Informazioni tecniche Sonda spettroscopica Raman Rxn-10

Una sonda versatile per le esigenze della vostra spettroscopia Raman

Applicazione

Progettata per lo sviluppo di prodotti e processi, la sonda Rxn-10 è affidabile per fornire misure ad alte prestazioni su un'ampia gamma spettrale. Compatta, leggera e flessibile, è ideale per l'analisi di liquidi e solidi. Grazie all'ottica intercambiabile, si adatta facilmente a diverse applicazioni. Ora compatibile con il nostro nuovo cavo in fibra ottica KFOC1B Raman, offre certificazioni potenziate e una maggiore flessibilità di installazione per ambienti di laboratorio e industriali.

- Industria chimica: monitoraggio della reazione, miscelazione, monitoraggio catalisi, speciazione degli idrocarburi, ottimizzazione delle unità di processo.
- Industria dei polimeri: monitoraggio della reazione di polimerizzazione, monitoraggio dell'estrusione, miscelazione di polimeri
- **Industria farmaceutica:** monitoraggio della reazione degli ingredienti farmaceutici attivi (API), cristallizzazione
- Industria biofarmaceutica: Monitoraggio, ottimizzazione, controllo della coltura delle cellule e fermentazione
- Industria alimentare e delle bevande: mappatura dell'eterogeneità zonale di carni e pesce

Proprietà del dispositivo

- alluminio 6061, acciaio inox 316L e acciaio inox 303
- quaina in PVC, costruzione proprietaria
- elettro-ottica (EO) proprietaria oppure convertitori di fibra FC > EO per sistemi non integrati

Vantaggi

- Uso polivalente per la misura di solidi e liquidi
- Leggera e compatta
- Interblocco di sicurezza laser integrato, completa di 'indicazione di "laser attivo" e otturatore della sonda
- Uscita flessibile compatibile con una serie di opzioni di campionamento
- Facile commutazione di ottiche senza contatto, ad immersione e di biotrattamento per adattarsi a svariate applicazioni
- Ampio spettro, compreso l'accesso alla zona critica a basso numero d'onda
- Cavo in fibra ottica KFOC1B opzionale migliorato, con certificazione CMR per una migliore resistenza al fuoco, una conformità normativa semplificata e una maggiore flessibilità per una più agevole disposizione e maneggevolezza

Indice

Informazioni su questo documento		
Simboli	4	
Funzionamento e struttura del sistema	5	
Applicazione	5	
Interblocco di sicurezza laser	5	
Sonda Rxn-10	5	
Ottiche per sonda Rxn-10	6	

Installazione	7
Specifiche	8
Specifiche della sonda	8
Specifiche del cavo in fibra ottica	9
Dimensioni della sonda	10
MPE: esposizione oculare	11
MPE: esposizione cutanea	11

Informazioni su questo documento

Simboli

Simboli di sicurezza

Cause (/conseguenze) Conseguenze della non conformità (se applicabile) Azione correttiva	Occorre osservare le consuete precauzioni previste per i prodotti laser. Le sonde devono essere sempre otturate o orientate lontane da persone verso un bersaglio diffuso, se non installate in una camera di campionamento.
ATTENZIONE	L'ingresso laser nella sonda Rxn-10 non deve essere superiore a 499 mW.
Cause (/conseguenze) Conseguenze della non conformità (se applicabile) Azione correttiva	L'eventuale ingresso di luce diffusa in una sonda non in uso, interferirà con i dati raccolti da una testa della sonda in uso e può causare errori di taratura o di misura. Le sonde non in uso devono essere SEMPRE otturate per impedire l'ingresso di luce diffusa nella sonda. Se è disponibile un coperchietto ottico, posizionarlo sull'elemento ottico non utilizzato.
NOTA Causa/situazione Conseguenze della non conformità (se applicabile) • Azione/nota	Durante l'installazione della sonda <i>in loco</i> , l'utente dovrà accertarsi che sia presente un pressacavo conforme alle specifiche relative al raggio di curvatura.

Funzionamento e struttura del sistema

Applicazione

L'utilizzo del dispositivo per scopi diversi da quelli previsti mette a rischio la sicurezza delle persone e dell'intero sistema di misura, invalidando la garanzia.

Interblocco di sicurezza laser

La sonda Rxn-10, come installata, fa parte del circuito di interblocco. Se il cavo in fibra ottica viene tagliato, il laser si spegne entro pochi millisecondi dalla rottura.

NOTA

Se i cavi non vengono posati correttamente, sussiste il rischio di danni permanenti.

- ▶ Maneggiare le sonde e i cavi con cura, assicurandosi che non siano attorcigliati.
- Installare i cavi in fibra ottica con un raggio di curvatura minimo secondo le Informazioni tecniche sui cavi in fibra ottica Raman(TI01641C).

Sonda Rxn-10

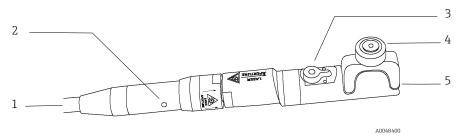


Figura 1: Sonda Rxn-10

#	Denominazione	Descrizione	
1	Cavo in fibra ottica	Collega la sonda all'analizzatore Raman Rxn tramite il cavo elettro-ottico (EO) in fibra ottica fissato alla sonda Rxn-10.	
2	Indicatore di emissione laser	In presenza delle condizioni previste per l'attivazione del laser, la spia luminosa si illumina.	
3	Otturatore fascio laser	Può essere chiuso per impedire le emissioni laser. La posizione "I" indica la possibile emissione. Spostando la leva oltre la posizione "O" si interrompe l'emissione.	
4	Vite ad alette	Serrarla per fissare l'ottica sulla sonda quando non è presente un'interfaccia filettata.	
5	Interfaccia ottica	Inserto ottico o adattatore filettato.	

Ottiche per sonda Rxn-10

La sonda è compatibile con i seguenti elementi ottici per soddisfare i requisiti delle diverse applicazioni:

	Applicazioni	
Ottiche senza contatto	A0048410 A0048676	Per uso con solidi o fluidi torbidi. Anche in presenza di liquidi delicati o corrosivi, quando la contaminazione del campione o i danni ai componenti ottici rappresentano un problema.
Ottica ad immersione (IO)	A0048411	Per l'uso in recipienti per reazioni, reattori di laboratorio o flussi di processo.
bIO-Optic	A0048412	Per l'uso nella misura continua in linea in applicazioni con bioreattori/fermentat ori da banco da installare sulla testa dei bioreattori.
Bio-ottica multipla e bio-manicotto	A0051184	Per l'uso nella misura continua in linea in applicazioni con bioreattori/fermentat ori da banco da installare sulla testa dei bioreattori.
Sistema ottico Raman monouso	A0048413	Per uso con raccordi a perdere per applicazioni monouso.

	Applicazioni	
Armatura a deflusso Raman (comprende banco di flusso micro e cella a deflusso micro)	A0052578	Per l'uso con liquidi di bassa portata, dove il monitoraggio di un flusso di processo dinamico fornisce preziose informazioni e la velocità o il limite di rilevamento sono particolarmente importanti.

Installazione

Durante l'installazione, devono essere rispettate le normali precauzioni di sicurezza per occhi e pelle per i prodotti laser di classe 3B (secondo EN-60825/IEC 60825-14 o ANSI Z136.1).

Specifiche

Specifiche della sonda

Di seguito sono elencate le specifiche per la sonda Rxn-10.

Caratteristica		Descrizione	
Lunghezza d'onda laser	Con ottica senza contatto o ad immersione	532 nm, 785 nm o 1000 nm	
	con sistema bIO-Optic od ottico Raman monouso	785 nm o 1000 nm	
	con bio-ottica multipla e bio- manicotto o banco di flusso micro e cella a deflusso micro	785 nm	
Massima poter	nza laser nella testa della sonda	< 499 mW	
Distanza di lav	oro	Fare riferimento a Elementi ottici accessori per la sonda Rxn-10 Informazioni tecniche (TI01635C)	
Interfaccia cam	pione	Fare riferimento a Elementi ottici accessori per la sonda Rxn-10 Informazioni tecniche (TI01635C)	
Polarizzazione	sul campione	Non polarizzato	
Temperatura a	mbiente	-1070 °C (14158°F)	
Rampa di temp	eratura	≤ 30 °C/min (≤ 54 °F/min)	
Umidità relativ	a	2060%, in assenza di condensa	
Copertura spet	trale	La copertura spettrale della sonda è limitata dalla copertura dell'analizzatore utilizzato	
Potenza laser su campione	532 nm (con laser standard 120 mW)	> 45 mW	
	785 nm (con laser standard 400 mW)	> 150 mW	
	1000 nm (con laser standard 400 mW)	> 150 mW	
Materiali di costruzione	corpo della sonda	alluminio 6061, acciaio inox 316L e acciaio inox 303	
cavo in fibra ottica		Struttura: guaina in PVC, costruzione brevettata Connessioni: elettro-ottica (EO) brevettata oppure convertitori di fibra FC > EO per sistemi non integrati	
Sonda	lunghezza (escluso raggio di curvatura del cavo in fibra ottica)	203 mm (8 in)	
	lunghezza (incluso raggio di curvatura del cavo in fibra ottica)	356 mm (14,02 in)	
	diametro (escluso cavo)	19 mm (0,75 in)	
	peso (incluso cavo)	0,5 kg (1 lb circa)	

Specifiche del cavo in fibra ottica

Di seguito sono elencate le specifiche dei cavi in fibra ottica.

Cavo in fibra ottica KFOC1 Raman		
Caratteristica Descrizione		
Caratteristiche generali	Conduttore in rame integrato per funzione di interblocco Rinforzi centrali interni in aramide (Kevlar) Ritardante di fiamma Resistente ai funghi	
Caratteristiche nominali del cavo (solo cavo)	Temperatura operativa: -40 70°C (-40 158°F) Temperatura di immagazzinamento: -55 70°C (-67 158°F) Certificata: CSA-C/US AWM I/II, A/B, 80C, 30V, FTI, FT2, VW-1, FT4 Classificazione: AWM I/II A/B 80C 30V FT4	
Raggio di curvatura	152,4 mm (6 in)	
Terminazione	Elettro-ottica (EO) con connettori	

Il cavo in fibra ottica Raman KFOC1B presenta un rating migliorato e certificazione CMR, garantendo una maggiore conformità alle leggi e ai regolamenti locali. Questa certificazione semplifica l'implementazione negli ambienti di processo. Testati e certificati da terzi in modo indipendente, questi cavi offrono una maggiore protezione contro la propagazione del fuoco.

Con la certificazione CMR, il cavo in fibra ottica Raman KFOC1B è pronto per l'installazione immediata in canaline, montanti e tutti i tipi di conduit senza necessità di ulteriori valutazioni.

Cavo in fibra ottica KFOC1B Raman		
Caratteristica Descrizione		
Caratteristiche generali	Conduttore in rame integrato per funzione di interblocco Rinforzi centrali in plastica rinforzata con fibre (FRP) Ritardante di fiamma Resistente ai funghi	
Caratteristiche nominali del cavo (solo cavo)	Temperatura operativa: -40 70°C (-40 158°F) Temperatura di immagazzinamento: -55 70°C (-67 158°F) Certificata: cULus AWM I/II, A/B, 80C, 30V, FTI, FT2, VW-1, FT4 Classificazione: CMR-FO, AWM I/II A/B 80C 30V FT4	
Raggio di curvatura	152,4 mm (6 in)	
Terminazione	Connettori elettro-ottici (EO)	

Dimensioni della sonda

Le dimensioni della sonda Rxn-10 sono indicate di seguito.

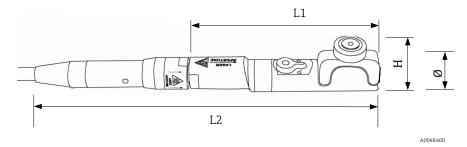


Figura 2. Dimensioni della sonda Rxn-10

Dimensione	Misura	Descrizione
L1	111 mm 4.37 in	Lunghezza del corpo della sonda senza cavo in fibra ottica
L2	203 mm 8 in	Lunghezza con cavo in fibra ottica collegato Nota: Questo non include il raggio di curvatura aggiuntivo minimo del cavo
Н	33 mm 1.3 in	Altezza della sonda con vite ad alette
Ø	19 mm 0.75 in	Diametro della sonda, escluso il cavo in fibra ottica

MPE: esposizione oculare

Fare riferimento alle tabelle di seguito indicate della norma ANSI Z136.1 per calcolare l'esposizione massima ammissibile (MPE) per l'esposizione oculare a un fascio laser con sorgente puntiforme.

Può essere anche necessario un fattore di correzione ($C_{\rm A}$) che può essere determinato come segue.

Lunghezza d'onda λ (nm)	Fattore di correzione C _A
400 700	1
700 1050	$10^{0,002}$ (λ^{-700})
1050 1400	5

Esposizione massima ammissibile (MPE) per esposizione oculare a un fascio laser con sorgente puntiforme			
Lunghezza d'onda Durata dell'esposizione Calcolo M		о МРЕ	
λ (nm)	t (s)	(J·cm⁻²)	(W·cm⁻²)
532	10 ⁻¹³ 10 ⁻¹¹	1,0 × 10 ⁻⁷	-
	10 ⁻¹¹ 5 × 10 ⁻⁶	2,0 × 10 ⁻⁷	-
	5 × 10 ⁻⁶ 10	$1.8 t^{0.75} \times 10^{-3}$	-
	10 30.000	-	1 × 10 ⁻³

Esposizione massima ammissibile (MPE) per esposizione oculare a un fascio laser con sorgente puntiforme						
Lunghezza	Durata	Calcolo MPE		MPE dove		
d'onda λ (nm)	dell'esposizione t (s)	(J·cm⁻²)	(W·cm⁻²)	$C_{\rm A} = 1,4791$		
785 e 993	10 ⁻¹³ 10 ⁻¹¹	$1,5 C_{\rm A} \times 10^{-8}$	-	2,2 × 10 ⁻⁸ (J·cm ⁻²)		
	10 ⁻¹¹ 10 ⁻⁹	2,7 C _A t ^{0,75}	-	Inserire il tempo (t) e calcolare		
	10 ⁻⁹ 18 × 10 ⁻⁶	$5,0 C_{\rm A} \times 10^{-7}$	-	7,40 × 10 ⁻⁷ (J·cm ⁻²)		
	18 × 10 ⁻⁶ 10	$1.8 C_{\rm A} t^{0.75} \times 10^{-3}$	-	Inserire il tempo (t) e calcolare		
	10 3 × 10 ⁴	-	$C_{\rm A} \times 10^{-3}$	1,4971 × 10 ⁻³ (W·cm ⁻²)		

MPE: esposizione cutanea

Fare riferimento alla tabella che segue della norma ANSI Z136.1 per calcolare l'MPE per l'esposizione cutanea a un fascio laser.

Esposizione massima ammissibile (MPE) per l'esposizione cutanea a un fascio laser						
Lunghezza	Durata	Calcolo MPE				
d'onda λ (nm)	dell'esposizione t (s)	(J·cm⁻²)	(W·cm⁻²)	MPE dove C _A = 1,4791		
532, 785 e 993	10 ⁻⁹ 10 ⁻⁷	$2 C_{\rm A} \times 10^{-2}$	-	2,9582 × 10 ⁻² (J·cm ⁻²)		
	10 ⁻⁷ 10	$1,1 C_{\rm A} t^{0,25}$	-	Inserire il tempo (t) e calcolare		
	10 3 × 10 ⁴	-	0,2 C _A	2,9582 × 10 ⁻¹ (W·cm ⁻²)		

