# Technical Information Oil leak detector NAR300 for high temperature

Oil leak detector equipped with conductivity sensor



#### **Application**

This system is installed on an oil retaining wall in a tank or in a sump pit near a pump yard, and it provides the ultimate leak detection function for oils, such as petrochemicals and vegetable oils. A sensor with a conductive detection function is used to monitor the detection conditions. This system ensures the safety of the tank yard through a precise and simple device design that is suitable for pits where steam is emitted to prevent freezing and the temperature becomes high ( $\leq 100$  °C (212 °F)).

#### Flame-proof system

Using converter NRR261 for outdoor installation, it is possible to connect directly to the switch input mechanism, such as an existing liquid level transmitter, and send an alarm to the host controller.

#### Intrinsically safe system

The alarm system can be configured independently from the tank gauge by combining the indoor converter NRR262 with the outdoor sensor I/F Ex box.

#### Features

- SIL2: Certified for safety instrumented systems in the process industry
- Conductive sensor: Distinguishes between water and other substances (oil and water)
- No moving parts, long service life and reduced maintenance costs
- Safe and reliable fail-safe function with alarm output in the event of power failure, frozen pit water, etc.
- Detection mechanism that is not affected by the dielectric constant of the object to be detected, as long as the oil is water-insoluble
- Mechanical construction that is less susceptible to material deposits
- Ex [ia] structure

#### NOTICE

#### TIIS specifications

These operating instructions are not intended for products with TIIS specifications.

► If you are using a product with TIIS specifications, download and refer to TI00045G/33/JA/09.22 or an earlier version from our website (www.endress.com/downloads).



## Table of contents

| Document information                                                                                                         |                            |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Symbols                                                                                                                      |                            |
| <b>Function and system design</b>                                                                                            | 6                          |
| Flame-proof system (separate type) Ex d [ia] IIB T4 Operating principle                                                      | 8                          |
| Alarm activation principle                                                                                                   |                            |
| Input and output                                                                                                             | 11<br>11<br>11             |
| Power supply .  Float sensor NAR300 .  Ex [ia] sensor I/F Ex box .  Ex d [ia] converter NRR261 .  Ex [ia] converter NRR262 . | 12<br>12<br>12<br>12<br>12 |
| Electrical connection  NRR262-4/A/B/C wiring  NRR261-5 wiring  Wiring diagram                                                | 13<br>13<br>15<br>16       |
| Installation                                                                                                                 | 17<br>17                   |
| Environment                                                                                                                  |                            |
| Process                                                                                                                      | 20                         |
| Mechanical construction  NAR300 system dimensions  Weight of the NAR300 system  Detection sensitivity  Materials             | 21<br>22<br>24<br>24<br>24 |
| Certificates and approvals                                                                                                   | 26<br>26<br>26             |
| Functional safety approval                                                                                                   | 27                         |
| Order information                                                                                                            | 28                         |
| Accessories                                                                                                                  | 29<br>29<br>30             |

2

### **Document information**

#### **Symbols**

#### Safety symbols

⚠ DANGER
This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in serious or fatal injury.

#### **WARNING**

This symbol alerts you to a potentially dangerous situation. Failure to avoid this situation can result in serious or fatal injury.

This symbol alerts you to a potentially dangerous situation. Failure to avoid this situation can result in minor or medium injury.

This symbol alerts you to a potentially harmful situation. Failure to avoid this situation can result in damage to the product or something in its vicinity.

#### **Electrical symbols**

| Symbol        | Meaning                                                                                                                                                                                                                                  |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | Direct current                                                                                                                                                                                                                           |
| ~             | Alternating current                                                                                                                                                                                                                      |
| $\overline{}$ | Direct and alternating current                                                                                                                                                                                                           |
| <u></u>       | Ground connection A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system.                                                                                                                    |
|               | Protective earth (PE) Ground terminals that must be connected to ground prior to establishing any other connections.                                                                                                                     |
|               | The ground terminals are located on the interior and exterior of the device:  Interior ground terminal: protective earth is connected to the mains supply.  Exterior ground terminal: device is connected to the plant grounding system. |

#### Tool symbols



Phillips head screwdriver



Flat blade screwdriver



Torx screwdriver

06

Allen key



Open-ended wrench

#### Symbols for certain types of information and graphics

#### **✓** Permitted

Procedures, processes or actions that are permitted

#### **✓** ✓ Preferred

Procedures, processes or actions that are preferred

Procedures, processes or actions that are forbidden

Indicates additional information



Reference to documentation

Reference to graphic



Notice or individual step to be observed

1., 2., 3.

Series of steps

Result of a step

Visual inspection

Operation via operating tool

Write-protected parameter

1, 2, 3, ...

Item numbers

A, B, C, ...

Views

#### 

Observe the safety instructions contained in the associated Operating Instructions

#### Temperature resistance of the connection cables

Specifies the minimum value of the temperature resistance of the connection cables

#### Additional documentation

The following documentation types are available in the Downloads area of the Endress+Hauser website (www.endress.com/downloads):



For an overview of the scope of the associated Technical Documentation, refer to the following:  $W@M\ Device\ Viewer\ (www.endress.com/deviceviewer)$ : Enter the serial number on the nameplate.

#### **Technical Information (TI)**

#### Planning aid

This document contains all technical data related to the device, as well as an overview of accessories and other products that can be ordered for the device.

#### **Brief Operating Instructions (KA)**

#### Instructions for using the system for the first time

The Brief Operating Instructions contain all the essential information from incoming acceptance to initial commissioning.

#### Operating Instructions (BA)

Operating Instructions contain all the information required for all stages in the device life cycle (from product identification, incoming acceptance, storage, mounting, connection, operation, and setting to troubleshooting, maintenance, and disposal).

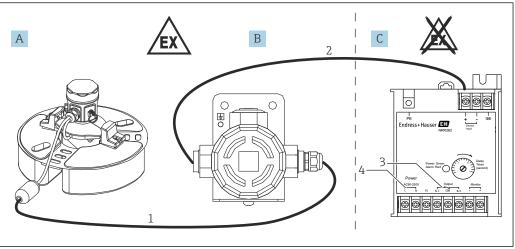
#### Safety Instructions (XA)

Depending on the approval, the following Safety Instructions (XA) are supplied with the device. They are an integral part of the Operating Instructions.



The nameplate indicates the Safety Instructions (XA) that are relevant to the device.

## Function and system design


The oil leak detector NAR300 system is available in two configurations for a variety of applications.

# Intrinsically safe system (separate type) Ex ia IIB T4

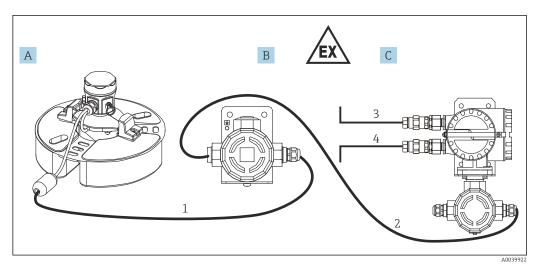
In this system, Ex [ia] converter NRR262 is installed in a non-hazardous location, such as an instrument room, and alarm output is imported by the indoor alarm panel and the host instrumentation receiver.

The signal from the NAR300 float sensor is imported by the Ex [ia] wiring of converter NRR262 via a sensor I/F Ex box. For the connection between the float sensor and the sensor I/F Ex box, a dedicated cable and cable entry are provided by Endress+Hauser.

- JPN Ex: NAR300-26xxxx + NRR262-4x
- ATEX: NAR300-A6xxxx + NRR262-Ax
- IECEx: NAR300-B6xxxx + NRR262-Bx
- FM: NAR300-C6xxxx + NRR262-Cx



A003992


- $\blacksquare$  1 System configuration 1
- A Float sensor NAR300-x6xxxx
- B Sensor I/F Ex box
- C Ex [ia] converter NRR262
- 1 Ex [ia]-dedicated connection cable (6 to 30 m (19.69 to 98.43 ft))
- 2 Cable for sensor I/F Ex box and converter (refer to "Process conditions")
- 3 Alarm output: alarm/PLC/DCS, etc.
- 4 Power supply (AC/DC)

#### Flame-proof system (separate type) Ex d [ia] IIB T4

From oil leak detection to alarm output, this system can monitor the entire process in outdoor hazardous areas.

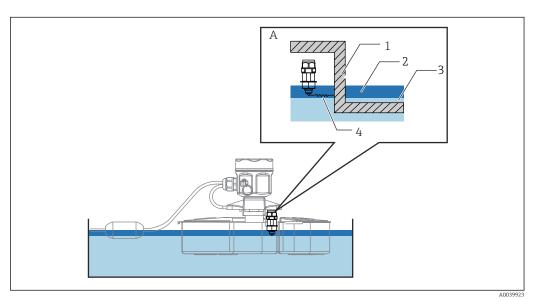
Ex [ia] specification is used in the circuitry from the NAR300 float sensor to the wiring terminal box of Ex d [ia] converter NRR261. The signal from the NAR300 float sensor is imported by the Ex [ia] wiring of converter NRR261 via a sensor I/F Ex box. Ex d wiring is used from the main unit of Ex d [ia] converter NRR261, which can be connected directly to the junction box that is installed in a yard or to the liquid level transmitter relay input.

- JPN Ex: NAR300-26xxxx x + NRR261-5xx
- For ATEX, IECEx, and FM specifications, contact your nearest Endress+Hauser Sales Center or distributor.



- **₽** 2 System configuration 2
- Α Float sensor NAR300-x6xxxx
- В Sensor I/F Ex box

- Ex d [ia] converter NRR261 (separate type)
  Ex [ia]-dedicated connection cable (6 to 30 m (19.69 to 98.43 ft))
  Cable for sensor I/F Ex box and converter (refer to "Process conditions")
  Alarm output: alarm/PLC/DCS, etc.
- Power supply (AC/DC)


#### Operating principle

#### **Conductivity sensor**

The conductivity sensor detects and determines whether there is a conductive substance (water, OFF) or non-conductive substance (oil, ON) between the electrode and the float body.

| Name                | Water | Oil |
|---------------------|-------|-----|
| Conductivity sensor | OFF   | ON  |

High-temperature specification is exclusively for applications in which water is constantly present in the pit.



- 3 Sensor principle
- A Conductivity sensor
- 1 Metallic part of the float body
- 2 Oil
- 3 Water
- 4 Measuring conductivity

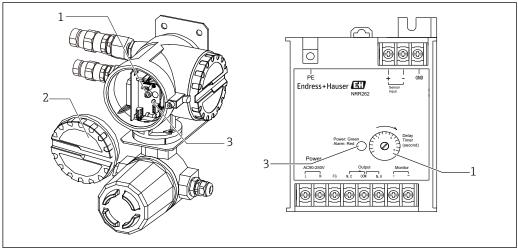
#### Detection in water-filled pits

- 1. The conductivity sensor continuously monitors conductivity between the probe and the float body.
- 2. When the conductivity sensor detects water, which is a conductive substance, conditions are determined to be normal.
- 3. If an accident causes oil flow and an oil layer begins to form on the water surface, the conductivity sensor will detect the non-conductive oil and the alarm status switches to ON.

8

#### Alarm activation principle

An oil leak detection signal detected by the NAR300 float sensor is converted into an electric current signal inside the converter or sensor I/F Ex box. The signal is then connected to the current detection circuit through the intrinsically safe safety barrier inside the converter. In the current detection circuit, the presence or absence of an oil leak alarm signal is determined based on the size of the current value, and the alarm output relay is turned ON/OFF through the operation delay circuit. The alarm delay circuit is equipped with a trimmer that can be used to set the delay time. Fail-safe operation is also available for relay contact point output, which is explained in the following "Alarm output operation table."


Alarm output operation table

| NRR261/NRR | 262 terminals  | Between NC and COM   | Between NO and COM   |
|------------|----------------|----------------------|----------------------|
| State      | Non-alarm      | Open contact point   | Closed contact point |
|            | Oil leak alarm | Closed contact point | Open contact point   |
|            | Power OFF      |                      |                      |
|            | Frozen liquid  |                      |                      |

| NAR300 current value |                    |
|----------------------|--------------------|
| Non-alarm            | 12 mA              |
| Oil leak alarm       | 16 mA              |
| Other trouble        | < 10 mA or 14 mA < |

Since the sensor for high temperature is exclusively for use with water, it will be in alarm mode in an empty pit. The only adjustment that can be made on the converter is the delayed activation time (ON delay) setting for the alarm output relay. Time is set on the delay trimmer. In NRR261, the delay trimmer can be found by turning off the power and opening the main unit's cover. In NRR262, the indicator for adjusting the delay trimmer is found on the case surface. Match the setting to the necessary delay time in units of seconds. Delayed activation is used to prevent a false alarm by recognizing an alarm condition that continues over a certain period of time as an alarm while not outputting an alarm when the alarm condition stops within the delay time setting. This can be set up to a maximum of 15 seconds for SIL specifications.

A response delay time in the detection circuit of approximately 6 seconds is always added to the delay time of the delay trimmer.



- € 4 Converter NRR261 (left) / converter NRR262 (right)
- 1 Delay trimmer
- 2 Cover
- LED power (green) / alarm (red)

#### **Operating conditions**

#### **Detection sensitivity**

If the electrode tip is pulled out of the lower layer of water due to increased oil layer thickness, water may cling onto the electrode tip like an icicle even if the electrode tip is in oil. This may raise the detection sensitivity point by 1 to 2 mm (0.04 to 0.08 in). When an accurate sensitivity check is required, apply a small amount of neutral detergent to the electrode tip to keep water from clinging to the electrode.

Water-filled pit: set to 10 (0.39)  $\pm$  1 mm (0.04 in) with kerosene at the time of shipment from the factory



- The setting was established under the following conditions: oil (kerosene: approx. specific gravity 0.8), lower-layer water (water: approx. specific gravity 1.0), static liquid surface state, and without surface tension.
- Because the NAR300 high-temperature specification is not equipped with a tuning fork sensor, it cannot be used for applications in which there is no pit water.

#### Pit water

Do not use in sea water

The oil leak detector is not designed for use in sea water. The following problems may occur if it is used in sea water:

- Failed or delayed alarm when overturned by waves
- Delayed alarm caused by generation of a bypass circuit between the conductivity sensor and the float body due to salt coating
- Corrosion of the float sensor caused by sea water

#### Special pit water

- If the float sensor is used in certain special pit water, such as pit water containing solvents, it may become corroded or damaged.
- It cannot measure highly hydrophilic liquids, such as alcohol.

Pit water with high electrical resistance

Use in pit water with high electrical resistance, such as pure water, may activate the alarm. Ensure that the conductivity of pit water is at least 10  $\mu$ S/cm (but not more than 100 k $\Omega$ ·cm).

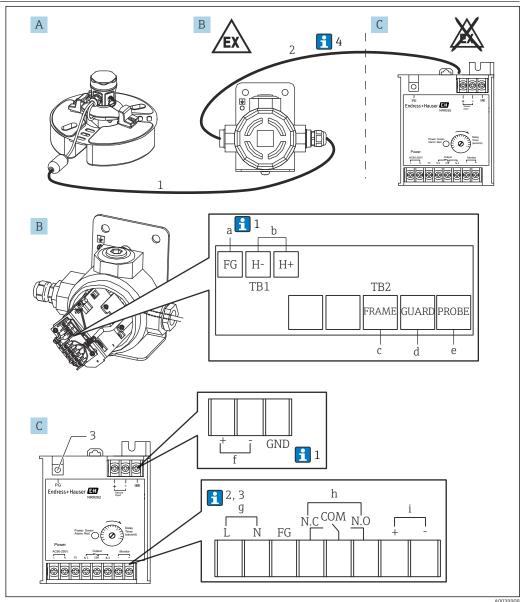
Example, pure water: 1 to 0.1  $\mu$ S/cm (1 to 10 M $\Omega$ ·cm)

#### Frozen pit water

If ice forms in the pit, the alarm may be triggered (fail-safe function). Implement anti-freeze measures to prevent freezing.

## Input and output

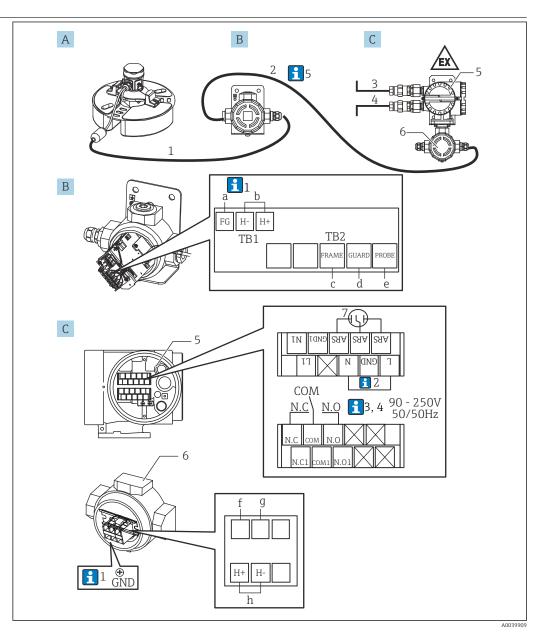
| Ex d [ia] transmitter NRR261 | Contact output         | 1SPDT                                                                                       |
|------------------------------|------------------------|---------------------------------------------------------------------------------------------|
|                              | Maximum contact rating | 250 V <sub>AC</sub> , 1 A, 100 VA<br>100 V <sub>DC</sub> : 1 A, 25 W                        |
|                              | Fail-safe function     | Fail safe function: When the power is off, when frozen (see "Alarm output operation table") |
|                              |                        |                                                                                             |
| Ex [ia] transmitter NRR262   | Contact output         | 1SPDT                                                                                       |
|                              | Maximum contact rating | 250 V <sub>AC</sub> , 1 A, 100 VA<br>100 V <sub>DC</sub> : 1 A, 25 W                        |
|                              | Fail-safe function     | Fail safe function: When the power is off, when frozen (see "Alarm output operation         |


table")

# Power supply

| Float sensor NAR300        | Power supply                               | Supplied by the converter                                                                                                                                                                                                                                                                                                                                |
|----------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            | I/O cable                                  | Dedicated shielded cable (PVC) / with cable float (standard 6 m (19.69 ft))                                                                                                                                                                                                                                                                              |
|                            | 1/ O Cable                                 | Dedicated Shielded Cable (FVC) / With Cable Hoat (Standard O III (15.05 It))                                                                                                                                                                                                                                                                             |
| Ex [ia] sensor I/F Ex box  | Power supply                               | Supplied by NRR261 or NRR262                                                                                                                                                                                                                                                                                                                             |
|                            | Cable entry                                | <ul> <li>NAR300 (float sensor) side: G1/2, with cable gland</li> <li>NRR261 or NRR262 (converter) side: G1/2, NPT1/2, M20</li> </ul>                                                                                                                                                                                                                     |
|                            |                                            |                                                                                                                                                                                                                                                                                                                                                          |
| Ex d [ia] converter NRR261 | Permissible power-<br>supply voltage range | <ul> <li>AC power-supply type: 90 to 250 V<sub>AC</sub>, 50/60 Hz</li> <li>DC power-supply type: 22 to 26 V<sub>DC</sub> (built-in power supply arrester)</li> </ul>                                                                                                                                                                                     |
|                            | Maximum power consumption                  | <ul> <li>AC power-supply type: 2 VA</li> <li>DC power-supply type: 3 W</li> </ul>                                                                                                                                                                                                                                                                        |
|                            | Power supply port                          | <ul> <li>G3/4 x2 (Ex d), G1/2 x1 (Ex ia)</li> <li>G1/2 x2 (Ex d), G1/2 x1 (Ex ia)</li> <li>NPT3/4 x2 (Ex d), NPT1/2 x1 (Ex ia)</li> <li>NPT1/2 x2 (Ex d), NPT1/2 x1 (Ex ia)</li> <li>M25 x2 (Ex d), M20 x1 (Ex ia)</li> <li>M20 (Ex d), M20 x1 (Ex ia)</li> <li>JPNEx explosion-proof specifications are equipped with cable gland model SFLU</li> </ul> |
|                            | Lightning arrester                         | Built-in (power supply arrester)                                                                                                                                                                                                                                                                                                                         |
|                            | •                                          |                                                                                                                                                                                                                                                                                                                                                          |
| Ex [ia] converter NRR262   | Permissible power-<br>supply voltage range | <ul> <li>AC power-supply type: 90 to 250 V<sub>AC</sub>, 50/60 Hz</li> <li>DC power-supply type: 22 to 26 V<sub>DC</sub> (built-in power supply arrester AV3P-2)</li> </ul>                                                                                                                                                                              |
|                            | Maximum power consumption                  | <ul> <li>AC power-supply type: 2 VA</li> <li>DC power-supply type: 3 W</li> </ul>                                                                                                                                                                                                                                                                        |
|                            | Lightning arrester                         | Built-in (power supply arrester)                                                                                                                                                                                                                                                                                                                         |

## **Electrical connection**


#### NRR262-4/A/B/C wiring

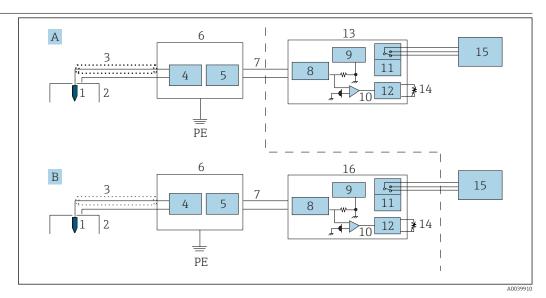


- 5 Wiring of Ex [ia] converter NRR262-4/A/B/C
- A Float sensor NAR300-x6xxxx (sensor I/F Ex box is also included in the code)
- B Sensor I/F Ex box
- C Ex [ia] converter NRR262
- a Green, screw (M3) (see Note 1 below)
- b Output to NRR262, screw (M3)
- c Yellow, screw (M3)
- d Black, screw (M3)
- e White, screw (M3)
- f Input from sensor I/F Ex box, screw (M3)
- g Power supply: AC/DC, screw (M3)
- h Alarm output, screw (M3)
- i Checking monitor output, screw (M3)
- 1 Using an Ex [ia]-dedicated connection cable (6 to 30 m (19.69 to 98.43 ft): included with the product depending on the option code)
- 2 Cable for sensor I/F Ex box and NRR262 (must be procured by the customer)
- For protective grounding, screw (M4)
- Below, the numbers correspond to the description in the diagram.

- 1. Normally, only the FG of a sensor I/F Ex box is connected to the cable's shielded wire; however, depending on the installation environment, either the GND of NRR262 alone or both the FG of the sensor I/F Ex box and the GND of NRR262 are connected.
- 2. When using a 22 to 26  $V_{DC}$  power supply, the terminal number "L" becomes positive (+) and "N" becomes negative (-).
- 3. To maintain Ex [ia] performance, ensure that the power supply voltage does not exceed 250  $V_{AC}$ 50/60 Hz during normal times and 250  $V_{DC}$  during emergencies.
- 4. While cable (1) for connecting NAR300 and sensor I/F Ex box is included with the device, cable (2) for connecting sensor I/F Ex box and NRR262 is not included with the device and must be procured by the customer. For more details on connection cables, refer to "Process conditions."

NRR261-5 wiring



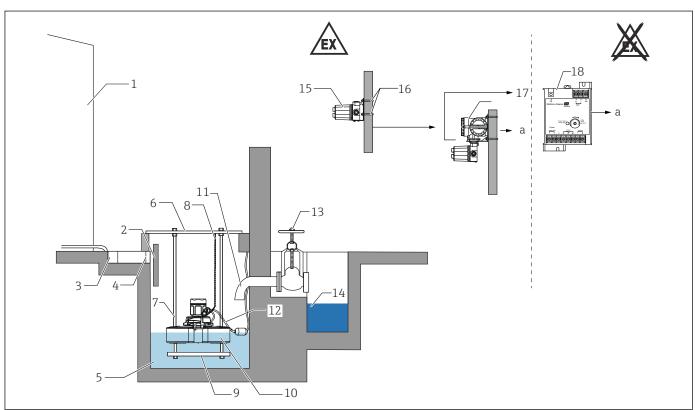

#### ■ 6 Wiring of Ex d [ia] converter NRR261-5

- A Float sensor NAR300-x6xxxx (sensor I/F Ex box is also included in the code)
- B Sensor I/F Ex box
- C Ex d [ia] converter NRR261 (separate type)
- a Green, screw (M3) (see Note 1 below)
- b Output to NRR261-3xx, screw (M3)
- c Yellow, screw (M3)
- d Black, screw (M3)
- e White, screw (M3)
- f Blue 2, screw (M4) (already wired upon delivery)
- g Blue 3, screw (M4) (already wired upon delivery)
- h Input from sensor I/F Ex box, screw (M4)
- 1 Using an Ex [ia]-dedicated connection cable (6 to 30 m (19.69 to 98.43 ft): included with the product depending on the option code)
- 2 Cable for sensor I/F Ex box and NRR261 (must be procured by the customer)
- 3 Power supply: AC/DC
- 4 Alarm output: alarm/PLC/DCS, etc.
- 5 Ex d terminal
- 6 Intrinsically safe terminal
- 7 Power supply arrester (installed), screw (M3)

Below, the numbers correspond to the description in the diagram.

- 1. Normally, only the FG of a sensor I/F Ex box is connected to the cable's shielded wire; however, depending on the installation environment, either the GND of NRR261 alone or both the FG of the sensor I/F Ex box and the GND of NRR261 are connected.
- 2. Connect when using an AC cable with FG.
- 3. When using a 22 to 26  $V_{DC}$  power supply, the terminal number "L" becomes positive (+) and "N" becomes negative (-).
- 4. To maintain Ex [ia] performance, ensure that the power supply voltage does not exceed  $250 \text{ V}_{AC}50/60 \text{ Hz}$  during normal times and  $250 \text{ V}_{DC}$  during emergencies.
- 5. Cable (1) for connecting NAR300 and sensor I/F Ex box is included with NAR300. Cable (5) for connecting sensor I/F Ex box and NRR261, alarm output cable (2) from NRR261, and power supply cable (3) for NRR261 are not included and must be procured by the customer. For more details on connection cables, refer to "Process conditions."

#### Wiring diagram




Wiring diagram

- A Explosion proof-type converter system (integrated type)
- *B* Intrinsically safe-type converter system (separate type)
- PE Protective earth (protective grounding)
- 1 Conductivity detection electrode (sensor)
- 2 Conductivity detection electrode (float)
- 3 Dedicated cable
- 4 Conductivity detection circuit
- 5 Current output circuit
- 6 Sensor I/F Ex box
- 7 Current signal
- 8 Safety barrier
- 9 Power supply circuit
- 10 Current detection
- 11 Relay
- 12 Delay circuit
- 13 Converter NRR262
- 14 Delay trimmer
- 15 Alarm
- 16 Converter NRR261 (separate type)

## Installation

#### Installation conditions



A0039906

#### ₽8 NAR300 + NRR26x

- Alarm output
- Tank 1
- Divider
- 2 3 U-shaped groove
- 4 5 Screen
- Pit
- 6 7 Pit cover
- Float guide
- 8 Chain
- Weight
- Float sensor NAR300
- 11 Discharge nozzle (100 mm (3.94 in) or longer)
- Dedicated cable (included with NAR300) 12
- Valve 13
- 14 Drainage groove
- 15 Ex [ia] sensor I/F Ex box
- U-bolt (JIS F3022 B50)
- 17 NRR261 (Ex d [ia] converter)
- 18 NRR262 (Ex [ia] converter)
- To ground the barrier, either connect it to the tank or use the shielded wire for the remote cable. Refer to "Electrical connection" for more information on using the shielded wire for the remote cable.

#### Installation and mounting precautions

- To prevent snow and debris from entering the pit, installing a waste guard, roof, or other covering is recommended. If snow accumulates on the float sensor, each 50 g of accumulation will cause an increase in the draft line by 1 mm (0.04 in), resulting in reduced sensitivity. Mount a covering above the top of the pit inlet to avoid submerging the float sensor housing if the pit water overflows due to heavy rainfall. If the float sensor becomes submerged, malfunctions or damage may result.
- 2. If the float sensor becomes off-balance (tilted by approx. 3° or more), it may cause faulty operation or a delayed alarm. Use a float guide as much as possible, and also pay attention to the way the cables and chains are laid out.
- 3. Install a screen at the pit's inlet to remove any debris. If debris or foreign matter clogs the sensor unit or inside the pit, it may cause malfunctions. Inspect and clean the screen regularly.
- 4. Attach a chain to the ring on the side of the float sensor head in advance for added convenience. However, each 50 g of increased load on the float will increase the draft line by 1 mm (0.04 in), resulting in reduced sensitivity. If using a chain to anchor the float, do not forcibly pull on the chain during inspection.
- 5. If the pit is completely filled with water, no oil layer will form even when oil is leaking. Ensure that the water is drained as necessary so that an oil layer can form.
- **6.** Do not forcibly pull or grab and carry the cable as it may cause malfunctions or compromised waterproofing.
- 7. Bend the tip of the discharge nozzle downward by 100 mm (3.94 in) or more when the drain valve is kept open so that an oil layer can form. Failure to do so may cause oil to drain from the pit before it can form a detectable layer on the water surface, resulting in a delayed alarm or detection failure. For pits without a discharge nozzle, such as the one shown in the diagram above, install an oil-water separation divider so that an oil layer can form.
- 8. Depending on the liquid flowing into the pit, install a divider to prevent waves, crosscurrents, or liquid from splashing on top of the float.
- 9. If the pit is too large, divide the pit using an oil separator. Oil leakage cannot be detected unless there is significant outflow of oil in proportion to the surface area.
- 10. NAR300, NRR261, and sensor I/F Ex box must be installed at least 50 cm (1.64 ft) apart from each other.

## **Environment**

#### **Protection class**

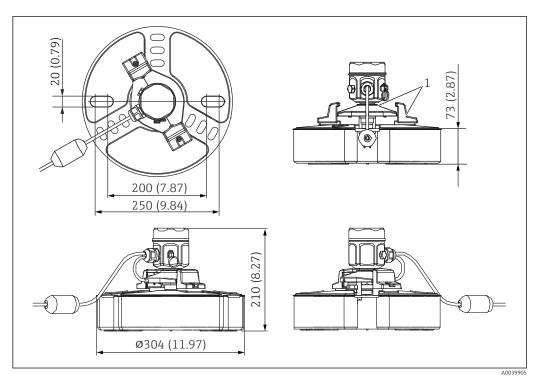
| Item                         | Description                 |
|------------------------------|-----------------------------|
| Float sensor NAR300          |                             |
| Ex [ia] sensor I/F Ex box    | IP67 (outdoor installation) |
| Ex d [ia] transmitter NRR261 |                             |
| Ex [ia] transmitter NRR262   | IP20 (indoor installation)  |

## **Process**

### Float sensor NAR300

| Item                                 | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Requirements for substance detection | <ul> <li>Density 0.7 g/cm³ or higher but less than 1.0 g/cm³</li> <li>Floats in water (if the density is 0.9 g/cm³ or higher, then viscosity should be 1 mPa·s or higher. Water ≒ 1 mPa·s)</li> <li>Water-insoluble</li> <li>Non-conductive</li> <li>Liquid</li> <li>Low affinity to water (a layer of the substance must form on the water)</li> </ul>                                                                                                             |
| Operating temperature                | <ul> <li>Ambient temperature: -20 to 100 °C (-4 to 212 °F)</li> <li>Measured liquid temperature: 0 to 100 °C (32 to 212 °F)</li> </ul>                                                                                                                                                                                                                                                                                                                              |
| Requirements for pit water           | <ul> <li>Density 1.0 g/cm³ or higher but less than 1.13 g/cm³ (however, only when kinematic viscosity is 1 mm²/sec) <sup>1)</sup></li> <li>Non-freezing</li> <li>Electric conductivity 10 μS/cm or higher (up to 100 kΩ·cm); however, this should be 1 μS/cm or higher in cases where the float is always floating in the pit water</li> <li>Cannot be used on the sea surface or in places that may be penetrated by seawater</li> </ul>                           |
| Other requirements                   | <ul> <li>Promptly remove any debris that adheres to the sensor unit.</li> <li>Ensure that there is no caked-on mud (dried solids), etc.</li> <li>Avoid use in an environment where the float sensor may become submerged or constantly wet.</li> <li>Avoid installation environments that may cause the float sensor to tilt or change the draft line.</li> <li>Install a breakwater or other similar means to protect against cross-currents and waves.</li> </ul> |

 Sensitivity will vary when the specific gravity of water in the lower layer is different from the factorysetting environment, such as when antifreeze is used.


# Sensor I/F Ex box / converter NRR261/NRR262

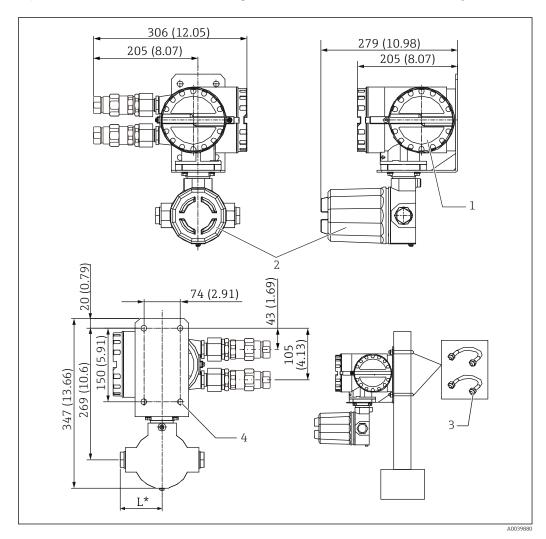
| Item                                                   | Description                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Connector cable (connection to                         | Maximum inductance: 2.3 mH, maximum capacitance: 83 nF<br>Reference case: use of KPEV-S (instrumentation cable)                                                                                                                                                                                      |
| converter NRR261/<br>NRR262 from sensor<br>I/F Ex box) | <ul> <li>C = 65 nF/km, L = 0.65 mH/km</li> <li>CW/C = 0.083 μF / 0.065 μF / km = 1.276 km1</li> <li>LW/L = 2.3 mH / 0.65 mH / km = 3.538 km2</li> <li>Maximum cable extension: 1.27 km; the maximum cable length is 1 and/or 2, whichever is shorter (round down instead of rounding off)</li> </ul> |
| Operating temperature                                  | Ambient temperature: -20 to 60 °C (-4 to 140 °F)                                                                                                                                                                                                                                                     |

## Mechanical construction

#### NAR300 system dimensions

Dimensions of NAR300 float sensor



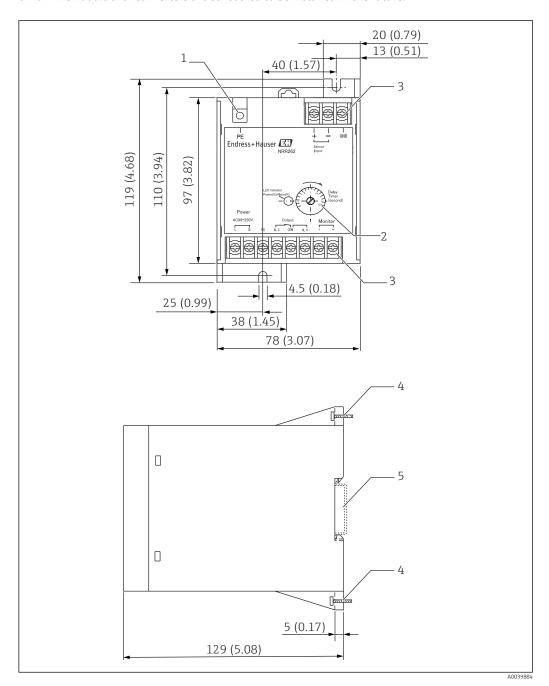

- $\blacksquare$  9 Outline of float sensor NAR300
- l Float sensor cover

#### Dimensions of Ex d [ia] converter NRR261

Only NRR261 with JPN Ex explosion-proof specifications are delivered with a cable gland (external diameter of compatible cables:  $\phi$ 12 to 16 mm (0.47 to 1.02 in)).

Use the order code of Ex d [ia] converter NRR261 to specify the electrical conduit connection port.

Normally, Ex d [ia] converter NRR261 is mounted on a tank yard's pipe and secured in place with a U-bolt (JIS F 3022 B 50 type). It can also be mounted directly onto wall surfaces (requires  $4 \text{ }\phi12 \text{ }\text{mm}$  (0.47 in) holes and M10 securing nuts and bolts (not included in the delivery)).

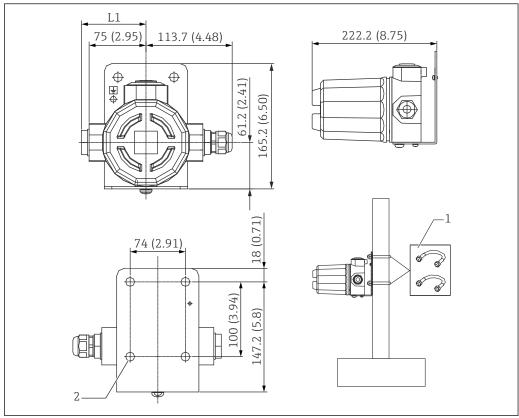



■ 10 Outline of NRR261. Unit of measurement mm (in)

- 1 Ex d-side terminal
- 2 Ex [ia]-side terminal
- 3 *U-bolt (JIS F3022 B50 material: iron (chromate), 2 nuts and 2 flat washers included)*
- 4  $4 \varphi 12$  holes
- L G1/2: 85 mm (3.35 in), NPT1/2: 97 mm (3.82 in), M20: 107 mm (4.21 in)

#### Dimensions of Ex [ia] converter NRR262

NRR262 is installed indoors, such as in instrument rooms, and it can be mounted easily with two M4 screws. In addition, "one-touch" snap-in mounting is possible using a DIN rail EN50022 (not included in the delivery). This rail-mounting method is convenient for mounting multiple converters in a row or for when additional converters are scheduled to be installed in the future.




■ 11 Outline of NRR262. Unit of measurement mm (in)

- 1 Screw (M4) for protective grounding
- 2 Delay trimmer
- 3 Screw (M3)
- 4 Screw (M4)
- 5 DIN rail: EN50022 compliant

#### Dimensions of Ex [ia] sensor I/F Ex box

The Ex [ia] sensor I/F Ex box is used in combination with Ex d [ia] converter NRR261 or Ex [ia] converter NRR262 in order to convert signals from the float sensor into electric current signals. Normally, it is mounted on a tank yard's pipe and secured in place with a U-bolt (JIS F 3022 B 50 type). It can also be mounted directly onto wall surfaces (requires  $4 \, \varphi 12 \, \text{mm}$  (0.47 in) holes and M10 securing nuts and bolts (not included in the delivery)).



A00

- 12 Outline of Ex [ia] sensor I/F Ex box. Unit of measurement mm (in)
- L1 G1/2 / NPT1/2:85 mm (3.35 in), M25:107 mm (4.21 in)
- 1 U-bolt (JIS F3022 B50 material: iron (chromate), 2 nuts and 2 flat washers included)
- 2 4 φ12 mm (0.47 in) holes

Use the order code of float sensor NAR300 to specify the conduit connection port.  $\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}$ 

# Weight of the NAR300 system

| Float sensor NAR300        | Approx. 2.5 kg (5.51 lb) (including the dedicated shielded cable (PVC) 6 m (19.69 ft)) |
|----------------------------|----------------------------------------------------------------------------------------|
| Ex [ia] sensor I/F Ex box  | Approx. 3.2 kg (7.05 lb)                                                               |
| Ex d [ia] converter NRR261 | Approx. 10 kg (22.05 lb)                                                               |
| Ex [ia] converter NRR262   | Approx. 0.6 kg (1.32 lb)                                                               |

#### **Detection sensitivity**

| Float sensor NAR300 | Water-filled pit: set to 10 (0.39) $\pm$ 1 mm (0.04 in) with kerosene at the |
|---------------------|------------------------------------------------------------------------------|
|                     | time of shipment from the factory                                            |

#### Materials

| Wetted materials                               | <ul><li>Float: SUS316L</li><li>Conductivity sensor: SUS316+PTFE</li></ul> |
|------------------------------------------------|---------------------------------------------------------------------------|
| Non-wetted parts:<br>Ex [ia] sensor I/F Ex box | Housing/cover: aluminum casting                                           |

| Ex d [ia] converter NRR261 | Housing/cover: aluminum casting |  |
|----------------------------|---------------------------------|--|
| Ex [ia] converter NRR262   | Housing: plastic                |  |

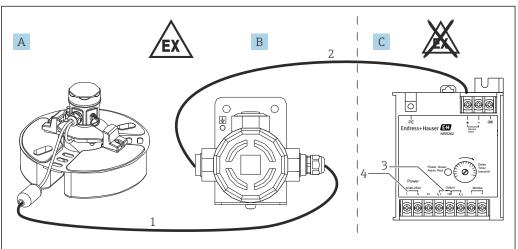
## Certificates and approvals

#### **CE** mark

The measuring system meets the legal requirements of the applicable EC guidelines. These are listed in the corresponding "EC Declaration of Conformity" along with the standards applied. Endress +Hauser confirms successful testing of the device by affixing to it the CE mark.

#### Ex approvals

The NAR300 system has the following four certificates and qualifications:

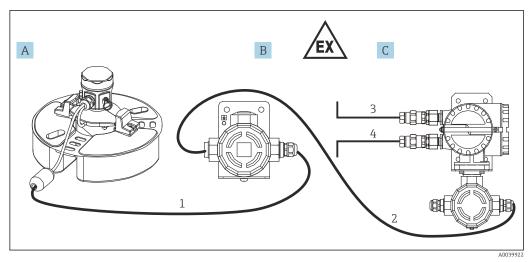

ATEX approval: FM14ATEX0048XIECEx approval: IECEx FMG 14.0024X

■ FM approval: FM24US0015X

■ JPN Ex qualification: CML 18JPN8362X

i

TIIS and JPN Ex devices cannot be mixed.




A00399

13 System configuration 1

- A Float sensor NAR300-x6xxxx
- B Sensor I/F Ex box
- C Ex [ia] converter NRR262
- Ex [ia]-dedicated connection cable (6 to 30 m (19.69 to 98.43 ft))
- 2 Cable for sensor I/F Ex box and converter (refer to "Process conditions")
- 3 Alarm output: alarm/PLC/DCS, etc.
- 4 Power supply (AC/DC)

26



**■** 14 System configuration 2

- Float sensor NAR300-x6xxxx Α
- В Sensor I/F Ex box
- Ex d [ia] converter NRR261 (separate type)
  Ex [ia]-dedicated connection cable (6 to 30 m (19.69 to 98.43 ft))
- Cable for sensor I/F Ex box and converter (refer to "Process conditions")
  Alarm output: alarm/PLC/DCS, etc.
- 2 3
- Power supply (AC/DC)

Functional safety approval

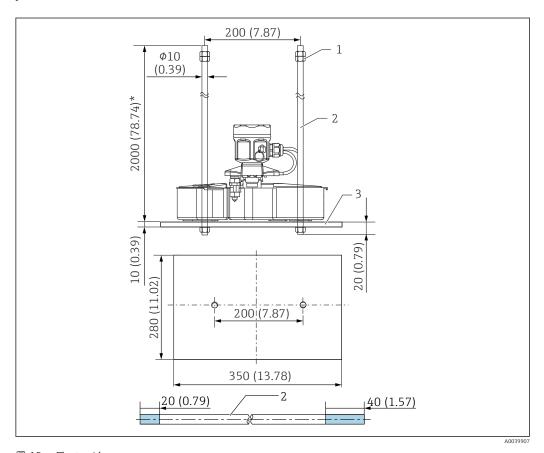
SIL2 IEC61508 (ATEX, IECEx, FM, JPN Ex)

## **Order information**

Detailed ordering information is available from the following sources:

- In the Product Configurator on the Endress+Hauser website: www.endress.com -> Click "Corporate" -> Select your country -> Click "Products" -> Select the product using the filters and search field -> Open product page -> The "Configure" button to the right of the product image opens the Product Configurator.
- From your nearest Endress+Hauser sales organization: www.addresses.endress.com

## Product Configurator - the tool for individual product configuration


- Up-to-the-minute configuration data
- Depending on the device: direct input of information specific to the measuring point, such as the measuring range or operating language
- Automatic verification of exclusion criteria
- Automatic creation of the order code and its breakdown in PDF or Excel output format
- Ability to order directly in the Endress+Hauser Online Shop

## Accessories

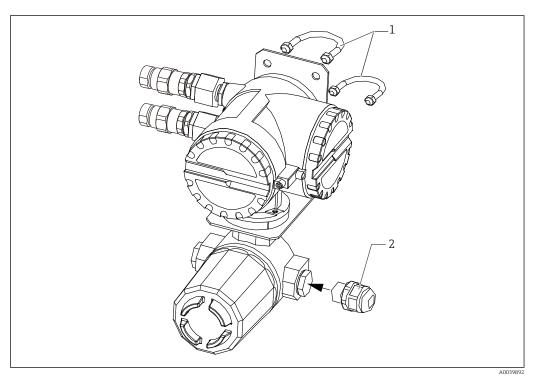
#### Float guide

NAR300 may be mounted on a float guide that has been installed for existing products (CFD10, CFD30, UFD10, NAR291, NAR292).

The float guide is  $2\,000\,\text{mm}$  (78.74 in) in size. If a length shorter than  $2\,000\,\text{mm}$  (78.74 in) is required for use, cut it to size. If a float guide longer than  $2\,000\,\text{mm}$  (78.74 in) is required, contact your nearest Endress+Hauser service center or distributor.



■ 15 Float guide


- 1 Nut (M10)
- 2 Float guide
- 3 Weight

| Name        | Delivered quantity | Materials                                       |  |
|-------------|--------------------|-------------------------------------------------|--|
| Float guide | 2                  | SUS304                                          |  |
| Weight      | 1                  | SS400 or SUS304 options available for selection |  |
| Nut (M10)   | 6                  | SUS304                                          |  |

The 20 mm (0.73 in) and 40 mm (1.57 in) of the float guide in the diagram indicate the lengths of thread grooves.

U-bolt / cable gland (waterproof connection for JPNEx) A U-bolt (JIS F3022 B50) is used when mounting a converter. Have a pipe with an internal diameter of 50A (2B  $\phi$ 60.5 mm (198.5 in)) ready. Tighten and secure the cable gland after inserting the cable from NAR300.

The pressure-resistant packing cable gland is supplied for JPN Ex specifications only. Always use this cable gland.



■ 16 U-bolt / cable gland

- 1 U-bolt (JIS F3022 B50)
- 2 Cable gland (waterproof connection)

| Name                                |             | Delivered quantity | Materials       |
|-------------------------------------|-------------|--------------------|-----------------|
| U-bolt                              |             | 2                  | Iron (chromate) |
| U-bolt accessory                    | Nut         | 4                  |                 |
|                                     | Flat washer | 4                  |                 |
| Cable gland (waterproof connection) |             | 1                  | Nylon           |





www.addresses.endress.com