# Technische Information iTHERM ModuLine TM411

Metrisches RTD-Thermometer mit oder ohne Schutzrohr für hygienische Anwendungen



### Metrische Version mit herausragender Sensortechnologie und einfachster Handhabung

#### Anwendungsbereiche

- Speziell entwickelt für den Einsatz in hygienischen und aseptischen Anwendungen der Lebensmittel-, Getränke- und pharmazeutischen Industrie
- Messbereich: -200 ... +600 °C (-328 ... +1112 °F)
- Druckbereich bis zu 50 bar (725 psi)
- Schutzklasse: bis IP69K

#### Kopftransmitter

Alle Endress+Hauser iTEMP-Transmitter bieten im Vergleich zu direkt verdrahteten Sensoren eine höhere Messgenauigkeit und Zuverlässigkeit. Ausgänge und Kommunikationsprotokoll:

- Analogausgang 4 ... 20 mA, HART, HART SIL, optional
- PROFIBUS PA, FOUNDATION Fieldbus
- PROFINET mit Ethernet-APL
- IO-Link

#### Vorteile auf einem Blick

- Optimale Prozesssteuerung: Schnelle Ansprechzeiten mit iTHERM QuickSens Technologie (t90s: 1,5 s)
- Bis zu 75% schnellere und sichere Rekalibrierungen mit iTHERM QuickNeck.
   Schnellverschluss für einen schnellen, werkzeuglosen Ausbau des Messeinsatzes
- Hohe Sensorverfügbarkeit unter rauen Bedingungen:
   Vibrationsbeständige RTD-Technologie iTHERM StrongSens (> 60g)
- Einfache Produktauswahl, Konfiguration und Instandhaltung
- Steigern Sie die Produktivität und Produktsicherheit in hygienischen Anwendungen mit hochgenauen und zuverlässigen Messungen
- Schutzrohre, hygienische Prozessanschlüsse und Gehäuse, fachgerecht produziert, aus hochwertigen Werkstoffen mit niedriger Oberflächenrauigkeit



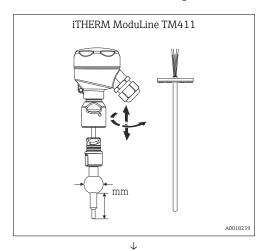
### Inhaltsverzeichnis

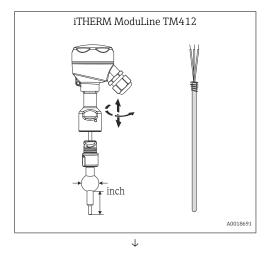
| Arbeitsweise und Systemaurbau               |
|---------------------------------------------|
| Hinweise zur Geräteauswahl                  |
| Messprinzip                                 |
| Messeinrichtung                             |
| Gerätearchitektur                           |
| Eingang                                     |
| Messgröße                                   |
| Messbereich                                 |
| Ausgang                                     |
| Ausgangssignal                              |
| Temperaturtransmitter - Produktserie        |
| F                                           |
| Energieversorgung 8                         |
| Anschlussplan für RTD                       |
| Überspannungsschutz                         |
| Leistungsmerkmale                           |
| Referenzbedingungen                         |
| Maximale Messabweichung                     |
| Einfluss Umgebungstemperatur 16             |
| Eigenerwärmung                              |
| Ansprechzeit                                |
| Kalibrierung                                |
| Isolationswiderstand                        |
| Montage                                     |
| Einbaulage                                  |
| Einbauhinweise                              |
| Y                                           |
| Umgebung                                    |
| Umgebungstemperaturbereich                  |
| Lagerungstemperatur                         |
| Relative Luftfeuchte                        |
| Klimaklasse                                 |
| Schutzart                                   |
| Stoß- und Schwingungsfestigkeit             |
| Elektromagnetische Verträglichkeit (EMV) 23 |
| Prozess                                     |
| Prozesstemperaturbereich                    |
| Thermischer Schock                          |
| Prozessdruckbereich 23                      |
| Aggregatzustand des Messstoffs 24           |
| Konstruktiver Aufbau                        |
| Bauform, Maße                               |
| Messeinsatz                                 |
| Gewicht                                     |
| Werkstoffe                                  |
| Oberflächenrauigkeit                        |
| Anschlussköpfe                              |
| Halsrohr                                    |
| Schutzrohr                                  |
|                                             |

| Zertifikate und Zulassungen  Lebensmittel-/produktberührte Materialien (FCM)  CRN-Zulassung  Oberflächenreinheit  Materialbeständigkeit | 52<br>53<br>53<br>53<br>53 |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Bestellinformationen                                                                                                                    | 53                         |
| Zubehör Gerätespezifisches Zubehör Servicespezifisches Zubehör Kommunikationsspezifisches Zubehör Onlinetools Systemkomponenten         | 54<br>54<br>56<br>57<br>57 |
| Ergänzende Dokumentation  Kurzanleitung (KA)  Betriebsanleitung (BA)  Sicherheitshinweise (XA)  Handbuch Funktionale Sicherheit (FY)    | <b>58</b> 58 58 58 58      |

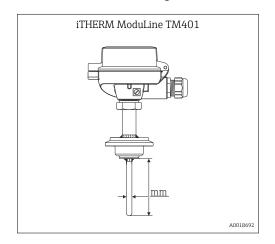
### Arbeitsweise und Systemaufbau

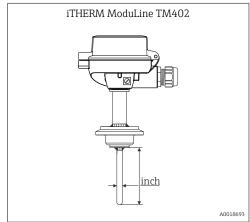
#### Hinweise zur Geräteauswahl


#### iTHERM ModuLine hygienisch


Dieses Gerät ist Teil der Produktfamilie Modulare Thermometer für hygienische und aseptische Anwendungen.

Unterscheidungsmerkmale zur passenden Geräteauswahl





iTHERM ModuLine TM41x steht für das Gerät in maximaler Ausführung, z. B. mit austauschbarem Messeinsatz, Halsrohr mit Schnellverschluss (iTHERM QuickNeck), vibrationsbeständige und schnellansprechende Sensortechnik iTHERM StrongSens und iTHERM QuickSens) sowie die Zulassung im Ex-Bereich.





iTHERM ModuLine TM4**0**x steht für das Gerät in Basis Ausführung, z. B. mit fest installiertem Messeinsatz, Anwendung im Ex-freien Bereich, Standard-Halsrohr, kostengünstig.





#### Messprinzip

#### Widerstandsthermometer (RTD)

Bei diesen Widerstandsthermometern kommt als Temperatursensor ein Pt100-Element gemäß IEC 60751 zum Einsatz. Es handelt sich dabei um einen temperaturempfindlichen Platinmesswiderstand mit einem Widerstandswert von 100  $\Omega$  bei 0 °C (32 °F) und einem Temperaturkoeffizienten  $\alpha$  = 0.003851 °C-1.

#### Es gibt zwei unterschiedliche Bauformen von Platinwiderstandsthermometern:

- Drahtwiderstände (WW): Hier befindet sich eine Doppelwicklung aus haarfeinem, hochreinem Platindraht in einem Keramikträger. Dieser Träger wird auf der Ober- und Unterseite mit einer Keramikschutzschicht versiegelt. Solche Widerstandsthermometer ermöglichen nicht nur Messungen, die in hohem Maße wiederholbar sind, sondern bieten auch eine gute Langzeitstabilität ihrer Widerstands-/Temperaturkennlinie in Temperaturbereichen bis zu 600 °C (1112 °F). Dieser Sensortyp ist in den Abmessungen relativ groß und vergleichsweise empfindlich gegen Vibrationen.
- Widerstandssensoren in Dünnschichtausführung (TF): Auf einem Keramiksubstrat wird im Vakuum eine sehr dünne hochreine Platinschicht von etwa 1 µm Dicke aufgedampft und anschließend fotolithografisch strukturiert. Die dabei entstehenden Platinleiterbahnen bilden den Messwiderstand. Zusätzlich aufgebrachte Abdeck- und Passivierungsschichten schützen die Platin-Dünnschicht zuverlässig vor Verunreinigungen und Oxidation selbst bei hohen Temperaturen.

Die Hauptvorteile der Dünnschicht-Temperatursensoren gegenüber drahtgewickelten Ausführungen liegen in ihren kleineren Abmessungen und der besseren Vibrationsfestigkeit. Bei TF-Sensoren ist bei höheren Temperaturen häufig eine relativ geringe, prinzipbedingte Abweichung ihrer Widerstands-/Temperaturkennlinie von der Standardkennlinie der IEC 60751 zu beobachten. Die engen Grenzwerte der Toleranzklasse A nach IEC 60751 können dadurch mit TF-Sensoren nur bei Temperaturen bis etwa 300 °C (572 °F) eingehalten werden.

#### Thermoelemente (TC)

Thermoelemente sind vergleichsweise einfache, robuste Temperatursensoren, bei denen der Seebeck-Effekt zur Temperaturmessung ausgenutzt wird: Verbindet man an einem Punkt zwei elektrische Leiter unterschiedlicher Materialien, ist bei Vorhandensein von Temperaturgradienten entlang dieser Leiter eine schwache elektrische Spannung zwischen den beiden noch offenen Leiterenden messbar. Diese Spannung wird Thermospannung oder auch elektromotorische Kraft (EMK, engl.: e.m.f.) genannt. Ihre Größe ist abhängig von der Art der Leitermaterialien sowie von der Temperaturdifferenz zwischen der "Messstelle" (der Verbindungsstelle beider Leiter) und der "Vergleichsstelle" (den offenen Leiterenden). Thermoelemente messen somit primär nur Temperaturdifferenzen. Die absolute Temperatur an der Messstelle kann daraus ermittelt werden, insofern die zugehörige Temperatur an der Vergleichsstelle bereits bekannt ist bzw. separat gemessen und kompensiert wird. Die Materialpaarungen und zugehörigen Thermospannung/Temperatur-Kennlinien der gebräuchlichsten Thermoelement-Typen sind in den Normen IEC 60584 bzw. ASTM E230/ANSI MC96.1 standardisiert.

#### Messeinrichtung

Endress+Hauser bietet zur Temperaturmessstelle ein komplettes Portfolio von optimal abgestimmten Komponenten – alles was zur perfekten Einbindung der Messstelle in die Gesamtanlage erforderlich ist. Dazu gehören:

- Speisegeräte/Trenner
- Anzeigegeräte
- Überspannungsschutz

Nähere Informationen hierzu siehe Broschüre 'Systemkomponenten - Lösungen zur Komplettierung der Messstelle' (FA00016K)



A0067137

- 🗷 1 Anwendungsbeispiel, Messstellenaufbau mit zusätzlichen Endress+Hauser Komponenten
- 1 Installiertes iTHERM-Kompaktthermometer mit HART-Kommunikationsprotokoll
- 2 Prozessanzeiger der RIA-Produktfamilie Der Prozessanzeiger wird in die Stromschleife eingebunden und zeigt das Messsignal oder die HART-Prozessvariablen in digitaler Form an. Der Prozessanzeiger erfordert keine externe Spannungsversorgung. Er wird direkt über die Stromschleife gespeist.
- 3 Speisetrenner der RN Series Der Speisetrenner (17,5 V<sub>DC</sub>, 20 mA) verfügt über einen galvanisch getrennten Ausgang zur Spannungsversorgung von 2-Leiter-Transmittern. Das Weitbereichsnetzteil arbeitet mit einer Netzspannung am Eingang von 24 bis 230 V AC/DC, 0/50/60 Hz, sodass der Einsatz in allen internationalen Netzen möglich ist.
- 4 Kommunikationsbeispiele: HART Communicator (Handbediengerät), FieldXpert, Commubox FXA195 für eigensichere HART-Kommunikation mit FieldCare über USB-Schnittstelle.
- 5 FieldCare ist ein FDT-basiertes Plant Asset Management Tool von Endress+Hauser, nähere Informationen hierzu unter "Zubehör".

#### Gerätearchitektur

| Aufbau         |                                                                            | Optionen, Auswahlmöglichkeiten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | 1: Anschluss-<br>kopf → 🖺 37                                               | <ul> <li>316L, niedriger Kopf, optional mit Displayfenster</li> <li>Aluminium, hoher oder niedriger Kopf, mit oder ohne Displayfenster</li> <li>Polypropylen, niedriger Kopf</li> <li>Polyamid, hoher Kopf, ohne Displayfenster</li> <li>Vorteile auf einem Blick:         <ul> <li>Optimale Zugänglichkeit der Klemmen durch niedrige Gehäusekante des Unterteils:</li> <li>Verbesserte Handhabung</li> <li>Geringere Installations- und Wartungskosten</li> <li>Optionales Display: Sicherheit durch vor Ort Prozessanzeige</li> <li>Schutzklasse IP69K: Optimaler Schutz auch bei Einsatz von</li> </ul> </li> </ul>                                                                                                                                                                                   |
|                | 2: Verdrahtung,<br>elektrischer<br>Anschluss, Aus-<br>gangssignal<br>→   7 | Hochdruckreinigern  Keramiksockel freie Ader Kopftransmitter (420 mA, HART, PROFIBUS PA, FOUNDATION Fieldbus, IO-Link), 1- oder 2-Kanal, PROFINET mit Ethernet-APL aufsteckbares Display (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3              | 3: Stecker oder<br>Kabelverschrau-<br>bung                                 | <ul> <li>Kabelverschraubungen aus Polyamid oder Messing</li> <li>M12-Stecker, 4-polig/8-polig: PROFIBUS PA, Ethernet-APL, IO-Link</li> <li>7/8"-Stecker: PROFIBUS PA, FOUNDATION™ Fieldbus</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5              | 4: Halsrohr<br>→ 🖺 40                                                      | Fest verschweißt oder abnehmbar entweder mit Schnellverschluss (iTHERM QuickNeck) oder Überwurfmutter G3/8"  Vorteile auf einen Blick:  iTHERM QuickNeck: Werkzeugloser Ausbau des Messeinsatzes:  Zeit-/Kosteneinsparung bei häufig zu kalibrierenden Messstellen  Vermeidung von Verdrahtungsfehlern  Schutzklasse IP69K: Sicherheit unter extremen Prozessbedingungen                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6              | 5: Prozessan-<br>schluss<br>→ 🖺 42                                         | Mehr als 50 verschiedene Varianten.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | 6: Schutzrohr<br>→ 🖺 42                                                    | <ul> <li>Varianten mit und ohne Schutzrohr (Messeinsatz direkt prozessberührend).</li> <li>Verschiedene Durchmesser</li> <li>Verschiedene Spitzenformen (gerade oder reduziert)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7a 7b A0017758 | 7: Messeinsatz → 🖺 36 mit: 7a: iTHERM QuickSens 7b: iTHERM StrongSens      | Sensorbauformen: Drahtgewickelt (WW) oder Dünnschichtsensor (TF).  Vorteile auf einen Blick:  ITHERM QuickSens - Messeinsatz mit den weltweit kürzesten Ansprechzeiten:  Messeinsatz: Ø3 mm (1/8 in) oder Ø6 mm (1/4 in)  Schnelle, hochpräzise Messungen, dadurch maximale Prozesssicherheit und -kontrolle  Qualitäts- und Kostenoptimierung  Minimierung der erforderlichen Eintauchlänge: Produktschonung durch verbesserten Prozessfluss  ITHERM StrongSens - Messeinsatz mit unübertroffener Robustheit:  Vibrationsfestigkeit > 60g: geringere Lebenszykluskosten durch längere Lebensdauer sowie hohe Anlagenverfügbarkeit  Automatisierte, rückverfolgbare Produktion: Beste Qualität und höchste Prozesssicherheit  Hohe Langzeitstabilität: Verlässliche Messwerte sowie hohe Systemsicherheit |

### Eingang

#### Messgröße

Temperatur (temperaturlineares Übertragungsverhalten)

#### Messbereich

Abhängig vom verwendeten Sensortyp

| Sensortyp                                                     | Messbereich                  |
|---------------------------------------------------------------|------------------------------|
| Pt100 Dünnschicht                                             | −50 +400 °C (−58 +752 °F)    |
| Pt100 Dünnschicht, iTHERM<br>StrongSens, vibrationsfest > 60g | −50 +500 °C (−58 +932 °F)    |
| Pt100 Dünnschicht, iTHERM Quick-<br>Sens, schnellansprechend  | −50 +200 °C (−58 +392 °F)    |
| Pt100 Drahtgewickelt, erweiterter<br>Messbereich              | −200 +600 °C (−328 +1112 °F) |

### Ausgang

#### Ausgangssignal

Grundsätzlich bestehen zwei Möglichkeiten zur Messwertübertragung:

- Direkt verdrahtete Sensoren: Weiterleitung der Sensor-Messwerte ohne Transmitter.
- Durch Auswahl entsprechender Endress+Hauser iTEMP-Temperaturtransmitter über alle gängigen Protokolle. Alle folgend aufgeführten Transmitter werden direkt im Anschlusskopf montiert und mit der Sensorik verdrahtet.

### Temperaturtransmitter - Produktserie

Thermometer mit iTEMP-Transmittern sind anschlussbereite Komplettgeräte zur Verbesserung der Temperaturmessung, indem sie - im Vergleich zu direkt verdrahteten Sensoren - Messgenauigkeit und Zuverlässigkeit beträchtlich erhöhen sowie Verdrahtungs- und Wartungskosten reduzieren.

#### 4-20 mA-Kopftransmitter

Sie bieten ein hohes Maß an Flexibilität und unterstützen dadurch einen universellen Einsatz bei geringer Lagerhaltung. Die iTEMP-Transmitter lassen sich schnell und einfach am PC konfigurieren. Endress+Hauser bietet kostenlose Konfigurationssoftware an, die auf der Endress+Hauser Website zum Download zur Verfügung steht.

#### **HART-Kopftransmitter**

Der iTEMP-Transmitter ist ein 2-Leiter-Gerät mit einem oder zwei Messeingängen und einem Analogausgang. Das Gerät überträgt sowohl gewandelte Signale von Widerstandsthermometern und Thermoelementen als auch Widerstands- und Spannungssignale über die HART-Kommunikation. Schnelle und einfache Bedienung, Visualisierung und Instandhaltung unter Verwendung universaler Konfigurationssoftware wie FieldCare, DeviceCare oder FieldCommunicator 375/475. Integrierte Bluetooth®-Schnittstelle zur drahtlosen Anzeige von Messwerten und Parametrierung über Endress+Hauser SmartBlue-App, optional.

#### PROFIBUS PA Kopftransmitter

Universell programmierbarer iTEMP-Transmitter mit PROFIBUS PA-Kommunikation. Umformung von verschiedenen Eingangssignalen in digitale Ausgangssignale. Hohe Messgenauigkeit über den gesamten Umgebungstemperaturbereich. Die Konfiguration der PROFIBUS PA Funktionen und gerätespezifischer Parameter wird über die Feldbus-Kommunikation ausgeführt.

#### FOUNDATION Fieldbus™ Kopftransmitter

Universell programmierbarer iTEMP-Transmitter mit FOUNDATION Fieldbus™-Kommunikation. Umformung von verschiedenen Eingangssignalen in digitale Ausgangssignale. Hohe Messgenauigkeit über den gesamten Umgebungstemperaturbereich. Alle iTEMP-Transmitter sind für die Verwendung in allen wichtigen Prozessleitsystemen freigegeben. Die Integrationstest werden in der 'System World' von Endress+Hauser durchgeführt.

#### Kopftransmitter mit PROFINET und Ethernet-APL™

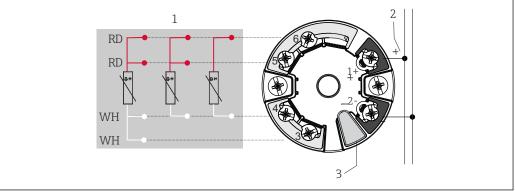
Der iTEMP-Transmitter ist ein 2-Leiter-Gerät mit zwei Messeingängen. Das Gerät überträgt sowohl gewandelte Signale von Widerstandsthermometern und Thermoelementen als auch Widerstandsund Spannungssignale über das PROFINET Protokoll. Die Speisung erfolgt über den 2- Leiter Ethernet Anschluss nach IEEE 802.3cg 10Base-T1. Der iTEMP-Transmitter kann als eigensicheres Betriebsmittel in der Zone 1 explosionsgefährdeter Bereiche installiert werden. Das Gerät dient zur Instrumentierung im Anschlusskopf Form B nach DIN EN 50446.

#### Kopftransmitter mit IO-Link

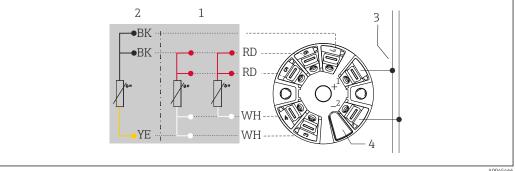
Der iTEMP-Transmitter ist ein IO-Link Gerät mit einem Messeingang und einer IO-Link Schnittstelle. Konfigurierbare, einfache und kosteneffiziente Lösung durch digitale Kommunikation über IO-Link. Die Montage erfolgt in einem Anschlusskopf Form B nach DIN EN 5044.

#### Vorteile der iTEMP-Transmitter:

- Dualer oder einfacher Sensoreingang (optional für bestimmte Transmitter)
- Aufsteckbares Display (optional f
  ür bestimmte Transmitter)
- Höchste Zuverlässigkeit, Genauigkeit und Langzeitstabilität bei kritischen Prozessen
- Mathematische Funktionen
- Überwachung der Thermometerdrift, Backup-Funktionalität des Sensors, Diagnosefunktionen des Sensors
- Sensor-Transmitter-Matching basierend auf den Callendar-Van-Dusen-Koeffizienten (CvD).


### Energieversorgung



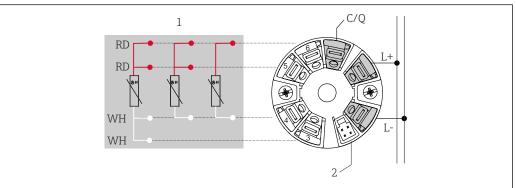

- Elektrische Anschlussleitungen müssen nach 3-A Sanitary Standard und EHEDG glatt, korrosionsbeständig und einfach zu reinigen sein.
- Erdungs- bzw. Schirmungsanschlüsse sind über spezielle Erdungsklemmen am Anschlusskopf möglich. → 🖺 37

#### Anschlussplan für RTD

Typ des Sensoranschlusses



- **₽** 2 *Im Anschlusskopf montierter Transmitter iTEMP TMT7x oder TMT31 (ein Sensoreingang)*
- Sensoreingang, RTD und  $\Omega$ : 4-, 3- und 2-Leiter 1
- Spannungsversorgung oder Feldbusanschluss
- Display-Anschluss/CDI-Schnittstelle




- ₩ 3 *Im Anschlusskopf montierter Transmitter iTEMP TMT8x (doppelter Sensoreingang)*
- Sensoreingang 1, RTD: 4-, und 3-Leiter
- Sensoreingang 2, RTD: 3-Leiter 2
- 3 Spannungsversorgung oder Feldbusanschluss
- Display-Anschluss



Montierter Anschlusssockel

- 1 3-Leiter einfach
- 2 2 x 3-Leiter einfach
- 3 4-Leiter einfach
- 4 Außenschraube



A005249

- 5 Im Anschlusskopf montierter Transmitter iTEMP TMT36 (ein Sensoreingang)
- 1 Sensoreingang RTD: 4-, 3- und 2-Leiter
- 2 Display-Anschluss
- L+ Spannungsversorgung 18 ... 30  $V_{DC}$
- L- Spannungsversorgung 0  $V_{DC}$
- C/Q IO-Link oder Schaltausgang

#### Klemmen

Ausstattung der iTEMP-Kopftransmitter mit Push-in-Klemmen, wenn nicht explizit Schraubklemmen angewählt werden oder ein Doppel-Sensor eingebaut ist.

#### Kabeleinführungen

Die Kabeleinführungen müssen während der Konfiguration des Gerätes ausgewählt werden. Unterschiedliche Anschlussköpfe bieten unterschiedliche Möglichkeiten betreffend Gewinde und die Anzahl der verfügbaren Kabeleinführungen.

#### Gerätestecker

Der Hersteller bietet verschiedene Gerätestecker für eine einfache und schnelle Einbindung des Thermometers in ein Prozessleitsystem. Die folgenden Tabellen zeigen die PIN-Belegungen der verschiedenen Stecker-Anschluss-Kombinationen.



Der Hersteller rät davon ab, Thermoelemente direkt an die Steckverbinder anzuschließen. Durch den direkten Anschluss der Steckerkontakte kann ein "neues Thermoelement" entstehen, das die Genauigkeit der Messung beeinflusst. Die Thermoelemente werden in Kombination mit einem iTEMP-Transmitter angeschlossen.

#### Abkürzungen

| #1 | Reihenfolge: Erster Transmitter/Messeinsatz                                                              | #2 | Reihenfolge: Zweiter<br>Transmitter/Messeinsatz |
|----|----------------------------------------------------------------------------------------------------------|----|-------------------------------------------------|
| i  | Isoliert. Mit 'i' markierte Leitungen sind nicht ange-<br>schlossen und mit Schrumpfschläuchen isoliert. | YE | Gelb                                            |

| GND  | Geerdet. Mit "GND" markierte Leitungen sind an die<br>interne Erdungsschraube im Anschlusskopf ange-<br>schlossen. | RD | Rot     |
|------|--------------------------------------------------------------------------------------------------------------------|----|---------|
| BN   | Braun                                                                                                              | WH | Weiß    |
| GNYE | Grün-Gelb                                                                                                          | PK | Rosa    |
| BU   | Blau                                                                                                               | GN | Grün    |
| GY   | Grau                                                                                                               | BK | Schwarz |

### Anschlusskopf mit einer Kabeleinführung $^{1)}$

| Stecker                                                             |                         | 1x PROFIBUS PA                       |                              |           |            |            |                              |           | 1x FOUNDATION™ Fieldbus<br>(FF)                   |            |                              |             | 1x PROFINET und Ethernet-<br>APL™ |                     |                         |                |  |  |
|---------------------------------------------------------------------|-------------------------|--------------------------------------|------------------------------|-----------|------------|------------|------------------------------|-----------|---------------------------------------------------|------------|------------------------------|-------------|-----------------------------------|---------------------|-------------------------|----------------|--|--|
| Gewinde-Stecker                                                     |                         | M                                    | L2                           |           |            | 7/8" 7/8"  |                              |           |                                                   |            |                              |             |                                   | M12                 |                         |                |  |  |
| PIN-Nummer                                                          | 1                       | 2                                    | 3                            | 4         | 1          | 2          | 3                            | 4         | 1                                                 | 2          | 3                            | 4           | 1                                 | 2                   | 3                       | 4              |  |  |
| Elektrischer Anschlus                                               | s (Anscl                | ılusskoj                             | pf)                          |           |            |            |                              |           |                                                   |            |                              |             |                                   |                     |                         |                |  |  |
| Freie Anschlussdrähte<br>und TC                                     |                         | Nicht angeschlossen (nicht isoliert) |                              |           |            |            |                              |           |                                                   |            |                              |             |                                   |                     |                         |                |  |  |
| Anschlussklemmen-<br>block 3-Leiter (1x<br>Pt100)                   | RD                      | RD                                   | W                            | Н         | RD         | RD RD      |                              | 'H        | - RD                                              |            |                              | 7H          |                                   |                     |                         | kombi-<br>rbar |  |  |
| Anschlussklemmen-<br>block 4-Leiter (1x<br>Pt100)                   | , KD                    | , KD                                 | WH                           | WH        | , KD       | KD         | WH                           | WH        | , KD                                              | , KD       | RD WH                        |             | Nicht kombi-<br>nierbar           |                     | Nicht kombi-<br>nierbar |                |  |  |
| Anschlussklemmen-<br>block 6-Leiter (2x<br>Pt100)                   | RD<br>(#1) <sup>2</sup> | RD<br>(#1)                           | WH                           | (#1)      | RD<br>(#1) | RD<br>(#1) | WH                           | (#1)      | RD<br>(#1)                                        | RD<br>(#1) | WH (#1)                      |             | WH (#1)                           |                     |                         |                |  |  |
| 1x TMT 420 mA<br>oder HART®                                         | +                       | i                                    | -                            | i         | +          | i          | -                            | i         | +                                                 | i          | -                            | i           |                                   |                     |                         |                |  |  |
| 2x TMT 420 mA<br>oder HART® im<br>Anschlusskopf mit<br>hohem Deckel | +(#1)                   | +(#2)                                | -(#1)                        | -<br>(#2) | +(#1)      | +(#2)      | -(#1)                        | -<br>(#2) | +(#1)                                             | +(#2)      | Nicht kombinierbar           |             |                                   |                     | ar                      |                |  |  |
| 1x TMT PROFIBUS®<br>PA                                              | +                       |                                      | -                            | GND       | +          |            | -                            | GND       |                                                   |            | I.                           | i alat Iran | a h i m i a u h .                 |                     |                         |                |  |  |
| 2x TMT PROFIBUS®<br>PA                                              | +(#1)                   | i                                    | -(#1)                        | 3)        | +          | i          | -                            | 3)        |                                                   |            | IN                           | icht kon    | nbinierba                         | ar                  |                         |                |  |  |
| 1x TMT FF                                                           |                         |                                      |                              |           |            | •          |                              |           | -                                                 | +          | GND                          | i           | N.                                | icht kon            | a h i sa i a uh         |                |  |  |
| 2x TMT FF                                                           |                         |                                      |                              |           |            |            |                              |           | -(#1)                                             | +(#1)      | GIND                         | 1           | IN                                | icht kon            | ıbiiileib               | ai             |  |  |
| 1x TMT PROFINET®                                                    | Ni                      | cht kom                              | binierba                     | ır        | Ni         | icht kom   | ıbinierba                    | ar        |                                                   |            |                              |             | APL-<br>Signal<br>-               | APL-<br>Signal<br>+ |                         |                |  |  |
| 2x TMT PROFINET®                                                    |                         |                                      |                              |           |            |            |                              |           | Nicht kombinierbar  APL- Signal - (#1)  APL- (#1) |            |                              |             | GND                               | -                   |                         |                |  |  |
| PIN-Position und<br>Farbcode                                        | 4                       | 3                                    | 1 BN<br>2 GN<br>3 BU<br>4 GY |           | 1          | 3          | 1 BN<br>2 GN<br>3 BU<br>4 GY | IYE       | 1                                                 | 3          | 1 BU<br>2 BN<br>3 GY<br>4 GN | 7           | 4                                 |                     | 1 R<br>2 G              |                |  |  |

- 1)
- Auswahl abhängig von Produkt und Konfiguration Zweiter Pt100 ist nicht angeschlossen Bei Verwendung eines Kopfes ohne Erdungsschraube, z. B. Kunststoffgehäuse TA30S oder TA30P isoliert "i" statt geerdet GND 2) 3)

### Anschlusskopf mit einer Kabeleinführung 1)

| Stecker                                                       |                                                                                                 | 4-polig/8-polig    |       |             |            |    |       |          |  |  |  |
|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------|-------|-------------|------------|----|-------|----------|--|--|--|
| Gewinde-Stecker                                               |                                                                                                 | M12                |       |             |            |    |       |          |  |  |  |
| PIN-Nummer                                                    | 1                                                                                               | 2                  | 3     | 4           | 5          | 6  | 7     | 8        |  |  |  |
| Elektrischer Anschluss (Anschlusskopf)                        |                                                                                                 |                    |       |             |            |    |       |          |  |  |  |
| Freie Anschlussdrähte und TC                                  | Nicht angeschlossen (nicht isoliert)                                                            |                    |       |             |            |    |       |          |  |  |  |
| Anschlussklemmenblock 3-Leiter (1x Pt100)                     |                                                                                                 |                    | W     | /H          |            |    |       |          |  |  |  |
| Anschlussklemmenblock 4-Leiter (1x<br>Pt100)                  | RD                                                                                              | RD                 | WH    | WH          |            |    | i     |          |  |  |  |
| Anschlussklemmenblock 6-Leiter (2x<br>Pt100)                  |                                                                                                 |                    | WH    |             | BK         | BK | 7     | Æ        |  |  |  |
| 1x TMT 420 mA oder HART®                                      |                                                                                                 |                    |       |             |            |    | i     |          |  |  |  |
| 2x TMT 420 mA oder HART® im<br>Anschlusskopf mit hohem Deckel | +(#1)                                                                                           | i                  | -(#1) | i           | +(#2)      | i  | -(#2) | i        |  |  |  |
| 1x TMT PROFIBUS® PA                                           |                                                                                                 | 1                  |       | Nicht leav  | nbinierbar |    | 1     |          |  |  |  |
| 2x TMT PROFIBUS® PA                                           |                                                                                                 |                    |       | INICIIL KOI | nomeroar   |    |       |          |  |  |  |
| 1x TMT FF                                                     |                                                                                                 |                    |       | Night kon   | nbinierbar |    |       |          |  |  |  |
| 2x TMT FF                                                     |                                                                                                 |                    |       | INICIII KOI | Hommerbar  |    |       |          |  |  |  |
| 1x TMT PROFINET®                                              |                                                                                                 |                    |       | Nicht kon   | nbinierbar |    |       |          |  |  |  |
| 2x TMT PROFINET®                                              |                                                                                                 | Nicht kombinierbar |       |             |            |    |       |          |  |  |  |
| PIN-Position und Farbcode                                     | 3 1 BN<br>2 GNYE<br>3 BU<br>1 2 4 GY<br>A0018929<br>3 GN 2 BN<br>4 YE 1 WH<br>8 RD<br>5 GY 6 PK |                    |       |             |            |    |       | A0018927 |  |  |  |

#### 1) Auswahl abhängig von Produkt und Konfiguration

### Anschlusskopf mit einer Kabeleinführung

| Stecker                                                    |                    | 1x IO-Lin         | k, 4-polig           |    |  |  |  |  |  |  |
|------------------------------------------------------------|--------------------|-------------------|----------------------|----|--|--|--|--|--|--|
| Gewinde-Stecker                                            | M12                |                   |                      |    |  |  |  |  |  |  |
| PIN-Nummer                                                 | 1                  | 2                 | 3                    | 4  |  |  |  |  |  |  |
| Elektrischer Anschluss (Anschlusskopf)                     |                    |                   |                      |    |  |  |  |  |  |  |
| Freie Anschlussdrähte                                      |                    | Nicht angeschloss | sen (nicht isoliert) |    |  |  |  |  |  |  |
| Anschlussklemmenblock 3-Leiter (1x Pt100)                  | RD                 | i                 | RD                   | WH |  |  |  |  |  |  |
| Anschlussklemmenblock 4-Leiter (1x Pt100)                  |                    | Nicht kon         | nbinierbar           |    |  |  |  |  |  |  |
| Anschlussklemmenblock 6-Leiter (2x Pt100)                  |                    |                   |                      |    |  |  |  |  |  |  |
| 1x TMT 420 mA oder HART                                    |                    |                   |                      |    |  |  |  |  |  |  |
| 2x TMT 420 mA oder HART im Anschlusskopf mit hohem  Deckel |                    | Nicht kon         | nbinierbar           |    |  |  |  |  |  |  |
| 1x TMT PROFIBUS PA                                         | Nicht kombinierbar |                   |                      |    |  |  |  |  |  |  |
| 2x TMT PROFIBUS PA                                         | Nicht Rombinierbar |                   |                      |    |  |  |  |  |  |  |
| 1x TMT FF                                                  | W. L. L            |                   |                      |    |  |  |  |  |  |  |
| 2x TMT FF                                                  | Nicht kombinierbar |                   |                      |    |  |  |  |  |  |  |
| 1x TMT PROFINET                                            |                    | Nicht kon         | nbinierbar           |    |  |  |  |  |  |  |

| Stecker                   | 1x IO-Link, 4-polig |                                         |                      |          |  |  |  |  |
|---------------------------|---------------------|-----------------------------------------|----------------------|----------|--|--|--|--|
| 2x TMT PROFINET           |                     |                                         |                      |          |  |  |  |  |
| 1x TMT IO-Link            | L+                  | -                                       | L-                   | C/Q      |  |  |  |  |
| 2x TMT IO-Link            | L+ (#1)             | -                                       | L- (#1)              | C/Q      |  |  |  |  |
| PIN-Position und Farbcode |                     | 4 • • • • • • • • • • • • • • • • • • • | 1 BN<br>3 BU<br>4 BK | 4005500  |  |  |  |  |
|                           |                     |                                         |                      | A0055383 |  |  |  |  |

| Anschlusskopf mit zwei Ka                                        | beleinf                 | ührung                                              | jen <sup>1)</sup>   |             |                         |           |                     |             |                                      |           |                     |      |                                    |              |                     |     |
|------------------------------------------------------------------|-------------------------|-----------------------------------------------------|---------------------|-------------|-------------------------|-----------|---------------------|-------------|--------------------------------------|-----------|---------------------|------|------------------------------------|--------------|---------------------|-----|
| Stecker                                                          |                         | 2x PROF                                             |                     |             |                         | IBUS PA   |                     |             | 2x FOUNDATION™ Field-<br>bus (FF)    |           |                     |      | 2x PROFINET und Ether-<br>net-APL™ |              |                     |     |
| Gewinde-Stecker                                                  |                         |                                                     |                     |             |                         |           |                     |             |                                      |           |                     |      |                                    |              |                     |     |
| #1 #2                                                            | M                       | M12(#1)/M12(#2) 7/8"(#1)/7/8"(#2) 7/8"(#1)/7/8"(#2) |                     |             |                         | 2)        | M12 (#1)/M12 (#2)   |             |                                      |           |                     |      |                                    |              |                     |     |
| PIN-Nummer                                                       | 1                       | 2                                                   | 3                   | 4           | 1                       | 2         | 3                   | 4           | 1                                    | 2         | 3                   | 4    | 1                                  | 2            | 3                   | 4   |
| Elektrischer Anschluss (An                                       | schluss                 | kopf)                                               |                     |             |                         |           |                     |             |                                      |           |                     |      |                                    |              |                     |     |
| Freie Anschlussdrähte und<br>TC                                  |                         |                                                     |                     |             |                         | Ni        | icht ang            | eschlos     | sen (nic                             | ht isolie | ert)                |      |                                    |              |                     |     |
| Anschlussklemmenblock 3-<br>Leiter (1x Pt100)                    | DD /:                   | DD /:                                               | W                   | H/i         | DD /:                   | DD /:     | W                   | H/i         | DD /i                                | DD /:     | W                   | H/i  |                                    |              |                     |     |
| Anschlussklemmenblock 4-<br>Leiter (1x Pt100)                    | - RD/i                  | RD/i                                                | WH/i                | WH/i        | RD/i                    | RD/i      | WH/i                | WH/i        | RD/i                                 | RD/i      | WH/i                | WH/i | Nicht kombi-<br>nierbar            |              | WH/i                |     |
| Anschlussklemmenblock 6-<br>Leiter (2x Pt100)                    | RD/B<br>K               | RD/B<br>K                                           | WE                  | I/YE        | RD/B<br>K               | RD/B<br>K | WH                  | I/YE        | RD/B<br>K                            | RD/B<br>K | WH                  | I/YE |                                    |              |                     |     |
| 1x TMT 420 mA oder<br>HART®                                      | +/i                     |                                                     | -/i                 |             | +/i                     |           | -/i                 |             | +/i                                  |           | -/i                 |      | +/i                                |              | -/i                 |     |
| 2x TMT 420 mA oder<br>HART® im Anschlusskopf<br>mit hohem Deckel | +<br>(#1)/<br>+<br>(#2) | i/i                                                 | -<br>(#1)/<br>-(#2) | i/i         | +<br>(#1)/<br>+<br>(#2) | i/i       | -<br>(#1)/<br>-(#2) | i/i         | +<br>(#1)/<br>+<br>(#2)              | i/i       | -<br>(#1)/<br>-(#2) | i/i  | +<br>(#1)/<br>+(#2)                | i/i          | -<br>(#1)/<br>-(#2) | i/i |
| 1x TMT PROFIBUS® PA                                              | +/i                     |                                                     | -/i                 |             | +/i                     |           | -/i                 |             |                                      |           |                     |      |                                    |              |                     |     |
| 2x TMT PROFIBUS® PA                                              | +<br>(#1)/<br>+<br>(#2) |                                                     | -<br>(#1)/<br>-(#2) | GND/<br>GND | +<br>(#1)/<br>+<br>(#2) |           | -<br>(#1)/<br>-(#2) | GND/<br>GND | Nicht kombinierbar                   |           |                     |      |                                    |              |                     |     |
| 1x TMT FF                                                        |                         |                                                     | ,                   |             |                         |           |                     |             | -/i +/i                              |           |                     |      |                                    |              |                     |     |
| 2x TMT FF                                                        | N                       | icht kon                                            | nbiniert            | oar         | N                       | icht kon  | nbinierb            | oar         | - (#1)/ + i/i GND/ Nicht kombinierba |           |                     | ar   |                                    |              |                     |     |
| 1x TMT PROFINET®                                                 | N                       | icht kon                                            | nbinierb            | oar         | N                       | icht kon  | nbinierb            | ar          | Ni                                   | icht kon  | nbinierb            | ar   | APL-<br>Signal                     | APL-<br>Sig- | GND                 | i   |

| Stecker                   | 2x PROF                     | TIBUS PA                           | 2x FOUNDATION™ Field-<br>bus (FF)  | 2x PROFINET und Ether-<br>net-APL™                                                      |
|---------------------------|-----------------------------|------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------|
| 2x TMT PROFINET®          | Nicht kombinierbar          | Nicht kombinierbar                 | Nicht kombinierbar                 | APL-<br>Signal<br>- (#1)<br>und<br>(#2)<br>APL-<br>Sig-<br>nal +<br>(#1)<br>und<br>(#2) |
| PIN-Position und Farbcode | 3 1 BN 2 GNYE 3 BU 1 2 4 GY | 1 BN<br>2 GNYE<br>3 BU<br>2 4 4 GY | 1 BU<br>2 BN<br>3 GY<br>2 4 4 GNYE | 4 3 1 RD 2 GN                                                                           |

#### 1) Auswahl abhängig von Produkt und Konfiguration

### Anschlusskopf mit zwei Kabeleinführungen 1)

| Stecker                                                          |              | 4-polig/8-polig    |                                |               |                  |                             |                              |          |     |  |  |
|------------------------------------------------------------------|--------------|--------------------|--------------------------------|---------------|------------------|-----------------------------|------------------------------|----------|-----|--|--|
| Gewinde-Stecker                                                  |              |                    |                                |               |                  |                             |                              |          |     |  |  |
| #1                                                               |              | M12 (#1)/M12 (#2)  |                                |               |                  |                             |                              |          |     |  |  |
| A0021706                                                         | 1            |                    |                                | ,             |                  |                             | 7                            |          |     |  |  |
| PIN-Nummer                                                       | 1            | 2                  | 3                              | 4             | 5                | 6                           | 7                            | 8        |     |  |  |
| Elektrischer Anschluss (Ans                                      | schlusskopf) |                    |                                |               |                  |                             |                              |          |     |  |  |
| Freie Anschlussdrähte und<br>TC                                  |              |                    | Nicht a                        | angeschlossen | (nicht isoliert) |                             |                              |          |     |  |  |
| Anschlussklemmenblock 3-<br>Leiter (1x Pt100)                    | RD/i         | RD/i               | W                              | H/i           |                  |                             |                              |          |     |  |  |
| Anschlussklemmenblock 4-<br>Leiter (1x Pt100)                    | RD/I         | KD/I               | WH/i                           | WH/i          |                  |                             |                              |          |     |  |  |
| Anschlussklemmenblock 6-<br>Leiter (2x Pt100)                    | RD/BK        | RD/BK              | WH                             | /YE           | i/i              |                             |                              |          | i/i |  |  |
| 1x TMT 420 mA oder<br>HART®                                      | +/i          |                    | -/i                            |               |                  |                             |                              |          |     |  |  |
| 2x TMT 420 mA oder<br>HART® im Anschlusskopf<br>mit hohem Deckel | +(#1)/+(#2)  | i/i                | -(#1)/-(#2)                    | i/i           |                  |                             |                              |          |     |  |  |
| 1x TMT PROFIBUS® PA                                              |              |                    |                                | Nicht kombir  | viorbor          |                             |                              |          |     |  |  |
| 2x TMT PROFIBUS® PA                                              |              |                    |                                | MICHE KOHIDH  | lierbar          |                             |                              |          |     |  |  |
| 1x TMT FF                                                        |              |                    |                                | Nicht kombir  | niorhar          |                             |                              |          |     |  |  |
| 2x TMT FF                                                        |              | Nicht kombinierbar |                                |               |                  |                             |                              |          |     |  |  |
| 1x TMT PROFINET®                                                 |              | Nicht kombinierbar |                                |               |                  |                             |                              |          |     |  |  |
| 2x TMT PROFINET®                                                 |              | Nicht kombinierbar |                                |               |                  |                             |                              |          |     |  |  |
| PIN-Position und Farbcode                                        |              | 4 3                | 1 BN<br>2 GNYE<br>3 BU<br>4 GY | A0018929      |                  | 3 GN<br>4 YE<br>5 GY<br>6 F | 2 BN<br>1 WH<br>8 RD<br>7 BU | A0018927 |     |  |  |

#### 1) Auswahl abhängig von Produkt und Konfiguration

### Anschlusskopf mit zwei Kabeleinführungen

| Stecker                                                   | 2x IO-Link, 4-polig |                   |                        |          |  |  |  |
|-----------------------------------------------------------|---------------------|-------------------|------------------------|----------|--|--|--|
| Gewinde-Stecker                                           |                     | M12(#1)/ M12 (#2) |                        |          |  |  |  |
| PIN-Nummer                                                | 1                   | 2                 | 3                      | 4        |  |  |  |
| Elektrischer Anschluss (Anschlusskopf)                    |                     |                   |                        |          |  |  |  |
| Freie Anschlussdrähte                                     |                     | nicht angeschlo   | ssen (nicht isoliert)  |          |  |  |  |
| Anschlussklemmenblock 3-Leiter (1x Pt100)                 | RD                  | i                 | RD                     | WH       |  |  |  |
| Anschlussklemmenblock 4-Leiter (1x Pt100)                 |                     | nicht ko          | mbinierbar             |          |  |  |  |
| Anschlussklemmenblock 6-Leiter (2x Pt100)                 | RD/BK               | i                 | RD/BK                  | WH/YE    |  |  |  |
| 1x TMT 420 mA oder HART                                   |                     |                   |                        |          |  |  |  |
| 2x TMT 420 mA oder HART im Anschlusskopf mit hohem Deckel | nicht kombinierbar  |                   |                        |          |  |  |  |
| 1x TMT PROFIBUS PA                                        | nicht kombinierbar  |                   |                        |          |  |  |  |
| 2x TMT PROFIBUS PA                                        | nicht kombinierbar  |                   |                        |          |  |  |  |
| 1x TMT FF                                                 |                     | nicht ko          | mbinierbar             |          |  |  |  |
| 2x TMT FF                                                 |                     | HICH KO           | illollilerdar          |          |  |  |  |
| 1x TMT PROFINET                                           |                     | nicht ko          | mbinierbar             |          |  |  |  |
| 2x TMT PROFINET                                           |                     | HICH KO           | momeroar               |          |  |  |  |
| 1x TMT IO-Link                                            | L+ - L- C.          |                   |                        | C/Q      |  |  |  |
| 2x TMT IO-Link                                            | L+ (#1) und (#2)    | -                 | L- (#1) und (#2)       | C/Q      |  |  |  |
| PIN-Position und Farbcode                                 |                     | 4                 | 3 1 BN<br>3 BU<br>4 BK | A0055383 |  |  |  |

### $Anschlusskombination\ Messeinsatz\ -\ Transmitter\ ^{1)}$

|                                                                      | Transmitteranschluss <sup>2)</sup>                       |                                                                               |                                                                      |                                                                                                               |  |  |  |
|----------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|--|
| Messeinsatz                                                          | Messeinsatz iTEMP TMT31/iTEMP TMT7x                      |                                                                               | iTEMP TMT8x                                                          |                                                                                                               |  |  |  |
|                                                                      | 1x 1-Kanal                                               | 2x 1-Kanal                                                                    | 1x 2-Kanal                                                           | 2x 2-Kanal                                                                                                    |  |  |  |
| 1x Sensor (Pt100 oder TC), freie<br>Anschlussdrähte                  | Sensor (#1): Transmitter (#1)                            | Sensor (#1): Transmitter<br>(#1)<br>(Transmitter (#2) nicht<br>angeschlossen) | Sensor (#1): Transmitter (#1)                                        | Sensor (#1): Transmitter (#1)<br>Transmitter (#2) nicht ange-<br>schlossen                                    |  |  |  |
| 2x Sensor (2x Pt100 oder 2x TC),<br>freie Anschlussdrähte            | Sensor (#1): Transmitter<br>(#1)<br>Sensor (#2) isoliert | Sensor (#1): Transmitter<br>(#1)<br>Sensor (#2): Transmitter<br>(#2)          | Sensor (#1): Transmitter<br>(#1)<br>Sensor (#2): Transmitter<br>(#1) | Sensor (#1): Transmitter (#1)<br>Sensor (#2): Transmitter (#1)<br>(Transmitter (#2) nicht ange-<br>schlossen) |  |  |  |
| 1x Sensor (Pt100 oder TC) mit<br>Anschlussklemmenblock <sup>3)</sup> | Sensor (#1): Transmitter im Deckel                       | Nicht kombinierbar                                                            | Sensor (#1): Transmitter im Deckel                                   | Nicht kombinierbar                                                                                            |  |  |  |

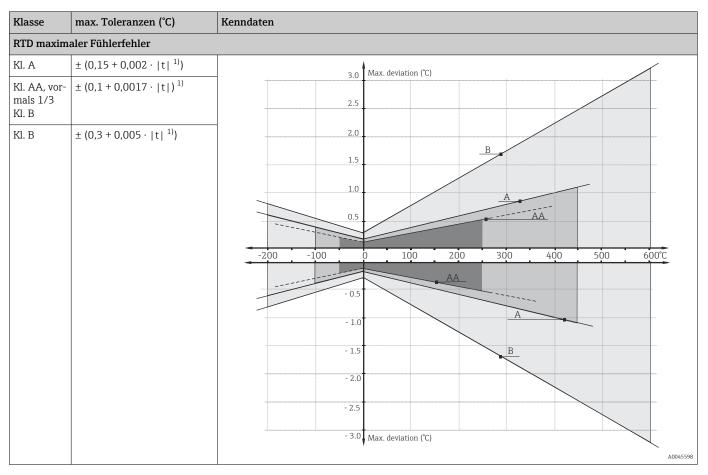
|                                                                                              | Transmitteranschluss <sup>2)</sup>                                            |                                                                      |                                                                                |                                                                                 |  |  |  |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|
| Messeinsatz                                                                                  | iTEMP TMT31/iTEMP TMT7x                                                       |                                                                      | iTEN                                                                           | IP ТМТ8х                                                                        |  |  |  |
|                                                                                              | 1x 1-Kanal                                                                    | 2x 1-Kanal                                                           | 1x 2-Kanal                                                                     | 2x 2-Kanal                                                                      |  |  |  |
| 2x Sensor (2x Pt100 oder 2x TC)<br>mit Anschlussklemmenblock                                 | Sensor (#1): Transmitter<br>im Deckel<br>Sensor (#2) nicht ange-<br>schlossen |                                                                      | Sensor (#1): Transmitter<br>im Deckel<br>Sensor (#2): Transmitter<br>im Deckel |                                                                                 |  |  |  |
| 2x Sensor (2x Pt100 oder 2x TC)<br>in Verbindung mit Merkmal 600,<br>Option MG <sup>4)</sup> | Nicht kombinierbar                                                            | Sensor (#1): Transmitter<br>(#1)<br>Sensor (#2): Transmitter<br>(#2) | Nicht kombinierbar                                                             | Sensor (#1): Transmitter (#1) - Kanal 1 Sensor (#2): Transmitter (#2) - Kanal 1 |  |  |  |

- 1) Auswahl abhängig von Produkt und Konfiguration
- 2) Bei Auswahl von 2 Transmittern in einem Anschlusskopf ist Transmitter (#1) auf dem Messeinsatz direkt installiert. Transmitter (#2) ist im hohen Deckel installiert. Für den zweiten Transmitter kann standardmäßig kein TAG bestellt werden. Die Busadresse ist auf den Standardwert eingestellt und muss bei Bedarf vor der Inbetriebnahme manuell geändert werden.
- 3) Nur im Anschlusskopf mit hohem Deckel, nur 1 Transmitter möglich. Ein Keramiksockel ist automatisch auf dem Messeinsatz montiert.
- 4) Einzelne Sensoren jeweils mit Kanal 1 eines Transmitters verbunden

#### Überspannungsschutz

Zur Absicherung gegen Überspannungen in den Versorgungs- und den Signal-/Kommunikationsleitungen für die Thermometerelektronik bietet Endress+Hauser die Geräte HAW562 für Hutschienenmontage und HAW569 für Feldgehäusemontage an.




Nähere Informationen hierzu siehe Technische Informationen 'HAW562 Überspannungsschutz' TI01012K und 'HAW569 Überspannungsschutz' TI01013K.

### Leistungsmerkmale

#### Referenzbedingungen

Diese Angaben sind relevant zur Bestimmung der Messgenauigkeit der eingesetzten iTEMP-Transmitter. Siehe Technische Dokumentation des jeweiligen iTEMP-Transmitters.

#### Maximale Messabweichung RTD-Widerstandsthermometer nach IEC 60751



#### 1) |t| = Absolutwert Temperatur in °C

Um die maximalen Toleranzen in °F zu erhalten, Ergebnisse in °C mit dem Faktor 1,8 multiplizieren.

#### Temperaturbereiche

| Sensortyp 1)                         | Betriebstemperatur-<br>bereich | Klasse B                     | Klasse A                     | Klasse AA                  |
|--------------------------------------|--------------------------------|------------------------------|------------------------------|----------------------------|
| Pt100 (WW)                           | −200 +600 °C                   | −200 +600 °C                 | −100 +450 °C                 | -50 +250 °C                |
|                                      | (−328 +1112 °F)                | (−328 +1112 °F)              | (−148 +842 °F)               | (-58 +482 °F)              |
| Pt100 (TF)                           | −50 +200 °C                    | −50 +200 °C                  | −30 +200 °C                  | -                          |
| Basis                                | (−58 +392 °F)                  | (−58 +392 °F)                | (−22 +392 °F)                |                            |
| Pt100 (TF)                           | −50 +400 °C                    | −50 +400 °C                  | −30 +250 °C                  | 0 +150 °C                  |
| Standard                             | (−58 +752 °F)                  | (−58 +752 °F)                | (−22 +482 °F)                | (+32 +302 °F)              |
| Pt100 (TF)<br>iTHERM Quick-<br>Sens  | −50 +200 °C<br>(−58 +392 °F)   | −50 +200 °C<br>(−58 +392 °F) | -30 +200 °C<br>(-22 +392 °F) | 0 +150 °C<br>(+32 +302 °F) |
| Pt100 (TF)<br>iTHERM Strong-<br>Sens | −50 +500 °C<br>(−58 +932 °F)   | −50 +500 °C<br>(−58 +932 °F) | -30 +300 °C<br>(-22 +572 °F) | 0 +150 °C<br>(+32 +302 °F) |

1) Auswahl abhängig von Produkt und Konfiguration

**Einfluss Umgebungstemperatur** 

 $Abh\"{a}ngig\ vom\ verwendeten\ Kopftransmitter.\ Details\ siehe\ Technische\ Informationen.$ 

16

#### Eigenerwärmung

RTD-Elemente sind passive Widerstände, die mit einem externen Strom gemessen werden. Dieser Messstrom verursacht im RTD-Element eine Eigenerwärmung, die einen zusätzlichen Messfehler darstellt. Die Größe des Messfehlers wird neben dem Messstrom auch durch die Temperaturleitfähigkeit und die Durchflussgeschwindigkeit im Prozess beeinflusst. Die Eigenerwärmung ist vernachlässigbar, wenn ein iTEMP-Temperaturtransmitter (extrem geringer Messstrom) von Endress+Hauser verwendet wird.

#### Ansprechzeit

Tests wurden in Wasser mit 0,4 m/s (gemäß IEC 60751) und einem Temperatursprung von 10 K durchgeführt.

Ansprechzeit mit Wärmeleitpaste 1)

| Schutzrohr      | Spitzenform                                     | Messeinsatz  | iTHI<br>Quick   | t100<br>ERM<br>Sens,<br>F | iTH<br>Stron    | t100<br>ERM<br>gSens,<br>F | 1x P<br>Draht<br>ckelt | _               | Draht           | t100<br>gewi-<br>WW | Stan<br>Dünns   | t100<br>dard<br>schicht<br>F |
|-----------------|-------------------------------------------------|--------------|-----------------|---------------------------|-----------------|----------------------------|------------------------|-----------------|-----------------|---------------------|-----------------|------------------------------|
|                 |                                                 |              | t <sub>50</sub> | t <sub>90</sub>           | t <sub>50</sub> | t <sub>90</sub>            | t <sub>50</sub>        | t <sub>90</sub> | t <sub>50</sub> | t <sub>90</sub>     | t <sub>50</sub> | t <sub>90</sub>              |
| Ø6 mm (½ in)    | reduziert 4,3 mm (0,17 in) x<br>20 mm (0,79 in) | Ø3 mm (⅓ in) | 1 s             | 2,5 s                     |                 | _                          | 8,5 s                  | 26 s            | 5,5 s           | 18 s                | 8 s             | 23 s                         |
|                 | gerade                                          | Ø6 mm (⅓ in) | 2 s             | 9 s                       | 8 s             | 27 s                       | 15 s                   | 45 s            | 15 s            | 45 s                | 9,5 s           | 27 s                         |
| Ø9 mm (0,35 in) | reduziert 5,3 mm (0,21 in) x<br>20 mm (0,79 in) | Ø3 mm (⅓ in) | 1,25 s          | 4 s                       |                 | -                          | 7 s                    | 20 s            | 7 s             | 20 s                | 7 s             | 23 s                         |
|                 | verjüngt 6,6 mm (0,26 in) x<br>60 mm (2,36 in)  | Ø3 mm (⅓ in) | 2,5 s           | 12 s                      |                 | _                          | 14 s                   | 49 s            | 12 s            | 40 s                | 15 s            | 51 s                         |
|                 | gerade                                          | Ø6 mm (⅓ in) | 4 s             | 26 s                      | 12 s            | 54 s                       | 23 s                   | 81 s            | 23 s            | 81 s                | 31 s            | 100 s                        |
| Ø12,7 mm (½ in) | reduziert 5,3 mm (0,21 in) x<br>20 mm (0,79 in) | Ø3 mm (⅓ in) | 1,5 s           | 5,5 s                     |                 | _                          | 9 s                    | 27 s            | 9 s             | 27 s                | 6,5 s           | 21 s                         |
|                 | reduziert 8 mm (0,31 in) x<br>32 mm (1,26 in)   | Ø6 mm (½ in) | 6 s             | 36 s                      | 11 s            | 44 s                       | 22 s                   | 69 s            | 22 s            | 69 s                | 26 s            | 90 s                         |

#### 1) Bei Verwendung eines Schutzrohres.

#### Ansprechzeit ohne Wärmeleitpaste 1)

| Schutzrohr         | Spitzenform                                     | Messeinsatz                | iTH<br>Quick    | t100<br>ERM<br>Sens,<br>F | iTHI            | t100<br>ERM<br>gSens,<br>F | 1x P<br>Draht<br>ckelt | 9               | 2x P<br>Draht<br>ckelt | ,               |                 |                 |
|--------------------|-------------------------------------------------|----------------------------|-----------------|---------------------------|-----------------|----------------------------|------------------------|-----------------|------------------------|-----------------|-----------------|-----------------|
|                    |                                                 |                            | t <sub>50</sub> | t <sub>90</sub>           | t <sub>50</sub> | t <sub>90</sub>            | t <sub>50</sub>        | t <sub>90</sub> | t <sub>50</sub>        | t <sub>90</sub> | t <sub>50</sub> | t <sub>90</sub> |
| ohne Schutzrohr    | _                                               | Ø3 mm (½ in)               | 0.5 s           | 0,75 s                    |                 | -                          | 1,75 s                 | 5 s             | 2 s                    | 6 s             | 2,5 s           | 5,5 s           |
| offile Schutzfolii |                                                 | Ø6 mm (½ in)               | 0,53            | 1,5 s                     | 2,5 s           | 16 s                       | 4 s                    | 10,5 s          | 4,5 s                  | 12 s            | 4,75 s          | 13 s            |
| Ø6 mm (¼ in)       | reduziert 4,3 mm (0,17 in) x<br>20 mm (0,79 in) | Ø3 mm (1/8 in)             | 1 s             | 3 s                       |                 | -                          | 9 s                    | 27 s            | 7,5 s                  | 24 s            | 8,5 s           | 28 s            |
|                    | gerade                                          | Ø6 mm (½ in)               | 2 s             | 9 s                       | 8 s             | 29 s                       | 19 s                   | 62 s            | 19 s                   | 62 s            | 13,5 s          | 42 s            |
| Ø9 mm (0,35 in)    | reduziert 5,3 mm (0,21 in) x<br>20 mm (0,79 in) | Ø3 mm (1/ <sub>8</sub> in) | 1,5 s           | 5 s                       |                 | -                          | 7 s                    | 21 s            | 7 s                    | 21 s            | 8 s             | 22 s            |
|                    | verjüngt 6,6 mm (0,26 in) x<br>60 mm (2,36 in)  | Ø3 mm (1/8 in)             | 5 s             | 23 s                      |                 | -                          | 13 s                   | 45 s            | 13 s                   | 45 s            | 15,5 s          | 60 s            |
| Ø12,7 mm (½ in)    | gerade                                          | Ø6 mm (½ in)               | 5,5 s           | 41 s                      | 12 s            | 54 s                       | 23 s                   | 82 s            | 23 s                   | 82 s            | 32 s            | 105 s           |

| Schutzrohr | Spitzenform                                     | Messeinsatz  | iTHI<br>Quick   | t100<br>ERM<br>Sens,<br>F | iTHI<br>Strong  | t100<br>ERM<br>gSens,<br>F | Draht           | t100<br>gewi-<br>WW | Draht           | t100<br>gewi-<br>WW | Stan<br>Dünns   | t100<br>dard<br>schicht<br>F |
|------------|-------------------------------------------------|--------------|-----------------|---------------------------|-----------------|----------------------------|-----------------|---------------------|-----------------|---------------------|-----------------|------------------------------|
|            |                                                 |              | t <sub>50</sub> | t <sub>90</sub>           | t <sub>50</sub> | t <sub>90</sub>            | t <sub>50</sub> | t <sub>90</sub>     | t <sub>50</sub> | t <sub>90</sub>     | t <sub>50</sub> | t <sub>90</sub>              |
|            | reduziert 5,3 mm (0,21 in) x<br>20 mm (0,79 in) | Ø3 mm (½ in) | 2 s             | 6 s                       |                 | -                          | 10 s            | 30 s                | 10 s            | 30 s                | 8 s             | 30 s                         |
|            | reduziert 8 mm (0,31 in) x<br>32 mm (1,26 in)   | Ø6 mm (½ in) | 14,5 s          | 65 s                      | 16 s            | 53 s                       | 26 s            | 85 s                | 26 s            | 85 s                | 32 s            | 108 s                        |

1) Bei Verwendung eines Schutzrohres.



Ansprechzeit für direkt verdrahteten Messeinsatz ohne Transmitter.

#### Kalibrierung

#### Kalibrierung von Thermometern

Unter Kalibrierung versteht man den Vergleich zwischen der Anzeige eines Messmittels und dem durch das Kalibriernormal zur Verfügung gestellten wahren Wert einer Größe unter festgelegten Bedingungen. Ziel ist es, die Messabweichungen des Prüflings vom wahren Wert der Messgröße festzustellen. Bei Thermometern werden üblicherweise nur die Messeinsätze kalibriert. Damit werden nur die Abweichung des Sensorelements, die durch den Aufbau des Messeinsatzes auftretenden Abweichungen, überprüft. In den meisten Anwendungen sind die Abweichungen, die sich aus dem Aufbau der Messetelle, dem Einbau in den Prozess, dem Einfluss der Umgebungsbedingungen und sonstigen Einflüssen ergeben, wesentlich größer als die Abweichungen des Messeinsatzes. Für die Kalibrierung von Messeinsätzen unterscheidet man zwei Methoden:

- Kalibrierung an so genannten Fixpunkttemperaturen, z. B. am Eispunkt, dem Erstarrungspunkt von Wasser bei 0°C,
- Kalibrierung im Vergleich gegen ein präzises Referenzthermometer.

Das zu kalibrierende Thermometer muss dabei möglichst exakt die Fixpunkttemperatur oder die Temperatur des Vergleichsthermometers aufweisen. Für Thermometerkalibrierungen werden typischerweise temperierte und thermisch sehr homogene Kalibrierbäder oder spezielle Kalibrieröfen verwendet. Die Messunsicherheit kann sich auf Grund von Wärmeableitungsfehler und kurzer Eintauchlängen erhöhen. Die bestehende Messunsicherheit wird auf dem individuellen Kalibrierzertifikat aufgeführt. Für akkreditierte Kalibrierungen nach ISO 17025 gilt, dass die Messunsicherheit nicht doppelt so hoch sein darf wie die akkreditierte Messunsicherheit. Ist dies überschritten, kann nur eine Werkskalibrierung durchgeführt werden.

#### Sensor-Transmitter-Matching

Die Widerstands-/Temperatur-Kennlinie von Platin-Widerstandsthermometern ist standardisiert, kann in der Praxis aber kaum über den gesamten Einsatztemperaturbereich exakt eingehalten werden. Platin-Widerstandssensoren werden daher in Toleranzklassen eingeteilt, z. B. in Klasse A, AA oder B nach IEC 60751. Diese Toleranzklassen beschreiben die maximal zulässige Abweichung der spezifischen Sensorkennlinie von der Normkennlinie, d. h. den maximal zulässigen temperaturabhängigen Kennlinienfehler. Die Umrechnung gemessener Sensorwiderstandswerte in Temperaturen in Temperaturtransmittern oder anderen Messelektroniken ist oftmals mit einem nicht unerheblichen Fehler verbunden, da sie in der Regel auf der Standardkennlinie basiert.

Bei Verwendung von Endress+Hauser iTEMP-Temperaturtransmittern lässt sich dieser Umrechnungsfehler durch das Sensor-Transmitter-Matching deutlich verringern:

- Kalibrierung an mindestens drei Temperaturen und Ermittlung der tatsächlichen Kennlinie des Temperatursensors,
- Angleichung der sensorspezifischen Polynomfunktion mit entsprechenden Calendar-van-Dusen-Koeffizienten (CvD),
- Parametrierung des Temperaturtransmitters mit den sensorspezifischen CvD-Koeffizienten zur Widerstand/Temperatur-Umrechnung sowie
- eine weitere Kalibrierung des neu parametrierten Temperaturtransmitters mit angeschlossenem Widerstandsthermometer.

Endress+Hauser bietet ein solches Sensor-Transmitter-Matching als Dienstleistung an. Zudem werden die sensorspezifischen Polynomkoeffizienten von Platin-Widerstandsthermometern auf allen Endress+Hauser Kalibrierzertifikaten nach Möglichkeit mit ausgewiesen, z. B. mindestens drei Kalibrierpunkte, so dass geeignete Temperaturtransmitter vom Anwender auch selbst entsprechend parametriert werden können.

Endress+Hauser bietet für das Gerät standardmäßig Kalibrierungen bei einer Vergleichstemperatur von  $-80 \dots +600\,^{\circ}\text{C}$  ( $-112 \dots +1112\,^{\circ}\text{F}$ ) bezogen auf die ITS90 (Internationale Temperaturskala) an. Kalibrierungen bei anderen Temperaturbereichen sind auf Anfrage bei einer Endress+Hauser Vertriebszentrale erhältlich. Die Kalibrierung ist rückführbar auf nationale und internationale Standards. Das Kalibrierzertifikat bezieht sich auf die Seriennummer des Gerätes. Kalibriert wird nur der Messeinsatz.

### Erforderliche Mindesteintauchlänge (IL) für Messeinsätze zur Durchführung einer ordnungsgemäßen Kalibrierung



Durch Einschränkungen der Öfen-Geometrien müssen bei hohen Temperaturen Mindesteintauchlängen eingehalten werden, um eine Kalibrierung mit annehmbarer Messunsicherheit durchführen zu können. Ähnliches gilt bei Verwendung eines Kopftransmitters. Bedingt durch die Wärmeableitung müssen Mindestlängen eingehalten werden um die Funktionalität des Transmitters zu gewährleisten  $-40 \dots +85 \, ^{\circ} \text{C} (-40 \dots +185 \, ^{\circ} \text{F}).$ 

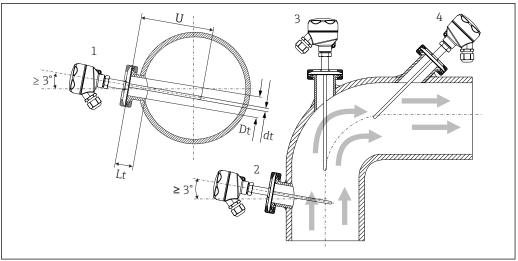
| Kalibriertemperatur             | Mindesteintauchlänge IL in mm ohne Kopftransmitter    |
|---------------------------------|-------------------------------------------------------|
| −196 °C (−320,8 °F)             | 120 mm (4,72 in) <sup>1)</sup>                        |
| -80 +250 °C (−112 +482 °F)      | Keine Mindesteintauchlänge erforderlich <sup>2)</sup> |
| +251 +550 °C (+483,8 +1022 °F)  | 300 mm (11,81 in)                                     |
| +551 +600 °C (+1023,8 +1112 °F) | 400 mm (15,75 in)                                     |

- 1) Mit iTEMP-Kopftransmitter min. 150 mm (5,91 in) erforderlich
- 2) Bei einer Temperatur von +80 ... +250 °C (+176 ... +482 °F) ist mit iTEMP-Kopftransmitter min. 50 mm (1,97 in) erforderlich

#### Isolationswiderstand

Isolationswiderstand  $\geq 100~\text{M}\Omega$  bei Umgebungstemperatur, gemessen zwischen den Anschlussklemmen und dem Außenmantel mit einer Mindestspannung von  $100~\text{V}_{\text{DC}}$ .

### Montage

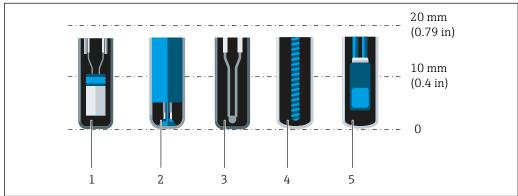

#### Einbaulage

Keine Beschränkungen, sofern eine Selbstentleerung im Prozess gewährleistet ist. Wenn eine Öffnung zur Leckageerkennung am Prozessanschluss vorhanden ist, muss diese am tiefsten Punkt liegen.

#### Einbauhinweise

Die Eintauchlänge des Thermometers kann sich auf die Messgenauigkeit auswirken. Bei zu geringer Eintauchlänge kann es durch die Wärmeableitung über den Prozessanschluss und die Behälterwand zu Messfehlern kommen. Daher empfiehlt sich beim Einbau in ein Rohr eine Eintauchlänge, die idealerweise der Hälfte des Rohrdurchmessers entspricht.

- Einbaumöglichkeiten: Rohre, Tanks oder andere Anlagenkomponenten
- Zur Minimierung des Wärmeableitfehlers wird, abhängig vom verwendeten Sensortyp und Messeinsatz-Bauform, eine Mindest-Eintauchlänge empfohlen, die der Mindest-Einstecklänge für die Kalibrierung entspricht.
- ATEX-Zertifizierung: Installationsvorschriften in den Ex-Dokumentationen beachten.




Δ000894

- Installationsbeispiele
- 1, 2 Senkrecht zur Strömungsrichtung, Einbau mit min. 3° Neigung, um Selbstentleerung zu gewährleisten
- 3 An Winkelstücken
- 4 Schräger Einbau in Rohren mit kleinem Nenndurchmesser
- U Eintauchlänge
- Bei Rohren mit kleinen Nenndurchmessern empfiehlt es sich, dass die Spitze des Thermometers weit genug in den Prozess ragt, um über die Achse der Rohrleitung hinaus zu reichen(2 und 3).
- Eine andere Lösung kann ein schräger Einbau sein (4). Bei der Bestimmung der Eintauchlänge bzw. Einbautiefe müssen alle Parameter des Thermometers und des zu messenden Mediums berücksichtigt werden (z. B. Durchflussgeschwindigkeit, Prozessdruck).
- Die Anforderungen nach EHEDG und 3-A Sanitary Standard müssen eingehalten werden.
  Einbauhinweis EHEDG/Reinigbarkeit: Lt ≤ (Dt-dt)
  Einbauhinweis 3-A/Reinigbarkeit: Lt ≤ 2(Dt-dt)

Die genaue Position des Sensorelementes in der Thermometerspitze ist zu beachten.

Verfügbare Optionen sind abhängig von Produkt und Konfiguration.

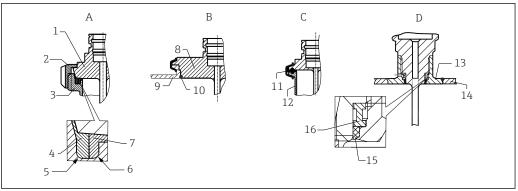


A0041814

- 1 iTHERM StrongSens oder iTHERM TrustSens bei 5 ... 7 mm (0,2 ... 0,28 in)
- 2 iTHERM QuickSens bei 0,5 ... 1,5 mm (0,02 ... 0,06 in)
- 3 Thermoelement (ungeerdet) bei 3 ... 5 mm (0,12 ... 0,2 in)
- 4 Drahtgewickelter Sensor bei 5 ... 20 mm (0,2 ... 0,79 in)
- 5 Standard Dünnfilm-Sensor bei 5 ... 10 mm (0,2 ... 0,39 in)

Zur Minimierung der Wärmeableitung sollten  $20 \dots 25 \text{ mm}$  über das Sensorelement hinaus im Medium liegen.

Daraus ergeben sich folgende empfohlene, minimale Eintauchlängen:


- iTHERM TrustSens oder iTHERM StrongSens 30 mm (1,18 in)
- iTHERM QuickSens 25 mm (0,98 in)
- Drahtgewickelter Sensor 45 mm (1,77 in)
- Standard Dünnfilm-Sensor 35 mm (1,38 in)

Besonders bei T-Schutzrohren berücksichtigen, da die Eintauchlänge konstruktiv bedingt sehr kurz ist, wodurch eine erhöhte Messabweichung zustande kommt. Es wird daher empfohlen, Eck-Schutzrohre mit iTHERM QuickSens Sensoren zu verwenden.



■ 7 Prozessanschlüsse für Thermometerinstallation in Rohren mit kleinen Nenndurchmessern

- 1 Varivent Prozessanschluss Typ N für DN40
- 2 Eck- oder T-Schutzrohr (abgebildet) zum Einschweißen nach DIN 11865 / ASME BPE



A0040345

- 🖪 8 Einbauvarianten für eine hygienegerechte Installation (abhängig von der bestellten Ausführung)
- A Milchrohrverschraubung nach DIN 11851, nur in Verbindung mit EHEDG zertifiziertem und selbstzentrierendem Dichtring
- 1 Sensor mit Milchrohrverschraubung
- 2 Nutüberwurfmutter
- 3 Gegenanschluss
- 4 Zentrierring
- 5 RO.4
- 6 RO.4
- 7 Dichtring
- B Varivent Prozessanschluss für VARINLINE-Gehäuse
- 8 Sensor mit Varivent-Anschluss
- 9 Gegenanschluss
- 10 O-Ring
- C Clamp nach DIN 32676
- 11 Formdichtung
- 12 Gegenanschluss
- D Prozessanschluss Liquiphant-M G1", horizontaler Einbau
- 13 Einschweißadapter
- 14 Behälterwand
- 15 O-Ring
- 16 Druckring

#### **HINWEIS**

### Im Fehlerfall eines O-Rings oder eines Dichtrings müssen folgende Maßnahmen durchgeführt werden:

- ► Thermometer ausbauen.
- ▶ Gewinde und die O-Ringnut oder Dichtfläche reinigen.
- ▶ O-Ring oder Dichtring austauschen.
- ► CIP nach dem Einbau durchführen.
- Die Gegenstücke für die Prozessanschlüsse sowie die Dichtungen oder Dichtringe sind nicht im Lieferumfang des Thermometers enthalten. Liquiphant M Einschweißadapter mit zugehörigen Dichtungssätzen sind als Zubehör erhältlich. → 🖺 54.

Bei eingeschweißten Anschlüssen müssen die Schweißarbeiten auf der Prozessseite mit Sorgfalt durchgeführt werden:

- 1. Geeigneten Schweißwerkstoff verwenden.
- 2. Bündiq oder mit Schweißradius ≥ 3,2 mm (0,13 in) schweißen.
- 3. Vertiefungen, Falten, Spalten vermeiden.
- 4. Auf eine geschliffene und polierte Oberfläche, Ra  $\leq$  0,76 µm (30 µin), achten.
- Die Thermometer sind generell so einzubauen, dass ihre Reinigungsfähigkeit nicht beeinträchtigt wird (die Anforderungen nach 3-A Sanitary Standard müssen eingehalten werden). Die Anschlüsse Varivent, Liquiphant M Einschweißadapter und Ingold mit Einschweißadapter ermöglichen einen frontbündigen Einbau.
- Anforderungen zum Einbau nach EHEDG und 3-A Sanitary Standard siehe Betriebsanleitung zu Modularen hygienischen Thermometern (BA02023T).

### **Umgebung**

#### Umgebungstemperaturbereich

| Anschlusskopf                                    | Temperatur in °C (°F)                                                                                                       |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Ohne montiertem Kopftransmitter                  | Abhängig vom verwendeten Anschlusskopf und Kabelverschraubung sowie Feldbus-Stecker, siehe Kapitel "Anschlussköpfe". → 🖺 37 |
| Mit montiertem iTEMP-Kopftransmitter             | -40 +85 °C (−40 +185 °F)                                                                                                    |
| Mit montiertem iTEMP-Kopftransmitter und Display | −30 +85 °C (−22 185 °F)                                                                                                     |

| Halsrohr                           | Temperatur in °C (°F)     |
|------------------------------------|---------------------------|
| Schnellverschluss iTHERM QuickNeck | −50 +140 °C (−58 +284 °F) |

#### Lagerungstemperatur

Angaben siehe Umgebungstemperatur.

#### **Relative Luftfeuchte**

Abhängig vom verwendeten Transmitter. Bei Verwendung von Endress+Hauser iTEMP-Kopftransmittern:

- Betauung nach IEC 60 068-2-33 zulässig
- Max. rel. Feuchte: 95% nach IEC 60068-2-30

#### Klimaklasse

nach EN 60654-1, Klasse C

#### Schutzart

max. IP69K, abhängig von der Bauart (Anschlusskopf, Stecker, etc.)

#### Stoß- und Schwingungsfestigkeit

Die Messeinsätze von Endress+Hauser erfüllen die Anforderungen der IEC 60751, die eine Stoß- und Schwingungsfestigkeit von 3g im Bereich von 10...500 Hz fordert. Die Vibrationsfestigkeit am Messpunkt ist abhängig von Sensortyp und Bauform, siehe nachfolgende Tabelle:

| Ausführung                                                                               | Vibrationsfestigkeit für die Sensorspitze |
|------------------------------------------------------------------------------------------|-------------------------------------------|
| Pt100 (WW oder TF)                                                                       | 30 m/s <sup>2</sup> (3g) <sup>1)</sup>    |
| iTHERM StrongSens Pt100 (TF)<br>iTHERM QuickSens Pt100 (TF), Ausführung: Ø6 mm (0,24 in) | > 600 m/s² (60g)                          |

1) Vibrationsfestigkeit gültig auch für den Schnellverschluss iTHERM QuickNeck.

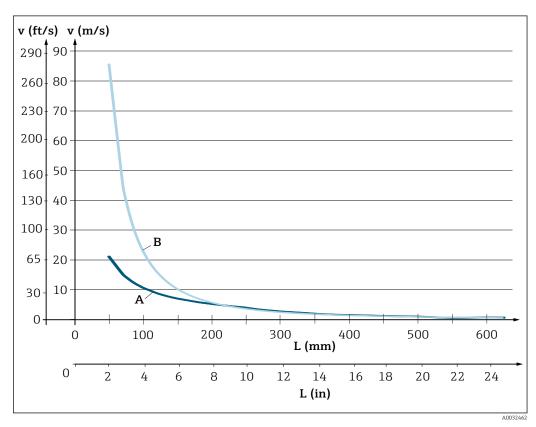
### Elektromagnetische Verträglichkeit (EMV)

 $Abh \"{a}ngig\ vom\ verwendeten\ Kopftransmitter.\ Details\ siehe\ in\ den\ Technischen\ Informationen.$ 

#### **Prozess**

| Prozesstemperaturbereich | Abhängig vom verwendeten Sensortyp, maximal −200 +600 °C (−328 +1112 °F)                                                                                                      |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Thermischer Schock       | Beständigkeit gegen thermischen Schock in CIP/SIP-Prozessen mit einem Temperaturanstieg und abfall von +5 +130 $^{\circ}$ C (+41 +266 $^{\circ}$ F) innerhalb von 2 Sekunden. |

#### Prozessdruckbereich


Der maximal mögliche Prozessdruck ist abhängig von verschiedenen Einflüssen, z. B. Bauform, Prozessanschluss und -temperatur. Maximal mögliche Prozessdrücke für die jeweiligen Prozessanschlüsse siehe Kapitel "Prozessanschluss".  $\rightarrow \stackrel{\triangle}{=} 42$ 



Die mechanische Belastbarkeit in Abhängigkeit der Einbau- und Prozessbedingungen kann online im Schutzrohrberechnungstool: TW Sizing Modul in der Endress+Hauser Applicator-Software überprüft werden. Dies gilt für die Berechnung von DIN-Schutzrohren. Siehe Kapitel "Zubehör".

### Beispiel für die zulässige Anströmgeschwindigkeit in Abhängigkeit von Eintauchlänge und Prozessmedium

Die maximal zulässige Anströmgeschwindigkeit, der das Thermometer ausgesetzt werden kann, nimmt mit zunehmender Eintauchtiefe des Messeinsatzes in das strömende Messmedium ab. Sie ist zudem vom Durchmesser der Thermometerspitze, der Art des Messmediums, der Prozesstemperatur und vom Prozessdruck abhängig. Die nachfolgenden Abbildungen zeigen beispielhaft die maximal zulässige Anströmgeschwindigkeit in Wasser und Heißdampf bei einem Prozessdruck von 40 bar (580 PSI).



■ 9 Zulässige Anströmgeschwindigkeit, Schutzrohrdurchmesser 9 mm (0,35 in)

- A Medium Wasser bei  $T = 50 \,^{\circ}\text{C} (122 \,^{\circ}\text{F})$
- *B* Medium überhitzter Dampf bei  $T = 160 \,^{\circ}\text{C}$  (320 °F)
- L Beströmte Eintauchlänge
- v Anströmgeschwindigkeit

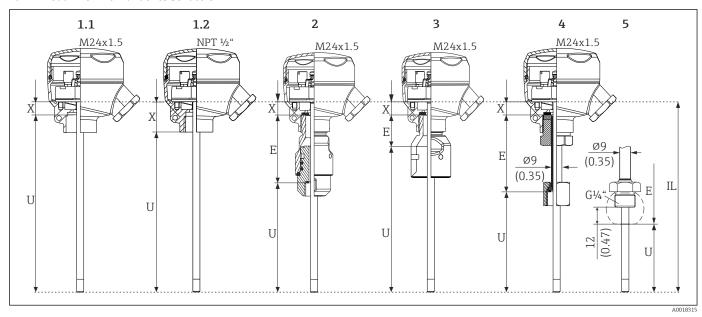
Aggregatzustand des Messstoffs Gasförmig oder flüssig (auch mit hoher Viskosität, z. B. Joghurt).

#### Konstruktiver Aufbau

Bauform, Maße

Alle Angaben in mm (in). Die Bauform des Thermometers ist abhängig von der verwendeten Schutzrohrversion:

- Thermometer ohne Schutzrohr
- Durchmesser 6 mm (½ in)
- Durchmesser 9 mm (0,35 in)
- Durchmesser 12,7 mm ( $\frac{1}{2}$  in)
- Schutzrohrausführung als T- und Eck-Schutzrohr nach DIN 11865 / ASME BPE zum Einschweißen


Diverse Abmessungen, wie z.B. Eintauchlänge U, sind variable Werte und daher in den folgenden Abmessungszeichnungen als Zeichnungsposition dargestellt.

#### Variable Abmessungen:

| Position | Beschreibung                                                                                                                                                                                                                                                                              |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E        | Halsrohrlänge, variabel je nach Konfiguration oder wahlweise vordefiniert für die Ausführung mit iTHERM QuickNeck                                                                                                                                                                         |
| IL       | Einstecklänge Messeinsatz                                                                                                                                                                                                                                                                 |
| L        | Schutzrohrlänge (U+T)                                                                                                                                                                                                                                                                     |
| В        | Bodendicke Schutzrohr: vordefiniert, abhängig von der Schutzrohrversion (siehe auch in den jeweiligen Tabellenangaben)                                                                                                                                                                    |
| Т        | Länge Schutzrohrschaft: variabel bzw. vordefiniert, abhängig von der Schutzrohrversion (siehe auch in den jeweiligen Tabellenangaben)                                                                                                                                                     |
| U        | Eintauchlänge: variabel, je nach Konfiguration                                                                                                                                                                                                                                            |
| X        | Variable zur Berechnung der Einstecklänge Messeinsatz, abhänging von unterschiedlichen Einschraublängen im Anschlusskopfgewinde M24x1,5 oder NPT $\frac{1}{2}$ ", siehe Längenberechnung Messeinsatz (IL) $\rightarrow$ $\bigcirc$ 36                                                     |
|          | aoozo889  ■ 10 Unterschiedliche Einschraublängen im Anschlusskopfgewinde für M24x1,5 und NPT ½"  1 Gewinde M24x1,5: X = 11 mm (0,43 in), Mat.: 1.4305 (Verschraubung)  2 Gewinde NPT ½": X = 26 mm (1,02 in) bzw. mit Anschlusskopf TA30S = 31 mm (1,22 in), Mat.: 1.4305 (Verschraubung) |
| ØID      | Messeinsatzdurchmesser 6 mm (¼ in) oder 3 mm (¼ in)                                                                                                                                                                                                                                       |

#### Ohne Schutzrohr

Zum Einbau in ein vorhandenes Schutzrohr



- 1.1 Thermometer ohne Halsrohr, Messeinsatz-Oberfläche nicht spezifiziert, Bestellstruktur: Merkmal 80, Option A0; X = 11 mm (0,43 in) für Anschlussgewinde M24x1,5
- 1.2 Thermometer ohne Halsrohr, Messeinsatz-Oberfläche nicht spezifiziert, Bestellstruktur: Merkmal 80, Option A0; X = 26 mm (1,02 in) für Anschlussgewinde NPT ½"; X = 31 mm (1,22 in) für Anschlussgewinde NPT ½" und Anschlusskopf TA30S
- 2 Thermometer mit Schnellverschluss iTHERM QuickNeck, Ober- und Unterteil, G3/8"-Innengewinde zum Schutzrohranschluss
- 3 Thermometer mit Schnellverschluss iTHERM QuickNeck, Oberteil
- 4 Thermometer mit austauschbarem Halsrohr TE411, G3/8"-Überwurfmutter zum Schutzrohranschluss
- 5 Thermometer mit austauschbarem Halsrohr TE411, Außengewinde G¼" für Klemmverschraubung TK40
- Für alle Varianten auswählbar: Gewinde M24x1,5 oder NPT ½"zum Anschlusskopf

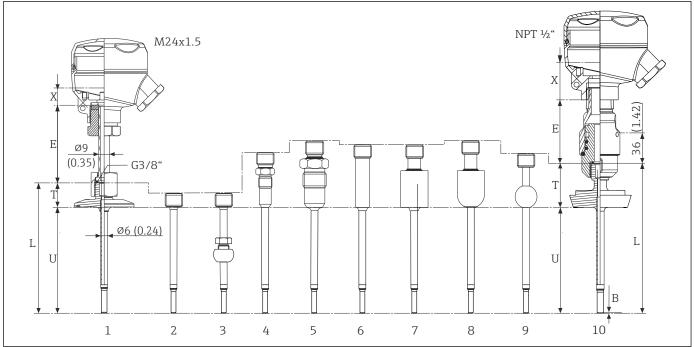
Zur Berechnung der Eintauchlänge U in ein bereits vorhandenes Schutzrohr TT411 folgende Gleichungen beachten:

| Ausführung 1                                                         | $U = L^{1} + E^{2} + 4 \text{ mm } (0.16 \text{ in}) - B$                                                  |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Ausführung 2 und 4                                                   | $U = L^{1} + 4 \text{ mm } (0.16 \text{ in}) - B$                                                          |
| Ausführung 3, Schutzrohrdurchmesser 9 mm (0,35 in)                   | $U = L^{1} + 4 \text{ mm } (0.16 \text{ in}) (\text{für Federweg}) - B$                                    |
| Ausführung 3, Schutzrohrdurchmesser 6 mm (1/4 in) / 12,7 mm (1/2 in) | $U = L^{1} + 36 \text{ mm } (1,42 \text{ in}) + 4 \text{ mm } (0,16 \text{ in}) (\text{für Federweg}) - B$ |
| Ausführung 5                                                         | $U = U_{(inkl. TK40)}$                                                                                     |

- 1)  $L = Gesamtlänge des bauseits vorhandenen Schutzrohres = U_{Schutzrohr} + T_{Schutzrohr}$
- 2) E = Länge des bauseits vorhandenen Halsrohrs (sofern vorhanden)

| Position (siehe obige<br>Zeichnung) | Ausführung                                                           | Länge                                                                     |
|-------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------|
|                                     | Ausführung 1:<br>Ohne Halsrohr                                       | E = 0                                                                     |
|                                     | Ausführung 2: iTHERM QuickNeck mit Gewinde M24x1,5 zum Anschlusskopf |                                                                           |
| Halsrohrlänge E                     | <ul><li>A0: E nicht benötigt</li><li>X1: E= variable Länge</li></ul> | • 62 mm (2,44 in)<br>• Variabel, je nach Konfiguration                    |
|                                     | iTHERM QuickNeck mit Gewinde NPT ½" zum Anschlusskopf                |                                                                           |
|                                     | ■ A0: E nicht benötigt<br>■ X1: E= variable Länge                    | <ul><li>54 mm (2,13 in)</li><li>Variabel, je nach Konfiguration</li></ul> |

| Position (siehe obige<br>Zeichnung) | Ausführung                                                                                                                                                                      | Länge                                                                     |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
|                                     | Ausführung 3: iTHERM QuickNeck Oberteil mit Gewinde M24x1,5 zum Anschlusskopf                                                                                                   |                                                                           |
|                                     | <ul><li>A0: E nicht benötigt</li><li>X1: E= variable Länge</li></ul>                                                                                                            | <ul><li>30 mm (1,18 in)</li><li>Variabel, je nach Konfiguration</li></ul> |
|                                     | iTHERM QuickNeck Oberteil mit Gewinde NPT ½" zum Anschlusskopf                                                                                                                  |                                                                           |
|                                     | <ul><li>A0: E nicht benötigt</li><li>X1: E= variable Länge</li></ul>                                                                                                            | <ul><li>22 mm (0,87 in)</li><li>Variabel, je nach Konfiguration</li></ul> |
|                                     | <b>Ausführung 4:</b> Mit austauschbarem Halsrohr, G3/8"-Überwurfmutter zum Schutzrohranschluss                                                                                  | Variabel, je nach Konfiguration                                           |
|                                     | <b>Ausführung 5:</b> Mit austauschbarem Halsrohr und Außengewinde G $\frac{1}{4}$ " für Klemmverschraubung TK40, mit Gewinde M24x1,5 oder NPT $\frac{1}{2}$ " zum Anschlusskopf | 70 mm (2,76 in)                                                           |
| Eintauchlänge U                     | Unabhängig von der Ausführung                                                                                                                                                   | Variabel, je nach Konfiguration                                           |
| Variable Länge X                    | ■ Anschlussgewinde M24x1,5<br>■ Anschlussgewinde ½" NPT IL = U+E+X<br>■ Anschlussgewinde ½" NPT und Anschlusskopf<br>TA30S                                                      | 11 mm (0,43 in)<br>28 mm (1,1 in)<br>31 mm (1,22 in)                      |


#### Mit Klemmverschraubung TK40 als Prozessanschluss, Messeinsatz direkt prozessberührend



- $1 \qquad \textit{Verschiebbare Klemmverschraubung TK40-variabel fixierbare Eintauchlänge U, nur Anschlussgewinde M24x1,5}$
- 2 Ohne Klemmverschraubung zur Verwendung bei bauseits vorhandener Klemmverschraubung, Messeinsatz mit polierter Oberfläche Bestellstruktur: Merkmal 80, Option A1 oder A3 nur Anschlussgewinde M24x1,5
- ${\it 3} \quad {\it Durch Halsrohr fixierte Klemmverschraubung TK40-feste Eintauchlänge U, Anschlussgewinde M24x1,5}$
- $4 \qquad \textit{Durch Halsrohr fixierte Klemmverschraubung TK40-feste Eintauchlänge U, Anschlussgewinde NPT~~1/2} \\$
- 5 Messeinsatz, beispielhaft mit montiertem Kopftransmitter

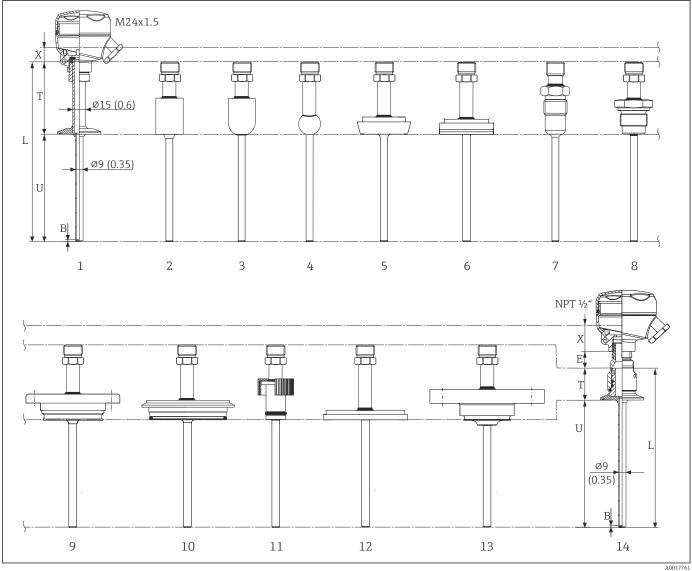
| Position         | Ausführung                                                                                                                                                                                                                                                 |                                                    | Länge                                                                    |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------|
| Halsrohrlänge E  | Halsrohr Ø9 mm (0,35 in)                                                                                                                                                                                                                                   |                                                    | 70 mm (2,76 in)                                                          |
| Eintauchlänge U  | Unabhängig von der Ausführung                                                                                                                                                                                                                              |                                                    | Variabel, je nach<br>Konfiguration                                       |
| Variable Länge X | <ul> <li>Ausführungen 1 und 2: Ohne Halsrohr, Anschlussgewinde M24x1,5</li> <li>Ausführung 3: Mit Halsrohr, Anschlussgewinde M24x1,5</li> <li>Ausführung 4: Mit Halsrohr, Anschlussgewinde NPT ½"</li> <li>Mit Halsrohr und TA30S-Anschlusskopf</li> </ul> | IL = U+X<br>IL = U+E+X<br>IL = U+E+X<br>IL = U+E+X | 39 mm (1,54 in)<br>11 mm (0,43 in)<br>26 mm (1,02 in)<br>31 mm (1,22 in) |

#### Mit Schutzrohr-Durchmesser 6 mm (1/4 in)



A0017790

- 1 Thermometer mit austauschbarem Halsrohr TE411 und Prozessanschluss als Clamp-Ausführung
- 2 Ohne Prozessanschluss
- 3 Ausführung Prozessanschluss als kugelige Klemmverschraubung TK40
- 4 Ausführung Prozessanschluss als metallisches Dichtsystem M12x1,5
- 5 Ausführung Prozessanschluss als metallisches Dichtsystem G½"
- 6 Ausführung Prozessanschluss zylindrischer Einschweißadapter Ø12 x 40 mm
- 7 Ausführung Prozessanschluss zylindrischer Einschweißadapter Ø30 x 40 mm
- 8 Ausführung Prozessanschluss kugelig-zylindrischer Einschweißadapter Ø30 x 40 mm
- 9 Ausführung Prozessanschluss kugeliger Einschweißadapter Ø25 mm
- 10 Thermometer mit Schnellverschluss iTHERM QuickNeck und Prozessanschlus als Milchrohrverschraubung nach DIN 11851
- Austauschbares Halsrohr oder Schnellverschluss iTHERM QuickNeck
- Gewinde M24x1,5 oder ½" NPT zum Anschlusskopf
- G3/8"-Gewinde für Schutzrohranschluss

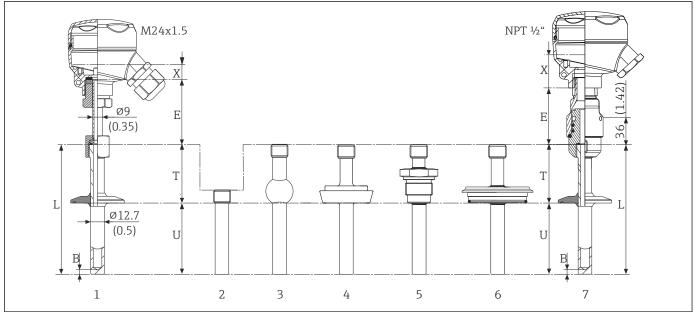

| Position                                  | Ausführung                                                                     | Länge                                                                     |
|-------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------|
|                                           | Austauschbares Halsrohr Ø9 mm (0,35 in)                                        | Variabel, je nach Konfiguration                                           |
|                                           | iTHERM QuickNeck mit Gewinde M24x1,5 zum<br>Anschlusskopf, bei Auswahl Option: |                                                                           |
| Halsrohrlänge E                           | <ul><li>A0: E nicht benötigt</li><li>X1: E= variable Länge</li></ul>           | • 62 mm (2,44 in)<br>• Variabel, je nach Konfiguration                    |
|                                           | iTHERM QuickNeck mit Gewinde NPT ½" zum<br>Anschlusskopf, bei Auswahl Option:  |                                                                           |
|                                           | <ul><li>A0: E nicht benötigt</li><li>X1: E= variable Länge</li></ul>           | <ul><li>54 mm (2,13 in)</li><li>Variabel, je nach Konfiguration</li></ul> |
|                                           | Metallisches Dichtsystem M12x1.5                                               | 46 mm (1,81 in)                                                           |
|                                           | Metallisches Dichtsystem G½"                                                   | 60 mm (2,36 in)                                                           |
| Länge Schutzrohrschaft<br>T <sup>1)</sup> | Tri-clamp (0,5"-0,75")                                                         | 24 mm (0,94 in)                                                           |
|                                           | Microclamp (DN8)                                                               | 23 mm (0,91 in)                                                           |
|                                           | Clamp DN12 nach DIN 32676                                                      | 24 mm (0,94 in)                                                           |
|                                           | Clamp DN25/DN40 nach DIN 32676                                                 | 21 mm (0,83 in)                                                           |

| Position         | Ausführung                                                                                                                                                                                 | Länge                                                |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
|                  | Milchrohrverschraubung DN25/DN32/DN40 nach DIN 11851                                                                                                                                       | 29 mm (1,14 in)                                      |
|                  | Einschweißadapter kugelig-zylindrisch                                                                                                                                                      | 58 mm (2,28 in)                                      |
|                  | Einschweißadapter zylindrisch<br>Ø12 mm (0,47 in)                                                                                                                                          | 55 mm (2,17 in)                                      |
|                  | Ohne Prozessanschluss (nur G3/8"-Gewinde),<br>ggf. mit Klemmverschraubung TK40                                                                                                             | 11 mm (0,43 in)                                      |
|                  | Einschweißadapter zylindrisch                                                                                                                                                              | 55 mm (2,17 in)                                      |
|                  | Einschweißadapter kugelig                                                                                                                                                                  | 47 mm (1,85 in)                                      |
| Eintauchlänge U  | Unabhängig von der Ausführung                                                                                                                                                              | Variabel, je nach Konfiguration                      |
| Variable Länge X | <ul> <li>mit Anschlussgewinde M24x1,5</li> <li>mit Anschlussgewinde ½" NPT</li> <li>mit Anschlusskopf TA30S</li> <li>Berechnung IL für den Messeinsatz:</li> <li>IL = U+T+E-B+X</li> </ul> | 15 mm (0,6 in)<br>30 mm (1,18 in)<br>35 mm (1,38 in) |
| Bodendicke B     | Reduzierte Spitze Ø4,3 mm (0,17 in)                                                                                                                                                        | 3 mm (0,12 in)                                       |

1) Abhängig vom Prozessanschluss

#### Mit Schutzrohr-Durchmesser 9 mm (0,35 in)

Halsrohr nicht austauschbar, bei Option mit Schnellverschluss iTHERM QuickNeck jedoch teilbar.




- Thermometer ohne austauschbarem Halsrohr, Anschlussgewinde M24x1,5, Prozessanschluss als Clamp-Ausführung
- Prozessanschluss zylindrischer Einschweißadapter Ø30 x 40 mm
- Prozessanschluss kugelig-zylindrischer Einschweißadapter  $\emptyset 30 \times 40 \text{ mm}$
- Prozessanschluss kugeliger Einschweißadapter Ø25 mm
- Prozessanschluss Milchrohrverschraubung nach DIN 11851
- Prozessanschluss aseptische Rohrverschraubung nach DIN 11864-1 Form A 6
- Prozessanschluss als metallisches Dichtsystem G½"
- 8 Prozessanschluss Gewinde nach ISO 228 für Liquiphant-Einschweißadapter
- Prozessanschluss APV Inline 9
- 10 Prozessanschluss Varivent
- 11 Prozessanschluss Ingold Verbindung
- Prozessanschluss SMS 1147 12
- 13 Prozessanschluss Neumo Biocontrol
- 14 Thermometer mit Schnellverschluss iTHERM QuickNeck und Prozessanschluss, beispielhaft als Clamp-Ausführung

| Position        | Ausführung                                                                           | Länge                                                                     |
|-----------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
|                 | Ohne iTHERM QuickNeck Schnellverschluss                                              | 0                                                                         |
|                 | Mit iTHERM QuickNeck Schnellverschluss                                               |                                                                           |
| Halsrohrlänge E | Mit Gewinde M24x1,5 zum Anschlusskopf ■ A0: E nicht benötigt ■ X1: E= variable Länge | <ul><li>30 mm (1,18 in)</li><li>Variabel, je nach Konfiguration</li></ul> |

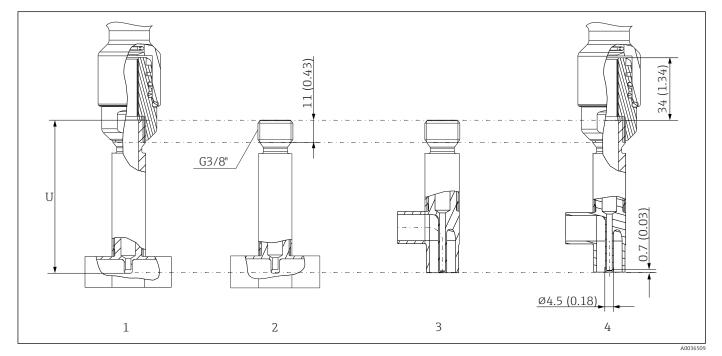
| Position                    | Ausführung                                                                                          |                                                                    | Länge                                                                    |  |
|-----------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------|--|
|                             | Mit Gewinde ½" NPT zum Anschlusskopf  ■ A0: E nicht benötigt  ■ X1: E= variable Länge               |                                                                    | <ul><li>22 mm (0,9 in)</li><li>Variabel, je nach Konfiguration</li></ul> |  |
|                             | Ohne iTHERM QuickNeck Schnellverschluss                                                             |                                                                    | Variabel, je nach Konfiguration                                          |  |
|                             | Mit iTHERM QuickNeck Schnellverschluss, abhängig vom Proz                                           | zessanschluss:                                                     |                                                                          |  |
|                             | SMS 1147, DN25                                                                                      |                                                                    | 40 mm (1,57 in)                                                          |  |
|                             | SMS 1147, DN38                                                                                      |                                                                    | 41 mm (1,61 in)                                                          |  |
|                             | SMS 1147, DN51                                                                                      |                                                                    | 42 mm (1,65 in)                                                          |  |
|                             | Varivent, Typ F, D = 50 mm (1,97 in)<br>Varivent, Typ N, D = 68 mm (2,67 in)                        |                                                                    | 52 mm (2,05 in)                                                          |  |
|                             | Varivent, Typ B, D = 31 mm (1,22 in)                                                                |                                                                    | 56 mm (2,2 in)                                                           |  |
|                             | Gewinde G1" nach ISO 228 für Liquiphant-Einschweißadapter                                           |                                                                    | 77 mm (3,03 in)                                                          |  |
|                             | Einschweißadapter kugelig-zylindrisch                                                               |                                                                    | 70 mm (2,76 in)                                                          |  |
|                             | Einschweißadapter zylindrisch                                                                       |                                                                    | 67 mm (2,64 in)                                                          |  |
|                             | Aseptische Rohrverschraubung nach DIN11864-A, DN25                                                  |                                                                    | 42 mm (1,65 in)                                                          |  |
|                             | Aseptische Rohrverschraubung nach DIN11864-A, DN40                                                  |                                                                    | 43 mm (1,69 in)                                                          |  |
| Länge Schutzrohrschaft<br>T | Winding on Verbein add and fracti bir 11051, biv52                                                  |                                                                    | 47 mans (1 OF in)                                                        |  |
| 1                           | Milchrohrverschraubung nach DIN 11851, DN40                                                         |                                                                    | 47 mm (1,85 in)                                                          |  |
|                             | Milchrohrverschraubung nach DIN 11851, DN50                                                         |                                                                    | 48 mm (1,89 in)                                                          |  |
|                             | Clamp nach DIN 32676, DN12                                                                          |                                                                    | 40 11111 (1,09 111)                                                      |  |
|                             | Clamp nach DIN 32676, DN25                                                                          |                                                                    | 37 mm (1,46 in)                                                          |  |
|                             | Clamp nach DIN 32676, DN40                                                                          |                                                                    |                                                                          |  |
|                             | Clamp nach DIN 32676, DN63,5 39 mm (1,54                                                            |                                                                    | 39 mm (1,54 in)                                                          |  |
|                             | Clamp nach DIN 32676, DN70                                                                          |                                                                    |                                                                          |  |
|                             | Microclamp (DN18)                                                                                   |                                                                    | 47 mm (1,85 in)                                                          |  |
|                             | Tri-clamp (0,75")                                                                                   |                                                                    | 46 mm (1,81 in)                                                          |  |
|                             | Ingold Verbindung Ø25 mm (0,98 in) x 30 mm (1,18 in)                                                |                                                                    | 78 mm (3,07 in)                                                          |  |
|                             | Ingold Verbindung Ø25 mm (0,98 in) x 46 mm (1,81 in)                                                |                                                                    | 94 mm (3,7 in)                                                           |  |
|                             | Metallisches Dichtsystem G½"                                                                        |                                                                    | 74 mm (2,91 in)                                                          |  |
|                             | APV-Inline, DN50                                                                                    |                                                                    | 51 mm (2,01 in)                                                          |  |
| Eintauchlänge U             | Unabhängig von der Ausführung                                                                       |                                                                    | Variabel, je nach Konfiguration                                          |  |
| Variable Länge X            | ■ mit iTHERM QuickNeck, Anschlussgewinde M24x1,5<br>■ mit iTHERM QuickNeck, Anschlussgewinde NPT ½" | IL = U+T-B+X<br>IL = U+E+T-B+X<br>IL = U+E+T-B+X<br>IL = U+E+T-B+X | 15 mm (0,6 in)<br>15 mm (0,6 in)<br>30 mm (1,18 in)<br>35 mm (1,38 in)   |  |
|                             | Reduzierte Spitze Ø3 mm (0,12 in) x 20 mm (0,79 in)                                                 |                                                                    |                                                                          |  |
| Bodendicke B                | Verjüngte Spitze Ø 6,6 mm (0,26 in) x 60 mm (2,36 in)                                               |                                                                    | 3 mm (0,12 in)                                                           |  |
|                             | Gerade Spitze                                                                                       |                                                                    |                                                                          |  |

#### Mit Schutzrohr-Durchmesser 12,7 mm (½ in)



A0018313

- 1 Thermometer mit austauschbarem Halsrohr TE411 und Prozessanschluss als Clamp-Ausführung
- 2 Ausführung Prozessanschluss zylindrischer Einschweißadapter Ø12,7 mm (0,5 in)
- 3 Ausführung Prozessanschluss kugeliger Einschweißadapter Ø25 mm
- 4 Prozessanschluss Milchrohrverschraubung nach DIN 11851
- 5 Gewinde nach ISO 228 für Liquiphant-Einschweißadapter
- 6 Prozessanschluss Varivent
- 7 Thermometer mit Schnellverschluss iTHERM QuickNeck und Prozessanschluss, beispielhaft als Clamp-Ausführung
- Austauschbares Halsrohr oder Schnellverschluss iTHERM QuickNeck
- G3/8"-Gewinde für Schutzrohranschluss
- An der Spitze geschweißtes Schutzrohr


| Position                 | Ausführung                                                                                                                                                        | Länge                                                  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
|                          | Austauschbares Halsrohr,<br>Ø9 mm (0,35 in)                                                                                                                       | Variabel, je nach Konfiguration                        |
|                          | iTHERM QuickNeck mit Gewinde M24x1,5 zum Anschlusskopf, bei Auswahl Option:                                                                                       |                                                        |
| Halsrohrlänge E          | <ul><li>A0: E nicht benötigt</li><li>X1: E= variable Länge</li></ul>                                                                                              | • 62 mm (2,44 in)<br>• Variabel, je nach Konfiguration |
|                          | iTHERM QuickNeck mit Gewinde NPT ½" zum Anschlusskopf, bei Auswahl Option:                                                                                        |                                                        |
|                          | A0: E nicht benötigt                                                                                                                                              | 54 mm (2,13 in)                                        |
| Länge Schutzrohrschaft T | Einschweißadapter, zylindrisch,<br>Ø12,7 mm (0,5 in) <sup>1)</sup>                                                                                                | 12 mm (0,47 in)                                        |
|                          | Alle weiteren Prozessanschlüsse                                                                                                                                   | 65 mm (2,56 in)                                        |
| Eintauchlänge U          | Unabhängig vom Prozessanschluss                                                                                                                                   | Variabel, je nach Konfiguration                        |
| Variable Länge X         | <ul> <li>mit Anschlussgewinde M24x1,5</li> <li>mit Anschlussgewinde ½"NPT</li> <li>mit Anschlusskopf TA30S</li> <li>Berechnung IL für den Messeinsatz:</li> </ul> | 15 mm (0,6 in)<br>30 mm (1,18 in)<br>35 mm (1,38 in)   |
|                          | IL = U+T+E-B+X                                                                                                                                                    |                                                        |
| Bodendicke B             | Reduzierte Spitze Ø5,3 mm (0,21 in) x 20 mm (0,79 in)                                                                                                             | 3 mm (0,12 in)                                         |

| Position | Ausführung                                             | Länge          |
|----------|--------------------------------------------------------|----------------|
|          | Reduzierte Spitze Ø8 mm (0,31 in) x<br>32 mm (1,26 in) | 4 mm (0,16 in) |
|          | Gerade Spitze                                          | 6 mm (0,24 in) |

1) siehe Abb. Ausführung 2

#### Schutzrohrausführung als T- oder Eck-Schutzrohr, optimiert

Keine Schweißung, kein Totraum



■ 11 Schutzrohr gemäß DIN 11865 bzw. ASME BPE

- 1 T-Schutzrohr mit QuickNeck Unterteil verschraubt, Drehmoment 5 Nm (3,69 lbf ft) und mit Schraubensicherung verklebt
- 2 T-Schutzrohr mit Halsrohranschluss G3/8"
- 3 Eck-Schutzrohr mit Halsrohranschluss G3/8"
- 4 Eck-Schutzrohr QuickNeck Unterteil verschraubt, Drehmoment 5 Nm (3,69 lbf ft) und mit Schraubensicherung verklebt
- U Eintauchlänge
- Rohrgrößen nach DIN 11865 Reihe A (DIN), B (ISO) und C (ASME BPE)
- 3-A gekennzeichnet für Nennweiten ≥ DN25
- EHEDG zertifiziert für Nennweiten ≥ DN25
- ASME BPE konform für Nennweiten ≥ DN25
- Schutzklasse IP69K
- Material 1.4435+316L, Delta-Ferrit-Gehalt < 0,5%
- Temperaturbereich: -60 ... +200 °C (-76 ... +392 °F)
- Druckbereich: PN25 nach DIN11865

Aufgrund der geringen Eintauchlänge U bei kleinen Rohrdurchmessern wird der Einsatz von iTHERM QuickSens Messeinsätzen empfohlen.

Generell gilt: Je größer die Eintauchlänge U, desto besser ist die Messgenauigkeit. Deshalb empfiehlt sich bei kleinen Rohrdurchmessern die Verwendung von Eck-Schutzrohren, mit denen eine maximale Eintauchlänge U erreicht wird.

Passende Eintauchlängen für folgende Thermometer bei G3/8"-Halsrohranschluss:

- iTHERM CompactLine TMR35: 83 mm (3,27 in)
- iTHERM TM411: 85 mm (3,35 in)
- iTHERM TM311: 85 mm (3.35 in)
- iTHERM TrustSens TM371: 85 mm (3,35 in)

Passende Eintauchlängen für folgende Thermometer bei QuickNeck-Anschluss:

- iTHERM TM411: 119 mm (4,7 in)
- iTHERM TrustSens TM371: 119 mm (4,7 in)

## $\label{thm:model} \mbox{M\"{o}gliche Kombinationen der Schutzrohrversionen mit den verf\"{u}gbaren Prozessanschl\"{u}ssen und Schnellverschluss i THERM QuickNeck$

|                                                           | Schutzrohrdurchmesser                     |              |               | iTHERM QuickNeck für Ø9 mm (0,35 in) 1) |  |
|-----------------------------------------------------------|-------------------------------------------|--------------|---------------|-----------------------------------------|--|
| Prozessanschluss und Größe                                | 6 mm (¼ in) 9 mm (0,35 in) 12,7 mm (½ in) |              |               |                                         |  |
| Ohne Prozessanschluss (für Einbau mit Klemmverschraubung) | V                                         | -            | -             | -                                       |  |
| Einschweissadapter                                        |                                           |              |               |                                         |  |
| zylindrisch Ø12,7 mm (0,5 in)                             | -                                         | -            | Ø             | -                                       |  |
| zylindrisch Ø30 x 40 mm                                   | ✓                                         | <b>✓</b>     | -             | abla                                    |  |
| zylindrisch Ø12 x 40 mm                                   |                                           | -            | -             | -                                       |  |
| kugelig-zylindrisch Ø30 x 40 mm                           | ✓                                         | <b>V</b>     | -             | <b>V</b>                                |  |
| kugelig Ø25 mm (0,98 in)                                  | <b>V</b>                                  | <b>V</b>     | V             | -                                       |  |
| Clamp nach DIN 32676                                      | <b>'</b>                                  | ı            |               |                                         |  |
| DN10 - 20                                                 | <b>V</b>                                  | <b>V</b>     | -<br><b>V</b> |                                         |  |
| DN25 - 40 (1 - 1,5 in)                                    |                                           |              |               |                                         |  |
| DN50 (2 in)                                               | - ☑                                       | <b>V</b>     | Ø             |                                         |  |
| DN63,5 (2,5 in)                                           |                                           |              |               |                                         |  |
| DN70 - 76,5 (3 in)                                        | -                                         | $\checkmark$ | ✓             | $\checkmark$                            |  |
| Milchrohrverschraubung nach DIN 11851                     |                                           |              |               |                                         |  |
| DN25                                                      |                                           | Ø            | Ø             | -                                       |  |
| DN32, DN40                                                | - ☑                                       |              |               |                                         |  |
| DN50                                                      | -                                         |              |               |                                         |  |
| Aseptische Rohrverschraubung nach DIN 11864-1 Form A      |                                           |              |               |                                         |  |
| DN25, DN40                                                | _                                         | <b>V</b>     | -             |                                         |  |
| Metallisches Dichtsystem                                  |                                           |              |               |                                         |  |
| M12x1.5                                                   | _                                         |              |               | -                                       |  |
| G <sup>1</sup> /2"                                        | - ☑                                       | <b>V</b>     | -             | ✓                                       |  |
| Gewinde nach ISO 228 für Liquiphant-Einschweißadapter     |                                           |              |               |                                         |  |
| G¾" für FTL20, FTL31, FTL33                               |                                           |              |               | -                                       |  |
| G¾" für FTL50                                             |                                           | <b>~</b>     | <b>V</b>      | -                                       |  |
| G1" für FTL50                                             |                                           |              |               | ✓                                       |  |
| APV Inline                                                |                                           |              |               |                                         |  |
| DN50                                                      | -                                         | <b>V</b>     | -             | ✓                                       |  |
| Varivent                                                  |                                           |              |               |                                         |  |
| Typ B, Ø31 mm; Typ F, Ø50 mm ; Typ N, Ø68 mm              | -                                         | <b>V</b>     | <b>V</b>      | ✓                                       |  |
| Ingold Verbindung                                         |                                           |              |               |                                         |  |
| 25 x 30 mm oder 25 x 46 mm                                | -                                         | ✓            | -             | ✓                                       |  |
| SMS 1147                                                  |                                           |              |               |                                         |  |
| DN25, DN38, DN51                                          | -                                         | <b>V</b>     | -             | ✓                                       |  |
| Neumo Biocontrol                                          |                                           |              |               |                                         |  |
| D25 PN16, D50 PN16, D65 PN16                              | -                                         | <b>V</b>     | -             | -                                       |  |
|                                                           | -                                         | <b>V</b>     | -             | -                                       |  |

 $<sup>1) \</sup>qquad \text{Bei Durchmesser 6 mm ($\frac{1}{4}$ in) und 12,7 mm ($\frac{1}{2}$ in) ist das iTHERM QuickNeck für alle Prozessanschluss-Varianten verfügbar.} \\$ 

#### Messeinsatz

Für das Thermometer sind je nach Anwendung Messeinsätze iTHERM TS111 mit unterschiedlichen RTD-Sensoren verfügbar:

| Sensor                                             | Standard Dünnschicht                              | iTHERM StrongSens                                | iTHERM QuickSens 1)                                                                         | Drahtgewickelt                                       |                                        |  |  |
|----------------------------------------------------|---------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------|--|--|
| Sensorbauart;<br>Schaltungsart                     | 1x Pt100, 3- oder 4-Lei-<br>ter, mineralisoliert  | 1x Pt100, 3- oder 4-Lei-<br>ter, mineralisoliert | 1x Pt100, 3- oder 4-Leiter  ■ Ø6 mm (¼ in), mineralisoliert  ■ Ø3 mm (⅓ in), teflonisoliert | 1x Pt100, 3- oder 4-<br>Leiter, mineraliso-<br>liert | 2x Pt100, 3-Leiter,<br>mineralisoliert |  |  |
| Vibrationsfestigkeit<br>der Messeinsatz-<br>spitze | bis 3g                                            | erhöhte Vibrationsfestig-<br>keit > 60g          | <ul> <li>Ø3 mm (½ in) bis 3g</li> <li>Ø6 mm (¼ in) &gt; 60g</li> </ul>                      | bis 3g                                               |                                        |  |  |
| Messbereich;<br>Genauigkeitsklasse                 | −50 +400 °C<br>(−58 +752 °F), Klasse<br>A oder AA | –50 +500 ℃<br>(–58 +932 ℉), Klasse<br>A oder AA  | –50 +200 °C<br>(–58 +392 °F), Klasse<br>A oder AA                                           | –200 +600 °C (–328 +1112 °F), Klasse<br>A oder AA    |                                        |  |  |
| Durchmesser                                        | 3 mm (½ in),<br>6 mm (¼ in)                       | 6 mm (½ in)                                      | 3 mm (1/8 in), 6 mm (1/4 in)                                                                |                                                      |                                        |  |  |

#### 1) Empfohlen für Eintauchlängen U < 70 mm (2.76 in)



Weiterführende Informationen zum verwendeten Messeinsatz i THERM TS111 mit erhöhter Vibrationsfestigkeit und schnellansprechendem Sensor siehe Technische Information (TI01014T/09/).



Aktuell lieferbare Ersatzteile zu Ihrem Produkt finden Sie Online unter: <a href="https://www.endress.com/en/instrumentation-services">https://www.endress.com/en/instrumentation-services</a>, Produkt-Wurzel: TM411. Bei Ersatzteilbestellungen die Seriennummer des Gerätes angeben! Mit Hilfe der Seriennummer wird die Einstecklänge IL automatisch berechnet.

#### Gewicht

0,5 ... 2,5 kg (1 ... 5,5 lbs) für die Standardausführungen.

#### Werkstoffe

Hals- und Schutzrohr, Messeinsatz, Prozessanschluss.

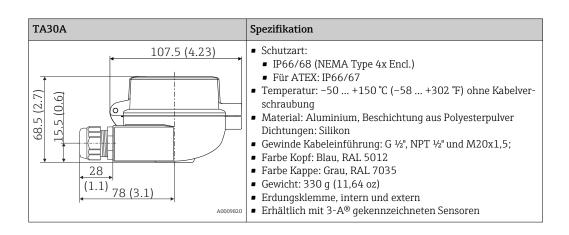
Die in der folgenden Tabelle angegebenen Dauereinsatztemperaturen sind nur als Richtwerte bei Verwendung der jeweiligen Materialien in Luft und ohne nennenswerte Druckbelastung zu verstehen. In einem abweichenden Einsatzfall, insbesondere beim Auftreten hoher mechanischer Belas-

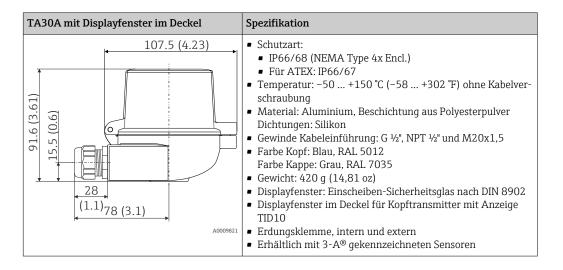
tungen oder in aggressiven Medien, können die maximalen Einsatztemperaturen deutlich reduziert sein.

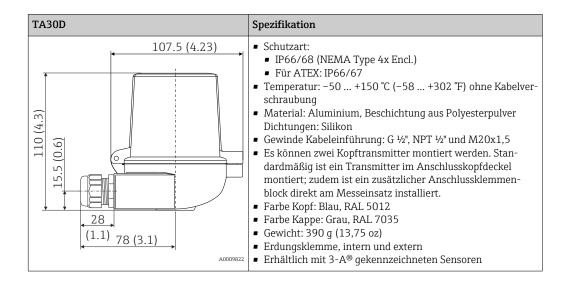
| Bezeichnung                                      | Kurzformel                                    | Empfohlene max.<br>Dauereinsatztem-<br>peratur an Luft                                                                                                                                                                             | Eigenschaften                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|--------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| AISI 316L<br>(entspricht 1.4404<br>oder 1.4435)  | X2CrNiMo17-13-2,<br>X2CrNiMo18-14-3           | 650 °C (1202 °F) <sup>1)</sup>                                                                                                                                                                                                     | <ul> <li>Austenitischer, nicht rostender Stahl</li> <li>Generell hohe Korrosionsbeständigkeit</li> <li>Durch Molybdän-Zusatz besonders korrosionsbeständig in chlorhaltigen und sauren, nicht oxidierenden Umgebungen (z.B. niedrig konzentrierte Phosphorund Schwefelsäuren, Essig- und Weinsäuren)</li> <li>Erhöhte Beständigkeit gegen interkristalline Korrosion und Lochfraß</li> <li>Das medienberührte Teil aus einem Schutzrohr aus 316L oder 1.4435+316L mit einer Pasivierung mit einer 3 %igen Schwefelsäure</li> </ul> |  |  |  |  |
| 1.4435+316L,<br>Delta-Ferrit < 1%<br>bzw. < 0,5% | zen gleichzeitig erfüll<br>prozessberührenden | f-Spezifikationen (1.4435 sowie 316L) werden bezgl. ihrer Analysegren-<br>erfüllt. Zusätzlich erfolgt die Begrenzung des Delta-Ferrit Gehalts der<br>nden Teile auf <1% bzw. <0,5%.<br>ßnähten (in Anlehnung an die Basler Norm 2) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |

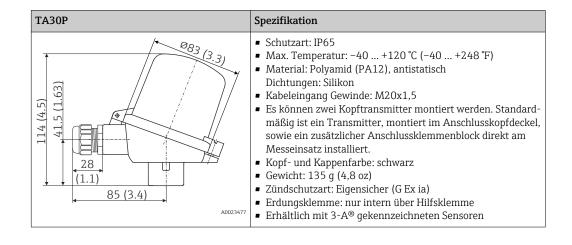
 Bei geringen Druckbelastungen und in nicht korrosiven Medien ist bedingt ein Einsatz bis zu 800 °C (1472 °F) möglich. Für weitere Informationen kontaktieren Sie Ihren Endress+Hauser Vertrieb.

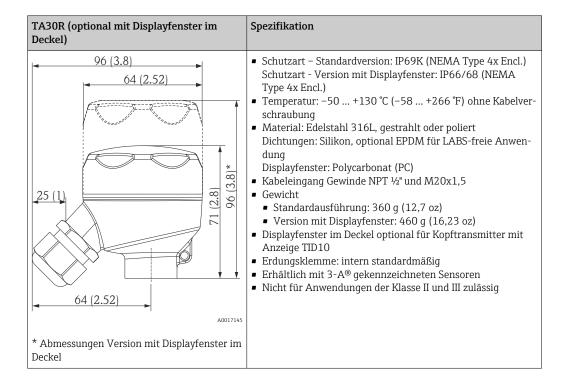
### Oberflächenrauigkeit

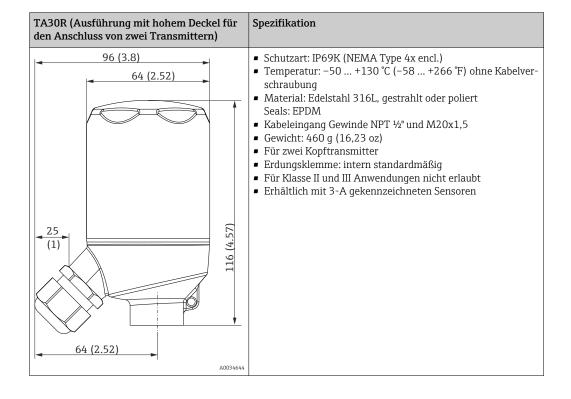

### Angaben für Oberflächen in Kontakt mit dem Prozess/Produkt:

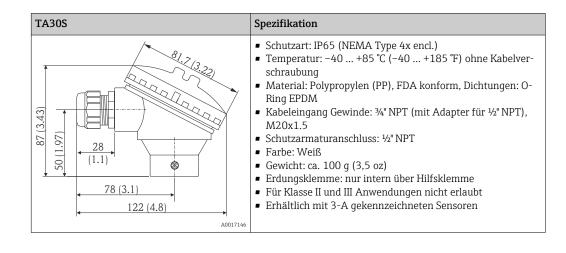

| Standardoberfläche, mechanisch poliert <sup>1)</sup>               | $R_a \le 0.76 \ \mu m \ (30 \ \mu in)$                |
|--------------------------------------------------------------------|-------------------------------------------------------|
| Mechanisch poliert <sup>1)</sup> , geschwabbelt <sup>2)</sup>      | $R_a \le 0.38 \ \mu m \ (15 \ \mu in)$                |
| Mechanisch poliert <sup>1)</sup> , geschwabbelt und elektropoliert | $R_a \le 0.38 \ \mu m (15 \ \mu in) + elektropoliert$ |


- 1) Oder jede beliebige andere Oberflächenausführung konform zu  $R_a$  max
- 2) Nicht konform zu ASME BPE


### Anschlussköpfe


Als Besonderheit bietet Endress+Hauser Anschlussköpfe mit optimaler Zugänglichkeit der Anschlussklemmen für vereinfachte Installation und Wartung.









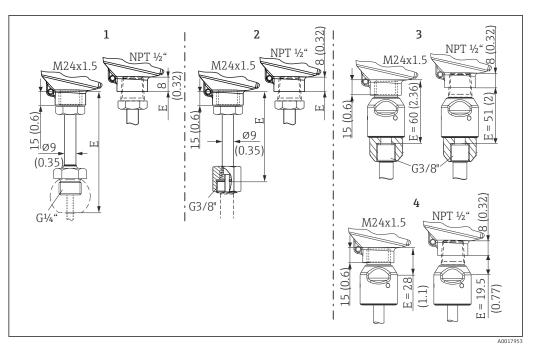





## Kabelverschraubungen und Stecker 1)

| Тур                                                                  | Passend für<br>Kabeleinfüh-<br>rung                                | Schutzart           | Temperaturbereich            | Geeigneter Kabeldurchmesser |  |
|----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------|------------------------------|-----------------------------|--|
| Kabelverschraubung, Polyamid, Blau<br>(Anzeige Ex-i-Schaltung)       | NPT ½"                                                             | IP68                | −30 +95 °C<br>(−22 +203 °F)  | 7 12 mm (0,27 0,47 in)      |  |
| Vahakrarahyanhung Dakramid                                           | NPT ½", NPT ¾",<br>M20x1,5 (optio-<br>nal 2x Kabelein-<br>führung) | IP68                | -40 +100 °C<br>(-40 +212 °F) |                             |  |
| Kabelverschraubung, Polyamid                                         | NPT ½",<br>M20x1,5 (optio-<br>nal 2x Kabelein-<br>führung)         | IP69K               | −20 +95 °C<br>(−4 +203 °F)   | 5 9 mm (0,19 0,35 in)       |  |
| Kabelverschraubung für Staub-Ex<br>Bereich, Polyamid                 | NPT ½",<br>M20x1,5                                                 | IP68                | −20 +95 °C<br>(−4 +203 °F)   |                             |  |
| Kabelverschraubung für Staub-Ex<br>Bereich, Messing vernickelt       | M20x1,5                                                            | IP68 (NEMA Type 4x) | −20 +130 °C<br>(−4 +266 °F)  |                             |  |
| M12 Stecker, 4-polig, 316 (PROFIBUS®<br>PA, Ethernet-APL™, IO-Link®) | NPT ½",<br>M20x1,5                                                 | IP67                | -40 +105 °C<br>(-40 +221 °F) | -                           |  |
| M12 Stecker, 8-polig, 316                                            | M20x1,5                                                            | IP67                | −30 +90 °C<br>(−22 +194 °F)  | -                           |  |
| 7/8" Stecker, 4-polig, 316 (FOUNDA-<br>TION™ Fieldbus, PROFIBUS® PA) | NPT ½",<br>M20x1,5                                                 | IP67                | -40 +105 °C<br>(-40 +221 °F) | -                           |  |

### 1) Auswahl abhängig von Produkt und Konfiguration




Für druckfestgekapselte Thermometer werden keine Kabelverschraubungen angeboten.

### Halsrohr

Halsrohr in Standardausführung oder optional mit Schnellverschluss iTHERM QuickNeck.

- Werkzeugloser Ausbau des Messeinsatzes:
  - Zeit-/Kosteneinsparung bei häufig zu kalibrierenden Messstellen
  - Vermeidung von Verdrahtungsfehlern
- Schutzklasse IP69K



■ 12 Abmessungen Halsrohr Typ TE411, verschiedene Ausführungen, jeweils mit M24x1,5 oder NPT ½"-Gewinde zum Anschlusskopf

- 1 Mit Aussengewinde G¼" für Klemmverschraubung TK40, 3-A gekennzeichnet
- 2 Mit G3/8" Überwurfmutter für Schutzrohrversion: Ø6 mm (¼ in), Ø12,7 mm (0,5 in) sowie T- und Eck-Schutzrohrvarianten
- 3 Schnellverschluss iTHERM QuickNeck für Schutzrohrversion: Ø6 mm (¼ in), Ø12,7 mm (0,5 in) sowie T- und Eck-Schutzrohrvarianten
- 4 Schnellverschluss iTHERM QuickNeck Oberteil, zum Einbau in ein vorhandenes Schutzrohr mit iTHERM QuickNeck

### Schutzrohr

### Prozessanschlüsse

Alle Angaben in mm (in).

| Тур                                                      | Ausfüh- |                    | A                    | Technische Eigenschaften |                    |                    |                                                                   |
|----------------------------------------------------------|---------|--------------------|----------------------|--------------------------|--------------------|--------------------|-------------------------------------------------------------------|
| 1ур                                                      | rung    | Φd                 | ΦD                   | Φi                       | Φa                 | h                  | Technische Eigenschaften                                          |
| Aseptische Rohrverschraubung nach<br>DIN 11864-1, Form A | DN25    | 26 mm<br>(1,02 in) | 42,9 mm<br>(1,7 in)  | 26 mm<br>(1,02 in)       | 29 mm<br>(1,14 in) | 9 mm<br>(0,35 in)  | P <sub>max.</sub> = 40 bar (580 psi) 3-A gekennzeichnet und EHEDG |
| ØD h                                                     | DN40    | 38 mm<br>(1,5 in)  | 54,9 mm<br>(2,16 in) | 38 mm<br>(1,5 in)        | 41 mm<br>(1,61 in) | 10 mm<br>(0,39 in) | zertifiziert  ASME BPE-konform                                    |

### Zum Einschweißen

| Тур               | Ausführung <sup>1)</sup>     | Abmessungen                                                                                            | Technische Eigenschaften                                                                                                                             |
|-------------------|------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Einschweißadpater | 1: Zylindrisch <sup>2)</sup> | $\phi$ d = 12,7 mm ( $^{1}\!\!/_{2}$ in), U = Eintauchlänge ab Unterkante Gewinde, T = 12 mm (0,47 in) |                                                                                                                                                      |
|                   | 2: Zylindrisch <sup>3)</sup> | $\phi$ d x h = 12 mm (0,47 in) x 40 mm (1,57 in),<br>T = 55 mm (2,17 in)                               |                                                                                                                                                      |
| ød h ød h ød      | 3: Zylindrisch               | $\phi$ d x h = 30 mm (1,18 in) x 40 mm (1,57 in)                                                       |                                                                                                                                                      |
|                   | 4: Kugelig-zylindrisch       | $\phi$ d x h = 30 mm (1,18 in) x 40 mm (1,57 in)                                                       |                                                                                                                                                      |
|                   | 5: Kugelig                   | $\phi$ d = 25 mm (0,98 in)<br>h = 24 mm (0,94 in)                                                      | <ul> <li>P<sub>max.</sub> ist abhängig vom Einschweißprozess</li> <li>3-A gekennzeichnet und EHEDG zertifiziert</li> <li>ASME BPE-konform</li> </ul> |
| h T h U 5         |                              |                                                                                                        |                                                                                                                                                      |

- Auswahl abhängig von Produkt und Konfiguration für Schutzrohr  $\phi$ 12,7 mm (½ in) für Schutzrohr  $\phi$ 6 mm (¼ in) 1)
- 2) 3)

### Lösbarer Prozessanschluss

|                                          | Technische Eigenschaften |                    |                    |                    |                    |                                                                                                                                                                  |
|------------------------------------------|--------------------------|--------------------|--------------------|--------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Milchrohrverschraubung nach DIN 11851    | -                        |                    |                    |                    |                    |                                                                                                                                                                  |
| B  O  O  O  O  O  O  O  O  O  O  O  O  O | <b>.</b>                 |                    |                    |                    | A0009561           | <ul> <li>3-A gekennzeichnet und EHEDG<br/>zertifiziert (nur mit EHEDG bescheinigtem und selbstzentrierendem<br/>Dichtring).</li> <li>ASME BPE-konform</li> </ul> |
| Ausführung <sup>1)</sup>                 | P <sub>max.</sub>        |                    |                    |                    |                    |                                                                                                                                                                  |
|                                          | ΦD                       | A                  | В                  | Φi                 | Φa                 | ¹ max.                                                                                                                                                           |
| DN25                                     | 44 mm<br>(1,73 in)       | 30 mm<br>(1,18 in) | 10 mm<br>(0,39 in) | 26 mm<br>(1,02 in) | 29 mm<br>(1,14 in) | 40 bar (580 psi)                                                                                                                                                 |

10 mm

(0,39 in)

10 mm

(0,39 in)

11 mm

(0,43 in)

35 mm

(1,38 in)

 $41\,\mathrm{mm}$ 

(1,61 in)

53 mm

(2,1 in)

40 bar (580 psi)

40 bar (580 psi)

25 bar (363 psi)

32 mm

(1,26 in)

38 mm

(1,5 in)

50 mm

(1,97 in)

1) Rohrleitungen gemäß DIN 11850

DN32

DN40

DN50

50 mm

(1,97 in)

56 mm

(2,2 in)

68 mm

(2,68 in)

36 mm

(1,42 in)

 $42 \ mm$ 

(1,65 in)

54 mm

(2,13 in)

| Тур                                                                                     | Ausführung <sup>1)</sup>                    | Ab                   | messungen                      | Technische Eigen-                                                                                                                   | Konformität                  |  |
|-----------------------------------------------------------------------------------------|---------------------------------------------|----------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|
| Тур                                                                                     | φd <sup>2)</sup>                            | ΦD                   | Φa                             | schaften                                                                                                                            | Komorimat                    |  |
| Clamp nach DIN 32676 3)                                                                 | Microclamp <sup>4)</sup> DN8 (0,5"), Form A | 25 mm                | -                              | <ul> <li>P<sub>max.</sub> = 16 bar</li> <li>(232 psi), abhängig</li> </ul>                                                          | -                            |  |
| ØD                                                                                      | Tri-clamp DN8<br>(0,5"), Form B             | (0,98 in)            | -                              | vom Clamp-Ring<br>und der geeigneten<br>Dichtung                                                                                    | DIN 32676 <sup>5)</sup>      |  |
|                                                                                         | Clamp DN10-20,<br>Form B                    | 34 mm<br>(1,34 in)   | 16 25,3 mm<br>(0,63 0,99 in)   | <ul><li>3-A gekennzeichnet</li></ul>                                                                                                | DIN 32676                    |  |
|                                                                                         | Clamp DN25-40<br>(1"-1,5"), Form B          | 50,5 mm<br>(1,99 in) | 29 42,4 mm<br>(1,14 1,67 in)   | ■ P <sub>max.</sub> = 16 bar<br>(232 psi), abhängig<br>vom Clamp-Ring                                                               | ASME BPE Typ B;<br>DIN 32676 |  |
| Øa Øa                                                                                   | Clamp DN50 (2"),<br>Form B                  | 64 mm<br>(2,52 in)   | 44,8 55,8 mm<br>(1,76 2,2 in)  | und der geeigneten<br>Dichtung                                                                                                      | ASME BPE Typ B;<br>DIN 32676 |  |
| ØD A                                                                                    | Clamp DN63,5<br>(2,5"), Form B              | 77,5 mm<br>(3,05 in) | 68,9 75,8 mm<br>(2,71 2,98 in) | <ul> <li>3-A gekennzeichnet<br/>und EHEDG zertifi-<br/>ziert (in Verbindung</li> </ul>                                              | ASME BPE Typ B;<br>DIN 32676 |  |
| Form B  AD009566                                                                        | Clamp DN70-76,5<br>(3"), Form B             | 91 mm<br>(3,58 in)   | > 75,8 mm (2,98 in)            | mit der Combifit- Dichtung)  Kann mit "Novaseptic Connect (NA Connect)" verwendet werden, der einen frontbündigen Einbau ermöglicht | ASME BPE Typ B;<br>DIN 32676 |  |
| Form A: Konform zu ASME BPE Typ A<br>Form B: Konform zu ASME BPE Typ B<br>und DIN 32676 |                                             |                      |                                |                                                                                                                                     |                              |  |

- 1)

- Auswahl abhängig von Produkt und Konfiguration Rohre gemäß ISO 2037 und BS 4825 Teil 1 ersetzt die ISO 2852 Microclamp (nicht enthalten in DIN 32676); keine Standardrohre Durchmesser Nut = 20 mm 2) 3) 4)
- 5)

| Тур                                                                                        | Ausführung <sup>1)</sup>              | Technische Eigenschaften                                                         |
|--------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------|
| Metallisches Dichtsystem  14 8 (0.3) (0.55)  M12  22 (0.87)  T  A0009574  A0020856  14 G½" | Schutzrohrdurchmesser 6 mm (¼ in)     | P <sub>max.</sub> = 16 bar (232 psi)  Maximales Drehmoment = 10 Nm (7,38 lbf ft) |
| 14 8 (0.31)<br>(0.55)<br>37 (1.46)<br>T                                                    | Schutzrohr-Durchmesser 9 mm (0,35 in) | P <sub>max.</sub> = 16 bar (232 psi)  Maximales Drehmoment = 10 Nm (7,38 lbf ft) |
| 20 (0.8) 14 8 (0.31)<br>80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                             | Schutzrohr-Durchmesser 8 mm (0,31 in) | P <sub>max.</sub> = 16 bar (232 psi)  Maximales Drehmoment = 10 Nm (7,38 lbf ft) |

1) Auswahl abhängig von Produkt und Konfiguration

| Ausführung | Technische Eigenschaften |
|------------|--------------------------|
|            |                          |
| D45        |                          |
|            |                          |
|            |                          |
|            | D45                      |

|                                                         |                                                                 |                      | Abmessungen          |           |                                                                                                                                                                                                                                                 |
|---------------------------------------------------------|-----------------------------------------------------------------|----------------------|----------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Тур                                                     | Ausführung G                                                    | L1 Gewinde-<br>länge | A                    | 1 (SW/AF) | Technische Eigenschaften                                                                                                                                                                                                                        |
| Gewinde nach ISO 228 (für Liquiphant-Einschweißadapter) | G¾" für<br>FTL20/31/33-<br>Adapter<br>G¾" für FTL50-<br>Adapter | 16 mm (0,63 in)      | 25,5 mm (1 in)       | 32        | <ul> <li>P<sub>max.</sub> = 25 bar (362 psi) bei max. 150 °C (302 °F)</li> <li>P<sub>max.</sub> = 40 bar (580 psi) bei max. 100 °C (212 °F)</li> <li>Informationen zu hygienischer Konformität in Verbindung mit FTL31/33/50 Adapter</li> </ul> |
| U A0009572                                              | G1" für FTL50-<br>Adapter                                       | 18,6 mm<br>(0,73 in) | 29,5 mm<br>(1,16 in) | 41        | siehe TI00426F.                                                                                                                                                                                                                                 |

| Тур                                       | Ausfüh- |                    | A                    | Abmessunge         | Technische Eigenschaften |                    |                                                                                                                                      |
|-------------------------------------------|---------|--------------------|----------------------|--------------------|--------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Тур                                       | rung    | Ød                 | ΦA                   | ΦB                 | М                        | h                  | Technische Eigenschaften                                                                                                             |
| APV Inline                                |         |                    |                      |                    |                          |                    |                                                                                                                                      |
| ØB<br>M<br>M<br>Ød<br>U<br>ØA<br>A0018435 | DN50    | 69 mm<br>(2,72 in) | 99,5 mm<br>(3,92 in) | 82 mm<br>(3,23 in) | 2xM8                     | 19 mm<br>(0,75 in) | <ul> <li>P<sub>max.</sub> = 25 bar (362 psi)</li> <li>3-A gekennzeichnet und EHEDG zertifiziert</li> <li>ASME BPE-konform</li> </ul> |

| Тур                   | Ausfüh-            |                    | Abmes               | sungen              |                      | Technische Eigenschaften |                                       |
|-----------------------|--------------------|--------------------|---------------------|---------------------|----------------------|--------------------------|---------------------------------------|
| Тур                   | rung <sup>1)</sup> | ΦD                 | φA                  | ΦВ                  | h                    | P <sub>max</sub> .       |                                       |
| Varivent <sup>®</sup> | Тур В              | 31 mm<br>(1,22 in) | 105 mm<br>(4,13 in) | -                   | 22 mm<br>(0,87 in)   |                          |                                       |
| ØA<br>ØB              | Тур F              | 50 mm<br>(1,97 in) | 145 mm<br>(5,71 in) | 135 mm<br>(5,31 in) | 24 mm<br>(0,95 in)   | 10 bar                   | ■ 3-A gekennzeichnet und              |
| U                     | Тур N              | 68 mm<br>(2,67 in) | 165 mm<br>(6,5 in)  | 155 mm<br>(6,1 in)  | 24,5 mm<br>(0,96 in) | (145 psi)                | EHEDG zertifiziert ■ ASME BPE-konform |
| A0021307              |                    |                    |                     |                     |                      |                          |                                       |

Der VARINLINE®-Gehäuseanschlussflansch eignet sich zum Einschweißen in den Kegel- oder Klöpperboden in Tanks oder in Behälter mit kleinem Durchmesser (≤ 1,6 m (5,25 ft)) und bis zu einer Wandstärke von 8 mm (0,31 in).

Der Varivent® Typ F kann für Installationen in Rohre in Kombination mit dem VARINLINE®-Gehäuseanschlussflansch nicht verwendet werden.

### 1) Auswahl abhängig von Produkt und Konfiguration

| Тур                        | Technische Eigenschaften |                       |                       |                                    |  |  |
|----------------------------|--------------------------|-----------------------|-----------------------|------------------------------------|--|--|
| Varivent® für VARINLINE®-G | J ØD ØD                  |                       |                       |                                    |  |  |
| A 6":1 1)                  |                          | Abmessungen           |                       | D.                                 |  |  |
| Ausführung <sup>1)</sup>   | ΦD                       | φi                    | Φa                    | - P <sub>max.</sub>                |  |  |
|                            |                          | DN40: 38 mm (1,5 in)  | DN40: 41 mm (1,61 in) |                                    |  |  |
|                            |                          | DN50: 50 mm (1,97 in) | DN50: 53 mm (2,1 in)  | DN40 bis DN65:<br>16 bar (232 psi) |  |  |
|                            |                          | DN65: 66 mm (2,6 in)  | DN65: 70 mm (2,76 in) | ]                                  |  |  |

| Ausführung <sup>1)</sup>          |                 | D.                        |                          |                                        |
|-----------------------------------|-----------------|---------------------------|--------------------------|----------------------------------------|
| Austunrung                        | ΦD              | φi                        | Φa                       | P <sub>max.</sub>                      |
|                                   |                 | DN40: 38 mm (1,5 in)      | DN40: 41 mm (1,61 in)    |                                        |
|                                   |                 | DN50: 50 mm (1,97 in)     | DN50: 53 mm (2,1 in)     | DN40 bis DN65:<br>16 bar (232 psi)     |
|                                   |                 | DN65: 66 mm (2,6 in)      | DN65: 70 mm (2,76 in)    | F                                      |
| Typ N, nach DIN 11866,<br>Reihe A | 68 mm (2,67 in) | DN80: 81 mm (3,2 in)      | DN80: 85 mm (3,35 in)    |                                        |
|                                   |                 | DN100: 100 mm (3,94 in)   | DN100: 104 mm (4,1 in)   | DN80 bis DN150:                        |
|                                   |                 | DN125: 125 mm (4,92 in)   | DN125: 129 mm (5,08 in)  | 10 bar (145 psi)                       |
|                                   |                 | DN150: 150 mm (5,9 in)    | DN150: 154 mm (6,06 in)  |                                        |
|                                   | 68 mm (2,67 in) | 38,4 mm (1,51 in)         | 42,4 mm (1,67 in)        | 42,4 mm (1,67 in) bis                  |
|                                   |                 | 44,3 mm (1,75 in)         | 48,3 mm (1,9 in)         | 60,3 mm (2,37 in):                     |
| Typ N, nach EN ISO 1127,          |                 | 56,3 mm (2,22 in)         | 60,3 mm (2,37 in)        | 16 bar (232 psi)                       |
| Reihe B                           |                 | 72,1 mm (2,84 in)         | 76,1 mm (3 in)           | 76,1 mm (3 in) bis                     |
|                                   |                 | 82,9 mm (3,26 in)         | 42,4 mm (3,5 in)         | 114,3 mm (4,5 in):                     |
|                                   |                 | 108,3 mm (4,26 in)        | 114,3 mm (4,5 in)        | 10 bar (145 psi)                       |
|                                   |                 | OD 1½": 34,9 mm (1,37 in) | OD 1½": 38,1 mm (1,5 in) |                                        |
| Typ N, nach DIN 11866,<br>Reihe C | 68 mm (2,67 in) | OD 2": 47,2 mm (1,86 in)  | OD 2": 50,8 mm (2 in)    | OD 1½" bis OD 2½":<br>16 bar (232 psi) |
|                                   |                 | OD 2½": 60,2 mm (2,37 in) | OD 2½": 63,5 mm (2,5 in) | 10 out (252 po.)                       |
| Typ N, nach DIN 11866,<br>Reihe C | 68 mm (2,67 in) | OD 3": 73 mm (2,87 in)    | OD 3": 76,2 mm (3 in)    | OD 3" bis OD 4":<br>10 bar (145 psi)   |

| Тур                               |                 |                          |                        | Technische Eigenschaften |
|-----------------------------------|-----------------|--------------------------|------------------------|--------------------------|
|                                   |                 | OD 4": 97,6 mm (3,84 in) | OD 4": 101,6 mm (4 in) |                          |
| Typ F, nach DIN 11866,<br>Reihe C | 50 mm (1,97 in) | OD 1": 22,2 mm (0,87 in) | OD 1": 25,4 mm (1 in)  | 16 bar (232 psi)         |

#### 1) Auswahl abhängig von Produkt und Konfiguration

Aufgrund der geringen Eintauchlänge U wird der Einsatz von iTHERM QuickSens Messeinsätzen empfohlen.

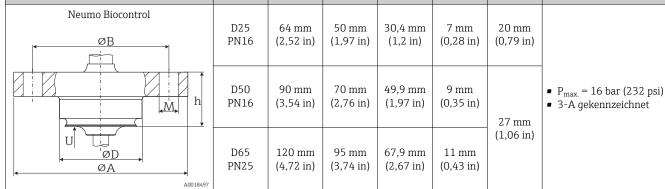
T-Schutzrohr, optimiert (keine Schweißung, kein Totraum)

| т                                                                  | Ausführung <sup>1)</sup> |                      | М                     | aße in mm (in) |                       | Taskwiaska Firawaskaftan                                                     |
|--------------------------------------------------------------------|--------------------------|----------------------|-----------------------|----------------|-----------------------|------------------------------------------------------------------------------|
| Тур                                                                | Au                       | isrunrung '          | ΦD                    | L              | s 2)                  | Technische Eigenschaften                                                     |
| T-Schutzrohr zum Einschweißen nach<br>DIN 11865 (Reihe A, B und C) | Reihe<br>A               | DN10 PN25            | 13 mm<br>(0,51 in)    |                |                       |                                                                              |
| G3/8"                                                              |                          | DN15 PN25            | 19 mm<br>(0,75 in)    |                |                       |                                                                              |
|                                                                    |                          | DN20 PN25            | 23 mm<br>(0,91 in)    |                | 1,5 mm<br>(0,06 in)   |                                                                              |
| (0.71)                                                             |                          | DN25 PN25            | 29 mm<br>(1,14 in)    |                |                       |                                                                              |
| Ø3.1 (0.71) m                                                      |                          | DN32 PN25            | 32 mm<br>(1,26 in)    |                |                       |                                                                              |
| (0.12) s                                                           | Reihe<br>B               | DN13,5 PN25          | 13,5 mm<br>(0,53 in)  |                | 1,6 mm<br>(0,063 in)  |                                                                              |
| Ø4.5 (0.18)<br>0 4.5 (0.18)                                        |                          | DN17,2 PN25          | 17,2 mm<br>(0,68 in)  | 48 mm          |                       | P <sub>max.</sub> = 25 bar (362 psi)<br>3-A gekennzeichnet <sup>3)</sup> und |
| L                                                                  |                          | DN21,3 PN25          | 21,3 mm<br>(0,84 in)  | (1,89 in)      |                       | EHEDG zertifiziert <sup>3)</sup> ■ ASME BPE-konform <sup>3)</sup>            |
|                                                                    |                          | DN26,9 PN25          | 26,9 mm<br>(1,06 in)  |                |                       |                                                                              |
|                                                                    |                          | DN33,7 PN25          | 33,7 mm<br>(1,33 in)  |                | 2 mm<br>(0,08 in)     |                                                                              |
|                                                                    | Reihe<br>C               | DN12,7 PN25<br>(½")  | 12,7 mm<br>(0,5 in)   |                | 1,65 mm<br>(0,065 in) |                                                                              |
|                                                                    |                          | DN19,05<br>PN25 (¾") | 19,05 mm<br>(0,75 in) |                |                       |                                                                              |
|                                                                    |                          | DN25,4 PN25<br>(1")  | 25,4 mm<br>(1 in)     |                |                       |                                                                              |
|                                                                    |                          | DN38,1 PN25<br>(1½") | 38,1 mm<br>(1,5 in)   |                |                       |                                                                              |

- 1) Auswahl abhängig von Produkt und Konfiguration
- Rohrwandstärke
- 2) 3) Gültig für  $\geq$  DN25. Der Radius  $\geq$  3,2 mm ( $\frac{1}{8}$  in) kann bei geringeren Nennweiten nicht beibehalten werden.

Eck-Schutzrohr, optimiert (keine Schweißung, kein Totraum)

| Т                                                                    | Ausführung <sup>1)</sup> |                      |                       | Abmessu            | ngen               |                      | Talada Piana da fan                                                                                   |
|----------------------------------------------------------------------|--------------------------|----------------------|-----------------------|--------------------|--------------------|----------------------|-------------------------------------------------------------------------------------------------------|
| Тур                                                                  |                          |                      | ΦD                    | L1                 | L2                 | s 2)                 | Technische Eigenschaften                                                                              |
| Eck-Schutzrohr zum Einschweißen nach<br>DIN 11865 (Reihe A, B und C) | Reihe A                  | DN10 PN25            | 13 mm<br>(0,51 in)    | 22 mm<br>(0,87 in) | 24 mm<br>(0,95 in) | 1,5 mm<br>(0,06 in)  |                                                                                                       |
| L2 G3/8"                                                             |                          | DN15 PN25            | 19 mm<br>(0,75 in)    | 25 mm              | (0,98 in)          |                      |                                                                                                       |
|                                                                      |                          | DN20 PN25            | 23 mm<br>(0,91 in)    | 27 mm              | (1,06 in)          |                      |                                                                                                       |
|                                                                      |                          | DN25 PN25            | 29 mm<br>(1,14 in)    | 30 mm              | (1,18 in)          |                      |                                                                                                       |
| Ø3.1<br>(0.12)<br>83 (3.79)                                          |                          | DN32 PN25            | 35 mm<br>(1,38 in)    | 33 mm              | (1,3 in)           |                      |                                                                                                       |
| 11<br>S<br>O.7 (0.03)<br>83 (3)                                      | Reihe B                  | DN13,5<br>PN25       | 13,5 mm<br>(0,53 in)  | 22 mm<br>(0,87 in) | 24 mm<br>(0,95 in) | 1,6 mm<br>(0,063 in) |                                                                                                       |
| <u>Ø4.5</u> (0.18) pp                                                |                          | DN17,2<br>PN25       | 17,2 mm<br>(0,68 in)  | 24 mm              | (0,95 in)          |                      | <ul> <li>P<sub>max.</sub> = 25 bar (362 psi)</li> <li>3-A gekennzeichnet <sup>3)</sup> und</li> </ul> |
| (0.18) <u>QD</u>                                                     |                          | DN21,3<br>PN25       | 21,3 mm<br>(0,84 in)  | 26 mm              | (1,02 in)          |                      | EHEDG zertifiziert <sup>3)</sup> ■ ASME BPE-konform <sup>3)</sup>                                     |
|                                                                      |                          | DN26,9<br>PN25       | 26,9 mm<br>(1,06 in)  | 29 mm              | (1,14 in)          |                      |                                                                                                       |
|                                                                      |                          | DN33,7<br>PN25       | 33,7 mm<br>(1,33 in)  | 32 mm              | (1,26 in)          | 2,0 mm<br>(0,08 in)  |                                                                                                       |
|                                                                      | Reihe C                  | DN12,7<br>PN25 (½")  | 12,7 mm<br>(0,5 in)   | 22 mm<br>(0,87 in) | 24 mm<br>(0,95 in) | 1,65 mm              |                                                                                                       |
|                                                                      |                          | DN19,05<br>PN25 (¾") | 19,05 mm<br>(0,75 in) | 25 mm              | (0,98 in)          | (0,065 in)           |                                                                                                       |
|                                                                      |                          | DN25,4<br>PN25 (1")  | 25,4 mm<br>(1 in)     | 28 mm              | (1,1 in)           |                      |                                                                                                       |
|                                                                      |                          | DN38,1<br>PN25 (1½") | 38,1 mm<br>(1,5 in)   | 35 mm              | (1,38 in)          |                      |                                                                                                       |


- 1) Auswahl abhängig von Produkt und Konfiguration
- 2) Rohrwandstärke
- 3) Gültig für  $\geq$  DN25. Der Radius  $\geq$  3,2 mm ( $\frac{1}{8}$  in) kann bei geringeren Nennweiten nicht beibehalten werden.

Aufgrund der geringen Eintauchlänge U wird bei den Prozessanschlüssen T-/Winkelstück nach DIN 11865 generell der Einsatz von iTHERM QuickSens Messeinsätzen empfohlen.

| Тур               | Ausführung, Abmessungen ΦD x h                                   | Technische Eigenschaften                                                                                       |
|-------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Ingold Verbindung |                                                                  |                                                                                                                |
|                   | $\phi$ 25 mm (0,98 in) x 30 mm (1,18 in)<br>x = 1,5 mm (0,06 in) | P <sub>max.</sub> = 25 bar (362 psi)<br>Eine Dichtung ist im Lieferum-                                         |
| h                 | $\phi$ 25 mm (0,98 in) x 46 mm (1,81 in)<br>x = 6 mm (0,24 in)   | fang enthalten. Material<br>V75SR: Konform mit FDA, 3-A<br>Sanitary Standard 18-03 Class<br>1 und USP Class VI |
| A0009573          |                                                                  |                                                                                                                |

| Trm                                                                           | Ausführung |                    | Abmessungen         |                | Technische Eigenschaften           |  |
|-------------------------------------------------------------------------------|------------|--------------------|---------------------|----------------|------------------------------------|--|
| Тур                                                                           | Austunrung | ΦD                 | ФΑ                  | h              | rechnische Eigenschaften           |  |
| SMS 1147<br>ØA                                                                | DN25       | 32 mm<br>(1,26 in) | 35,5 mm<br>(1,4 in) | 7 mm (0,28 in) |                                    |  |
| ØD →                                                                          | DN38       | 48 mm<br>(1,89 in) | 55 mm<br>(2,17 in)  | 8 mm (0,31 in) |                                    |  |
| A0009568                                                                      | DN51       | 60 mm<br>(2,36 in) | 65 mm<br>(2,56 in)  | 9 mm (0,35 in) | P <sub>max.</sub> = 6 bar (87 psi) |  |
| <ol> <li>Überwurfmutter</li> <li>Dichtring</li> <li>Gegenanschluss</li> </ol> |            |                    |                     |                |                                    |  |
| Der Gegenanschluss muss den Dichtungsring passend fixieren.                   |            |                    |                     |                |                                    |  |

|                  | Ausfüh- Abmessungen |           |           |          |           | Technische Eigenschaften |                          |
|------------------|---------------------|-----------|-----------|----------|-----------|--------------------------|--------------------------|
| Тур              | rung                | φA        | ΦВ        | ΦD       | Φd        | h                        | rechnische Eigenschaften |
| Neumo Biocontrol | D25                 | 64 mm     | 50 mm     | 30.4 mm  | 7 mm      | 20 mm                    |                          |
| ØB               | PN16                | (2,52 in) | (1,97 in) | (1,2 in) | (0,28 in) | (0,79 in)                |                          |

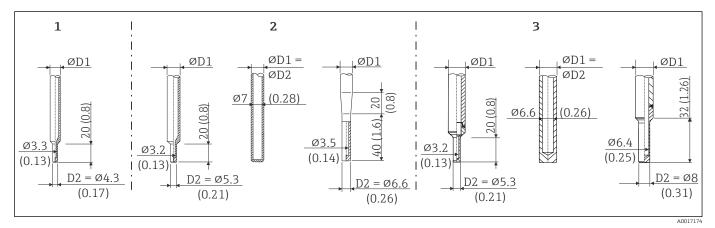


Aufgrund von Deformationen können die 316L-Klemmverschraubungen nur einmal verwendet werden. Das gilt für alle Komponenten der Klemmverschraubungen. Eine Austauschklemmverschraubung muss in einer anderen Position befestigt werden (Nuten im Schutzrohr).

PEEK-Klemmverschraubungen dürfen niemals bei einer Temperatur verwendet werden, die niedriger ist als die Temperatur während des Befestigens der Klemmverschraubung, da andernfalls aufgrund der Wärmekontraktion des PEEK die Dichtigkeit verloren geht.

Für höhere Anforderungen werden SWAGELOCK oder ähnliche Befestigungen dringend empfohlen.

### Klemmverschraubung


|                                          | Ausführung 1)                                                   |                                                          | Abmessunger        | l                  |                                                                                                                                                                                                                             |
|------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|--------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Тур                                      | Kugelförmig oder zylind-<br>risch                               | Φdi                                                      | ΦD                 | h                  | Technische Eigenschaften <sup>2)</sup>                                                                                                                                                                                      |
| A0058214                                 | Kugelförmig<br>Material Dichtkonus 316L                         | 6,3 mm<br>(0,25 in) <sup>3)</sup>                        | 25 mm<br>(0,98 in) | 33 mm<br>(1,3 in)  | ■ P <sub>max.</sub> = 50 bar (725 psi) ■ T <sub>max.</sub> für 316L Dichtkonus = +200 °C (+392 °F), Anzugsdrehmoment = 40 Nm                                                                                                |
| Klemmverschraubung TK40 zum Einschweißen | Kugelförmig<br>Material Dichtkonus PEEK<br>Gewinde G1⁄4"        | 6,3 mm<br>(0,25 in) <sup>3)</sup>                        | 25 mm<br>(0,98 in) | 33 mm<br>(1,3 in)  | <ul> <li>P<sub>max.</sub> = 10 bar (145 psi)</li> <li>T<sub>max.</sub> für PEEK Dichtkonus = +200 °C (+392 °F), Anzugsdrehmoment = 10 Nm</li> <li>TK40 PEEK Dichtkonus ist EHEDG getestet und 3-A gekennzeichnet</li> </ul> |
| A0058543                                 | Zylindrisch<br>Material Dichtkonus<br>ELASTOSIL®<br>Gewinde G½" | 6,2 mm<br>(0,24 in) <sup>3)</sup><br>9,2 mm<br>(0,36 in) | 30 mm<br>(1,18 in) | 57 mm<br>(2,24 in) | ■ P <sub>max</sub> = 10 bar (145 psi) ■ T <sub>max</sub> für ELASTOSIL® Dichtkonus = +200 °C (+392 °F), Anzugsdrehmoment = 5 Nm ■ Die ELASTOSIL®-Klemmverschraubung ist EHEDG getestet, 3-A gekennzeichnet                  |

- 1)
- 2)
- Auswahl abhängig von Produkt und Konfiguration Alle Druckangaben gelten für zyklische Temperaturbelastung Für Messeinsatz- oder Schutzrohrdurchmesser  $\emptyset$ d = 6 mm (0,236 in).

### Form der Spitze

Die thermische Ansprechzeit, die Reduzierung des Strömungsquerschnitts und die auftretende mechanische Belastung im Prozess sind die Auswahlkriterien bei der Spitzenform. Vorteile beim Einsatz von reduzierten oder verjüngten Thermometerspitzen:

- Ein kleinere Spitzenform führt zu einer geringeren Beeinflussung des Strömungsverhalten der mediumsführenden Rohrleitung.
- Das Strömungsverhalten wird optimiert und die Stabilität des Schutzrohrs somit erhöht.
- Endress+Hauser bietet mehrere Schutzrohrspitzen für alle Anforderungen:
  - Reduzierte Spitze mit Ø4,3 mm (0,17 in) sowie Ø5,3 mm (0,21 in): Geringe Wandstärken führen zu deutlich reduzierten Ansprechzeiten der Gesamtmessstelle.
  - Verjüngte Spitze mit Ø6,6 mm (0,26 in) sowie reduzierte Spitze mit Ø8 mm (0,31 in): Höhere Wandstärken eignen sich besonders für Anwendungen mit erhöhter mechanischer Beanspruchung oder Verschleiß (z. B. Lochfraß, Abrasion etc.).



■ 15 Verfügbare Schutzrohrspitzen (reduziert, gerade oder verjüngt)

| PosNr. | Schutzrohr (ØD1) |                                                                                                                                    | Messeinsatz (ØID)                                                            |
|--------|------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 1      | Ø6 mm (½ in)     | Reduzierte Spitze                                                                                                                  | Ø3 mm (½ in)                                                                 |
| 2      | Ø9 mm (0,35 in)  | <ul> <li>Reduzierte Spitze mit Ø5,3 mm (0,21 in)</li> <li>Gerade Spitze</li> <li>Verjüngte Spitze mit Ø6,6 mm (0,26 in)</li> </ul> | <ul> <li>Ø3 mm (½ in)</li> <li>Ø6 mm (¼ in)</li> <li>Ø3 mm (½ in)</li> </ul> |
| 3      | Ø12,7 mm (½ in)  | <ul> <li>Reduzierte Spitze mit Ø5,3 mm (0,21 in)</li> <li>Gerade Spitze</li> <li>Reduzierte Spitze mit Ø8 mm (0,31 in)</li> </ul>  | <ul> <li>Ø3 mm (½ in)</li> <li>Ø6 mm (¼ in)</li> <li>Ø6 mm (¼ in)</li> </ul> |

Die mechanische Belastbarkeit in Abhängigkeit der Einbau- und Prozessbedingungen kann online im Schutzrohrberechnungstool: Sizing Thermowell in der Endress+Hauser Applicator Software überprüft werden. https://portal.endress.com/webapp/applicator

# Zertifikate und Zulassungen

Aktuelle Zertifikate und Zulassungen zum Produkt stehen unter www.endress.com auf der jeweiligen Produktseite zur Verfügung:

- 1. Produkt mit Hilfe der Filter und Suchmaske auswählen.
- 2. Produktseite öffnen.
- 3. **Downloads** auswählen.

52

### Lebensmittel-/produktberührte Materialien (FCM)

Die Lebensmittel-/produktberührten Materialien (FCM) des Thermometers entsprechen folgenden europäischen Verordnungen:

- (EC) Nr. 1935/2004, Art. 3, Absatz 1, Art. 5 und 17 über Materialien und Gegenstände, die dazu bestimmt sind, mit Lebensmitteln in Berührung zu kommen.
- (EC) Nr. 2023/2006 über die gute Herstellungspraxis (Good Manufacturing Practice, GMP) für Materialien und Gegenstände, die dazu bestimmt sind, mit Lebensmitteln in Berührung zu kommen
- (EU) Nr. 10/2011 über Materialien und Gegenstände aus Kunststoff, die dazu bestimmt sind, mit Lebensmitteln in Berührung zu kommen.
- 3-A-Autorisierungs-Nr. 1144, 3-A Sanitary Standard 74-07. Gelistete Prozessanschlüsse.  $\rightarrow$  🖺 42
- ASME BPE (letzte Ausgabe), Konformitätszertifikat bestellbar für ausgewiesene Optionen.
- FDA-konform
- Alle mediumsberührenden Oberflächen sind frei von Inhaltsstoffen tierischen Ursprungs (ADI/ TSE) und enthalten keine Materialien von Rindern oder anderen tierischen Ursprungs.

#### CRN-Zulassung

Die CRN-Zulassung steht nur für bestimmte Schutzrohrausführungen zur Verfügung. Diese werden während der Konfiguration des Gerätes entsprechend gekennzeichnet und angezeigt.

Ausführliche Bestellinformationen sind bei der nächstgelegenen Vertriebsorganisation www.addresses.endress.com oder im Download-Bereich unter www.endress.com verfügbar:

- 1. Land auswählen
- 2. Downloads auswählen
- 3. Suchbereich: Zulassungen/Zulassungstyp auswählen
- 4. Produktcode oder Gerät eingeben
- 5. Suche starten

### Oberflächenreinheit

- Öl-/Fettfrei gereinigt für O<sub>2</sub>-Anwendungen, optional
- LABS-frei (LABS = lackbenetzungsstörende Substanzen nach DIL0301), optional

#### Materialbeständigkeit

Materialbeständigkeit - inklusive Gehäuse - gegenüber folgenden Reinigungs-/Desinfektionsmitteln der Firma Ecolab:

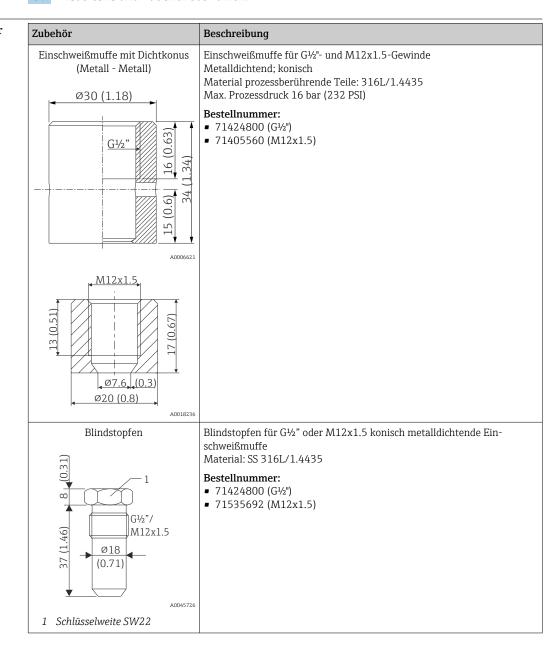
- P3-topax 66
- P3-topactive 200
- P3-topactive 500
- P3-topactive OKTO
- Sowie demineralisiertem Wasser

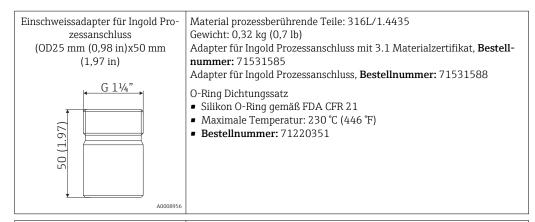
## Bestellinformationen

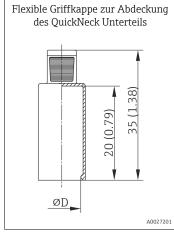
Ausführliche Bestellinformationen sind bei der nächstgelegenen Vertriebsorganisation www.addresses.endress.com oder im Produktkonfigurator unter www.endress.com auswählbar:

- 1. Produkt mit Hilfe der Filter und Suchmaske auswählen.
- 2. Produktseite öffnen.
- 3. **Konfiguration** auswählen.

### Produktkonfigurator - das Tool für individuelle Produktkonfiguration


- Tagesaktuelle Konfigurationsdaten
- Je nach Gerät: Direkte Eingabe von messstellenspezifischen Angaben wie Messbereich oder Bediensprache
- Automatische Überprüfung von Ausschlusskriterien
- Automatische Erzeugung des Bestellcodes mit seiner Aufschlüsselung im PDF- oder Excel-Ausgabeformat
- Direkte Bestellmöglichkeit im Endress+Hauser Onlineshop


## Zubehör


Aktuell verfügbares Zubehör zum Produkt ist über www.endress.com auswählbar:

- 1. Produkt mit Hilfe der Filter und Suchmaske auswählen.
- 2. Produktseite öffnen.
- 3. Ersatzteile und Zubehör auswählen.

### Gerätespezifisches Zubehör







Durchmesser ØD: 24 ... 26 mm (0,94 ... 1,02 in) Material: Thermoplastisches Polyolefin - Elastomer (TPE), frei von Weichmachern Maximale Temperatur:  $+150\,^{\circ}\text{C}$  ( $+302\,^{\circ}\text{F}$ ) Bestellnummer:  $71275424\,^{\circ}$ 

### Einschweißadapter

Detaillierte Informationen über Bestellcode und hygienische Konformität der Adapter und Ersatzteile, siehe Technische Information (TI00426F).

| Einschweißadapter                           | Werkstoff     | Rauhigkeit µm (µin) prozessseitig |
|---------------------------------------------|---------------|-----------------------------------|
| A0008246  G 34", d=29, Montage am Rohr      | 316L (1.4435) | ≤1,5 (59,1)                       |
| A0008251  G 3/4", d=50, Montage am Behälter | 316L (1.4435) | ≤0,8 (31,5)                       |

| A0008256  G ¾", d=55, mit Flansch | 316L (1.4435) | ≤0,8 (31,5) |
|-----------------------------------|---------------|-------------|
| A0011924 G 1", d=53, ohne Flansch | 316L (1.4435) | ≤0,8 (31,5) |
| A0008248 G 1", d=60, mit Flansch  | 316L (1.4435) | ≤0,8 (31,5) |
| A0008253  G 1" ausrichtbar        | 316L (1.4435) | ≤0,8 (31,5) |



Maximaler Prozessdruck für die Einschweißadapter:

- 25 bar (362 PSI) bei maximal 150 °C (302 °F)
- 40 bar (580 PSI) bei maximal 100 °C (212 °F)

### $Services pezifisches \ Zubeh\"{o}r$

### Modems/Edge Devices

### Commubox FXA195 USB/HART Modem

Verbindet eigensichere Smart-Messumformer mit HART-Protokoll mit der USB-Schnittstelle eines Laptops/PCs. Damit wird die Fernbedienung der Messumformer mit FieldCare ermöglicht.



Technische Information TI00404F

www.endress.com/fxa195

56

### Software

#### DeviceCare SFE100

DeviceCare ist ein Konfigurationswerkzeug für Feldgeräte von Endress+Hauser mittels folgender Kommunikationsprotokolle: HART, PROFIBUS DP/PA, FOUNDATION Fieldbus, IO/Link, Modbus, CDI und Endress+Hauser Serviceschnittstellen.



Technische Information TI01134S

www.endress.com/sfe100

#### FieldCare SFE500

FieldCare ist ein Konfigurationswerkzeug für Feldgeräte von Endress+Hauser und Fremdherstellern basierend auf DTM-Technologie.

Folgende Kommunikationsprotokolle werden unterstützt: HART, WirelessHART, PROFIBUS, FOUNDATION Fieldbus, Modbus, IO-Link, EtherNet/IP, PROFINET und PROFINET APL.



Technische Information TI00028S

www.endress.com/sfe500

#### Netilion

Mit dem Netilion IIoT-Ökosystem ermöglicht Endress+Hauser, die Anlagenleistung zu optimieren, Arbeitsabläufe zu digitalisieren, Wissen weiterzugeben und die Zusammenarbeit zu verbessern. Auf der Grundlage jahrzehntelanger Erfahrung in der Prozessautomatisierung bietet Endress+Hauser der Prozessindustrie ein IIoT-Ökosystem, mit dem Erkenntnisse aus Daten gewonnen werden. Diese Erkenntnisse können zur Optimierung von Prozessen eingesetzt werden, was zu einer höheren Anlagenverfügbarkeit, Effizienz, Zuverlässigkeit und letztlich zu einer profitableren Anlage führt.



www.netilion.endress.com

#### Field Xpert SMT50

Universeller, leistungsstarker Tablet-PC zur Gerätekonfiguration.



Technische Information TI0155S

www.endress.com/smt50

### Field Xpert SMT77 via WLAN

Universeller, leistungsstarker Tablet-PC zur Gerätekonfiguration in Ex-Zone-1-Bereichen.



Technische Information TI01418S

www.endress.com/smt77

### SmartBlue-App

SmartBlue ist eine von Endress+Hauser entwickelte App, welche eine einfache, drahtlose Feldgerätekonfiguration mittels Bluetooth® oder WLAN ermöglicht. Durch die mobile Zugriffsmöglichkeit auf Diagnose- und Prozessinformationen kann der Anwender durch SmartBlue Zeit einsparen, selbst in gefährlichen und schwer zugänglichen Umgebungen.





4002220

QR-Code zur kostenlosen Endress+Hauser SmartBlue-App

### Kommunikationsspezifisches Zubehör

### Konfigurationskit TXU10

Konfigurationskit für PC-programmierbare Transmitter – FDT/DTM-basiertes Plant Asset Management Tool, FieldCare/DeviceCare und Schnittstellenkabel (4-poliger Steckverbinder) für PC mit USB-Port.

Nähere Informationen: www.endress.com

### **Onlinetools**

Produktinformationen über den gesamten Lebenszyklus des Geräts sind erhältlich unter: www.endress.com/onlinetools

#### Systemkomponenten

Prozessanzeiger der RIA-Produktfamilie

Gut ablesbare Prozessanzeiger mit unterschiedlichen Funktionen: Schleifengespeiste Anzeiger zur Darstellung von 4-20mA-Werten, Anzeige von bis zu vier HART-Variablen, Prozessanzeiger mit Steuereinheit, Grenzwertüberwachung, Sensorspeisung und galvanischer Trennung.

Universeller Einsatz durch internationale Ex-Zulassungen, zum Schalttafeleinbau oder zur Feldmontage.

Nähere Informationen: www.endress.com

#### Speisetrenner der RN Series

Ein- oder zweikanalige Speisetrenner zur sicheren Trennung von 0/4-20mA-Normsignalstromkreisen mit bidirektionaler HART-Übertragung. In der Option Signaldoppler wird das Eingangssignal an zwei galvanisch getrennte Ausgänge übertragen. Das Gerät verfügt über einen aktiven und einen passiven Stromeingang, die Ausgänge können aktiv oder passiv betrieben werden.

Nähere Informationen: www.endress.com

Data Manager der RSG-Produktfamilie

Data Manager sind flexible und leistungsstarke Systeme um Prozesswerte zu organisieren. Optional sind bis zu 20 Universaleingänge und bis zu 14 Digitaleingänge zum direkten Anschluss von Sensoren, optional mit HART, möglich. Die gemessenen Prozesswerte werden übersichtlich auf dem Display dargestellt, sicher aufgezeichnet, auf Grenzwerte überwacht und analysiert. Die Werte können über gängige Kommunikationsprotokolle an übergeordnete Systeme weitergeleitet und über einzelne Anlagenmodule miteinander verbunden werden.

Nähere Informationen: www.endress.com

# Ergänzende Dokumentation

Im Download-Bereich der Endress+Hauser Internetseite (www.endress.com/downloads) sind folgende Dokumenttypen verfügbar:



Eine Übersicht zum Umfang der zugehörigen Technischen Dokumentation bieten:

- Device Viewer (www.endress.com/deviceviewer): Seriennummer vom Typenschild eingeben
- Endress+Hauser Operations App: Seriennummer vom Typenschild eingeben oder Matrixcode auf dem Typenschild einscannen

### Kurzanleitung (KA)

### Schnell zum 1. Messwert

Die Anleitung liefert alle wesentlichen Informationen von der Warenannahme bis zur Erstinbetriebnahme.

### Betriebsanleitung (BA)

### Nachschlagewerk

Die Anleitung liefert alle Informationen, die in den verschiedenen Phasen des Lebenszyklus vom Gerät benötigt werden: Von der Produktidentifizierung, Warenannahme und Lagerung über Montage, Anschluss, Bedienungsgrundlagen und Inbetriebnahme bis hin zur Störungsbeseitigung, Wartung und Entsorqung.

### Sicherheitshinweise (XA)

Abhängig von der Zulassung liegen dem Gerät bei Auslieferung Sicherheitshinweise (XA) bei. Diese sind integraler Bestandteil der Betriebsanleitung.



Auf dem Typenschild ist angegeben, welche Sicherheitshinweise (XA) für das jeweilige Gerät relevant sind.

### Handbuch Funktionale Sicherheit (FY)

Abhängig von der Zulassung SIL ist das Handbuch Funktionale Sicherheit (FY) ein integraler Bestandteil der Betriebsanleitung und gilt ergänzend zu Betriebsanleitung, technischer Information und ATEX-Sicherheitshinweisen.



Die für die Schutzfunktion abweichenden Anforderungen sind im Handbuch Funktionale Sicherheit (FY) beschrieben.





www.addresses.endress.com