Skrócona instrukcja obsługi Liquiphant FTL43

Sygnalizator wibracyjny IO-Link Sygnalizator poziomu cieczy

Niniejsza skrócona instrukcja obsługi nie zastępuje pełnej instrukcji obsługi wchodzącej w zakres dostawy przyrządu.

Szczegółowe dane dotyczące przyrządu znajdują się w instrukcji obsługi oraz w innej dokumentacji: Jest ona dostępna dla wszystkich wersji przyrządu:

- Poprzez Internet: www.pl.endress.com/deviceviewer
- Poprzez smartfon/tablet z zainstalowaną aplikacją *Endress* +*Hauser Operations*

1 Dokumentacja uzupełniająca

2 Informacje o niniejszym dokumencie

2.1 Przeznaczenie dokumentu

Skrócona instrukcja obsługi zawiera wszystkie najważniejsze informacje: od odbioru dostawy do pierwszego uruchomienia.

2.2 Symbole

2.2.1 Symbole bezpieczeństwa

A NIEBEZPIECZEŃSTWO

Ten symbol ostrzega przed niebezpieczną sytuacją. Zignorowanie go spowoduje poważne uszkodzenia ciała lub śmierć.

A OSTRZEŻENIE

Ten symbol ostrzega przed niebezpieczną sytuacją. Zlekceważenie tego zagrożenia może spowodować poważne obrażenia ciała lub śmierć.

A PRZESTROGA

Ten symbol ostrzega przed niebezpieczną sytuacją. Zlekceważenie tego zagrożenia może być przyczyną lekkich lub średnich obrażeń ciała.

NOTYFIKACJA

Ten symbol zawiera informacje o procedurach oraz innych czynnościach, które nie powodują uszkodzenia ciała.

2.2.2 Symbole narzędzi

💅 Klucz płaski

2.2.3 Symbole rodzaju komunikacji

Bluetooth®: 8

Bezprzewodowa transmisja danych krótkiego zasięgu pomiędzy różnymi urządzeniami.

IO-Link: 🚷 IO-Link

System komunikacji służący do podłączenia inteligentnych czujników i urządzeń wykonawczych do systemu automatyki. Technologia IO-Link jest standardem opisanym w normie IEC 61131-9, jako "Interfejs komunikacji cyfrowej punkt-punkt do małych czujników i elementów wykonawczych (SDCI)".

2.2.4 Symbole oznaczające rodzaj informacji

Dopuszczalne: 🖌

Dopuszczalne procedury, procesy lub czynności.

Zabronione: 🔀

Zabronione procedury, procesy lub czynności.

Informacje dodatkowe: 🚹

Odsyłacz do dokumentacji: 国

Odsyłacz do strony: 🗎

Kolejne kroki procedury: 1., 2., 3.

Wynik w danym kroku procedury: L

2.2.5 Symbole na rysunkach

Numery pozycji: 1, 2, 3 ...

Kolejne kroki procedury: 1., 2., 3.

Widoki: A, B, C, ...

2.3 Dokumentacja

Wykaz i zakres dostępnej dokumentacji technicznej, patrz:

- *Device Viewer* (www.endress.com/deviceviewer): należy wprowadzić numer seryjny podany na tabliczce znamionowej,
- Aplikacja *Endress+Hauser Operations*: należy wprowadzić numer seryjny podany na tabliczce znamionowej lub zeskanować kod kreskowy QR z tabliczki znamionowej.

2.4 Zastrzeżone znaki towarowe

Apple®

Apple, logo Apple, iPhone i iPod touch to zastrzeżone znaki towarowe Apple Inc., zarejestrowane w USA i w innych krajach. App Store to znak usługowy Apple Inc.

Android®

Android, Google Play i logo Google Play to zastrzeżone znaki towarowe Google Inc.

Bluetooth®

Znak słowny i logo *Bluetooth*[®] to zastrzeżone znaki towarowe Bluetooth SIG, Inc. Każdy przypadek użycia tego znaku przez Endress+Hauser podlega licencji. Pozostałe znaki towarowe i nazwy handlowe należą do ich prawnych właścicieli.

IO-Link®

jest zastrzeżonym znakiem towarowym. Może być stosowany z produktami i usługami przez podmioty będące członkami grupy IO-Link Community oraz przez podmioty niebędące jej członkami, posiadające odpowiednią licencję. Dodatkowe informacje dotyczące korzystania z komunikacji IO-Link podano w zasadach IO-Link Community na stronie: www.io.link.com.

3 Podstawowe zalecenia dotyczące bezpieczeństwa

3.1 Wymagania dotyczące personelu

Personel obsługi powinien spełniać następujące wymagania:

- Przeszkoleni, wykwalifikowani operatorzy powinni posiadać odpowiednie kwalifikacje do wykonania konkretnych zadań i funkcji.
- Posiadać zgodę właściciela/operatora obiektu.
- Posiadać znajomość obowiązujących przepisów.
- Przed rozpoczęciem prac przeczytać ze zrozumieniem zalecenia podane w instrukcji obsługi, dokumentacji uzupełniającej oraz certyfikatach (zależnie od zastosowania).
- Przestrzegać wskazówek i podstawowych warunków bezpieczeństwa.

3.2 Użytkowanie zgodne z przeznaczeniem

Przyrząd opisany w niniejszej instrukcji jest przeznaczony wyłącznie do pomiaru poziomu cieczy.

Użytkowanie niezgodne z przeznaczeniem

Producent nie ponosi żadnej odpowiedzialności za szkody spowodowane niewłaściwym użytkowaniem lub użytkowaniem niezgodnym z przeznaczeniem.

Unikać uszkodzeń mechanicznych:

 do czyszczenia powierzchni przyrządu nie używać twardych, ani ostro zakończonych narzędzi.

Objaśnienie dla przypadków granicznych:

W przypadku cieczy specjalnych i cieczy stosowanych do czyszczenia, Endress+Hauser udzieli wszelkich informacji dotyczących odporności na korozję materiałów pozostających w kontakcie z medium, nie udziela jednak żadnej gwarancji ani nie ponosi odpowiedzialności.

Ryzyka szczątkowe

Podczas pracy, wskutek wymiany ciepła z medium procesowym oraz wytwarzania ciepła przez układy elektroniczne, obudowa może nagrzać się do temperatury 80 °C (176 °F). Podczas pracy czujnik może osiągnąć temperaturę bliską temperatury medium.

Niebezpieczeństwo oparzenia wskutek kontaktu z gorącymi powierzchniami!

► W przypadku medium o podwyższonej temperaturze należy zapewnić odpowiednie zabezpieczenie przed oparzeniem.

3.3 Bezpieczeństwo pracy

Podczas obsługi urządzenia:

- Zawsze należy mieć nałożony niezbędny sprzęt ochrony osobistej wymagany obowiązującymi przepisami.
- ► Przed przystąpieniem do wykonania podłączeń elektrycznych wyłączyć zasilanie.

3.4 Bezpieczeństwo eksploatacji

Ryzyko uszkodzenia ciała!

- Przyrządu można używać wyłącznie wtedy, gdy jest on sprawny technicznie oraz wolny od usterek i wad.
- ► Za zapewnienie dobrego stanu technicznego przyrządu odpowiada operator.

Modyfikacje przyrządu

Niedopuszczalne są nieautoryzowane przeróbki przyrządu, ponieważ mogą spowodować zagrożenia, które trudno przewidzieć:

▶ Jeśli mimo to przeróbki są niezbędne, należy skontaktować się z producentem.

Naprawa

Aby zapewnić stałą niezawodność i bezpieczeństwo eksploatacji:

▶ należy używać wyłącznie oryginalnych akcesoriów.

Obszar zagrożony wybuchem

Aby wyeliminować zagrożenia dla bezpieczeństwa personelu lub obiektu podczas eksploatacji przyrządu w strefie niebezpiecznej (np. zagrożenia wybuchem, występowania urządzeń ciśnieniowych) należy:

- Sprawdzić na tabliczce znamionowej, czy zamówiony przyrząd jest dopuszczony do zamierzonego zastosowania w strefie niebezpiecznej.
- Przestrzegać wymagań technicznych określonych w dokumentacji uzupełniającej, która stanowi integralną część niniejszej instrukcji obsługi.

3.5 Bezpieczeństwo produktu

Przyrząd został skonstruowany i przetestowany zgodnie z najnowszymi standardami bezpieczeństwa eksploatacji oraz zgodnie z dobrą praktyką inżynierską. i opuścił zakład produkcyjny w stanie zapewniającym bezpieczną eksploatację.

Przyrząd spełnia ogólne wymagania bezpieczeństwa i wymogi prawne. Ponadto jest zgodny z dyrektywami unijnymi wymienionymi w Deklaracji Zgodności UE dla konkretnego przyrządu. Endress+Hauser potwierdza to poprzez umieszczenie na przyrządzie znaku CE.

3.6 Bezpieczeństwo systemów IT

Gwarancja producenta obowiązuje wyłącznie w przypadku montażu i eksploatacji produktu zgodnie z opisem podanym w instrukcji obsługi. Przyrząd jest wyposażony w mechanizmy zabezpieczające przed przypadkową zmianą ustawień.

Działania w zakresie bezpieczeństwa systemów IT zapewniające dodatkową ochronę przyrządu oraz transferu danych muszą być wdrożone przez operatora zgodnie z obowiązującymi standardami bezpieczeństwa.

3.7 Środki bezpieczeństwa IT w przyrządzie

Przyrząd posiada specjalne funkcje, umożliwiające zabezpieczenie ustawień przez operatora. Funkcje te mogą być konfigurowane przez użytkownika, a ich poprawne użycie zapewnia większe bezpieczeństwo pracy przyrządu. Rodzaj użytkownika można zmienić wykorzystując kod dostępu (dotyczy obsługi z wykorzystaniem wyświetlacza lokalnego, komunikacji Bluetooth lub oprogramowania FieldCare, DeviceCare oraz systemów zarządzania aparaturą obiektową (np. AMS, PDM).

3.7.1 Dostęp poprzez interfejs Bluetooth®

Bezpieczna transmisja sygnałów za pomocą bezprzewodowej technologii Bluetooth® jest szyfrowana za pomocą techniki kryptograficznej testowanej przez Instytut Fraunhofera.

- Bez zainstalowanej aplikacji SmartBlue przyrząd nie będzie widoczny poprzez sieć Bluetooth[®].
- Pomiędzy przyrządem a smartfonem lub tabletem ustanawiane jest tylko jedno połączenie typu punkt-punkt.
- Komunikację Bluetooth[®] można wyłączyć korzystając z wyświetlacza lokalnego lub za pomocą aplikacji SmartBlue.

4 Odbiór dostawy i identyfikacja produktu

4.1 Odbiór dostawy

Przy odbiorze dostawy należy sprawdzić, czy:

- kod zamówieniowy w dokumentach przewozowych (1) jest identyczny jak na naklejce przyrządu (2),
- dostarczony produkt nie jest uszkodzony,
- dane na tabliczce znamionowej są zgodne z danymi w zamówieniu i w dokumentach przewozowych,
- została załączona dokumentacja przyrządu,
- załączono wymaganą instrukcję bezpieczeństwa Ex (XA) (patrz tabliczka znamionowa).

Jeśli jeden tych z warunków nie został spełniony, należy skontaktować się z oddziałem Endress+Hauser.

4.2 Identyfikacja produktu

Możliwe opcje identyfikacji produktu są następujące:

- Dane na tabliczce znamionowej
- Pozycje kodu zamówieniowego podane w dokumentach przewozowych
- Korzystając z narzędzia Device Viewer (www.endress.com/deviceviewer) i wprowadzając numer seryjny podany na tabliczce znamionowej: wyświetlane są szczegółowe informacje na temat przyrządu.

4.2.1 Tabliczka znamionowa

Na tabliczce znamionowej umieszczone są wymagane prawem informacje dotyczące przyrządu np.:

- dane producenta,
- numer zamówieniowy, rozszerzony kod zamówieniowy, numer seryjny,
- dane techniczne, stopień ochrony,
- wersja oprogramowania, wersja sprzętowa,
- informacje o dopuszczeniach,
- kod QR (informacje dotyczące przyrządu)

Należy porównać dane na tabliczce znamionowej z zamówieniem.

4.2.2 Adres producenta

Endress+Hauser SE+Co. KG Hauptstraße 1 79689 Maulburg, Niemcy Miejsce produkcji: patrz tabliczka znamionowa.

4.3 Transport i składowanie

4.3.1 Warunki składowania

- Używać oryginalnego opakowania
- Przyrząd należy przechowywać w czystym, suchym miejscu i chronić przed uszkodzeniami wskutek wstrząsów

Temperatura składowania

-40 ... +85 °C (-40 ... +185 °F)

4.3.2 Transport przyrządu do miejsca montażu w punkcie pomiarowym

A OSTRZEŻENIE

Niewłaściwy sposób transportu!

Możliwość uszkodzenia obudowy i widełek sygnalizatora, oraz ryzyko uszkodzenia ciała.

- Przyrząd należy transportować do punktu pomiarowego w oryginalnym opakowaniu.
- Przyrząd można chwytać za obudowę, separator temperaturowy, przyłącze procesowe lub rurę wydłużającą.
- ▶ Nie zginać, nie skracać ani nie wydłużać widełek sygnalizatora.

🖻 1 Zasady obchodzenia się z urządzeniem

5 Warunki pracy: montaż

- Dowolna pozycja montażowa przyrządu dla wersji kompaktowej i wersji z rurą wydłużającą o długości do ok. 500 mm (19,7 in)
- Pozycja pionowa od góry w przypadku przyrządu z długą rurą wydłużającą
- Minimalna odległość pomiędzy końcem widełek sygnalizatora a ścianką zbiornika lub rurociągu powinna wynosić: 10 mm (0,39 in)

🖻 2 Przykłady montażu w różnych położeniach na zbiorniku lub rurociągu

5.1 Zalecenia montażowe

Podczas montażu należy pamiętać, aby dopuszczalna temperatura pracy zastosowanego elementu uszczelniającego odpowiadała maksymalnej temperaturze medium procesowego.

 Przyrządy z dopuszczeniem do stosowania w krajach Ameryki Północnej są przeznaczone do użytku wewnątrz pomieszczeń

Przyrządy mogą być stosowane w środowisku wilgotnym zgodnie z PN-EN 61010-1

Chronić obudowę przed uderzeniami

5.1.1 Uwzględnienie położenia progu przełączania

Poniżej pokazano typowe położenia progów przełączania w zależności od pozycji montażowej sygnalizatora poziomu.

Woda +23 °C (+73 °F)

Minimalna odległość pomiędzy końcem widełek a ścianką zbiornika lub rurociągu: 10 mm (0,39 in)

🖻 3 Typowe położenia progów przełączania. Jednostka miary mm (in)

- A Montaż od góry
- B Montaż od dołu
- C Montaż z boku
- D Próg przełączania

5.1.2 Uwzględnienie lepkości cieczy

Wartości lepkości

- Mała lepkość: < 2 000 mPa·s
- Duża lepkość: > 2 000 ... 10 000 mPa·s

Ciecz o małej lepkości

Ciecz o małej lepkości, np. woda: < 2 000 mPa·s

Widełki sygnalizatora mogą być umieszczone wewnątrz króćca montażowego.

🖻 4 Przykład montażu w cieczach o małej lepkości. Jednostka miary mm (in)

Ciecz o dużej lepkości

NOTYFIKACJA

W przypadku cieczy o dużej lepkości mogą występować opóźnienia przełączania.

- Należy zapewnić, aby ciecz łatwo ściekała z widełek.
- Usunąć zadziory z wewnętrznej powierzchni króćca.

Ciecz o dużej lepkości, np. oleje o lepkości: ≤ 10000 mPa·s

Widełki sygnalizatora powinny być umieszczone na zewnątrz króćca montażowego!

🖻 5 Przykład montażu w cieczach o dużej lepkości. Jednostka miary mm (in)

5.1.3 Zapobieganie gromadzeniu się osadu

- Zastosować krótki króciec montażowy, aby widełki mogły wystawać do wnętrza zbiornika
- Należy zapewnić wystarczającą odległość pomiędzy osadem, który może gromadzić się na ściankach zbiornika, a widełkami sygnalizatora

🖻 6 🛛 Przykłady montażu w medium procesowym o dużej lepkości

5.1.4 Zachowanie odpowiedniego odstępu

Na zewnątrz zbiornika należy pozostawić odpowiedni odstęp do zamontowania przyrządu i wykonania podłączeń elektrycznych.

Image: The second se

5.1.5 Podparcie przyrządu

W przypadku silnych obciążeń dynamicznych należy zapewnić podparcie przyrządu. Dopuszczalne obciążenie poprzeczne rury wydłużającej i czujnika: 75 Nm (55 lbf ft).

8 Przykładowe sposoby podparcia przy dużych obciążeniach dynamicznych

5.1.6 Adapter do wspawania z otworem spustowym

Wspawać adapter w taki sposób, aby otwór spustowy był skierowany w dół. Umożliwia to szybkie wykrycie ewentualnego wycieku.

9 Adapter do wspawania z otworem spustowym

5.2 Montaż przyrządu

5.2.1 Procedura montażu

Ustawienie widełek sygnalizatora z wykorzystaniem znaku wskazującego pozycję widełek

Znak wskazujący pozycję widełek umożliwia ich ustawienie tak, aby zapewnić swobodny spływ medium i zapobiec gromadzeniu się osadu.

- Oznaczenia dla połączeń gwintowanych: kółko (specyfikacja materiału/oznaczenie gwintu po drugiej stronie)
- Oznaczenia dla połączeń kołnierzowych lub zaciskowych: kreska lub dwie kreski

Ponadto połączenia gwintowane są oznaczone kodem, który **nie** jest używany do wyrównania.

I0 Ustawienie pozycji widełek sygnalizatora za pomocą znaku wskazującego pozycję widełek, gdy przyrząd jest zamontowany w zbiorniku w pozycji poziomej

Montaż w rurociągach

Prędkość przepływu medium do 5 m/s przy lepkości 1 mPa·s i gęstości 1 g/cm³ (62,4 lb/ft³) (SGU).

W przypadku medium o innych parametrach należy sprawdzić poprawność działania sygnalizatora.

- Jeśli widełki sygnalizatora są poprawnie ustawione, a znak jest zgodny z kierunkiem przepływu, opory przepływu nie będą duże.
- Znak jest widoczny po zamontowaniu.

I1 Montaż w rurociągu (należy uwzględnić pozycję widełek i znaku)

Wkręcanie przyrządu (dotyczy wersji z gwintowym przyłączem procesowym)

- Podczas wkręcania należy trzymać przyrząd za sześciokątną główkę, moment dokręcenia: 15 ... 30 Nm (11 ... 22 lbf ft)
- Nie wkręcać przyrządu, trzymając go za obudowę!

🖻 12 🛛 Wkręcanie przyrządu

5.3 Kontrola po wykonaniu montażu

Czy przyrząd nie jest uszkodzony (kontrola wzrokowa)?

Czy oznaczenie punktu pomiarowego jest poprawne (kontrola wzrokowa)?

Czy przyrząd jest odpowiednio zamocowany?

Czy przyrząd odpowiada parametrom w punkcie pomiarowym?

Przykładowo:

- Temperatura medium procesowego
- Ciśnienie medium procesowego
- Temperatura otoczenia
- Zakres pomiarowy

6 Podłączenie elektryczne

6.1 Podłączenie przyrządu

6.1.1 Uwagi dotyczące wtyku M12

Wtyk można wkręcać chwytając wyłącznie za nakrętkę, moment dokręcenia 0,6 Nm (0,44 lbf ft).

■ 13 Złącze wtykowe M12

Prawidłowe ustawienie wtyku M12: ok. 45° w stosunku do osi pionowej.

🖻 14 Prawidłowe ustawienie wtyku M12

6.1.2 Wyrównanie potencjałów

W razie potrzeby, przyrząd należy podłączyć do szyny wyrównawczej, wykorzystując przyłącze procesowe lub zacisk uziemienia (zapewnia klient).

6.1.3 Napięcie zasilania

Napięcie zasilania prądem stałym 12 ... 30 V, z zasilacza prądu stałego Komunikacja IO-Link jest zapewniona tylko wtedy, gdy napięcie zasilania wynosi co najmniej 18 V.

Zasilacz powinien być sprawdzony pod kątem spełnienia wymagań bezpieczeństwa (np., PELV, SELV, Klasa 2) i zgodności ze specyfikacjami protokołu komunikacyjnego.

Przyrząd posiada wbudowany układ zabezpieczający przed odwrotną polaryzacją, przepięciami oraz filtr przeciwzakłóceniowy HF.

6.1.4 Pobór mocy

Aby spełnić wymagania bezpieczeństwa przyrządu zgodnie z normą IEC 61010, maksymalny prąd instalacji nie powinien przekraczać 500 mA.

6.1.5 Ochrona przeciwprzepięciowa

Przyrząd spełnia wymagania normy IEC 61326-1 (Tabela 2 Środowisko przemysłowe). Zależnie od typu złącza (zasilanie DC, wejście/wyjście) stosuje się różne poziomy testu w celu zapobiegania przepięciom chwilowym (IEC 61000-4-5 Udary), zgodnie z normą IEC EN 61326-1: Poziom testów dla linii zasilania prądem stałym oraz linii wejścia/wyjścia: 1000 V względem uziemienia.

Kategoria przepięciowa

Zgodnie z normą IEC 61010-1, przyrząd jest przeznaczony do pracy w sieciach o kategorii ochrony przeciwprzepięciowej II.

6.1.6 Zakres ustawień

Progi przełączania można konfigurować za pomocą protokołu IO-Link.

6.1.7 Obciążalność styków

- Przy aktywnym wyjściu dwustanowym (ON): $I_a \leq 200 \text{ mA}^{-1}$; Przy nieaktywnym wyjściu dwustanowym (OFF): $I_a < 0.1 \text{ mA}^{2}$
- Liczba cykli przełączania: >1 · 10⁷
- Spadek napięcia na wyjściu PNP: ≤ 2 V
- Zabezpieczenie przed przeciążeniem: automatyczne testowanie obciążenia łączeniowego;
 - Maks. obciążenie pojemnościowe: 1 µF dla maks. napięcia zasilającego (bez obciążenia rezystancyjnego)
 - Maks. czas trwania cyklu łączeniowego: 0,5 s; min. t_{on}: 40 µs
 - W przypadku przeciążenia następują okresowe odłączenia ochronne (f = 1 Hz)

¹⁾ Jeśli wyjścia "1 x PNP + 4 ... 20 mA" są używane jednocześnie, to prąd obciążenia wyjścia dwustanowego OUT1 nie powinien przekraczać 100 mA w całym zakresie temperatury. Prąd przełączania może być równy maks. 200 mA przy temperaturze otoczenia równej 50 °C (122 °F) i temperaturze medium procesowego 85 °C (185 °F). Jeśli używana jest konfiguracja "1 x PNP" lub "2 x PNP", całkowity prąd obciążenia wyjść dwustanowych nie powinien przekraczać 200 mA w całym zakresie temperatury.

²⁾ Inny dla wyjścia dwustanowego OUT2 - przy nieaktywnym wyjściu dwustanowym: $I_a < 3,6$ mA i $U_a < 2$ V, a przy aktywnym wyjściu dwustanowym: spadek napięcia na wyjściu PNP: ≤ 2,5 V

6.1.8 Przyporządkowanie zacisków

A OSTRZEŻENIE

Zasilanie może być włączone!

Ryzyko porażenia prądem i/lub wybuchu

- ▶ Przed rozpoczęciem podłączania przyrządu należy sprawdzić, czy zasilanie jest wyłączone.
- ► Napięcie zasilania powinno być zgodne ze specyfikacją na tabliczce znamionowej.
- Zgodnie z normą IEC 61010, przyrząd powinien być wyposażony w odpowiedni oddzielny wyłącznik lub wyłącznik automatyczny.
- Przewody należy odpowiednio zaizolować, z uwzględnieniem napięcia zasilania i kategorii przeciwprzepięciowej.
- Przewody podłączeniowe muszą zapewniać odpowiednią stabilność temperaturową, ze szczególnym uwzględnieniem temperatury otoczenia.
- Przyrząd posiada wbudowany układ zabezpieczający przed odwrotną polaryzacją, przepięciami oraz filtr przeciwzakłóceniowy HF.

A OSTRZEŻENIE

Błędne podłączenie zagraża bezpieczeństwu elektrycznemu!

 Strefa niezagrożona wybuchem: aby spełnić wymagania bezpieczeństwa przyrządu zgodnie z normą IEC 61010, maksymalny prąd instalacji nie powinien przekraczać 500 mA.

NOTYFIKACJA

Możliwość uszkodzenia wejścia analogowego sterownika PLC wskutek niewłaściwego podłączenia

 Nie wolno podłączać aktywnego wyjścia dwustanowego PNP do wejścia 4 ... 20 mA sterownika PLC.

Procedura podłączenia przyrządu:

- 1. Sprawdzić, czy napięcie zasilania jest zgodne ze specyfikacją na tabliczce znamionowej.
- 2. Podłączyć przyrząd zgodnie z poniższym schematem.
- 3. Włączyć zasilanie.

Podłączenie 2-przewodowe

AU

1 Napięcie zasilania L+, żyła brązowa (BN)

Wersja 3- lub 4-przewodowa

- 1 Napięcie zasilania L+, żyła brązowa (BN)
- 2 Wyjście dwustanowe lub analogowe (OUT2), żyła biała (WH)
- 3 Napięcie zasilania L-, żyła niebieska (BU)
- 4 Wyjście dwustanowe lub wyjście IO-Link (OUT1), żyła czarna (BK)

Jeżeli urządzenie wykryje stację IO-Link master na wyjściu OUT1, to wyjście będzie używane do cyfrowej komunikacji IO-Link. W przeciwnym razie wyjście OUT1 zostanie automatycznie skonfigurowane, jako wyjście dwustanowe (tryb SIO).

Przykłady podłączenia

- A 1 wyjście dwustanowe PNP i wyjście analogowe
- B 1 wyjście dwustanowe PNP (wyjście prądowe powinno być wyłączone). Jeżeli wyjście prądowe nie zostało wyłączone, wyświetli się komunikat. Wskazania za pomocą diod LED: dioda LED statusu pracy będzie stale świecić się na czerwono.)
- C 2 wyjścia dwustanowe PNP, ustawienie standardowe

6.1.9 Zapewnienie stopnia ochrony

Kabel podłączony do złącza M12: IP66/68/69, NEMA type 4X/6P

NOTYFIKACJA

Utrata stopnia ochrony IP z powodu niewłaściwego montażu!

- Stopień ochrony jest zapewniony wyłącznie wtedy, gdy kabel podłączeniowy jest podłączony, a nakrętka mocująca mocno dokręcona.
- Stopień ochrony jest zapewniony wyłącznie wtedy, gdy zastosowany kabel podłączeniowy odpowiada parametrom dla przewidzianego stopnia ochrony.

6.1.10 Kontrola po wykonaniu podłączeń elektrycznych

Czy przewody lub przyrząd nie są uszkodzone (kontrola wzrokowa)?

Czy zastosowany przewód jest zgodny ze specyfikacją?

□ Czy zamontowany przewód jest zabezpieczony przed nadmiernym zginaniem lub odkształceniem?

Czy złącze śrubowe jest poprawnie zamontowane?

Czy napięcie zasilania jest zgodne ze specyfikacją na tabliczce znamionowej?

□ Czy przyrząd nie jest zabezpieczony przed odwrotną polaryzacją; czy zaciski są podłączone zgodnie ze schematem?

Czy po włączeniu zasilania, przyrząd jest gotowy do pracy i świeci się kontrolka LED statusu pracy?

7 Warianty obsługi

Patrz instrukcja obsługi.

8 Uruchomienie

8.1 Przygotowanie

A OSTRZEŻENIE

Ustawienia wyjścia prądowego mają wpływ na bezpieczeństwo funkcjonalne (np. przelanie się produktu)!

- Sprawdzić ustawienia wyjścia prądowego.
- ► Ustawienie wyjścia prądowego zależy od ustawienia w parametr **Tryb pomiaru**.

8.2 Montaż i sprawdzenie przed uruchomieniem

Przed uruchomieniem punktu pomiarowego należy upewnić się, czy zostały wykonane czynności kontrolne po wykonaniu montażu oraz po wykonaniu podłączeń elektrycznych:

- Prozdział "Kontrola po wykonaniu montażu"
- Rozdział "Kontrola po wykonaniu podłączeń elektrycznych"

8.3 Włączenie przyrządu

Po włączeniu zasilania po maks. 4 s przyrząd przechodzi do pracy w trybie pomiaru. Podczas uruchamiania stan wyjść jest taki sam jak przy wyłączaniu.

8.4 Przegląd wariantów uruchomienia

- Uruchomienie za pomocą aplikacji SmartBlue
- Uruchomienie za pomocą oprogramowania FieldCare/DeviceCare/tabletu Field Xpert
- Uruchomienie za pomocą dodatkowego oprogramowania narzędziowego (AMS, PDM itp.)

8.5 Uruchomienie za pomocą oprogramowania FieldCare/Device-Care

- 1. Pobrać sterownik DTM dla oprogramowania IO-Link IODD Interpreter ze strony: http://www.endress.com/download. Pobrać plik IO-DD ze strony https://ioddfinder.io-link.com/.
- 2. Zintegrować plik IODD (IO Device Description) z oprogramowaniem IO-Link IODD Interpreter. Następnie uruchomić oprogramowanie FieldCare i zaktualizować katalog DTM.

8.5.1 Ustanowienia połączenia za pomocą oprogramowania FieldCare, DeviceCare, Field Xpert i aplikacji SmartBlue

🗷 15 Opcje obsługi zdalnej z wykorzystaniem komunikacji IO-Link

- 1 PLC (programowalny sterownik logiczny)
- 2 Stacja IO-Link master
- 3 Komputer z zainstalowanym oprogramowaniem narzędziowym, np. DeviceCare/FieldCare lub tablet Field Xpert SMT70/SMT77
- 4 Modem FieldPort SFP20
- 5 Smartfon lub tablet z zainstalowaną aplikacją SmartBlue (iOS i Android)
- 6 Przetwornik

8.5.2 Obsługa

Patrz instrukcja obsługi.

8.6 Uruchomienie za pomocą dodatkowego oprogramowania narzędziowego (AMS, PDM, itp.)

Pobrać sterowniki odpowiednie dla danych przyrządów: https://www.endress.com/en/downloads

Dodatkowe informacje podano w instrukcjach do odpowiedniego oprogramowania narzędziowego.

8.7 Konfiguracja przyrządu

8.7.1 Konfigurowanie funkcji monitorowania procesu

Monitoring cyfrowy (wyjście dwustanowe)

Wariant ten umożliwia zdefiniowanie progów przełączania i przełączania powrotnego, które mogą być konfigurowane jako zestyki zwierne (NO) lub rozwierne (NC) zależnie od tego, czy wybrano funkcję okna, czy histerezy.

Możliwe ustawienia				Wyjście
Funkcja (Config. Mode)	Inwersja sygnału (Config. Logic)	Progi przełączania (Param.SPx)	Histereza (Config. Hyst)	(0011/0012)
Wstępne ustawienia gęstości (>0.7/>0.5/>0.4) ¹⁾	Aktywny poziom wysoki (MIN)	SP1: nd.	nd.	Styk normalnie otwarty (NO ²⁾)
		SP2: nd.		
	Aktywny poziom niski (MAX)	SP1: nd.	nd.	Styk normalnie zamknięty (NC ³⁾)
		SP2: nd.		
Tryb sygnalizacji dwupunktowej	Aktywny poziom wysoki (MIN)	SP1 (float32)	nd.	Styk normalnie otwarty (NO ²⁾)
		SP2 (float32)		
	Aktywny poziom niski (MAX)	SP1 (float32)	nd.	Styk normalnie zamknięty (NC ³⁾)
		SP2 (float32)		
Tryb okna	Aktywny poziom wysoki	SP1 (float32)	Hyst (float32)	Styk normalnie otwarty (NO ²⁾)
		SP2 (float32)		
	Aktywny poziom niski	SP1 (float32)	Hyst (float32)	Styk normalnie zamknięty (NC ³⁾)
		SP2 (float32)		
Tryb sygnalizacji jednopunktowej	Aktywny poziom wysoki (MIN)	SP1 (float32)	Hyst (float32)	Styk normalnie otwarty (NO ²⁾)
	Aktywny poziom niski (MAX)	SP1 (float32)	Hyst (float32)	Styk normalnie zamknięty (NC ³⁾)

1) Procesu uczenia nie można przeprowadzić przy użyciu wstępnych ustawień gęstości.

NO = normalnie otwarty

NC = normalnie zamknięty

W przypadku ponownego uruchomienia przyrządu z ustawioną funkcją histerezy, wyjście dwustanowe jest otwarte (napięcie na wyjściu 0 V).

- 🖻 16 SSC, Tryb sygnalizacji dwupunktowej
- SP 2 Dolna wartość progu przełączania
- SP 1 Górna wartość progu przełączania
- A Stan nieaktywny wyjścia
- B Stan aktywny wyjścia

- 🖻 17 SSC, Tryb sygnalizacji jednopunktowej
- H Histereza
- SP 1 Próg przełączania
- A Stan nieaktywny wyjścia
- B Stan aktywny wyjścia

🖻 18 🛛 SSC, Tryb okna

- H Histereza
- W Okno
- SP 2 Dolna wartość progu przełączania
- SP 1 Górna wartość progu przełączania
- A Stan nieaktywny wyjścia
- B Stan aktywny wyjścia

Procedura uczenia (IODD)

Podczas procedury uczenia, punkt przełączania nie jest wprowadzany ręcznie, ale definiowany przez przypisanie do niego bieżącej wartości procesowej kanału sygnału przełączania (SSC). Aby przypisać wartość zmiennej procesowej, w następnym kroku należy wybrać odpowiedni próg przełączania, np. "SP 1", w parametrze parametr **Naucz wyboru**.

Włączając opcję "Teach SP 1 [Naucz SP1]" lub "Teach SP 2 [Naucz SP2]", można przyjąć bieżące procesowe wartości mierzone, jako próg przełączania SP 1 lub SP 2. Histereza jest istotna tylko w trybie Window mode i Single point. Wartość można wprowadzić w odpowiednim menu.

Sekwencja procesu nauczania

Ścieżka menu : Parameter [Parametr] \rightarrow Application [Aplikacja] \rightarrow ...

- 1. Określić kanał sygnału przełączania (SSC) za pomocą **Teach select**.
- 2. Ustawić Config.Mode [Konfig.Tryb] (wybrać tryb sygnalizacji dwupunktowej, okna, tryb sygnalizacji jednopunktowej).
 - └ Jeśli wybrano tryb sygnalizacji dwupunktowej:
 - → Przejść do progu przełączania 1 i następnie włączyć Teach SP1 [NauczSP1].
 - → Przejść do progu przełączania 2 i następnie włączyć Teach SP2 [NauczSP2]. Jeśli wybrano tryb okna:
 - \rightarrow Przejść do progu przełączania 1 i następnie włączyć Teach SP1 [NauczSP1].
 - \rightarrow Przejść do progu przełączania 2 i następnie włączyć Teach SP2 [NauczSP2].
 - \rightarrow Ręcznie wprowadzić histerezę.

Jeśli wybrano tryb sygnalizacji jednopunktowej:

- → Przejść do progu przełączania 1 i następnie włączyć Teach SP1 [NauczSP1].
- \rightarrow Ręcznie wprowadzić histerezę.
- 3. W razie konieczności sprawdzić próg przełączania adiustowanego kanału sygnału przełączania.

Zaawansowany monitoring czujnika

Domyślnie, funkcja Zaawansowany monitoring czujnika jest włączona.

Ta funkcja diagnostyczna wykrywa zakłócenia drgań czujnika spowodowane przez czynniki zewnętrzne, takie jak:

- silne drgania wytwarzane przez inne urządzenia (np. pompy),
- turbulencje wokół widełek wibracyjnych, jeśli czujnik jest zamontowany nieprawidłowo,
- bardzo duża prędkość przepływu cieczy w rurociągu.

Jeśli warunki te mogą mieć wpływ na drgania czujnika, przyrząd generuje ostrzeżenie. Ostrzeżenie jest wyświetlane za pomocą dostępnych interfejsów komunikacyjnych. Wyjście dwustanowe i wyjście prądowe pozostają niezmienione.

Jeżeli takie ostrzeżenie jest widoczne już podczas wykonywania testu funkcjonalnego (testu kontrolnego), to jest to traktowane jak błąd. W tym przypadku przyrząd przechodzi w stan bezpieczny . Błąd nie zostanie zresetowany dopóki przyrząd nie zostanie ponownie uruchomiony.

Tę funkcję można włączyć lub wyłączyć na przykład za pomocą aplikacji SmartBlue:

Ścieżka menu: Diagnostyka
 \rightarrow Ustawienia diagnostyki \rightarrow Właściwości
 $\rightarrow\,$ 946 Zaawansowany monitoring czujnika

8.8 Zabezpieczenie ustawień przed nieuprawnionym dostępem

8.8.1 Programowe włączenie/wyłączenie blokady

Blokada za pomocą hasła w aplikacji SmartBlue

Dostęp do skonfigurowanych parametrów przyrządu można zablokować hasłem. W fabrycznie nowym przyrządzie, rodzaj użytkownika jest ustawiony na opcja **Utrzymanie ruchu**. Po wybraniu opcja **Utrzymanie ruchu**, jako rodzaju użytkownika, można skonfigurować wszystkie parametry przyrządu. Następnie, dostęp do skonfigurowanych ustawień przyrządu można zablokować hasłem. Po aktywacji blokady, opcja **Utrzymanie ruchu** zmienia się na opcja **Operator**. Dostęp do konfiguracji jest możliwy po podaniu hasła.

Hasło można zdefiniować w:

Menu System podmenu Zarządzanie prawami dostępu

Rodzaj użytkownika zmienia się z opcja **Utrzymanie ruchu** na opcja **Operator** po wybraniu:

System \rightarrow Zarządzanie prawami dostępu

Wyłączenie blokady za pomocą aplikacji SmartBlue

Po wybraniu opcja **Operator** i wprowadzeniu hasła można przejść do konfiguracji parametrów przyrządu. Jako rodzaj użytkownika wybrana zostaje opcja **Utrzymanie ruchu**.

W razie konieczności, hasło można usunąć w podmenu Zarządzanie prawami dostępu: System \rightarrow Zarządzanie prawami dostępu

71708881

www.addresses.endress.com

