
Operating Instructions NAR300 system for high temperature

Oil leak detector float sensor

Table of contents

1	Document information	4
1.1	Document function	4
1.2	Symbols	4
1.3	Additional documentation	6
2	Safety-related basic instructions	7
2.1	Basic safety instructions	7
2.2	Intended use	7
2.3	Workplace safety	7
2.4 2.5	Operational safety	7 8
2.5	Product safety	О
3	Product description	9
3.1	Product design	9
3.2	Technical data	9
3.3 3.4		1
3.5		4
3.6		4
4	Incoming acceptance and product	
1	3 1	5
4.1		.5
4.2		5
4.3	Manufacturer address	9
4.4	Storage and transport	9
5	Installation 2	0
5.1	NAR300 system dimensions 2	20
5.2		24
5.3	5	26
5.4	Adjustment	30
6	Electrical connection	1
6.1	NRR262-4/A/B/C wiring	31
6.2	3	3
6.3	5 5	35
6.4	Alarm activation principle	36
7	Diagnostics and troubleshooting 3	7
7.1	Fail-safe (alarm is output when there is no oil	
7.2	leak)	37
7.4	· · · · · · · · · · · · · · · · · · ·	37
7.3	·	88
7.4	=	٠0
8	Maintenance 4	1
8.1		ı1
8.2		1

9	Repair	42
9.1	General information on repairs	42
9.2	Spare parts	42
9.3	Endress+Hauser services	42
9.4	Return	43
9.5	Disposal	43
10	Accessories	44
10.1	Float guide	44
10.2	U-bolt / cable gland (waterproof connection	
	for JPNEx)	45
Inde		

1 Document information

1.1 Document function

These Operating Instructions contain all the information required in the various life cycle phases of the device: from product identification, incoming acceptance and storage, to installation, connection, operation and commissioning, through to troubleshooting, maintenance and disposal.

1.2 Symbols

1.2.1 Safety symbols

⚠ DANGER

This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in serious or fatal injury.

WARNING

This symbol alerts you to a potentially dangerous situation. Failure to avoid this situation can result in serious or fatal injury.

A CALITION

This symbol alerts you to a potentially dangerous situation. Failure to avoid this situation can result in minor or medium injury.

NOTICE

This symbol alerts you to a potentially harmful situation. Failure to avoid this situation can result in damage to the product or something in its vicinity.

1.2.2 Electrical symbols

Symbol	Meaning	
===	Direct current	
~	Alternating current	
$\overline{}$	Direct and alternating current	
=	Ground connection A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system.	
	Protective earth (PE) Ground terminals that must be connected to ground prior to establishing any other connections.	
	The ground terminals are located on the interior and exterior of the device: Interior ground terminal: protective earth is connected to the mains supply. Exterior ground terminal: device is connected to the plant grounding system.	

1.2.3 Tool symbols

Phillips head screwdriver

Flat blade screwdriver

0

Torx screwdriver

Ållen key

Open-ended wrench

1.2.4 Symbols for certain types of information and graphics

✓ Permitted

Procedures, processes or actions that are permitted

✓ ✓ Preferred

Procedures, processes or actions that are preferred

Forbidden

Procedures, processes or actions that are forbidden

Tip

Indicates additional information

Reference to documentation

Reference to graphic

Notice or individual step to be observed

Series of steps

Result of a step

Visual inspection

Operation via operating tool

Write-protected parameter

1, 2, 3, ...

Item numbers

A, B, C, ...

Views

$\triangle \rightarrow \square$ Safety instructions

Observe the safety instructions contained in the associated Operating Instructions

Temperature resistance of the connection cables

Specifies the minimum value of the temperature resistance of the connection cables

1.3 Additional documentation

The following documentation types are available in the Downloads area of the Endress +Hauser website (www.endress.com/downloads):

For an overview of the scope of the associated Technical Documentation, refer to the following:

W@M Device Viewer (www.endress.com/deviceviewer): Enter the serial number on the nameplate.

1.3.1 Technical Information (TI)

Planning aid

This document contains all technical data related to the device, as well as an overview of accessories and other products that can be ordered for the device.

1.3.2 Brief Operating Instructions (KA)

Instructions for using the system for the first time

The Brief Operating Instructions contain all the essential information from incoming acceptance to initial commissioning.

1.3.3 Operating Instructions (BA)

Operating Instructions contain all the information required for all stages in the device life cycle (from product identification, incoming acceptance, storage, mounting, connection, operation, and setting to troubleshooting, maintenance, and disposal).

1.3.4 Safety Instructions (XA)

Depending on the approval, the following Safety Instructions (XA) are supplied with the device. They are an integral part of the Operating Instructions.

The nameplate indicates the Safety Instructions (XA) that are relevant to the device.

2 Safety-related basic instructions

2.1 Basic safety instructions

2.1.1 Requirements for the personnel

The personnel for installation, commissioning, diagnostics and maintenance must fulfill the following requirements:

- ► Trained, qualified specialists must have a relevant qualification for this specific function and task.
- ► Are authorized by the plant owner/operator.
- ► Are familiar with federal/national regulations.
- ▶ Before starting work, read and understand the instructions in the manual and supplementary documentation as well as the certificates (depending on the application).
- ▶ Follow instructions and comply with basic conditions.

The operating personnel must fulfill the following requirements:

- Are instructed and authorized according to the requirements of the task by the facility's owner-operator.
- ▶ Follow the instructions in this manual.

2.2 Intended use

Applications and measured materials

Equipment intended for use in hazardous locations, sanitary applications, or high-risk applications due to process pressure have the corresponding label attached to their nameplates.

To ensure that the device remains in proper condition for the operation time:

- ▶ Only use the device in full compliance with the data on the nameplate and the general conditions listed in the Operating Instructions and supplementary documentation.
- ► Check the nameplate to ensure that the ordered equipment has the correct specifications for the certification-related area (example: explosion proof, safety of pressure vessels).
- ▶ If the device is not operated at an atmospheric temperature, compliance with the relevant basic conditions specified in the relevant device documentation is absolutely essential.
- ▶ Provide permanent protection for the equipment against corrosion caused by environmental effects.
- ▶ Do not exceed the limit values in "Technical Information."

The manufacturer is not liable for damage caused by improper or non-designated use.

2.3 Workplace safety

For work on and with the device:

► Wear the required personal protective equipment according to local/national regulations.

2.4 Operational safety

Risk of injury!

- ▶ Operate the device only if it is in proper technical condition, free from errors and faults.
- ► The operator is responsible for interference-free operation of the device.

Modifications to the device

Unauthorized modifications to the device are not permitted and can lead to unforeseeable dangers:

▶ If modifications are nevertheless required, consult with the manufacturer.

Repair

To ensure continued operational safety and reliability:

- ► Carry out repairs on the device only if they are expressly permitted.
- ▶ Observe federal/national regulations pertaining to the repair of an electrical device.
- ▶ Use only original spare parts and accessories from the manufacturer.

Hazardous area

To eliminate danger to persons or the facility when the device is used in the hazardous area (e.g. explosion protection):

- ► Check the nameplate to verify if the device ordered can be put to its intended use in the hazardous area.
- ▶ Observe the specifications in the separate supplementary documentation that is an integral part of these instructions.

2.5 Product safety

This device was designed in accordance with GEP (Good Engineering Practice) to meet state-of-the-art safety requirements, has been tested, and left the factory in a condition in which it is safe to operate. It meets the general safety standards and legal requirements.

2.5.1 **CE** mark

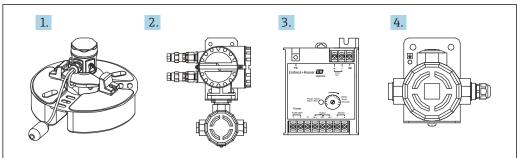
This measuring system meets the legal requirements of the applicable EU Directive. These are listed in the corresponding EU Declaration of Conformity along with the standards applied.

Endress+Hauser affixes the CE mark to this equipment as a sign of guarantee that this equipment has successfully passed testing.

3 Product description

The NAR300 system is designed to be installed in a pit within an oil retaining dike, a plant, or a sump pit near a pump yard, where it can provide the ultimate in leak detection function for oils, such as petrochemicals and vegetable oils. A sensor with a conductivity detection function is used to monitor the detection conditions. With a two-stage alarm logic process, it has an extremely low false alarm rate, and this ensures the safety of the tank yard with an accurate yet simple device configuration.

NOTICE


TIIS specifications

These operating instructions are not intended for products with TIIS specifications.

► If you are using a product with TIIS specifications, download and refer to BA00403G/JA/23.22-00 or an earlier version from our website (www.endress.com/downloads).

3.1 Product design

The NAR300 system is configured in combination with mainly the following products.

A0048024

- 1 NAR300 product design
- 1 Float sensor NAR300
- 2 Ex d [ia] converter NRR261
- 3 Ex [ia] converter NRR262
- 4 Ex [ia] sensor I/F Ex box

3.2 Technical data

3.2.1 Float sensor NAR300

Item	Description
Protection class	IP67 (outdoor installation)
Power supply	Supplied by a sensor I/F Ex box or NRR261 (integrated type with NAR300 sensor I/F Ex box)
Wetted material	Float: SUS316L, conductivity sensor: SUS316+PTFE
Detection sensitivity 1)	Water-filled pit: $10 \pm 1 \text{ mm}$ (0.04 in) with kerosene at the time of factory shipping
I/O cable	Dedicated shielded cable (PVC) as well as with cable float (Standard 6 m (19.69 ft))
Weight	Approx. 2.5 kg (5.5 lb) (including the 6 m (19.69 ft) dedicated shielded cable (PVC))

Set with oil (kerosene: approx. 0.8 in density), lower-layer water (water: approx. 1.0 in density), static liquid surface state, and/or without surface tension.

3.2.2 Ex [ia] sensor I/F Ex box

Item	Description
Protection class	IP67 (outdoor installation)
Power supply	Supplied by NRR261 or NRR262
Cable entry	 NAR300 (float sensor) side: G1/2, with cable gland NRR261 or NRR262 (converter) side: G1/2, NPT1/2, M20
Weight	3.2 kg (7.1 lb)
Materials	Housing/cover: aluminum casting

3.2.3 Ex d [ia] converter NRR261

Item	Description
Protection class	IP67 (outdoor installation)
Permissible power-supply voltage range	 AC power supply type: 90 to 250 V_{AC}, 50/60 Hz DC power supply type: 22 to 26 V_{DC} (built-in power supply arrester)
Maximum power consumption	 AC power supply type: 2 VA DC power supply type: 3 W
Output	 Contact output: 1SPDT Maximum contact rating: 250 V_{AC}, 1 A, 100 VA or 100 V_{DC}: 1 A, 25 W Fail-safe function: activated when the power supply is turned off and under frozen conditions (refer to "Alarm output operation table")
Cable entry	 G3/4 x2 (Ex d), G1/2 x1 (Ex ia) G1/2 x 2 (Ex d), G1/2 x 1 (Ex ia) NPT3/4 x2 (Ex d), NPT1/2 x1 (Ex ia) NPT1/2 x2 (Ex d), NPT1/2 x1 (Ex ia) M25 x2 (Ex d), M20 x1 (Ex ia) M20 (Ex d), M20 x1 (Ex ia) JPNEx explosion-proof specifications are equipped with cable gland model SFLU
Lightning arrester	Built-in (power supply arrester)
Weight	Approx. 10 kg (22 lb)
Materials	Housing/cover: aluminum casting

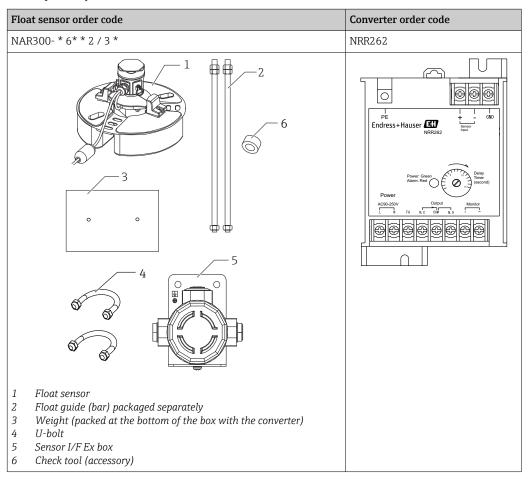
3.2.4 Ex [ia] converter NRR262

Item	Description
Protection class	IP20 (indoor installation), installed in non-hazardous locations
Permissible power-supply voltage range	 AC power supply type: 90 to 250 V_{AC}, 50/60 Hz DC power supply type: 22 to 26 V_{DC} (built-in power supply arrester)
Maximum power consumption	AC power supply type: 2 VADC power supply type: 3 W
Output	 Contact output: 1SPDT Maximum contact rating: 250 V_{AC}, 1 A, 100 VA or 100 V_{DC}: 1 A, 25 W Fail-safe function: activated when the power supply is turned off and under frozen conditions (refer to "Alarm output operation table")
Lightning arrester	Built-in (power supply arrester)
Weight	Approx. 0.6 kg (1.3 lb)
Materials	Housing: plastic

3.3 Process conditions

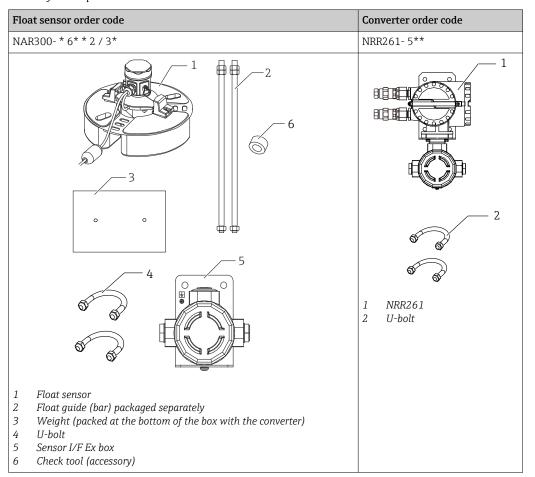
3.3.1 Float sensor NAR300 / sensor I/F Ex box

Item	Description
Requirements for substance detection	 Density is 0.7 g/cm³ or higher but less than 1.0 g/cm³ Floats in water (if the density is 0.9 g/cm³ or higher, the viscosity should be 1 mPa·s or higher. Water ≒ 1 mPa·s) Water-insoluble Non-conductive Liquid Low affinity to water (a layer of the detected substance must form on the water surface)
Operating temperature	 Ambient temperature: -20 to 100 °C (-4 to 212 °F) Measured liquid temperature: 0 to 100 °C (32 to 212 °F)
Requirements for pit water	 Density is 1.0 g/cm³ or higher but less than 1.13 g/cm³ (however, only when kinematic viscosity is 1 mm²/sec) ¹⁾ Non-freezing Electric conductivity of 10 μS/cm or higher (up to 100 kΩ·cm) Cannot be used on the sea surface or in places that may be penetrated by seawater
Other requirements	 Promptly remove any debris that adheres to the sensor unit. Ensure that there is no caked-on mud (dried solids), etc. Avoid use in an environment where the float sensor may become submerged or constantly wet. Avoid installation environments that may cause the float sensor to tilt or change the draft line. Install a breakwater or other similar means to protect against crosscurrents and waves.


Sensitivity will vary when the specific gravity of water in the lower layer is different from the factorysetting environment, such as when an antifreeze is used.

3.3.2 Connector cable (connection to converter NRR261/NRR262 from sensor I/F Ex box)

Item	Description
Connector cable	Maximum inductance: 2.3 mH, maximum capacitance: 83 nF Reference case: use of KPEV-S (instrumentation cable) $C=65 \text{ nF/Km}, L=0.65 \text{ mH/km} \\ CW/C=0.083 \mu\text{F} / 65 \text{ nF} = 1.276 \text{ km}1 \\ LW/L=2.3 \text{ mH} / 0.65 \text{ mH} = 3.538 \text{ km}2 \\ Maximum extended cable length: 1.27 \text{ km} \\ The maximum cable length is either 1 or 2, whichever is shorter (round down instead of rounding off)}$
Operating temperature	−20 to 60 °C (−4 to 140 °F)


3.4 Delivery example by order code

Delivery example 1

- The sensor I/F Ex box is included in the order code NAR300-x6xxxx. The intrinsically safe system is used in combination with NRR262.
 - A cable gland (waterproof connection) is only included with the sensor I/F Ex box or NRR261 with JPNEx specifications.

Delivery example 2

- The sensor I/F Ex box is included in the order code NAR300-x6xxxx. The Ex d [ia] system is used in combination with NRR261 5**.
- A cable gland (waterproof connection) is only included with the sensor I/F Ex box or NRR261 with JPNEx specifications.

3.5 Sensitivity detection

If the electrode tip is pulled out of the lower layer of water due to increased oil layer thickness, water may cling onto the electrode tip like an icicle even if the electrode tip is in oil. This may raise the detection sensitivity point by 1 to 2 mm (0.04 to 0.08 in). When an accurate sensitivity check is required, apply a small amount of neutral detergent to the electrode tip to keep water from clinging to the electrode.

3.6 Pit water

High-temperature specification is exclusively for applications in which water is constantly present in the pit.

3.6.1 Do not use in seawater

The oil leak detector is not designed for use in seawater. The following problems may occur if it is used in seawater:

- Failed or delayed alarm when overturned by waves
- Delayed alarm caused by generation of a bypass circuit between the conductivity sensor and the float body due to salt coating
- Corrosion of the float sensor caused by seawater

3.6.2 Special pit water

- If the float sensor is used in certain special pit water, such as pit water containing solvents, it may become corroded or damaged.
- It cannot measure highly hydrophilic liquids, such as alcohol.

3.6.3 Pit water with high electrical resistance

Use in pit water with high electrical resistance, such as in a steam drain or pure water, may activate the alarm. Ensure that the conductivity of pit water is at least $10\mu S/cm$ (up to $100 k\Omega \cdot cm$).

Example, pure water: 1 to 0.1 μ S/cm (1 to 10 M Ω •cm)

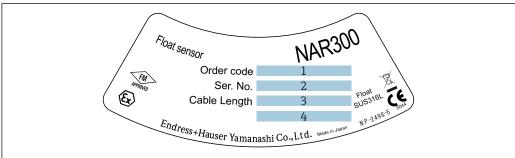
3.6.4 Frozen pit water

If ice forms in the pit, the alarm may be triggered (fail-safe function). Implement antifreeze measures to prevent freezing.

4 Incoming acceptance and product identification

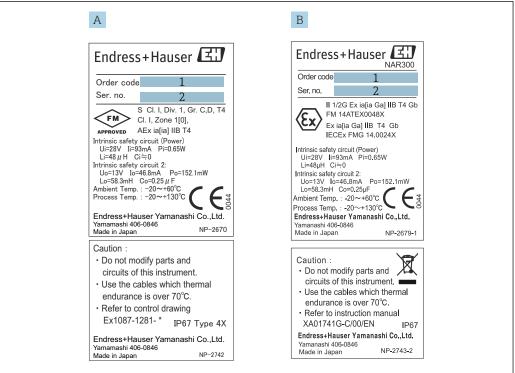
4.1 Incoming acceptance

Upon receipt of the goods, check the following:

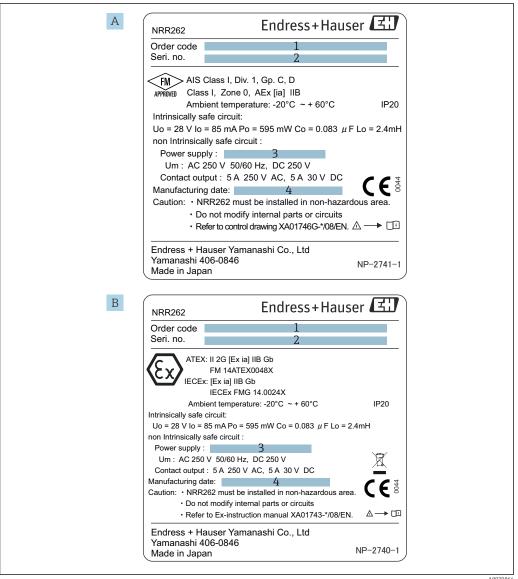

- Are the order codes on the delivery note and the product label identical?
- Are the goods undamaged?
- Do the nameplate data match the ordering information on the delivery note?
- If required (see nameplate): Are the Safety Instructions (XA) enclosed?
- If one or more of these conditions are not satisfied, contact your Endress+Hauser Sales Center or distributor.

4.2 Product identification

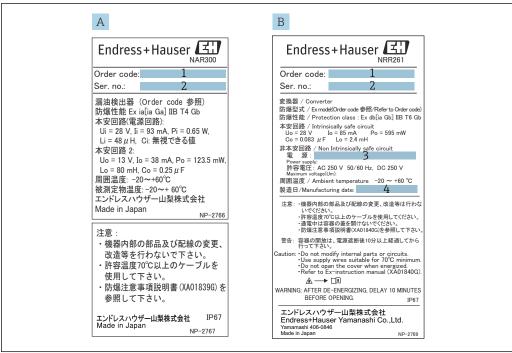
The following options are available for identification of the device:


- Nameplate specifications
- Extended order code on the delivery note (including details of the device specification codes)
- Entering the serial number from the nameplate in *W@M Device Viewer* (www.endress.com/deviceviewer) will display all the information about the device.
- Note that the information on a nameplate may be changed without warning when credentials and certificates are updated.

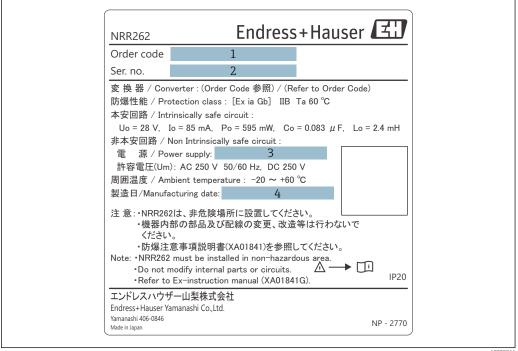
4.2.1 Nameplate specifications


A00386

- 2 NAR300 model nameplate
- 1 Order code
- 2 Serial number
- 3 Cable length (order code 040)
- 4 Explosion-proof performance (except TIIS specification)


A003985

- 3 Nameplate for NAR300
- A NAR300 for FM
- B NAR300 nameplate for ATEX / IECEx
- 1 Order code
- 2 Serial number


€ 4 Nameplate for NRR262

- Α NRR262 nameplate for FM
- В NRR262 nameplate for ATEX / IECEx
- 1 Order code
- 2 Serial number
- 3 Power supply voltage
- Manufacturing date

₽ 5 Nameplate for JPN Ex

- NAR300 nameplate for JPN Ex Α
- В NRR261 nameplate for JPN Ex (NAR300 separate type)
- 1 Order code
- 2 Serial number
- 3 Power supply voltage
- Manufacturing date

€ 6 NRR262 nameplate for JPN Ex

- 1 Order code
- 2 Serial number
- 3 Power supply voltage
- Manufacturing date

4.3 Manufacturer address

Endress+Hauser Yamanashi Co., Ltd. 406-0846 862-1 Mitsukunugi, Sakaigawa-cho, Fuefuki-shi, Yamanashi

4.4 Storage and transport

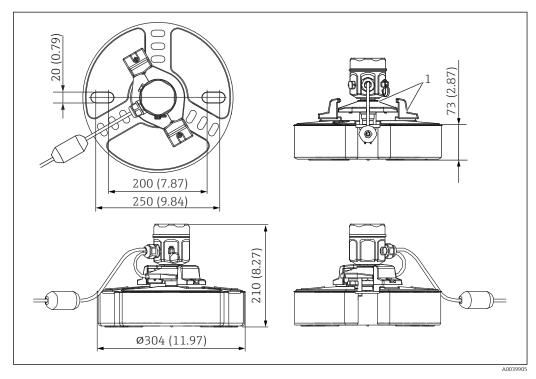
4.4.1 Storage conditions

- Storage temperature: -20 to +60 °C (-4 to 140 °F)
- Store the device in its original packaging.

4.4.2 Transport

NOTICE

The housing may become damaged or dislodged.


Risk of injury

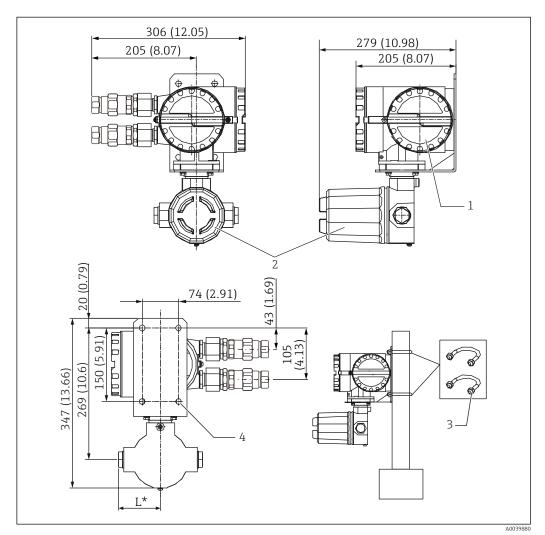
- ▶ When transporting the device to the measuring point, either use the device's original packaging or hold by the process connector.
- ► Secure a hoisting device (such as a hoisting ring or a lifting eye bolt) to the process connector, not to the housing. Pay attention to the device's center of gravity to prevent unexpected tilting.
- ► Comply with the safety precautions and transportation conditions for devices that weigh 18 kg (39.6 lbs) or more (IEC61010).

5 Installation

5.1 NAR300 system dimensions

5.1.1 Dimensions of NAR300 float sensor

■ 7 Float sensor NAR300 dimensions

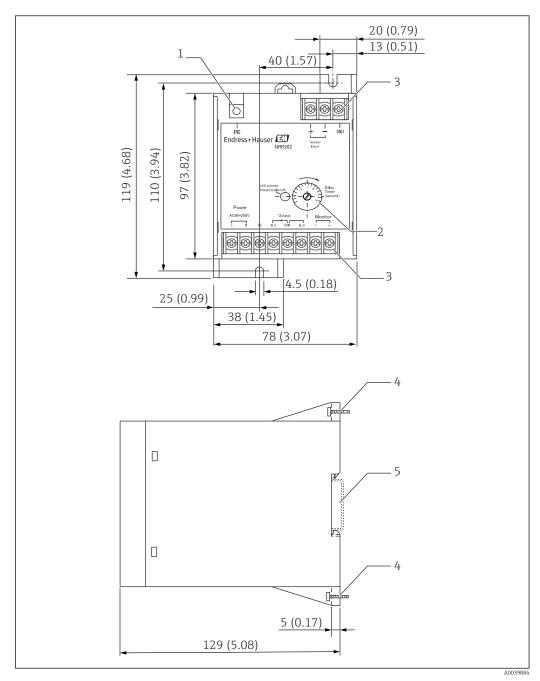

1 Float sensor cover

5.1.2 Dimensions of Ex d [ia] converter NRR261

Only NRR261 with JPN Ex explosion-proof specifications are delivered with a cable gland (external diameter of compatible cables: φ 12 to 16 mm (0.47 to 1.02 in)).

Use the order code of Ex d [ia] converter NRR261 to specify the conduit connection port.

Normally, Ex d [ia] converter NRR261 is mounted on a tank yard's pipe and secured in place with a U-bolt (JIS F 3022 B 50 type). It can also be mounted directly onto walls (requires $4 \varphi 12 \text{ mm}$ (0.47 in) holes and M10 securing nuts and bolts (not included in the delivery)).

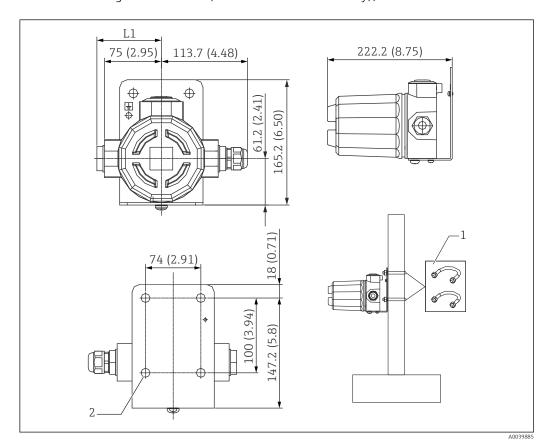


■ 8 Outline of NRR261. Unit of measurement mm (in)

- 1 Ex d-side terminal
- 2 Ex [ia]-side terminal
- 3 U-bolt (JIS F3022 B50 material: iron (chromate), 2 nuts and 2 flat washers included)
- 4 4 φ12 holes
- L G1/2: 85 mm (3.35 in), NPT1/2: 97 mm (3.82 in), M20: 107 mm (4.21 in)

5.1.3 Dimensions of Ex [ia] converter NRR262

NRR262 is designed for indoor installation, such as in instrument rooms, and it can be mounted easily with two M4 screws. In addition, "one-touch" snap-in mounting is possible using a DIN rail EN50022 (not included in the delivery). This rail-mounting method is convenient for mounting multiple converters in a row or for when additional converters are scheduled to be installed in the future.

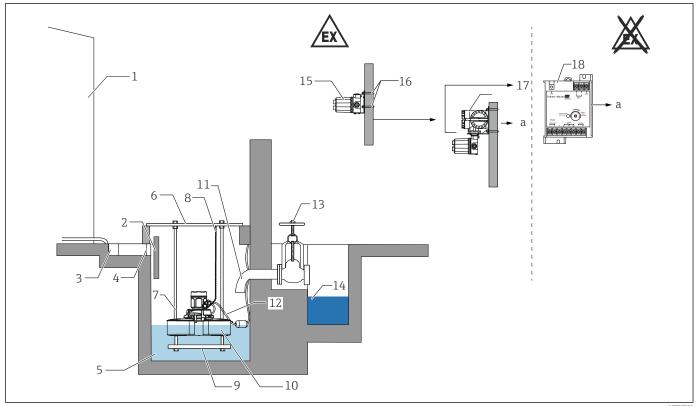


■ 9 Outline of NRR262. Unit of measurement mm (in)

- 1 Screw (M4) for protective grounding
- 2 Delay trimmer
- 3 Screw (M3)
- 4 Screw (M4)
- DIN rail: complies with EN50022

5.1.4 Dimensions of Ex [ia] sensor I/F Ex box

The Ex [ia] sensor I/F Ex box is used in combination with Ex [d] ia converter NRR261 or Ex [ia] converter NRR262 to convert signals from the float sensor into electric current signals. Normally, it is mounted on a tank yard's pipe and secured in place with a U-bolt (JIS F 3022 B 50 type). It can also be mounted directly onto walls (requires $4 \, \varphi 12 \, \text{mm}$ (0.47 in) holes and M10 securing nuts and bolts (not included in the delivery)).



 \blacksquare 10 Ex [ia] sensor I/F Ex box dimensions. Unit of measurement mm (in)

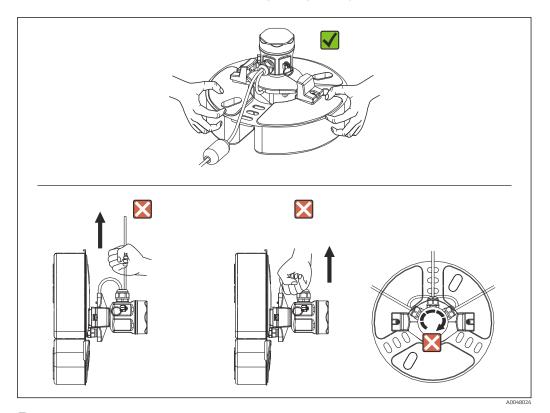
- L1 G1/2 / NPT1/2:85 mm (3.35 in), M25: 107 mm (4.21 in)
- 1 *U-bolt (JIS F3022 B50 material: iron (chromate), 2 nuts and 2 flat washers included)*
- 2 4 φ12 mm (0.47 in) holes

use the order code of float sensor NAR300 to specify the conduit connection port.

Installation conditions 5.2

₽ 11 NAR300 + NRR26x

- Alarm output а
- Tank1
- 2 Divider
- U-shaped groove 3
- Screen 4
- Pit
- 6 Pit cover
- Float guide
- 8 Chain
- 9 Weight
- 10 Float sensor NAR300
- 11 Discharge nozzle (100 mm (3.94 in) or longer)
- Dedicated cable (included with NAR300) 12
- 13 Valve
- 14 Drainage groove
- 15 Ex [ia] sensor I/F Ex box
- 16 U-bolt (JIS F3022 B50)
- 17 NRR261 (Ex d [ia] converter)
- 18 NRR262 (Ex [ia] converter)
- To ground the barrier, either connect it to the tank or use the shielded wire for the remote cable. Refer to "Electrical connection" for more information on using the shielded wire for the remote cable.

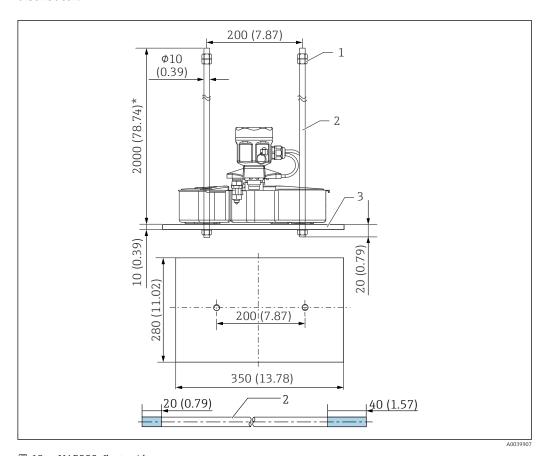

5.2.1 Installation and mounting precautions

- 1. To prevent snow and debris from entering the pit, installing a waste guard, roof, or other covering is recommended. If snow accumulates on the float sensor, each 50 g of accumulation will cause an increase in the draft line by 1 mm (0.04 in), resulting in reduced sensitivity. Mount a covering above the top of the pit inlet to avoid submerging the float sensor housing if the pit water overflows due to heavy rainfall. If the float sensor becomes submerged, malfunctions or damage may result.
- 2. If the float sensor becomes off-balance (tilted by approx. 3 ° or more), it may cause faulty operation or a delayed alarm. Use a float guide as much as possible, and also pay attention to the way the cables and chains are laid out.
- 3. Install a screen at the pit's inlet to remove any debris. If debris or foreign matter clogs the sensor unit or inside the pit, it may cause malfunctions. Inspect and clean the screen regularly.
- 4. Attach a chain to the ring on the side of the float sensor head in advance for added convenience. However, each 50 g of increased load on the float will increase the draft line by 1 mm (0.04 in), resulting in reduced sensitivity. If using a chain to anchor the float, do not forcibly pull on the chain during inspection.
- 5. If the pit is completely filled with water, no oil layer will form even when oil is leaking. Ensure that the water is drained as necessary so that an oil layer can form.
- 6. Do not forcibly pull or grab and carry the cable as it may cause malfunctions or compromised waterproofing.
- 7. Bend the tip of the discharge nozzle downward by 100 mm (3.94 in) or more when the drain valve is kept open so that an oil layer can form. Failure to do so may cause oil to drain from the pit before it can form a detectable layer on the water surface, resulting in a delayed alarm or detection failure. For pits without a discharge nozzle, such as the one shown in the diagram above, install an oil-water separation divider so that an oil layer can form.
- 8. Depending on the liquid flowing into the pit, install a divider to prevent waves, crosscurrents, or liquid from splashing on top of the float.
- 9. If the pit is too large, divide the pit using an oil separator. Oil leakage cannot be detected unless there is significant outflow of oil in proportion to the surface area.
- 10. NAR300, NRR261, and sensor I/F Ex box must be installed at least 50 cm (1.64 ft) apart from each other.

5.3 Mounting the NAR300 system

5.3.1 Handling precautions

When transporting NAR300, be sure to hold the float with both hands. Avoid holding the parts as shown in the diagram below, and do not lift NAR300 by the top of the float sensor. In addition, do not rotate the housing. Doing so may cause device failure.



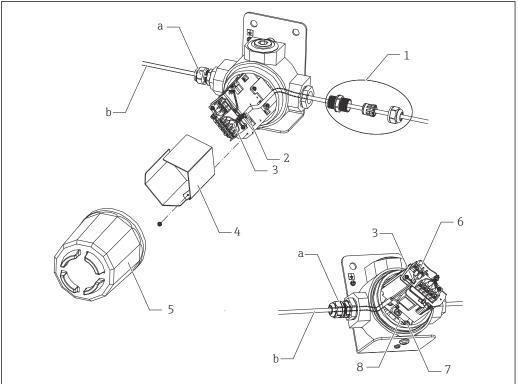
■ 12 Handling the NAR300

5.3.2 Mounting the float guide

If you ordered a device that is equipped with a float guide, install the float horizontally. Remove any debris or stones so that the float sensor can land horizontally.

The float guide is $2\,000\,\text{mm}$ (78.74 in) in size. If a length shorter than $2\,000\,\text{mm}$ (78.74 in) is required for use, cut it to size. If a float guide longer than $2\,000\,\text{mm}$ (78.74 in) is required, contact your nearest Endress+Hauser service center or distributor.

■ 13 NAR300, float guide


- 1 Nut (M10)
- 2 Float guide
- 3 Weight
- The 20 mm (0.73 in) and 40 mm (1.57 in) of the float guide in the diagram indicate the lengths of thread grooves.

5.3.3 NAR300-x6xxxx and sensor I/F Ex box cable mounting

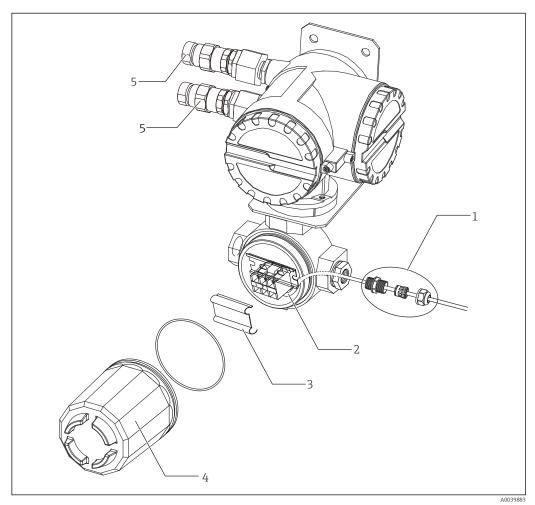
Mounting procedure

- 1. Remove the intrinsically safe terminal box cover [5] and the circuit board guard [4].
- 2. Pass the float sensor cable [2] through the cable gland [1] and the cable entry of the intrinsically safe terminal box.
- 3. Connect the cable to the terminal block (refer to "Electrical connection").
- 4. Tighten the main unit of the cable gland [1] and the seal nut.
 - → Tightening torque (main unit, seal nut): approx. 1.96 N·m (20 kgf·cm)
- 5. Pass the NRR262/NRR261 connecting cable through the cable entry of the terminal box, and connect it to the terminal block.
- 6. Secure the cable in place with a cable holder [3].
- 7. Replace the circuit board guard and close the cover of the intrinsically safe terminal box.

This completes the mounting procedure.

A00398

■ 14 NAR300-x6xxxx and sensor I/F Ex box cable mounting


- a Cable gland (must be procured separately)
- b Shielded cable for NRR261/262 (must be procured separately)
- 1 Cable gland (waterproof connection)
- 2 Float sensor cable
- 3 Cable holder
- 4 Circuit board guard
- 5 Intrinsically safe terminal box cover
- 6 Screw (M3) for shielded cable
- 7 Screw (M5)
- 8 Shielded cable gland
- Since the cable gland a shown in the diagram is not supplied with products that do not have JPN Ex specifications, a waterproof cable gland that is IP67 or higher must be procured separately.

5.3.4 NRR261-5xx cable mounting

Mounting procedure

- 1. Remove the intrinsically safe terminal box cover [4] and the terminal block cover [3].
- 2. Pass the float sensor cable [2] through the cable gland [1] and the cable entry of the intrinsically safe terminal box.
- 3. Connect the cable to the terminal block (refer to "Electrical connection").
- 4. Mount the cable gland [1] according to the operating instructions.
- 5. Secure the cable in place with the cable holder.
- 6. Replace the terminal block cover and close the cover of the intrinsically safe terminal box.

This completes the mounting procedure.

■ 15 NRR261-5xx cable mounting

- 1 Cable gland (waterproof connection)
- 2 Float sensor cable
- 3 Terminal block cover
- 4 Intrinsically safe terminal box cover
- 5 Cable gland (Ex d) (supplied with JPN Ex specifications only)

Since the cable gland [1] shown in the diagram is not supplied with products that do not have JPN Ex specifications, a waterproof cable gland that is IP67 or higher must be procured separately.

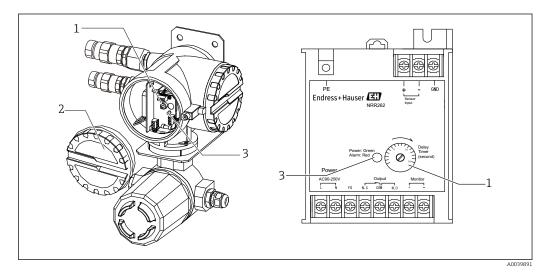
5.4 Adjustment

5.4.1 Verification of detection sensitivity with actual liquid

Verification of detection sensitivity when the lower layer is water and the upper layer is oil

If the electrode tip is pulled out of the lower layer of water due to increased oil layer thickness, water may cling onto the electrode tip like an icicle even if the electrode tip is in oil. This may raise the detection sensitivity point by 1 to 2 mm. When an accurate sensitivity check is required, apply a small amount of neutral detergent to the electrode tip to keep water from clinging to the electrode.

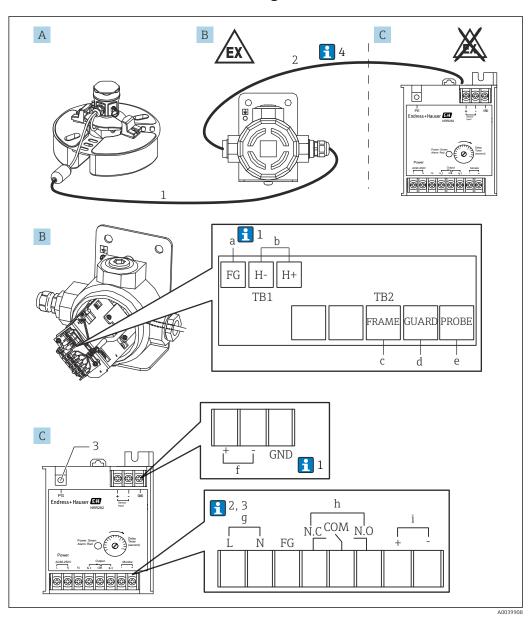
Verification of oil layer thickness with a transparent container


Exercise caution as a reading error may occur due to the liquid's surface tension, liquid adhesion to the container wall, and for other reasons.

5.4.2 Adjustment of alarm output

Only the delay operation time (ON delay) setting of the alarm output relay can be adjusted on the converter. Time can be set using the delay trimmer. In NRR261, the delay trimmer can be found by turning off the power and opening the main unit's cover. In NRR262, the delay trimmer is found on the case surface. Match the setting to the necessary delay time in units of seconds. Delayed activation is used to prevent a false alarm by recognizing an alarm condition that continues over a certain period of time as an alarm while not outputting an alarm when the alarm condition stops within the delay time setting. This can be set up to a maximum of 15 seconds for SIL specifications.

- A response delay time in the detection circuit of approximately 6 seconds is always added to the delay time of the delay trimmer.
- Open the NRR261 main unit cover after the power has been turned off for at least 10 minutes.

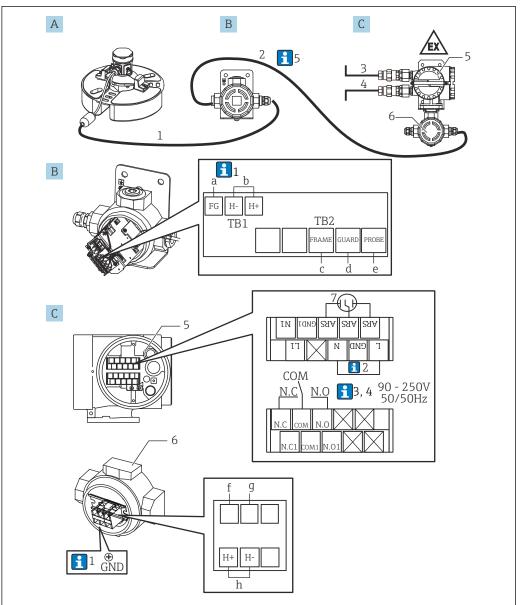


■ 16 Alarm output relay

- 1 Delay trimmer
- 2 Cover
- 3 LED power (green) / alarm (red)

6 Electrical connection

6.1 NRR262-4/A/B/C wiring

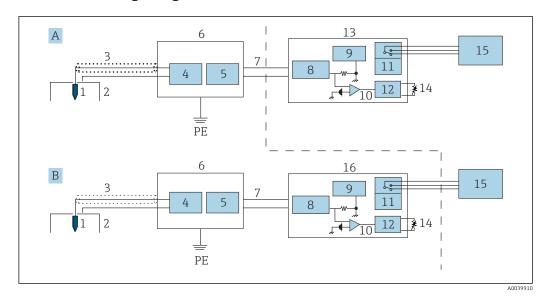


■ 17 Wiring of Ex [ia] converter NRR262-4/A/B/C

- A Float sensor NAR300-x6xxxx (sensor I/F Ex box is also included in the code)
- B Sensor I/F Ex box
- C Ex [ia] converter NRR262
- a Green, screw (M3) (see Note 1 below)
- b Output to NRR262, screw (M3)
- c Yellow, screw (M3)
- d Black, screw (M3)
- e White, screw (M3)
- f Input from sensor I/F Ex box, screw (M3)
- g Power supply: AC/DC, screw (M3)
- h Alarm output, screw (M3)
- Checking monitor output, screw (M3)

- 1 Using an Ex [ia]-dedicated connection cable (6 to 30 m (19.69 to 98.43 ft): included with the product depending on the option code)
- 2 Cable for sensor I/F Ex box and NRR262 (must be procured by the customer)
- *3* For protective grounding, screw (M4)
- Below, the numbers correspond to the description in the diagram.
- 1. Normally, only the FG of a sensor I/F Ex box is connected to the cable's shielded wire; however, depending on the installation environment, either the GND of NRR262 alone or both the FG of the sensor I/F Ex box and the GND of NRR262 are connected.
- When using a 22 to 26 V_{DC} power supply, the terminal number "L" becomes positive (+) and "N" becomes negative (-).
- 3. To maintain Ex [ia] performance, ensure that the power supply voltage does not exceed 250 V_{AC} 50/60 Hz during normal times and 250 V_{DC} during emergencies.
- 4. While cable (1) for connecting NAR300 and sensor I/F Ex box is included with the device, cable (2) for connecting sensor I/F Ex box and NRR262 is not included with the device and must be procured by the customer. For more details on connection cables, refer to "Process conditions."

6.2 NRR261-5 wiring


Δ00399

■ 18 Wiring of Ex d [ia] converter NRR261-5

- A Float sensor NAR300-x6xxxx (sensor I/F Ex box is also included in the code)
- B Sensor I/F Ex box
- C Ex d [ia] converter NRR261 (separate type)
- a Green, screw (M3) (see Note 1 below)
- b Output to NRR261-3xx, screw (M3)
- c Yellow, screw (M3)
- d Black, screw (M3)
- e White, screw (M3)
- f Blue 2, screw (M4) (already wired upon delivery)
- g Blue 3, screw (M4) (already wired upon delivery)
- h Input from sensor I/F Ex box, screw (M4)
- 1 Using an Ex [ia]-dedicated connection cable (6 to 30 m (19.69 to 98.43 ft): included with the product depending on the option code)
- 2 Cable for sensor I/F Ex box and NRR261 (must be procured by the customer)
- 3 Power supply: AC/DC
- 4 Alarm output: alarm/PLC/DCS, etc.

- 5 Ex d terminal
- 6 Intrinsically safe terminal
- 7 Power supply arrester (installed), screw (M3)
- Below, the numbers correspond to the description in the diagram.
- 1. Normally, only the FG of a sensor I/F Ex box is connected to the cable's shielded wire; however, depending on the installation environment, either the GND of NRR261 alone or both the FG of the sensor I/F Ex box and the GND of NRR261 are connected.
- 2. Connect when using an AC cable with FG.
- 3. When using a 22 to 26 V_{DC} power supply, the terminal number "L" becomes positive (+) and "N" becomes negative (-).
- 4. To maintain Ex [ia] performance, ensure that the power supply voltage does not exceed 250 V_{AC} 50/60 Hz during normal times and 250 V_{DC} during emergencies.
- 5. Cable (1) for connecting NAR300 and sensor I/F Ex box is included with NAR300. Cable (5) for connecting sensor I/F Ex box and NRR261, alarm output cable (2) from NRR261, and power supply cable (3) for NRR261 are not included and must be procured by the customer. For more details on connection cables, refer to "Process conditions."

6.3 Wiring diagram

■ 19 Wiring diagram

- Explosion proof-type converter system (integrated type)
- Intrinsically safe-type converter system (separate type) В
- Protective earth (protective grounding)
- Conductivity detection electrode (sensor) 1
- 2 Conductivity detection electrode (float)
- 3 Dedicated cable
- 4 5 Conductivity detection circuit
- Current output circuit
- Sensor I/F Ex box 6
- Current signal
- 8 Safety barrier
- Power supply circuit
- 10 Current detection
- 11 Relay
- Delay circuit
- 13 Converter NRR262
- 14 Delay trimmer
- Alarm 15
- Converter NRR261 (separate type)

6.4 Alarm activation principle

An oil leak detection signal detected by NAR300 float sensor is converted into an electric current signal inside the converter or sensor I/F Ex box. The signal is then connected to the current detection circuit through the intrinsically safe safety barrier inside the converter. In the current detection circuit, the presence or absence of an oil leak alarm signal is determined based on the size of the current value, and the alarm output relay is turned ON/OFF through the operation delay circuit. The alarm delay circuit is equipped with a trimmer that can be used to set the delay time. Fail-safe operation is also available for relay contact point output, which is explained in the following "Alarm output operation table."

Alarm output operation table

NRR261/NRR262 terminals		Between NC and COM	Between NO and COM
State	Non-alarm	Open contact point	Closed contact point
	Oil leak alarm	Closed contact point	Open contact point
	Power OFF		
	Frozen liquid		

The high-temperature sensor is exclusively for use in the presence of water; an alarm will be activated in an empty pit.

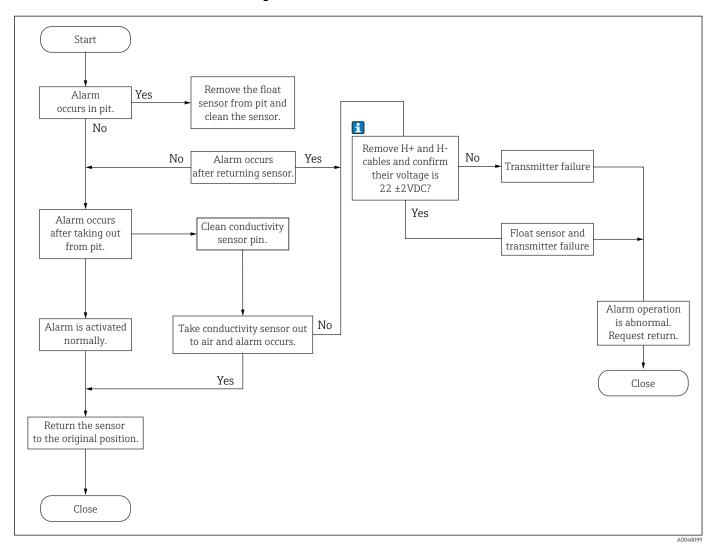
NAR300 current value	
Non-alarm	12 mA
Oil leak alarm	16 mA
Other trouble	< 10 mA or 14 mA <

7 Diagnostics and troubleshooting

7.1 Fail-safe (alarm is output when there is no oil leak)

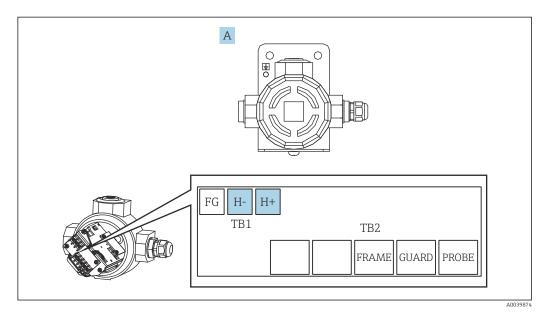
The following situations may cause an alarm to be output even when there is no oil leak.

Item	Description
Frozen pit water	An alarm is activated when the conductivity sensor detects an insulator due to frozen pit water.
Tilted float sensor	If the float sensor floating on pit water becomes tilted so much that the conductivity sensor is no longer submerged under water, an alarm will be activated, as the sensor will detect air as an insulator.
Empty pit	An alarm will always be activated in an empty pit.
Sensor buried in mud	If the float sensor is buried under mud and the mud becomes dry and solid, an alarm will be activated.
Essentially pure water in pit	In pit water with large electrical resistance, such as drain water, an alarm will be activated, as the conductivity sensor will recognize it as an insulator.


7.2 Delayed alarm (alarm is not output when there is an oil leak)

The following situations may prevent an alarm from being output even when there is an oil leak.

Item	Description
Cross-currents and waves on liquid surface	If wind and other elements cause the leaked oil surface to be very choppy, destabilizing the oil layer and pit water, the conductivity sensor will detect the pit water and no alarm will be activated.
Tilted float sensor	If the float becomes significantly tilted as a result of snow, debris, or an animal landing on one side of the float, or the float becoming tangled in or tugged by a cable or a chain, no alarm will be activated, as the conductivity sensor will detect the pit water under the oil layer.
Sunk float sensor	If snow, debris, or an animal lands on the float, the float will sink and an alarm will not be activated, as the conductivity sensor will detect the pit water under the oil layer.
Moist debris, etc.	An alarm will not be activated if conductivity is generated as a result of moist debris or algae coming in contact between the conductivity sensor and earth (float body or ground).
Oil leak during snowfall	No alarm will be activated if there is snow floating on the oil layer surface, as the conductivity sensor will recognize water due to the moisture from the melted snow.
Oil leak during snowfall	No alarm will be activated if there is snow floating on the oil layer surface, as the conductivity sensor will recognize water due to the moisture from the melted snow.


7.3 Operation check

7.3.1 Operation check flowchart

The voltage upon turning on the power supply is DC20 \pm 1V in ATEX, IECEx, FM, and JPN Ex specifications, but this will change to DC18 \pm 2V after several seconds.

Before performing an alarm operation check, take measures to prevent the alarm system from being affected even when an oil leak alarm is activated. For the operation check process, refer to "Operation check flowchart" in the previous section. The following diagram shows the voltage check point that was described in the flowchart.

■ 20 Intrinsically safe terminal box

A Sensor I/F Ex box

H- Blue

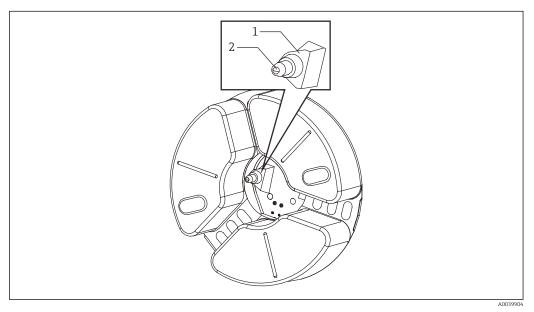
H+ Blue

7.3.2 Converter / alarm system problems

Item	Description		
LED is lit red: Normal alarm activation	An alarm is activated despite the fact that sensor voltage has not been detected. If there is no issue with the wiring between the converter and the sensor I/F Ex box, replace the converter.		
LED is lit green: There is no alarm signal from the	If an alarm has been activated in this condition, check the resistance value on the alarm activation output terminal of the converter by following the steps below.		
sensor	1. Turn off the power supply to the alarm activation system.		
	2. Disconnect the alarm activation output line from the converter.		
	3. Check to ensure that the LED is continuously lit green.		
	4. Measure the resistance values between 1: COM and NO and 2. COM and NC. The converter is working properly if it is 1: 0Ω (short) and 2: at least several MΩ (open). If this is not the case, replace the converter.		
LED is not lit: The converter is not turned on	If rated voltage is present between the L and N terminals of the converter, replace the converter. If the voltage between the L and N terminals cannot be measured, check the power supply source or power supply cable.		

7.3.3 Cleaning the conductivity sensor unit

Normally, NAR300 checks the conduction state between the electrode tip and the float body; if there is conduction, it recognizes "water" and if there is no conduction, it recognizes "oil or air." Since the electrode holder is connected to the float body, it determines that "water" is present if a conduction state is established between the electrode tip and the holder. This prevents the alarm from being activated, resulting in a malfunction. Clean the area between the electrode tip and the holder regularly to maintain a non-conductive state.


Items to prepare

- Raq
- Neutral detergent

Cleaning procedure

- 1. Remove the NAR300 sensor from the pit.
- 2. Using a rag, clean from the electrode tip of the conductivity sensor (metal portion) to the electrode holder (metal portion) to remove any moss, algae, or dust that has become attached.
- 3. Clean the entire electrode unit using a properly diluted neutral detergent.

This completes the cleaning procedure.

■ 21 Sensor cleaning

- 1 Electrode holder
- 2 Electrode tip

7.4 Firmware history

Date	Software	Changes	Documentation		
	version		Specifications	Operating instructions	Technical information
11.2003	V1.40	Initial software	Standard	BA027N/08/ja/02.04	TI045N/08/ja/01.05
04.2015	V1.50	SIL2 obtained	High temperature	BA00403G08JA06.16	TI00457G08JA04.16

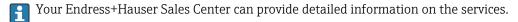
8 Maintenance

8.1 Maintenance work

No special maintenance work is required.

8.1.1 Exterior cleaning

When cleaning the exterior of measuring devices, always use cleaning agents that do not attack the surface of the housing or the seals.


8.1.2 Periodic maintenance

While the NAR300 float sensor is not easily affected by deposits or adhered material, conduct overall periodic inspections of the cable and wiring, etc., semi-annually along with an operation check as follows.

- Inspect and clean the sensor and the pit periodically as clogging caused by debris, foreign matter and algae may result in a malfunction. To clean the float sensor, wipe it with a soft cloth that has been soaked in water.
- Remove any accumulated debris, sand or snow on the float sensor periodically as they can lower the draft position and cause changes in sensitivity.
- Check operation after ensuring that the cables are not damaged and that there are no wiring issues (loose terminal screw, etc.).

8.2 Endress+Hauser services

Endress+Hauser offers a wide variety of services for maintenance such as recalibration, maintenance service or device tests.

9 Repair

9.1 General information on repairs

9.1.1 Repair concept

The Endress+Hauser repair concept assumes that the devices have a modular design and that repairs can be done by the Endress+Hauser Service Department or specially trained customers

Spare parts are contained in suitable kits. They also come with relevant replacement instructions.

For more information on service and spare parts, contact the Service Department at Endress+Hauser.

9.1.2 Repairs to Ex-approved devices

When carrying out repairs to Ex-approved devices, note the following:

- Repairs to Ex-approved devices may only be carried out by trained personnel or by the Endress+Hauser Service.
- Comply with the prevailing standards, national Ex-area regulations, Safety Instructions (XA) and certificates.
- Only use original spare parts from Endress+Hauser.
- When ordering a spare part, note the device designation on the nameplate. Only replace parts with identical parts.
- Carry out repairs according to the instructions. On completion of repairs, carry out the specified routine test on the device.
- Only Endress+Hauser Service may convert a certified device into a different certified variant.
- Document all repair work and conversions.

9.2 Spare parts

Some interchangeable device components are listed on an overview sign in the connection compartment cover.

The spare part overview sign contains the following information:

- A list of the most important spare parts for the device, including their ordering information
- The URL for the *W@M Device Viewer* (www.endress.com/deviceviewer):
 All the spare parts for the device, along with the order code, are listed here and can be ordered. If available, users can also download the associated Installation Instructions.

9.3 Endress+Hauser services

Endress+Hauser offers a wide range of services.

Your Endress+Hauser Sales Center can provide detailed information on the services.

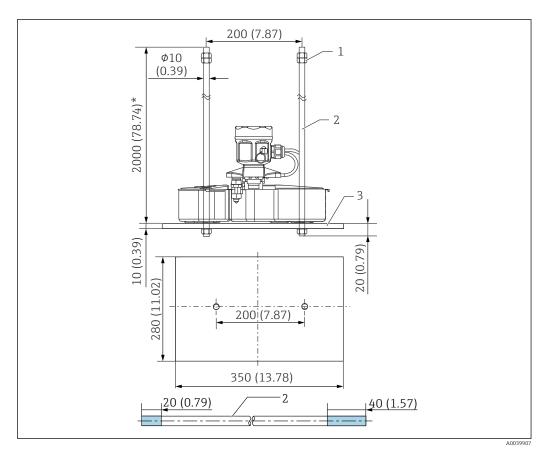
9.4 Return

The requirements for safe device return can vary depending on the device type and national legislation.

- 1. Refer to the website for more information: http://www.endress.com/support/return-material
- 2. Return the device if repairs or a factory calibration are required, or if the wrong device was ordered or delivered.

9.5 Disposal

Observe the following notes during disposal:


- Observe valid federal/national regulations.
- Ensure proper separation and reuse of the device components.

10 Accessories

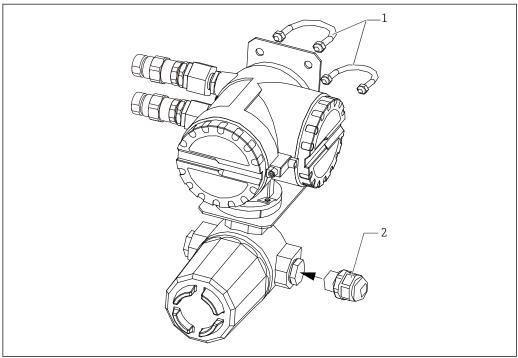
10.1 Float guide

NAR300 may be mounted on a float guide that has been installed for existing products (CFD10, CFD30, UFD10, NAR291, NAR292).

The float guide is $2\,000\,\text{mm}$ (78.74 in) in size. If a length shorter than $2\,000\,\text{mm}$ (78.74 in) is required for use, cut it to size. If a float guide longer than $2\,000\,\text{mm}$ (78.74 in) is required, contact your nearest Endress+Hauser service center or distributor.

■ 22 Float guide

- 1 Nut (M10)
- 2 Float guide
- 3 Weight


Name	Delivered quantity	Materials
Float guide	2	SUS304
Weight	1	SS400 or SUS304 options available for selection
Nut (M10)	6	SUS304

The 20 mm (0.73 in) and 40 mm (1.57 in) of the float guide in the diagram indicate the lengths of thread grooves.

10.2 U-bolt / cable gland (waterproof connection for JPNEx)

A U-bolt (JIS F3022 B50) is used when mounting a converter. Have a pipe with an internal diameter of 50A (2B ϕ 60.5 mm (198.5 in)) ready. Tighten and secure the cable gland after inserting the cable from NAR300.

The pressure-resistant packing cable gland is supplied for JPN Ex specifications only. Always use this cable gland.

■ 23 U-bolt / cable gland

- U-bolt (JIS F3022 B50)
- Cable gland (waterproof connection)

Name		Delivered quantity	Materials
U-bolt		2	Iron (chromate)
U-bolt accessory	Nut	4	
	Flat washer	4	
Cable gland (waterproof connection)		1	Nylon

Index

46

www.addresses.endress.com