船舶から船舶へ バンカー船 受入船

Services

特長

- 気化器なし 極低温液相でLNGの in situ測定
- 制御室にアナライザを容易に 設置 – アナライザ専用の部屋は 不要
- 設置コストの削減 サンプル 輸送用の真空断熱配管は不要
- Rxn-41プローブ(C1D1/ゾーン0) は、アナライザから最大500 mの 距離に設置可能
- サンプルの輸送や気化による 分析の遅延なし
- LNG流量変動の影響をほとんど 受けない
- 運転コストの削減 可動部品 または消耗品は不要

図1:LNG輸送中の取引計量

国際海事機関が採択したMARPOL 条約の附属書VIは2005年に発効し、船舶からの大気汚染を低減するため、窒素酸化物 (NOx) 排出量と燃料の硫黄含有量 (硫黄酸化物 (SOx) 排出量を削減するため) の下限値が設定されました。船舶のバンカリング燃料としてLNGを使用することは、低硫黄燃料油やスクラバーの使用に代わる実行可能な選択肢となり、厳格化された新基準を満たすことができます。LNGの使用は、 CO_2 などの温室効果ガス (GHG) に関する今後の付加的なIMO排出基準に対する「将来性」もあります。

バンカー品質の測定

近年、LNGバンカリングに関するいく つかの技術資料や推奨手順が開発さ れており、バンカリング中のLNGの取 引計量に関する指針を提供していま す。LNGバンカリングの典型的な基準 としては、シンガポールのLNGバンカ リングに関する技術資料 (TR56) パー ト21とDNV GL (現DNV) の推奨手順 DNVGL-RP-G1052の2つがあります。 どちらの文書も、バンカー納品書に 記載するLNGの熱量を特定するため に、LNGの量 (質量) と品質 (発熱量) を 測定することを推奨しています。LNG の品質は、ラマン分光法を用いて液相 で測定するか、気化後にガスクロマト グラフィ(GC)を用いて気相で測定す ることができます。

従来の測定の問題

LNG組成は、従来、ガスクロマトグラフ (GC) で測定されてきました。GCを使 用するには、LNGサンプルを極低温の 液体状態から室温の気体状態にする 必要があります。LNGサンプルの部分 気化や事前気化をなくすことが不可欠 であり、そのためにはサンプルの気化 経路と輸送経路を慎重に設置し、適切 にメンテナンスすることで、優れた断 熱性の確保とホットスポットの排除を 実現しなければなりません。通常、不 適切または不完全な気化は、LNG組成 の測定における不確かさの主な原因 となり、移送される熱量の不確かさの 増加につながります。気化システムは LNG流量の影響も受けやすいため、 通常は流れが不安定な間のデータは 破棄され、したがって、LNG積み荷全 体のうちバンカリング中に測定される ものは少なくなります。Kaiserラマン 分光計は、基本的にLNG流量変動の影 響を受けないため、より完全な発熱量 測定が可能です。Kaiserラマン分光計 には、可動部品や劣化する断熱材がな く、キャリブレーションガスやキャリア ガスなどの消耗品も不要なため、メン テナンスが非常に少なくてすみます。

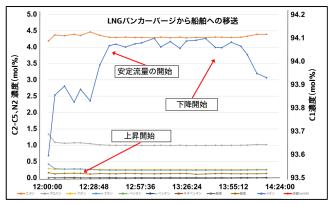


図2: 船舶間バンカリング中のLNGのラマン測定

LNGバンカリング用Raman Rxn4アナライザ

極低温用のRxn-41光ファイバープローブを備えたLNG用 Raman Rxn4アナライザは、GC/気化器システムに比べて 最大10分の1の不確かさで、WI、GCV、バンカリングされる LNGの全組成を正確に測定します。これにより、買い手と売り手の双方は、取引計量中にLNG積み荷の熱量の正確かつ精密な測定結果を得ることができます。ラック取付け型アナライザは、液相でのin situ測定のためにLNG配管に取り付けられたRxn-41プローブとの光ファイバー接続により、制御室に容易に設置でき、コストのかかる気化やサンプル調製、測定のために気化ガスをアナライザに輸送する必要はありません。

LNG取引計量用のRaman Rxn4アナライザソリューションは、以下で構成されます。

- レーザーおよび内部キャリブレーション機能を備えた Raman Rxn4アナライザベースユニット
- ■極低温サービス用のRxn-41光ファイバープローブ
- 光ファイバーケーブル (長さ15~500 m、お客様の プラント要件に合わせてカスタマイズ可能)
- LNG専用取引計量分析メソッド、LNG温度範囲 93K~117 Kで有効*

*固定温度の場合は手動入力、または変動温度の場合はModbus経由の温度入力(±1 K)が必要です。

LNG成分の範囲と性能

	濃度 (Mol %)		不確かさ
成分	最小	最大	(k=2)
メタン(CH ₄)	87.000	98.170	< 0.46
エタン(C ₂ H ₆)	1.300	10.500	< 0.38
プロパン(C ₃ H ₈)	0.160	3.000	< 0.11
i-ブタン(iC ₄ H ₁₀)	0.060	0.400	< 0.023
n-ブタン(nC ₄ H ₁₀)	0.078	0.600	< 0.028
i-ペンタン(iC ₅ H ₁₂)	0.005	0.120	< 0.031
n-ペンタン(nC ₅ H ₁₂)	0.005	0.120	< 0.015
窒素(N ₂)	0.040	1.050	< 0.056

表1: 最悪の場合の不確かさでの検証済みLNGの範囲 (ファイバーの長さ500 m未満、測定時間300秒) **

成分	範囲	不確かさ
総発熱量	最小 - 最大	(k=2)
(MJ/m³)	38.4 - 42.2	< 0.16
総発熱量 (MJ/kg)	53.8 - 55.3	< 0.072

表1: 最悪の場合の不確かさでの検証済みLNG発熱量の範囲 (ファイバーの長さ500 m未満、測定時間300秒) **

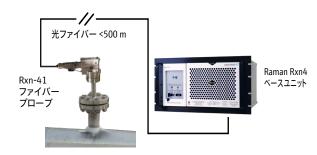


図3: 推奨される設置方法は直接フランジ取付け

^{**}ケーブル長や分析時間に応じて性能は異なる場合があります。