dynamic viscosityKinematic viscosity
	Quality substatus	Initial value		 Mass flow
	Coding (hex)	0x4C to 0x4F		Sensor integrityReference density
	Status signal	С		 Corrected volume flow
	Diagnostic behavior	Warning		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Volume flow

	Diagnostic information		Remedy instructions	Influenced measured
No.	S	Short text		variables
437	Configuration incompatible		1. Restart device	Carrier mass flow
	Measured variable status		2. Contact service	ConcentrationDensity
	Quality	Bad		Dynamic viscosityKinematic viscosity
	Quality substatus	Maintenance alarm		 Mass flow
	Coding (hex)	0x24 to 0x27		Reference densityCorrected volume flow
	Status signal	F		 Target mass flow
	Diagnostic behavior	Alarm		 Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Status Volume flow

	Diagnostic information		Remedy instructions	Influenced measured
No.	2	Short text		variables
438	Dataset		1. Check data set file	• Carrier mass flow
	Measured variable status		Check device configuration Up- and download new configuration	ConcentrationDensity
	Quality	Uncertain		Dynamic viscosityKinematic viscosity
	Quality substatus	Maintenance demanded		Mass flow
	Coding (hex)	0x68 to 0x6B		Sensor integrityReference density
	Status signal	M		 Corrected volume flow
	Diagnostic behavior	Warning		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Volume flow

	Diagnostic information		Remedy instructions	Influenced measured
No.	9	Short text		variables
453	Flow override		Deactivate flow override	Carrier mass flow
	Measured variable status			ConcentrationDensity
	Quality	Good		Dynamic viscosityKinematic viscosity
	Quality substatus	Function check		 Mass flow
	Coding (hex)	0xBC to 0xBF		Sensor integrityReference density
	Status signal	С		 Corrected volume flow
	Diagnostic behavior	Warning		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Volume flow

	Diagnostic information		Remedy instructions	Influenced measured
No.	o. Short text			variables
484	Simulation Failure Mode		Deactivate simulation	Carrier mass flow
	Measured variable status			ConcentrationDensity
	Quality	Bad		 Dynamic viscosity Kinematic viscosity Mass flow Sensor integrity Reference density
	Quality substatus	Function check		
	Coding (hex)	0x3C to 0x3F		
	Status signal	С		 Corrected volume flow
	Diagnostic behavior	Alarm		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Status Volume flow

	Diagnostic information		Remedy instructions	Influenced measured
No.	S	Short text		variables
485	Simulation measured variable		Deactivate simulation	• Carrier mass flow
	Measured variable status			ConcentrationDensity
	Quality	Good		 Dynamic viscosity Kinematic viscosity Mass flow
	Quality substatus	Function check		
	Coding (hex)	0xBC to 0xBF		Sensor integrityReference density
	Status signal	С		Corrected volume flow
	Diagnostic behavior	Warning		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Volume flow

	Diagnostic information		Remedy instructions	Influenced measured
No.	SI	nort text		variables
495	Diagnostic event simulation		Deactivate simulation	-
	Measured variable status			
	Quality	Good		
	Quality substatus	Ok		
	Coding (hex)	0x80 to 0x83		
	Status signal	С		
	Diagnostic behavior	Warning		

	Diagnostic information		Remedy instructions	Influenced measured
No.	S	hort text		variables
537	Configuration		1. Check IP addresses in network	-
	Measured variable status		2. Change IP address	
	Quality	Good		
	Quality substatus	Ok		
	Coding (hex)	0x80 to 0x83		
	Status signal	F		
	Diagnostic behavior	Warning		

	Diagnostic information		Remedy instructions	Influenced measured
No.	:	Short text		variables
590	Special event 3		Contact service	Carrier mass flow
	Measured variable status			 Concentration Density Dynamic viscosity Kinematic viscosity Mass flow
	Quality	Bad		
	Quality substatus	Maintenance alarm		
	Coding (hex)	0x24 to 0x27		Sensor integrityReference density
	Status signal	F		 Corrected volume flow
	Diagnostic behavior	Alarm		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Status Volume flow

	Diagnostic information		Remedy instructions	Influenced measured
No.		Short text		variables
591	Special event 7 Measured variable status		Contact service	 Carrier mass flow Concentration Density Dynamic viscosity Kinematic viscosity Mass flow Sensor integrity Reference density
-	Quality Quality substatus	Bad Maintenance alarm		
	Coding (hex)	0x24 to 0x27		
	Status signal	F		Corrected volume flowTarget mass flow
	Diagnostic behavior	Alarm		 Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Status Volume flow

	Diagnostic information		Remedy instructions	Influenced measured
No.	o. Short text			variables
592	Special event 11		Contact service	Carrier mass flow
	Measured variable status [from the factory] 1)			ConcentrationDensity
	Quality	Good		Dynamic viscosityKinematic viscosity
-	Quality substatus	Ok		 Mass flow
	Coding (hex)	0x80 to 0x83		Sensor integrityReference density
	Status signal	F		Corrected volume flow
	Diagnostic behavior	Alarm		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Status Volume flow

¹⁾ Diagnostic behavior can be changed. This causes the overall status of the measured variable to change.

12.6.4 Diagnostic of process

	Diagnostic information		Remedy instructions	Influenced measured
No.	S	hort text		variables
825	Operating temperature		1. Check ambient temperature	Carrier mass flow
	Measured variable status		2. Check process temperature	ConcentrationDensity
	Quality	Good		Dynamic viscosityKinematic viscosity
	Quality substatus	Ok		Mass flow
	Coding (hex)	0x80 to 0x83		Sensor integrityReference density
	Status signal	S		Corrected volume flowTarget mass flow
	Diagnostic behavior	Warning		 Target mass now Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Status Volume flow

	Diagnostic information		Remedy instructions	Influenced measured
No.	Io. Short text			variables
825	Operating temperature		Check ambient temperature	Carrier mass flow
	Measured variable status		2. Check process temperature	ConcentrationDensity
	Quality	Uncertain		Dynamic viscosityKinematic viscosity
-	Quality substatus	Process related		 Mass flow
	Coding (hex)	0x78 to 0x7B		Sensor integrityReference density
	Status signal	S		Corrected volume flow
	Diagnostic behavior	Warning		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Status Volume flow

	Diagnostic information		Remedy instructions	Influenced measured
No.	9	Short text		variables
825	- F		1. Check ambient temperature	Carrier mass flow
1 1			2. Check process temperature	ConcentrationDensity
	Quality	Bad		Dynamic viscosityKinematic viscosity
	Quality substatus	Process related		Mass flow
	Coding (hex)	0x28 to 0x2B		Reference densityCorrected volume flow
	Status signal	F		Target mass flow Town appropriated
	Diagnostic behavior	Alarm		 Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Status Volume flow

	Diagnostic information		Remedy instructions	Influenced measured
No.	S	hort text		variables
830	Sensor temperature too high		Reduce ambient temp. around the sensor	Carrier mass flow
	Measured variable status		housing	ConcentrationDensity
	Quality	Uncertain		Dynamic viscosityKinematic viscosity
	Quality substatus	Process related		 Mass flow
	Coding (hex)	0x78 to 0x7B		Sensor integrityReference density
	Status signal	S		■ Corrected volume flow
	Diagnostic behavior	Warning		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Volume flow

	Diagnostic information		Remedy instructions	Influenced measured
No.	!	Short text		variables
831	Sensor temperature too low		Increase ambient temp. around the sensor	 Carrier mass flow
	Measured variable status		housing	ConcentrationDensity
	Quality	Uncertain		Dynamic viscosityKinematic viscosity
	Quality substatus	Process related		Mass flow
	Coding (hex)	0x78 to 0x7B		Sensor integrityReference density
	Status signal	S		 Corrected volume flow
	Diagnostic behavior	Warning		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Volume flow

	Diagnostic	information	Remedy instructions	Influenced measured
No.	S	hort text		variables
832	Electronic temperature too hig	h	Reduce ambient temperature	Carrier mass flow
	Measured variable status [fro	om the factory] 1)		ConcentrationDensity
	Quality	Good		Mass flowSensor integrityReference density
	Quality substatus	Ok		
	Coding (hex)	0x80 to 0x83		Corrected volume flowTarget mass flow
	Status signal	S		■ Temperature
	Diagnostic behavior	Warning		Volume flow

¹⁾ Diagnostic behavior can be changed. This causes the overall status of the measured variable to change.

	Diagnostic information		Remedy instructions	Influenced measured
No.	2	Short text		variables
833	1		Increase ambient temperature	Carrier mass flowConcentration
	Measured variable status [from the factory] 1)			Density
	Quality	Good		Dynamic viscosityKinematic viscosity
	Quality substatus	Ok		Mass flow
	Coding (hex)	0x80 to 0x83		Sensor integrityReference density
	Status signal	S		 Corrected volume flow
	Diagnostic behavior	Warning		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Volume flow

	Diagnostic information		Remedy instructions	Influenced measured
No.		Short text		variables
834	Process temperature too high	n	Reduce process temperature	 Carrier mass flow
	Measured variable status [from the factory] 1)			ConcentrationDensity
	Quality	Good		Dynamic viscosityKinematic viscosity
	Quality substatus	Ok		Mass flow
	Coding (hex)	0x80 to 0x83		Sensor integrityReference density
	Status signal	S		Corrected volume flow
	Diagnostic behavior	Warning		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Volume flow

1) Diagnostic behavior can be changed. This causes the overall status of the measured variable to change.

	Diagnostic information		Remedy instructions	Influenced measured
No.	S	hort text		variables
835	Process temperature too low		Increase process temperature	Carrier mass flow
	Measured variable status [from the factory] 1)			ConcentrationDensity
	Quality	Good		Dynamic viscosityKinematic viscosity
	Quality substatus	Ok		Mass flow
	Coding (hex)	0x80 to 0x83		Sensor integrityReference density
	Status signal	S		Corrected volume flow
	Diagnostic behavior	Warning		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Volume flow

1) Diagnostic behavior can be changed. This causes the overall status of the measured variable to change.

	Diagnostic information		Remedy instructions	Influenced measured
No.	S	hort text		variables
842	Process limit		Low flow cut off active!	Carrier mass flow
	Measured variable status		Check low flow cut off configuration	ConcentrationDensity
	Quality	Good		Dynamic viscosityKinematic viscosity
	Quality substatus	Ok		Mass flow
	Coding (hex)	0x80 to 0x83		Reference densityCorrected volume flow
	Status signal	S		■ Target mass flow
	Diagnostic behavior	Warning		 Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Volume flow

	Diagnos	tic information	Remedy instructions	Influenced measured	
No.		Short text		variables	
843	Process limit		Check process conditions	Carrier mass flow Concentration	
	Measured variable status			ConcentrationDensityDynamic viscosityKinematic viscosityMass flow	
	Quality	Good		Kinematic viscosityMass flow	
	Quality substatus	Ok			
	Coding (hex)	0x80 to 0x83		Sensor integrityReference density	
	Status signal	S		 Corrected volume flow 	
	Diagnostic behavior	Warning		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Volume flow 	

	Diagnostic information		Remedy instructions	Influenced measured
No.	:	Short text		variables
862	Partly filled pipe		1. Check for gas in process	Carrier mass flow
	Measured variable status		2. Adjust detection limits	ConcentrationDensity
	Quality	Uncertain		Dynamic viscosityKinematic viscosity
	Quality substatus	Process related		 Mass flow
	Coding (hex)	0x78 to 0x7B		Sensor integrityReference density
	Status signal	S		 Corrected volume flow
	Diagnostic behavior	Warning		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Volume flow

	Diagnostic information		Remedy instructions	Influenced measured
No.	Short text			variables
882			1. Check input configuration	■ Density
	Measured variable status		Check external device or process conditions	Mass flowReference density
	Quality	Bad		Corrected volume flowVolume flow
	Quality substatus	Maintenance alarm		
	Coding (hex)	0x24 to 0x27		
	Status signal	F		
	Diagnostic behavior	Alarm		

	Diagnostic	information	Remedy instructions	Influenced measured
No.	Short text			variables
910	0 Tubes not oscillating		1. Check electronic	Carrier mass flow
	Measured variable status		Dens Mass Sens Refer Corre Targ Temp	ConcentrationDensity
	Quality	Bad		 Mass flow Sensor integrity Reference density Corrected volume flow Target mass flow Temperature
	Quality substatus	Maintenance alarm		
	Coding (hex)	0x24 to 0x27		
	Status signal	F		
	Diagnostic behavior	Alarm		Volume flow

	Diagnostic information		Remedy instructions	Influenced measured
No.	S	hort text		variables
912	Medium inhomogeneous		1. Check process cond.	 Carrier mass flow
	Measured variable status [from the factory] 1)		2. Increase system pressure	ConcentrationDensity
	Quality	Good		Dynamic viscosityKinematic viscosity
	Quality substatus	Ok		 Mass flow
	Coding (hex)	0x80 to 0x83		Sensor integrityReference density
	Status signal	S		 Corrected volume flow
	Diagnostic behavior	Warning		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Volume flow

	Diagnost	ic information	Remedy instructions	Influenced measured variables
No.		Short text		Variables
912	Inhomogeneous		1. Check process cond.	 Carrier mass flow
	Measured variable status [from the factory] 1)		2. Increase system pressure	ConcentrationDensity
	Quality	Good		Dynamic viscosityKinematic viscosity
	Quality substatus	Ok		Mass flow
	Coding (hex)	0x80 to 0x83		Sensor integrityReference density
	Status signal	S		Corrected volume flow
	Diagnostic behavior	Warning		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Volume flow

	Diagnost	c information	Remedy instructions	Influenced measured
No.		Short text		variables
913	Medium unsuitable		1. Check process conditions	Carrier mass flow
	Measured variable status [from the factory] 1)		2. Check electronic modules or sensor	ConcentrationDensity
	Quality	Good		Dynamic viscosityKinematic viscosity
	Quality substatus	Ok		 Mass flow
	Coding (hex)	0x80 to 0x83		Sensor integrityReference density
	Status signal	S		Corrected volume flow
	Diagnostic behavior	Warning		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Volume flow

1) Diagnostic behavior can be changed. This causes the overall status of the measured variable to change.

	Diagnostic	information	Remedy instructions	Influenced measured
No.	S	hort text		variables
944	Monitoring failed		Check process conditions for Heartbeat	• Carrier mass flow
	Measured variable status [fro	om the factory] 1)	Monitoring	ConcentrationDensity
	Quality	Good		Mass flowSensor integrity
	Quality substatus	Ok		 Reference density
	Coding (hex)	0x80 to 0x83		Corrected volume flowTarget mass flow
	Status signal	S		■ Temperature
	Diagnostic behavior	Warning		

1) Diagnostic behavior can be changed. This causes the overall status of the measured variable to change.

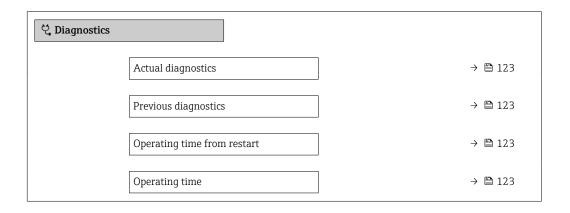
120

	Diagnosti	information	Remedy instructions	Influenced measured
No.	Short text			variables
948	Tube damping too high Measured variable status [from the factory] 1)		Check process conditions	Carrier mass flowConcentration
	Quality	Good		DensityDynamic viscosityKinematic viscosity
	Quality substatus Coding (hex)	Ok		Mass flowSensor integrity
	Status signal	S		Reference densityCorrected volume flow
	Diagnostic behavior	Warning		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Status Volume flow

	Diagnostic information		Remedy instructions	Influenced measured
No.	Short text			variables
990	Special event 4		Contact service	Carrier mass flow
	Measured variable status			ConcentrationDensity
	Quality	Bad		Dynamic viscosityKinematic viscosity
	Quality substatus Maintenance alarm			 Mass flow
	Coding (hex)	0x24 to 0x27		Sensor integrityReference density
	Status signal	F		 Corrected volume flow
	Diagnostic behavior	Alarm		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Status Volume flow

	Diagnostic information		Remedy instructions	Influenced measured
No.	Short text			variables
991	Special event 8		Contact service	• Carrier mass flow
	Measured variable status			ConcentrationDensity
	Quality	Bad		Dynamic viscosityKinematic viscosity
	Quality substatus	Maintenance alarm		Mass flow
	Coding (hex)	0x24 to 0x27		Sensor integrityReference density
	Status signal	F		Corrected volume flow
	Diagnostic behavior	Alarm		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Status Volume flow

	Diagnost	c information	Remedy instructions	Influenced measured
No.		Short text		variables
992	Special event 12		Contact service	Carrier mass flowConcentration
	Measured variable status [from the factory] ¹⁾		Density
	Quality	Good		Dynamic viscosityKinematic viscosity
	Quality substatus	Ok		Mass flow
	Coding (hex)	0x80 to 0x83		Sensor integrityReference density
	Status signal	F		 Corrected volume flow
	Diagnostic behavior	Alarm		 Target mass flow Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Temperature Status Volume flow


12.7 Pending diagnostic events

The **Diagnostics** menu allows the user to view the current diagnostic event and the previous diagnostic event separately.

- Accessing the remedial action for a diagnostic event:
 - Via web browser \rightarrow \blacksquare 97
 - Via "FieldCare" operating tool → 🗎 97
 - Via "DeviceCare" operating tool → 🖺 97
- Other pending diagnostic events can be displayed in the **Diagnostic list** submenu $\rightarrow \stackrel{\square}{=} 123$.

Navigation

"Diagnostics" menu

Parameter overview with brief description

Parameter	Prerequisite	Description	User interface
		Shows the current occured diagnostic event along with its diagnostic information.	Symbol for diagnostic behavior, diagnostic code and short message.
		If two or more messages occur simultaneously, the message with the highest priority is shown on the display.	
Previous diagnostics	Two diagnostic events have already occurred.	Shows the diagnostic event that occurred prior to the current diagnostic event along with its diagnostic information.	Symbol for diagnostic behavior, diagnostic code and short message.
Operating time from restart	-	Shows the time the device has been in operation since the last device restart.	Days (d), hours (h), minutes (m) and seconds (s)
Operating time	-	Indicates how long the device has been in operation.	Days (d), hours (h), minutes (m) and seconds (s)

12.8 Diagnostic list

Up to 5 currently pending diagnostic events are displayed in the **Diagnostic list** submenu along with the associated diagnostic information. If more than 5 diagnostic events are pending, the events with the highest priority are shown on the display.

Navigation path

Diagnostics → Diagnostic list

Accessing the remedial action for a diagnostic event:

- - Via "FieldCare" operating tool → 🖺 97
 - Via "DeviceCare" operating tool → 🗎 97

12.9 **Event logbook**

12.9.1 Reading out the event logbook

A chronological overview of the event messages that have occurred is provided in the Event logbook submenu.

Navigation path

Diagnostics menu → **Event logbook** submenu → Event logbook

The event history includes entries for:

- Diagnostic events → 🗎 101
- Information events → 🖺 124

In addition to the operating time when the event occurred, each event is also assigned a symbol that indicates whether the event has occurred or is finished:

- Diagnostic event
 - ①: Occurrence of the event
 - 🕒: End of the event
- Information event
 - €: Occurrence of the event
- Accessing the remedial action for a diagnostic event:
 - Via web browser \rightarrow $\stackrel{\blacksquare}{=}$ 97
 - Via "FieldCare" operating tool \rightarrow $\stackrel{\triangle}{=}$ 97
 - Via "DeviceCare" operating tool → 🗎 97
- $lue{ }$ Filtering the displayed event messages $ightarrow binom{1}{2}$ 124

12.9.2 Filtering the event logbook

Using the **Filter options** parameter you can define which category of event message is displayed in the **Events list** submenu.

Navigation path

Diagnostics \rightarrow Event logbook \rightarrow Filter options

Filter categories

- All
- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- Information (I)

12.9.3 Overview of information events

Unlike a diagnostic event, an information event is displayed in the event logbook only and not in the diagnostic list.

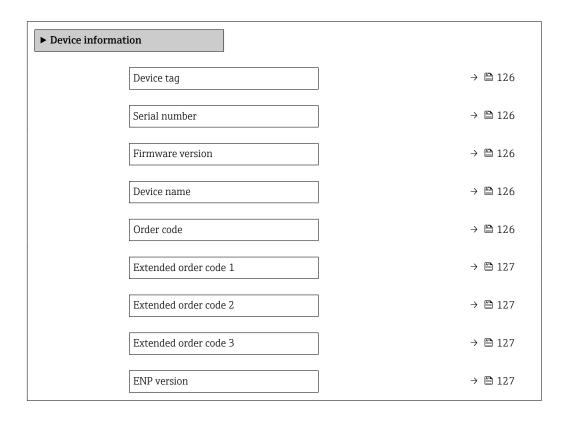
Info number	Info name	
I1000	(Device ok)	
I1089	Power on	
I1090	Configuration reset	
I1091	Configuration changed	
I1111	Density adjust failure	
I1137	Electronic changed	
I1151	History reset	
I1155	Reset electronic temperature	
I1157	Memory error event list	
I1185	Display backup done	
I1186	Restore via display done	
I1187	Settings downloaded with display	
I1188	Display data cleared	
I1189	Backup compared	
I1209	Density adjustment ok	
I1221	Zero point adjust failure	
I1222	Zero point adjustment ok	

Info number	Info name	
I1256	Display: access status changed	
I1335	Firmware changed	
I1361	Web server login failed	
I1397	Fieldbus: access status changed	
I1398	CDI: access status changed	
I1444	Device verification passed	
I1445	Device verification failed	
I1446	Device verification active	
I1447	Record application reference data	
I1448	Application reference data recorded	
I1449	Recording application ref. data failed	
I1450	Monitoring off	
I1451	Monitoring on	
I1457	Measured error verification failed	
I1459	I/O module verification failed	
I1460	Sensor integrity verification failed	
I1461	Sensor verification failed	
I1462	Sensor electronic module verific. failed	
I1512	Download started	
I1513	Download finished	
I1514	Upload started	
I1515	Upload finished	
I1627	Web server login successful	
I1631	Web server access changed	
I1649	Hardware write protection activated	
I1650	Hardware write protection deactivated	

12.10 Resetting the device

The entire device configuration or some of the configuration can be reset to a defined state with the **Device reset** parameter ($\Rightarrow \implies 76$).

12.10.1 Function scope of the "Device reset" parameter


Options	Description
Cancel	No action is executed and the user exits the parameter.
To delivery settings	Every parameter for which a customer-specific default setting was ordered is reset to the customer-specific value. All other parameters are reset to the factory setting. This option is not visible if no customer-specific settings have been ordered.
Restart device	The restart resets every parameter with data stored in volatile memory (RAM) to the factory setting (e.g. measured value data). The device configuration remains unchanged.

12.11 Device information

The **Device information** submenu contains all parameters that display different information for device identification.

Navigation

"Diagnostics" menu \rightarrow Device information

Parameter overview with brief description

Parameter	Description	User interface	Factory setting
Device tag	Shows name of measuring point.	Max. 32 characters such as lower-case letters or numbers.	eh-promass100-xxxxx
Serial number	Shows the serial number of the measuring device.	Max. 11-digit character string comprising letters and numbers.	-
Firmware version	Shows the device firmware version installed.	Character string in the format xx.yy.zz	-
Device name	Shows the name of the transmitter. The name can be found on the nameplate of the transmitter.	Character string comprising numbers, letters and special characters	-
Device name	Shows the name of the transmitter. The name can be found on the nameplate of the transmitter.	Max. 32 characters such as lower-case letters or numbers.	eh-promass100-xxxxx
Order code	Shows the device order code. The order code can be found on the nameplate of the sensor and transmitter in the "Order code" field. Character string composed of letters, numbers and certain punctuation marks (e.g. /).		_

Parameter	Description	User interface	Factory setting
Extended order code 1	Shows the 1st part of the extended order code. The extended order code can also be found on the nameplate of the sensor and transmitter in the "Ext. ord. cd." field.	Character string	_
Extended order code 2	Shows the 2nd part of the extended order code. The extended order code can also be found on the nameplate of the sensor and transmitter in the "Ext. ord. cd." field.	Character string	_
Extended order code 3	Shows the 3rd part of the extended order code. The extended order code can also be found on the nameplate of the sensor and transmitter in the "Ext. ord. cd." field.	Character string	-
ENP version	Shows the version of the electronic nameplate (ENP).	Character string	_

12.12 Firmware history

Release date	Firmware version	Order code for "Firmware version"	Firmware Changes	Documentation type	Documentation
12.2015	01.00.zz	Option 68	Original firmware	Operating instructions	BA01427D/06/EN/01.15

- It is possible to flash the firmware to the current version or an existing previous version via the service interface.
- For the compatibility of the firmware version with the installed device description files and operating tools, observe the information about the device in the "Manufacturer's information" document.
- The manufacturer's information is available:
 - In the Download Area of the Endress+Hauser Web site: www.endress.com → Downloads
 - Specify the following details:
 - Product root, e.g. 8E1B
 The product root is the first part of the order code: see the nameplate on the device.
 - Text search: Manufacturer's information
 - Media type: Documentation Technical Documentation

13 Maintenance

13.1 Maintenance work

No special maintenance work is required.

13.1.1 Cleaning

Cleaning of surfaces not in contact with the medium

- 1. Recommendation: Use a lint-free cloth that is either dry or slightly dampened using water
- 2. Do not use sharp objects or aggressive cleaning agents that could damage surfaces (e.g. displays, housing) and seals.
- 3. Do not use high-pressure steam.
- 4. Ensure compliance with the protection class of the device.

NOTICE

Cleaning agents can damage the surfaces!

Incorrect cleaning agents can damage the surfaces!

▶ Do not use cleaning agents containing concentrated mineral acids, alkalis or organic solvents e.g. benzyl alcohol, methylene chloride, xylene, concentrated glycerol cleaners or acetone.

Cleaning of surfaces in contact with the medium

Note the following for cleaning and sterilization in place (CIP/SIP):

- Use only cleaning agents to which the materials in contact with the medium are sufficiently resistant.
- Observe the permitted maximum medium temperature.

13.2 Measuring and test equipment

Endress+Hauser offers a variety of measuring and testing equipment, such as Netilion or device tests.

Your Endress+Hauser Sales Center can provide detailed information on the services.

List of some of the measuring and testing equipment: $\rightarrow \implies 132$

13.3 Maintenance services

Endress+Hauser offers a wide variety of services for maintenance such as recalibration, maintenance service or device tests.

Your Endress+Hauser Sales Center can provide detailed information on the services.

14 Repair

14.1 General notes

14.1.1 Repair and conversion concept

The Endress+Hauser repair and conversion concept provides for the following:

- The measuring devices have a modular design.
- Spare parts are grouped into logical kits with the associated Installation Instructions.
- Repairs are carried out by Endress+Hauser Service or by appropriately trained customers.
- Certified devices can only be converted to other certified devices by Endress+Hauser Service or at the factory.

14.1.2 Notes for repair and conversion

For repair and conversion of a measuring device, observe the following notes:

- ▶ Use only original Endress+Hauser spare parts.
- ▶ Carry out the repair according to the Installation Instructions.
- ▶ Observe the applicable standards, federal/national regulations, Ex documentation (XA) and certificates.
- ▶ Document all repairs and conversions and enter the details in Netilion Analytics.

14.2 Spare parts

Device Viewer (www.endress.com/deviceviewer):

All the spare parts for the measuring device, along with the order code, are listed here and can be ordered. If available, users can also download the associated Installation Instructions.

- Measuring device serial number:
 - Is located on the nameplate of the device.

14.3 Repair services

Endress+Hauser offers a wide range of services.

Your Endress+Hauser Sales Center can provide detailed information on the services.

14.4 Return

The requirements for safe device return can vary depending on the device type and national legislation.

- 1. Refer to the web page for information: https://www.endress.com
- 2. If returning the device, pack the device in such a way that it is reliably protected against impact and external influences. The original packaging provides the best protection.

14.5 **Disposal**

If required by the Directive 2012/19/EU on waste electrical and electronic equipment (WEEE), the product is marked with the depicted symbol in order to minimize the disposal of WEEE as unsorted municipal waste. Do not dispose of products bearing this marking as unsorted municipal waste. Instead, return them to the manufacturer for disposal under the applicable conditions.

14.5.1 Removing the measuring instrument

1. Switch off the device.

WARNING

Danger to persons from process conditions!

- ▶ Beware of hazardous process conditions such as pressure in the measuring instrument, high temperatures or aggressive media.
- 2. Carry out the installation and connection steps from the "Installing the device" and "Connecting the device" sections in reverse order. Observe the safety instructions.

14.5.2 Disposing of the measuring instrument

A WARNING

Danger to personnel and environment from fluids that are hazardous to health.

► Ensure that the measuring device and all cavities are free of fluid residues that are hazardous to health or the environment, e.q. substances that have permeated into crevices or diffused through plastic.

Observe the following notes during disposal:

- ▶ Observe valid federal/national regulations.
- Ensure proper separation and reuse of the device components.

15 Accessories

Various accessories, which can be ordered with the device or subsequently from Endress +Hauser, are available for the device. Detailed information on the order code in question is available from your local Endress+Hauser sales center or on the product page of the Endress+Hauser website: www.endress.com.

15.1 Device-specific accessories

15.1.1 For the sensor

Accessories	Description
Heating jacket	Is used to stabilize the temperature of the fluids in the sensor. Water, water vapor and other non-corrosive liquids are permitted for use as fluids.
	If using oil as a heating medium, please consult with Endress+Hauser.
	Heating jackets cannot be used with sensors fitted with a rupture disk.
	• If ordered together with the measuring device:
	Order code for "Accessory enclosed"
	 Option RB "Heating jacket, G 1/2" female thread"
	 Option RC "Heating jacket, G 3/4" female thread"
	Option RD "Heating jacket, NPT 1/2" female thread"
	Option RE "Heating jacket, NPT 3/4" female thread" If ordered subsequently:
	 If ordered subsequently: Use the order code with the product root DK8003.
	Special Documentation SD02156D

15.2 Communication-specific accessories

Accessories	Description
Commubox FXA291	Connects Endress+Hauser field devices with a CDI interface (= Endress+Hauser Common Data Interface) and the USB port of a computer or laptop. The Technical Information TI00405C
Fieldgate FXA42	Transmission of the measured values of connected 4 to 20 mA analog measuring instruments, as well as digital measuring instruments
	 Technical Information TI01297S Operating Instructions BA01778S Product page: www.endress.com/fxa42
Field Xpert SMT50	The Field Xpert SMT50 tablet PC for device configuration enables mobile plant asset management in non-hazardous areas. It is suitable for commissioning and maintenance staff to manage field instruments with a digital communication interface and to record progress. This tablet PC is designed as an all-in-one solution with a preinstalled driver library and is an easy-to-use, touch-sensitive tool which can be used to manage field instruments throughout their entire life cycle.
	 Technical Information TI01555S Operating Instructions BA02053S Product page: www.endress.com/smt50

Field Xpert SMT70	The Field Xpert SMT70 tablet PC for device configuration enables mobile plant asset management in hazardous and non-hazardous areas. It is suitable for commissioning and maintenance staff to manage field instruments with a digital communication interface and to record progress. This tablet PC is designed as an all-in-one solution with a preinstalled driver library and is an easy-to-use, touch-sensitive tool which can be used to manage field instruments throughout their entire life cycle.
	 Technical Information TI01342S Operating Instructions BA01709S Product page: www.endress.com/smt70
Field Xpert SMT77	The Field Xpert SMT77 tablet PC for device configuration enables mobile plant asset management in areas categorized as Ex Zone 1.
	 Technical Information TI01418S Operating Instructions BA01923S Product page: www.endress.com/smt77

15.3 Service-specific accessories

Accessory	Description
Applicator	Software for selecting and sizing Endress+Hauser measuring instruments: Choice of measuring instruments for industrial requirements Calculation of all the necessary data for identifying the optimum flowmeter: e.g. nominal diameter, pressure loss, flow velocity and measurement accuracy. Graphic display of the calculation results Determining the partial order code. Administration, documentation and access to all project-related data and parameters over the entire life cycle of a project.
	Applicator is available: Via the Internet: https://portal.endress.com/webapp/applicator
Netilion	lloT ecosystem: Unlock knowledge With the Netilion IloT ecosystem, Endress+Hauser allows you to optimize your plant performance, digitize workflows, share knowledge, and enhance collaboration. Based on decades of experience in process automation, Endress+Hauser offers the process industry an lloT ecosystem that enables you to gain useful insights from data. These insights can be used to optimize processes, leading to increased plant availability, efficiency, and reliability - ultimately resulting in a more profitable plant. www.netilion.endress.com
FieldCare	FDT-based plant asset management tool from Endress+Hauser. It can configure all intelligent field units in your system and helps you manage them. By using the status information, it is also a simple but effective way of checking their status and condition. Operating Instructions BA00027S and BA00059S
DeviceCare	Tool to connect and configure Endress+Hauser field devices. • Technical Information: TI01134S • Innovation brochure: IN01047S

132

15.4 System components

Accessories	Description
Memograph M graphic data manager	The Memograph M graphic data manager provides information on all the relevant measured variables. Measured values are recorded correctly, limit values are monitored and measuring points analyzed. The data are stored in the 256 MB internal memory and also on a SD card or USB stick. Technical Information TI00133R Operating Instructions BA00247R
ITEMP	The temperature transmitters can be used in all applications and are suitable for the measurement of gases, steam and liquids. They can be used to read in the medium temperature. [I] "Fields of Activity" document FA00006T

16 Technical data

16.1 Application

The measuring device is intended only for the flow measurement of liquids and gases.

Depending on the version ordered, the measuring device can also measure potentially explosive, flammable, poisonous and oxidizing media.

To ensure that the device remains in proper operating condition for its service life, use the measuring device only for media against which the process-wetted materials are sufficiently resistant.

16.2 Function and system design

Measuring principle	Mass flow measurement based on the Coriolis measuring principle
Measuring system	The device consists of a transmitter and a sensor.
	The device is available as a compact version: The transmitter and sensor form a mechanical unit.
	For information on the structure of the measuring instrument $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $

16.3 Input

Measured variable

Direct measured variables

- Mass flow
- Density
- Temperature

Calculated measured variables

- Volume flow
- Corrected volume flow
- Reference density

Measuring range

Measuring range for liquids

DN		Measuring range full scale values $\dot{m}_{min(F)}$ to $\dot{m}_{max(F)}$	
[mm]	[in]	[kg/h]	[lb/min]
8	3/8	0 to 2 000	0 to 73.50
15	1/2	0 to 6 500	0 to 238.9
25	1	0 to 18 000	0 to 661.5
40	1½	0 to 45 000	0 to 1654
50	2	0 to 70 000	0 to 2 573
80	3	0 to 180 000	0 to 6615
100	4	0 to 350 000	0 to 12860
150	6	0 to 800 000	0 to 29 400
250	10	0 to 2 200 000	0 to 80 850

Measuring range for gases

The full scale value depends on the density and the speed of sound of the gas used. The full scale value can be calculated with the following formulas:

$$\dot{m}_{max(G)} = (\rho_G \cdot (c_G/m) \cdot d_i^2 \cdot (\pi/4) \cdot 3600 \cdot n)$$

m _{max(G)}	Maximum full scale value for gas [kg/h]
ρ_{G}	Gas density in [kg/m³] at operating conditions
c_G	Speed of sound (gas) [m/s]
d _i	Measuring tube internal diameter [m]
π	Pi
n = 2	Number of measuring tubes
m = 2	For all gases other than pure H2 and He gas
m = 3	For pure H2 and He gas

Recommended measuring range

Flow rates above the preset full scale value do not override the electronics unit, with the result that the totalizer values are registered correctly.

Input signal

External measured values

To increase the measurement accuracy of certain measured variables or to calculate the corrected volume flow for gases, the automation system can continuously write different measured values to the measuring instrument:

- Operating pressure to increase measurement accuracy (Endress+Hauser recommends the use of a pressure measuring instrument for absolute pressure, e.g. Cerabar M or Cerabar S)
- Medium temperature to increase measurement accuracy (e.g. iTEMP)
- Reference density for calculating the corrected volume flow for gases

It is recommended to read in external measured values to calculate the following measured variables:

- Mass flow
- Corrected volume flow

Digital communication

The measured values are written by the automation system via PROFINET.

16.4 Output

Output signal

PROFINET

Standards	In accordance with IEEE 802.3
-----------	-------------------------------

Signal on alarm

Depending on the interface, failure information is displayed as follows.

PROFINET

Device diagnostics	According to "Application Layer protocol for decentralized periphery", Version 2.3
--------------------	--

Local display

Plain text display	With information on cause and remedial measures
Backlight	Red backlighting indicates a device error.

i

Status signal as per NAMUR recommendation NE 107

Interface/protocol

- Via digital communication: PROFINET
- Via service interface
 Service interface CDI-RJ45
- Plain text display
 With information on cause and remedial actions

Web browser

Plain text display	With information on cause and remedial measures
--------------------	---

LEDs

Status information	Status indicated by various LEDs	
	The following information is displayed depending on the device version: Supply voltage active Data transmission active Device alarm/error has occurred Network available Connection established PROFINET blinking feature	
	Diagnostic information via LEDs	

Low flow cut off

The switch points for low flow cut off are user-selectable.

Galvanic isolation

The following connections are galvanically isolated from each other:

- Outputs
- Power supply

Protocol-specific data

protocol-specific data

Protocol	"Application layer protocol for decentral device periphery and distributed automation", version 2.3
Conformity class	В
Communication type	100 Mbps
Device profile	Application interface identifier 0xF600 Generic device
Manufacturer ID	0x11
Device type ID	0x844A
Device description files (GSD, DTM)	Information and files available at: ■ https://www.endress.com/download On the device product page: PRODUCTS → Product Finder → Links ■ https://www.profibus.com
Baud rates	Automatic 100 Mbit/s with full-duplex detection
Periods	From 8 ms
Polarity	Auto-polarity for automatic correction of crossed TxD and RxD pairs
Supported connections	 1 x AR (Application Relation) 1 x Input CR (Communication Relation) 1 x Output CR (Communication Relation) 1 x Alarm CR (Communication Relation)
Configuration options for measuring instrument	 DIP switches on the electronics module, for device name assignment (last part) Manufacturer-specific software (FieldCare, DeviceCare) Web browser Device master file (GSD), can be read out via the integrated web server of the measuring instrument
Configuration of the device name	 DIP switches on the electronics module, for device name assignment (last part) DCP protocol

Output values Analog Input module (slot 1 to 14) (from measuring instrument to Mass flow Volume flow automation system) Corrected volume flow Target mass flow Carrier mass flow Density Reference density Concentration Temperature Carrier pipe temperature Electronics temperature Oscillation frequency Oscillation amplitude Frequency fluctuation Oscillation damping Tube damping fluctuation Signal asymmetry Exciter current Discrete Input module (slot 1 to 14) Empty pipe detection Low flow cut off Diagnostics Input module (slot 1 to 14) Last diagnostics Current diagnostics Totalizer 1 to 3 (slot 15 to 17) Mass flow Volume flow Corrected volume flow Heartbeat Verification module (fixed assignment) Verification status (slot 23) The range of options increases if the measuring device has one or more application packages. Input values Analog Output module (fixed assignment) External pressure (slot 18) (from automation system to measuring instrument) • External temperature (slot 19) • External reference density (slot 20) Discrete Output module (fixed assignment) • Activate/deactivate positive zero return (slot 21) Perform zero adjustment (slot 22) Totalizer 1 to 3 (slot 15 to 17) Totalize Reset and hold Preset and hold Stop • Operating mode configuration: Net flow total • Forward flow total Reverse flow total Heartbeat Verification module (fixed assignment) Start verification (slot 23) The range of options increases if the measuring device has one or more application packages. Identification & maintenance Supported functions Simple device identification via: Control system • Nameplate Measured value status The process variables are communicated with a measured value status Blinking feature via the local display for simple device identification and assignment

Administration of software options

Input/output value	Process variable	Category	Slot	
Output value	Mass flow	Process variable	114	
	Volume flow			
	Corrected volume flow			
	Density			
	Reference density			
	Temperature			
	Electronics temperature			
	Oscillation frequency			
	Frequency fluctuation			
	Oscillation damping			
	Oscillation frequency			
	Signal asymmetry			
	Exciter current			
	Empty pipe detection			
	Low flow cut off			
	Current device diagnostics			
	Previous device diagnostics			
Output value	Target mass flow	Concentration 1)	114	
	Carrier mass flow			
	Concentration			
Output value	Carrier pipe temperature	Heartbeat Technology ²⁾	114	
	Oscillation damping 1			
	Oscillation frequency 1			
	Oscillation amplitude 0			
	Oscillation amplitude 1			
	Frequency fluctuation 1	-		
	Tube damping fluctuation 1			
	Exciter current 1			
Input value	External density	Process monitoring	18	
	External temperature		19	
	External reference density		20	
	Flow override		21	
	Zero adjustment		22	
	Verification status	Heartbeat Verification 2)	23	

- 1)
- Only available with the "Concentration" application package. Only available with the Heartbeat Technology application package. 2)

Startup configuration

Startup configuration (NSU)

If startup configuration is enabled, the configuration of the most important device parameters is taken from the automation system and used.

The following configuration is taken from the automation system:

- Management
 - Software revision
 - Write protection
- System units
 - Mass flow
 - Mass
 - Volume flow
 - Volume
 - Corrected volume flow
 - Corrected volume
 - Density
 - Reference density
 - Temperature
 - Pressure
- Concentration application package
 - Coefficients A0 to A4
 - Coefficients B1 to B3
- Sensor adjustment
- Process parameters
 - Damping (flow, density, temperature)
 - Flow override
- Low flow cut off
 - Assign process variable
 - Switch-on/switch-off point
 - Pressure shock suppression
- Empty pipe detection
 - Assign process variable
 - Limit values
 - Response time
 - Max. damping
- Corrected volume flow calculation
 - External reference density
 - Fixed reference density • Reference temperature
 - Linear expansion coefficient
 - Square expansion coefficient
- Measuring mode
 - Medium
 - Gas type
 - Reference sound velocity
 - Temperature coefficient sound velocity
- External compensation
 - Pressure compensation
 - Pressure value
 - External pressure
- Diagnostic settings
- Diagnostic behavior for diverse diagnostic information

Power supply 16.5

Terminal assignment

→ 🖺 29

Supply voltage

The power unit must be tested to ensure it meets safety requirements (e.g. PELV, SELV).

Power consumption Transmitter Maximum Order code for "Output" Power consumption 3.5 W Option R: PROFINET Current consumption Transmitter Maximum Maximum Order code for "Output" current consumption switch-on current Option R: PROFINET 145 mA 18 A (< 0.125 ms) Device fuse Fine-wire fuse (slow-blow) T2A Power supply failure ■ Totalizers stop at the last value measured. Depending on the device version, the configuration is retained in the device memory or in the plug-in memory (HistoROM DAT). • Error messages (incl. total operated hours) are stored. Electrical connection → 🖺 30 → 🖺 33 Potential equalization **Terminals** Transmitter Spring terminals for wire cross-sections 0.5 to 2.5 mm² (20 to 14 AWG) Cable entries ■ Cable gland: M20 × 1.5 with cable Ø 6 to 12 mm (0.24 to 0.47 in) ■ Thread for cable entry: ■ M20 ■ G ½" ■ NPT ½" Cable specification → 🗎 28 16.6 Performance characteristics Reference operating ■ Error limits based on ISO 11631 conditions Water ■ +15 to +45 $^{\circ}$ C (+59 to +113 $^{\circ}$ F) ■ 2 to 6 bar (29 to 87 psi)

Maximum measurement error

o.r. = of reading; $1 \text{ g/cm}^3 = 1 \text{ kg/l}$; T = medium temperature

Accuracy based on accredited calibration rigs according to ISO 17025

To obtain measured errors, use the *Applicator* sizing tool $\rightarrow \implies 132$

Data as indicated in the calibration protocol

Base accuracy

i

Design fundamentals → 🖺 145

Mass flow and volume flow (liquids)

- \bullet ±0.05 % o.r. (optional for mass flow: PremiumCal; order code for "Calibration flow", option D)
- $=\pm0.10$ % o.r. (standard)

Mass flow (gases)

±0.25 % o.r.

Density (liquids)

Under reference conditions	Standard density calibration	Wide-range Density specification ^{1) 2)}	Extended density calibration ^{3) 4)}
[g/cm³]	[g/cm³]	[g/cm³]	[g/cm³]
±0.0005	±0.0005	±0.001	±0.0005

- 1) Valid range for special density calibration: 0 to 2 g/cm³, +5 to +80 $^{\circ}$ C (+41 to +176 $^{\circ}$ F)
- 2) order code for "Application package", option EE "Special density" (for nominal diameters ≤ 100 DN)
- 3) Valid range for extended density calibration: 0 to 2 g/cm³, +20 to +60 $^{\circ}$ C (+68 to +140 $^{\circ}$ F)
- 4) order code for "Application package", option E1 "Extended density" "

Temperature

 $\pm 0.5 \,^{\circ}\text{C} \pm 0.005 \cdot \text{T} \,^{\circ}\text{C} \, (\pm 0.9 \,^{\circ}\text{F} \pm 0.003 \cdot (\text{T} - 32) \,^{\circ}\text{F})$

Zero point stability

D	N	Zero point stability		
[mm]	[mm] [in]		[lb/min]	
8	3/8	0.030	0.001	
15	1/2	0.200	0.007	
25	1	0.540	0.019	
40	1½	2.25	0.083	
50	2	3.50	0.129	
80	3	9.0	0.330	
100	4	14.0	0.514	
150	6	32.0	1.17	
250	10	88.0	3.23	

Flow values

Flow values as turndown parameters depending on nominal diameter.

SI units

DN	1:1	1:10	1:20	1:50	1:100	1:500
[mm]	[kg/h]	[kg/h]	[kg/h]	[kg/h]	[kg/h]	[kg/h]
8	2 000	200	100	40	20	4
15	6500	650	325	130	65	13

DN	1:1	1:10	1:20	1:50	1:100	1:500
[mm]	[kg/h]	[kg/h]	[kg/h]	[kg/h]	[kg/h]	[kg/h]
25	18 000	1800	900	360	180	36
40	45 000	4500	2 2 5 0	900	450	90
50	70 000	7 000	3 500	1400	700	140
80	180 000	18000	9 000	3 600	1800	360
100	350000	35 000	17500	7 000	3 500	700
150	800 000	80 000	40 000	16000	8000	1600
250	2 200 000	220 000	110 000	44000	22 000	4 400

US units

DN	1:1	1:10	1:20	1:50	1:100	1:500
[inch]	[lb/min]	[lb/min]	[lb/min]	[lb/min]	[lb/min]	[lb/min]
3/8	73.50	7.350	3.675	1.470	0.735	0.147
1/2	238.9	23.89	11.95	4.778	2.389	0.478
1	661.5	66.15	33.08	13.23	6.615	1.323
1½	1654	165.4	82.70	33.08	16.54	3.308
2	2 5 7 3	257.3	128.7	51.46	25.73	5.146
3	6615	661.5	330.8	132.3	66.15	13.23
4	12860	1286	643.0	257.2	128.6	25.72
6	29 400	2940	1470	588	294	58.80
10	80850	8085	4043	1617	808.5	161.7

Accuracy of outputs

The output accuracy must be factored into the measurement error if analog outputs are used; but can be ignored for fieldbus outputs (e.g. Modbus RS485, EtherNet/IP).

The outputs have the following base accuracy specifications:

Repeatability

o.r. = of reading; $1 \text{ g/cm}^3 = 1 \text{ kg/l}$; T = medium temperature

Base repeatability

n Design fundamentals → 🗎 145

Mass flow and volume flow (liquids)

 ± 0.025 % o.r. (PremiumCal, for mass flow) ± 0.05 % o.r.

Mass flow (gases)

±0.20 % o.r.

Density (liquids)

 $\pm 0.00025 \text{ g/cm}^3$

Temperature

 ± 0.25 °C ± 0.0025 · T °C (± 0.45 °F ± 0.0015 · (T-32) °F)

Response time

The response time depends on the configuration (damping).

Influence of medium temperature

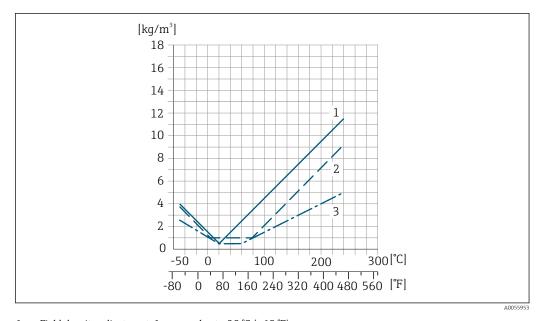
Mass flow

o.f.s. = of full scale value

If there is a difference between the temperature during zero adjustment and the process temperature, the additional measurement error of the sensors is typically ± 0.0002 %o.f.s./°C (± 0.0001 % o.f.s./°F).

The influence is reduced when the zero adjustment is performed at process temperature.

Density


- If there is a difference between the density calibration temperature and the process temperature, the measurement error of the sensors is typically $\pm 0.00005 \text{ g/cm}^3/\text{°C}$ ($\pm 0.000025 \text{ g/cm}^3/\text{°F}$). Field density adjustment is possible.
- Can also be used for order code for "Measuring tube material", option LA up to -100 °C (-148 °F).

Wide-range density specification (special density calibration)

If the process temperature is outside the valid range ($\rightarrow \triangleq 141$) the measurement error is $\pm 0.00005 \text{ g/cm}^3 \text{ /°C } (\pm 0.000025 \text{ g/cm}^3 \text{ /°F})$

Extended density specification

If the process temperature is outside the valid range ($\rightarrow \triangleq 141$) the measurement error is $\pm 0.00005 \text{ g/cm}^3 \text{ /°C } (\pm 0.000025 \text{ g/cm}^3 \text{ /°F})$

- Field density adjustment, for example at +20 $^{\circ}$ C (+68 $^{\circ}$ F)
- 2 Special density calibration
- 3 Extended density calibration

Temperature

 $\pm 0.005 \cdot \text{T} \,^{\circ}\text{C} \, (\pm 0.005 \cdot (\text{T} - 32) \,^{\circ}\text{F})$

Influence of medium pressure

The following shows how the process pressure (gauge pressure) affects the accuracy of the mass flow.

o.r. = of reading

It is possible to compensate for the effect by:

- Reading in the current pressure measured value via the current input or a digital
- Specifying a fixed value for the pressure in the device parameters.

Operating Instructions .

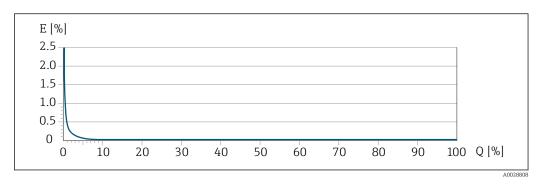
DN		[% o.r./bar]	[% o.r./psi]
[mm]	[in]		
8	3/8	no effec	t
15	1/2	-0.002	-0.0001
25	1	no effec	t
40	11/2	-0.003	-0.0002
50	2	-0.008	-0.0006
80	3	-0.009	-0.0006
100	4	-0.007	-0.0005
150	6	-0.009	-0.0006
250	10	-0.009	-0.0006

Design fundamentals

o.r. = of reading, o.f.s. = of full scale value

BaseAccu = base accuracy in % o.r., BaseRepeat = base repeatability in % o.r.

MeasValue = measured value; ZeroPoint = zero point stability


Calculation of the maximum measured error as a function of the flow rate

Flow rate	Maximum measured error in % o.r.
$\geq \frac{\text{ZeroPoint}}{\text{BaseAccu}} \cdot 100$	± BaseAccu
A0021332	NUU21337
$< \frac{\text{ZeroPoint}}{\text{BaseAccu}} \cdot 100$	± ZeroPoint MeasValue · 100
A0021333	A0021334

Calculation of the maximum repeatability as a function of the flow rate

Flow rate	Maximum repeatability in % o.r.
$\geq \frac{\frac{1}{2} \cdot \text{ZeroPoint}}{\text{BaseRepeat}} \cdot 100$	± BaseRepeat
A0021335	A0021340
$<\frac{\frac{1}{2} \cdot ZeroPoint}{BaseRepeat} \cdot 100$	± ½ · ZeroPoint MeasValue · 100
A0021336	A0021337

Example of maximum measurement error

- E Maximum measurement error in % o.r. (example with PremiumCal)
- Q Flow rate in % of maximum full scale value

16.7 Installation

Installation requirements

→ 🖺 19

16.8 Environment

Ambient temperature range

Temperature tables

- Observe the interdependencies between the permitted ambient and fluid temperatures when operating the device in hazardous areas.
- For detailed information on the temperature tables, see the separate document entitled "Safety Instructions" (XA) for the device.

Storage temperature

-40 to +80 °C (-40 to +176 °F), preferably at +20 °C (+68 °F) (standard version)

-50 to +80 °C (-58 to +176 °F) (Order code for "Test, certificate", option JM)

Climate class

DIN EN 60068-2-38 (test Z/AD)

Degree of protection

Transmitter and sensor

- Standard: IP66/67, Type 4X enclosure, suitable for pollution degree 4
- With the order code for "Sensor options", option CM: IP69 can also be ordered
- When the housing is open: IP20, Type 1 enclosure, suitable for pollution degree 2
- Display module: IP20, Type 1 enclosure, suitable for pollution degree 2

Vibration resistance and shock resistance

Sinusoidal vibration similar to IEC 60068-2-6

- 2 to 8.4 Hz, 7.5 mm peak
- 8.4 to 2 000 Hz, 2 g peak

Broadband random vibration similar to IEC 60068-2-64

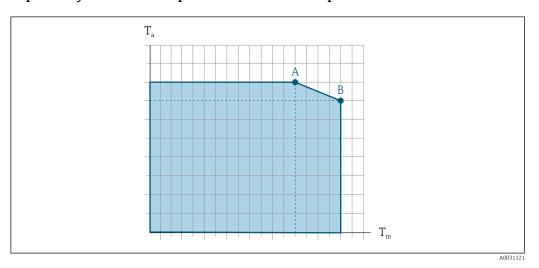
- 10 to 200 Hz, 0.01 g²/Hz
- 200 to 2000 Hz, 0.003 q²/Hz
- Total: 2.70 g rms

Half-sine shocks similar to IEC 60068-2-27

6 ms 50 g

Rough handling shocks similar to IEC 60068-2-31

Electromagnetic compatibility (EMC)


- As per IEC/EN 61326
- Complies with emission limits for industry as per EN 55011 (class A)
- 📵 Details are provided in the Declaration of Conformity.
- This unit is not intended for use in residential environments and cannot guarantee adequate protection of the radio reception in such environments.

16.9 Process

Medium temperature range

Standard version	−50 to +150 °C (−58 to +302 °F)	Order code for "Measuring tube mat., wetted surface", option HA, SA, SB, SC
Extended temperature version	-50 to +240 °C (-58 to +464 °F)	Order code for "Measuring tube mat., wetted surface", option SD, SE, SF, TH

Dependency of ambient temperature on medium temperature

 \blacksquare 15 Exemplary representation, values in the table below.

- *T_a* Ambient temperature
- T_m Medium temperature
- A Maximum permitted medium temperature T_m at $T_{a max}$ = 60 °C (140 °F); higher medium temperatures T_m require a reduction in the ambient temperature T_a
- B Maximum permitted ambient temperature T_a for the maximum specified medium temperature T_m of the sensor

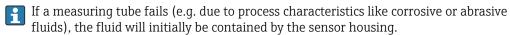
Values for devices that are used in the hazardous area: Separate Ex documentation (XA) for the device.

	Not insulated			Insulated				
	A		В		A		В	
Version	T _a	T _m	Ta	T _m	Ta	T _m	T _a	T _m
Standard version	60 °C (140 °F)	150 °C (302 °F)	-	_	60 °C (140 °F)	110°C (230°F)	55 ℃ (131 ℉)	150 °C (302 °F)
Extended temperature version	60 °C (140 °F)	160 °C (320 °F)	55 °C (131 °F)	240 °C (464 °F)	60 °C (140 °F)	110 °C (230 °F)	50 °C (122 °F)	240 °C (464 °F)

Medium density

0 to 5000 kg/m^3 (0 to 312 lb/cf)

Pressure/temperature ratings



For an overview of the pressure/temperature ratings for the process connections, see the Technical Information

Sensor housing

For standard versions with the temperature range -50 to +150 °C (-58 to +302 °F), the sensor housing is filled with dry nitrogen gas and protects the electronics and mechanics inside.

For all other temperature versions the sensor housing is filled with dry inert gas.

In the event of a tube failure, the pressure level inside the sensor housing will rise according to the operating process pressure. If the user judges that the sensor housing burst pressure does not provide an adequate safety margin, the device can be fitted with a rupture disk. This prevents excessively high pressure from forming inside the sensor housing. Therefore, the use of a rupture disk is strongly recommended in applications involving high gas pressures, and particularly in applications in which the process pressure is greater than 2/3 of the sensor housing burst pressure.

If there is a need to drain the leaking medium into a discharge device, the sensor should be fitted with a rupture disk. Connect the discharge to the additional threaded connection.

If the sensor is to be purged with gas (gas detection), it should be equipped with purge connections.

Do not open the purge connections unless the containment can be filled immediately with a dry, inert gas. Use only low pressure to purge.

Maximum pressure:

- DN 08 to 150 (3/8 to 6"): 5 bar (72.5 psi)
- DN 250 (10"):
 - Medium temperature ≤ 100 °C (212 °F): 5 bar (72.5 psi)
 - Medium temperature > 100 °C (212 °F): 3 bar (43.5 psi)

Burst pressure of the sensor housing

The following sensor housing burst pressures are only valid for standard devices and/or devices equipped with closed purge connections (not opened/as delivered).

If a device fitted with purge connections (order code for "Sensor option", option CH "Purge connection") is connected to the purge system, the maximum pressure is determined by the purge system itself or by the device, depending on which component has the lower pressure classification.

If the device is fitted with a rupture disk (order code for "Sensor option", option CA "Rupture disk"), the rupture disk trigger pressure is decisive.

The sensor housing burst pressure refers to a typical internal pressure which is reached prior to mechanical failure of the sensor housing and which was determined during type testing. The corresponding type test declaration can be ordered with the device (order code for "Additional approval", option LN "Sensor housing burst pressure, type test").

DN		Sensor housing burst pressure		
[mm]	[in]	[bar]	[psi]	
8	3/8	400	5800	
15	1/2	350	5070	
25	1	280	4060	
40	11/2	260	3770	
50	2	180	2610	
80	3	120	1740	
100	4	95	1370	
150	6	75	1080	
250	10	50	720	

For information on the dimensions: see the "Mechanical construction" section of the "Technical Information" document

Rupture disk

To increase the level of safety, a device version with a rupture disk with a trigger pressure of 10 to 15 bar (145 to 217.5 psi) can be used (order code for "Sensor option", option CA "rupture disk").

The use of rupture disks cannot be combined with the separately available heating jacket.

For information on the dimensions of the rupture disk: see the "Mechanical construction" section of the "Technical Information" document

Internal cleaning

- CIP cleaning
- SIP cleaning

Options

- Oil- and grease-free version for wetted parts, without declaration Order code for "Service", option HA ²⁾
- Oil- and grease-free version for wetted parts as per IEC/TR 60877-2.0 and BOC 50000810-4, with declaration Order code for "Service", option HB²⁾

Flow limit

Select the nominal diameter by optimizing between the required flow range and permissible pressure loss.

²⁾ Cleaning only refers to the measuring instrument. Any accessories that have been supplied are not cleaned.

- The minimum recommended full scale value is approx. 1/20 of the maximum full scale value
- For the most common applications, 20 to 50 % of the maximum full scale value can be considered ideal
- A low full scale value must be selected for abrasive media (such as liquids with entrained solids): flow velocity < 1 m/s (< 3 ft/s).
- For gas measurement the following rules apply:
 - The flow velocity in the measuring tubes should not exceed half the speed of sound (0.5 Mach)
 - The maximum mass flow depends on the density of the gas: formula
- To calculate the flow limit, use the Applicator sizing tool $\rightarrow = 132$

Pressure loss

Promass F with reduced pressure loss: order code for "Sensor option", option CE "Reduced pressure loss"

System pressure

→ 🖺 21

16.10 Mechanical construction

Design, dimensions

For the dimensions and installed lengths of the device, see the "Technical Information" document, "Mechanical construction" section

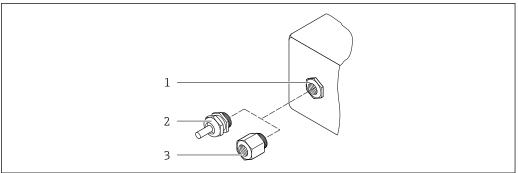
Weight

All values (weight exclusive of packaging material) refer to devices with EN/DIN PN 40 flanges. Weight specifications including transmitter: order code for "Housing", option A "Compact, aluminum coated".

Weight in SI units

DN [mm]	Weight [kg]
8	9
15	10
25	12
40	17
50	28
80	53
100	94
150	152
250	398

Weight in US units


DN [in]	Weight [lbs]
3/8	20
1/2	22
1	26
1½	37
2	62
3	117
4	207
6	335
10	878

Materials

Transmitter housing

- Order code for "Housing", option A "Compact, aluminum coated": Aluminum, AlSi10Mg, coated
- Order code for "Housing", option **B** "Compact, hygienic, stainless":
 - Hygienic version, stainless steel 1.4301 (304)
- Optional: order code for "Sensor feature", option CC
 Hygienic version, for maximum corrosion resistance: stainless steel 1.4404 (316L)
- Order code for "Housing", option **C** "Ultra-compact, hygienic, stainless":
 - Hygienic version, stainless steel 1.4301 (304)
 - Optional: order code for "Sensor feature", option CC
 Hygienic version, for maximum corrosion resistance: stainless steel 1.4404 (316L)
- Window material for optional local display ($\rightarrow \triangleq 154$):
 - For order code for "Housing", option **A**: glass
 - For order code for "Housing", option **B** and **C**: plastic

Cable entries/cable glands

A0020640

 \blacksquare 16 Possible cable entries/cable glands

- 1 Internal thread M20 × 1.5
- 2 Cable gland $M20 \times 1.5$
- 3 Adapter for cable entry with internal thread $G \frac{1}{2}$ or NPT $\frac{1}{2}$ "

Order code for "Housing", option A "Compact, aluminum, coated"

The various cable entries are suitable for hazardous and non-hazardous areas.

Cable entry/cable gland	Material
Cable gland M20 × 1.5	
Adapter for cable entry with female thread G 1/2"	Nickel-plated brass
Adapter for cable entry with female thread NPT ½"	

Order code for "Housing", option B "Compact, hygienic, stainless"

The various cable entries are suitable for hazardous and non-hazardous areas.

Cable entry/cable gland	Material
Cable gland M20 × 1.5	Stainless steel, 1.4404 (316L)
Adapter for cable entry with female thread G 1/2"	
Adapter for cable entry with female thread NPT ½"	

Device plug

Electrical connection	Material
Plug M12x1	 Socket: Stainless steel, 1.4404 (316L) Contact housing: Polyamide Contacts: Gold-plated brass

Sensor housing

The material of the sensor housing depends on the option selected in the order code for "Measuring tube mat., wetted surface".

Order code for "Measuring tube mat., wetted surface"	Material
Option HA, SA, SD, TH	 Acid and alkali-resistant outer surface Stainless steel 1.4301 (304) With order code for "Sensor option", option CC "316L Sensor housing": stainless steel, 1.4404 (316L)
Option SB, SC, SE, SF	Acid and alkali-resistant outer surfaceStainless steel 1.4301 (304)

Measuring tubes

- DN 8 to 100 (3/8 to 4"): stainless steel, 1.4539 (904L); Manifold: stainless steel, 1.4404 (316/316L)
- DN 150 (6"), DN 250 (10"): stainless steel, 1.4404 (316/316L); Manifold: stainless steel, 1.4404 (316/316L)
- DN 8 to 250 (3/8 to 10"): Alloy C22, 2.4602 (UNS N06022); Manifold: Alloy C22, 2.4602 (UNS N06022)

Process connections

- Flanges similar to EN 1092-1 (DIN2501) / similar to ASME B 16.5 / as per JIS B2220:
 - Stainless steel, 1.4404 (F316/F316L)
 - Alloy C22, 2.4602 (UNS N06022)
 - Lap joint flanges: stainless steel, 1.4301 (F304); wetted parts Alloy C22
- All other process connections: Stainless steel, 1.4404 (316/316L)
- Available process connections $\rightarrow \implies 154$

Seals

Welded process connections without internal seals

Process connections

- Fixed flange connections:
 - EN 1092-1 (DIN 2501) flange
 - EN 1092-1 (DIN 2512N) flange
 - NAMUR lengths in accordance with NE 132
 - ASME B16.5 flange
 - JIS B2220 flange
 - DIN 11864-2 Form A flange, DIN 11866 series A, flange with notch
- Clamp connections:

Tri-Clamp (OD tubes), DIN 11866 series C

- Thread:
 - DIN 11851 thread, DIN 11866 series A
 - SMS 1145 thread
 - ISO 2853 thread, ISO 2037
 - DIN 11864-1 Form A thread, DIN 11866 series A
- VCO connections:
 - 8-VCO-4
 - 12-VCO-4
- i

Process connection materials

Surface roughness

All data relate to parts in contact with medium.

The following surface roughness categories can be ordered:

Category	Method	Option(s)/Order code "Measuring tube mat., wetted surface"
Not polished	-	HA, LA, SA, SD, TH, TS, TT, TU
Ra \leq 0.76 μ m (30 μ in) 1)	Mechanically polished ²⁾	SB, SE
Ra \leq 0.76 µm (30 µin) 1)	Mechanically polished ²⁾ , welds in as-welded condition	SJ, SL
Ra \leq 0.38 μ m (15 μ in) 1)	Mechanically polished ²⁾	SC, SF
Ra \leq 0.38 µm (15 µin) 1)	Mechanically polished ²⁾ , welds in as-welded condition	SK, SM
Ra \leq 0.38 μ m (15 μ in) 1)	Mechanically ²⁾ and electropolished	ВС
Ra $\leq 0.38 \ \mu m \ (15 \ \mu in)^{1)}$	Mechanically ²⁾ and electropolished, welds in as-welded condition	BG

- 1) Ra according to ISO 21920
- 2) Inaccessible weld seams between pipe and manifold are excluded

16.11 Operability

Local display

The local display is only available with the following device order code: Order code for "Display; operation", option ${\bf B}$: 4-line; illuminated, via communication

Display element

- 4-line liquid crystal display with 16 characters per line.
- White background lighting; switches to red in event of device errors.
- Format for displaying measured variables and status variables can be individually configured.
- Permitted ambient temperature for the display: -20 to +60 °C (-4 to +140 °F). The readability of the display may be impaired at temperatures outside the temperature range.

Disconnecting the local display from the main electronics module

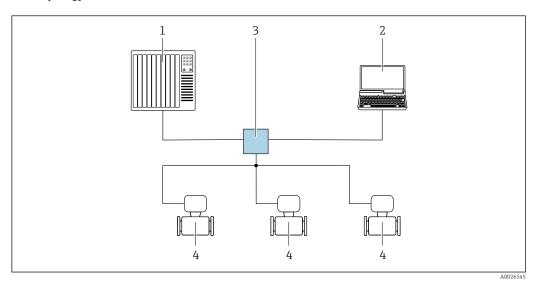
In the case of the "Compact, aluminum coated" housing version, the local display must only be disconnected manually from the main electronics module. In the case of the "Compact, hygienic, stainless" and "Ultra-compact, hygienic, stainless" housing versions, the local display is integrated in the housing cover and is disconnected from the main electronics module when the housing cover is opened.

"Compact, aluminum coated" housing version

The local display is plugged onto the main electronics module. The electronic connection between the local display and main electronics module is established via a connecting cable.

For some work performed on the measuring device (e.g. electrical connection), it is advisable to disconnect the local display from the main electronics module:

- 1. Press in the side latches of the local display.
- 2. Remove the local display from the main electronics module. Pay attention to the length of the connecting cable when doing so.

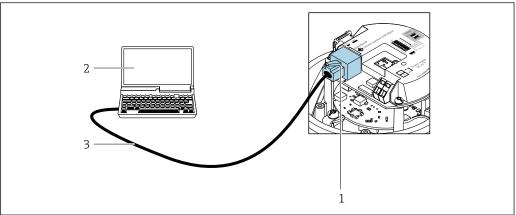

Once the work is completed, plug the local display back on.

Remote operation

Via PROFINET network

This communication interface is available in device versions with PROFINET.

Star topology


■ 17 Options for remote operation via PROFINET network: star topology

- 1 Automation system, e.g. Simatic S7 (Siemens)
- 2 Computer with web browser for accessing integrated web server or computer with operating tool (e.g. FieldCare, DeviceCare, SIMATIC PDM) with COM DTM "CDI Communication TCP/IP"
- 3 Standard Ethernet switch, e.g. Scalance X204 (Siemens)
- 4 Measuring instrument

Service interface

Via service interface (CDI-RJ45)

PROFINET

A0016940

- Connection for order code for "Output", option R: PROFINET
- 1 Service interface (CDI-RJ45) and PROFINET interface of the measuring instrument with access to the integrated web server
- 2 Computer with web browser for accessing the integrated web server or with FieldCare operating tool with COM DTM "CDI Communication TCP/IP"
- 3 Standard Ethernet connecting cable with RJ45 plug

Languages

Can be operated in the following languages:

Via "FieldCare" operating tool: English, German, French, Spanish, Italian, Chinese, Japanese

16.12 Certificates and approvals

Current certificates and approvals for the product are available at www.endress.com on the relevant product page:

- 1. Select the product using the filters and search field.
- 2. Open the product page.
- 3. Select **Downloads**.

CE mark

The device meets the legal requirements of the applicable EU Directives. These are listed in the corresponding EU Declaration of Conformity along with the standards applied.

Endress+Hauser confirms successful testing of the device by affixing to it the CE mark.

UKCA marking

The device meets the legal requirements of the applicable UK regulations (Statutory Instruments). These are listed in the UKCA Declaration of Conformity along with the designated standards. By selecting the order option for UKCA marking, Endress+Hauser confirms a successful evaluation and testing of the device by affixing the UKCA mark.

Contact address Endress+Hauser UK:

Endress+Hauser Ltd.

Floats Road

Manchester M23 9NF

United Kingdom

www.uk.endress.com

Ex-approval

The devices are certified for use in hazardous areas and the relevant safety instructions are provided in the separate "Safety Instructions" (XA) document. Reference is made to this document on the nameplate.

Hygienic compatibility

- 3-A approval
 - Only measuring instruments with the order code for "Additional approval", option LP
 "3A" have 3-A approval.
 - The 3-A approval refers to the measuring instrument.
 - When installing the measuring instrument, ensure that no liquid can accumulate on the outside of the measuring instrument.
 - A remote display module must be installed in accordance with the 3-A Standard.
 - Accessories (e.g. heating jacket, weather protection cover, wall holder unit) must be installed in accordance with the 3-A Standard.
 - Each accessory can be cleaned. Disassembly may be necessary under certain circumstances.
- EHEDG-tested (Type EL Class I)

Only devices with the order code for "Additional approval", option LT "EHEDG" have been tested and meet the requirements of the EHEDG.

To meet the requirements for EHEDG certification, the device must be used with process connections in accordance with the EHEDG position paper entitled "Easy cleanable Pipe couplings and Process connections" (www.ehedg.org).

To meet the requirements for EHEDG certification, the orientation of the device must ensure drainability.

Test criteria for cleanability according to EHEDG is a flow velocity of 1.5 m/s in the process line. This speed must be ensured for EHEDG-compliant cleaning.

- FDA CFR 21
- Food Contact Materials Regulation (EC) 1935/2004
- Food Contact Materials Regulation GB 4806
- The requirements of the Food Contact Material regulations must be observed when selecting the material versions.

Pharmaceutical compatibility

- FDA 21 CFR 177
- USP <87>
- USP <88> Class VI 121 °C
- TSE/BSE Certificate of Suitability
- cGMP

Devices with the order code for "Test, certificate", option JG "Conformity with cGMP-derived requirements, declaration" comply with the requirements of cGMP with regard to the surfaces of parts in contact with the medium, design, FDA 21 CFR material conformity, USP Class VI tests and TSE/BSE conformity.

A serial number-specific declaration is generated.

Certification PROFINET

PROFINET interface

The measuring instrument is certified and registered by the PROFIBUS Nutzerorganisation e.V. (PNO). The measuring system meets all the requirements of the following specifications:

- Certified according to:
 - Test specification for PROFINET devices
 - PROFINET Netload Class 2 100 Mbit/s
- The device can also be operated with certified devices of other manufacturers (interoperability).
- The device supports PROFINET S2 system redundancy.

Pressure Equipment Directive

- With the marking
 - a) PED/G1/x (x = category) or
 - b) PESR/G1/x (x = category)

on the sensor nameplate, Endress+Hauser confirms compliance with the "Essential Safety Requirements"

- a) specified in Annex I of the Pressure Equipment Directive 2014/68/EU or
- b) Schedule 2 of Statutory Instruments 2016 No. 1105.
- Devices not bearing this marking (without PED or PESR) are designed and manufactured according to sound engineering practice. They meet the requirements of
 - a) Art. 4, Section 3 of the Pressure Equipment Directive 2014/68/EU or
 - b) Part 1, Section 8 of Statutory Instruments 2016 No. 1105.

The scope of application is indicated

- a) in diagrams 6 to 9 in Annex II of the Pressure Equipment Directive 2014/68/EU or
- b) in Schedule 3, Section 2 of Statutory Instruments 2016 No. 1105.

External standards and quidelines

■ EN 60529

Degrees of protection provided by enclosure (IP code)

■ IEC/EN 60068-2-6

Environmental influences: Test procedure - Test Fc: vibrate (sinusoidal).

■ IEC/EN 60068-2-31

Environmental influences: Test procedure - Test Ec: shocks due to rough handling, primarily for devices.

■ EN 61010-1

Safety requirements for electrical equipment for measurement, control and laboratory use - general requirements

■ GB 30439.5

Safety requirements for industrial automation products - Part 5: Flowmeter safety requirements

■ EN 61326-1/-2-3

EMC requirements for electrical equipment for measurement, control and laboratory use

■ NAMUR NE 21

Electromagnetic compatibility (EMC) of industrial process and laboratory control equipment

■ NAMUR NE 32

Data retention in the event of a power failure in field and control instruments with microprocessors

■ NAMUR NE 43

Standardization of the signal level for the breakdown information of digital transmitters with analog output signal.

■ NAMUR NE 53

Software of field devices and signal-processing devices with digital electronics

■ NAMUR NE 80

The application of the pressure equipment directive to process control devices

■ NAMUR NE 105

Specifications for integrating fieldbus devices in engineering tools for field devices

■ NAMUR NE 107

Self-monitoring and diagnostics of field devices

■ NAMUR NE 131

Requirements for field devices for standard applications

■ NAMUR NE 132

Coriolis mass meter

■ NACE MR0103

Materials resistant to sulfide stress cracking in corrosive petroleum refining environments

- NACE MR0175/ISO 15156-1
 - Materials for use in H2S-containing Environments in Oil and Gas Production.
- ETSI EN 300 328
 - Guidelines for 2.4 GHz radio components.
- EN 301489

Electromagnetic compatibility and radio spectrum matters (ERM).

16.13 Application packages

Many different application packages are available to enhance the functionality of the device. Such packages might be needed to address safety aspects or specific application requirements.

The application packages can be ordered with the device or subsequently from Endress+Hauser. Detailed information on the order code in question is available from your local Endress+Hauser sales center or on the product page of the Endress+Hauser website: www.endress.com.

Detailed information on the application packages:

Special Documentation $\rightarrow = 161$

Heartbeat Technology

Order code for "Application package", option EB "Heartbeat Verification + Monitoring"

Heartbeat Verification

Meets the requirement for traceable verification in accordance with DIN ISO 9001:2015 Clause 7.6 a) "Control of monitoring and measuring equipment".

- Functional testing in the installed state without interrupting the process.
- Traceable verification results on request, including a report.
- Simple testing process via local operation or other operating interfaces.
- Clear measuring point assessment (pass/fail) with high total test coverage within the framework of manufacturer specifications.
- Extension of calibration intervals according to operator's risk evaluation.

Heartbeat Monitoring

Continuously supplies data, which are characteristic of the measuring principle, to an external condition monitoring system for the purpose of preventive maintenance or process analysis. These data enable the operator to:

- Draw conclusions using these data and other information about the impact the process influences (e.g. corrosion, abrasion, deposit buildup etc.) have on measuring performance over time.
- Schedule servicing in time.
- Monitor the process or product quality, e.g. gas pockets.

Detailed information on Heartbeat Technology:

Special Documentation $\rightarrow = 161$

Concentration measurement

Order code for "Application package", option ED "Concentration"

Calculation and outputting of fluid concentrations.

The measured density is converted to the concentration of a substance of a binary mixture using the "Concentration" application package:

Concentration calculation from user-defined tables.

The measured values are output via the digital and analog outputs of the measuring instrument.

For detailed information, see the Special Documentation for the device.

Special density

Order code for "Application package", option EE "Special density"

Many applications use density as a key measured value for monitoring quality or controlling processes. The device measures the density of the fluid as standard and makes this value available to the control system.

The "Special Density" application package offers high-precision density measurement over a wide density and temperature range particularly for applications subject to varying process conditions.

The following information can be found in the calibration certificate supplied:

- Density performance in air
- Density performance in liquids with different density
- Density performance in water with different temperatures

For detailed information, see the Operating Instructions for the device.

Extended density

Order code for "Application package", option E1 "Extended density"

For volume-based applications, the device can calculate and output a volume flow rate by dividing the mass flow rate by the measured density.

This application package is the standard calibration for custody transfer applications according to national and international standards (e.g. OIML, MID). It is recommended for volume-based fiscal dosing applications over a wide temperature range.

The calibration certificate supplied describes the density performance in air and water at various temperatures in detail.

For detailed information, see the Operating Instructions for the device.

16.14 Accessories

Overview of accessories available to order $\rightarrow \implies 131$

16.15 Documentation

For an overview of the scope of the associated Technical Documentation, refer to the following:

- Device Viewer (www.endress.com/deviceviewer): Enter the serial number from the nameplate
- Endress+Hauser Operations app: Enter serial number from nameplate or scan matrix code on nameplate.

Standard documentation

Brief Operating Instructions

Brief Operating Instructions for the sensor

Measuring instrument	Documentation code
Proline Promass F	KA01261D

Transmitter Brief Operating Instructions

Measuring device	Documentation code
Proline Promass 100	KA01336D

Technical Information

Measuring device	Documentation code
Proline Promass F 100	TI01034D

Description of Device Parameters

Measuring device	Documentation code
Proline Promass 100	GP01037D

Supplementary devicedependent documentation

Safety Instructions

Content	Documentation code
ATEX/IECEx Ex i	XA00159D
ATEX/IECEx Ex nA	XA01029D
cCSAus IS	XA00160D
INMETRO Ex i	XA01219D
INMETRO Ex nA	XA01220D
NEPSI Ex i	XA01249D
NEPSI Ex nA	XA01262D

Special Documentation

Contents	Documentation code
Information on the Pressure Equipment Directive	SD01614D
Concentration measurement	SD01503D
Heartbeat Technology	SD01493D
Web server	SD01823D

Installation Instructions

Contents	Note
Installation instructions for spare part sets and accessories	 Access the overview of all the available spare part sets via <i>Device Viewer</i> →

Index

0 9	Repeatability
3-A approval	Device Configuring 62
A	Preparing for electrical connection
Access authorization to parameters	Device components
Read access	Device description files 49
Write access	Device fuse
Access code	Device locking, status 80
Incorrect input 41	Device master file
Adapting the diagnostic behavior	GSD
Ambient conditions	Device name
Storage temperature	Sensor
Vibration resistance and shock resistance 146	Transmitter
Application	Device repair
Application packages	Device revision
Applicator	Device type code
Approvals	Device Viewer
	DeviceCare
C	Device description file
Cable entries	Diagnostic information
Technical data	Design, description
Cable entry	DeviceCare
Degree of protection	FieldCare
CE mark	LED
Certificates	Overview
Certification PROFINET	Remedial measures
cGMP	Web browser
Check	Diagnostic list
Connection	DIP switch
Received goods	see Write protection switch
Checklist	Disabling write protection
Post-connection check	Display area
Post-installation check 26	For operational display 40
CIP cleaning	Display values
Climate class	For locking status
Commissioning 62	Disposal
Advanced settings	Document
Configuring the device 62	Function 6
Connecting the device	Symbols 6
Connection	Document function 6
see Electrical connection	Documentation
Connection cable	Down pipe
Connection preparations	_
Connection tools	E
Current consumption	EHEDG-tested
Cyclic data transmission 51	Electrical connection
D	Degree of protection
D	Measuring instrument
Date of manufacture	Operating tools
Declaration of Conformity	Via PROFINET network 47, 155
Defining the access code	Via service interface (CDI-RJ45) 47, 155
Degree of protection	RSLogix 5000
Design	Web server
Measuring device	Electromagnetic compatibility
Design fundamentals	Enabling write protection
Measurement error	

Error messages	Vibrations
see Diagnostic messages	Intended use
Event logbook	Internal cleaning
Ex-approval	L
Extended order code	
Sensor	Languages, operation options
11alisilittei	see Operational display
F	Low flow cut off
FDA	
Field of application	M
Residual risks	Main electronics module
FieldCare	Maintenance work
Device description file	Manufacturer ID
Function	Manufacturing date
Filtering the event logbook	Materials
Firmware	Maximum measurement error
Release date	see Process variables
Version	Measurement accuracy
Flash function	Measuring and test equipment
Flow direction	Measuring device
Flow limit	Conversion
Food Contact Materials Regulation	Design
Functions	Repairs
see Parameter	Measuring instrument
	Disposal
G	Installing the sensor
Galvanic isolation	Preparing for mounting
Н	Removing
Hardware write protection	Measuring principle
Hygienic compatibility	For gases
11) grame companionally 11111111111111111111111111111111111	For liquids
I	Measuring range, recommended
I/O electronics module	Measuring system
Identifying the measuring instrument	Medium density
Incoming acceptance	Medium pressure
Indication	Influence
Current diagnostic event	Medium temperature
Previous diagnostic event	Influence
Medium pressure	Menu 122
Medium temperature	Diagnostics
Information about this document 6	Operation 80 Setup 63
Inlet runs	Menus
Input variables	For device configuration 62
Inspection	For specific settings
Installation	Module
Installation	Totalizer
Installation dimensions	Totalizer Control
Installation requirements	Mounting dimensions
Down pipe	see Installation dimensions
Installation dimensions	Mounting location
Mounting location	Mounting preparations
Orientation	Mounting requirements
Rupture disk	Static pressure
Sensor heating	infounding tools
Thermal insulation	

N	Process variables
Nameplate	Calculated
Sensor	Measured
Transmitter	Product safety
Netilion	Protecting parameter settings
0	R
	Read access
Operable flow range	
Operating menu	Reading off measured values
Menus, submenus	Recalibration
Structure	Reference operating conditions
Submenus and user roles	Registered trademarks
Operating philosophy	Remote operation
Operation	Repair
Operation options	Notes
Operational display	Repair of a device
Operational safety	Repeatability
Order code	Replacement
Orientation (vertical, horizontal) 20	Device components
Outlet runs	Requirements for personnel
Output signal	Response time
Output variables	Return
Output variables	Rupture disk
P	Safety instructions
Packaging disposal	Triggering pressure
Parameter settings	Image in pressure
Administration (Submenu)	S
	Safety
Advanced setup (Submenu)	Sensor
Communication (Submenu)	Installing
Corrected volume flow calculation (Submenu) 72	
Device information (Submenu)	Sensor heating
Diagnostics (Menu)	Sensor housing
Low flow cut off (Wizard) 69	Serial number
Measured variables (Submenu) 80	Services
Medium selection (Submenu) 67	Maintenance
Partially filled pipe detection (Wizard) 70	Repair
Sensor adjustment (Submenu)	Setting the operating language 62
Setup (Menu)	Settings
Simulation (Submenu)	Adapting the measuring device to the process
System units (Submenu) 63	conditions
Totalizer (Submenu)	Administration
Totalizer 1 to n (Submenu)	Communication interface 65
Totalizer handling (Submenu) 91	Low flow cut off 69
Web server (Submenu)	Medium
Zero point adjustment (Submenu)	Operating language 62
Performance characteristics	Partially filled pipe detection 70
Pharmaceutical compatibility	Resetting the device
Post-connection check	Resetting the totalizer 91
Post-connection check (checklist)	Sensor adjustment
	Simulation
	System units
Post-installation check (checklist)	Tag name
Potential equalization	Totalizer
Power consumption	Totalizer reset
Power supply failure	
Pressure Equipment Directive	Signal on alarm
Pressure loss	SIP cleaning
Pressure/temperature ratings	Software release
Process connections	Software write protection
	Spare part

Spare parts	129 33
Hygienic compatibility	158 . 62
Status area For operational display	96
Storage conditions	
Storage temperature range	146
Operating menu	. 38
Administration	71
Calculated values	65
Device information	126 123 80
Measured variables	
Process variables	71 73
Simulation	63 90
Totalizer 1 to n	. 74 91 46
Zero point adjustment	73 140
Surface roughness	40
For diagnostic behavior	40 . 40
For measured variable	40
In the status area of the local display System design	
Measuring system	
T	12/
Technical data, overview	
Storage temperature	. 17), 31
Terminals	

Tool
Transportation
Tools
Electrical connection
For mounting
Totalizer
Configuring
Totalizer Control module
Transmitter
Connecting the signal cables
Turning the display module 2
Transporting the measuring instrument $\ensuremath{1}$
Troubleshooting
General
TSE/BSE Certificate of Suitability
Turning the display module
U
UKCA marking
Use of measuring instrument
Borderline cases
Incorrect use
see Intended use
User roles
USP Class VI
V
Version data for the device 4
Vibration resistance and shock resistance
Vibrations
VIDIATIONS
W
W@M Device Viewer
Weight
SI units
Transport (notes)
US units
Wizard
Define access code
Low flow cut off 6
Partially filled pipe detection
Workplace safety
Write access 4
Write protection
Via access code
Via startup parameterization (NSU)
Via write protection switch
Write protection switch
write protection switch

www.addresses.endress.com