Manuel de mise en service Analyseur de gaz OXY5500

ATEX/IECEx/UKEX : Zone 2 cCSAus : Classe I, Division 2

Sommaire

1	Informations relatives au document	4
1.1	Mises en garde	4
1.2	Symboles sur l'appareil	4
1.3	Conformité à la législation américaine sur les exportations	4
2	Introduction	5
2.1	Documents associés	5
2.2	À qui ce manuel est-il destiné	5
2.3	Comment utiliser le présent manuel	5
2.4	Mises en garde générales et précautions d'emploi	6
2.5	Documents fournis avec l'analyseur OXY5500	7
2.6	Adresse du fabricant	7
2.7	À propos de l'analyseur OXY5500	7
2.8	Familiarisation avec l'analyseur	7
2.9	Directives de sécurité	.11
3	Sécurité	12
3.1	Risques potentiels pouvant affecter le personnel	12
4	Installation	13
4 4.1	Installation Contenu des caisses d'expédition	13 .13
4 4.1 4.2	Installation Contenu des caisses d'expédition Inspection de l'analyseur	13 13 13
4 4.1 4.2 4.3	Installation Contenu des caisses d'expédition Inspection de l'analyseur Installation de l'analyseur	13 13 13 13
4 4.1 4.2 4.3 4.4	Installation Contenu des caisses d'expédition Inspection de l'analyseur Installation de l'analyseur Équipement de base requis	13 13 13 13
4 4.1 4.2 4.3 4.4 4.5	Installation Contenu des caisses d'expédition Inspection de l'analyseur Ínstallation de l'analyseur Équipement de base requis Matériel et outils nécessaires à l'installation	13 13 13 13 13
4 4.1 4.2 4.3 4.4 4.5 4.6	Installation Contenu des caisses d'expédition Inspection de l'analyseur Installation de l'analyseur Équipement de base requis Matériel et outils nécessaires à l'installation Montage de l'analyseur	13 13 13 13 13 14
4 4.1 4.2 4.3 4.4 4.5 4.6 4.7	Installation Contenu des caisses d'expédition Inspection de l'analyseur Installation de l'analyseur Équipement de base requis Matériel et outils nécessaires à l'installation Montage de l'analyseur Raccordement de l'alimentation électrique de l'analyseur	13 13 13 13 14 14
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8	Installation Contenu des caisses d'expédition Inspection de l'analyseur Installation de l'analyseur Équipement de base requis Matériel et outils nécessaires à l'installation Montage de l'analyseur Raccordement de l'alimentation électrique de l'analyseur Connexions de l'analyseur	13 13 13 13 14 14 14 15 17
 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 	Installation Contenu des caisses d'expédition Inspection de l'analyseur Installation de l'analyseur Équipement de base requis Matériel et outils nécessaires à l'installation Montage de l'analyseur Raccordement de l'alimentation électrique de l'analyseur Connexions de l'analyseur Connexions des sorties analogiques/entrées analogiques	13 13 13 13 14 14 15 17
 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 	Installation Contenu des caisses d'expédition Inspection de l'analyseur Installation de l'analyseur Équipement de base requis Matériel et outils nécessaires à l'installation Montage de l'analyseur Raccordement de l'alimentation électrique de l'analyseur Connexions de l'analyseur Connexions de sorties analogiques/entrées analogiques	13 13 13 14 14 15 17 17 20
 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.1 	Installation Contenu des caisses d'expédition Inspection de l'analyseur Installation de l'analyseur Équipement de base requis Matériel et outils nécessaires à l'installation Montage de l'analyseur Raccordement de l'alimentation électrique de l'analyseur Connexions de l'analyseur Connexions des sorties analogiques/entrées analogiques Démarrage de l'analyseur	13 13 13 13 14 14 15 17 17 20 20
 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.1 5.1 5.2 	Installation Contenu des caisses d'expédition Inspection de l'analyseur Installation de l'analyseur Équipement de base requis Matériel et outils nécessaires à l'installation Montage de l'analyseur Raccordement de l'alimentation électrique de l'analyseur Connexions de l'analyseur Connexions de sorties analogiques/entrées analogiques Démarrage de l'analyseur Aperçu de la configuration	13 13 13 13 14 14 15 17 17 20 20
 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.1 5.1 5.2 5.3 	Installation Contenu des caisses d'expédition Inspection de l'analyseur Installation de l'analyseur Équipement de base requis Matériel et outils nécessaires à l'installation Montage de l'analyseur Raccordement de l'alimentation électrique de l'analyseur Connexions de l'analyseur Connexions de sorties analogiques/entrées analogiques Démarrage de l'analyseur Aperçu de la configuration Menu Measurement	13 13 13 13 14 14 15 17 20 20 20
 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.1 5.2 5.3 5.4 	Installation Contenu des caisses d'expédition Inspection de l'analyseur Installation de l'analyseur Équipement de base requis Matériel et outils nécessaires à l'installation Montage de l'analyseur Raccordement de l'alimentation électrique de l'analyseur Connexions de l'analyseur Connexions de sorties analogiques/entrées analogiques Démarrage de l'analyseur Aperçu de la configuration Menu Measurement Menu Measurement settings (Meas. settings).	13 13 13 13 14 14 15 17 17 20 20 20 22 23
 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.1 5.2 5.3 5.4 5.5 	Installation Contenu des caisses d'expédition Inspection de l'analyseur Installation de l'analyseur Équipement de base requis Matériel et outils nécessaires à l'installation Montage de l'analyseur Raccordement de l'alimentation électrique de l'analyseur Connexions de l'analyseur Connexions de l'analyseur Connexions des sorties analogiques/entrées analogiques Démarrage de l'analyseur Aperçu de la configuration Menu Measurement Menu Measurement settings (Meas. settings) Menu Device Settings	13 13 13 14 14 15 17 17 20 20 20 22 23 24

5.7	Menu Digitals	25
5.8	Menu Analog Output Settings (Analogues)	27
5.9	Options du menu Measurement	28
5.10	Options de menu Measurement settings (Meas. settings)	32
5.11	Options du menu Device Settings	36
5.12	Options du menu "Sensor"	38
5.13	Purge des détendeurs de bouteille et de l'analyseur	46
5.14	Options du menu Digitals	52
5.15	Options du menu Analog Output Settings (Analogues)	53
6	Communication Modbus	. 58
6.1	Définition du protocole	58
6.2	Exemples	68
7	Anneve A · Spécifications	70
7 1	Notes techniques	71
7.1	Diàces de rechange	/ 1 73
7.2	Tieces de rechange	ر /
8	Annexe B : Maintenance et suppression des défauts	. 75
8.1	Sortie optique	75
8.2	Nettoyage de l'instrument	75
8.3	Durée de vie du capteur de température	76
8.4	Remplacement du fusible	76
8.5	Remplacement du module électro-optique	77
8.6	Montage/remplacement du capteur de pression	78
8.7	Démontage et remplacement de la sonde d'oxygène	80
8.8	Correction des codes d'erreur	85
8.9	Recommandations pour la mesure correcte	85
8.10	Amélioration des performances	86
8.11	Suppression des défauts	86
8.12	SAV	87
8.13	Emballage et stockage	87
8.14	Stockage	88
8.15	Avis de non-responsabilité	88
8.15 8.16	Avis de non-responsabilité Garantie	88 88

1 Informations relatives au document

1.1 Mises en garde

Structure des informations	Signification
AVERTISSEMENT Cause (/conséquences) Conséquences en cas de non-respect (si applicable) > Mesure corrective	Ce symbole signale une situation dangereuse. Si cette situation n'est pas évitée, elle peut entraîner des blessures graves voire mortelles.
▲ ATTENTION Cause (/conséquences) Conséquences en cas de non-respect (si applicable) ▶ Mesure corrective	Ce symbole signale une situation dangereuse. Si cette situation n'est pas évitée, elle peut entraîner des blessures de gravité légère à moyenne.
AVIS Cause / Situation Conséquences en cas de non-respect (si applicable) > Mesure / remarque	Ce symbole signale des situations qui pourraient entraîner des dégâts matériels.

1.2 Symboles sur l'appareil

Symbole	Description
	Le symbole de haute tension avertit les personnes de la présence d'une tension électrique suffisamment élevée pour provoquer des blessures ou des dommages. Dans certains secteurs, la haute tension correspond à une tension dépassant un certain seuil. L'équipement et les conducteurs sous haute tension sont soumis à des exigences de sécurité et des procédures spéciales.
X	Le symbole DEEE indique que le produit ne doit pas être éliminé sous forme de déchets non triés et doit être remis à des centres de collecte séparés pour la récupération et le recyclage.
CE	Le marquage CE indique la conformité aux exigences essentielles en matière de santé, de sécurité et d'environnement de la directive 2014/34/UE pour les produits vendus dans l'Espace économique européen (EEE).
UK CA	Le marquage UKCA indique la conformité aux exigences essentielles en matière de santé, de sécurité et d'environnement de la directive UKSI 2016:1107 pour les produits vendus sur le marché en Grande-Bretagne (Angleterre, Pays de Galles et Écosse).

1.3 Conformité à la législation américaine sur les exportations

La politique d'Endress+Hauser est strictement conforme à la législation américaine de contrôle des exportations telle que présentée en détail sur le site web du <u>Bureau of Industry and Security</u> du ministère américain du Commerce.

2 Introduction

L'analyseur optique d'oxygène OXY5500 d'Endress+Hauser est un appareil autonome conçu pour détecter l'oxygène dans des gaz tels que le gaz naturel et l'air. Sa conception est basée sur la technologie d'extinction de fluorescence, qui permet d'obtenir des valeurs mesurées très stables et référencées en interne.

2.1 Documents associés

Les instructions relatives à la sécurité du produit sont jointes à la commande du système d'analyseur. Il convient de lire toutes les consignes de sécurité nécessaires avant d'installer ou d'utiliser l'analyseur. Ce document fait partie intégrante de l'ensemble des documents énumérés dans le tableau suivant.

Référence	Type de document	Description
BA02195C	Manuel de mise en service	Fournit une vue d'ensemble de l'analyseur et des instructions de montage étape par étape
BA02196C	Manuel de mise en service du système de préparation d'échantillons (SCS)	Détails de mise en service, de configuration et de maintenance pour le système de préparation d'échantillons
SD02868C	Instructions relatives au logiciel de service	Instructions relatives à l'utilisation du logiciel de service OXY5500 pour le diagnostic et la maintenance des systèmes d'analyseurs optiques d'oxygène OXY5500
TI01656C	Information technique	Fournit des données techniques sur l'appareil avec un aperçu des modèles associés disponibles
XA02754C	Conseils de sécurité	Conseils de sécurité pour l'analyseur optique d'oxygène OXY5500

Pour les manuels d'instruction supplémentaires, voir ci-dessous :

- Pour les commandes personnalisées : Pour toute demande de documentation spécifique à la commande, s'adresser au canal de vente local ; à cette fin, consulter le site web Endress+Hauser
 (https://endress.com/contact) pour obtenir la liste des canaux de vente locaux. La documentation spécifique
 à la commande est localisée par le numéro de série de l'analyseur (SN).
- **Pour les commandes standard :** Consulter la page produit sur le site web Endress+Hauser pour télécharger les manuels publiés pour l'analyseur : www.endress.com.

2.2 À qui ce manuel est-il destiné

Ce manuel doit être lu et référencé par toute personne qui installe, utilise ou a un contact direct avec l'analyseur.

2.3 Comment utiliser le présent manuel

Il convient de prendre le temps de se familiariser avec le contenu du présent manuel de mise en service en consultant le sommaire.

Un certain nombre d'options et d'accessoires sont disponibles pour les analyseurs OXY5500. Ce manuel a pour but de traiter les options et accessoires les plus courants. Les figures, tableaux et graphiques ont été inclus pour apporter une compréhension visuelle de l'analyseur et de ses fonctions. Des symboles spéciaux sont également utilisés pour fournir à l'utilisateur des informations essentielles sur la configuration et/ou le fonctionnement du système. Il convient d'accorder une attention particulière à ces informations.

2.3.1 Conventions utilisées dans le présent manuel

Outre les symboles et instructions, le présent manuel contient des "liens automatiques" permettant à l'utilisateur de naviguer rapidement entre les différentes sections du présent manuel. Ces liens comprennent les références aux tableaux, aux figures et aux sections et sont identifiés par un curseur en forme de doigt pointé lorsqu'on passe la souris sur le texte. Il suffit de cliquer sur le lien pour accéder à la référence associée.

2.4 Mises en garde générales et précautions d'emploi

Des icônes d'instruction sont fournies dans ce manuel pour avertir l'utilisateur des dangers potentiels, des informations importantes et des conseils précieux. La section ci-après répertorie les symboles et types d'avertissements et de précautions associés, qu'il convient d'observer lors de l'entretien de l'analyseur.

2.4.1 Symboles d'avertissement

Symbole	Description
WARNING - DO NOT OPEN WHEN AN EXPLOSIVE ATMOSPHERE MAY BE PRESENT. AVERTISSEMENT - NE PAS OUVRIR SI UNE ATMOSPHERE EXPLOSIVE PEUT ETRE PRESENTE	Suivre les instructions pour éviter une éventuelle explosion.
WARNING - POTENTIAL ELECTROSTATIC CHARGING HAZARD – SEE INSTRUCTIONS AVERTISSEMENT - DANGER DE CHARGE ELECTROSTATIQUE POTENTIELS - VOIR LES INSTRUCTIONS	Suivre les instructions pour éviter les décharges électrostatiques.
WARNING - USE DAMP CLOTH TO CLEAN DISPLAY AND KEYPAD TO AVOID STATIC ELECTRICITY DISCHARGE. 	Utiliser des outils appropriés pour éviter les décharges électrostatiques.
WARNING - EXPLOSION HAZARD – SUBSTITUTION OF COMPO- NENTS MAY IMPAIR SUITABILITY FOR CLASS I, DIVISION 2 OR ZONE 2 AVERTISSEMENT - RISQUE D'EXPLOSION – LA SUBSTITUTIOND E COMPOSANTSP EUTR ENDRE CE MATERIEL INACCEPTABLE POUR LES EMPLACEMENTS DE CLASSE I, DIVISION 2 ou ZONE 2	La substitution de composants peut annuler la certification.
WARNING - EXPLOSION HAZARD - DO NOT REPLACE UNLESS POWER HAS BEEN SWITCHED OFF OR THE AREA IS KNOWN TO BE NON-HAZARDOUS AVERTISSEMENT - RISQUE D'EXPLOSION - COUPER LE COURANT OU S'ASSURER QUE L'EMPLACEMENT EST DESIGNE NON DANGEREUX AVANT DE REMPLACER LE	Couper l'alimentation avant de remplacer des composants pour éviter tout risque d'explosion.
WARNING - EXPLOSION HAZARD - DO NOT DISCONNECT EQUIP- MENT UNLESS POWER HAS BEEN SWITCHED OFF OR THE AREA IS KNOWN TO BE NON-HAZARDOUS 	Couper l'alimentation avant de déconnecter le système pour éviter tout risque d'explosion.
CAUTION: DO NOT OPERATE MACHINE WITH GROUNDING WIRE DISCONNECTED ATTENTION: NE PAS METTRE L'APPAREIL EN MARCHE QUAND LE CON DUCTEUR DE MISE A LA TERRE EST DEBRANCHE.	Veiller à ce que le fil de mise à la terre est toujours raccordé pendant le fonctionnement.

2.4.2 Symboles d'instruction

Symbole	Description
	Notes générales et informations importantes concernant l'installation et le fonctionnement de l'analyseur.
	Le non-respect de l'ensemble des instructions risque de provoquer un incendie.
	Le non-respect de l'ensemble des instructions risque d'endommager l'analyseur ou d'entraîner son dysfonctionnement.
	Spécifications de tension et d'intensité maximales pour les fusibles.

2.5 Documents fournis avec l'analyseur OXY5500

Chaque analyseur OXY5500 expédié de l'usine est emballé avec des documents et des logiciels qui doivent être utilisés pour le fonctionnement du système, en fonction de la configuration du système. En règle générale, chaque envoi comprend les documents suivants :

- Manuel de mise en service (copie électronique)
- Manuel de mise en service du système de préparation d'échantillons (SCS) (copie électronique)
- Manuel d'utilisation du logiciel de service OXY5500 (copie électronique) (et logiciel)
- Conseils de sécurité OXY5500 (copie papier)
- Certificat d'étalonnage (copie papier)

2.6 Adresse du fabricant

Endress+Hauser 11027 Arrow Route Rancho Cucamonga, CA 91730 U.S.A www.endress.com

2.7 À propos de l'analyseur OXY5500

L'OXY5500 est un analyseur d'oxygène de précision autonome, logé dans un boîtier en acier inoxydable protégé contre les infiltrations. Grâce à sa conception robuste et à sa faible consommation d'énergie, l'OXY5500 est prêt pour une application intérieure ou extérieure en Classe I, Division 2, Groupes A, B, C et D, T3. En outre, l'analyseur est également marqué comme (x)II 3 G, Ex ec IIC T3 Gc IP66.

L'OXY5500 est conçu pour trois types de gammes de mesure : 0 à 1 000 ppmv, 0 à 5 % O2, et 0 à 20 % O2. Cet analyseur a été spécialement conçu pour les mesures de gaz à l'aide d'un capteur d'oxygène à fibre optique monté dans un té de compression de 1/4 in. L'écran LCD de l'instrument et l'enregistreur de données sont intégrés au système. Les sorties analogiques sont programmables pour fournir des données sur l'oxygène et la température. L'interface numérique et le logiciel PC (inclus) sont utilisés pour le stockage des données internes et l'enregistrement des données externes. Le contrôle complet, y compris l'étalonnage et les réglages, peut être effectué par l'intermédiaire du PC.

2.7.1 Température

Les capteurs d'oxygène optiques d'Endress+Hauser doivent être utilisés avec une sonde RTD (capteur de température Pt100) dans les gammes de température indiquées en Annexe $A \rightarrow \textcircled{B}$. Chaque instrument est fourni avec la sonde RTD pour la compensation et pour enregistrer les variations de température.

2.7.2 Sensibilité transverse

Les capteurs peuvent être utilisés dans des mélanges méthanol-eau et éthanol-eau, ainsi que dans du méthanol et de l'éthanol purs.

Endress+Hauser recommande d'éviter les autres solvants organiques, tels que l'acétone, le chloroforme ou le chlorure de méthylène, qui peuvent faire gonfler la matrice du capteur et la rendre inutilisable.

Aucun des trois types de capteur ne présente de problèmes de sensibilité transverse avec le CO_2 , le H_2S ou le SO_2 (espèces emblématiques).

2.8 Familiarisation avec l'analyseur

La figure montre un exemple d'analyseur OXY5500. Le câblage du signal et l'alimentation de l'analyseur sont raccordés du côté droit de l'analyseur (face à l'unité). Sur la face avant de l'analyseur, l'écran LCD sert d'interface utilisateur à l'analyseur. L'électronique de commande de l'analyseur commande le capteur, collecte le signal et fournit les signaux de sortie de mesure.

Figure 1. Analyseur OXY5500

Pos.	Description
1	Clavier
2	Sonde d'oxygène
3	Capteur de pression (en option)
4	Sonde RTD (Pt100)
5	Écran graphique
6	Port de signalisation
7	Port d'alimentation de l'analyseur
8	Boulon de mise à la terre du châssis

À l'intérieur de l'armoire se trouve le module électro-optique, qui fournit l'alimentation et les autres connexions à l'analyseur. Voir la figure pour une vue interne de l'analyseur.

Le système de préparation d'échantillons (SCS) en option contient des instruments de débitmétrie pour la boucle de dérivation et pour contrôler le débit vers le capteur d'oxygène. Un dispositif de réduction de la pression est également installé pour réduire et contrôler la pression de l'échantillon envoyé au capteur d'oxygène. En fonction de l'application et/ou des conditions ambiantes, le SCS peut également contenir un chauffage et un thermostat pour maintenir l'intérieur d'un boîtier optionnel à une température constante. Voir le manuel de mise en service du système de préparation d'échantillons (SCS) pour plus d'informations.

2.8.1 Sonde d'oxygène

Le capteur d'oxygène est constitué d'une fibre optique en polymère (POF) dont l'extrémité distale est polie et recouverte d'une feuille planaire sensible à l'oxygène. L'extrémité de la fibre optique en polymère est recouverte d'un tube en acier de haute qualité pour protéger à la fois le matériau du capteur et la fibre optique. Voir la figure. Généralement, la fibre est recouverte d'un matériau sensible optiquement isolé, afin d'exclure la lumière ambiante de l'élément sensible de la fibre.

2.8.1.1 Représentation schématique de la sonde d'oxygène

Voir la figure 5 pour une représentation schématique de la sonde d'oxygène à l'état de traces.

Figure 2. Représentation schématique de la sonde d'oxygène à l'état de traces 43

Pos.	Description
1	Élément sensible
2	Connecteur SMA

Figure 3. Vue intérieure de l'armoire (version AC)

Pos.	Description
1	Module électro-optique
2	Boîtier du fusible
3	Connecteur SMA
4	Connexion de l'alimentation AC/DC
5	Connecteurs RJ-45 et USB
6	Connexions de relais
7	Terre de protection

Figure 4. Élément sensible de la sonde OXY5500

Pos.	Description
1	OP-3
2	OP-6
3	OP-9

Les capteurs d'oxygène à fibres optiques d'Endress+Hauser sont fabriqués avec des fibres optiques polymères de 2 mm. La partie sensible est une sonde en acier inoxydable de 4 mm. En standard, la sonde est montée dans un raccord en té Swagelok de 1/4 in. à l'aide d'un adaptateur de 1/4 in. x 4 mm, comme le montre la figure 5. Contacter le représentant commercial pour plus d'informations.

Figure 5. Raccords pour capteurs d'oxygène à fibres optiques standard

2.8.2 Principe de fonctionnement d'un capteur d'oxygène

Le principe de mesure est basé sur l'effet de l'extinction de fluorescence par l'oxygène moléculaire.

Principe de l'extinction de fluorescence par l'oxygène moléculaire (voir la figure 6) :

- 1. Processus de fluorescence en l'absence d'oxygène :
 - **Absorption de lumière :** énergie d'excitation de l'analyseur à l'élément sensible.
 - État d'excitation : l'élément sensible est excité.
 - Émission de lumière : en l'absence d'oxygène, l'énergie de l'élément sensible décroit pour retrouver son état énergétique d'origine. La lumière émise lors de la décroissance est quantifiée par l'analyseur.
- 2. Processus de fluorescence en présence d'oxygène :
 - Absorption de lumière : la lumière d'une LED est absorbée par l'élément sensible.
 - État d'excitation : l'élément sensible est excité.
 - Émission de lumière : si le capteur rencontre des molécules d'oxygène, l'énergie excédentaire est transférée à la molécule, ce qui diminue ou "éteint" le signal de fluorescence. Le degré d'extinction est corrélé à la pression partielle de l'oxygène.

Figure 6. Principe de l'extinction dynamique de luminescence par l'oxygène moléculaire

2.9 Directives de sécurité

AVIS

► Lire soigneusement les présentes et le *manuel de sécurité OXY5500 (XA02754C)* avant de travailler avec cet instrument.

Toutes les fonctions de cet appareil ont été soigneusement testées et sont conformes aux exigences de sécurité avant de quitter l'usine. La sécurité fonctionnelle et opérationnelle de cet instrument ne peut être garantie que si l'utilisateur respecte les précautions de sécurité nécessaires et les directives spécifiques présentées dans ce manuel. Voir l'*Annexe* $A \rightarrow \square$ et la liste ci-dessous.

- Avant de raccorder l'appareil au réseau électrique, il faut s'assurer que la tension de fonctionnement indiquée sur l'alimentation correspond à la tension du réseau décrite à l'Annexe A.
- Si l'instrument est déplacé d'un environnement froid à un environnement chaud, de la condensation peut se former et perturber le fonctionnement du système. Dans ce cas, attendre que la température de l'instrument atteigne la température ambiante avant de le remettre en service.
- Les travaux d'étalonnage, de maintenance et de réparation ne doivent être effectués que par un personnel qualifié.
- En cas de doute sur l'état de fonctionnement de l'analyseur, renvoyer l'instrument pour réparation et entretien.
 Consulter le SAV →

3 Sécurité

3.1 Risques potentiels pouvant affecter le personnel

Cette section concerne les mesures appropriées à prendre face aux situations dangereuses avant ou pendant l'entretien de l'analyseur. Il n'est pas possible de répertorier tous les dangers potentiels dans le présent document. L'utilisateur est responsable de l'identification et de la limitation des dangers potentiels lors de l'entretien de l'analyseur.

AVIS

Les techniciens sont tenus de respecter tous les protocoles de sécurité établis par le client et nécessaires à l'entretien de l'analyseur. Cela peut inclure, mais sans s'y limiter, les procédures de verrouillage/d'étiquetage, les protocoles de surveillance de gaz toxiques, les exigences en matière d'équipement de protection individuelle (EPI), les permis pour travaux à chaud et autres précautions qui traitent les questions de sécurité relatives à l'exécution des travaux d'entretien sur les équipements de transformation situés dans les zones explosibles.

3.1.1 Limitation des risques

Voir les instructions pour chaque situation exposée ci-dessous afin de limiter les risques associés.

3.1.2 Risque d'électrocution

1. Couper l'alimentation électrique de l'analyseur et ouvrir le boîtier.

- Exécuter cette action avant d'effectuer les travaux d'entretien qui exigent de travailler à proximité de la borne d'alimentation principale ou de débrancher tout câble ou composant électrique.
- 2. Ouvrir la porte du boîtier.

3.1.3 Risque d'explosion

Les travaux à réaliser dans les zones dangereuses doivent être soigneusement contrôlés afin de prévenir la création de sources d'inflammation possibles (par ex. chaleur, formation d'arc, jaillissement d'étincelles, etc.). Tous les outils doivent être appropriés à la zone et aux dangers présents. Il est interdit d'effectuer ou de couper les raccordements électriques quand le système est sous tension (afin de prévenir la formation d'arc électrique).

3.1.4 Décharge électrostatique

Utiliser un chiffon humide pour nettoyer l'écran et le clavier afin d'éviter les décharges d'électricité statique.

Respecter toutes les étiquettes d'avertissement pour éviter d'endommager l'appareil. Voir *Mises en garde générales et précautions d'emploi* $\rightarrow \square$.

4 Installation

Cette section décrit les procédures utilisées pour installer et configurer l'analyseur OXY5500. Une fois que l'analyseur est arrivé, il convient d'examiner attentivement son contenu avant de l'installer.

AVIS

- Les analyseurs Endress+Hauser Classe I Division 2 utilisent une méthode de protection non incendiaire et les analyseurs Zone 2 utilisent une méthode de protection à sécurité augmentée ec ; à ce titre, toutes les parties des codes locaux d'installation électrique s'appliquent. Le rapport inductance/résistance (rapport L/R) maximal autorisé pour l'interface de câblage de terrain doit être inférieur à 25 μH/Ω.
- La sécurité de l'analyseur est la responsabilité de l'installateur et de l'organisation qu'il représente.

4.1 Contenu des caisses d'expédition

Les caisses doivent comprendre les éléments suivants :

- L'analyseur Endress+Hauser OXY5500
- Le système de préparation d'échantillons (SCS) en option, le cas échéant
- Un câble USB (à des fins de service)

Si un de ces contenus est manquant, voir $SAV \rightarrow \square$.

4.2 Inspection de l'analyseur

Déballer et placer l'unité sur une surface plane. Inspecter minutieusement tous les éléments livrés afin de vérifier qu'ils ne présentent pas de bosselures, de traces de choc ni de dommages généralisés. Contrôler l'alimentation et vérifier que les éléments de connexion, tels que les tubes coudés, ne présentent aucun dommage. Signaler tout dommage au transporteur.

ATTENTION

• Éviter de secouer l'instrument en le faisant tomber ou en le heurtant contre une surface dure.

Chaque analyseur est configuré sur mesure avec divers accessoires et options. En cas de divergence par rapport à la commande, contacter le canal de vente local.

4.2.1 Levage/déplacement de l'analyseur

Avec un poids d'environ 5,44 kg (12 lbs) sans le système de préparation d'échantillons, l'OXY5500 peut être facilement sorti de son emballage et déplacé vers l'emplacement d'installation. Veiller à soulever ou à transporter l'analyseur par le boîtier et non par les sondes ou les câbles auxiliaires, sous peine d'endommager l'analyseur.

Si l'analyseur est configuré avec un système de préparation d'échantillons (SCS) intégré en option, deux personnes peuvent être nécessaires pour soulever et déplacer le système d'analyseur. Consulter le manuel de mise en service SCS OXY5500 (réf. BA02196C) pour plus d'informations.

4.3 Installation de l'analyseur

L'installation de l'analyseur est relativement simple et ne nécessite que quelques étapes qui, si elles sont suivies attentivement, garantiront un montage et un raccordement corrects. Cette section comprend des informations concernant :

- Matériel et outils nécessaires à l'installation
- Montage de l'analyseur
- Raccordement de l'alimentation électrique de l'analyseur
- Connexions des sorties analogiques/entrées analogiques

4.4 Équipement de base requis

Les composants suivants sont expédiés de l'usine avec l'analyseur OXY5500 pour l'installation et la configuration :

- Raccord en té à passage direct avec sonde
- Raccord en té pour capteur de température et capteur de pression (capteur de pression en option)

4.5 Matériel et outils nécessaires à l'installation

Selon la configuration particulière des accessoires et des options commandés, le matériel et les outils suivants pourront être nécessaires afin d'achever le processus d'installation.

4.5.1 Matériel

- Boulons et écrous à ressort Unistrut[®] (ou équivalent) de 1/4 in. (~6 mm) d'épaisseur
- Tubes en acier inoxydable (il est recommandé d'utiliser des tubes en acier inoxydable sans soudure d'une épaisseur de paroi de 1/4 in. [~6 mm] dia.ext. x 0,035 in.)
- Conduit de 3/4 in. ou presse-étoupe M20 Ex e approprié
- Vis de 1/4 in. (M6) avec une longueur de vis appropriée au matériau de la paroi, p. ex. béton, cloison sèche, etc.

4.5.2 Outils

- Perceuse et mèches
- Mètre ruban
- Niveau à bulle
- Crayon
- Tournevis (Philips)
- Tournevis, petit (à tête plate)
- Pince à bec effilé

4.6 Montage de l'analyseur

L'analyseur OXY5500 est conçu pour les installations murales ou à ossature métallique Unistrut[®] (ou équivalent). En fonction de l'application et de la configuration, l'analyseur sera monté sur une plaque ou un cadre Unistrut. Se référer à l'annexe A pour les dessins avec les dimensions détaillées de montage mural.

AVIS

Lors du montage de l'analyseur, veiller à positionner l'instrument de sorte à pouvoir utiliser les dispositifs adjacents. Laisser un espace d'un 1 m (3 feet) devant l'analyseur et tout interrupteur.

ATTENTION

Il est important de monter l'analyseur de sorte que les conduites d'alimentation et de retour atteignent les raccords d'alimentation et de retour sur le châssis tout en assurant la flexibilité nécessaire afin que les lignes de prélèvement ne soient pas soumises à une contrainte excessive.

AVIS

Les supports de fixation pour les équipements de plus de 18 kg destinés à être fixés au mur et/ou les pièces qui supportent de lourdes charges doivent résister à quatre fois la charge statique maximale.

ATTENTION

Parce que le disjoncteur du tableau ou l'interrupteur sera le principal moyen de déconnecter l'alimentation de l'analyseur, le tableau d'alimentation doit être situé à proximité directe de l'équipement et facilement accessible pour l'opérateur, ou à moins de 3 mètres (10 feet) de l'analyseur.

4.6.1 Montage de l'analyseur

1. Sélectionner un emplacement adéquat pour monter l'analyseur. Choisir une zone ombragée ou utiliser un capot d'analyseur en option (ou un dispositif équivalent) pour réduire au minimum l'exposition au soleil.

ATTENTION

- Les analyseurs d'Endress+Hauser sont conçus pour fonctionner dans la gamme de température ambiante spécifiée. Voir l'Annexe A. Une exposition directe au soleil de certaines zones risque d'entraîner un dépassement de la température maximale de l'analyseur.
- Repérer les trous de montage présents sur l'unité. Voir la figure 7 et les schémas du système dans l'Annexe A →

Figure 7. Emplacement des trous de montage de l'analyseur (1)

- 3. Pour les installations murales, marquer les centres des trous de montage supérieurs.
- 4. Percer les trous correspondant à la taille des vis à utiliser.
- 5. Maintenir l'analyseur en place et le fixer avec les vis supérieures.
- 6. Répéter l'opération pour les trous de montage inférieurs.

Après avoir serré les quatre vis, l'analyseur est solidement fixé et prêt à recevoir les connexions électriques.

4.7 Raccordement de l'alimentation électrique de l'analyseur

L'OXY5500 est capable de s'interfacer avec des connexions d'alimentation AC ou DC.

AVIS

L'OXY5500 est disponible avec des options d'alimentation de 240 VAC ou de 9 à 30 VDC (CSA), ou de 18 à 30 VDC (IEC/ATEX/UKEX). L'OXY5500 peut être alimenté par une source DC en se connectant directement aux bornes du convertisseur DC/DC. L'alimentation AC est directement reliée au bloc d'alimentation monté sur la plaque arrière.

ATTENTION

L'interconnexion du boîtier de l'analyseur doit être réalisée en utilisant des méthodes de câblage approuvées pour les emplacements dangereux de Classe I, Division 2 ou Zone 2, conformément à l'annexe B ou J du Code canadien de l'électricité (CCE) et à l'article 501 ou 505 du Code national de l'électricité (CEC). L'installateur est responsable de la conformité à tous les codes d'installation locaux.

4.7.1 Raccordement AC

L'alimentation AC est raccordée aux bornes L1, N et GND du bloc d'alimentation AC. Se reporter aux figures pour connaître l'emplacement du port d'alimentation de l'analyseur et le schéma de raccordement.

4.7.2 Raccordement DC

L'alimentation DC est raccordée aux bornes VI+ et – du bloc d'alimentation DC. Se reporter à la figure 1 pour connaître l'emplacement du port d'alimentation de l'analyseur et à la figure 73 pour le schéma de raccordement.

Tensions dangereuses et risque de choc électrique. Avant de raccorder les câbles à l'analyseur, s'assurer que le disjoncteur principal / l'interrupteur d'alimentation est désactivé.

ATTENTION

- Une attention particulière doit être accordée à la mise à la terre. Mettre correctement l'unité à la terre en raccordant le fil principal de mise à la terre au boulon de mise à la terre de protection muni du symbole de terre. Connecter le boulon de mise à la terre du châssis à la mise à la terre de l'installation à l'aide d'un fil de 6 mm² ou de calibre 10.
- Ne pas dépasser la tension nominale de 36 VDC sous peine d'endommager les composants électroniques.

4.7.3 Mises à la terre de protection et du châssis

Avant de connecter un signal électrique ou l'alimentation, les mises à la terre de protection et du châssis doivent être connectées. Les exigences concernant les mises à la terre de protection et du châssis sont les suivantes :

- Les mises à la terre doivent avoir une taille égale ou supérieure à tout autre conducteur de courant, y compris le chauffage situé dans le système de conditionnement de l'échantillon.
- Les mises à la terre doivent rester raccordées jusqu'à ce que tous les autres câblages soient retirés.
- Si les mises à la terre de protection et du châssis sont isolées, les couleurs jaune/verte doivent être utilisées.

Se reporter aux figures 1 et 2 pour connaître l'emplacement des mises à la terre de protection et du châssis.

4.7.4 Raccordement de l'alimentation électrique de l'analyseur

1. Ouvrir la porte du boîtier électronique de l'analyseur OXY5500. Veiller à ne pas modifier l'installation électrique à l'intérieur.

A AVERTISSEMENT

- Tensions dangereuses et risque de choc électrique. Si l'analyseur n'est pas correctement mis à la terre, cela peut créer un risque d'électrocution à haute tension.
- 2. Poser un conduit de câble ou un câble tressé blindé du tableau de distribution jusqu'au presse-étoupe marqué comme entrée d'alimentation, situé sur le côté droit du boîtier de l'analyseur.

ATTENTION

- Des joints pour conduits ou un presse-étoupe Ex e doivent être utilisés, s'il y a lieu, conformément aux règlements locaux.
- Parce que le disjoncteur du tableau ou l'interrupteur sera le principal moyen de déconnecter l'alimentation de ► l'analyseur, le tableau d'alimentation doit être situé à proximité directe de l'équipement et facilement accessible pour l'opérateur, ou à moins de 3 mètres (10 feet) de l'analyseur.
- L'installation électrique à laquelle l'analyseur est raccordé doit être protégée contre les transitoires. Le dispositif ► de protection doit être réglé à un niveau ne dépassant pas 140 % des valeurs de tension nominale de crête aux bornes de l'alimentation électrique.
- Un interrupteur ou un disjoncteur homologué pour 15 A doit être installé et clairement désigné comme appareil ► de sectionnement de l'analyseur.
- 3. Pour les systèmes AC, tirer les fils de terre, neutre (N) et L1 dans le boîtier électronique. Voir la figure 8. Pour les systèmes DC, tirer les fils VI +, - et de terre dans le boîtier électronique. Voir la figure 8.

Figure 8. Connexions d'alimentation AC/DC

- 4. Dénuder la gaine et/ou l'isolation des fils juste assez pour les raccorder au bornier d'alimentation.
- 5. Raccorder le fil de terre principal à la borne de terre de protection marquée 🕒.
- 6. Fermer et serrer la porte du boîtier de l'analyseur.

AVIS

► Appliquer un couple de 2,25 nm (20 in-lbs) sur chaque boulon pour s'assurer que la porte est correctement fermée afin de maintenir l'indice de protection requis.

4.8 Connexions de l'analyseur

Le câble d'oxygène à fibre optique vers le connecteur SMA, situé en bas de l'OXY5500, est installé en usine. Des connecteurs supplémentaires sont disponibles, comme illustré dans la figure 9.

AVIS

- ► Interface RS-232/RS-485 : L'unité dispose d'une communication RS-232 standard via le protocole Modbus. Veiller à effectuer les connexions comme décrit dans Communication Modbus →
 pour éviter les problèmes de communication et les dommages potentiels à l'unité.
- Module optique avec connecteur SMA : Le module optique avec connecteur SMA est utilisé pour se connecter à la sonde d'oxygène, qui est installée en usine.
- Connexion USB : La connexion USB n'est utilisée qu'à des fins de service et de suppression des défauts. Ne pas la connecter en fonctionnement normal. Pour éviter d'endommager le port, utiliser uniquement le câble USB Mini B pour se connecter à l'appareil. Se reporter au manuel d'utilisation du logiciel de service (réf. 4900002254) pour connaître la configuration requise.
- ► Ethernet : L'unité utilise la communication standard Modbus TCP/IP. Utiliser un câble CAT5 (ou mieux) et effectuer les connexions conformément à la norme IEEE 802.3.

Figure 9. Connexions de l'analyseur

Pos.	Description
1	TB1
2	Boîtier du fusible
3	Module optique avec connecteur SMA
4	RJ-45
5	USB
6	TB2

4.9 Connexions des sorties analogiques/entrées analogiques

L'OXY5500 est équipé de deux sorties analogiques indépendantes et d'une entrée analogique. La boucle de courant 4-20 mA et la sortie série sont raccordées à des borniers situés à l'intérieur du boîtier électronique de l'analyseur. Par défaut, les sorties analogiques de la boucle de courant 4-20 mA (IOUT1/IOUT2) sont inactives.

Les sorties analogiques sont programmables en fonction de l'oxygène et de la température. Pour permettre la collecte de données externes, un port d'entrée est disponible (p. ex. un capteur de pression externe).

Les connexions peuvent être réalisées avec des câbles fournis par le client pour la boucle de courant et les alarmes. Voir la figure 10.

AVERTISSEMENT

- Tensions dangereuses et risque de choc électrique. Les sorties analogiques ne sont protégées contre aucune tension d'entrée. Toute tension appliquée aux sorties analogiques peut causer des dommages irréversibles au circuit.
- Tensions dangereuses et risque de choc électrique. Avant d'ouvrir le boîtier électronique et de procéder aux raccordements, mettre le système hors tension et verrouiller l'alimentation.

ATTENTION

Les analyseurs Endress+Hauser Classe I Division 2 utilisent une méthode de protection non incendiaire et les analyseurs Zone 2 utilisent une méthode de protection anti-arc électrique à sécurité augmentée ec ; à ce titre, toutes les parties des codes locaux d'installation électrique s'appliquent. Le rapport inductance/résistance (rapport L/R) maximal autorisé pour l'interface de câblage de terrain doit être inférieur à 25 μH/Ω.

AVIS

- Les sorties 4-20 mA sont configurées comme source pour alimenter la boucle. Si un(e) API/IHM est utilisé(e) pour alimenter la boucle, un isolateur est nécessaire et doit être conforme aux spécifications fournies dans le tableau. L'installation de l'isolateur doit être conforme à la méthode de protection non incendiaire ou anti-arc électrique décrite dans la note ci-dessus.
- Des presse-étoupe et des câbles certifiés Ex e, ou des joints de conduit et des conduits, doivent être utilisés le cas échéant, conformément aux réglementations locales.

4.9.1 Raccordement des sorties analogiques / entrées analogiques

- 1. Débrancher l'alimentation du système, puis ouvrir le capot du boîtier électronique. Veiller à ne pas modifier l'installation électrique à l'intérieur.
- 2. Poser un conduit de câble ou un câble blindé avec les raccords de câble appropriés (au minimum Exe) de la station de réception des sorties/entrées analogiques jusqu'au presse-étoupe situé dans le coin extérieur droit du boîtier électronique.
- 3. En cas d'utilisation d'un conduit, tirer les câbles fournis par le client pour les sorties de la source à travers le conduit dans le boîtier électronique.

Figure 10. Connexions TB1/TB2

En cas d'utilisation d'un câble blindé, les fils sont déjà fournis. Passer à l'étape 4.

- 4. Dénuder la gaine et l'isolation des câbles de sortie de la boucle de courant et des câbles série juste assez pour les raccorder au bornier correspondant.
- 5. Raccorder les fils de sortie IOUT1/IOUT2 de la boucle de courant 4-20 mA aux bornes 6 et 8, comme indiqué dans la figure 9 et le tableau.
- 6. Raccorder les fils du câble série aux bornes appropriées selon le tableau (TB1).

7. Pour terminer le raccordement, raccorder l'autre extrémité des fils de la boucle de courant à un récepteur de boucle de courant et le câble série externe à un port série de l'ordinateur.

Broche	Étiquette	Description	Fonction
1	L-S1	Sortie relais, interrupteur n° 1 (400V/250 mA ; R = 8 ohms max.)	Alarme de défaut général ;
2	L-S1	Sortie relais, interrupteur n° 1 (400V/250 mA ; R = 8 ohms max.)	normalement fermé
3	L-S2	Sortie relais, interrupteur n° 2 (400V/250 mA ; $R = 8$ ohms max.)	Alarme de concentration ;
4	L-S2	Sortie relais, interrupteur n° 2 (400V/250 mA ; R = 8 ohms max.)	normalement fermé
5	GNDA	Masse sortie analogique n° 1	Sortie analogique configurable n° 1
6	IOUT1	Sortie analogique n° 1 (4 – 20 mA) ; charge max. = 800 ohms	
7	GNDA	Masse sortie analogique n° 2	Sortie analogique configurable n° 2
8	IOUT2	Sortie analogique n° 2 (4 – 20 mA) ; charge max. = 800 ohms	
9	NC	Non connecté	_
10	Psense-	Entrée analogique (4 – 20 mA) ; Sense (-)	Entrée capteur de pression
11	Psense+	Entrée analogique (4 – 20 mA) ; Sense (+) ; courant de boucle 16 à 24 VDC ; courant max. = 32 mA	
12	RTD +	RTD Pt100 4 fils ; Sense (+)	Capteur de température
13	RTD -	RTD Pt100 4 fils ; Sense (-)	Capteur de température
14	FRC+	RTD Pt100 4 fils ; Force (+)	
15	FRC-	RTD Pt100 4 fils ; Force (-)	
16	GNDT	Masse RTD (blindage)	

Tableau 1. Bornier de raccordement TB2

¹ Les sorties 4-20 mA sont configurées comme source pour alimenter la boucle. Si un(e) API/IHM est utilisé(e) pour alimenter la boucle, un isolateur sera nécessaire.

Broche	Étiquette	Description	Fonction
1	V1+	Alimentation 24 VDC – raccordement en usine	Alimentation DC
2	V2+	Alimentation 24 VDC – raccordement en usine	Alimentation DC
3	GND	GND alimentation - raccordement en usine	Masse de l'alimentation
4	GND	GND alimentation - raccordement en usine	Masse de l'alimentation
5	232TX	Sortie émetteur RS-232 (niveau de signal typique \pm 6 V)	Émission du signal RS-232
6	232Rx	Entrée récepteur RS-232 (niveau de signal typique \pm 6 V)	Réception du signal RS-232
7	GND	Masse RS-232/RS-485	Masse du signal RS-232/RS-485
8	GND	Masse RS-232/RS-485	Masse du signal RS-232/RS-485
9	485(A)+	Entrée non inverseuse du récepteur et étage de sortie non inverseur RS-485	Signal RS-485
10	485(B)-	Entrée inverseuse du récepteur et étage de sortie inverseur RS-485	Signal RS-485

Tableau 2. Bornier de raccordement TB1

5 Configuration

Les instructions fournies dans ce chapitre doivent être utilisées pour démarrer, configurer et faire fonctionner l'OXY5500. Sur la face avant de l'analyseur se trouve un écran LCD qui affiche la programmation et les données. Voir la figure 1 pour une vue externe de l'analyseur avec les descriptions.

5.1 Démarrage de l'analyseur

Avant de mettre l'OXY5500 sous tension, consulter les schémas du système dans l'Annexe $A \rightarrow \bigoplus$ pour vérifier les connexions à l'alimentation électrique, au capteur de température et à la sonde d'oxygène.

Dès que le OXY5500 est connecté à l'alimentation, l'analyseur commence à exécuter une courte séquence d'autodiagnostic. Voir la figure.

Figure 11. Écran initial – Autotest

L'affichage passe automatiquement à l'écran de mesure principal. Voir la figure.

Pour obtenir une précision maximale, l'OXY5500 doit être préchauffé pendant environ cinq minutes avant d'effectuer une mesure.

AVIS

Le temps de préchauffage peut être prolongé jusqu'à 15 minutes si l'optode a été exposée à de fortes concentrations d'oxygène.

Après le préchauffage, effectuer un étalonnage sur site pour obtenir des mesures précises. Voir *Exécution d'un* étalonnage manuel (étalonnage basé sur les valeurs du capteur) $\rightarrow \square$.

5.2 Aperçu de la configuration

Les écrans et les menus décrits dans ce chapitre sont utilisés pour programmer et configurer l'OXY5500. Des liens ont été inclus pour faciliter la navigation dans les instructions. Voir *Conventions utilisées dans le présent manuel* $\rightarrow \square$, qui explique les liens hypertexte et comment les utiliser. Les autres conventions utilisées dans ce chapitre pour décrire les actions de l'utilisateur et pour faciliter la navigation logicielle ou manuelle sont les suivantes :

- <u>Texte souligné</u>: Utilisé pour afficher les boutons de programme cliquables dans le logiciel.
- TOUTES LES MAJUSCULES : Utilisées pour indiquer les écrans ou les fenêtres visualisés dans le logiciel.
- *Texte en italique* : Utilisé pour indiquer les champs du logiciel pouvant être modifiés.
- Texte en gras : Utilisé pour indiquer des liens vers d'autres sections ou chapitres du manuel.

Après l'initialisation de l'analyseur, l'écran MENU PRINCIPAL s'affiche. Voir la figure 12.

Figure 12. Écran du menu principal

Pos.	Description
1	Barre d'état
2	Écran principal
3	Barre de navigation

AVIS

L'écran de l'OXY5500 est divisé en trois sections : barre d'état, écran principal et barre de navigation.

La barre d'état indique l'information suivante :

• Heure : L'OXY5500 est doté d'une horloge de 24 heures.

L'OXY5500 doit être étalonné avant d'être utilisé. Voir *Exécution d'un étalonnage en deux points* $\rightarrow \square$.

AVIS

Si l'alimentation de l'analyseur est coupée, l'heure et la date seront réglées sur 0 au démarrage. Un message d'avertissement s'affiche dans la barre d'état, comme illustré dans la figure 13.

Figure 13. Avertissement : Réinitialisation de l'heure et de la date

Réinitialiser les réglages de l'heure et de la date comme indiqué dans le *menu Device Settings* $\rightarrow \cong$ avant de commencer une nouvelle mesure afin que l'heure correcte soit enregistrée dans les données.

- L'icône du moniteur dans la barre d'état indique que l'enregistrement est activé.
- L'icône du moniteur (X) dans la barre d'état indique que l'enregistrement n'est pas activé.

L'écran principal se compose de la partie centrale de l'écran, au-dessus de la barre de navigation, et fournit des informations sur l'analyseur.

La barre de navigation se trouve dans la partie inférieure de l'écran et affiche les boutons de **commande** utilisés pour effectuer des actions dans l'analyseur.

Cliquer sur Menu pour accéder à l'écran MENU PRINCIPAL.

Voir la figure 14 pour une vue de l'arborescence des menus, qui décrit la structure du logiciel de l'OXY5500. Cette section commence par un passe en revue des écrans de menu de premier niveau (représentés par des cases grises dans l'arborescence des menus) et se poursuit par un aperçu des écrans accessibles, disponibles à partir de chaque écran de menu.

5.3 Menu Measurement

La sélection de "Measurement" à partir de l'écran MENU PRINCIPAL permet d'afficher les valeurs mesurées et les paramètres de mesure actuels. Voir la figure 15.

Figure 15. Écran du menu principal - menu "Measurement" sélectionné

Les vues peuvent être sélectionnées pour une présentation simple, détaillée ou graphique des mesures. Utiliser les boutons pour passer d'un écran à l'autre. Voir *Options du menu Measurement* $\rightarrow \square$ pour plus d'informations sur l'accès aux vues d'écran à partir de cette sélection de menu.

ATTENTION

► Si l'alimentation électrique de l'analyseur est coupée, les réglages de l'heure et de la date seront mis à zéro. Avant de commencer une nouvelle mesure, réinitialiser l'heure et la date dans l'écran Device Settings → afin que l'heure correcte de la mesure soit enregistrée avec les données.

5.4 Menu Measurement settings (Meas. settings)

Les modifications des paramètres généraux de mesure sont effectuées dans le menu MEASUREMENT SETTINGS. Si les paramètres de mesure ne sont pas modifiés, les paramètres de la dernière mesure seront appliqués.

La fenêtre Measurement Settings (Meas. Settings) est sélectionnée à partir de l'écran MENU PRINCIPAL. Voir la figure.

Figure 16. Écran du menu principal - menu "Measurement Settings" sélectionné

1. Sélectionner "Meas. Settings" à partir de l'écran MENU PRINCIPAL. Une fenêtre de message s'affiche, demandant confirmation de l'interruption de la mesure en cours. Voir la figure 17.

Figure 17. Fenêtre de message – Arrêter les mesures pendant la configuration

2. Cliquer sur **Yes** pour arrêter la mesure afin d'afficher l'écran MEASUREMENT SETTINGS. Voir la figure 18.

		00:03
- Temperature -		_ Interval
🔿 Auto 🤅 2	Manual 2.0 °C	00 h 00 m 03 s
Pressure		Logging
🔿 4-20mA (Manual	🔿 On 💿 Off
ę	976 mbar	Measurement Browser
() 4-20mA (€) Manual 176 mbar	On Off Measurement Browser
•) ()	® 9 9

Figure 18. Écran Measurement Settings

3. Utiliser les boutons **fléchés** pour naviguer entre les écrans.

5.4.1 Accès au mode édition

- 1. Cliquer sur **OK** pour entrer dans le mode édition.
- 2. Modifier le réglage ou la valeur (un chiffre à la fois) en cliquant sur les boutons **fléchés**.
- 3. Cliquer une nouvelle fois sur **OK** pour enregistrer les modifications.

5.4.2 Sortie du mode édition

1. Cliquer sur **Menu** pour annuler et quitter le mode.

Voir les options de menu Measurement Settings (Meas. Settings) $\rightarrow \square$ pour plus d'informations sur les paramètres suivants : compensation de température, compensation de pression, intervalle, enregistrement et gestion des données.

5.5 Menu Device Settings

Sélectionner Device Settings à partir de l'écran du MENU PRINCIPAL pour afficher les paramètres de l'analyseur. Voir la figure 19.

Figure 19. Écran du menu principal – menu "Device Settings" sélectionné

Le menu DEVICE SETTINGS est divisé en trois écrans : DEVICE SETTINGS, SENSOR DETAILS et ABOUT. Voir les *options du menu Device Settings* $\rightarrow \bigoplus$ pour plus d'informations sur la configuration de ces options.

Utiliser les boutons **fléchés** pour passer d'un écran à l'autre.

5.6 Menu Sensor

Sélectionner le menu Sensor à partir du menu principal. Voir la figure 20. Cette sélection ouvre la fenêtre SENSOR OPTIONS.

Figure 20. Menu principal – menu Sensor sélectionné

Dans la fenêtre SENSOR OPTIONS, l'utilisateur peut cliquer sur le bouton **Change Parameters** pour le capteur raccordé, sur le bouton **Calibration** pour effectuer un étalonnage du capteur ou sur le bouton **Relative Accuracy Test Audit (RATA)**. Voir la figure 21.

Sensor	Ontior	15			E 103	30
	Change Parameters					
C	Calibration					1
C		R	ATA			ļ
O () izate	ЭМели	OK Select	() Navigate	۲	

Figure 21. Sensor Options

- Flèches vers le haut et vers le bas : Naviguer vers le haut et vers le bas dans la liste des capteurs.
- **OK** : Sélectionner les options capteur. L'affichage passe aux écrans respectifs.
- Flèche Menu : Retour à l'écran du menu principal.

Voir *Change Parameters* $\rightarrow \cong$ et *Étalonnage de l'analyseur* $\rightarrow \cong$ pour plus d'informations sur ces fonctions.

5.7 Menu Digitals

À partir du MENU PRINCIPAL, sélectionner Digitals pour modifier le réglage de la connexion numérique de l'OXY5500. Voir la figure 22.

Figure 22. Écran du menu principal – menu "Digitals" sélectionné

Avant l'affichage de l'écran DIGITALS, une fenêtre de message s'affiche pour demander confirmation de l'abandon de la mesure en cours. Voir la figure 23.

1	10:50
Measurement active. Abort for Configuration	on?
Yes	
No	
	\odot

Figure 23. Fenêtre de message – Arrêter les mesures pendant la configuration

Sélectionner **Yes** et arrêter la mesure pour procéder aux réglages de la connexion numérique.

Le menu DIGITALS est divisé en trois écrans : paramètres RS-232, RS-485 et TCP/IP. Voir les *options du menu Digitals* $\rightarrow \cong$ pour plus d'informations sur la configuration de ces options.

Utiliser les boutons Flèche vers le haut et Flèche vers le bas pour naviguer entre les champs d'entrée.

5.7.1 Accès au mode édition

- 1. Cliquer sur **OK** pour entrer dans le mode édition.
- 2. Modifier le réglage ou la valeur (un chiffre à la fois) en utilisant les boutons **Flèche vers le haut** et **Flèche vers le bas**.
- 3. Cliquer une nouvelle fois sur **OK** pour enregistrer les modifications.

5.7.2 Sortie du mode édition

1. Cliquer sur **Menu** pour annuler et quitter le mode.

5.8 Menu Analog Output Settings (Analogues)

À partir du MENU PRINCIPAL, sélectionner Analogues pour modifier les paramètres de sortie analogique. Voir la figure 24.

Figure 24. Écran du menu principal – menu "Analogues" sélectionné

Avant l'affichage de l'écran ANALOGUES, une fenêtre de message s'affiche pour demander confirmation de l'abandon de la mesure en cours. Voir la figure 25.

Figure 25. Fenêtre de message - Arrêter les mesures pendant la configuration

Sélectionner Yes et arrêter la mesure pour procéder aux réglages de la sortie analogique.

Le menu ANALOGUES est divisé en quatre écrans : 4-20 mA INTERFACE SETTINGS, 4-20 mA VALUES, CONCENTRATION ALARM RELAY (LS2) et 4-20 mA CALIBRATION. Voir les *options du menu Analog Output Settings (Analogues)* $\rightarrow \square$.

Utiliser les boutons Flèche vers le haut et Flèche vers le bas pour naviguer entre les champs d'entrée.

5.8.1 Accès au mode édition

- 1. Cliquer sur **OK** pour entrer dans le mode édition.
- 2. Modifier le réglage ou la valeur (un chiffre à la fois) en utilisant les boutons **Flèche vers le haut** et **Flèche vers le bas**.
- 3. Cliquer une nouvelle fois sur **OK** pour enregistrer les modifications.

5.8.2 Sortie du mode édition

1. Cliquer sur **Menu** pour annuler et quitter le mode édition.

ATTENTION

• Tous les changements seront appliqués après la prochaine période de mesure.

5.9 Options du menu Measurement

La sélection du menu "Measurement" à partir du MENU PRINCIPAL ouvre l'écran SIMPLE. Les écrans DETAILS ou GRAPH peuvent être sélectionnés à partir de l'écran SIMPLE.

5.9.1 Écran SIMPLE

Cet écran affiche les valeurs de l'oxygène et de la température à partir du moment où la mesure a démarré. Voir la figure 26.

Figure 26. Écran de mesure SIMPLE

Si la température de mesure a été réglée manuellement, la valeur de température est déjà affichée avant de démarrer la mesure.

AVIS

En mode manuel, l'unité de température peut être modifiée. Des valeurs allant de -99 °C à 199 °C peuvent être entrées dans la fenêtre MEAS. SETTINGS. Voir Compensation de température →

Si la mesure automatique de la température est sélectionnée et que le capteur de température n'est pas raccordé ou ne fonctionne pas correctement, l'écran affiche un message d'erreur. Voir la figure 27.

Figure 27. Message d'erreur du capteur de température

Si aucun capteur n'est raccordé ou s'il n'est pas raccordé correctement, et que le signal ne peut pas être lu lorsque les mesures sont démarrées, un message d'erreur s'affiche dans la barre d'état, comme illustré dans la figure 28.

Figure 28. Message d'erreur – Impossible de détecter le capteur

Les valeurs d'oxygène sont affichées dans les unités suivantes :

- Pour le capteur OP-3 : %02
- Pour le capteur OP-6 : %O2, ppmv
- Pour le capteur OP-9 : ppmv
- Cliquer sur les boutons Flèche vers le haut et Flèche vers le bas pour modifier l'unité d'oxygène à l'affichage. La dernière valeur mesurée est immédiatement affichée dans l'unité d'oxygène correspondante. Sélectionner l'une des options suivantes :
 - O Cliquer sur le bouton Flèche vers la droite pour afficher l'écran de mesure détaillé. Voir l'écran DETAILS
 →
 - Cliquer sur la **Flèche vers la gauche** pour afficher le graphique de mesure. Voir l'*écran GRAPH* \rightarrow B.
- 2. Cliquer sur Menu pour revenir à l'écran du MENU PRINCIPAL.

5.9.2 Écran DETAILS

L'écran DETAILS fournit des informations supplémentaires sur les mesures et les paramètres de mesure. Voir la figure 29.

		11:04
Oxygen	– General –	
20.1 %02	Sensortype:	OP-3
26.61° 26777µV	Pressure:	973 mbar
Temperature	Error Code:	0
23.2 °C	Interval:	00 : 00 : 30
Measurement Name	Next:	00:00:18
	RATA:	0.933
	® (

Figure 29. Écran de mesure détaillé

Cet écran est divisé en zones contenant des informations sur l'oxygène (Oxygen), la température (Temperature), le nom de la mesure (Measurement Name) et les généralités (General).

- **Oxygen :** Cette zone affiche la dernière valeur mesurée dans l'unité d'oxygène sélectionnée. Elle indique également les valeurs de l'angle de phase et de l'amplitude. Modifier l'unité d'oxygène en cliquant sur le bouton.
- **Temperature :** Dans cette zone, la valeur de la température actuelle, la dernière valeur mesurée ou la valeur réglée manuellement est affichée dans l'unité de température sélectionnée.

AVIS

- L'unité de température peut être modifiée en mode manuel. Des valeurs allant de -99 °C à 199 °C peuvent être entrées dans la fenêtre MEAS. SETTINGS. Voir Compensation de température →
- Measurement Name : Cette zone affiche le fichier de mesure sélectionné dans lequel toutes les données sont stockées lors de l'enregistrement.

AVIS

- ► Le fichier de mesure peut être modifié dans le menu MEAS. SETTINGS. Voir Enregistrement et gestion des données →
- **General :** Le type de capteur (Sensor type) d'oxygène actuellement raccordé est affiché dans cette zone.
 - La valeur de la pression (Pressure) actuellement mesurée ou réglée manuellement est également affichée dans la zone "General". En cas de mesure automatique, l'écran affiche la valeur de la pression interprétée à partir de l'entrée 4-20 mA. Si aucun capteur de pression n'est raccordé, l'écran affiche 1 013 mbar.
 - Dans la partie inférieure droit de la zone "General" est affiché l'intervalle de temps (Interval) auquel les mesures sont prises.
 - "Next" indique la période de temps (le compte à rebours pendant une mesure en cours) jusqu'à la prochaine mesure.
 - La vérification des tests de précision relative (RATA) est affichée en bas de l'écran.
 - Les codes d'erreur sont également affichés dans la zone "General". Les codes d'erreur sont également enregistrés avec des données de mesure. Lors de mesures sans erreur, la valeur 0 s'affiche.
- Cliquer sur la Flèche vers la gauche pour revenir à la vue Simple.
- Cliquer sur le bouton Flèche vers la droite pour afficher le graphique de mesure. En cliquant sur le bouton, on passe à la représentation graphique des mesures actuelles. Voir l'écran Graph →
- Cliquer sur Menu pour revenir à l'écran du MENU PRINCIPAL.

5.9.3 Codes d'erreur

Le code d'erreur est une combinaison de plusieurs erreurs. Le tableau montre une liste des bits d'erreur. Ci-dessous quelques exemples de codes d'erreur :

- **Code d'erreur : 1** = Pas de RTD (Pt100) (bit 0)
- Code d'erreur : 5 = Pas de RTD (Pt100) et amplitude trop faible (bit 0 [2N Value 1], bit 2 [2N Value 4]=5)
- **Code d'erreur : 1024** = Pas de capteur de pression raccordé (bit 10)
- Code d'erreur : 1029 = Pas de RTD (Pt100), amplitude trop faible, pas de capteur de pression raccordé (bit 0 [2N Value 1], bit 2 [2N Value 4], bit 10 [2N Value 1024] = 1029)

Bit	Valeur 2N	Erreur
0	1	Pas de RTD (Pt100)
1	2	Pas de capteur sélectionné
2	4	Amplitude trop faible
3	8	Carte SD défectueuse
4	16	Amplitude de référence hors gamme
5	32	Photodiode saturée
6	64	Dépassement du signal
7	128	Dépassement du signal
8	256	Réservé
9	512	Erreur critique. Voir $SAV \rightarrow \square$.
10	1024	Pas de capteur de pression / capteur de pression hors gamme
11	2048	Réservé
12	4096	Espace de stockage plein

Tableau 3. Codes d'erreur

5.9.4 Écran Graph

Les valeurs d'oxygène de la session de mesure actuelle sont affichées dans un graphique ; la dernière valeur de mesure de "Current Measurement" est affichée en haut de l'écran. Voir la figure 30.

Figure 30. Écran Graph

Dans la partie inférieure droit de l'écran, le nombre de points de mesure sur le nombre total de points de mesure est affiché dans le graphique. Dans la partie inférieure gauche de l'écran, une barre de progression indique l'état d'avancement de l'analyse des données.

AVIS

Lors de l'ouverture de fichiers de mesure volumineux, une fenêtre contextuelle s'affiche, indiquant "You are about to open a very large file" (Vous êtes sur le point d'ouvrir un fichier très volumineux) et demandant une confirmation avant de poursuivre. Sélectionner No pour revenir au graphique de mesure actuellement sélectionné ou 'Yes' pour afficher les 248 derniers points de mesure du fichier de mesure actuellement sélectionné.

Lorsque l'enregistrement n'est pas activé, seules les valeurs d'oxygène actuellement mesurées sont affichées, à partir du moment où l'écran GRAPH est ouvert.

- 1. Cliquer sur les boutons **Flèche vers le haut** et **Flèche vers le bas** pour ouvrir la fenêtre "Y-Axis Setup", dans laquelle les valeurs minimales et maximales de l'axe Y sont définies.
- 2. Sélectionner le paramètre **Autoscale** ou **Manual** pour les valeurs maximales ou minimales affichées sur l'axe Y. Voir la figure 31. "Autoscale" définit automatiquement les valeurs maximales et minimales en fonction des valeurs de mesure prédéfinies.

ATTENTION

 Les valeurs mesurées en dehors de la plage d'affichage définie seront affichées comme valeurs maximales ou minimales.

• Cliquer sur le bouton **Flèche vers la gauche** pour revenir à la vue DETAILS.

Figure 31. Y-Axis Setup : paramètres Autoscale et Manual

- Cliquer sur le bouton Flèche vers la droite pour revenir à la vue SIMPLE.
- Cliquer sur Menu pour revenir à l'écran du MENU PRINCIPAL.

5.10 Options de menu Measurement settings (Meas. settings)

Après sélection de "Meas. Settings" à partir du MENU PRINCIPAL, la fenêtre MEASUREMENT SETTINGS s'affiche. Cet écran permet d'accéder aux paramètres suivants de l'analyseur : compensation de température, compensation de pression, intervalle ; ainsi qu'aux options d'enregistrement et de gestion des données.

5.10.1 Compensation de température

Sur l'écran MEASUREMENT SETTINGS, utiliser les boutons de navigation pour accéder à la zone Temperature. Voir la figure 32.

Figure 32. Écran Measurement settings – Compensation de température

Si "Auto" est sélectionné, la température de mesure est déterminée par la sonde RTD (Pt100).

AVIS

▶ Les valeurs de température mesurées automatiquement peuvent être affichées en °C, °F ou K.

5.10.2 Réglage de la compensation de température

 Modifier les paramètres en fonction de l'unité de mesure souhaitée dans le coin inférieur droit de la zone "Temperature". La figure 32 montre la température réglée à 22,0 °C.

OU

Sélectionner **Manual** si la température au niveau du capteur d'oxygène est connue et constante pendant toute la durée de la mesure.

ATTENTION

Le réglage manuel n'est nécessaire que si le capteur de température ne fonctionne pas correctement. Voir SAV →
avant d'utiliser le réglage "Manual".

AVIS

- Les valeurs de température peuvent être saisies en °C, °F ou K, dans une gamme allant de -99 °C à 199 °C. Les valeurs sont automatiquement recalculées dans l'unité correspondante.
- 2. Passer à l'unité de température souhaitée et modifier la valeur de température dans le champ d'entrée pour qu'elle corresponde à la température mesurée.

5.10.3 Compensation de pression

Sur l'écran MEASUREMENT SETTINGS, utiliser les boutons de **navigation** pour passer à la zone "Pressure". Voir la figure 33.

Temperature	– Interval
) Auto 💿 Manual 22.0 °C	00h 00m 03s
Pressure	Logging
4-20mA 🛞 Manual	🔿 On 🕘 Off
976 mbar	Measurement Browser

Figure 33. Écran Measurement settings – Compensation de pression

Si l'OXY5500 a été acheté avec un capteur de pression, l'analyseur sera configuré en usine pour utiliser le capteur de pression. Si le capteur de pression est acheté séparément, se reporter aux étapes suivantes pour configurer le capteur de pression.

5.10.4 Réglage de la compensation de pression

- 1. Sélectionner le mode de compensation de pression. Cliquer sur 4-20 mA pour la pression atmosphérique à mesurer avec un capteur de pression raccordé. Ces valeurs seront utilisées pour la compensation de pression.
- Raccorder un capteur de pression à l'analyseur. L'écran affiche la valeur de pression interprétée à partir de l'entrée 4-20 mA. Voir Étalonnage de l'entrée →

AVIS

Si aucun capteur de pression n'est raccordé, l'écran affiche 1 013 mbar.

OU

1. Sélectionner **Manual** si la pression atmosphérique pendant la mesure est connue.

AVIS

- Les valeurs de pression peuvent être saisies en hPa, mbar, PSI, atm ou torr.
- 2. Passer à l'unité de pression souhaitée et modifier la valeur de la pression dans le champ d'entrée.

5.10.5 Intervalle

Sur l'écran MEASUREMENT SETTINGS, utiliser les boutons de navigation pour passer à la zone "Interval" et sélectionner le mode de mesure. Voir la figure 34.

Figure 34. Écran Measurement Settings – Sélectionner l'intervalle de temps

5.10.6 Réglage de l'intervalle

1. Sélectionner **Single Scan** pour lancer un seul balayage de mesure.

- 2. Sélectionner "Interval" pour définir un intervalle de temps pour la mesure à prendre.
- 3. Insérer les heures, les minutes et les secondes de l'intervalle auquel les balayages de mesures sont effectués.

La valeur par défaut recommandée pour l'intervalle est de "30 s" (30 secondes). L'intervalle le plus rapide possible pour OP-3 est de "1 s". Pour OP-6 et OP-9, il est de "3 s".

ATTENTION

Les valeurs d'intervalle réglées à moins de 30 secondes peuvent réduire la durée de vie de la sonde. Voir Dérive du signal due à la photodécomposition →
pour plus d'informations.

Le taux d'échantillonnage par intervalle détermine la fréquence pour l'étalonnage du capteur. Par exemple, un capteur avec un taux d'échantillonnage par intervalle de 30 secondes produira 100 000 points de mesure en 34,7 jours. Endress+Hauser recommande 35 jours comme point de départ pour le réétalonnage ou lorsque l'application l'exige. Voir le tableau ci-dessous et *Étalonnage de l'analyseur* $\rightarrow \square$.

Intervalle échant.	Points	Fréquence d'étalonnage (jours)
30 secondes	100 000	34,7
1 minute	100 000	69,4
1 heure	100 000	4 166
10 heures	100 000	41 666

Tableau 4. Taux d'échantillonnage par intervalle / fréquence d'étalonnage

5.10.7 Enregistrement et gestion des données

Sur l'écran MEASUREMENT SETTINGS, utiliser les boutons de navigation pour passer à la zone "Logging". Voir la figure 35.

Figure 35. Écran Measurement Settings – "Logging"

AVIS

- Dans la barre d'état, l'icône indique que l'enregistrement est désactivé.
- Sélectionner 'Off' si l'on ne souhaite pas stocker les données de mesure.
- Sélectionner 'On' pour stocker les données de mesure.

L'écran passe automatiquement au "Measurement Browser". Une liste s'affiche, indiquant le nom du fichier de mesure, le nombre de points de mesure stockés dans le fichier correspondant et la date de la dernière utilisation du fichier.("Last Used"). Voir la figure 36.

AVIS

A0052904

	田田	ilili		11:24
Measurement	Poir	nts	Last Us	sed
default SSS M_01 M_02	13	0 721 298 4 65	01 Jan 05 Ma <u>y</u> 06 May 06 Ma y	2000 y 2015 y 2015 y 2015 y 2015
	0			

Figure 36. Measurement Browser – Liste des fichiers de mesure

- Utiliser les boutons Flèche vers le haut et Flèche vers le bas pour naviguer vers le haut ou vers le bas de la liste.
- Cliquer sur OK pour sélectionner le fichier en surbrillance. Les nouvelles données de mesure sont ajoutées au fichier existant. L'affichage revient automatiquement à l'écran Measurement Settings.

AVIS

- Dans la figure 36, l'icône du moniteur dans la barre d'état indique que l'enregistrement est activé et que les données de mesure sont stockées.
- Cliquer sur le bouton Flèche vers la gauche pour supprimer le fichier de mesure en surbrillance de la liste.
 Une fenêtre s'affiche, avec la question : "Really delete this measurement?" ("Voulez-vous vraiment supprimer cette mesure ?") Sélectionner Yes et le fichier de mesure en surbrillance est supprimé.

AVIS

Le fichier de mesure actuellement activé ne peut pas être supprimé. Pour le supprimer, d'abord sélectionner un autre fichier de mesure, puis revenir à la suppression du fichier de mesure à supprimer. La mesure par défaut ne peut pas être supprimée.

Cliquer sur le bouton **Flèche vers la droite** pour créer un nouveau fichier de mesure. Un écran-clavier s'affiche pour saisir le nouveau nom du fichier de mesure. Voir la figure 37.

	Linkilli		11:24
Measurement Name			
0 1 2 3	4 5 6	7 8	9
ABCDI	FG	HIT	J
KLMN	PQ	RS	T
UVWX	Y Z	+ Dor	ie
N	A_04		
• • •	®	۲	0
Navigate Navigate Meas	. Press	Navigate	Navigate

Figure 37. Écran clavier pour la saisie du nom de mesure

Utiliser les boutons fléchés pour se déplacer sur le clavier et le bouton OK pour sélectionner la lettre ou le chiffre correspondant. Le nouveau nom de la mesure s'affiche dans la case en surbrillance au bas de l'écran.

AVIS

- > Pour revenir à la liste des fichiers de mesure sans créer de nouveau fichier, cliquer sur Menu.
- Après avoir saisi le nom du fichier, cliquer sur **Done** et **OK**. Le nouveau fichier de mesure s'affiche dans la liste des fichiers.

- Pour sélectionner un fichier de mesure nouvellement créé pour le stockage des données, cliquer une seconde fois sur OK. L'affichage revient automatiquement à l'écran Measurement Settings.
- Cliquer sur **Menu** pour enregistrer les modifications et revenir à l'écran du MENU PRINCIPAL.

5.11 Options du menu Device Settings

Cliquer sur **Device Settings** dans le MENU PRINCIPAL pour accéder au menu DEVICE SETTINGS, à l'écran SENSOR DETAILS et à l'écran ABOUT.

5.11.1 Écran Device Settings

Cet écran permet de modifier les paramètres généraux de l'OXY5500. Voir la figure 38. La date ("Date"), l'heure ("Time"), l'intensité des LED ("LED Intensity") et les paramètres de zéro forcé ("Forced Zero") sont enregistrés avec chaque mesure dans le fichier de mesure correspondant.

Figure 38. Écran Device Settings

ATTENTION

- Si l'alimentation électrique de l'analyseur est désactivée, les réglages "Time" et "Date" sont mis à zéro. Réinitialiser l'heure et la date avant de commencer une nouvelle mesure afin que l'heure correcte soit enregistrée avec les données.
- Time : Régler l'heure actuelle en heure(h), minute(s) et secondes(s). L'OXY5500 utilise des réglages de l'heure sur 24 heures.
- **Date :** Définir la date actuelle en jour (d), mois (m) et année (y).
- LED Intensity : Permet de régler l'intensité du signal de la sonde. La gamme de réglage de l'intensité des LED (également appelée intensité du signal utilisateur) est comprise entre -5 et 5, 5 étant l'intensité de sonde la plus élevée et -5 l'intensité de sonde la plus faible. La valeur par défaut est 0.

5.11.2 Réglage du mode zéro forcé

1. Cliquer sur le mode Forced Zero pour afficher le menu déroulant.

Figure 39. Mode "Forced Zero" (1)
Réglages "Forced Zero"	Affichage des valeurs négative d'oxygène	Signal d'alarme "Forced Zero is Active"	"Forced Zero" actif après Reset
Passive	oui	non	non
Active	non	non	non
Active with alarm	non	oui	non
Active stored (réglage par défaut)	non	non	oui
Active with alarm stored	non	oui	oui

2. Sélectionner l'un des modes "Forced Zero" affichés dans le tableau.

Tableau 5. Modes "Forced zero"

5.11.3 Définitions du mode "Forced Zero"

- **Passive mode :** L'option "Forced Zero" est inactivée et les mesures négatives sont affichées.
- Active mode : Dans ce mode, une valeur négative sera considérée comme 0 % [ppm] O2. Après avoir redémarré l'appareil, le mode par défaut "passive" est réactivé.
- Active alarm : Dans ce mode, une valeur négative sera considérée comme 0 % [ppm] O2. Une signal d'alarme "Forced Zero is active" s'affiche en haut de la fenêtre. Voir la figure 40. Après avoir redémarré l'appareil, le mode par défaut "passive" est réactivé.
- Active stored : Dans ce mode, une valeur négative sera considérée comme 0 % [ppm] O2. Aucun signal d'alarme n'est affiché lorsque la concentration d'oxygène est négative. Après avoir redémarré l'appareil, ce mode reste actif.
- Active with alarm stored : Dans ce mode, une valeur négative sera considérée comme 0% [ppm] O2. Ce mode combine les fonctionnalités des modes "active alarm" et "active stored". Après avoir redémarré l'appareil, ce mode reste actif.

Figure 40. Signal d'alarme "Forced Zero"

ATTENTION

► L'OXY5500 nécessite un étalonnage régulier comme décrit dans Étalonnage de l'analyseur →

E. Les valeurs d'oxygène négatives qui peuvent être dues à un étalonnage inexact ne sont pas affichées lorsque la fonction "Forced Zero" est activée.

AVIS

 Lorsque la fonction "Forced Zero" est active, la valeur lue, telle que décrite ci-dessus, s'applique à l'écran de mesure principal et à la sortie analogique 4-20 mA. Les valeurs négatives de l'oxygène sont émises en tant que 4 mA.

5.11.4 Écran About

L'écran "ABOUT" indique le numéro de série (Serial Number), l'état des LED (LED Status) et la version de firmware (Firmware Version) de l'OXY5500. Voir la figure 41.

Figure 41. Écran About

ATTENTION

► S'assurer d'avoir les informations sur l'analyseur qui se trouvent dans l'écran "ABOUT" avant de contacter le SAV
 →
 →

5.11.5 Écran "Sensor Details"

Les informations sur le capteur actuellement sélectionné sont disponibles via l'écran SENSOR DETAILS. Voir la figure 42. Le type de capteur est affiché en haut de l'écran. Ci-dessous toutes les données d'étalonnage et les constantes de capteur sont affichées.

Figure 42. Écran "Sensor Details"

5.12 Options du menu "Sensor"

L'option permettant de modifier les paramètres, le type de capteur ou d'étalonner l'analyseur est accessible via le bouton **Sensor** du MENU PRINCIPAL.

5.12.1 "Change Parameters"

En cliquant sur le bouton **Change Parameters** dans le menu SENSOR, une fenêtre de message s'affiche avec la question concernant l'abandon de la mesure en cours. Voir la figure 43.

Figure 43. Fenêtre de message – Arrêter les mesures pendant la configuration

Sélectionner **Yes** pour arrêter la mesure afin d'afficher la fenêtre SENSOR TYPE AND SENSOR CONSTANTS. Voir la figure 44.

S	ensor Type an	d Sensor Cor	nstants Next
ensor Ty	/pe: 02.6		
dKSV1	0.000433	fl	0.808
dKSV2	0.000000	m	29.87
	0.00030	dPhi2	0 00000

Figure 44. Sensor Type and Sensor Constants – Menu Sensor Type sélectionné pour édition

Utiliser les boutons fléchés pour naviguer entre les champs d'entrée.

5.12.2 Accès au mode édition

- 1. Cliquer sur **OK** pour modifier le champ en surbrillance.
- 2. Modifier le réglage ou la valeur (un chiffre à la fois) en utilisant les boutons **Flèche vers le haut** et **Flèche vers le bas**.
- 3. Apporter la modification souhaitée à un champ d'entrée.
- 4. Cliquer une nouvelle fois sur **OK** pour enregistrer les modifications.

5.12.3 Sortie du mode édition

1. Cliquer sur **Menu** pour annuler et quitter le mode.

5.12.4 Changement du type de capteur

S'il est nécessaire de changer le type de sonde sur le terrain, changer le type de capteur (OP-3, OP-6 ou OP-9) en fonction du capteur raccordé à l'analyseur. Les constantes de capteur affichées (dKSV1, dKSV2, dPhi1, dPhi2, f1 et m) changent en fonction du type de capteur sélectionné.

AVIS

Les valeurs des constantes de capteur peuvent également être trouvées sur le certificat d'étalonnage fourni avec le capteur optique d'oxygène. Voir l'exemple de la figure 45.

	OXY5	500 Calil	oration	Certificat	te E	ndress+Hause	r 🖽
SYSTEM INFORMAT	ION						
Calibration Date Optical Module S/N OXY5500 S/N SSI Sales Order No. Job No.	1-1 SAAP0 SC00 1 J5	2-2022 001000579 9C28000 5451 i8595			Sensor Type Sensor S/N Firmware SSI P/N Tag No.	OP-9 Range: 0 tc 211029-006 PSt9-1 SSI v1.4.1.051 OXY5500- 11011120-0 NA	300 ppm 729-01 9 0000-00
CALIBRATION SPECI	FICATIONS						
Calibration Point: CA Calibration Point: CA	LO ppm L2ND ppm	0.0 200	00		User Signal Int Operating Tem Atmospheric P	resity [°C] 21 ressure [mbar] 985	0 .22 9.01
CALIBRATION DATA							
Calibration Points Cal0: Cal2nd:	Phase Signal ['] 64.12 34.77	Valid Range [*] 60.00 - 70.00 32.00 ⁻ 45.00	Temperature [°C] 21.21 20.92	Valid Range [°C] 18.00 - 60.00 18.00 - 60.00	Amplitude [uV] 25738.03 14956.97	Pass / Fail PASS PASS	
Sensor Constants F1 = 0.786 m = 15.8 Sensor Constants: F1 = F1 = 0.786	: 0 to 60 °C dPhi1= dPhi2= -20 to 50 °C dPhi1=	-0.0035 -0.00038 -0.01229	dKSV1 = dKSV2 = dKSV1 =	-0.08 0		Cal Gas Cylinder N2 (6.0) 3200152 O2 In N2 2810220 Sensor Constant Used 20100000000000000000000000000000000000	Station OXY OXY
VALIDATION DATA	arniz=	-0.00022	dK5V2 =	0]	-20 to 50 C	
O2 Reading O2 ppm Set Point 0.00 200.00	O2 ppm 0.03 200.15	Valid Range ppm < 2.00 190.00 - 210.00	Temperature [°C] 21.22 20.99	Valid Range [°C] 18.00 - 60.00 18.00 - 60.00	Pressure [mbar] 989.01 989.01	Valid Range [mbar] 900.00 - 1025.00 900.00 - 1025.00	Pass-Fail PASS PASS
Analog Outputs Set Point [mA] 4.00 20.00	Port1 [mA] 4.000 20.001	Valid Range (mA) 3.995 - 4.005 19.995 - 20.005	Port2 [mA] 4.000 20.000	Valid Range (mA) 3.995 - 4.005 19.995 - 20.005	Pass-Fail PASS PASS		
COMMENTS NOTE: Calibration was p to use. End users to chec	erformed using Sp k calibration frequ FT2	pectraSensors instrum sency based on manu 20	entation at ambien al recommended in	t conditions. OXY550 tervals. Date:	10 manual recom	mends for end users to calibrate th	ne unit prior

Figure 45. Exemple de certificat d'étalonnage : données d'étalonnage et constantes de capteur

5.12.5 Modification manuelle des valeurs des constantes de capteur

- 1. Sélectionner le champ souhaité et cliquer sur **OK**.
- 2. Cliquer sur **Next** dans le coin supérieur droit de l'écran, puis cliquer sur **OK**.

L'affichage passe à l'écran CALIBRATION DATA. Voir la figure 46. Si un étalonnage a été réalisé avec un capteur précédemment raccordé, les données de cet étalonnage sont affichées.

A0052913

Figure 46. Écran "Calibration Data"

AVIS

- Sur le certificat d'étalonnage →
 ^B, "T0" est affiché dans la section "Calibration Data", colonne Température en tant que Cal0 et Cal2nd.
- Sur le certificat d'étalonnage, "pATM" est affiché en tant que "pression atmosphérique" dans la section "Calibration Specifications" durant Cal0 et Cal2nd.

5.12.6 Étalonnage

La pression et la température d'étalonnage sont réglées à partir des écrans CALIBRATION SETTINGS et CALIBRATION TEMPERATURE, comme indiqué ci-dessous.

5.12.7 Réglage de la pression d'étalonnage

Voir la figure 47 pour une vue de l'écran CALIBRATION SETTINGS. Les instructions suivantes fournissent des informations sur les réglages.

Figure 47. Écran Calibration Settings

Pressure :

- Sélectionner Auto pour mesurer la pression atmosphérique via l'entrée 4-20 mA.
- Sélectionner **Manual** s'il n'y a pas de capteur de pression raccordé à l'analyseur. Entrer la valeur de la pression atmosphérique actuelle et l'unité correspondante (hPa, mbar, PSI, atm ou torr).
- Cliquer sur **OK** pour enregistrer les modifications.

Cliquer sur **Next** en haut à droite de l'écran, puis sur **OK**.

5.12.8 Réglage de la température d'étalonnage

Utiliser les instructions suivantes pour programmer l'analyseur pour la température d'étalonnage correcte. Voir la figure 48.

Back Calibration Temperature Next T0 Auto Manual °C T2nd Auto Manual °C Auto Manual °C Source Source Source Source Source Calibration Temperature Next Next Next Next Next Source Source Next Next Source Next Nex Nex Nex Nex			10:54
TO Auto Manual °C T2nd Auto Manual °C O Manual °C	Back Ca	libration Tempera	ture Next
 Auto O Manual °C T2nd Auto O Manual °C Auto O Manual °C O O O O O O O O 	то		
T2nd Auto O Manual °C • O O O O O	Auto	🔿 Manual	°C
Auto Manual C	T2nd		
• • • • •	Auto	🔿 Manual	°C
	•	9 6	•

Figure 48. Écran Calibration Temperature

- **T0 :** Température au premier point d'étalonnage.
 - Sélectionner Auto pour mesurer la température au premier point d'étalonnage avec la sonde RTD (capteur de température Pt100).
 - Sélectionner Manual si le premier point d'étalonnage est connu et reste constant tout au long du processus d'étalonnage. Les valeurs de température peuvent être entrées en °C, °F ou K. Passer à l'unité de température souhaitée et modifier la valeur de la température dans le champ d'entrée.
- T2nd : Température au deuxième point d'étalonnage.
 - Sélectionner **Auto** au premier point d'étalonnage pour la mesure de température automatique.
 - Sélectionner **Manual** pour insérer les modifications à la température d'étalonnage manuellement.

Pour procéder à l'étalonnage, cliquer sur **Next** en haut à droite de l'écran, puis sur **OK**.

Avant de démarrer la mesure, l'OXY5500 doit être étalonné. Voir Étalonnage de l'analyseur $\rightarrow \square$.

5.12.9 Étalonnage de l'analyseur

Exécuter les procédures d'étalonnage de cette section avant de commencer la mesure. Tout d'abord, se reporter à la liste d'équipements et de matériels requis dans le tableau ci-dessous. La figure 49 montre une illustration des composants à utiliser pour le processus de purge du détendeur de la bouteille.

5.12.10 Équipement et matériels

Le tableau présente une liste des matériaux et autres équipements recommandés pour obtenir les meilleurs résultats lors du processus d'étalonnage. L'emplacement des composants est indiqué dans les figures 49, 50 et 51.

Matériel/ équipement	Spécifications	Fournisseur ; Réf. (si disponible)	Remarques
Gaz d'azote (Cal 0)	Qualité 6.0 (99,9999 %)	Airgas, Inc. ; réf. NI ISP 300 ou équivalent	À utiliser pour les gammes de mesure de 0 à 100 ppmv et inférieures. Peut également être utilisé pour le capteur OP-6 ou OP-3.
Gaz d'azote (Cal 0)	Grade de haute pureté 5.0 (99,999 %)	-	À utiliser pour les gammes d'étalonnage supérieures à 100 ppmv. Peut être utilisé pour le capteur OP-6, OP-3 ou OP-9, ou pour le capteur OP-9 avec des concentrations d'O2 > 100 ppm
200 ppm d'O2 dans le gaz N2 (Cal 2nd)	200 ppm d'oxygène dans l'azote	Airgas, Inc. ; réf. X02NI99P15A0122 ou équivalent	À utiliser avec le capteur OP-9
2 % d'O2 dans le gaz N2 (Cal 2nd)	2 % d'oxygène dans l'azote	Airgas, Inc. ; réf. X02NI98C15A0614 ou équivalent	À utiliser avec le capteur OP-6
21 % d'O2 dans le gaz N2 (Cal 2nd)	20 à 21 % d'oxygène dans l'air ambiant	s.o.	À utiliser avec le capteur OP-3

Matériel/ équipement	Spécifications	Fournisseur ; Réf. (si disponible)	Remarques
Détendeurs de pression à deux étages pour bouteilles	Type : Membrane standard en acier inoxydable de haute pureté, à deux étages	Genstar Technologies ; R31BQK-DIK- C580-00-DR ou équivalent	Utilisé pour N2, 200 ppm d'O2 dans N2 et 2 % d'O2 dans N2 (quantité 2)
Tube en acier inoxydable	Tube 3 mm (1/8 in.), 316L, électropoli, sans soudure	-	Utilisé pour raccorder les bouteilles au port Cal (minimiser la longueur entre la bouteille et le port/entrée Cal de l'OXY5500)
Vanne à bille à trois voies	0,35 Cv, 1/4 in. TF, PTFE, 316SS ou 0,35 Cv, 6 mm TF, PTFE, 316SS	Swagelok ; SS-42GXS4 SS-42GXS6MM	À utiliser pour raccorder les bouteilles de N2 et d'O2 au port/à l'entrée Cal de l'OXY5500 (quantité 1)
Réducteur de tube	Raccord de tube en inox, réducteur, dia. ext. tube 1/8 in. x 1/4 in. ou Raccord de tube en inox, réducteur, dia. ext. tube 6 mm x 3 mm	Swagelok ; SS-200-R-4 SS-6M0-R-3M	(quantité 2)
Embout de raccordement	1/4 TF, dia. ext., 316SS ou 6 mm TF, dia. ext., 316SS	Swagelok ; SS-401-PC SS-6M1-PC	(quantité 2)

Tableau 6. Matériels / équipement d'étalonnage

Figure 49. Schéma d'ensemble pour les raccordements des bouteilles et de l'analyseur Endress+Hauser

Pos.	Description
1	Robinet de bouteille
2	Détendeur à deux étages
3	Vanne d'arrêt
4	Tube en acier inoxydable
5	Vanne à bille à trois voies
6	Port 1
7	Port 2
8	Vers l'évent
9	Cal 0
10	Cal 2nd

5.12.11 Raccordements des gaz d'étalonnage à l'analyseur OXY5500

Le raccordement des deux bouteilles de gaz d'étalonnage à une vanne à trois voies minimise l'exposition de l'OXY5500 à l'oxygène ambiant. Ce processus permet de réduire le temps d'étalonnage de l'analyseur. Les instructions ci-dessous concernent les analyseurs avec ou sans systèmes de préparation d'échantillons intégrés. Si le système de préparation d'échantillons (SCS) de l'analyseur a été fabriqué en dehors de l'usine Endress+Hauser, contacter le fabricant pour obtenir des détails sur les raccordements du SCS.

Cette configuration est fortement recommandée pour les étalonnages de gamme basse (0 à 100 ppmv et moins). Les gammes supérieures peuvent être étalonnées en raccordant le N2 et les gaz d'étalonnage un à la fois sans la vanne à trois voies, comme illustré dans la figure 50.

5.12.12 Raccordement de l'entrée de gaz pour les analyseurs sans système de préparation d'échantillons

- 1. Raccorder la vanne à trois voies à un embout de raccordement.
- 2. Raccorder les réducteurs de chaque côté de la vanne à trois voies.

- 3. Relier la bouteille de gaz au réducteur de chaque côté de la vanne à trois voies à l'aide d'un tube en acier inoxydable de 3 mm (1/8 in.).
- 4. Raccorder la sonde OXY5500 à l'embout de raccordement.

Figure 50. Raccordement de l'entrée de gaz sans SCS

Pos.	Description		
1	Vanne à trois voies		
2	Tube vers bouteille de gaz		
3	Embout de raccordement		
4	Tube vers bouteille de gaz		
5	Réducteurs		
6	OXY5500		

5.12.13 Raccordement de l'entrée de gaz pour les analyseurs avec système de préparation d'échantillons (SCS) d'Endress+Hauser

- 1. Fixer l'embout de raccordement au boîtier SCS de l'analyseur Endress+Hauser.
- 2. Raccorder la vanne à trois voies à l'embout de raccordement.
- 3. Raccorder les réducteurs de chaque côté de la vanne à trois voies.
- 4. Relier la bouteille de gaz au réducteur de chaque côté de la vanne à trois voies à l'aide d'un tube en acier inoxydable de 3 mm (1/8 in.).

Figure 51. Raccordement de l'entrée de gaz avec SCS

Pos.	Description		
1	Vanne à trois voies		
2	Réducteurs		
3	Tube vers bouteille de gaz		
4	Embout de raccordement		

5.13 Purge des détendeurs de bouteille et de l'analyseur

- 1. Installer un détendeur sur la bouteille de gaz zéro azote (N2).
- 2. Installer un détendeur sur la bouteille de gaz d'étalonnage O2.
- 3. Purger le détendeur en commençant par la bouteille d'O2, puis la bouteille de N2. Laisser le gaz s'écouler dans l'analyseur pour le purger également.
- 4. Fermer le robinet de sortie du détendeur et ouvrir le robinet de la bouteille. Cela permet de pressuriser les côtés primaire et secondaire du détendeur à deux étages.
- 5. Régler le détendeur à 200 KPaG (30 PSIG).
- 6. Fermer le robinet de la bouteille et ouvrir le robinet de sortie du détendeur à deux étages. Laisser le gaz s'écouler jusqu'à ce que les pressions des gaz des détendeurs primaire et secondaire soient proches de zéro.
- 7. Fermer la vanne de sortie du détendeur à deux étages avant de relâcher la dernière pression de gaz.
- 8. Répéter quinze (15) fois les étapes 1 à 7 pour chaque détendeur.

AVIS

- Pour obtenir les meilleurs résultats, décharger le détendeur autant que possible sans relâcher toute la pression à chaque cycle de purge.
- 9. Ouvrir le robinet de la bouteille et s'assurer que le détendeur est réglé sur 200 KPaG (30 PSIG).
- 10. Ouvrir complètement le robinet de sortie du détendeur à deux étages. S'assurer qu'il n'y a pas de restrictions sur le retour de l'échantillon qui pourraient causer une contre-pression pendant le cycle de purge.

5.13.1 Exécution d'un étalonnage manuel (étalonnage basé sur les valeurs du capteur)

Si le capteur n'a pas été préalablement étalonné avec l'analyseur (p. ex. remplacement du capteur), l'étalonnage peut être réglé en entrant simplement les valeurs du certificat d'étalonnage fourni avec l'analyseur, sans qu'il soit nécessaire d'utiliser des gaz d'étalonnage. Voir l'exemple de *certificat d'étalonnage* $\rightarrow \square$. Cependant, l'étalonnage avec des gaz est plus précis car il tient compte de la variabilité de l'installation spécifique. Pour étalonner avec le gaz, voir *Exécution d'un étalonnage en deux points* $\rightarrow \square$.

1. Modifier les valeurs de Cal0, T0, Cal2nd, T2nd et pATM en fonction des valeurs indiquées dans le certificat d'étalonnage. Voir la figure 52.

Figure 52. Écran Calibration Data – Changement de l'unité de pression

AVIS

- Sur le certificat d'étalonnage, "pATM" est indiqué comme "pression atmosphérique" dans les spécifications d'étalonnage durant Cal0 et Cal2nd.
- 2. Modifier la valeur **O2-2nd** en fonction de la valeur indiquée sous la colonne cal2nd.

ATTENTION

- Vérifier que l'unité correcte pour les valeurs O2-2nd et pATM est sélectionnée.
- 3. Cliquer sur **Enregistrer** en haut à droite de l'écran pour enregistrer les modifications et terminer l'étalonnage manuel de l'analyseur.

L'écran passe automatiquement à la fenêtre MEASUREMENT. Si un autre type de capteur a été sélectionné, une fenêtre de message s'affiche indiquant que le changement de type de capteur a réinitialisé la vérification RATA. Voir Vérification des tests de précision relative (RATA) $\rightarrow \square$.

5.13.2 Exécution d'un étalonnage en deux points

Pour effectuer un étalonnage en deux points avec le capteur d'oxygène raccordé, commencer par sélectionner les écrans ci-dessous. Une fois cette opération terminée, poursuivre la procédure décrite sous "Étalonnage de l'analyseur" à la page 53.

Figure 53. Fenêtre de message – Le changement de type de capteur réinitialise RATA

1. Sélectionner **Calibration** à partir de la fenêtre SENSOR OPTIONS. Voir la figure 54.

Figure 54. Bouton Calibration dans la fenêtre Sensor Options

2. Cliquer sur OK.

Une fenêtre de message s'affiche pour demander une réponse à la question suivante : "Measurement active. Abort for Configuration?" ("Mesure active. Abandonner pour la configuration") Voir la figure 55.

Figure 55. Fenêtre de message - Arrêter les mesures pendant la configuration

3. Sélectionner **Yes** pour arrêter la mesure afin de passer aux fenêtres CALIBRATION. Utiliser les boutons **Flèche vers le haut** et **Flèche vers le bas** pour naviguer entre les champs d'entrée.

5.13.3 Accès au mode édition

- 1. Cliquer sur **OK**.
 - Modifier le réglage ou la valeur (un chiffre à la fois) en cliquant sur les boutons **Flèche vers le haut** et **Flèche vers le bas**.
 - Apporter la modification souhaitée à un champ d'entrée.
- 2. Cliquer une nouvelle fois sur **OK** pour enregistrer les modifications.

5.13.4 Sortie du mode édition

1. Cliquer sur **Menu** pour annuler et quitter le mode.

5.13.5 Exécution du préétalonnage

- 1. Raccorder l'analyseur à une bouteille d'azote (N₂).
- 2. Régler le débit à 1,5 SLPM.
- 3. Confirmer les réglages de la sonde spécifiée utilisée.

ATTENTION

- Les réglages spécifiés dans le certificat d'étalonnage doivent être utilisés pour les sondes. Voir Certificat d'étalonnage →
- 4. Laisser le gaz d'azote (N2) Cal 0 circuler dans le système pendant 45 à 60 minutes pour le purger. Voir le tableau.

Point/Caract.	OP-3	OP-6	OP-9
Cal O	Étalonnage avec un environne- ment exempt d'oxygène (p. ex. azote).	Étalonnage dans un environne- ment exempt d'oxygène (azote).	Étalonnage dans un environnement exempt d'oxygène (azote 99,9999 %).
Cal 2nd	Valeur d'étalonnage optimale à 20,9 % d'O2 dans du N2 (ou de l'air ambiant).	Valeur d'étalonnage optimale entre 1 % et 2 % d'oxygène.	Valeur d'étalonnage optimale entre 100 et 200 ppm d'O2 dans N2.
Stabilité au stockage	2 ans à condition que le capteur soi	t conservé dans son emballage d'origi	ne.

Tableau 7. Spécifications du gaz d'étalonnage

Dans la partie supérieure de l'écran principal sont affichées les valeurs actuelles (Present Values) mesurées par l'OXY5500. Voir la figure 56.

Figure 56. Écran Calibration

5.13.6 Réglage du premier point d'étalonnage Cal0

- 1. Envoyer le gaz CalO au capteur pour le premier point d'étalonnage. Voir le tableau pour les spécifications du gaz CalO.
- 2. Cliquer sur **Start** à gauche de la valeur Cal0.

Le champ Statut affiche le message 'Wait - Stabilizing!' (Attendre la stabilisation) Attendre que les valeurs de phase se stabilisent à \pm 0,01°.

ATTENTION

- Ne pas tenir compte du message "Ready to Set Value" (Prêt pour régler la valeur).
- 3. Envoyer le gaz zéro jusqu'à ce que la phase soit stable ; à 0,01 près (environ 45 à 60 minutes).
- 4. Déplacer le bouton **Set** vers la gauche de la valeur Cal0, puis cliquer sur **OK**.

5.13.7 Réglage du deuxième point d'étalonnage Cal2nd

- 1. Envoyer le gaz Cal2nd au capteur pour le deuxième point d'étalonnage.
- 2. Dans le champ O2-2nd, entrer la valeur d'oxygène (unité de concentration) du deuxième produit d'étalonnage.
- 3. Cliquer sur **Start** à côté de la case Cal2nd.

Le champ Statut affiche le message 'Wait - Stabilizing!' (Attendre la stabilisation). Attendre que les valeurs de phase se stabilisent à $\pm 0,01^{\circ}$.

ATTENTION

- Ne pas tenir compte du message "Ready to Set Value" (Prêt pour régler la valeur).
- 4. Cliquer sur **Start** à gauche de la valeur Cal2nd.
- 5. Cliquer sur **OK**.

5.13.8 Enregistrement des valeurs d'étalonnage

- 1. Cliquer sur **Save** en haut à droite de l'écran.
- Cliquer sur **OK** pour stocker les données d'étalonnage pour le capteur sélectionné. L'affichage passe automatiquement à l'écran "Measurement".

5.13.9 Vérification des tests de précision relative (RATA)

RATA est accessible à partir du bouton RATA dans l'écran du menu SENSOR / SENSOR OPTIONS.

5.13.10 Réglage de RATA

1. Sélectionner **RATA** dans la fenêtre SENSOR OPTIONS. Voir la figure 57.

Figure 57. Écran Sensor Options

 Cliquer sur OK pour effectuer une vérification des tests de précision relative (RATA). Une fenêtre de message s'ouvre alors avec la question suivante : "Measurement Active. Abort for calibration?" ("Mesure active. Abandonner pour l'étalonnage?") Voir la figure 58.

) 10:5 2	2
Measurement	active. Abort fo	or Calibration	1?	
_				
	Yes			1
	No			
•	6 (R)	۲	\odot	

Figure 58. Fenêtre de message – Arrêter les mesures pour l'étalonnage

- 3. Sélectionner **Yes** et arrêter la mesure pour passer à l'écran CALIBRATION.
- 4. Utiliser les boutons **Flèche vers le haut** et **Flèche vers le bas** pour naviguer entre les champs d'entrée.

5.13.11 Accès au mode édition

- 1. Cliquer sur **OK**.
- 2. Modifier le réglage ou la valeur (un chiffre à la fois) en cliquant sur les boutons **Flèche vers le haut** et **Flèche vers le bas**.
- 3. Apporter la modification souhaitée à un champ d'entrée.
- 4. Cliquer une nouvelle fois sur **OK** pour enregistrer les modifications.

5.13.12 Sortie du mode édition

1. Cliquer sur **Menu** pour annuler et quitter le mode.

5.13.13 Réglage de la pression pour le calcul RATA

Après avoir arrêté la mesure en cours, l'écran PRESSURE FOR RATA CALCULATION s'affiche. Voir la figure 59.

Figure 59. Pression pour le calcul RATA

- Sélectionner Auto et la pression atmosphérique sera mesurée via l'entrée 4-20 mA.
- Sélectionner **Manual** s'il n'y a pas de capteur de pression raccordé à l'analyseur.
 - Entrer la valeur de la pression atmosphérique actuelle dans l'unité correspondante (hPa, mbar, PSI, atm ou torr).
 - Cliquer sur **OK** pour enregistrer les modifications.

5.13.14 Réglage de la température pour le calcul RATA

- Sélectionner Auto pour mesurer la température pour le calcul RATA avec la sonde RTD (capteur de température Pt100).
- Sélectionner Manual si la température pour le calcul RATA est connue. Les valeurs de température peuvent être entrées en °C, °F ou K.
 - Passer à l'unité de température souhaitée et modifier la valeur de température dans le champ d'entrée.
 - Cliquer sur **OK** pour enregistrer les modifications.

Cliquer sur Next en haut à droite de l'écran, puis sur OK. Les écrans de la figure 60 s'affichent.

Back	Relative Accur	acy Test Audit	10:59	ack Relative	Accuracy Test Aud	10:59 It Save
Present Values	Oxygen 1 224 %O2	emperature Pre 20.0 °C 97	essure 76hPa	esent Oxygen lues 22.4 %O2	Temperature - 20.0 °C	Pressure 976hPa
-	Old RATA Mult. 1000	Status Activate Start!		Old RATA I 1000	Mult. Status Ready to S	3 iet Value!
Z Start	New RATA Mult. 1.000	- 02 Reference 20.95 %	602 S	4 New RATA et 1000	Mult. 02 Reference 20	:e).95 %O2
() Navigate	Navigate Menu	OK O Press Navigate Na	⊙ avigate	•	D ON C) ()

Figure 60. Écran Relative Accuracy Test Audit (RATA)

En haut de l'écran, les valeurs d'oxygène, de température et de pression actuellement mesurées sont affichées. En dessous, la valeur "Old RATA Mult." est affichée.

AVIS

Si la valeur RATA n'a pas été modifiée, l'écran affiche 1.000.

5.13.15 Réglage des valeurs de référence RATA

- 1. Entrer la valeur d'oxygène de référence (concentration d'oxygène du gaz de test certifié introduit dans le récipient avec le capteur d'oxygène ou la valeur d'oxygène d'un appareil de référence) dans le champ O2 Reference (1) au bas de l'écran.
- 2. Cliquer sur **Start** à côté du champ New RATA Mult. (2), comme indiqué dans le champ Status, pour afficher les valeurs de phase actuelles du capteur. Attendre que les valeurs du capteur se stabilisent jusqu'à ce que le champ Status affiche "Ready to Set Value!" (Prêt pour régler la valeur) (3).
- 3. Cliquer sur le bouton Set (4) à côté du champ New RATA Mult. et la nouvelle valeur s'affiche.

La valeur New RATA Mult. peut également être réglée manuellement. Voir *Réglage manuel de la valeur New RATA Mult.* $\Rightarrow \square$.

- 4. Cliquer sur **Save** en haut à droite de l'écran.
- 5. Cliquer sur **OK**.

L'affichage passe automatiquement à l'écran "Measurement".

AVIS

 Il n'y a pas de réinitialisation automatique pour la vérification RATA. Cette fonction ne peut pas être remise manuellement sur 'off' (1).

5.13.16 Réglage manuel de la valeur New RATA Mult.

- 1. Naviguer jusqu'à la case New RATA Mult., puis cliquer sur **OK**.
- 2. Utiliser les boutons **Flèche vers le haut** et **Flèche vers le bas** pour modifier la valeur (entre 0,001 et 9,999), un chiffre à la fois.
- 3. Cliquer une nouvelle fois sur **OK**.

5.14 Options du menu Digitals

Définir les configurations RS-232, RS-485 et TCP/IP à partir du bouton **Digitals** dans le MENU PRINCIPAL.

5.14.1 Paramètres RS-232

Cet écran permet de définir le débit en bauds du canal RS-232. Voir la figure 61.

Figure 61. Écran "Digitals" – Paramètres RS-232

- La vitesse en bauds pour le canal RS-232 peut être réglée à 9 600, 19 200, 38 400, 57 600 ou 115 200.
- L'ID qui est utilisé dans la communication Modbus peut être réglé sur une valeur comprise entre 1 et 32.
- La parité peut être définie sur Even, Odd ou None.

AVIS

En réglant la parité sur "None", le nombre de bits d'arrêt est également fixé à deux. Les réglages Odd et Even utilisent un bit d'arrêt.

Tous les réglages sont appliqués en cliquant sur **Save**.

5.14.2 Paramètres RS-485

Cet écran permet de définir le débit en bauds du canal RS-485. Voir la figure 62.

		Hill		11:32
	RS	485		
Baudrate	19200		<u>inter</u>	
ID	1			
Parity	None			
RS232 Navig) 🗿 ate Save	OK Change	() Navigate	O TCP/IP

Figure 62. Écran "Digitals" – Paramètres RS-485

A0052926

- La vitesse en bauds pour le canal RS-485 peut être réglée à 9 600, 19 200, 38 400, 57 600 ou 115 200.
- L'ID qui est utilisé dans la communication Modbus peut être réglé sur une valeur comprise entre 1 et 32.
- La parité peut être définie sur Even, Odd ou None.

AVIS

En réglant la parité sur "None", le nombre de bits d'arrêt est également fixé à deux. Les réglages Odd et Even utilisent un bit d'arrêt.

Tous les réglages sont appliqués en cliquant sur Save.

5.14.3 Paramètres TCP/IP

Cet écran permet de définir les paramètres TCP/IP. Voir la figure 63.

Figure 63. Écran "Digitals" – Paramètres TCP/IP

- Si **DHCP** est sélectionné, l'IP et le masque de sous-réseau ("Subnet Mask") sont attribués par le serveur DHCP et, par conséquent, ne peuvent pas être modifiés.
- Si **Static** est sélectionné, l'IP et le masque de sous-réseau ("Subnet Mask") doivent être entrés manuellement. Contacter l'administrateur réseau local pour obtenir de l'aide si les données d'entrée doivent être confirmées.
- "Port" spécifie le port de réseau sous lequel l'application Modbus a lieu. La valeur par défaut pour la plupart des applications Modbus est 502.
- L'ID qui est utilisé dans la communication Modbus peut être réglé sur une valeur comprise entre 1 et 32.

Tous les réglages sont appliqués en cliquant sur **Save**.

5.15 Options du menu Analog Output Settings (Analogues)

À partir du MENU PRINCIPAL, cliquer sur **Analogues** pour accéder aux écrans 4-20 mA INTERFACE SETTINGS, 4-20 mA VALUES, CONCENTRATION ALARM RELAY (LS2) et 4-20 mA CALIBRATION.

5.15.1 Paramètres de l'interface 4-20 mA

L'écran 4-20 mA INTERFACE SETTINGS est accessible via le menu ANALOGUES. Ensuite, l'écran suivant s'affiche. Voir la figure 64.

4-20mA Inte	rface Settings
Port	Portì
Output	Oxygen
Mode	off
Error Trigger Level	2mA
• • •	

Figure 64. Écran "Analogues" – 4-20 mA Interface Settings

A0052929

Les paramètres Output, Mode et Error Trigger Level sont appliqués au port sélectionné, à savoir le port 1, le port 2 ou l'entrée.

Le niveau de déclenchement d'erreur (Error Trigger Level) définit la sortie du port dans le cas où l'analyseur passe en état d'erreur. L'option "No timestamp error" (NTE) excluent les erreurs d'horodatage causées par une perte d'alimentation de l'analyseur. Cette option est recommandée pour les installations dont l'alimentation électrique de l'analyseur est imprévisible. La sortie Port1 ou Port2 peut être l'oxygène ou la température.

L'entrée est toujours la pression et ne peut être modifiée.

Le Mode de Port1 et Port2 peut être réglé sur l'une des valeurs suivantes :

- Off : Pas de lecture d'entrée ni d'écriture de sortie.
- Linear : Valeur haute et basse réglée pour correspondre à 4 mA et 20 ma. Les valeurs comprises entre ces deux réglages seront calculées de manière linéaire. Les valeurs en dehors de cette gamme déclenchent le niveau de déclenchement d'erreur.
- **Bilinear :** Les valeurs haute, moyenne et basse correspondent respectivement à 4 mA, 12 mA et 20 mA. Ce mode permet d'obtenir une résolution plus élevée dans une certaine gamme. La figure 65 en donne un exemple.

Figure 65. Sortie courant bilinéaire en fonction de la valeur d'oxygène

Le premier exemple (ligne grise) de la figure 65 montre une résolution élevée dans un environnement à faible teneur en oxygène. Le deuxième exemple (ligne jaune) montre une résolution élevée dans un environnement à forte teneur en oxygène. Cela montre également le comportement des valeurs mesurées qui se situent en dehors de la gamme de valeurs (les valeurs d'oxygène au-dessus d'un maximum de 50 seront affichées comme 20 mA).

En cas d'erreur, le niveau de déclenchement d'erreur (2 mA ou 22 mA) est appliqué au port actuellement sélectionné. Pour l'entrée, toute valeur en dehors de la gamme 4-20 mA est interprétée comme "non valide".

5.15.2 Valeurs 4-20 mA

Dans l'écran 4-20 mA VALUES, entrer les valeurs qui correspondent à 4 mA, 12 mA ou 20 mA selon le mode actuellement sélectionné.

Les modes pouvant être sélectionnés sont les suivants :

- **Off :** Aucune valeur ne peut être entrée. Voir la figure 66.
- Linear : Les valeurs haute et basse peuvent être entrées. Voir la figure 67. L'unité dépend de la sortie sélectionnée et du capteur d'oxygène. Si la sortie est réglée sur Température, l'unité est toujours °C. Sinon, la sortie dépend du capteur d'oxygène (l'unité d'oxygène sélectionnée dans l'écran de mesure ne sera explicitement PAS utilisée) :
 - *OP-3*:%02
 - *OP-6*:%02
 - OP-9 : ppmv

Les valeurs sont utilisées pour calculer la valeur de sortie ou d'entrée lors de la prochaine mesure.

4-20r	nA Values	
Port	Port2	
High Value	20.00	%02
Mid Value	12.00	%02
Low Value	4.00	%02

Figure 67. "4-20 mA Values" pour mode "Linear"

 Bilinear : Les valeurs High Value, Mid Value et Low Value peuvent être entrées. Voir la figure 68. Les unités sont les mêmes que celles utilisées en mode linéaire. Les valeurs sont utilisées pour calculer la valeur de sortie ou d'entrée lors de la prochaine mesure.

4-20m/	A Values
Port	Port2
High Value	20.00 %O2
Mid Value	12.00 %O2
Low Value	4.00 %O2

Figure 68. "4-20 mA Values" pour mode "Bilinear"

5.15.3 "Concentration Alarm Relay" (Relais d'alarme de concentration)

Cet écran permet de définir la gamme du relais d'alarme de concentration (LS2). Voir la figure 69. Si la valeur d'oxygène est en dehors de cette gamme, le relais est commuté avec une faible impédance et déclenche une erreur. Sélectionner "Alarm Low Level" pour activer ou désactiver le réglage. L'unité dépend du capteur d'oxygène actuellement sélectionné :

- **OP-3**:%02
- **OP-6**:%O2
- OP-9:ppmv

Narm High Level 20.00 %O2 Narm Low Level 18.00 %O2 et Alarm Low Level International International Contractions of the second
Harm Low Level 18.00 %02 et Alarm Low Level.
et Alarm Low Level 💿 Enable 🔿 Disable

Figure 69. Écran "Analogues" – "Concentration Alarm Relay"

5.15.4 "4-20 mA Calibration" (Étalonnage 4-20 mA)

L'écran 4-20 mA CALIBRATION permet d'étalonner la sortie et l'entrée. L'analyseur est livré à l'état étalonné mais peut être étalonné avec d'autres appareils du système de mesure.

ATTENTION

L'étalonnage d'usine sera perdu si l'analyseur est réétalonné.

5.15.5 Étalonnage de la sortie

Utiliser la procédure suivante pour étalonner le flux de travail pour la sortie 1 ou la sortie 2. Voir la figure 70.

- 1. Raccorder un appareil de mesure du courant à la sortie correspondante. Il servira d'appareil de référence.
- 2. Régler la valeur **1st Point** sur une valeur basse quelconque, p. ex. 4,00 mA. La valeur est appliquée immédiatement.

Cliquer sur **Apply** ou entrer une autre valeur.

3. Lire la valeur du courant indiquée sur l'appareil de référence, p. ex. 3,90 mA.

Utiliser les symboles +/- dans la colonne Adjust à côté de la valeur 1st Point pour ajuster les valeurs en conséquence.

4. Régler la valeur **2nd Point** sur une valeur haute quelconque, p. ex. 20,00 mA. La valeur est appliquée immédiatement.

Cliquer sur Apply ou entrer une autre valeur.

5. Lire la valeur du courant indiquée sur l'appareil de référence, p. ex. 19,54 mA.

Utiliser les symboles **+/-** dans la colonne Adjust à côté de la valeur 2nd Point pour ajuster les valeurs en conséquence.

Exemple : L'analyseur affiche une valeur de 19,54 mA alors que la valeur devrait être de 20,00 mA. Cliquer sur le bouton jusqu'à ce que la valeur souhaitée soit enregistrée.

6. Pour tester l'étalonnage, appliquer quelques points de test en sélectionnant différents pourcentages, tels que 0 %, 25 %, 50 %, 75 % ou 100 %, ce qui correspond à 4 mA, 8 mA, 12 mA, 16 mA et 20 mA. Vérifier les valeurs avec l'appareil de référence. Si l'étalonnage est satisfaisant, cliquer sur **Save**.

Figure 70. Écran "Analogues" - "4-20 mA Calibration"

5.15.6 Étalonnage de l'entrée

La procédure d'étalonnage de l'entrée est similaire à la procédure de sortie indiquée ci-dessus. Utiliser les étapes suivantes pour étalonner l'entrée. Voir la figure 71.

- 1. Appliquer un courant faible à l'OXY5500.
- 2. Entrer cette valeur dans la colonne Reference, dans la rangée 1st Point.
- 3. Cliquer sur le bouton **Set** à côté du 1st Point lorsque la lecture est stable. La dernière valeur mesurée est affichée dans la rangée supérieure à côté du port sélectionné.

AVIS	

Cette valeur est la valeur non étalonnée qui sera utilisée comme valeur d'étalonnage du 1er point (1st Point).

Figure 71. Écran "Analogues" – Étalonnage de l'entrée 4-20 mA

- 4. Appliquer une valeur plus élevée à l'OXY5500.
- 5. Entrer cette valeur dans la colonne Reference, dans la rangée 2nd Point.
- 6. Cliquer sur **Set** à côté du 2nd Point lorsque la lecture est stable.

AVIS

- Cette valeur est la valeur non étalonnée qui sera utilisée comme valeur d'étalonnage du 2ème point (2nd Point).
- 7. La rangée Test Point affiche la valeur étalonnée, qui est utilisée pour calculer la valeur de pression. Cette valeur doit correspondre à la valeur de l'appareil de référence à moins de 0,05 mA près.

6 Communication Modbus

Modbus est un protocole de communication série publié par Modicon en 1979 en vue d'une utilisation avec ses automates programmables industriels (API). C'est devenu de facto un protocole de communication standard dans la branche qui constitue désormais le moyen le plus courant de connecter des dispositifs électroniques industriels. Modbus est très utilisé par rapport à d'autres protocoles de communication parce qu'il est systématiquement rendu public, et exempt de redevance, il assure un déploiement facile et permet le déplacement de bits raw ou de mots sans imposer de contraintes aux fournisseurs.

Ce chapitre couvre les protocoles, les formats et les données de registre utilisés pour communiquer avec l'OXY5500.

6.1 Définition du protocole

6.1.1 Spécifications générales

Les spécifications générales suivantes s'appliquent au protocole Modbus :

- Le protocole est conforme au protocole Modbus RTU.
- Le protocole est une architecture client-serveur, le contrôleur hôte jouant le rôle de serveur et chaque module individuel celui de client.
- Chaque module sur le bus doit avoir un numéro d'identification unique (voir registre 4095).
- L'appareil n'a pas de tampon de commande, de sorte que l'hôte doit toujours attendre que la commande soit traitée.
 - Les commandes de lecture nécessitent un temps de traitement de 10 ms via RS-232 et RS-485, et de 300 ms via LAN.
 - Après un processus d'écriture, certaines tâches chronophages sont lancées. Après un processus d'écriture, il convient de conserver un intervalle de temps fixe de 150 ms via RS-232 et RS-485, et de 300 ms via LAN après la réponse transmise.
- Le tampon d'entrée RX est de 256 octets.
- Une méthode de contrôle d'erreur CRC16 est mise en œuvre. La valeur de départ est 0xFFFF et le type polynomial est 0xA001.
- Certains registres sont en lecture seule. Lors de l'écriture sur ces derniers, une erreur Modbus 2 se produit (adresse de données illégale). Cela se produit également lorsque 4 registres doivent être écrits, mais que les 2 derniers sont en lecture seule. Aucun registre ne sera modifié par la suite.
- Tous les registres entre 1023 et 5708 peuvent être lus, car il n'y a pas de protection de lecture.

6.1.2 Codes de fonction

Les fonctions publiques disponibles sont les suivantes :

- **3** : Lecture des registres de maintien
- 4 : Lecture des registres d'entrée
- **16 :** Écriture dans plusieurs registres

Remarque : les codes de fonction 3 et 4 sont entièrement interchangeables car ils se comportent de manière identique.

AVIS

Le code de fonction 16 peut être utilisé avec la diffusion (ID appareil = 0). Les codes 3 et 4 ne peuvent pas être utilisés avec la diffusion.

6.1.3 Formats de données

6.1.3.1 Float (Virgule flottante)

Le format Float fait référence à la virgule flottante selon la norme IEEE 754 (Single Precision). Ce format nécessite deux registres de 32 bits où chaque registre contient l'octet de poids fort dans son premier bit.

Par exemple, si la valeur Float est 20,56 (int32), représentée par 0x41A47AE1 (hexaint32), elle est écrite dans deux registres consécutifs, le premier registre étant le registre 3499. Par conséquent, la valeur doit être transmise de la manière suivante :

Registre	Valeur
Registre 3499, octet de poids fort	0x7A
Registre 3499, octet de poids faible	0xE1
Registre 3500, octet de poids fort	0x41
Registre 3500, octet de poids faible	0xA4

Tableau 8. Valeurs Float

6.1.3.2 Int32

Toutes les valeurs int32 sont des valeurs entières de 32 bits. L'exemple donné dans la section précédente s'applique également ici.

6.1.3.3 Caractère

La définition est la suivante :

Tableau de codes ASCII 8 bits selon ISO-8859-1 (Latin-1 Europe de l'Ouest)

AVIS

 Un registre contient toujours exactement 2 caractères. Les octets non utilisés sont remplis de zéros (ASCII : 0x00).

6.1.3.4 Booléen

Les registres booléens sont des registres 16 bits int32 avec seulement 0 et 1 comme valeurs autorisées.

6.1.4 Réponse d'erreur

La réponse d'erreur suit la définition Modbus, mais seuls quatre codes d'exception sont mis en œuvre :

- 1 (Fonction illégale) : Un code de fonction non pris en charge a été utilisé.
- 2 (Aadresse de données illégale) : Le registre demandé est soit indisponible, soit protégé en écriture.
- 3 (Valeur de données illégale) : La valeur n'a pas pu être définie. La valeur était hors gamme. La dernière valeur correcte est rétablie.
- **6 (Appareil esclave occupé) :** Ce code apparaît lorsqu'il y a une connexion USB "active" (la communication via le logiciel est active).

6.1.5 Différents canaux de communication

L'OXY5500 dispose de plusieurs moyens pour lire et régler ses paramètres et ses valeurs de mesure :

- **Communication Modbus**
 - o RS-485
 - o RS-232
- Ethernet
- Port de service USB
- Via clavier et écran LCD

Toutes les options partagent la même mémoire fondamentale. La modification des réglages via une voie de communication modifiera le résultat escompté sur une autre voie.

6.1.5.1 Recommandation

Une seule voie doit être utilisée pour configurer complètement l'appareil. Comme l'appareil enregistre chaque réglage et permet de vérifier immédiatement les résultats, il est recommandé d'utiliser le clavier et l'écran LCD et d'utiliser les autres voies comme simples options d'interrogation des données.

AVIS

En cas de connexion (via USB) d'un logiciel de service, la commande d'écriture Modbus 16 ("Écriture dans plusieurs registres") renvoie toujours le code d'erreur 6.

6.1.6 Registres de maintien

Se référer au tableau pour les définitions des registres du tableau. Lors de l'examen du tableau, il est important de se rappeler :

- Les adresses de registre mentionnées dans le tableau indiquent la première adresse des multiples adresses disponibles par registre (voir la colonne "Taille" pour le nombre d'adresses par registre). Ne pas ajouter ou soustraire "1" au numéro de registre de la première adresse, car cela pourrait entraîner des conflits avec d'autres affectations de registres.
- L'analyseur ne vérifie pas si les gammes sont correctes. L'hôte doit s'assurer que des numéros valides sont utilisés. Toute valeur erronée peut entraîner des performances inattendues.

Nom du registre	Adresse	Taille	Type de variable	Description	Accès en écriture
Firmware Date	1023	8	Caractère	Date de création du firmware, p. ex. "2014-11- 18\0\0" (18 novembre 2014)	Non
Firmware Version	1031	8	Caractère	Version de firmware, p. ex. "SSI v1.0.1.0287\0"	Non
Serial Number	1063	8	Caractère	Numéro de série, p. ex. "SAAP0000000001\0\0"	Non
Oxygen Unit	2089	2	Int32	L'unité d'oxygène qui s'affiche sur l'écran LCD de l'analyseur et également dans le registre des mesures 4909	Oui
Compensation Temperature	2411	2	Float	Règle la température de compensation.	Oui
Interval Rate	3499	2	Mixte	Définit le taux d'intervalle pour la mesure d'oxygène et désactive également la mesure d'oxygène. Gamme : 1 à 359999 secondes.	Oui
Device ID RS-485	4095	2	Int32	Définit l'ID de l'appareil utilisé dans la communication Modbus RTU (gamme 1-32).	Oui
Device ID Minimum RS-485	4097	2	Int32	ID appareil limite d'adresse : minimum	Non
Device ID Maximum RS-485	4099	2	Int32	ID appareil limite d'adresse : maximum	Non
Baud rate RS-485	4101	2	Int32	Code pour débit en bauds où : 3 = 9600 4 = 19200 5 = 38400 6 = 57600 7 = 115200	Oui
Baud rate Minimum RS-485	4103	2	Int32	Code minimum pour vitesse en bauds	Non
Baud rate Maximum RS-485	4105	2	Int32	Code maximum pour vitesse en bauds	Non
Parity RS-485	4107	2	Int32	Parité pour sortie RS-485 où : 0x00 = Parité paire 0x01 = Parité impaire 0x02 = Sans parité	Oui
Device ID RS-232	4109	2	Int32	Définit l'ID appareil utilisé dans la communication Modbus RTU (gamme 1-32).	Oui
Device ID Minimum RS-232	4111	2	Int32	ID appareil limite d'adresse : minimum	Non
Device ID Maximum RS-232	4113	2	Int32	ID appareil limite d'adresse : maximum	Non

Nom du registre	Adresse	Taille	Type de variable	Description	Accès en écriture
Baud Rate RS-232	4115	2	Int32	Code pour débit en bauds où : 0x03 = 9600 0x04 = 19200 0x05 = 38400 0x06 = 57600 0x07 = 115200	Oui
Baud Rate Minimum RS-232	4117	2	Int32	Code minimum pour vitesse en bauds	Non
Baud Rate Maximum RS-232	4119	2	Int32	Code maximum pour vitesse en bauds	Non
Parity RS-232	4121	2	Int32	Parité pour sortie RS-232 où : 0x00 = Parité paire 0x01 = Parité impaire 0x02 = Sans parité	Oui
4-20 mA Port1 Output Interface	4359	2	Int32	Code pour mode de sortie 4-20 mA Port1 où : 0x00 = Off 0x01 = Fixe 0x02 = Linéaire 0x04 = Bilinéaire	Oui
4-20 mA Port1 Output Channel	4363	2	Int32	Code pour interface de sortie 4-20 mA Port1 où : 0x01 = Oxygène 0x20 = Température	Oui
4-20 mA Port1 Low Value	4377	2	Float	Valeur de sortie 4 mA.	Oui
4-20 mA Port1 Mid Value	4379	2	Float	Valeur de sortie 12 mA, utilisée uniquement en mode bilinéaire.	Oui
4-20 mA Port1 High Value	4381	2	Float	Valeur de sortie 20 mA.	Oui
4-20 mA Port1 Fixed Value	4383	2	Float	En mode de sortie fixe, cette valeur est appliquée à la sortie. L'unité est le mA.	Oui
4-20 mA Port1 Error Trigger Level Value	4389	2	Int32	Courant de sortie en cas d'erreur, où : 0x00 = 22 mA 0x01 = 2 mA 0x03 = 22 mA NTE 0x04 - 2 mA NTE	Oui
4-20 mA Port1 Calibration Values	4329	8	Float	2 valeurs d'étalonnage pour un point bas et un point haut (chacune avec une valeur de référence et une sortie d'appareil).	
4-20 mA Port2 Output Interface	4945	2	Int32	Code pour mode de sortie 4-20 mA Port2 où : 0x00 = off 0x01 = fixe 0x02 = linéaire 0x04 = bilinéaire	Oui
4-20 mA Port2 Output Channel	4949	2	Int32/	Code pour interface de sortie 4-20 mA Port2 où : 0x01 = Oxygène 0x20 = Température	Oui
4-20 mA Port2 Low Value	4963	2	Float	Valeur de sortie 4 mA.	Oui
4-20 mA Port2 Mid Value	4965	2	Float	La valeur de sortie 12 mA est utilisée uniquement en mode bilinéaire.	Oui

Nom du registre	Adresse	Taille	Type de variable	Description	Accès en écriture
4-20 mA Port2 High Value	4967	2	Float	Valeur de sortie 20 mA.	Oui
4-20 mA Port2 Fixed Value	4969	2	Float	En mode de sortie fixe, cette valeur est appliquée à la sortie.	Oui
4-20 mA Port2 Error Trigger Level Value	4975	2	Int32	Courant de sortie en cas d'erreur, où : 0x00 = 22 mA 0x01 = 2 mA 0x03 = 22 mA NTE 0x04 - 2 mA NTE	Oui
4-20 mA Port2 Calibration Values	4979	8	Float	Deux valeurs d'étalonnage pour un point bas et un point haut (chacune avec une valeur de référence et une sortie d'appareil).	Oui
4-20 mA Input Interface	5633	2	Int32	Ce registre est réservé à une utilisation future.	Oui
4-20 mA Input Channel	5637	2	Int32	Code pour interface de sortie 4-20 mA Port1 où : 0x02 = Pression.3	Non
4-20 mA Input Low Value	5651	2	Float	Valeur d'entrée 4 mA correspondante.	Oui
4-20 mA Input Mid Value	5653	2	Float	La valeur d'entrée 12 mA est uniquement utilisée en mode bilinéaire.	Oui
4-20 mA Input High Value	5655	2	Float	Valeur d'entrée 20 mA.	Oui
4-20 mA Input Fixed Value	5657	2	Float	Ce registre est réservé à une utilisation future.	Oui
4-20 mA Input Error Trigger Level Value	5663	2	Float	Ce registre est réservé à une utilisation future.	Oui
4-20 mA Input Calibration Values	5667	8	Float	Deux valeurs d'étalonnage pour un point bas et un point haut (chacune avec une valeur de référence et une sortie d'appareil).	Oui
Measurement Values	4895	14	Mixte	Voir <i>Valeurs de mesure</i> → 🗎 pour plus de détails.	Non
Sensor Constant f1	4911	2	Float	Constante de capteur f1. Gamme autorisée : 0.000 à 9.999	Oui
Sensor Constant dPhi1	4913	2	Float	Constante de capteur dPhi1. Gamme autorisée : - 9.99999 à +9.99999	Oui
Sensor Constant dPhi2	4917	2	Float	Constante de capteur dPhi2. Gamme autorisée : - 9.99999 à +9.99999	Oui
Sensor Constant dKSV1	4919	2	Float	Constante de capteur dKSV1. Gamme autorisée : - 9.99999 à +9.99999	Oui
Sensor constant DKSV2	4921	2	Float	Constante de capteur dKSV2. Gamme autorisée : - 9.99999 à +9.99999	Oui
Sensor Constant m	4923	2	Float	Constante de capteur m. Gamme autorisée : 0.00 à +999.99	Oui
Sensor Type	4925	2	Int32	Type de capteur où : 0x00 = OP-3 0x01 = OP-6 0x02 = OP-94	Oui

Nom du registre	Adresse	Taille	Type de variable	Description	Accès en écriture
Manual Temperature Compensation	5611	1	Booléen	Active la mesure de température du capteur Pt100 en mettant à un ce registre booléen et utilise la valeur de température manuelle en mettant à zéro ce registre booléen. Après écriture dans ce registre, la valeur de température manuelle doit être réglée (registre 2411).	Oui
Cal0	5521	2	Float	Valeur d'étalonnage : Déphasage du point d'étalonnage bas de l'oxygène (valeur par défaut : 59.9).	Oui
ТО	5523	2	Float	Valeur d'étalonnage : Température au point d'étalonnage bas de l'oxygène en °C (valeur par défaut : 20.0).	Oui
O2-2nd	5527	2	Float	Valeur d'étalonnage : Concentration d'oxygène du point d'étalonnage haut de l'oxygène dans l'unité définie dans le registre 5535 (unité O2-2nd).	Oui
Cal-2nd	5529	2	Float	Valeur d'étalonnage : Déphasage du point d'étalonnage haut de l'oxygène (valeur par défaut : 26.3).	Oui
T2nd	5531	2	Float	Valeur d'étalonnage : Température au point d'étalonnage haut en °C.	Oui
рАТМ	5533	2	Float	Valeur d'étalonnage : Pression au point d'étalonnage haut de l'oxygène en mbar.	Oui
O2-2nd Unit	5535	2	Int32	Unité pour la valeur O2-2nd, où : 0x4000.0000 = ppmv 0x0000.0010 = % O2	Oui
Ethernet Obtain IP Mode	5675	2	Int32	Active ou désactive DHCP. L'entrée de "1" permet d'obtenir automatiquement l'IP.	Oui
Ethernet IP	5677	8	Int32	IP Ethernet. Chaque paire de registres contient un octet de l'adresse. Ce registre ne sera utilisé que si le registre 5675 est réglé sur "0" (DHCP désactivé).	Oui
Subnet Mask	5685	8	Int32	Masque de sous-réseau. Chaque paire de registres contient un octet de l'adresse. Voir "Masque de sous-réseau Ethernet", pages 5-18, pour plus de détails. Ce registre ne sera utilisé que si le registre 5675 est réglé sur "0" (DHCP désactivé).	Oui
Ethernet Port for Modbus	5693	2	Int32	Port Ethernet utilisé dans le protocole Modbus. (Valeur par défaut : 502)	Oui
Ethernet Modbus ID	5695	2	Int32	ID Modbus Ethernet (gamme : 0 à 32).	Oui
Alarm Relay High Level	5697	2	Float	Niveau haut qui déclenche le relais d'alarme de niveau.	Oui
Alarm Relay Level Low	5699	2	Float	Niveau bas qui déclenche le relais d'alarme de niveau.	Oui
Pressure Mode	5705	1	Booléen	Définit le mode de mesure, soit l'acquisition par 4-20 mA, soit la valeur fixe : 0x00 = valeur fixe 0x01 = 4-20 mA	Oui

Nom du registre	Adresse	Taille	Type de variable	Description	Accès en écriture
Measurement Mode	5707	2	Int32	Il s'agit d'un registre codé en bits qui permet de configurer le mode de mesure et de déclencher le début de la mesure. Bit 0 : Réservé. Bit 1 : Lecture seule. Mis à un lorsqu'une mesure est déjà active. Bit 2 : Effectue un balayage unique.	Oui
Set Concentration Alarm Low Level	5709	2	Int32	Active/désactive l'alarme de niveau bas du relais d'alarme de concentration : 0x00 : Désactivé (le niveau bas est ignoré) 0x01 : Activé	Oui
LED Intensity	5711	2	Int32	Signal d'intensité LED. La gamme autorisée est de 0x00 (la plus basse) à 0x0A (la plus haute)	Oui
Horodatage	8231	2	Int32	Il s'agit de l'heure actuelle du système, définie comme le nombre de secondes écoulées depuis 00:00:00, le jeudi 1er janvier 1970 (heure Unix, ISO8601). AVIS : Les valeurs inférieures à 1493050000 entraînent un code d'erreur "valeur illégale".	Oui

Tableau 9. Registres de maintien

6.1.7 Contrôle mesure

Définition du registre 5707

Registre de départ	Nombre de registres	Reg3 / Reg4	Accès en écriture
5707	2	Int32 : Registre de contrôle codé en bits.	Oui

Tableau 10. Définition du registre 5707

Ce registre est utilisé pour activer la mesure d'intervalle et pour déclencher une mesure. Il est codé en bits comme indiqué dans le tableau.

Bit	Description
0	Intervalle activé/désactivé (mettre à zéro pour désactiver, mettre à un pour activer)
1	Bit d'état : mis à un lorsqu'une mesure est en cours ; mis à zéro une fois la mesure terminée. La mise à un de ce bit ne déclenche aucune action.
2	Démarrer la mesure (balayage unique ou continu)
3 - 31	Réservé

Tableau 11. Définition des bits du registre de contrôle des mesures

6.1.8 Température de compensation

Cette valeur est utilisée pour la compensation du calcul de l'oxygène.

Registre de départ	Nombre de registres	Reg3 / Reg4	Accès en écriture
2411	2	Float : Valeur de température en °C	Oui

Tableau 12. Définition du registre 2411

6.1.9 Intervalle de mesure

L'intervalle de mesure d'oxygène peut être réglé entre 1 et 359999. Le réglage de l'intervalle sur "0" entraîne une réponse d'erreur Modbus avec le code 3.

Les valeurs de mesure peuvent être lues à tout moment mais ne sont mises à jour qu'avec l'intervalle défini dans ces registres. Par conséquent, il convient d'éviter d'interroger les valeurs de mesure à un rythme supérieur à l'intervalle de mesure, car cela entraîne un trafic inutile sur le bus.

Registre de départ	Nombre de registres	Reg3/Reg4	Accès en écriture
3499	2	Int32 : Valeur de l'intervalle en secondes	Oui

Tableau 13. Définition du registre 3499

6.1.10 ID appareil RS-485, RS-232 et Ethernet

Définit l'ID appareil utilisé dans la communication Modbus RTU. Si une valeur supérieure à 32 est définie, l'appareil réinitialise son ID à 1, ce qui peut entraîner des erreurs de communication. Si aucun ID n'est défini ou si l'ID n'est pas connu, définir l'ID par diffusion (ID=0).

Registre de départ	Nombre de registres	Reg3/Reg4	Accès en écriture
4095	2	Int32 : ID appareil de l'interface RS-485. Minimum 1, Maximum 32	Oui

Tableau 14. Définition du registre 4095

Registre de départ	Nombre de registres	Reg3/Reg4	Accès en écriture
4109	2	Int32 : ID appareil de l'interface RS-232. Minimum 1, Maximum 32.	Oui

Registre de départ	Nombre de registres	Reg3/Reg4	Accès en écriture
5695	2	Int32 : ID appareil de l'interface Ethernet. Minimum 1, Maximum 32.	Oui

Tableau 16. Définition du registre 5695

6.1.11 Valeurs de mesure

Registre de départ	Nbre de registres	Reg1/ Reg2	Reg3/ Reg4	Reg5/ Reg6	Reg7/ Reg8	Reg9/ Reg10	Reg11/ Reg12	Reg13/ Reg14	Accès en écritur e
4895	14	Float : Pression en mbar	Float : Amplitude de référence en mV	Float : Amplitude d'oxygène en mV	Float : Déphasage d'oxygène en degrés	Float : Températu re en °C	Float : Valeur d'oxygène définie dans le registre 2089	Int32 : Registre d'erreur.	Non

Tableau 17. Définition du registre 4895

AVIS

Il n'est pas nécessaire de lire les 14 registres. Pour les applications simples, la lecture des registres 9 à 14 (en commençant par le registre 4903) peut suffire.

Bit	Valeur 2N	Erreur
0	1	Pas de RTD (Pt100)
1	2	Pas de capteur sélectionné
2	4	Amplitude trop faible
3	8	Carte SD défectueuse
4	16	Amplitude de référence hors gamme
5	32	Photodiode saturée

Bit	Valeur 2N	Erreur
6	64	Dépassement du signal
7	128	Dépassement du signal
8	256	Réservé
9	512	Erreur critique.
10	1024	Pas de capteur de pression / capteur de pression hors gamme
11	2048	Réservé
12	4096	Espace de stockage plein

Tableau 18. Codes d'erreur pour le registre d'erreur

6.1.12 Valeurs d'étalonnage 4-20 mA port1

Toutes les valeurs sont transmises en mA.

Registre de départ	Nbre de registres	Reg1/Reg2	Reg3/Reg4	Reg5/Reg6	Reg7/Reg8	Accès en écriture
4329	8	Float : Point bas valeur d'appareil	Float : Point bas valeur de référence	Float : Point haut valeur d'appareil	Float : Point haut valeur de référence	Oui

Tableau 19. Définition du registre 4329

6.1.13 Valeurs d'étalonnage 4-20 mA port2

Toutes les valeurs sont transmises en mA.

Registre de départ	Nbre de registres	Reg1/Reg2	Reg3/Reg4	Reg5/Reg6	Reg7/Reg8	Accès en écriture
4979	8	Float : Point bas valeur d'appareil	Float : Point bas valeur de référence	Float : Point haut valeur d'appareil	Float : Point haut valeur de référence	Oui

Tableau 20. Définition du registre 4979

6.1.14 Valeurs d'étalonnage entrée 4-20 mA

Toutes les valeurs sont transmises en mA.

Registre de départ	Nbre de registres	Reg1/Reg2	Reg3/Reg4	Reg5/Reg6	Reg7/Reg8	Accès en écriture
5667	8	Float : Point bas valeur d'appareil	Float : Point bas valeur de référence	Float : Point haut valeur d'appareil	Float : Point haut valeur de référence	Oui

Tableau 21. Définition du registre 5667

6.1.15 Gammes de valeur d'entrée et de sortie analogique

Les valeurs qui définissent la gamme des sorties/entrées analogiques (valeurs basse, médiane et haute des ports analogiques 1 et 2 et de l'entrée analogique) utilisent toujours les unités indiquées dans le tableau.

Sortie	Unité	Capteur / état
Oxygène	% O2	OP-3
Oxygène	% O2/ppm gaz	OP-6
Oxygène	ppm gaz	OP-9
Température	°C	Toujours
Pression	mbar	Toujours

Tableau 22. Unités d'oxygène pour différentes configurations de sortie, capteur et mode de mesure

AVIS

Endress+Hauser recommande de désactiver la mesure en cours avant de modifier les paramètres. L'appareil conserve sa dernière valeur de sortie analogique jusqu'à la prochaine mesure.

6.1.16 Ethernet IP

Registre de départ	Nbre de registres	Reg1/Reg2	Reg3/Reg4	Reg5/Reg6	Reg7/Reg8	Accès en écriture
5677	8	Int32 : IP Ethernet octet 1	Int32 : IP Ethernet octet 2	Int32 : IP Ethernet octet 3	Int32 : IP Ethernet octet 4	Oui

Tableau 23. Définition du registre 5677

Exemple :

Écriture des octets suivants :

0x 01 10 16 2D 00 08 10 00 C0 00 00 00 A8 00 00 01 00 00 00 0A 00 00 1F B1 a pour résultat l'IP 192.168.1.10

En détail :

0x 01	Adresse esclave	(int32 "01")
-------	-----------------	--------------

0x 10 Code de fonction

0x 16 2D Adresse de départ (5677 en représentation int32)

0x 00 08 Nombre de registres

0x 00 C0 00 00 Octet 1 (int32 192)

0x 00 A8 00 00 Octet 2 (int32 168)

0x 00 01 00 00 Octet 3 (int32 1)

0x 00 0A 00 00 Octet 4 (int32 10)

0x 1F B1 CRC16

6.1.17 Masque de sous-réseau Ethernet

Registre de départ	Nbre de registres	Reg1/Reg2	Reg3/Reg4	Reg5/Reg6	Reg7/Reg8	Accès en écriture
5685	8	Int32 : Masque	Int32 : Masque	Int32 : Masque	Int32 : Masque	Oui
		de sous-réseau	de sous-réseau	de sous-réseau	de sous-réseau	
		Ethernet Octet 1	Ethernet Octet 2	Ethernet Octet 3	Ethernet Octet 4	

Tableau 24. Définition du registre 5685

6.2 Exemples

6.2.1 Configuration d'une mesure continue

Condition préalable : Le capteur est raccordé et les constantes de capteur et les valeurs d'étalonnage sont déjà réglées correctement (OP-9).

L'objectif de cette configuration est une mesure continue avec un intervalle d'une minute lorsque le capteur de pression et la sonde RTD (Pt100) sont désactivés. Au lieu de cela, une valeur fixe manuelle sera transmise. Voir le tableau.

Step	Description	Registre(s)	Valeur
1	Arrêter la mesure si elle est en cours.	5707, 5708	0 (Int32)
2	Régler le mode pression sur "Manual".	5705	0 (Booléen)
3	Régler la pression manuelle à "1006.23".	3147, 3148	1006.23 (Float)
4	Régler le mode de température sur "Manual".	5611	0 (Booléen)
5	Régler la température manuelle à "20.56".	2409, 2410	20.56 (Float)
6	Définir le taux d'intervalle à 1 minute ("60" secondes).	3499, 3500	60 (Int32)
7	Activer le mode intervalle et démarrer immédiatement la mesure en continu.	5707, 5708	5 (Int32 converti en 00000101 binaire)
8	Lire registre de contrôle de mesure. Si le bit 1 est supprimé, voir l'étape 9. Si le bit 1 est activé ou si l'affichage a été interrompu, répéter l'étape 7 jusqu'à ce que la valeur indique '0' (max. 400 ms après lesquelles la détection de l'interruption doit être mise en œuvre).	5707, 5708	/
9	Lire la dernière mesure.	4895 à 4908	Voir le tableau.
10	Lire l'unité d'oxygène.	2089, 2090	1073741824 (Int32 converti en 0x40000000 hex, ce qui signifie ppm de gaz)

Tahleau 2.5	Configuration	nour une	mesure	continue
1001200 29.	conjugaration	pour une	mesure	continue

Registre 4895/4896	Registre 4897/4898	Registre 4899/4900	Registre 4901/4902	Registre 4903/4904	Registre 4905/4906	Registre 4907/4908
Float : Pression en mbar	Float : Amplitude de référence mV	Float : Amplitude d'oxygène en mV	Float : Déphasage d'oxygène en degrés	Float : Température en °C	Float : Valeur d'oxygène calculée dans l'unité	Int32 : Registre d'erreur (voir le tableau)
1006.23	35000.00 (une valeur entre 10 et 60 000)	10562.12 (Valeur dépendante du capteur et de l'environnement)	44.32 (Valeur dépendante du capteur et de l'environnement)	20.56	100 (Valeur dépendante du capteur et de l'environnement)	0 (Code d'erreur. Doit être égal à 0 si un capteur est raccordé)

Tableau 26. Exemple de mesure

6.2.2 Configuration d'une sortie analogique

 Condition préalable : Le capteur est raccordé et les constantes de capteur et les valeurs d'étalonnage sont déjà réglées correctement (OP-9). La sortie 4-20 mA est déjà dans un état étalonné.

L'objectif de cette configuration est de régler la sortie analogique 1 pour une sortie linéaire de la valeur d'oxygène entre 10 et 110 ppm de gaz, avec un niveau d'erreur de 2 mA.

Step	Description	Registre(s)	Valeur
1	Désactiver la mesure actuelle, sinon la sortie peut générer des valeurs fausses.	5707, 5708	0 (Int32)
2	Régler le mode sur "linear".	4359, 4360	2 (Int32)
3	Régler la sortie sur "oxygène".	4363, 4364	1 (Int32)
4	Régler le niveau d'erreur à "2 mA".	4389, 4390	2 (Int32)
5	Régler le niveau bas à "10.00".	4377, 4378	10.00 (Float)
6	Régler le niveau haut à "110.00".	4381, 4382	110.00 (Float)

Tableau 27. Configuration pour une sortie analogique

AVIS

 Il n'est pas nécessaire de régler la valeur de l'oxygène. Cela se fait automatiquement lors du réglage du type de capteur.

6.2.3 Étalonnage en 1 point d'un capteur OP-9

• **Condition préalable :** Le capteur est raccordé et placé dans un environnement à faible teneur en oxygène. Les constantes de capteur sont déjà réglées correctement (OP-9).

L'objectif de cet exemple est d'étalonner le capteur d'oxygène.

Step	Description	Registre(s)	Valeur
1	Lire les valeurs de mesure actuelles.	4899 à 4908	Voir le tableau.
2	Vérifier qu'il n'y a pas d'erreurs, en particulier les bits d'erreur 1, 2, 4, 5 et 6. Voir le tableau. Ne procéder qu'en l'absence d'erreurs.		
3	Régler les valeurs d'étalonnage cal0 et T0.	5521 à 5524	1er Float : 66.32 2ème Float : 21.98

Tableau 28. Étalonnage en 1 point d'un OP-9

Registre 4899/4900	Registre 4901/4902	Registre 4903/4904	Registre 4905/4906	Registre 4907/4908
Float : Amplitude d'oxygène en mV	Float : Déphasage d'oxygène en degrés	Float : Température en °C	Float : Valeur d'oxygène calculée dans l'unité	Int32 : Registre d'erreur. Voir le tableau.
50592.62 (Valeur dépendante du capteur et de l'environnement)	66.32 (Valeur dépendante du capteur et de l'environnement)	21.98	Cette valeur peut être ignorée pendant que le processus d'étalonnage a lieu.	0 (Code d'erreur. Doit être égal à 0 si un capteur est raccordé)

Tableau 29. Exemple de mesure pour le processus d'étalonnage

7 Annexe A : Spécifications

Données d'application				
Composants cibles	02			
Principe de mesure	Extinction de fluorescence			
	OP-9	OP-6	OP-3	
Gammes de mesure typiques	0 à 200 ppmv (par défaut) 0-10 à 10-1,000 ppmv Réglage de l'utilisateur	0 à 5 % 0-1 à 0-5 % Réglage de l'utilisateur	0-20 % 0-10 à 0-20 % Réglage de l'utilisateur	
Limite inférieure de détection	0,5 ppmv	20 ppmv	300 ppmv	
Précision entre 20 et 25 °C	±5 % de la mesure	±3 % de la mesure	±2 % de la mesure	
Reproductibilité	±1 % de la mesure			
Durée de mise à jour de la mesure	Taux d'échantillonnage programmable (par défaut : 30 secondes)			
Gamme de température (configurable)	1) 0 ℃ à 60 ℃ (0 ℉ à 140 ℉) 2) -20 ℃ à 50 ℃ (-4 ℉ à 122 ℉)			
Pression d'entrée de l'échantillon	140 à 275 KPaG (20 à 40 PSIG) vers le régulateur du panneau de prélèvement			
Gamme de pression de l'échantillon	800 à 1 400 mbara			
Pression maximale de la sonde	275 KPaG (40 PSIG)			
Débit d'échantillon	Typique 1.0 SLPM (2.1 SCFH)			
Étalonnage recommandé	Étalonnage en deux points dans un environnement sans oxygène (azote) et un deuxième point d'étendue de mesure (gaz en bouteille). Valider avec l'O2 dans la référence N2 (gaz en bouteille).			
Alimentation et communications				
Alimentation (tension et puissance maximale)	108 à 253 V AC, 50/60 Hz ; 5,3 W à 120 V AC ; 6,6 W à 240 V AC ou 9 à 30 V DC (CSA), 18 à 30 V DC (IEC/ATEX) ; 4,7 W à 24 V DC			
Communication	 Analogique : Qté (2) sorties d'alimentation 4-20 mA et (1) entrée 4-20 mA (pression échantillon) Bus de terrain : RS-232C, RS-485, Ethernet 10/100 avec Modbus Relais de sortie : Qté (2) charge max. 250 mA (alarmes de concentration et de défaut) USB 2.0 fonctionne uniquement avec le logiciel de service Mémoire interne de 4 Go avec enregistrement interne des données 			
Écran LCD	Concentration, température, fréquence d'échantillonnage, enregistrement des données, diagnostic, plus menu complet pour la configuration, l'étalonnage, etc.			
Logiciel de service	 Logiciel Windows. Connecté via port USB. Téléchargement de journaux de données, tendances et contrôle, étalonnage et suppression des défauts. 			
Physiques				
Type de boîtier	Type 4X et IP66, inox 304 et 316 (en option)			
Dimensions de l'analyseur	280 x 230 x 114 mm (11 x 9 x 4.5 in.) H X L x P (sans système de préparation d'échantillons)			
Longueur du câble contrôleur à sonde	0,7 m (2.3 ft.) - Standard 2,5 m (8.2 ft.) et 5.0 m (16.4 ft.) - En option			
Poids	2,2 kg (4.9 lbs) - analyseur sans système de préparation d'échantillons 14 kg (31 lbs) - analyseur sur une platine 35,4 (78 lbs) - analyseur en boîtier			
Construction sonde de prélèvement	Inox 316			
Classification – Certification	CSA : Classe I, Div. 2, Groupes A, B, C et D, T3, NEMA 4X ATEX/IECEx/UKEX : 🔊 II 3 G, Ex ec IIC T3 Gc IP66 AVIS : La certification s'applique uniquement à l'analyseur. Les versions de boîtier de ce produit sont considérées comme des accessoires du produit et ne font pas partie de la certification.			

Tableau 30. Spécifications de l'analyseur OXY5500

ATTENTION

 Les ensembles sondes et autres équipements nécessaires au fonctionnement de l'analyseur doivent être conformes à toutes les spécifications du fabricant.

7.1 Notes techniques

 BOÎTIER DE L'ANALYSEUR : Le boîtier et les accessoires sont conçus pour répondre aux normes IP66/Type 4X. Afin de maintenir le niveau de protection, tous les raccordements doivent être effectués avec le matériel approprié et en respectant les procédures suggérées. L'utilisation de matériaux incorrects peut compromettre l'intégrité des joints environnementaux.

AVIS

• Pour une liste complète des certificats nouveaux ou mis à jour, consulter la page produit sur <u>www.endress.com</u>.

Figure 72. Dimensions d'encombrement et de montage - montage sur panneau. Dimensions : mm(in)

Pos.	Description
1	Connexions des signaux de communication
2	Connexions d'alimentation
3	Pose du conduit et du blindage (à titre d'exemple uniquement)

GND Y/G

Y/G

POWER WIRE CONNECTION

BRN (WIRE 1) BLU (WIRE 2)

Ν

WHT (WIRE 2)

L1 (H)

BLK (WIRE 1)

NEC

Figure 73. Schéma d'interconnexion (AC)

Figure 74. Schéma d'interconnexion (DC)
7.2 Pièces de rechange

Ci-dessous une liste de pièces de rechange pour l'analyseur optique d'oxygène OXY5500 avec les quantités recommandées pour 2 ans de fonctionnement. Les pièces répertoriées ne sont pas toutes comprises sur chaque analyseur. Lors de la commande, il convient de préciser le numéro de série du système afin d'assurer l'identification des pièces associées.

Référence	Description	QTÉ 2 ANS		
Composants électroniques				
70157019	Fenêtre, boîtier			
70157020	Joint de fenêtre, boîtier			
70175074	Écran OXY5500	-		
70175071	Kit de remplacement, transmetteur, OXY5500	-		
EX400000004	Alimentation électrique, module, 100-240 V AC vers 24 V DC 1,3 A	1		
70157025	Alimentation électrique, conv. DC/DC, 15 W, 24 V, DIN	1		
70157026	Cartouche fusible, série 216, 5 x 20 mm, action rapide 800 mA, 250 V	1		
70178487	Carte de communication	-		
Sondes à fibre optio	que et accessoires de montage			
70163999	Ensemble fibre optique, capteur OP-9, 1 000 ppm, 0,7 m, SMA	1		
70164000	Ensemble fibre optique, capteur OP-9, 1 000 ppm, 2,5 m, SMA	1		
70164001	Ensemble fibre optique, capteur OP-9, 1 000 ppm, 5,0 m, SMA	1		
70164002	Ensemble fibre optique, capteur OP-6, 5 %, 0,7 m, SMA	1		
70164003	Ensemble fibre optique, capteur OP-6, 5 %, 2,5 m, SMA	1		
70164004	Ensemble fibre optique, capteur OP-6, 5 %, 5,0 m, SMA	1		
70164005	Ensemble fibre optique, capteur OP-3, 20 %, 0,7 m, SMA	1		
70164006	Ensemble fibre optique, capteur OP-3, 20 %, 2,5 m, SMA	1		
70164007	Ensemble fibre optique, capteur OP-3, 20 %, 5,0 m, SMA			
70164008	0164008 Kit conduit de câble sonde à fibre OXY5500 (toutes les longueurs) (comprend toutes les pièces associées au montage de la sonde à fibre)			
70157039	Embout avant, 4 mm, téflon	-		
70157040	Embout arrière, 4 mm, téflon	-		
70157041	Réducteur de tube, 4 mm TX 1/4 TSTUB, BT, SS	-		
Capteurs de tempér	rature et accessoires de montage			
70157042	Sonde RTD, 100 W, 1/8 x 2, SS ARM, 40 in. LG	-		
70157043	Sonde RTD, 100 W, 1/8 x 2, SS ARM, 10 in. LG	-		
70157044	Réducteur de tube, 1/8 TX 1/4 TA, SS, percé	-		
70164009	Kit capteur de température OXY5500 (0,7 m) (comprend le capteur de température et toutes les pièces associées au montage)	-		
70164010	Kit sonde RTD OXY5500 (2,5 m, 5,0 m) (comprend le capteur de température et toutes les pièces associées au montage)	_		
Transmetteur de pression et accessoires de montage				
70157047	Transmetteur de pression	1		
70157048	Connecteur mâle, 1/4 TFX, 1/4 MNPT, 316SS	-		
70164011	Kit capteur de pression OXY5500 (comprend le capteur de pression et toutes les pièces associées au montage)	-		

Référence	Description	QTÉ 2 ANS	
Général			
BA02195C	Manuel de mise en service OXY5500, copies supplémentaires	-	
BA02196C	Manuel de mise en service Système de préparation d'échantillons (SCS) OXY5500, copies supplémentaires	-	
XA02754C	Conseils de sécurité OXY5500, copies supplémentaires	-	
SD02868C	Manuel d'utilisation du logiciel de service OXY5500, copies supplémentaires	_	
70157051	Câble, USB, 2.0A vers Mini-B 5 broches, 28/28 AW, 6 Ft.	_	

Tableau 31. Pièces de rechange pour l'analyseur OXY5500

8 Annexe B : Maintenance et suppression des défauts

L'OXY5500 est un instrument sans entretien, bien que certains composants puissent nécessiter un nettoyage ou un remplacement. Ce chapitre contient des instructions pour le nettoyage, le remplacement et les informations de suppression générale des défauts.

8.1 Sortie optique

Le connecteur SMA est un composant optique de haute précision. Pour une performance optimale, celui-ci doit rester propre et sec. Toujours utiliser le capuchon en caoutchouc pour fermer la sortie lorsqu'elle n'est pas utilisée.

8.2 Nettoyage de l'instrument

Le boîtier ne doit être nettoyé qu'avec un chiffon humide afin d'éviter les décharges électrostatiques.

8.2.1 Connecteur fibre SMA

Le connecteur fibre SMA du capteur ne peut être nettoyé qu'avec un chiffon non pelucheux. L'extrémité du capteur ne peut être rincée qu'à l'eau distillée ou à l'éthanol.

Ne jamais utiliser de benzène, d'acétone, d'alcool isopropylique ou d'autres solvants organiques pour nettoyer l'extrémité du capteur.

8.2.2 Sonde d'oxygène

L'extrémité du capteur peut être nettoyée au besoin. Il convient d'être prudent lors de l'utilisation de cette procédure de nettoyage, afin d'éviter d'enlever le revêtement protecteur et de causer d'éventuels dommages.

Outils et matériel

- Éthanol (ou équivalent)
- Nettoyer le récipient
- Lingettes non pelucheuses

AVIS

▶ Cette procédure s'applique aux capteurs OP-3, OP-6 et OP-9.

ATTENTION

Ne jamais utiliser de benzène, d'acétone, d'alcool isopropylique ou d'autres solvants organiques pour nettoyer l'extrémité du capteur.

8.2.3 Nettoyage de la sonde d'oxygène

- 1. Retirer la sonde de l'analyseur. Voir *Démontage de la sonde d'oxygène* $\rightarrow \square$.
- 2. Verser suffisamment d'éthanol dans un récipient propre pour couvrir l'extrémité de la sonde lorsqu'elle est immergée.
- 3. Plonger l'extrémité de la sonde dans le récipient avec de l'éthanol.

Laisser l'extrémité de la sonde immergée pendant 5 à 30 minutes en fonction de la quantité de contaminant visible.

- 4. Retirer la sonde du récipient.
- 5. Placer une lingette non pelucheuse sur une surface plane et tapoter doucement l'extrémité de la sonde contre la lingette pour éliminer l'excès de liquide et tout résidu de contaminant.

Répéter les étapes 3 à 5 si le contaminant est toujours visible sur l'extrémité de la sonde.

- 6. Réinstaller la sonde d'oxygène dans l'analyseur. Voir *Installation de la nouvelle sonde d'oxygène* $\rightarrow \square$.
- 7. Réétalonner l'analyseur. Voir Étalonnage de l'analyseur $\rightarrow \square$.

8.3 Durée de vie du capteur de température

Le capteur de température est estimé durer aussi longtemps que l'analyseur lui-même et ne doit donc pas être remplacé.

8.4 Remplacement du fusible

Utiliser les instructions suivantes pour remplacer un fusible. Voir la figure 2 pour l'emplacement du fusible.

8.4.1 Remplacement du fusible

- 1. Mettre l'analyseur hors tension et ouvrir la porte du boîtier à l'aide d'un tournevis plat standard pour déverrouiller le verrou.
- 2. À l'aide d'un tournevis à tête plate (ou d'un outil comparable), retirer le couvercle du fusible. Voir la figure.

Figure 75. Retirer le couvercle du fusible

Pos.	Description
1	Couvercle du fusible
2	Boîtier du fusible

- 3. Soulever le couvercle du fusible et le retourner. Le fusible est maintenu dans la fente du couvercle.
- 4. Retirer le fusible du couvercle du fusible. Voir la figure 76.

Figure 76. Retrait du fusible

- 5. Remplacer le fusible périmé par un fusible neuf.
- 6. Retourner le couvercle du fusible (côté fusible vers le bas) et le placer sur le boîtier du fusible.
- 7. Enclencher le couvercle du fusible sur le boîtier du fusible.

ATTENTION

 N'utiliser que le même type et le même calibre de fusible pour les remplacements. Voir les spécifications figurant dans le tableau.

Description	Caractéristiques nominales
Cartouche fusible, série 216, 5 x 20 mm, action rapide	800 mA, 250 V

Tableau 32. Spécifications du fusible

8.5 Remplacement du module électro-optique

La procédure suivante permet de remplacer et d'installer le module électro-optique dans l'analyseur OXY5500.

AVIS

Les dessins figurant dans cette instruction sont utilisés uniquement pour illustrer plus clairement les étapes requises. NE PAS RETIRER la plaque de base du boîtier de l'analyseur pour suivre cette instruction.

8.5.1 Outils et matériel nécessaires

- Tournevis plat
- Tournevis Philips
- Module électro-optique (réf. EX080000020)

8.5.2 Démontage du module électro-optique

- 1. Mettre l'analyseur hors tension et ouvrir la porte du boîtier à l'aide d'un tournevis plat standard pour déverrouiller le verrou.
- 2. Débrancher le câble plat du clavier et le mettre de côté.
- Déconnecter les sondes, l'alimentation électrique et le capteur de pression des borniers, le cas échéant. Voir *Montage* →
- 4. Insérer un tournevis plat dans l'extension à clip en haut du module électro-optique, comme illustré dans la figure 77.

Figure 77. Insertion d'un tournevis dans l'extension à clip (1)

- 5. Appuyer sur le coin du module électro-optique et le maintenir enfoncé.
- 6. Avec le tournevis, appuyer sur l'extension à clip et l'éloigner de la partie supérieure du module. Voir la figure 78. Le module électro-optique devrait apparaître.

Figure 78. Déconnexion du module électro-optique du rail DIN

- 7. Incliner le module électro-optique vers l'avant et soulever en l'éloignant du rail DIN.
- 8. Retirer le câble de terre du module.

À l'aide du tournevis Philips, retirer la vis et le câble. Voir la figure 79.

Figure 79. Retrait du câble de terre

9. Retirer le module électro-optique du boîtier et le mettre de côté.

8.5.3 Remplacement du module électro-optique

- 1. Raccorder le câble de terre au module de remplacement.
- 2. Positionner le module électro-optique au-dessus du rail DIN et l'enclencher.
- 3. Recâbler les borniers comme indiqué dans la figure 73 ou la figure 74.
- 4. Rebrancher la sonde.
- 5. Rebrancher le câble plat au clavier.
- 6. Fermer la porte du boîtier de l'analyseur.

8.6 Montage/remplacement du capteur de pression

Le capteur de pression est optionnel sur l'analyseur OXY5500. Utiliser cette procédure pour monter ou remplacer le capteur de pression.

Se reporter à la procédure intitulée *Montage du capteur de pression* $\rightarrow \cong$ et *Pièces de rechange* $\rightarrow \cong$ pour connaître le numéro de référence du kit du capteur de pression afin d'installer cette option.

8.6.1 **Outils nécessaires**

- Tournevis plat (taille standard et mini) .
- Clé à fourche de 9/16 in.
- Clé à molette
- Clé à molette de 10 in.

8.6.2 Démontage du capteur de pression

- 1. Mettre l'analyseur hors tension et ouvrir la porte du boîtier à l'aide d'un tournevis plat standard pour déverrouiller le verrou.
- 2. À l'aide d'une clé de 9/16 in., desserrer l'écrou Swagelok le plus proche du capteur de pression.
- 3. À l'aide de la même clé, desserrer l'écrou Swagelok sur le raccord en té. Voir la figure 80.

Pos.	Description
1	Écrou du capteur de pression
2	Écrou du raccord en té

4. Retirer le tube entre le capteur de pression et le raccord en té. Voir la figure 81.

Figure 81. Retrait du tube

- 5. Desserrer les deux vis de charnière du boîtier de l'analyseur OXY5500 et ouvrir la porte.
- 6. Déconnecter les fils rouge et noir étiquetés "psens-" et "psens+" du bornier TB2 à l'aide d'un mini-tournevis, comme indiqué à la figure 82.

Figure 82. Retrait du câblage

- 7. Maintenir le capteur de pression à l'aide de la clé à molette pour fixer l'écrou hexagonal sur l'extrémité externe.
- Desserrer l'écrou de montage du capteur de pression à l'intérieur du boîtier à l'aide de la clé à molette. Voir la figure 83.

Figure 83. Démontage du capteur de pression

9. Retirer l'écrou avec les doigts et extraire le capteur de pression du boîtier. Laisser la rondelle d'étanchéité verte en place.

8.6.3 Montage du capteur de pression

- 1. Retirer le nouveau capteur de pression du sac et l'insérer dans l'ouverture avec la rondelle d'étanchéité verte, dans le même sens que celui du capteur retiré.
- 2. Fixer l'écrou de montage au niveau de la partie supérieure du capteur de pression, à l'intérieur du boîtier OXY5500.

Serrer suffisamment l'écrou pour éviter que des fuites éventuelles ne pénètrent dans le boîtier de l'analyseur.

- 3. Raccorder le câblage du capteur de pression comme indiqué à la figure 73 ou à la figure 74.
- 4. Fermer la porte du boîtier OXY5500 et la fixer à l'aide des vis de charnière.
- 5. Raccorder le tube du capteur de pression au capteur de pression à l'aide de l'écrou Swagelok.
- 6. Raccorder le tube au raccord au T à l'aide de l'écrou Swagelok.
- 7. Serrer les écrous Swagelok aux deux extrémités du tube, jusqu'à ce que le tube soit fixé.
- 8. Fermer le couvercle du boîtier SCS.

8.7 Démontage et remplacement de la sonde d'oxygène

Utiliser les instructions suivantes pour démonter et remplacer une sonde d'oxygène sur l'analyseur OXY5500.

8.7.1 Outils / pièces

- Clé à molette
- Tournevis Philips
- Tournevis à six pans 5/32 in.
- Clé plate 7/16 in.
- Clé plate 1/2 in.

8.7.2 Démontage de la sonde d'oxygène

- 1. Purger l'analyseur en faisant circuler de l'azote pur à 99,9999 % dans le système pendant 30 minutes.
- 2. Couper le débit de gaz vers l'analyseur.
- 3. Couper l'alimentation de l'analyseur.
- 4. Desserrer les vis du boîtier et retirer les pinces pour ouvrir la porte du boîtier.
- 5. À l'aide d'une clé à molette, desserrer le capuchon de presse-étoupe sur le panneau en le tournant vers le haut en direction de l'analyseur. Ne pas retirer le capuchon de presse-étoupe. Voir la figure 84.

Figure 84. Desserrer le capuchon de presse-étoupe

6. Retirer l'écrou de tube sur le panneau à l'aide d'une clé à fourche de 1/2 in. en tournant vers le bas, dans la direction opposée à l'analyseur. Voir la figure 85.

Figure 85. Retirer l'écrou de tube

7. Retirer les vis du support de conduit (x2) à l'aide d'un tournevis à six pans 5/32 in. Voir la figure 86.

Figure 86. Retirer le support de conduit

8. Retirer la vis de serrage de conduit à l'aide d'un tournevis Philips. Voir la figure 87.

9. Tourner le support de conduit parallèlement au panneau et dégager avec précaution la sonde du raccord en té (côté panneau). Voir la figure 88.

ATTENTION

• Veiller à ne pas déranger le capteur de température lors du retrait du conduit de la sonde d'oxygène.

Figure 88. Retirer la sonde du raccord en té (côté panneau)

 Éloigner le conduit de la sonde du panneau et retirer les raccords de l'extrémité de la sonde (côté panneau). Voir la figure 89.

Figure 89. Raccords sur la sonde d'oxygène (côté panneau)

Pos.	Description	
1	Embout en plastique	
2	Capuchon de presse-étoupe	
3	Écrou de tube	
4	Presse-étoupe	

ATTENTION

- Veiller à mettre de côté l'écrou de tube, le capuchon de presse-étoupe et les embouts en plastique pour les utiliser avec la sonde de remplacement.
- 11. Desserrer l'écrou du connecteur de la sonde au niveau du connecteur SMA, à l'intérieur du boîtier de l'analyseur. Voir la figure 90.

Figure 90. Retirer l'écrou de connecteur (côté analyseur)

Pos.	Description
1	Sonde d'oxygène et écrou de connecteur SMA
2	Raccord en té

12. Retirer soigneusement la sonde à travers le conduit et la mettre au rebut.

8.7.3 Montage de la nouvelle sonde d'oxygène

1. Retirer avec précaution le piston de protection de l'extrémité de la sonde (côté analyseur), en veillant à ne pas toucher l'extrémité de la fibre optique. Voir la figure 91.

Figure 91. Préparation de la nouvelle sonde d'oxygène avec l'extrémité de fibre optique A0052955

2. Introduire la nouvelle sonde dans le conduit en faisant passer l'extrémité du connecteur SMA en premier.

ATTENTION

- Le fait de toucher l'extrémité de la fibre optique endommagera la sonde.
- 3. Insérer la pointe de la sonde dans le connecteur SMA et serrer l'écrou du connecteur. Voir la figure 91.

ATTENTION

- Veiller à ne pas heurter l'extrémité de la sonde contre les parois de l'ouverture, sous peine de l'endommager.
- 4. Retirer le capuchon de sécurité rouge de l'extrémité de la sonde (côté panneau). Voir la figure 92.

Figure 92. Retirer le capuchon de sécurité de la sonde (côté analyseur)

5. Réinstaller les raccords sur l'extrémité de sonde (côté panneau).

ATTENTION

- S'assurer que les embouts en plastique sont correctement installés.
- 6. Acheminer le conduit de manière à ce que l'extrémité de la sonde (côté panneau) soit alignée avec le raccord en té.
- 7. Insérer l'extrémité de la sonde (côté panneau) dans le raccord en té.
- 8. Raccorder le support de conduit avec les vis (x2) à l'aide d'un tournevis à six pans 5/32 in.
- 9. Fixer le collier de conduit avec une vis à l'aide d'un tournevis Philips.
- 10. Serrer l'écrou de tube sur l'extrémité de la sonde (côté panneau).
- 11. Fixer le capuchon de presse-étoupe à l'aide de la clé à molette.

ATTENTION

- Ne pas serrer exagérément le capuchon de presse-étoupe.
- 12. Fermer le couvercle du boîtier de l'analyseur et le fixer à l'aide de colliers.
- 13. Effectuer un test de fuite sur l'analyseur. Voir $SAV \rightarrow \square$.
- 14. Étalonner l'analyseur. Voir Étalonnage de l'analyseur $\rightarrow \square$.

8.8 Correction des codes d'erreur

Si une erreur de dépassement de signal est reçue, suivre les étapes ci-dessous pour résoudre l'erreur.

8.8.1 Intensité de signal élevée : O2 faible ou pas d'O2 sur la sonde OP-3, OP-6 ou OP-9

- 1. Diminuer l'intensité de la LED de la sonde O2 par incréments simples.
- 2. Voir l'*écran Device settings* → 🖹 pour plus d'informations sur les réglages d'intensité des LED.

8.8.2 Intensité de signal faible : O2 élevé sur la sonde OP-3, OP-6 ou OP-9

- 1. Augmenter l'intensité de la LED de la sonde O2 par incréments simples.
- 2. Voir l'écran Device settings pour plus d'informations sur les réglages d'intensité des LED.

8.9 Recommandations pour la mesure correcte

L'étalonnage du capteur est recommandé avant chaque nouvelle application. Comme alternative, les valeurs d'étalonnage de la dernière mesure peuvent être utilisées. Si la compensation de température n'est pas utilisée, veiller à ce que la température de l'échantillon soit connue et constante pendant la mesure. Pour les mesures compensées en température, le capteur de température Pt100 (sonde RTD) doit être placé aussi près que possible du capteur d'oxygène afin d'éviter les différences de température.

8.9.1 Dérives du signal dues à des gradients d'oxygène

Il est important de rappeler que le capteur ne mesure que la teneur en oxygène à proximité de sa surface. La formation d'un biofilm lors de mesures de longue durée, ou l'accumulation d'autres composants de l'échantillon tels que l'huile ou les substances solides, peut entraîner un gradient d'oxygène.

8.9.2 Dérives du signal dues à des gradients de température

Une autre source d'imprécision des mesures est une compensation insuffisante de la température. Si une compensation de température est utilisée, s'assurer qu'il n'y a pas de gradients de température entre le capteur d'oxygène et les capteurs de température. Si la mesure est effectuée sans compensation de température, ne pas oublier que l'OXY5500 ne mesure correctement que si la température de l'échantillon est constante pendant la mesure et que la température est identique à celle de l'entrée au début de la mesure. Une erreur de mesure de la température de +/-0,3 °C se traduira par une erreur de mesure d'environ +/-1 % de la lecture. Le capteur de température fourni avec l'appareil est d'une excellente précision, mais de forts gradients de température du gaz entraîneront un décalage entre la sonde d'oxygène et le capteur de température. Pour éviter un décalage, il faut s'assurer que la température du gaz a été stabilisée avant de passer sur la sonde d'oxygène. Les systèmes SCS fournis par Endress+Hauser sont conçus pour garantir que cela ne soit pas un problème.

8.9.3 Dérive du signal due à la photodécomposition

Le matériau sensible à l'oxygène peut être sujet à une photodécomposition entraînant une dérive du signal. La photodécomposition n'a lieu que pendant l'illumination de l'extrémité du capteur et dépend de l'intensité de la lumière d'excitation. Par conséquent, la lumière d'excitation devrait être réduite au minimum. L'illumination continue d'un capteur d'oxygène OP-3 pendant une période de 24 heures peut entraîner une dérive de phase allant jusqu'à + 0,4 % de la lecture à 20 °C. Toutefois, cet effet de photodécomposition peut être minimisé en changeant le mode de mesure avec un intervalle de 30 secondes ou d'une minute. Dans ces modes, le logiciel éteint la lumière d'excitation après l'enregistrement du point de données et la rallume après l'intervalle choisi. Utiliser la méthode des intervalles autant que possible pour augmenter la durée de vie du capteur. Voir le tableau ci-dessous.

Nom	Dérive par 3 600 points	Dérive par 50 000 points	Dérive par 100 000 points
OP-3	< 0,15 % sat. en air	< 0,15 % sat. en air	< 0,25 % sat. en air
OP-6	< 1 ppb	< 2 ppb	< 3 ppb

Tableau 33. Dérive du capteur à la lecture zéro (0 ppb) – enregistrement des points de données 3 600, 50 000 et 100 000

8.10 Amélioration des performances

Pour améliorer les performances par rapport aux mesures précédentes, vérifier les valeurs d'étalonnage en utilisant les gaz d'étalonnage pour "0" (azote UHP 99,9999 %) et le gaz de test de l'étendue de mesure (100 ppm d'oxygène/N2). Pour ce faire, utiliser une vanne 3 voies reliée au gaz de test permettant à l'utilisateur de passer d'une bouteille à l'autre. Cela peut aider à vérifier le bon fonctionnement.

8.11 Suppression des défauts

Se reporter au tableau des Questions répétitives concernant la suppression des défauts de l'OXY5500 avant de contacter le service après-vente. Pour contacter le service après-vente, voir "SAV" dans la section suivante.

Indication	Cause supposée	Solution
Aucun capteur détecté !	Amplitude < 1000	S'assurer que le connecteur SMA est correctement branché au connecteur.
Signal trop faible !	Amplitude < 3000	Vérifier les connexions de capteur ou la fibre POF pour toute irrégularité.
		Voir Intensité de signal faible : O2 élevé sur sonde OP-3, OP-6 ou OP-9 \Rightarrow 🗎.
Dépassement de signal !		Voir Intensité de signal élevée : O2 faible ou pas d'O2 sur sonde OP-3, OP-6 ou OP-9 → \square .
Erreur critique 16 !	Le signal de référence dépasse la gamme spécifiée	Voir "SAV".

Indication	Cause supposée	Solution
Pas de Pt100 !	Le capteur Pt100 n'a pas le bon câble ou est cassé	Contrôler le raccordement du capteur de température.
Erreur critique 512 !	Défaut du système de mesure	Voir "SAV".
Erreur de carte SD !	Impossible de lire ou d'écrire sur la carte SD	Voir "SAV".
Capteur de pression hors gamme !	Le capteur de pression n'est pas raccordé ou fournit un courant inférieur à 4 mA ou supérieur à 20 mA	Vérifier le capteur de pression et son raccordement.
Erreur flash !	L'écriture dans la mémoire Flash n'a pas réussi	Voir "SAV".
Espace de stockage plein !	Il n'est plus possible de créer des fichiers de mesure ni d'enregistrer des entrées de mesure.	Supprimer les fichiers de mesure via le Measurement Browser or le logiciel de service.

Tableau 34. Problèmes potentiels rencontrés par l'instrument et solutions

8.12 SAV

Pour le SAV, consulter notre site web (https://endress.com/contact) pour obtenir la liste des canaux de distribution locaux.

Pour retourner l'unité en vue d'un entretien ou d'un remplacement, voir "Numéro de demande de réparation".

8.12.1 Avant de contacter le SAV

Avant de contacter le SAV, préparer les informations suivantes qui seront à envoyer avec la demande :

- Coordonnées
- Description du problème ou questions

L'accès aux informations ci-dessus accélère considérablement la réponse que nous apportons à vos demandes techniques.

8.12.2 Numéro de demande de réparation

Si le retour de l'appareil est nécessaire, demander un numéro de demande de réparation (SRO) auprès du service clientèle avant de retourner l'analyseur à l'usine. Le représentant du service en charge du dossier peut déterminer si l'analyseur peut être réparé sur le site ou doit être retourné à l'usine. Tous les retours sont à expédier à :

11027 Arrow Rte. Rancho Cucamonga, CA 91730-4866 États-Unis d'Amérique www.endress.com

8.12.2.1 Retours Renewity

Les retours peuvent également être effectués aux États-Unis par l'intermédiaire du système Renewity. Sur un ordinateur, naviguer jusqu'à https://endress.com/returns et compléter le formulaire en ligne.

8.13 Emballage et stockage

Les analyseurs OXY5500 et les équipements auxiliaires d'Endress+Hauser sont expédiés de l'usine dans un emballage approprié. En fonction de la taille et du poids, l'emballage peut consister en un conteneur en carton ou en une caisse en bois. Pendant l'emballage, tous les orifices et entrées sont couverts et protégés pour l'expédition.

Si l'équipement doit être expédié ou entreposé pour une période prolongée, il convient de l'emballer dans l'emballage original utilisé lorsqu'il a été expédié de l'usine. Si l'analyseur a été installé et/ou utilisé (même à des fins de démonstration), il faut d'abord décontaminer le système (purger avec un gaz inerte) avant de mettre l'analyseur hors tension.

8.13.1 Préparation de l'analyseur pour l'expédition ou le stockage

- 1. Arrêter le flux de gaz de process.
- 2. Attendre que le gaz résiduel se dissipe dans les conduites.
- 3. Relier au port d'introduction de l'échantillon un gaz pour purger, régulé par rapport à la pression d'introduction de l'échantillon.
- 4. Vérifier que toutes les vannes qui commandent l'écoulement de l'échantillon à la torche basse pression ou à l'évent atmosphérique sont ouvertes.
- 5. Activer l'alimentation de la purge et purger le système pour le débarrasser du gaz de traitement résiduel.
- 6. Désactiver l'alimentation de la purge.
- 7. Attendre que le gaz résiduel se dissipe dans les conduites.
- 8. Fermer toutes les vannes qui commandent l'écoulement de l'échantillon vers la torche basse pression ou l'évent atmosphérique.
- 9. Mettre le système hors tension.
- 10. Débrancher toutes les connexions de tubes et de signaux.
- 11. Obturer tous les orifices d'entrée et de sortie afin de prévenir la pénétration de corps étrangers, tels que la poussière ou l'eau, dans le système.
- 12. Emballer l'équipement dans l'emballage d'origine utilisé pour son expédition, s'il est disponible. Si l'emballage d'origine n'est plus disponible, l'équipement doit être emballé de façon sûre et adéquate, afin de prévenir toute vibration et tout choc excessifs.
- 13. En cas de retour de l'analyseur à l'usine, compléter le Formulaire de décontamination fourni par Endress+Hauser (voir "Numéro de demande de réparation") et l'apposer à l'extérieur de la caisse d'emballage, conformément aux instructions, avant l'expédition.

8.14 Stockage

L'analyseur emballé doit être stocké dans un environnement protégé dont la température contrôlée est située dans une plage comprise entre -20 °C (4 °F) et 70 °C (158 °F). Il ne doit pas être exposé à un ensoleillement direct, ni à la pluie, la neige, l'humidité de condensation ou aux environnements corrosifs.

8.15 Avis de non-responsabilité

Endress+Hauser ne peut en aucun cas être tenu responsable des dommages indirects résultant de l'utilisation de cet équipement. Sa responsabilité est limitée au remplacement et/ou à la réparation de composants défectueux.

Ce manuel contient des informations protégées par le droit d'auteur. Sauf accord écrit préalable d'Endress+Hauser, il est interdit de photocopier ou de reproduire ce manuel, en tout ou partie, sous quelque forme que ce soit.

8.16 Garantie

Pendant une période de 18 mois à compter de la date d'expédition ou de 12 mois de fonctionnement, la première échéance prévalant, Endress+Hauser garantit que tous les produits qu'elle vend sont exempts de défauts de matériaux et de fabrication dans des conditions normales d'utilisation et de service, lorsqu'ils sont correctement installés et entretenus. La seule responsabilité d'Endress+Hauser et le seul et unique recours du client en cas de violation de la garantie sont limités à la réparation ou au remplacement par Endress+Hauser (à la seule option d'Endress+Hauser) du produit ou de la partie du produit qui est renvoyé aux frais du client à l'usine d'Endress+Hauser. Cette garantie ne s'applique que si le client informe Endress+Hauser par écrit du produit défectueux, sans délai après la découverte du défaut et pendant la période de garantie. Les produits ne peuvent être retournés par le client que s'ils sont accompagnés d'un numéro d'autorisation de retour (SRO) émis par Endress+Hauser. Les frais de transport des produits retournés par le client sont à la charge de ce dernier. Endress+Hauser prend en charge le renvoi au client des produits réparés sous garantie. Pour les produits retournés pour réparation qui ne sont pas couverts par la garantie, les frais de réparation standard d'Endress+Hauser seront applicables en plus de tous les frais d'expédition.

www.addresses.endress.com

