Technische Information Raman-Spektroskopiesonde Rxn-10

Eine vielseitige Sonde für alle Anforderungen rund um die Raman-Spektroskopie

Anwendungsbereich

Die Rxn-10-Sonde wurde für die Produkt- und Prozessentwicklung konzipiert und liefert zuverlässig leistungsstarke Messungen über einen großen Spektralbereich. Kompakt, leicht und flexibel einsetzbar, eignet sie sich sowohl für die Analyse von Feststoffen als auch von Flüssigkeiten. Mit der austauschbaren Optik passt sie sich problemlos an unterschiedliche Anwendungen an. Jetzt auch kompatibel mit neuen Raman-LWL-Kabel KFOC1B von Endress+Hauser, bietet die Sonde erweiterte Zertifizierungen und mehr Montageflexibilität für Labor- und Industrieumgebungen.

- Chemikalien: Reaktionsüberwachung, Mischung, Katalyse, Kohlenwasserstoffspeziation, Optimierung der Prozesseinheit.
- Polymere: Überwachung der Polymerisationsreaktion, Extrusionsüberwachung, Polymermischung
- Pharmazeutika: API-Reaktionsüberwachung, Kristallisation
- Biopharmazie: Überwachung, Optimierung und Steuerung von Zellkulturen und Fermentation
- Lebensmittel und Getränke: Kartierung der zonalen Heterogenität von Fleisch und Fisch

Geräteeigenschaften

- Aluminium 6061, Edelstahl 316L und Edelstahl 303
- PVC-ummantelte herstellerspezifische Konstruktion
- Herstellerspezifische elektrooptische (EO) Anschlüsse oder FC-zu-EO-Lichtwellenleiterkonverter für nicht integrierte Systeme

Ihre Vorteile

- Mehrzweckinstrument f
 ür die Messung von Feststoffen und Fl
 üssigkeiten
- Federleicht und kompakt
- Integrierte Lasersicherheitsverriegelung, inklusive "Laser ein"-Anzeige und Sondenverschlussvorrichtung
- Flexibler Ausgang, kompatibel mit einer Reihe von Probenentnahmeoptionen
- Einfacher Wechsel zwischen berührungslosen, Tauch- und biotechnologischen Optiken für eine Vielzahl von Anwendungen
- Großer Spektralbereich, inklusive Zugriff auf kritische Bereiche mit niedriger Wellenzahl
- Als Upgrade jetzt auch optional mit CMR-zertifiziertem Raman-LWL-Kabel KFOC1B für verbesserte Feuerbeständigkeit, vereinfachte Konformität mit Gesetzen und Vorschriften und mehr Flexibilität für einfachere Verlegung und Handhabung

Inhaltsverzeichnis

Hinweise zum Dokument	4
Symbole	4
Arbeitsweise und Systemaufbau	5
Anwendungsbereich	5
Lasersicherheitsverriegelung	5
Rxn-10-Sonde	5
Optik der Rxn-10-Sonde	6

Montage	7
Spezifikationen	8
Sondenspezifikationen	8
Spezifikationen LWL-Kabel	9
Sondenabmessungen	10
MPE: Augenexposition	11
MPE: Hautexposition	11

Hinweise zum Dokument

Symbole

Warn- und Gefahrensymbole

WARNUNG Die für Laserprodukte geltenden Standardvorsichtsmaßnahmen sind zu beachten. Ursache (/Folgen) Sonden, die nicht in einer Probenkammer montiert sind, sollten Folgen der Missachtung immer verschlossen oder von Personen weg auf ein diffuses Ziel (wenn zutreffend) gerichtet werden. ► Behebungsmaßnahme **VORSICHT** Die in die Rxn-10-Sonde geleitete Laserleistung darf 499 mW nicht Ursache (/Folgen) Wenn Streulicht in eine nicht verwendete Sonde eindringen kann, Folgen der Missachtung dann beeinträchtigt dies die von einer verwendeten Sonde (wenn zutreffend) erfassten Daten und kann zu einem Fehlschlagen der Kalibrierung ► Behebungsmaßnahme oder Messabweichungen führen. Nicht verwendete Sonden IMMER verschließen, um zu verhindern, dass Streulicht in die Sonde gelangt. Wenn eine Kappe für die Optik vorhanden ist, diese auf die nicht verwendete Optik setzen. **HINWEIS** Bei Montage des Sondenkopfs in situ muss der Benutzer sicherstellen, dass eine Zugentlastung am Montageort vorhanden Ursache/Situation ist, die die Spezifikationen für den Biegeradius erfüllt. Folgen der Missachtung (wenn zutreffend) ► Maßnahme/Hinweis

Arbeitsweise und Systemaufbau

Anwendungsbereich

Eine andere als die beschriebene Verwendung gefährdet die Sicherheit von Personen und der gesamten Messeinrichtung und setzt die Gewährleistung außer Kraft.

Lasersicherheitsverriegelung

Die montierte Rxn-10-Sonde ist Bestandteil des Verriegelungskreises. Wenn es zu einem Bruch des LWL-Kabels kommt, schaltet sich der Laser innerhalb von Millisekunden nach dem Bruch aus.

HINWEIS

Werden Kabel nicht ordnungsgemäß verlegt, kann es zu einer dauerhaften Beschädigung kommen.

- Sonden und Kabel vorsichtig behandeln und sicherstellen, dass sie nicht geknickt werden.
- LWL-Kabel mit einem Mindestbiegeradius gemäß Dokument Raman-LWL-Kabel Technische Information (TI01641C) montieren.

Rxn-10-Sonde

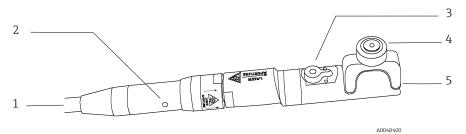


Abbildung 1: Rxn-10-Sonde

Pos.	Bezeichnung	Beschreibung
1	LWL-Kabel	Verbindet die Sonde über das an der Rxn-10-Sonde angebrachte elektrooptische (EO) LWL-Kabel mit dem Raman Rxn-Analysator.
2	Laseremissionsanzeige	Wenn die Möglichkeit besteht, dass der Laser mit Strom versorgt wird, dann leuchtet diese Anzeige.
3	Laser-Verschlussvor- richtung	Kann geschlossen werden, um ein Austreten des Laserstrahls zu verhindern. Position "I" zeigt das Emissionspotenzial an. Das Bewegen des Hebels über die Position "O" hinaus, gibt an, dass die Emission unterbrochen ist.
4	Rändelschraube	Festziehen, um die Optik auf der Sonde zu sichern, wenn keine Schnittstelle mit Gewinde vorhanden ist.
5	Optikschnittstelle	Optik oder Gewindestutzen einführen.

Optik der Rxn-10-Sonde

Die Sonde ist mit folgenden Optiken kompatibel, um die Anforderungen unterschiedlicher Anwendungen zu erfüllen:

	Optik	Anwendungs- bereiche
Berührungs- lose Optik	A0048410 A0048676	Zur Verwendung mit Feststoffen oder trüben Medien. Auch gut für empfindliche oder korrosive Flüssigkeiten geeignet, wenn eine Probenverunreinigun g oder eine Beschädigung der optischen Komponenten befürchtet wird.
Tauchoptik (IO)	A0048411	Für den Einsatz in Reaktionsbehältern, Laborreaktoren oder Prozessströmen.
bIO-Optik	A0048412	Für den Einsatz in der kontinuierlichen Inline-Messung in Anwendungen mit Benchtop- Bioreaktoren/Fermen tern, die einen Steckplatz in der Kopfplatte erfordern.
Bio-Multi- Optik und Bio-Sleeves	A0051184	Für den Einsatz in der kontinuierlichen Inline-Messung in Anwendungen mit Benchtop- Bioreaktoren/Fermen tern, die einen Steckplatz in der Kopfplatte erfordern.
Optisches Raman- System für single-use Anwendun- gen	A0048413	Für den Einsatz mit Einwegarmaturen für single-use Anwendungen.

	Optik	Anwendungs- bereiche
Raman Flow Assembly (umfasst eine Micro Flow Bench und eine Micro Flow Cell)	A0052578	Für den Einsatz mit Flüssigkeiten von geringerer Durch- flussrate, wenn die Überwachung eines dynamischen Prozessstroms wertvolle Informationen liefert und Geschwindigkeit oder Detektions- grenzen besonders wichtig sind.

Montage

Während der Montage sind Standardsicherheitsvorkehrungen für Laserprodukte der Klasse 3B zum Schutz von Augen und Haut (gemäß EN-60825/IEC 60825-14 oder ANSI Z136.1) einzuhalten.

Spezifikationen

Sonden spezifikation en

Nachfolgend sind die Spezifikationen für die Rxn-10-Sonde aufgeführt.

Merkmal		Beschreibung	
Laserwellenlänge	mit berührungsloser oder Tauchoptik	532 nm, 785 nm oder 1000 nm	
	mit bIO-Optik oder optischem Raman-System für single-use Anwendungen	785 nm oder 1000 nm	
	mit Bio-Multi-Optik und Bio-Sleeve oder Micro Flow Bench und Micro Flow Cell	785 nm	
Maximale in den Sono Laserleistung	lenkopf geleitete	< 499 mW	
Arbeitsabstand		Siehe Zubehöroptiken für die Rxn-10-Sonde Technische Information (TI01635C)	
Probenschnittstelle		Siehe Zubehöroptiken für die Rxn-10-Sonde Technische Information (TI01635C)	
Polarisation an der Pr	obe	Nicht polarisiert	
Umgebungstemperati	ır	-1070 °C (14158 °F)	
Temperaturrampe		≤ 30 °C/min (≤ 54 °F/min)	
Relative Feuchte		2060 %, keine Kondensatbildung	
Spektrale Abdeckung		Die spektrale Abdeckung der Sonde wird durch die Abdeckung des verwendeten Analysators beschränkt	
Laserleistung an der Probe	532 nm (mit standardmäßigem 120mW-Laser)	> 45 mW	
	785 nm (mit standardmäßigem 400mW-Laser)	> 150 mW	
	1000 nm (mit standardmäßigem 400mW-Laser)	> 150 mW	
Werkstoffe	Sondenrumpf	Aluminium 6061, Edelstahl 316L und Edelstahl 303	
	LWL-Kabel	Bauform: PVC-ummantelte herstellerspezifische Konstruktion Anschlüsse: herstellerspezifische elektrooptische Anschlüsse oder FC-zu-EO-Lichtwellenleiter- konverter für nicht integrierte Systeme	
Sonde	Länge (ohne Biegeradius für LWL-Kabel)	203 mm (8 in)	
	Länge (einschließlich Biegeradius für LWL- Kabel)	356 mm (14,02 in)	
	Durchmesser (ohne Kabel)	19 mm (0,75 in)	
	Gewicht (einschließlich Kabel)	0,5 kg (ca. 1 lb)	

Spezifikationen LWL-Kabel

Die Spezifikationen für die LWL-Kabel sind unten aufgeführt.

Raman-LWL-Kabel KFOC1		
Merkmal	Beschreibung	
Allgemeine Merkmale	Integrierter Kupferleiter für Verriegelungsfunktion Interne Aramid (Kevlar)-Festigkeitselemente Flammhemmend Pilzresistent	
Kabelauslegung (nur Kabel)	Betriebstemperatur: -40 °C70 °C (-40 °F158 °F) Lagerungstemperatur: -55 °C70 °C (-67 °F158 °F) Zertifiziert: CSA-C/US AWM I/II, A/B, 80C, 30V, FTI, FT2, VW-1, FT4 Ausgelegt für: AWM I/II A/B 80C 30V FT4	
Biegeradius	152,4 mm (6 in)	
Terminierung	Elektrooptische (EO) Anschlüsse	

Das Raman-LWL-Kabel KFOC1B zeichnet sich durch eine verbesserte Auslegung und CMR-Zertifizierung aus und stellt so eine einfachere Konformität mit lokalen Gesetzen und Vorschriften sicher. Diese Zertifizierung unterstützt eine reibungslosere Implementierung in Prozessumgebungen. Von unabhängigen Dritten getestet und zertifiziert, bieten diese Kabel einen erweiterten Schutz vor Brandausbreitung.

Mit der CMR-Bewertung ist das Raman-LWL-Kabel KFOC1B für die sofortige Montage in Kabelrinnen, Steigleitungen und allen Arten von Kabelführungen bereit, ohne dass weitere Bewertungen erforderlich sind.

Raman-LWL-Kabel KFOC1B		
Merkmal Beschreibung		
Allgemeine Merkmale	Integrierter Kupferleiter für Verriegelungsfunktion Festigkeitselemente aus faserverstärktem Kunststoff (FRP) Flammhemmend Pilzresistent	
Kabelauslegung (nur Kabel)	Betriebstemperatur: -40 °C70 °C (-40 °F158 °F) Lagerungstemperatur: -55 °C70 °C (-67 °F158 °F) Zertifiziert: cULus AWM I/II, A/B, 80C, 30V, FTI, FT2, VW-1, FT4 Ausgelegt für: CMR-FO, AWM I/II A/B 80C 30V FT4	
Biegeradius	152,4 mm (6 in)	
Terminierung	Elektrooptische (EO) Steckverbinder	

Sondenabmessungen

Die Abmessungen der Rxn-10 Sonde sind nachfolgend aufgeführt.

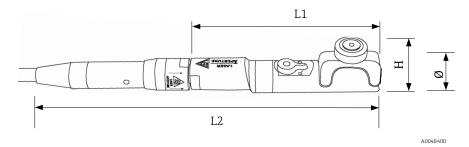


Abbildung 2. Abmessungen Rxn-10-Sonde

Abmessung	Messung	Beschreibung
L1	111 mm 4,37 in	Länge des Sondenrumpfs ohne LWL-Kabel
L2	203 mm 8 in	Länge mit angeschlossenem LWL-Kabel Hinweis: Diese Angaben enthalten nicht den zusätzlichen Mindestbiegeradius des Kabels
Н	33 mm 1,3 in	Höhe der Sonde inklusive Rändelschraube
Ø	19 mm 0,75 in	Sondendurchmesser ohne LWL-Kabel

MPE: Augenexposition

Siehe nachfolgende Tabellen aus der Norm ANSI Z136.1, um die maximal zulässige Strahlenexposition (MPE) für den Kontakt des Auges mit einem punktförmigen Laserstrahl zu berechnen.

Zudem kann ein Korrekturfaktor (C_A) erforderlich sein, der sich anhand der folgenden Tabelle bestimmen lässt.

Wellenlänge λ (nm)	Korrekturfaktor \mathcal{C}_{A}
400700	1
7001050	10 ^{0,002} (λ ⁻⁷⁰⁰⁾
10501400	5

Maximal zulässige Strahlenexposition (MPE) für den Kontakt des Auges mit einem punktförmigen Laserstrahl			
Wellenlänge	Dauer der Exposition	MPE-Berechnung	
λ (nm)	t (s)	(J·cm ⁻²)	(W·cm⁻²)
532	10 ⁻¹³ 10 ⁻¹¹	1,0 × 10 ⁻⁷	-
	$10^{-11}5 \times 10^{-6}$	2,0 × 10 ⁻⁷	-
	5 × 10 ⁻⁶ 10	$1.8 t^{0.75} \times 10^{-3}$	-
	1030 000	-	1 × 10 ⁻³

Maximal zulässige Strahlenexposition (MPE) für den Kontakt des Auges mit einem punktförmigen Laserstrahl				
Wellenlänge	Dauer der	MPE-Berechnung		MPE, wobei
λ (nm)	Exposition <i>t (s)</i>	(J·cm ⁻²)	(W·cm⁻²)	$C_{\rm A} = 1,4791$
	10 ⁻¹³ 10 ⁻¹¹	$1,5 C_{A} \times 10^{-8}$	-	2,2 × 10 ⁻⁸ (J·cm ⁻²)
	10 ⁻¹¹ 10 ⁻⁹	2,7 C _A t ^{0,75}	-	Zeit eingeben (t) und berechnen
785 und 993	10 ⁻⁹ 18 × 10 ⁻⁶	$5,0 C_{\rm A} \times 10^{-7}$	-	7,40 × 10 ⁻⁷ (J·cm ⁻²)
	18 × 10 ⁻⁶ 10	$1.8 C_{\rm A} t^{0.75} \times 10^{-3}$	-	Zeit eingeben (t) und berechnen
	103 × 10 ⁴	-	$C_{\rm A} \times 10^{-3}$	1,4971 × 10 ⁻³ (W⋅cm ⁻²)

MPE: Hautexposition

Siehe nachfolgende Tabelle aus der Norm ANSI Z136.1, um die maximal zulässige Strahlenexposition (MPE) für den Kontakt der Haut mit einem Laserstrahl zu berechnen.

Maximal zulässige Strahlenexposition (MPE) für den Kontakt der Haut mit Laserstrahlung				
	Dauer der	MPE-Berechnung		
Wellenlänge λ (nm)	Exposition t (s)	(J·cm⁻²)	(W·cm⁻²)	MPE, wobei C _A = 1,4791
532, 785 und 993	10 ⁻⁹ 10 ⁻⁷	$2 C_{\rm A} \times 10^{-2}$	-	2,9582 × 10 ⁻² (J·cm ⁻²)
	10 ⁻⁷ 10	1,1 C _A t ^{0,25}	-	Zeit eingeben (t) und berechnen
	103 × 10 ⁴	-	0,2 C _A	2,9582 × 10 ⁻¹ (W·cm ⁻²)

