Technische Information **Micropilot FMR20B**

Freistrahlendes Radar HART

Füllstandmessung in Flüssigkeiten und Schüttgütern

Solutions

Anwendungsbereich

- Kontinuierliche, berührungslose Füllstandmessung von Flüssigkeiten und Schüttgütern
- Schutzart: IP66/68 / NEMA Type 4X/6P
- Maximaler Messbereich bis zu 30 m (98 ft)
- Prozesstemperatur: -40 ... 80 °C (-40 ... 176 °F)
- Prozessdruck: -1 ... 3 bar (-14 ... 43 psi)
- Genauigkeit: bis $zu \pm 2 \text{ mm } (0.08 \text{ in})$
- Internationale Explosionsschutzzertifikate

Ihre Vorteile

- LED-Anzeige für schnelle Statuserkennung
- Einfache geführte Inbetriebnahme mit intuitiver Bedienoberfläche
- \blacksquare Radarmessgerät mit Bluetooth@ wireless technology und HART Kommunikation
- Einfacher, sicherer und verschlüsselter drahtloser Fernzugriff ideal für schwer zugängliche Installationen, selbst im explosionsgefährdeten Bereich
- Inbetriebnahme, Bedienung und Wartung über die kostenlose iOS / Android App SmartBlue – spart Zeit und reduziert Kosten
- Durchflussmessung an offenen Gerinnen oder Wehren mit Summenzähler

Inhaltsverzeichnis

Hinweise zum Dokument 4	Montage mit schwenkbarer Montagehalterung	25
Symbole		
Abkürzungsverzeichnis	Umgebung	
Grank-Konventionen	Umgebungstemperaturbereich	
	Lagerungstemperatur	
Arbeitsweise und Systemaufbau 5	Klimaklasse	
Messprinzip	Betriebshöhe	
Messeinrichtung 6	Schutzart	
Kommunikation und Datenverarbeitung 6	Schwingungsfestigkeit	
Verlässlichkeit 6	Elektromagnetische Verträglichkeit (EMV)	26
Eingang	Prozess	
Messgröße 6	Prozesstemperatur, Prozessdruck	
Messbereich	Dielektrizitätskonstante	27
Arbeitsfrequenz		
Sendeleistung	Konstruktiver Aufbau	28
	Abmessungen	
Ausgang	Gewicht	
Ausgangssignal	Werkstoffe	31
Ausfallsignal bei Geräten mit Stromausgang 11	Anschlusskabel	31
Bürde		
Dämpfung	Anzeige und Bedienoberfläche	31
Ex-Anschlusswerte	Bedienkonzept	
Linearisierung	LED-Anzeige	
Summenzähler	Fernbedienung	
Protokollspezifische Daten	Unterstützte Bedientools	
Wireless-HART-Daten		
	Zertifikate und Zulassungen	22
Energieversorgung	Funkrichtlinie EN 302729	33 33
Kabelbelegung	FCC	
Versorgungsspannung	Industry Canada	
Leistungsaufnahme	Druckgeräte mit zulässigem Druck kleiner als 200 bar,	
Potenzialausgleich	kein druckbeaufschlagtes Volumen	34
Gerät anschließen		
Kabelspezifikation	Bestellinformationen	2 E
Überspannungsschutz		
	Kennzeichnung	
Leistungsmerkmale	Dienstleistung	
Referenzbedingungen	Dielisticistung	ככ
Antwortzeit		
Auflösung	Anwendungsspakete	
Maximale Messabweichung	Heartbeat Technology	36
Einfluss der Umgebungstemperatur		
Reaktionszeit		36
Aufwärmzeit	Wetterschutzhaube für Gerät mit Kabeleinführung von	
	oben	36
Montage	Wetterschutzhaube für Gerät mit Kabeleinführung seit-	
Montagearten	lich	
Montageort	Befestigungsmutter G 1½"	
Einbaulage	Befestigungsmutter G 2"	38
Einbauhinweise	Adapter Uni G 1½">G 2"	
Abstrahlwinkel	Adapter Uni MNPT 1½">MNPT 2"	
Spezielle Montagehinweise	Überflutungsschutzhülse 40 mm (1,5 in)	
Wetterschutzhaube	Überflutungsschutzhülse 80 mm (3 in)	
Überflutungsschutzhülse	Montagebügel ausrichtbar, Wand/Seil/Decke, 75 mm	
Einbau mit Montagebügel ausrichtbar	Montagewinkel für Wandmontage	
Montage mit Ausleger schwenkbar 24	ivioittagewiiikei tui vvaituiiioittage	44

Ausleger schwenkbar	43
Schwenkbare Montagehalterung	48
Ausrichtvorrichtung FAU40	48
UNI-Überwurfflansch 3"/DN80/80, PP	50
UNI-Überwurfflansch 4"/DN100/100, PP	51
UNI-Überwurfflansch 6"/DN150/150, PP	52
UNI-Flansch 2"/DN50/50, PP	53
UNI Flansch 3"/DN80/80, PP	54
UNI Flansch 4"/DN100/100,PP	55
Verstellbare Flanschdichtung	56
RIA15 im Feldgehäuse	57
HART Kommunikationswiderstand	57
DeviceCare SFE100	58
FieldCare SFE500	58
Device Viewer	58
Commubox FXA195 HART	58
RN22	58
RN42	58
Field Xpert SMT70	58
Field Xpert SMT77	59
SmartBlue-App	59
RMA42	59
Dokumentation	59
Standarddokumentation	
Geräteabhängige Zusatzdokumentation	
Fingetragene Marken	59

Hinweise zum Dokument

Symbole

Warnhinweissymbole

▲ GEFAHR

Bezeichnet eine unmittelbar drohende Gefahr. Wenn sie nicht gemieden wird, sind Tod oder schwerste Verletzungen die Folge.

WARNUNG

Bezeichnet eine möglicherweise drohende Gefahr. Wenn sie nicht gemieden wird, können Tod oder schwerste Verletzungen die Folge sein.

▲ VORSICHT

Bezeichnet eine möglicherweise drohende Gefahr. Wenn sie nicht gemieden wird, können leichte oder geringfügige Verletzungen die Folge sein.

HINWEIS

Bezeichnet eine möglicherweise schädliche Situation. Wenn sie nicht gemieden wird, kann das Produkt oder etwas in seiner Umgebung beschädigt werden.

Kommunikationsspezifische Symbole

Bluetooth®: 8

Datenübertragung zwischen Geräten über kurze Distanz via Funktechnik.

Symbole für Informationstypen

Erlaubt: 🗸

Abläufe, Prozesse oder Handlungen, die erlaubt sind.

Verboten: X

Abläufe, Prozesse oder Handlungen, die verboten sind.

Zusätzliche Informationen: 🚹

Verweis auf Dokumentation: 📵

Verweis auf Seite: 🖺

Handlungsschritte: 1., 2., 3.

Ergebnis eines Handlungsschritts: L

Symbole in Grafiken

Positionsnummern: 1, 2, 3 ...

Handlungsschritte: 1., 2., 3.

Ansichten: A, B, C, ...

Abkürzungsverzeichnis

ΡN

Nenndruck

MWP

Maximaler Betriebsdruck (Maximum working pressure) Der MWP wird auf dem Typenschild angegeben.

ToF

Time of Flight - Laufzeitmessverfahren

DTM

Device Type Manager

$\varepsilon_{\rm r}$ (DK-Wert)

Relative Dielektrizitätskonstante

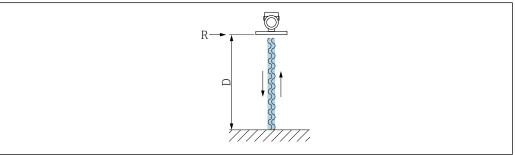
Bedientool

Der verwendete Begriff Bedientool wird an Stelle folgender Bediensoftware verwendet:

- FieldCare / DeviceCare, zur Bedienung über HART Kommunikation, IO-Link Kommunikation und
- SmartBlue-App, zur Bedienung mit Smartphone oder Tablet für Android oder iOS

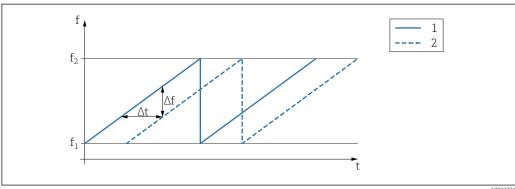
Speicherprogrammierbare Steuerung

Grafik-Konventionen



- Montage-, Explosions- und elektrische Anschlusszeichnungen werden vereinfacht dargestellt
- Geräte, Baugruppen, Komponenten und Maßzeichnungen werden linienreduziert dargestellt
- Es erfolgt keine maßstäbliche Darstellung in Maßzeichnungen, Maßangaben sind auf 2 Stellen hinter dem Komma gerundet
- Flansche werden, soweit nicht anders beschrieben, mit Dichtflächenform EN 1092-1; ASME B16.5, RF dargestellt

Arbeitsweise und Systemaufbau


Messprinzip

Der Micropilot ist ein "nach unten schauendes" Messsystem, das nach dem Prinzip des modulierten Dauerstrichradars (Frequency Modulated Continuous Wave, FMCW) arbeitet. Die Antenne strahlt eine elektromagnetische Welle mit kontinuierlich veränderter Frequenz ab. Diese Welle wird vom Produkt reflektiert und von der Antenne wieder empfangen.

- **■** 1 FMCW-Prinzip: Abstrahlung und Reflexion der kontinuierlichen Welle
- Referenzpunkt der Messung
- Abstand zwischen Referenzpunkt und Produktoberfläche

Die Frequenz dieser Welle ist sägezahnförmig moduliert mit den beiden Grenzfrequenzen f_1 und f_2 :

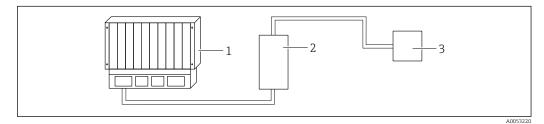
- **₽** 2 FMCW-Prinzip: Ergebnis der Frequenzmodulation
- Abgestrahltes Signal
- Empfangenes Signal

Dadurch ergibt sich zu einem beliebigen Zeitpunkt zwischen abgestrahltem und empfangenem Signal folgende Differenzfrequenz:

 $\Delta f = k \Delta t$

wobei Δt die Laufzeit und k die vorgegebene Steigung der Frequenzmodulation sind.

 Δt wiederum ist durch den Abstand D zwischen Referenzpunkt R und Produktoberfläche gegeben:


 $D = (c \Delta t) / 2$

wobei c die Ausbreitungsgeschwindigkeit der Welle ist.

Zusammengefasst lässt sich D aus der gemessenen Differenzfrequenz Δf berechnen. D wird dann verwendet, um den Füllstand oder den Durchfluss zu bestimmen.

Messeinrichtung

Eine komplette Messeinrichtung besteht aus:

- 1 SPS (speicherprogrammierbare Steuerung)
- 2 RMA42/RIA45 (wenn benötigt)
- 3 Gerät

Kommunikation und Datenverarbeitung

- 4 ... 20 mA mit überlagertem digitalem Kommunikationsprotokoll HART, 2-Draht
- Bluetooth® wireless technology (optional)

Verlässlichkeit

IT-Sicherheit

Eine Gewährleistung seitens des Herstellers ist nur gegeben, wenn das Produkt gemäß der Betriebsanleitung installiert und eingesetzt wird. Das Produkt verfügt über Sicherheitsmechanismen, um es gegen versehentliche Veränderung der Einstellungen zu schützen.

IT-Sicherheitsmaßnahmen gemäß dem Sicherheitsstandard des Betreibers, die das Produkt und dessen Datentransfer zusätzlich schützen, sind vom Betreiber selbst zu implementieren.

Gerätespezifische IT-Sicherheit

Um die betreiberseitigen Schutzmaßnahmen zu unterstützen, bietet das Gerät spezifische Funktionen. Diese Funktionen sind durch den Anwender konfigurierbar und gewährleisten bei korrekter Nutzung eine erhöhte Sicherheit im Betrieb. Mit einem Freigabecode kann die Benutzerrolle geändert werden (gilt für Bedienung über Bluetooth® wireless technology oder FieldCare, DeviceCare, Asset Management Tools (z. B. AMS, PDM)).

Zugriff via Bluetooth® wireless technology

Sichere Signalübertragung per Bluetooth® wireless technology erfolgt nach einem vom Fraunhofer-Institut getesteten Verschlüsselungsverfahren.

- Ohne die SmartBlue-App ist das Gerät per Bluetooth® wireless technology nicht sichtbar.
- Es wird nur eine Punkt-zu-Punkt-Verbindung zwischen dem Gerät und einem Smartphone oder Tablet aufgebaut.
- Die Bluetooth® Schnittstelle kann über SmartBlue oder Bedientool via digitale Kommunikation deaktiviert werden.

Eingang

Messgröße

Die Messgröße ist der Abstand zwischen dem Referenzpunkt und der Füllqutoberfläche.

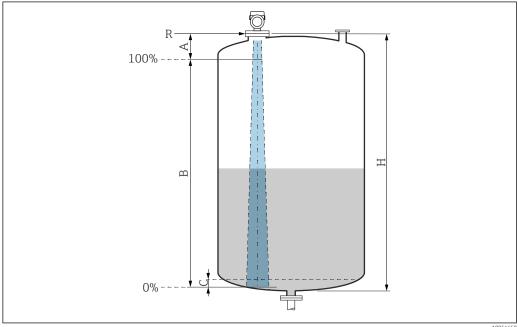
Unter Berücksichtigung der eingegebenen Leerdistanz ${\bf E}$ wird daraus der Füllstand rechnerisch ermittelt.

Messbereich

Der Messbereich beginnt dort, wo der Strahl auf den Tankboden trifft. Füllstände unterhalb dieses Punktes können nicht erfasst werden, insbesondere bei kugelförmigen Böden oder konischen Ausläufen.

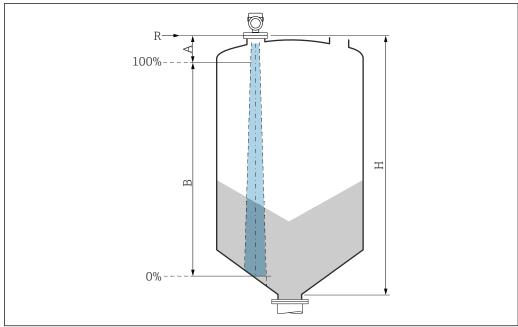
Maximaler Messbereich

Der maximale Messbereich ist abhängig von der Antennengröße.


Antenne	Maximaler Messbereich
40 mm (1,5 in)	20 m (65,6 ft)
80 mm (3 in)	30 m (98,4 ft)

Nutzbarer Messbereich

Der nutzbare Messbereich ist von der Antennengröße, den Reflexionseigenschaften des Mediums, der Einbauposition und eventuell vorhandenen Störreflexionen abhängig.


Eine Messung ist grundsätzlich bis zur Antennenspitze möglich.

Je nach Lage des Produktes (Schüttwinkel bei Feststoffen) und um eine mögliche Materialschädigung durch korrosive oder aggressive Medien oder eine Ansatzbildung an der Antenne zu vermeiden, sollte das Messbereichsende 10 mm (0,4 in) vor der Antennenspitze gewählt werden.

A0051658

- Antennenspitze + 10 mm (0,4 in)
- В Nutzbarer Messbereich
- 50 ... 80 mm (1,97 ... 3,15 in); Medium ε_r ≤2
- Referenzpunkt der Messung, variiert je nach Antennensystem (siehe Kapitel Konstruktiver Aufbau)

A0051659

- A Antennenspitze + 10 mm (0,4 in)
- B Nutzbarer Messbereich
- H Behälterhöhe
- R Referenzpunkt der Messung, variiert je nach Antennensystem (siehe Kapitel Konstruktiver Aufbau)

Bei Medien mit einer niedrigen Dielektrizitätskonstante $\epsilon_{\rm r}$ <2 kann der Tankboden bei sehr niedrigen Füllständen (weniger als Füllstand C) durch das Medium sichtbar sein. In diesem Bereich muss mit einer geringeren Genauigkeit gerechnet werden. Wenn dies nicht akzeptabel ist, sollte der Nullpunkt bei diesen Anwendungen in einem Abstand C über dem Tankboden positioniert werden (siehe Abbildung).

Im folgenden werden die Mediengruppen sowie der mögliche Messbereich als Funktion der Applikation und Mediengruppe beschrieben. Ist die Dielektrizitätskonstante des Mediums nicht bekannt, ist zur sicheren Messung von der Mediengruppe B auszugehen.

Mediengruppen

- A (ε_r 1,4 ... 1,9) nichtleitende Flüssigkeiten, z.B. Flüssiggas
- \mathbf{B} (ϵ_r 1,9 ... 4) nichtleitende Flüssigkeiten, z.B. Benzin, Öl, Toluol, ...
- \mathbf{D} ($\varepsilon_r > 10$) leitende Flüssiqkeiten, wässrige Lösungen, verdünnte Säuren, Laugen und Alkohol
- Für die Dielektrizitätskonstante (ϵ_r -Wert) vieler wichtiger in der Industrie verwendeten Medien siehe:
 - Dielektrizitätskonstante (ε_r-Wert) Kompendium CP01076F
 - die "DK-Werte App" von Endress+Hauser (verfügbar für Android und iOS)

Messung im Lagerbehälter

Lagerbehälter - Messbedingungen

Ruhige Mediumsoberfläche (z.B. Bodenbefüllung, Befüllung über Tauchrohr oder seltene Befüllung von oben)

Antenne 40 mm (1,5 in) im Lagerbehälter

	Mediengruppe	Messbereich
n 🗑	A (ε _r 1,4 1,9)	10 m (33 ft)
	B (ε _r 1,9 4)	20 m (65,6 ft)
	C (ε _r 4 10)	20 m (65,6 ft)
	\mathbf{D} (ε_{r} >10)	20 m (65,6 ft)

Antenne 80 mm (3 in) im Lagerbehälter

	Mediengruppe	Messbereich
n 6	A (ε _r 1,4 1,9)	12 m (39 ft)
	B (ε _r 1,9 4)	23 m (75 ft)
	C (ε _r 4 10)	30 m (98 ft)
	\mathbf{D} ($\varepsilon_{\rm r}$ >10)	30 m (98 ft)

Messung im Pufferbehälter

Pufferbehälter - Messbedingungen

Unruhige Mediumsoberfläche (z.B. ständige Befüllung frei von oben, Mischdüsen)

Antenne 40 mm (1,5 in) im Pufferbehälter

	Mediengruppe	Messbereich
5	A (ε _r 1,4 1,9)	7 m (23 ft)
	B (ε _r 1,9 4)	13 m (43 ft)
	C (ε _r 4 10)	20 m (65,6 ft)
	D (ε _r >10)	20 m (65,6 ft)

Antenne 80 mm (3 in) im Pufferbehälter

	Mediengruppe	Messbereich
5	A (ε _r 1,4 1,9)	7,5 m (25 ft)
	B (ε _r 1,9 4)	15 m (49 ft)
1 1 1	C (ε _r 4 10)	28 m (92 ft)
	D (ε _r >10)	30 m (98 ft)

Messung im Behälter mit einstufigem Propellerrührwerk

Behälter mit einstufigem Propellerrührwerk - Messbedingungen

Turbulente Mediumsoberfläche (z.B. durch Befüllung von oben, Rührwerke und Strömungsbrecher)

Antenne 40 mm (1,5 in) im Behälter mit Rührwerk

	Mediengruppe	Messbereich
5 - 5	A (ε _r 1,4 1,9)	4 m (13 ft)
	B (ε _r 1,9 4)	5 m (16,4 ft)
1 1 1	C (ε _r 4 10)	13 m (43 ft)
j	\mathbf{D} ($\varepsilon_{\rm r} > 10$)	20 m (65,6 ft)

Antenne 80 mm (3 in) im Behälter mit Rührwerk

	Mediengruppe	Messbereich
	A (ε _r 1,4 1,9)	4 m (13 ft)
	B (ε _r 1,9 4)	7 m (23 ft)
1 1	C (ε _r 4 10)	15 m (49 ft)
j.	\mathbf{D} ($\varepsilon_{\rm r} > 10$)	25 m (82 ft)

Arbeitsfrequenz

ca. 80 GHz

Bis zu 8 Geräte können in einem Tank installiert werden, ohne dass sie sich gegenseitig beeinflussen.

Sendeleistung

- Peakleistung: <1,5 mW
- Mittlere Ausgangsleistung: <70 µW

Ausgang

Ausgangssignal

- 4 ... 20 mA mit überlagertem digitalem Kommunikationsprotokoll HART, 2-Draht
- Der Stromausgang bietet drei auswählbare Betriebsarten:
 - 4 ... 20,5 mA
 - NAMUR NE 43: 3,8 ... 20,5 mA (Werkseinstellung)
 - US mode: 3,9 ... 20,5 mA

Ausfallsignal bei Geräten mit Stromausgang

Stromausgang

Ausfallsignal gemäß NAMUR-Empfehlung NE 43.

- Max. Alarm: einstellbar von 21,5 ... 23 mA
- Min. Alarm: < 3,6 mA (Werkseinstellung)

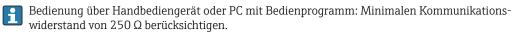

Bedientool via digitale Kommunikation

Statussignal (gemäß NAMUR-Empfehlung NE 107):

Klartextanzeige

Bürde

Um eine ausreichende Klemmenspannung sicherzustellen, darf abhängig von der Versorgungsspannung U des Speisegeräts ein maximaler Bürdenwiderstand $R_{\rm L}$ (inklusive Zuleitungswiderstand) nicht überschritten werden.



A005260

- 1 Spannungsversorgung 12 ... 30 V
- 2 R_{Lmax} maximaler Bürdenwiderstand
- U Versorgungsspannung

Bei zu großer Bürde:

- Ausgabe des Fehlerstromes und Anzeige einer Fehlermeldung (Ausgabe: MIN-Alarmstrom)
- Periodische Überprüfung, ob Fehlerzustand verlassen werden kann

Dämpfung

Eine Dämpfung wirkt sich auf alle kontinuierlichen Ausgänge aus. Werkseinstellung: 0 s (einstellbar von 0 ... 999 s)

Ex-Anschlusswerte

Siehe separat erhältliche technische Dokumentationen (Sicherheitshinweise (XA)) auf www.endress.com/download.

Linearisierung

Die Linearisierungsfunktion des Geräts erlaubt die Umrechnung des Messwerts in beliebige Längen-, Gewichts-, Durchfluss- oder Volumeneinheiten.

Vorprogrammierte Linearisierungskurven

Linearisierungstabellen für die Volumenberechnung in folgenden Behältern sind vorprogrammiert:

- Pyramidenboden
- Konischer Boden
- Schrägboden
- Zylindrisch liegend
- Kugeltank

Linearisierungstabellen für die Durchflussberechnung sind vorprogrammiert und umfassen:

- Gerinne
 - Khafagi-Venturi-Rinne
 - Venturi-Rinne
 - Parshall-Rinne
 - Palmer-Bowlus-Rinne
 - Trapezrinne (ISO 4359)
 - Rechteckrinne (ISO 4359)
 - U-Form-Rinne (ISO 4359)
- Wehre
 - Trapezwehr
 - Rechteckiges breitkroniges Wehr (ISO 3846)
 - Rechteckwehr mit scharfer Krone (ISO 1438)
 - Dreieckswehr mit scharfer Krone (ISO 1438)
- Standardformel

Beliebige andere Linearisierungstabellen aus bis zu 32 Wertepaaren können manuell eingegeben werden.

Für weitere Informationen zur Durchflussmessung über offenen Gerinnen und Wehren, siehe SD03445F.

Summenzähler

Das Gerät bietet einen Summenzähler, der den Durchfluss aufsummiert. Der Summenzähler kann nicht zurückgesetzt werden.

Protokollspezifische Daten

Hersteller-ID:

17(0x0011)

Gerätetypkennung:

0x11DE

Geräterevision:

2

HART-Spezifikation:

7 6

DD-Revision:

1

Gerätebeschreibungsdateien (DTM, DD)

Informationen und Dateien unter:

www.endress.com

Auf der Produktseite des Geräts: Dokumente/Software → Gerätetreiber

www.fieldcommgroup.org

Bürde HART:

Min. 250 Ω

Den Gerätevariablen sind werkseitig folgende Messwerte zugeordnet:

Gerätevariable	Messwert
Erster Messwert (PV) 1)	Füllstand linearisiert
Zweiter Messwert (SV)	Distanz
Dritter Messwert (TV)	Absolute Echoamplitude
Vierter Messwert (QV)	Relative Echoamplitude

1) Der PV wird immer auf den Stromausgang gelegt.

Auswählbare HART-Gerätevariablen

- Füllstand linearisiert
- Distanz
- Elektroniktemperatur
- Sensortemperatur
- Absolute Echoamplitude
- Relative Echoamplitude
- Fläche Klingelbereich
- Prozentbereich
- Schleifenstrom
- Durchfluss
- Wert Summenzähler
- Unbenutzt

Unterstützte Funktionen

- Burst-Modus
- Zusätzlicher Messumformerstatus
- Geräteverriegelung

Wireless-HART-Daten

Minimale Anlaufspannung:

12 V

Anlaufstrom:

< 3,6 mA

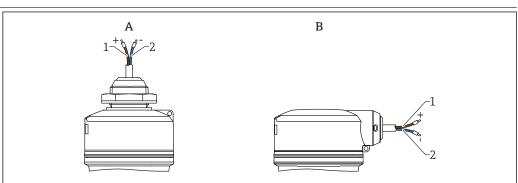
Anlaufzeit:

< 15 s

Minimale Betriebsspannung:

12 V

Multidrop-Strom:


4 mA

Zeit für Verbindungsaufbau:

< 30 s

Energieversorgung

Kabelbelegung

A00551

- 3 Kabelbelegung
- A Kabeleinführung von oben
- B Kabeleinführung seitlich
- 1 Plus, Aderfarbe braun
- 2 Minus, Aderfarbe blau

Versorgungsspannung

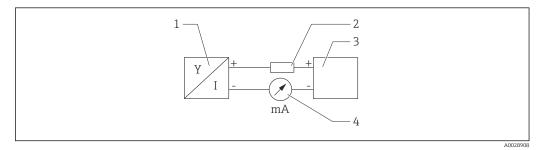
DC 12 ... 30 V an einem Gleichstrom-Netzteil

Das Netzteil muss sicherheitstechnisch geprüft sein (z. B. PELV, SELV, Class 2) und den jeweiligen Protokollspezifikationen genügen.

Schutzschaltungen gegen Verpolung, HF-Einflüsse und Überspannungsspitzen sind eingebaut.

Leistungsaufnahme

- Nicht explosionsgefährdeter Bereich: Um die Gerätesicherheit gemäß Norm IEC 61010 zu erfüllen, muss durch die Installation dafür gesorgt werden, dass der maximale Strom auf 500 mA begrenzt wird.
- Explosionsgefährdeter Bereich: Beim Einsatz des Messgerätes in einem eigensicheren Stromkreis (Ex ia) wird der maximale Strom durch das Messumformerspeisegerät auf Ii = 100 mA begrenzt.


Potenzialausgleich

Spezielle Maßnahmen für den Potenzialausgleich sind nicht erforderlich.

Gerät anschließen

Blockschaltbild 4 ... 20 mA HART

Anschluss Gerät mit HART-Kommunikation, Spannungsquelle und 4 ... 20 mA-Anzeige

■ 4 Blockschaltbild HART-Anschluss

- 1 Gerät mit HART-Kommunikation
- 2 HART-Widerstand
- 3 Spannungsversorgung
- 4 Multimeter oder Amperemeter

Der zu berücksichtigende Spannungsabfall beträgt:

Max. 6 V bei Kommunikationswiderstand 250 Ω

Blockschaltbild HART-Gerät, Anschluss mit RIA15 nur Display ohne Bedienung, ohne Kommunikationswiderstand

📔 Die Getrennte Anzeige RIA15 kann zusammen mit dem Gerät bestellt werden.

Alternativ als Zubehör erhältlich, für Einzelheiten: Dokument Technische Information TI01043K und Betriebsanleitung BA01170K

Klemmenbelegung RIA15

- +

positiver Anschluss Strommessung

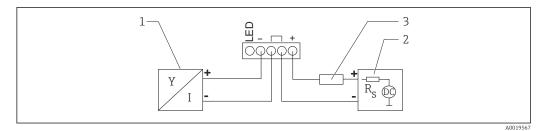
-

negativer Anschluss Strommessung (ohne Hintergrundbeleuchtung)

LED

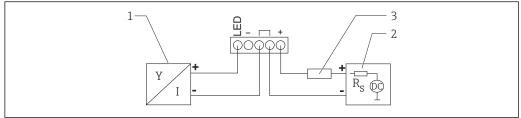
negativer Anschluss Strommessung (mit Hintergrundbeleuchtung)

• <u>=</u>


Funktionserdung: Anschlussklemme im Gehäuse

Der Prozessanzeiger RIA15 ist schleifengespeist und benötigt keine externe Spannungsversorgung.

Der zu berücksichtigende Spannungsabfall beträgt:

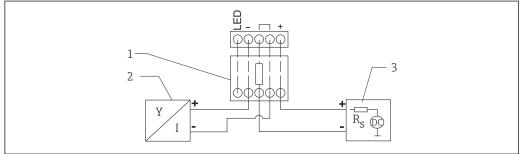

- ≤1 V in der Standardversion mit 4 ... 20 mA Kommunikation
- ≤1,9 V mit HART Kommunikation
- zusätzlich 2,9 V bei verwendeter Display-Beleuchtung

Anschluss HART-Gerät und RIA15 ohne Hintergrundbeleuchtung

- \blacksquare 5 Blockschaltbild HART-Gerät mit Prozessanzeiger RIA15 ohne Beleuchtung
- 1 Gerät mit HART-Kommunikation
- 2 Stromversorgung
- 3 HART-Widerstand

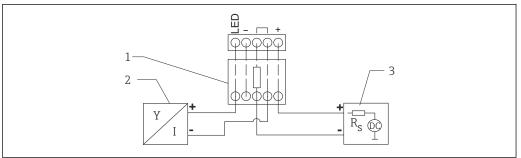
Anschluss HART-Gerät und RIA15 mit Hintergrundbeleuchtung

A001956


- \blacksquare 6 Blockschaltbild HART-Gerät mit Prozessanzeiger RIA15 mit Beleuchtung
- 1 Gerät mit HART-Kommunikation
- 2 Stromversorgung
- 3 HART-Widerstand

Blockschaltbild HART-Gerät, RIA15 Display mit Bedienung, mit Kommunikationswiderstand

Alternativ als Zubehör erhältlich, für Einzelheiten: Dokument Technische Information TI01043K und Betriebsanleitung BA01170K


Anschluss HART-Kommunikationswiderstandsmodul, RIA15 ohne Hintergrundbeleuchtung

A0020839

- 🖪 7 Blockschaltbild HART-Gerät, RIA15 ohne Beleuchtung, HART-Kommunikationswiderstandsmodul
- 1 HART-Kommunikationswiderstandsmodul
- 2 Gerät mit HART-Kommunikation
- 3 Stromversorgung

Anschluss HART-Kommunikationswiderstandsmodul, RIA15 mit Hintergrundbeleuchtung

A0020840

■ 8 Blockschaltbild HART-Gerät, RIA15 mit Beleuchtung, HART-Kommunikationswiderstandsmodul

- 1 HART-Kommunikationswiderstandsmodul
- 2 Gerät mit HART-Kommunikation
- 3 Stromversorgung

Kabelspezifikation

Ungeschirmtes Kabel, Aderquerschnitt 0,5 mm²

- UV- und Witterungsbeständigkeit nach ISO 4892-2
- Flammbeständigkeit nach IEC 60332-1-2

Gemäss IEC 60079-11 Kap. 9.4.4, ist das Kabel für eine Zugkraft von 30 N (6,74 lbf) (während 1 h) ausgelegt.

Das Gerät ist in den Kabellängen 5 m (16 ft), 10 m (32 ft), 15 m (49 ft), 20 m (65 ft), 30 m (98 ft) und 50 m (164 ft) erhältlich.

Frei wählbare Längen bis zu einer Gesamtlänge von 300 m (980 ft) sind in Meter (Bestelloption "1") bzw. Foot (Bestelloption "2") möglich.

Bei Geräten mit Schiffsbauzulassung:

- Nur in Länge 10 m (32 ft) und "frei wählbar" erhältlich
- Halogenfrei nach IEC 60754-1
- keine Entwicklung von korrosiven Brandgasen nach IEC 60754-2
- geringe Rauchgasdichte nach IEC 61034-2

Überspannungsschutz

Das Gerät erfüllt die Produktnorm IEC/DIN EN 61326-1 (Tabelle 2 Industrieumgebung). Abhängig von der Art des Anschlusses (DC-Versorgung, Ein- Ausgangsleitung) werden nach IEC/DIN EN 61326-1 verschiedene Prüfpegel gegen transiente Überspannungen (IEC/DIN EN 61000-4-5 Surge) angewandt: Prüfpegel für DC-Versorgungsleitungen und IO-Leitungen: 1000 V Leitung gegen Erde.

Geräte für die Zündschutzart "Schutz durch Gehäuse" sind mit einem integrierten Überspannungsschutz ausgestattet.

Überspannungskategorie

Gemäß IEC/DIN EN 61010-1 ist das Gerät für den Einsatz in Netzen der Überspannungskategorie II vorgesehen.

Leistungsmerkmale

Referenzbedingungen

- Nach IEC 62828-1/IEC 62828-4
- Umgebungstemperatur T_A = konstant, im Bereich +21 ... +33 °C (+70 ... +91 °F)
- Feuchte φ = konstant, im Bereich: 5 ... 80 % rF ± 5 %
- Atmosphärendruck p_U = konstant, im Bereich: 860 ... 1060 mbar (12,47 ... 15,37 psi)
- Last mit HART: 250 Ω
- Versorgungsspannung: DC 24 V ±3 V
- Reflektor: Metallplatte mit Durchmesser ≥1 m (40 in)
- Keine größeren Störreflexionen innerhalb des Strahlkegels

Antwortzeit

- HART: Azyklisch: min. 330 ms, typisch 590 ms (abhängig von Kommandos und Anzahl Präam-
- HART: Zyklisch (Burst): min. 160 ms, typisch 350 ms (abhängig von Kommandos und Anzahl Präambeln)

Auflösung

Stromausgang: < 1 µA Digital: 1 mm (0,04 in)

Maximale Messabweichung

Referenzgenauigkeit

Genauigkeit

Die Genauigkeit ist die Summe aus Nichtlinearität, Nichtwiederholbarkeit und Hysterese.

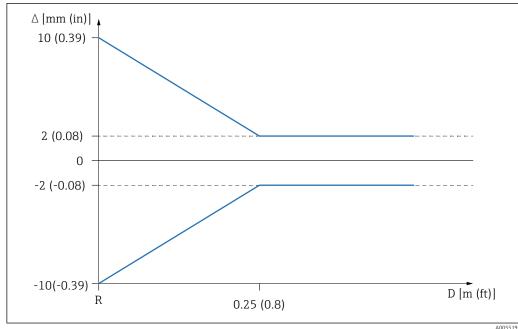
Für Flüssigkeiten:

- Messdistanz bis 0,25 m (0,82 ft): max. ±10 mm (±0,39 in)
- Messdistanz > 0,25 m (0,82 ft): \pm 2 mm (\pm 0,08 in)

Für Feststoffe:

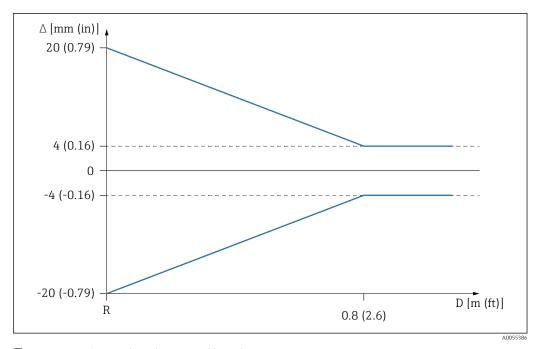
- Messdistanz bis 0,8 m (2,6 ft): max. ±20 mm (±0,79 in)
- Messdistanz > 0,8 m (2,6 ft): ± 4 mm ($\pm 0,16$ in)

Nichtwiederholbarkeit


Die Nichtwiederholbarkeit ist bereits in der Genauigkeit enthalten.

 $\leq 1 \text{ mm (0,04 in)}$

Bei Abweichung von den Referenzbedingungen kann der Offset/Nullpunkt, der sich durch die Einbauverhältnisse ergibt bis zu ± 4 mm ($\pm 0,16$ in) betragen. Dieser zusätzliche Offset/Nullpunkt kann durch eine Korrektureingabe (Parameter Füllstandskorrektur) bei der Inbetriebnahme beseitigt werden.


Abweichende Werte im Nahbereich für Flüssigkeiten

₩ 9 Maximale Messabweichung im Nahbereich

- Maximale Messabweichung Δ
- Referenzpunkt der Distanzmessung R
- Abstand vom Referenzpunkt der Antenne

Abweichende Werte im Nahbereich für Feststoffe

■ 10 Maximale Messabweichung im Nahbereich

- △ Maximale Messabweichung
- R Referenzpunkt der Distanzmessung
- D Abstand vom Referenzpunkt der Antenne

Einfluss der Umgebungstemperatur

Der Ausgang ändert sich aufgrund des Einflusses der Umgebungstemperatur im Hinblick auf die Referenztemperatur.

Die Messungen sind durchgeführt gemäß IEC 61298-3 / IEC 60770-1

Digitalausgang (HART)

Mittlerer $T_K = \pm 2 \text{ mm } (\pm 0.08 \text{ in})/10 \text{ K}$

Analog (Stromausgang)

- Nullpunkt (4 mA): mittlerer $T_K = 0.02 \%/10 K$
- Spanne (20 mA): mittlerer $T_K = 0.05 \%/10 \text{ K}$

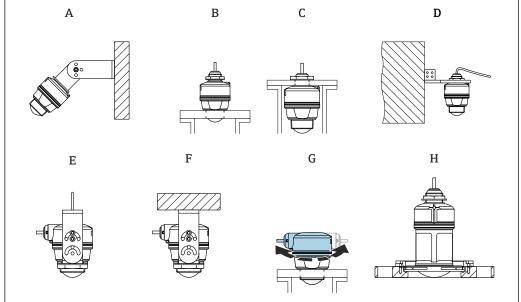
Reaktionszeit

Nach IEC 61298-2 / IEC 60770-1 ist die Sprungantwortzeit die Zeitspanne nach einer sprunghaften Änderung des Eingangssignals, bis die Änderung des Ausgangssignals zum ersten Mal 90 % des Beharrungswerts angenommen hat.

Die Reaktionszeit ist parametrierbar.

Die folgenden Sprungantwortzeiten (gemäß IEC 61298-2 / IEC 60770-1) ergeben sich bei ausgeschalteter Dämpfung:

- Messrate ≤ 250 ms bei Betriebsspannung 24 V
- Sprungantwortzeit < 1 s


Aufwärmzeit

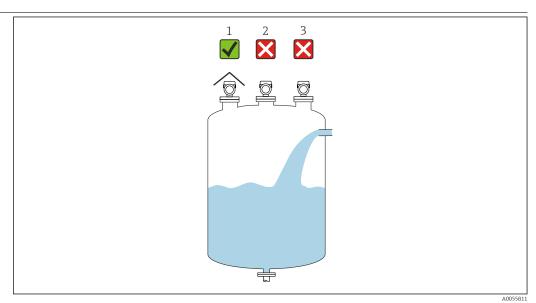
Die Aufwärmzeit (gemäß IEC 62828-4) gibt die Zeit an, die das Gerät benötigt, um nach dem Anlegen der Versorgungsspannung seine höchste Genauigkeit oder Leistung zu erreichen.

Aufwärmzeit: ≤ 15 s

Montage

Montagearten

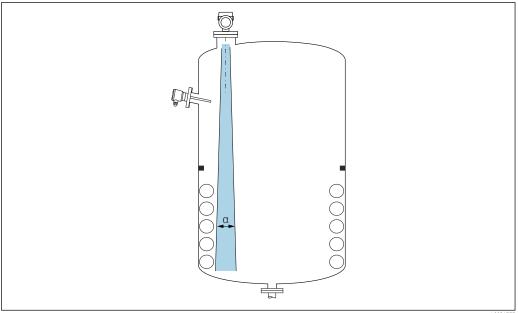
A0055150


■ 11 Wand- oder Deckenmontage

- A Wandmontage ausrichtbar
- B Eingeschraubt am Prozessanschluss Antennenende
- C Eingeschraubt am Prozessanschluss Kabeleinführung von oben
- D Wandmontage mit Prozessanschluss Kabeleinführung von oben
- E Seilmontage mit seitlicher Kabeleinführung
- F Deckenmontage mit seitlicher Kabeleinführung
- G Seitliche Kabeleinführung, Gehäuseoberteil drehbar
- H Montage mit UNI-Überwurfflansch

Beachten:

- \blacksquare Die Sensorkabel sind nicht als Tragkabel ausgelegt, diese nicht zur Aufhängung verwenden.
- Bei Seilmontage ist das Seil vom Kunden bereitzustellen.
- Bei Freifeldanwendungen das Gerät zu jeder Zeit senkrecht ausgerichtet betreiben.
- Bei Geräten mit 80mm-Antenne und seitlichem Kabelabgang ist eine Montage nur mit UNI-Überwurfflansch möglich.


Montageort

- 1 Verwendung einer Wetterschutzhaube; Schutz gegen direkte Sonneneinstrahlung oder Regen
- 2 Montage nicht mittig: Interferenzen können zu falscher Signalauswertung führen
- 3 Montage nicht über dem Befüllstrom

Einbaulage

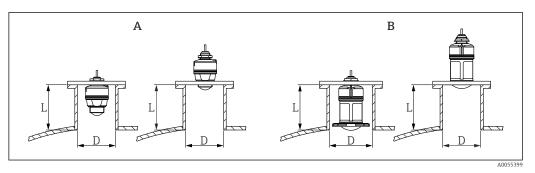
Behältereinbauten

A0031777

Einbauten (Grenzschalter, Temperatursensoren, Streben, Vakuumringe, Heizschlangen, Strömungsbrecher usw.) die sich innerhalb des Strahlenkegels befinden, vermeiden. Dazu den Abstrahlwinkel α beachten.

Vertikale Ausrichtung der Antennenachse

Antenne senkrecht auf die Produktoberfläche ausrichten.



Bei nicht senkrecht stehender Antenne kann die maximale Reichweite reduziert sein oder es können zusätzliche Störsignale auftreten.

Einbauhinweise

Für eine optimale Messung muss die Antenne aus dem Stutzen ragen. Die Stutzeninnenseite muss glatt sein und darf keine Kanten oder Schweißnähte enthalten. Wenn möglich die Stutzenkante abrunden.

20

Stutzenmontage

40 mm (1,5 in) Antenne

80 mm (3 in) Antenne

Die maximale Stutzenlänge ${\bf L}$ hängt vom Stutzendurchmesser ${\bf D}$ ab.

Grenzen für Durchmesser und Länge des Stutzens beachten.

40 mm (1,5 in) Antenne, Montage ausserhalb des Stutzens

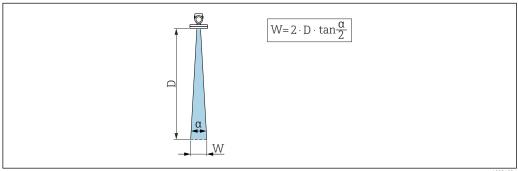
- D: min. 40 mm (1,5 in)
- L: max. (D 30 mm (1,2 in)) × 7,5

40 mm (1,5 in) Antenne, Montage innerhalb des Stutzens

- D: min. 80 mm (3 in)
- L: max. 100 mm (3,94 in) + (D 30 mm (1,2 in)) × 7,5

80 mm (3 in) Antenne, Montage innerhalb des Stutzens

- D: min. 120 mm (4,72 in)
- L: max. 140 mm (5,51 in) + (D 50 mm (2 in)) × 12


80 mm (3 in) Antenne, Montage ausserhalb des Stutzens

- D: min. 80 mm (3 in)
- L: max. (D 50 mm (2 in)) × 12

Abstrahlwinkel

Berechnung

Als Abstrahlwinkel ist der Winkel α definiert, bei dem die Leistungsdichte der Radar-Wellen den halben Wert der maximalen Leistungsdichte annimmt (3dB-Breite). Auch außerhalb des Strahlenkegels werden Mikrowellen abgestrahlt und können von Störern reflektiert werden.

Zusammenhang zwischen Abstrahlwinkel a, Distanz D und Kegelweite W

Der Kegeldurchmesser \boldsymbol{W} ist abhängig vom Abstrahlwinkel $\boldsymbol{\alpha}$ und der Distanz \boldsymbol{D} .

Antenne 40 mm (1,5 in), α = 8 °

W = D × 0,14	D	W
6	5 m (16 ft)	0,70 m (2,29 ft)
	10 m (33 ft)	1,40 m (4,58 ft)
	15 m (49 ft)	2,09 m (6,87 ft)
	20 m (66 ft)	2,79 m (9,16 ft)
α		
W		

Antenne 80 mm (3 in), α = 4 °

$W = D \times 0.07$	D	W
	5 m (16 ft)	0,35 m (1,15 ft)
	10 m (33 ft)	0,70 m (2,30 ft)
	15 m (49 ft)	1,05 m (3,45 ft)
	20 m (66 ft)	1,40 m (4,59 ft)
	25 m (82 ft)	1,75 m (5,74 ft)
α	30 m (98 ft)	2,10 m (6,89 ft)
W		

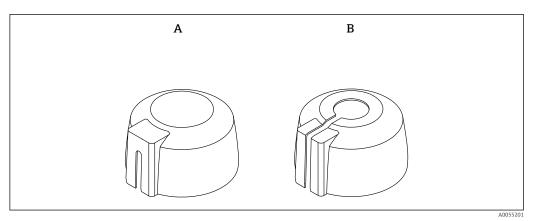
Spezielle Montagehinweise

Messung von außen durch Kunststoffdeckel oder dielektrische Fenster

- Dielektrizitätskonstante des Mediums: $\epsilon_r \ge 10$
- Der Abstand von der Antennenkante zum Tank sollte ca. 100 mm (4 in) betragen.
- Montagepositionen vermeiden, bei denen sich Kondensat oder Ansatz zwischen Antenne und Behälter bilden kann
- Bei Installationen im Freien sicherstellen, dass der Bereich zwischen Antenne und Tank vor Wettereinflüssen geschützt ist
- Keine Ein- oder Anbauten zwischen der Antenne und dem Tank anbringen, die das Signal reflektieren können

Die Dicke der Tankdecke oder des dielektrischen Fensters ist abhängig vom $\boldsymbol{\epsilon}_r$ des Materials.

Die Materialdicke kann ein ganzzahliges Vielfaches der optimalen Dicke (Tabelle) betragen, wobei zu beachten ist, dass die Mikrowellentransparenz mit zunehmender Materialdicke deutlich abnimmt.


Optimale Materialdicke

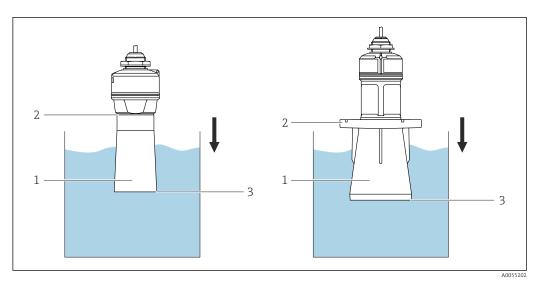
Werkstoff	Optimale Materialdicke
PE; ε _r 2,3	1,25 mm (0,049 in)
PTFE; ε _r 2,1	1,30 mm (0,051 in)
PP; ε _r 2,3	1,25 mm (0,049 in)
Perspex; ε_r 3,1	1,10 mm (0,043 in)

Wetterschutzhaube

Bei Einsatz im Freien wird die Verwendung einer Wetterschutzhaube empfohlen.

Die Wetterschutzhaube kann als Zubehör oder zusammen mit dem Gerät über die Produktstruktur "Zubehör beigelegt" bestellt werden.

■ 14 Wetterschutzhauben

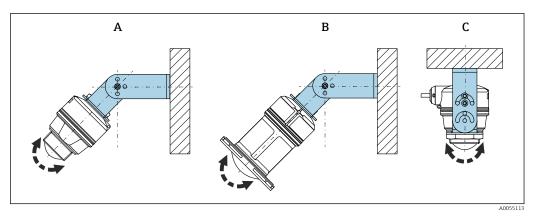

- A Kabeleinführung seitlich
- B Kabeleinführung von oben

Per Sensor wird durch die Wetterschutzhaube nicht komplett bedeckt.

Überflutungsschutzhülse

Die Überflutungsschutzhülse gewährleistet, selbst im Fall einer totalen Überflutung des Sensors die definierte Auswertung des maximalen Füllstands.

Die Überflutungsschutzhülse kann als Zubehör oder zusammen mit dem Gerät über die Produktstruktur "Zubehör beigelegt" bestellt werden.


 \blacksquare 15 Funktion Überflutungsschutzhülse

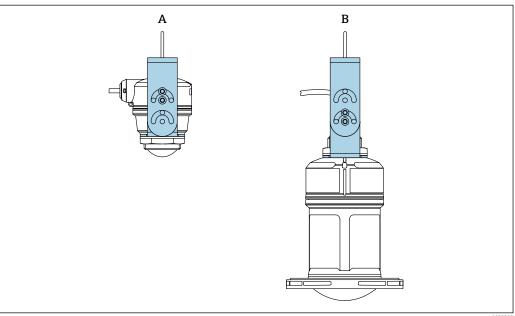
- Luftpolster
- 2 O-Ring (EPDM) Abdichtung
- 3 Max. Füllstand

Die Hülse wird direkt auf den Sensor aufgeschraubt und dichtet das System mittels O-Ring luftdicht ab. Im Überflutungsfall gewährleistet das in der Hülse entstehende Luftpolster eine definierte Erkennung des maximalen Füllstands, welcher direkt am Ende der Hülse ansteht.

Einbau mit Montagebügel ausrichtbar

Der Montagebügel kann als Zubehör oder zusammen mit dem Gerät über die Produktstruktur "Zubehör beigelegt" bestellt werden.

🛮 16 Einbau mit Montagebügel ausrichtbar


- A Montagebügel ausrichtbar für 40 mm (1,5 in) Antenne, Wandmontage
- B Montagebügel ausrichtbar für 80 mm (3 in) Antenne, Wandmontage
- C Montagebügel ausrichtbar für 40 mm (1,5 in) Antenne, Deckenmontage
- Wand- oder Deckenmontage ist möglich
- Antenne mit dem Montagebügel senkrecht auf die Produktoberfläche ausrichten

HINWEIS

Der Montagebügel ist mit dem Transmittergehäuse nicht leitend verbunden. Elektrostatische Aufladung möglich.

▶ Den Montagebügel in den örtlichen Potenzialausgleich einbeziehen.

Seilmontage

A0055

- 🖪 17 Einbau mit Seilmontage
- A Montagebügel ausrichtbar für 40 mm (1,5 in) Antenne, Seilmontage
- $B \qquad \textit{Montagebügel ausrichtbar für 80 mm (3 in) Antenne, Seilmontage}$

Antenne senkrecht auf die Produktoberfläche ausrichten.

Bei einer Seilmontage darf das Kabel nicht zum Aufhängen des Geräts genutzt werden. Separates Seil verwenden.

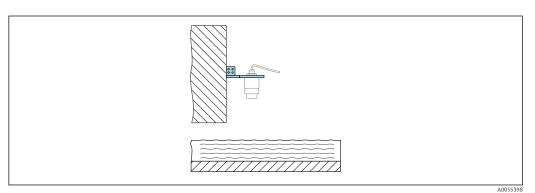
Montage mit Ausleger schwenkbar

Der Ausleger, Wandhalter und Montageständer kann als Zubehör bestellt werden.

24

- 🖪 18 🛮 Montage Ausleger schwenkbar
- A Ausleger mit Wandhalter (Seitenansicht)
- B Ausleger mit Montageständer (Seitenansicht)
- C Ausleger schwenkbar z. B. um das Gerät auf die Mitte einer Messrinne auszurichten (Draufsicht)

HINWEIS


Der Montagebügel ist mit dem Transmittergehäuse nicht leitend verbunden.

Elektrostatische Aufladung möglich.

▶ Den Montagebügel in den örtlichen Potenzialausgleich einbeziehen.

Montage mit schwenkbarer Montagehalterung

Die schwenkbare Montagehalterung kann als Zubehör oder zusammen mit dem Gerät über die Produktstruktur "Zubehör beigelegt" bestellt werden.

19 Ausleger mit Wandhalter, schwenk- und verschiebbar (z. B. um das Gerät auf die Mitte einer Messrinne auszurichten)

HINWEIS

Der Montagebügel ist mit dem Transmittergehäuse nicht leitend verbunden.

Elektrostatische Aufladung möglich.

▶ Den Montagebügel in den örtlichen Potenzialausgleich einbeziehen.

Umgebung

$\label{lem:condition} Umgebungstemperaturbereich$

-40 ... +80 °C (-40 ... +176 °F)

Bei Betrieb im Freien mit starker Sonneneinstrahlung:

- Gerät an schattiger Stelle montieren.
- \blacksquare Direkte Sonneneinstrahlung vermeiden, insbesondere in wärmeren Klimaregionen.
- Wetterschutzhaube verwenden.

Lagerungstemperatur

-40 ... +80 °C (-40 ... +176 °F)

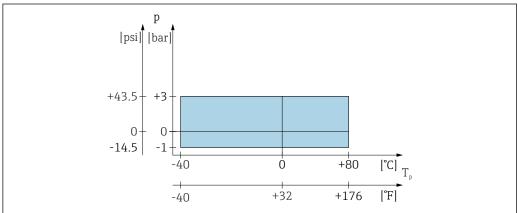
Klimaklasse

Nach IEC 60068-2-38 Prüfung Z/AD (relative Luftfeuchtigkeit 4 ... 100 %).

Betriebshöhe	Bis zu 5000 m (16404 ft) über Meereshöhe. Prüfung gemäß IEC 60529 und NEMA 250: ■ IP66, NEMA Type 4X ■ IP68, NEMA Type 6P (24 h bei 1,83 m (6,00 ft) unter Wasser)	
Schutzart		
Schwingungsfestigkeit	■ Stochastisches Rauschen (Random Sweep) nach IEC 60068-2-64 Fall 2 ■ Gewährleistet für 5 2000 Hz: 1,25 (m/s²)²/Hz, ~ 5 g	
Elektromagnetische Verträglichkeit (EMV)	 Elektromagnetische Verträglichkeit nach EN 61326-Serie und NAMUR-Empfehlung EMV (NE21) Maximale Messabweichung während EMV- Prüfungen: < 0,5 % der Spanne. Weitere Details sind aus der EU-Konformitätserklärung ersichtlich (www.endress.com/downloads). 	

Prozess

Prozesstemperatur, Prozessdruck



Der maximale Druck für das Gerät ist abhängig vom druckschwächsten Bauteil. Bauteile sind: Prozessanschluss, optionale Anbauteile oder Zubehör.

A WARNUNG

Falsche Auslegung oder Verwendung des Geräts kann zu Verletzungsgefahr durch berstende Teile führen!

- ▶ Gerät nur innerhalb der vorgeschriebenen Grenzen der Bauteile betreiben!
- ▶ MWP (Maximum Working Pressure): Auf dem Typenschild ist der MWP angegeben. Dieser Wert bezieht sich auf eine Referenztemperatur von +20 °C (+68 °F) und darf über unbegrenzte Zeit am Gerät anliegen. Temperaturabhängigkeit des MWP beachten. Für Flansche die zugelassenen Druckwerte bei höheren Temperaturen aus den folgenden Normen entnehmen: EN 1092-1 (die Werkstoffe 1.4435 und 1.4404 sind in ihrer Festigkeit-Temperatur-Eigenschaft in der EN 1092-1 eingruppiert. Die chemische Zusammensetzung der beiden Werkstoffe kann identisch sein.), ASME B16.5, JIS B2220 (Norm in ihrer jeweils aktuellen Version ist gültig). Abweichende MWP-Angaben finden sich in den betroffenen Kapiteln der technischen Information.
- ▶ Die Druckgeräterichtlinie (2014/68/EU) verwendet die Abkürzung PS, diese entspricht dem maximalen Betriebsdruck (MWP) des Geräts.

■ 20 Zulässiger Bereich für Prozesstemperatur und Prozessdruck

A0054003

Prozesstemperaturbereich

-40 ... +80 °C (-40 ... +176 °F)

Prozessdruckbereich, Antenne 40mm (1,5 in)

- $p_{rel} = -1 \dots 3 \text{ bar } (-14,5 \dots 43,5 \text{ psi})$
- $p_{abs} < =4 \text{ bar (58 psi)}$

Prozessdruckbereich, Antenne 80 mm (3 in) mit UNI-Überwurfflansch 3", 4"

- $p_{rel} = -1 \dots 1 \text{ bar } (-14,5 \dots 14,5 \text{ psi})$
- $p_{abs} < =2 \text{ bar (29 psi)}$

Prozessdruckbereich, Antenne 80 mm (3 in) mit UNI-Überwurfflansch 6" Für drucklose Anwendungen

Bei Vorliegen einer CRN-Zulassung kann der Druckbereich weiter beschränkt sein.

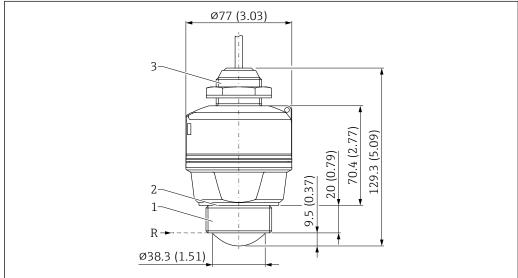
Dielektrizitätskonstante

Für Flüssigkeiten

- $\varepsilon_r \ge 1.8$
- ullet Für niedrigere ϵ_r -Werte, Endress+Hauser kontaktieren

Für Schüttgüter

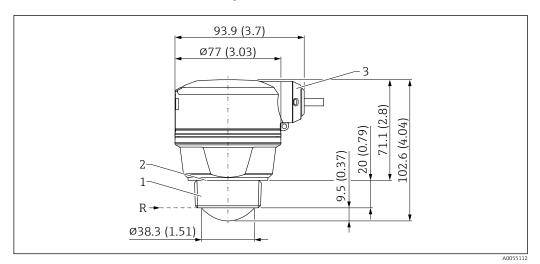
 $\epsilon_r \geq 1,6$


Für Anwendungen mit einer kleineren Dielektrizitätskonstanten als angegeben, Endress+Hauser kontaktieren.

- Für die Dielektrizitätskonstante (ϵ_r -Wert) vieler wichtiger in der Industrie verwendeten Medien siehe:
 - Dielektrizitätskonstante (ε_r-Wert) Kompendium CP01076F
 - die "DK-Werte App" von Endress+Hauser (verfügbar für Android und iOS)

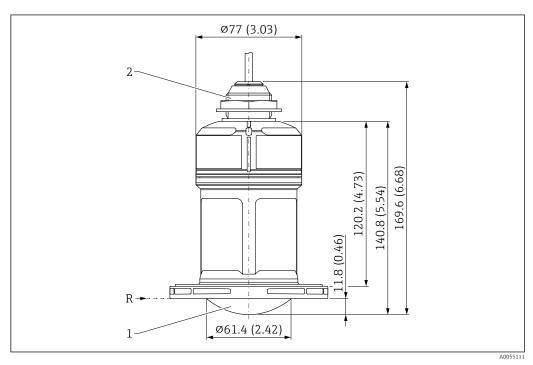
Konstruktiver Aufbau

Abmessungen


Antenne 40 mm (1,5 in) Kabeleinführung von oben

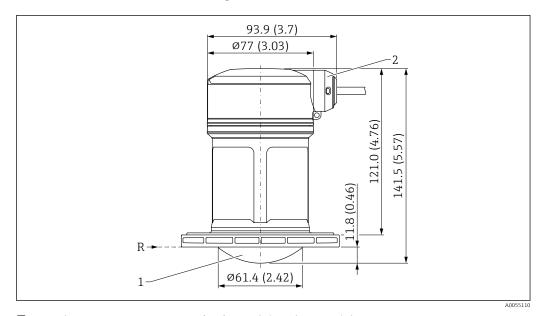
A005510

- 🛮 21 Abmessungen; Antenne 40 mm (1,5 in) mit Kabeleinführung von oben. Maßeinheit mm (in)
- R Referenzpunkt der Messung
- Prozessanschluss Antennende, Gewinde
- 2 Dichtung EPDM (Gewinde G 1 1/2)
- B Prozessanschluss Kabeleinführung von oben
- Die Dichtungsstärke beträgt 2 mm (0,08 in).

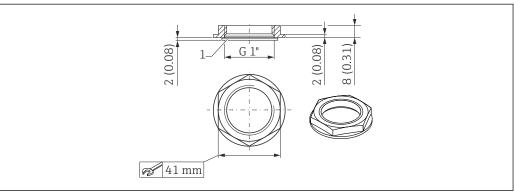

Antenne 40 mm (1,5 in) Kabeleinführung seitlich

■ 22 Abmessungen; Antenne 40 mm (1,5 in) mit Kabeleinführung seitlich. Maßeinheit mm (in)

- R Referenzpunkt der Messung
- 1 Prozessanschluss Antennenende, Gewinde
- 2 Dichtung EPDM (Gewinde G 1 1/2)
- 3 Kabeleinführung seitlich
- Die Dichtungsstärke beträgt 2 mm (0,08 in).


Antenne 80 mm (3 in) Kabeleinführung von oben

🗷 23 Abmessungen; Antenne 80 mm (3 in) mit Kabeleinführung von oben. Maßeinheit mm (in)

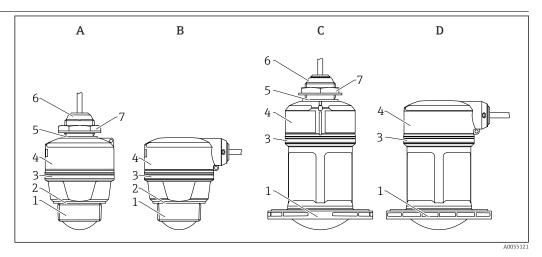

- R Referenzpunkt der Messung
- 1 Prozessanschluss Antennenende, ohne; vorbereitet für UNI-Überwurfflansch
- 2 Prozessanschluss Kabeleinführung von oben

Antenne 80 mm (3 in) Kabeleinführung seitlich

- 🛮 24 Abmessungen; Antenne 80 mm (3 in) mit Kabeleinführung seitlich
- R Referenzpunkt der Messung
- 1 Prozessanschluss Antennenende, ohne; vorbereitet für UNI-Überwurfflansch
- 2 Kabeleinführung seitlich

Gegenmutter Prozessanschluss Kabeleinführung von oben

A002841


- 🖻 25 Abmessungen; Gegenmutter Prozessanschluss Kabeleinführung von oben. Maßeinheit mm (in)
- 1 Dichtung
- Die Gegenmutter mit Dichtung (EPDM) ist im Lieferumfang enthalten
- Werkstoff: PA6.6

Gewicht

Gewicht (einschließlich 5 m (16 ft) Kabel)

- Gerät mit 40 mm (1,5 in) Antenne: ca. 0,5 kg (1,1 lb)
- \bullet Gerät mit 80 mm (3 in) Antenne: ca. 0,7 kg (1,5 lb)

Werkstoffe

■ 26 Geräteaufbau

- A 40 mm (1,5 in) Antenne, Kabeleinführung von oben
- B 40 mm (1,5 in) Antenne, Kabeleinführung seitlich
- C 80 mm (3 in) Antenne, Kabeleinführung von oben
- D 80 mm (3 in) Antenne, Kabeleinführung seitlich
- 1 Prozessanschluss Antennenende; PVDF
- 2 Dichtung EPDM (bei Gewinde G 1½")
- 3 Designring PBT/PC
- 4 Sensorgehäuse/Prozessanschluss Kabeleinführung; PBT/PC (bei Staub-Ex-Geräten: PC)
- 5 Dichtung EPDM
- 6 Kabeleinführung; PBT/PC (bei Staub-Ex-Geräten: PC)
- 7 Gegenmutter; PA6.6

Anschlusskabel

Verfügbare Kabellänge: 5 ... 300 m (16 ... 980 ft)

Werkstoff: PVC

Bei Geräten mit Schiffbauzulassung: Halogenfreies Kabel (Werkstoff: XLPE = vernetztes Polyethylen)

Anzeige und Bedienoberfläche

Bedienkonzept

Nutzerorientierte Menüstruktur für anwenderspezifische Aufgaben

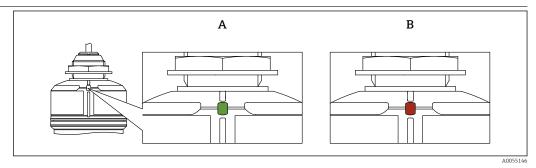
- Benutzerführung
- Diagnose
- lacktriangle Applikation
- System

Schnelle und sichere Inbetriebnahme

- Interaktiver Wizard mit grafischer Oberfläche zur geführten Inbetriebnahme in FieldCare/Device-Care oder SmartBlue-App
- Menüführung mit kurzen Erläuterungen der einzelnen Parameterfunktionen

Integrierter Datenspeicher

Aufzeichnung von bis zu 100 Ereignismeldungen im Gerät


Effizientes Diagnoseverhalten erhöht die Verfügbarkeit der Messung

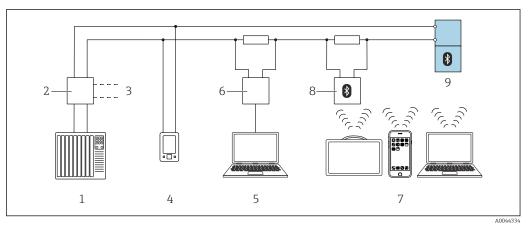
- Behebungsmaßnahmen sind in Klartext integriert
- Vielfältige Simulationsmöglichkeiten

Bluetooth® wireless technology (optional)

- Einfache und schnelle Einrichtung über SmartBlue-App oder Field Xpert SMT70/SMT77
- Keine zusätzlichen Werkzeuge oder Adapter erforderlich
- Verschlüsselte Single Point-to-Point Datenübertragung (Fraunhofer-Institut getestet) und passwortgeschützte Kommunikation via Bluetooth® wireless technology
- Das Gerät kann mit Bluetooth® wireless technology nachgerüstet werden

LED-Anzeige

■ 27 LED-Anzeige am Gerät


- A Grüne LED
- B Rote LED

Funktionen:

- Anzeige des Betriebszustandes
 - Betrieb (grün)
 - Störung (rot)
- Anzeige einer aktiven Bluetooth® Verbindung (blinken)

Fernbedienung

Via HART-Protokoll oder Bluetooth® wireless technology

■ 28 Möglichkeiten der Fernbedienung via HART-Protokoll

- 1 SPS (Speicherprogrammierbare Steuerung)
- 2 Messumformer-Speisegerät, z. B. RN42 (mit Kommunikationswiderstand)
- 3 Anschluss für Commubox FXA195 und AMS TrexTM Geräte Kommunikator
- 4 AMS TrexTM Geräte Kommunikator
- 5 Computer mit Bedientool (z.B. DeviceCare/FieldCare, AMS Device View, SIMATIC PDM)
- 6 Commubox FXA195 (USB)
- Field Xpert SMT70/SMT77, Smartphone oder Computer mit Bedientool (z. B. DeviceCare)
- 8 Bluetooth® Modem mit Anschlusskabel (z. B. VIATOR)
- 9 Messumformer

Bedienung über Bluetooth® wireless technology (optional)

Voraussetzung

- Gerät mit Bestelloption Bluetooth® wireless technology
- Smartphone oder Tablet mit Endress+Hauser SmartBlue-App oder PC mit DeviceCare ab Version 1.07.07 oder Field Xpert SMT70/SMT77

Die Reichweite der Verbindung beträgt bis zu 25 m (82 ft). In Abhängigkeit von Umgebungsbedingungen wie z. B. Anbauten, Wände oder Decken, kann die Reichweite variieren.

Unterstützte Bedientools

Smartphone oder Tablet mit Endress+Hauser SmartBlue-App, DeviceCare ab Version 1.07.07, Field-Care, AMS und PDM.

Zertifikate und Zulassungen

Aktuelle Zertifikate und Zulassungen zum Produkt stehen unter www.endress.com auf der jeweiligen Produktseite zur Verfügung:

- 1. Produkt mit Hilfe der Filter und Suchmaske auswählen.
- 2. Produktseite öffnen.
- 3. **Downloads** auswählen.

Weitere Zertifikate und Zulassungen zum Produkt stehen unter https://www.endress.com -> Downloads zur Verfügung.

Funkrichtlinie EN 302729

Die Geräte sind für uneingeschränkten Einsatz innerhalb und außerhalb geschlossener Behälter in den Ländern der EU und der EFTA zugelassen. Voraussetzung ist, dass die entsprechenden Länder die Richtlinie schon umgesetzt haben.

Derzeit haben folgende Länder die Richtlinie schon umgesetzt:

Belgien, Bulgarien, Deutschland, Dänemark, Estland, Frankreich, Griechenland, Großbritannien, Irland, Island, Italien, Liechtenstein, Litauen, Lettland, Malta, Niederlande, Norwegen, Österreich, Polen, Portugal, Rumänien, Schweden, Schweiz, Slowakei, Spanien, Tschechische Republik, Zypern.

Alle nicht aufgeführten Länder sind derzeit noch mit der Umsetzung beschäftigt.

Für den Betrieb der Geräte außerhalb von geschlossenen Behältern ist Folgendes zu beachten:

- Die Installation muss durch geschultes Fachpersonal erfolgen
- Die Antenne des Geräts muss an einem festen Ort und senkrecht nach unten installiert werden
- Der Montageort muss 4 km (2,49 mi) von den aufgeführten Astronomischen Stationen entfernt sein oder es muss eine entsprechende Genehmigung durch die zuständige Behörde vorliegen. Wird ein Gerät im Abstand von 4 ... 40 km (2,49 ... 24,86 mi) um eine der aufgeführten Stationen montiert, so darf das Gerät nicht höher als 15 m (49 ft) über dem Boden montiert sein

Astronomische Stationen

Land	Name der Station	Geografische Breite	Geografische Länge
Deutschland	Effelsberg	50° 31' 32" Nord	06° 53' 00" Ost
Finnland	Metsähovi	60° 13' 04" Nord	24° 23' 37" Ost
	Tuorla	60° 24' 56" Nord	24° 26' 31" Ost
Frankreich	Plateau de Bure	44° 38' 01" Nord	05° 54' 26" Ost
	Floirac	44° 50' 10" Nord	00°31'37"West
Großbritannien	Cambridge	52° 09' 59" Nord	00° 02' 20" Ost
	Damhall	53° 09' 22" Nord	02°32'03"West
	Jodrell Bank	53° 14' 10" Nord	02° 18' 26" West
	Knockin	52° 47' 24" Nord	02° 59' 45" West
	Pickmere	53° 17' 18" Nord	02°26'38"West
Italien	Medicina	44° 31' 14" Nord	11° 38' 49" Ost
	Noto	36° 52' 34" Nord	14° 59' 21" Ost
	Sardinia	39° 29' 50" Nord	09° 14' 40" Ost
Polen	Krakow Fort Skala	50° 03' 18" Nord	19° 49' 36" Ost
Russland	Dmitrov	56° 26' 00" Nord	37° 27' 00" Ost
	Kalyazin	57° 13' 22" Nord	37° 54' 01" Ost
	Pushchino	54° 49' 00" Nord	37° 40' 00" Ost
	Zelenchukskaya	43° 49' 53" Nord	41° 35' 32" Ost
Schweden	Onsala	57° 23' 45" Nord	11° 55' 35" Ost
Schweiz	Bleien	47° 20' 26" Nord	08° 06' 44" Ost

Land	Name der Station	Geografische Breite	Geografische Länge
Spanien	Yebes	40° 31' 27" Nord	03°05'22"West
	Robledo	40° 25' 38" Nord	04° 14' 57" West
Ungarn	Penc	47° 47' 22" Nord	19° 16' 53" Ost

i

Die Anforderungen der EN 302729 sind generell zu beachten.

FCC

This device complies with Part 15 of the FCC rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

[Any] changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

The devices are compliant with the FCC Code of Federal Regulations, CFR 47, Part 15, Sections 15.205, 15.207, 15.209.

To comply with FCC RF Exposure requirements for an uncontrolled environment, this device must be installed and operated to assure a minimum separation distance of at least 20 cm.

In addition, the devices are compliant with Section 15.256. For these LPR (Level Probe Radar) applications the devices must be professionally installed in a downward operating position. In addition, the devices are not allowed to be mounted in a zone of 4 km (2,49 mi) around RAS stations and within a radius of 40 km (24,86 mi) around RAS stations the maxium operation height of devices is 15 m (49 ft) above ground.

Industry Canada

Canada CNR-Gen Section 8.4

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) This device may not interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

[Any] changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

- The installation of the LPR/TLPR device shall be done by trained installers, in strict compliance with the manufacturer's instructions.
- The use of this device is on a "no-interference, no-protection" basis. That is, the user shall accept operations of high-powered radar in the same frequency band which may interfere with or damage this device. However, devices found to interfere with primary licensing operations will be required to be removed at the user's expense.
- To comply with ISED RF Exposure requirements for an uncontrolled environment, this device must be installed and operated to assure a minimum separation distance of at least 20 cm.
- The installer/user of this device shall ensure that it is at least 10 km from the Dominion Astrophysical Radio Observatory (DRAO) near Penticton, British Columbia. The coordinates of the DRAO are latitude 49°19′15″ N and longitude 119°37′12″ W. For devices not meeting this 10 km separation (e.g., those in the Okanagan Valley, British Columbia,) the installer/user must coordinate with, and obtain the written concurrence of, the Director of the DRAO before the equipment can be installed or operated. The Director of the DRAO may be contacted at 250-497-2300 (tel.) or 250-497-2355 (fax). (Alternatively, the Manager, Regulatory Standards Industry Canada, may be contacted.)

Druckgeräte mit zulässigem Druck kleiner als 200 bar, kein druckbeaufschlagtes Volumen Druckgeräte mit Prozessanschluss ohne druckbeaufschlagtes Gehäuse fallen nicht unter die Druckgeräterichtlinie, unabhängig von der Höhe des maximal zulässigen Drucks.

Weist ein Druckgerät kein druckbeaufschlagtes Gehäuse auf, so liegt kein druckhaltendes Ausrüstungsteil im Sinne der Richtlinie vor.

Druckgeräterichtlinie DGRL (PED) 2014/68/EU, Artikel 2, Absatz 5

Bestellinformationen

Ausführliche Bestellinformationen sind bei der nächstgelegenen Vertriebsorganisation www.addresses.endress.com oder im Produktkonfigurator unter www.endress.com auswählbar:

- 1. Produkt mit Hilfe der Filter und Suchmaske auswählen.
- 2. Produktseite öffnen.
- 3. Konfiguration auswählen.

Produktkonfigurator - das Tool für individuelle Produktkonfiguration

- Tagesaktuelle Konfigurationsdaten
- Je nach Gerät: Direkte Eingabe von messstellenspezifischen Angaben wie Messbereich oder Bediensprache
- Automatische Überprüfung von Ausschlusskriterien
- Automatische Erzeugung des Bestellcodes mit seiner Aufschlüsselung im PDF- oder Excel-Ausgabeformat
- Direkte Bestellmöglichkeit im Endress+Hauser Onlineshop

Kennzeichnung

Messstelle (TAG)

Das Gerät kann mit einer Messstellenbezeichnung bestellt werden.

Ort der Messstellenkennzeichnung

In der Zusatzspezifikation auswählen:

- Anhängeschild Edelstahl
- TAG beigestellt vom Kunden
- IEC 61406 rostfreier Stahl TAG
- IEC 61406 rostfreier Stahl, rostfreier Stahl TAG
- IEC 61406 rostfreier Stahl TAG, beigelegtes Schild

Definition der Messstellenbezeichnung

In der Zusatzspezifikation angeben:

3 Zeilen zu je maximal 18 Zeichen

Die angegebene Messstellenbezeichnung erscheint auf dem gewähltem Schild.

Darstellung in der SmartBlue-App

Die ersten 32 Zeichen der Messstellenbezeichnung

Die Messstellenbezeichnung kann jederzeit via Bluetooth® wireless technology messstellenspezifisch verändert werden.

Darstellung im Elektronischen Typenschild (ENP)

Die ersten 32 Zeichen der Messstellenbezeichnung

Details siehe Dokument SD03128P

Werksverifikationsschein

Über den Produktkonfigurator kann ein Werksverifikationsschein ausgewählt werden.

Die Verifikationspunkte (3 Punkte) sind bei folgenden Abständen vom Referenzpunkt festgelegt:

- 2 m
- 4 m
- 6 m

Die Verifikation erfolgt unter Referenzbedingungen.

Dienstleistung

Über den Produktkonfigurator können unter anderem folgende Dienstleistungen ausgewählt werden

- Gereinigt von Öl+Fett (mediumberührt)
- LABS-frei (lackbenetzungsstörende Substanzen)
- Eingestellt Medium
- Eingestellt Dämpfung
- Eingestellt max. Alarm Strom

- Bluetooth® Kommunikation bei Auslieferung deaktiviert
- Kundenspezifischer Leer-/Vollabgleich
- Produktdokumentation auf Papier
 Optional können Testberichte, Erklärungen und Materialprüfzeugnisse über das Merkmal Dienstleistung, Ausführung Produktdokumentation auf Papier als Papierausdruck bestellt werden. Die Dokumente können unter Merkmal Test, Zeugnis, Erklärung ausgewählt werden und liegen dann dem Gerät bei Auslieferung bei.

Anwendungsspakete

Das Anwendungspaket kann zusammen mit dem Gerät bestellt oder nachträglich mit einem Freischaltcode aktiviert werden. Ausführliche Angaben zum betreffenden Bestellcode sind über die Webseite www.endress.com oder über die Endress+Hauser Vertriebszentrale erhältlich.

Heartbeat Technology

Heartbeat Technology bietet Diagnosefunktionalität durch kontinuierliche Selbstüberwachung, sowie die In-situ-Verifizierung von Geräten in der Anwendung.

Heartbeat Diagnostics

Kontinuierliche Selbstüberwachung des Geräts.

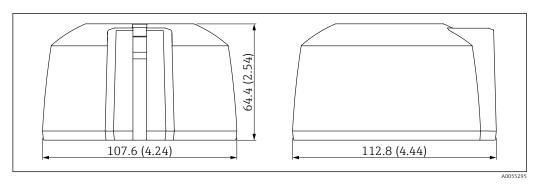
Ausgabe von Diagnosemeldungen an:

- ein Asset Management-System (z.B. FieldCare oder DeviceCare)
- ein Automatisierungssystem (z. B. SPS)

Heartbeat Verification

- Geräteüberwachung im eingebauten Zustand ohne Prozessunterbrechung inklusive Verifizierungsbericht
- Eindeutige Messstellenbewertung (Bestanden/Nicht bestanden) mit hoher Testabdeckung im Rahmen der Herstellerspezifikation
- Kann zur Dokumentation von normativen Anforderungen verwendet werden
- Erfüllt die Anforderungen zur messtechnischen Rückführbarkeit gemäß ISO 9001 (ISO 9001:2015 Abschnitt 7.1.5.2)
- P Der Verifizierungsbericht kann via Bluetooth® und HART erzeugt werden.

Detaillierte Beschreibung


Siehe Sonderdokumentation SD Heartbeat Technology.

Zubehör

Aktuell verfügbares Zubehör zum Produkt ist über den Produktkonfigurator unter www.endress.com auswählbar:

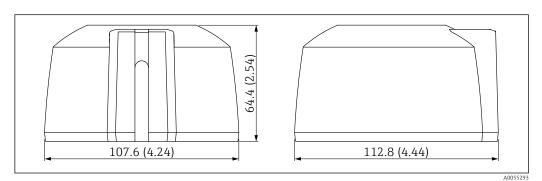
- 1. Produkt mit Hilfe der Filter und Suchmaske auswählen.
- 2. Produktseite öffnen.
- Ersatzteile und Zubehör auswählen.
- 🚹 Das Zubehör kann teilweise über die Produktstruktur "Zubehör beigelegt" bestellt werden.

Wetterschutzhaube für Gerät mit Kabeleinführung von oben Der Sensor wird weder bei der 40 mm (1,5 in) Antenne noch bei der 80 mm (3 in) Antenne komplett bedeckt.

🗷 29 Abmessungen für Wetterschutzhaube G1/NPT1, Kabeleinführung von oben. Maßeinheit mm (in)

Material

PBT/PC


Bestellnummer

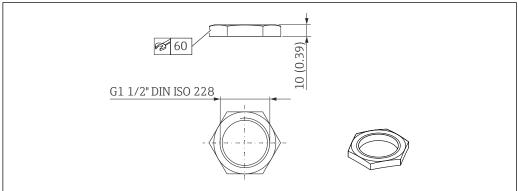
71662413

Wetterschutzhaube für Gerät mit Kabeleinführung seitlich

Der Sensor wird weder bei der 40~mm (1,5 in) Antenne noch bei der 80~mm (3 in) Antenne komplett bedeckt.

🖪 30 Abmessungen für Wetterschutzhaube mit Kabeleinführung seitlich. Maßeinheit mm (in)

Material


PBT/PC

Bestellnummer

71662414

Befestigungsmutter G $1\frac{1}{2}$ "

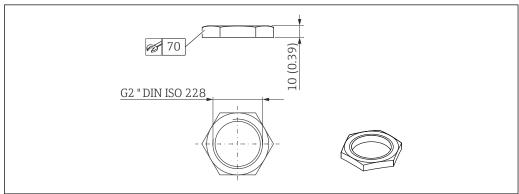
Geeignet für Geräte mit Prozessanschluss G $1\frac{1}{2}$ " und MNPT $1\frac{1}{2}$ ".

 \blacksquare 31 Abmessungen Befestigungsmutter. Maßeinheit mm (in)

Material

PC

Endress+Hauser 37


A002884

Bestellnummer

52014146

Befestigungsmutter G 2"

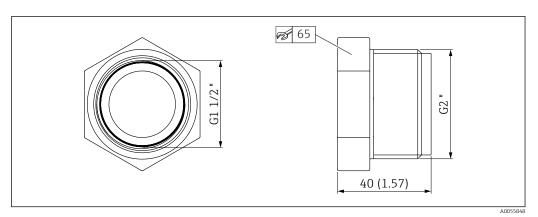
Geeignet für Geräte mit Prozessanschluss Antennenende G 2" und MNPT 2".

■ 32 Abmessungen Befestigungsmutter. Maßeinheit mm (in)

A002910

Material

PC


Bestellnummer

52000598

Adapter Uni G 11/2">G 2"

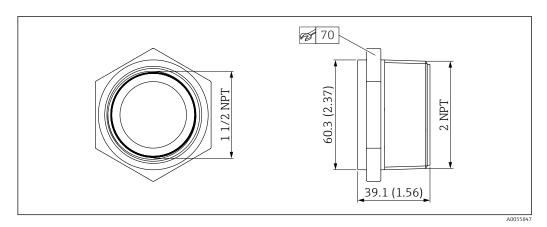
i

Temperaturbereich –40 ... 45 °C (–40 ... 113 °F)

■ 33 Abmessungen Adapter Uni

Material

PVC


Bestellnummer

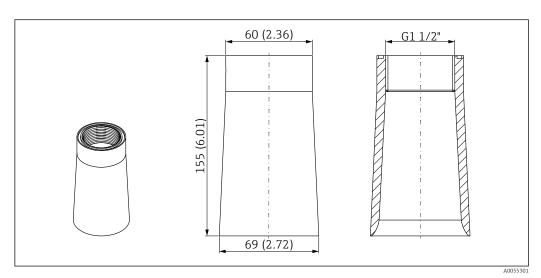
71662415

Adapter Uni MNPT 11/2">MNPT 2"

Temperaturbereich –40 ... 65 °C (–40 ... 150 °F)

🖪 34 Abmessungen Adapter Uni

Material


PP

Bestellnummer

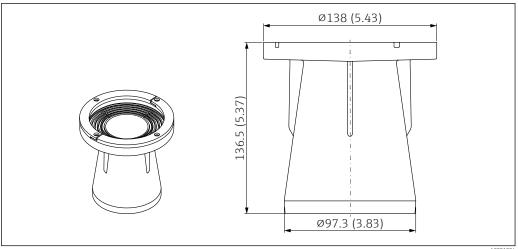
71668921

Überflutungsschutzhülse 40 mm (1,5 in)

Zur Verwendung für Geräte mit 40 mm (1,5 in) Antenne und Prozessanschluss Antennenende Gewinde G $11\!\!/\!\!2"$

 \blacksquare 35 Abmessungen Überflutungsschutzhülse 40 mm (1,5 in). Maßeinheit mm (in)

Material


PP

Be stell nummer

71091216

Überflutungsschutzhülse 80 mm (3 in)

Zur Verwendung für Geräte mit 80 mm (3 in) Antenne und Prozessanschluss Antennenende "ohne, vorbereitet für UNI-Überwurfflansch > Zubehör".

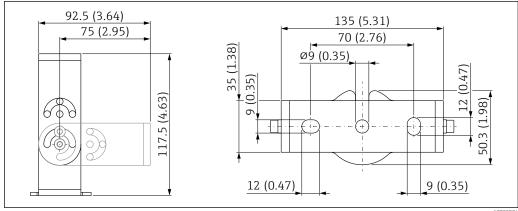
Abmessungen Überflutungsschutzhülse 80 mm (3 in). Maßeinheit mm (in) **■** 36

Material

PBT/PC

Bestellnummer

71662270


Montagebügel ausrichtbar, Wand/Seil/Decke, 75 mm

Der Montagebügel kann für die Montage an einer Wand, einem Seil oder einer Decke verwendet werden.

Es stehen zwei Varianten zur Verfügung:

- Prozessanschluss Kabeleinführung G 1" / NPT 1"
- Prozessanschluss Antennenende G 1½" / NPT 1½"

Prozessanschluss Kabeleinführung G 1" / NPT 1"


Abmessungen Montagebügel. Maßeinheit mm (in) **■** 37

Besteht aus:

- 1 × Montagebügel, 316L (1.4404)
- 1 × Montagewinkel, 316L (1.4404)
- 3 × Schrauben, A4
- 3 × Sicherungsscheiben, A4

Bestellnummer (G 1" / NPT 1")

Prozessanschluss Antennenende G 11/2" / NPT 11/2"

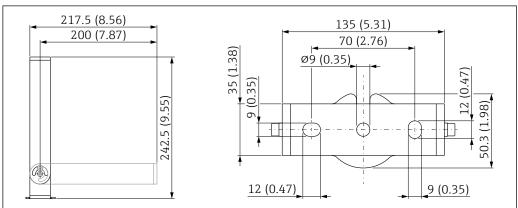
🛮 38 Abmessungen Montagebügel. Maßeinheit mm (in)

Besteht aus:

- 1 × Montagebügel, 316L (1.4404)
- 1 × Montagewinkel, 316L (1.4404)
- 3 × Schrauben, A4
- 3 × Sicherungsscheiben, A4
- 1 × Befestigungsmutter G 1½"

Bestellnummer (G 11/2" / NPT 11/2")

71662419


Montagebügel ausrichtbar, Wand, 200 mm

Der Montagebügel kann für die Montage an einer Wand verwendet werden.

Es stehen zwei Varianten zur Verfügung:

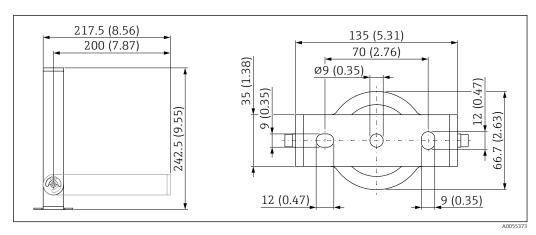
- Prozessanschluss Kabeleinführung G 1" / NPT 1"
- Prozessanschluss Antennenende G 1½" / NPT 1½"

Prozessanschluss Kabeleinführung G 1" / NPT 1"

🛮 39 Abmessungen Montagebügel. Maßeinheit mm (in)

Besteht aus:

- $1 \times Montagebügel$, 316L (1.4404)
- 1 × Montagewinkel, 316L (1.4404)
- 3 × Schrauben, A4
- lacksquare 3 × Sicherungsscheiben, A4


Bestellnummer (G 1" / NPT 1")

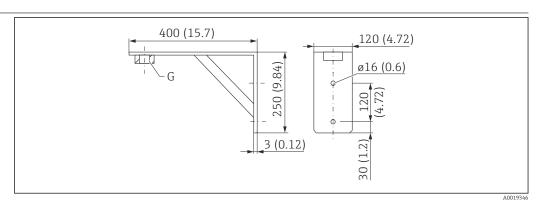
71662421

Endress+Hauser 41

A0055385

Prozessanschluss Antennenende G 11/2" / NPT 11/2"

■ 40 Abmessungen Montagebügel. Maßeinheit mm (in)


Besteht aus:

- 1 × Montagebügel, 316L (1.4404)
- 1 × Montagewinkel, 316L (1.4404)
- 3 × Schrauben, A4
- 3 × Sicherungsscheiben, A4
- 1 × Befestigungsmutter G 1½"

Bestellnummer (G 11/2" / NPT 11/2")

71662423

Montagewinkel für Wandmontage

■ 41 Abmessungen Montagewinkel. Maßeinheit mm (in)

G Sensoranschluss gemäß Produktstruktur "Prozessanschluss Antennenende"

Gewicht

3,4 kg (7,5 lb)

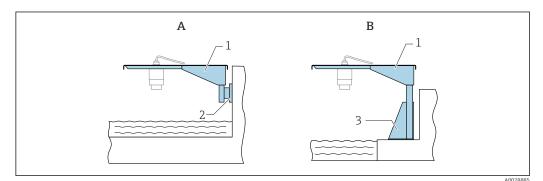
Material

316L (1.4404)

Bestellnummer Prozessanschluss G 11/2"

71452324

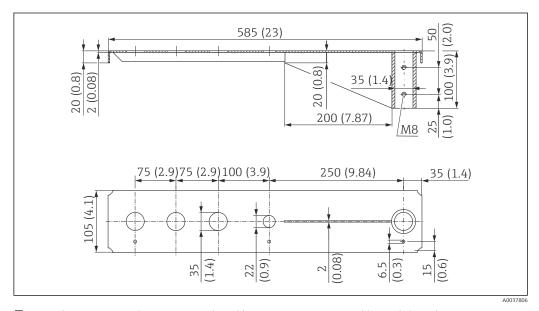
auch für MNPT 1½" geeignet


Bestellnummer Prozessanschluss G 2"

71452325

auch für MNPT 2" geeignet

Ausleger schwenkbar


Montageart Sensor Prozessanschluss Kabeleinführung

42 Montageart Sensor Prozessanschluss Kabeleinführung

- A Montage am Ausleger mit Wandhalter
- B Montage am Ausleger mit Montageständer
- 1 Ausleger
- 2 Wandhalter
- 3 Montageständer

Ausleger 500 mm schwenkbar, Sensor Prozessanschluss Kabeleinführung

43 Abmessungen Ausleger 500 mm schwenkbar für Sensor Prozessanschluss Kabeleinführung. Maßeinheit mm (in)

Gewicht:

2,1 kg (4,63 lb)

Material

316L (1.4404)

Bestellnummer

71452315

- 35 mm (1,38 in) Öffnungen für alle Prozessanschlüsse Kabeleinführung Gewinde G 1" oder MNPT 1"
- 22 mm (0,87 in) Öffnung kann für einen beliebigen zusätzlichen Sensor verwendet werden
- Feststellschrauben sind im Lieferumfang enthalten

1085 (42.7) 1086 (80) 1087 (1.4) 1087 (1.4) 1087 (1.4) 1087 (1.4) 1087 (1.4) 1087 (1.4) 1088 (42.7)

Ausleger 1000 mm schwenkbar, Sensor Prozessanschluss Kabeleinführung

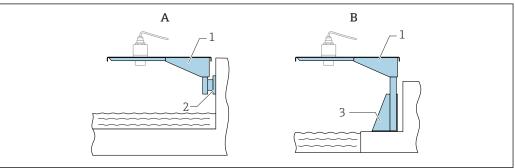
44 Abmessungen Ausleger 1 000 mm schwenkbar für Sensor Prozessanschluss Kabeleinführung. Maßeinheit mm (in)

Gewicht:

4,5 kg (9,92 lb)

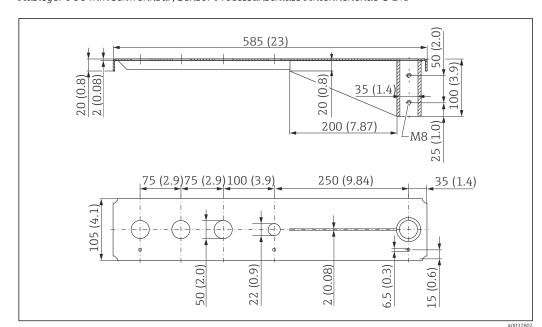
Material

316L (1.4404)


Bestellnummer

71452316

- 35 mm (1,38 in) Öffnungen für alle Prozessanschlüsse Kabeleinführung Gewinde G 1" oder MNPT 1"
- 22 mm (0,87 in) Öffnung kann für einen beliebigen zusätzlichen Sensor verwendet werden
- Feststellschrauben sind im Lieferumfang enthalten


Montageart Sensor Prozessanschluss Antennenende

A0028886

Montageart Sensor Prozessanschluss Antennenende

- A Montage am Ausleger mit Wandhalter
- B Montage am Ausleger mit Montageständer
- 1 Ausleger
- 2 Wandhalter
- 3 Montageständer

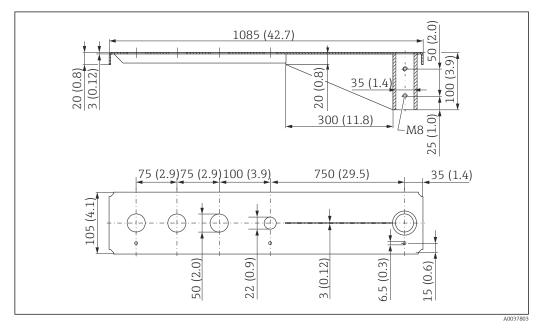
Ausleger 500 mm schwenkbar, Sensor Prozessanschluss Antennenende G 1½"

■ 46 Abmessungen Ausleger 500 mm schwenkbar für Sensor Prozessanschluss Antennenende G 1½". Maßeinheit mm (in)

Gewicht:

1,9 kg (4,19 lb)

Material


316L (1.4404)

Bestellnummer

71452318

- i
- 50 mm (2,0 in) Öffnungen für alle Prozessanschlüsse Antennenende Gewinde G 1½" oder MNPT 1½"
- 22 mm (0,87 in) Öffnung kann für einen beliebigen zusätzlichen Sensor verwendet werden
- Feststellschrauben sind im Lieferumfang enthalten

Ausleger 1000 mm schwenkbar, Sensor Prozessanschluss Antennenende G 11/2"

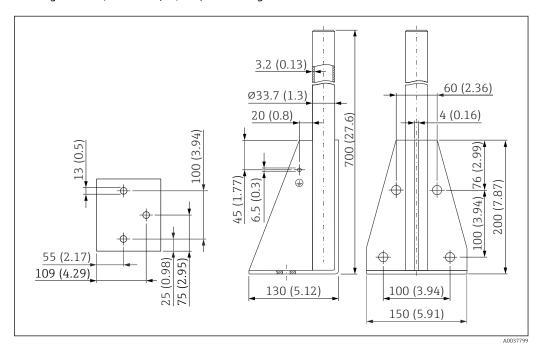
■ 47 Abmessungen Ausleger 1 000 mm schwenkbar f
ür Sensor Prozessanschluss Antennenende G 1½". Maßeinheit mm (in)

Gewicht:

4,4 kg (9,7 lb)

Material

316L (1.4404)


Bestellnummer

71452319

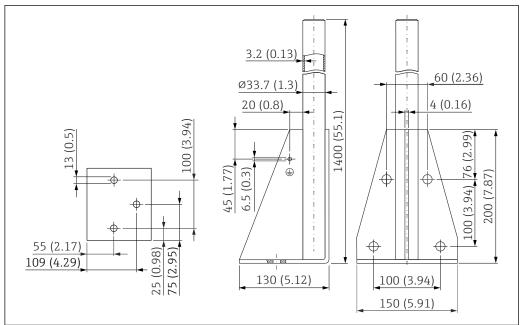
- \bullet 50 mm (2,0 in) Öffnungen für alle Prozessanschlüsse Antennen
ende Gewinde G $1\frac{1}{2}$ " oder MNPT $1\frac{1}{2}$ "
- 22 mm (0,87 in) Öffnung kann für einen beliebigen zusätzlichen Sensor verwendet werden
- Feststellschrauben sind im Lieferumfang enthalten

Montageständer, 700 mm (27,6 in) für Ausleger schwenkbar

■ 48 Abmessungen. Maßeinheit mm (in)

Gewicht:

4,2 kg (9,26 lb)


Material

316L (1.4404)

Bestellnummer

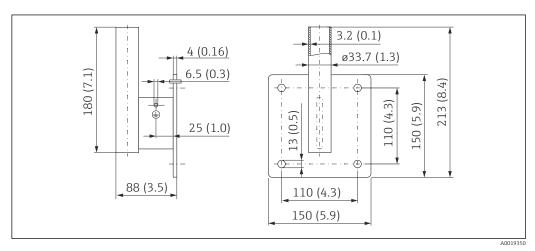
71452327

Montageständer, 1400 mm (55,1 in) für Ausleger schwenkbar

🛮 49 Abmessungen. Maßeinheit mm (in)

Gewicht:

6 kg (13,23 lb)


Material

316L (1.4404)

Bestellnummer

71452326

Wandhalter für Ausleger schwenkbar

■ 50 Abmessungen Wandhalter. Maßeinheit mm (in)

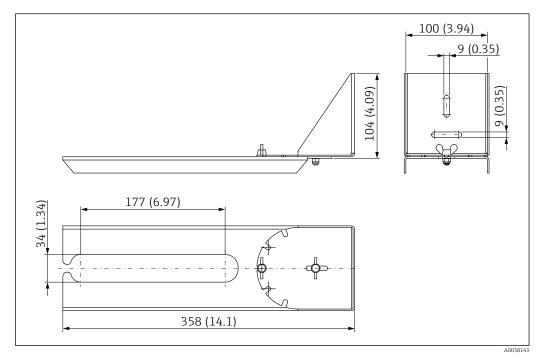
Gewicht

1,2 kg (2,65 lb)

Material

316L (1.4404)

Bestellnummer


71452323

Endress+Hauser 47

A0037800

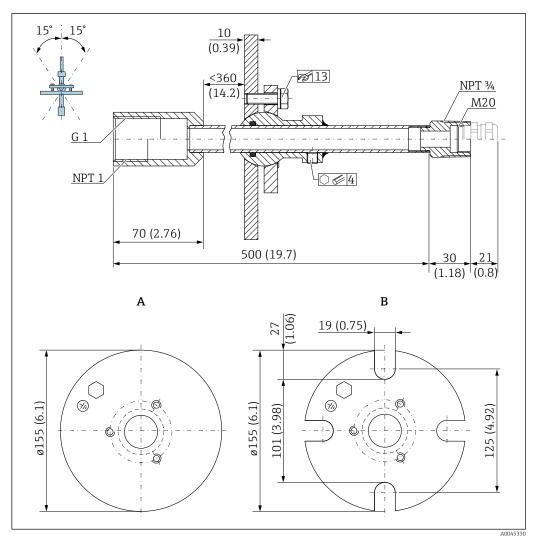
Schwenkbare Montagehalterung

Die schwenkbare Montagehalterung dient z. B. zur Installation in einer Einstiegsöffnung über einem Kanal.

 \blacksquare 51 Abmessungen schwenkbare Montagehalterung. Maßeinheit mm (in)

34 mm (1,34 in) Öffnungen für alle Prozessanschlüsse Kabeleinführung Gewinde G 1" oder MNPT 1"

Material 316L (1.4404)


Bestellnummer

71/20010

71429910

 $Ausricht vorrichtung\ FAU40$

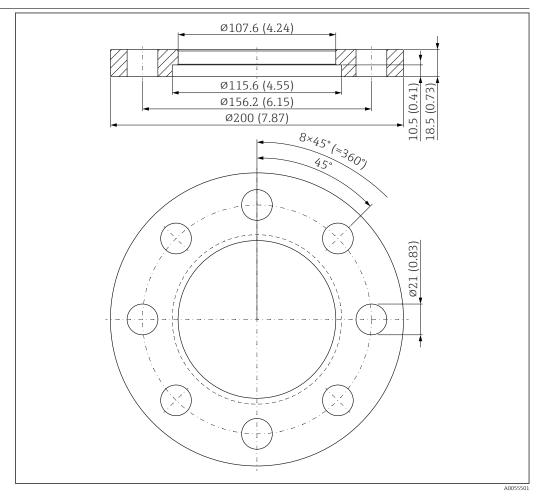
Die Ausrichtvorrichtung dient dazu, den Sensor optimal auf das Schüttgut auszurichten.

■ 52 Abmessungen. Maßeinheit mm (in)

- A Einschweissflansch
- B UNI Flansch

Material

- Flansch: 304
- Rohr: Stahl, verzinkt
- Kabelverschraubung: 304 oder Stahl, verzinkt


Bestellnummer

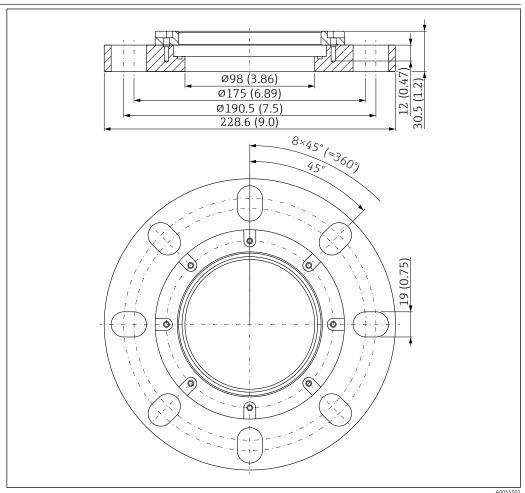
FAU40-##

Verwendbar für alle Prozessanschlüsse Kabeleinführung Gewinde G 1" oder MNPT 1" und Anschlusskabel max. Ø10 mm (0,43 in), Länge min. 600 mm (23,6 in).

Technische Information TI00179F

UNI-Überwurfflansch 3"/ DN80/80, PP

№ 53 Abmessungen UNI-Überwurfflansch 3"/DN80/80. Maßeinheit mm (in)


A Sensoranschluss gemäß Produktstruktur "Prozessanschluss Antennenende; ohne, vorbereitet für UNI-Überwurfflansch > Zubehör"

Material

PP

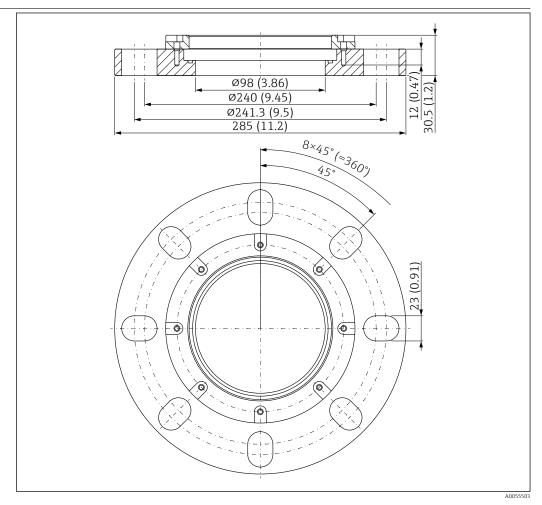
Bestellnummer

UNI-Überwurfflansch 4"/ DN100/100, PP

A0055502

€ 54 Abmessungen UNI-Überwurfflansch 4"/DN100/100. Maßeinheit mm (in)

Sensoranschluss gemäß Produktstruktur "Prozessanschluss Antennenende; ohne, vorbereitet für UNI-Überwurfflansch > Zubehör"


Material

PP

Bestellnummer

71162778

UNI-Überwurfflansch 6"/ DN150/150, PP

■ 55 Abmessungen UNI-Überwurfflansch 6"/DN150/150. Maßeinheit mm (in)

A Sensoranschluss gemäß Produktstruktur "Prozessanschluss Antennenende; ohne, vorbereitet für UNI-Überwurfflansch > Zubehör"

Material

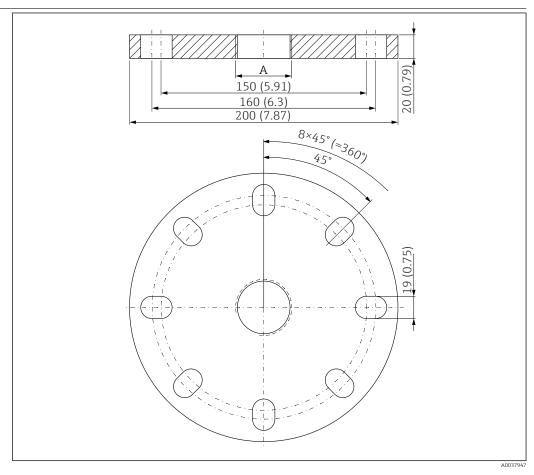
PP

Bestellnummer

UNI-Flansch 2"/DN50/50, PP

🖥 56 Abmessungen UNI-Flansch 2"/DN50/50. Maßeinheit mm (in)

A Sensoranschluss gemäß Produktstruktur "Prozessanschluss Antennenende"


Material

PP

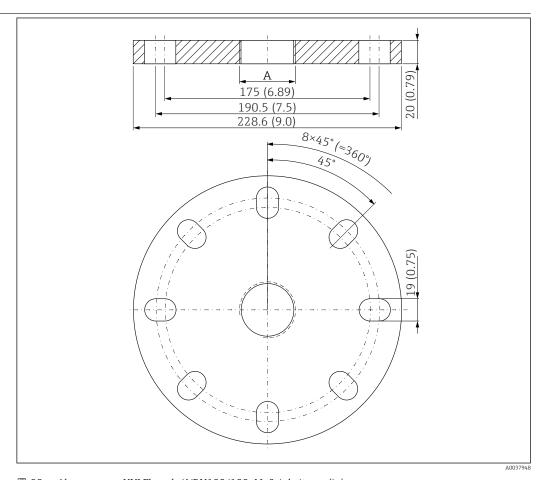
Bestellnummer

FAX50-####

UNI Flansch 3"/DN80/80, PP

■ 57 Abmessungen UNI Flansch 3"/DN80/80. Maßeinheit mm (in)

A Sensoranschluss gemäß Produktstruktur "Prozessanschluss Antennenende" oder "Prozessanschluss Kabeleinführung"


Material

PP

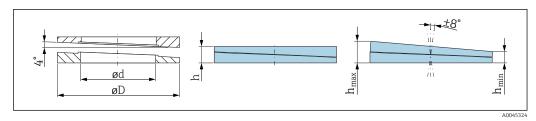
Bestellnummer

FAX50-####

UNI Flansch 4"/ DN100/100,PP

■ 58 Abmessungen UNI Flansch 4"/DN100/100. Maßeinheit mm (in)

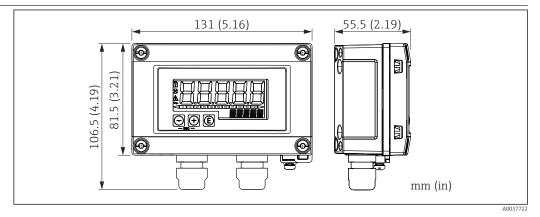
A Sensoranschluss gemäß Produktstruktur "Prozessanschluss Antennenende" oder "Prozessanschluss Kabeleinführung"


Material

PP

Bestellnummer

FAX50-####

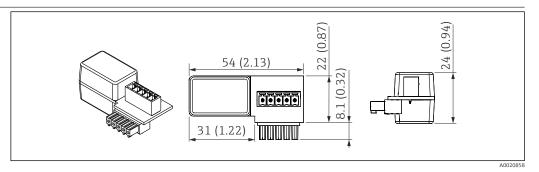

Verstellbare Flanschdichtung Die verstellbare Flanschdichtung dient zur Ausrichtung des Sensors.

■ 59 Abmessungen

Technische Daten: Ausführung DN/JIS			
Bestellnummer	71074263	71074264	71074265
Kompatibel mit	DN80 PN10/40	DN100 PN10/16	DN150 PN10/16JIS 10K 150A
Empfohlene Schraubenlänge	100 mm (3,9 in)	100 mm (3,9 in)	110 mm (4,3 in)
Empfohlene Schraubengröße	M14	M14	M18
Werkstoff	EPDM		
Prozessdruck	−0,1 0,1 bar (−1,45 1,45 psi)		
Prozesstemperatur	-40 +80 °C (−40 +176 °F)		
D	142 mm (5,59 in)	162 mm (6,38 in)	218 mm (8,58 in)
d	89 mm (3,5 in)	115 mm (4,53 in)	169 mm (6,65 in)
h	22 mm (0,87 in)	23,5 mm (0,93 in)	26,5 mm (1,04 in)
h_{\min}	14 mm (0,55 in)	14 mm (0,55 in)	14 mm (0,55 in)
h _{max}	30 mm (1,18 in)	33 mm (1,3 in)	39 mm (1,45 in)
Technische Daten: Ausführung ASME/JIS			
Bestellnummer	71249070	71249072	71249073
Kompatibel mit	ASME 3" 150lbsJIS 80A 10K	ASME 4" 150lbs	ASME 6" 150lbs
Empfohlene Schraubenlänge	100 mm (3,9 in)	100 mm (3,9 in)	110 mm (4,3 in)
Empfohlene Schraubengröße	M14	M14	M18
Werkstoff	EPDM		
Prozessdruck	−0,1 0,1 bar (−1,45 1,45 psi)		
Prozesstemperatur	-40 +80 °C (−40 +176 °F)		
D	133 mm (5,2 in)	171 mm (6,7 in)	219 mm (8,6 in)
d	89 mm (3,5 in)	115 mm (4,53 in)	168 mm (6,6 in)
h	22 mm (0,87 in)	23,5 mm (0,93 in)	26,5 mm (1,04 in)
h _{min}	14 mm (0,55 in)	14 mm (0,55 in)	14 mm (0,55 in)
h_{max}	30 mm (1,18 in)	33 mm (1,3 in)	39 mm (1,45 in)

RIA15 im Feldgehäuse

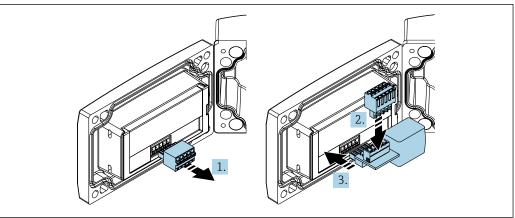
■ 60 Abmessungen RIA15 im Feldgehäuse. Maßeinheit mm (in)


- Ältere Geräteversionen bis Februar 2025 können ausschließlich über den 4...20mA-Stromausgang angeschlossen werden.
- Die Getrennte Anzeige RIA15 kann mit oder ohne Bedienung über die Produktstruktur "Zubehör beigelegt" bestellt werden.

Material Feldgehäuse: Kunststoff (PBT mit Stahlfasern, antistatisch)

Andere Gehäusevarianten sind über die RIA15 Bestellstruktur verfügbar.

Alternativ als Zubehör erhältlich, für Einzelheiten: Dokument Technische Information TI01043K und Betriebsanleitung BA01170K


HART Kommunikationswiderstand

 \blacksquare 61 Abmessungen HART Kommunikationswiderstand. Maßeinheit mm (in)

Der HART Kommunikationswiderstand wird zur Bedienung des RIA15 benötigt und wird bei Bestellung "getrennte Anzeige RIA15, mit Bedienung via HART" mitgeliefert.

Dokument Technische Information TI01043K und Betriebsanleitung BA01170K

A0020844

- Zur Bedienung des RIA15 muss der HART Kommunikationswiderstand eingebaut werden.
- 1. Steckbaren Klemmenblock abziehen.
- Klemmenblock in den vorgesehenen Steckplatz auf dem HART Kommunikationswiderstandsmodul einstecken.
- 3. HART Kommunikationswiderstand in Steckplatz im Gehäuse einstecken.

DeviceCare SFE100

Konfigurationswerkzeug für IO-Link, HART-, PROFIBUS- und FOUNDATION Fieldbus-Feldgeräte DeviceCare steht zum kostenlosen Download bereit unter www.software-products.endress.com. Zum Download ist die Registrierung im Endress+Hauser-Softwareportal erforderlich.

Technische Information TI01134S

FieldCare SFE500

FDT-basiertes Anlagen-Asset-Management-Tool

Es kann alle intelligenten Feldeinrichtungen in Ihrer Anlage konfigurieren und unterstützt Sie bei deren Verwaltung. Durch Verwendung von Statusinformationen stellt es darüber hinaus ein einfaches, aber wirkungsvolles Mittel dar, deren Zustand zu kontrollieren.

Technische Information TI00028S

Device Viewer

Im *Device Viewer* (www.endress.com/deviceviewer) werden alle Zubehörteile zum Gerät inklusive Bestellcode aufgelistet.

Commubox FXA195 HART

Für die eigensichere HART-Kommunikation mit FieldCare über die USB-Schnittstelle

Technische Information TI00404F

RN22

1-oder 2-kanaliger Speisetrenner für die sichere Potentialtrennung von $4\dots 20$ mA Normsignalstromkreisen, HARTtransparent

Technische Information TI01515K und Betriebsanleitung BA02004K

RN42

1-kanaliger Speisetrenner mit Weitbereichs-Stromversorgung für die sichere Potentialtrennung von $4\dots 20$ mA Normsignalstromkreisen, HARTtransparent

Technische Information TI01584K und Betriebsanleitung BA02090K

Field Xpert SMT70

Universeller, leistungsstarker Tablet PC zur Gerätekonfiguration in Ex-Zone-2- und Nicht-Ex Bereichen

Zu Einzelheiten: Dokument "Technische Information" TI01342S

Field Xpert SMT77

Universeller, leistungsstarker Tablet PC zur Gerätekonfiguration in Ex-Zone-1-Bereichen

Zu Einzelheiten: Dokument "Technische Information" TIO1418S

SmartBlue-App

Mobile App für die einfache Konfiguration der Geräte vor Ort über Bluetooth® wireless technology.

RMA42

Digitaler Prozesstransmitter zur Überwachung und Darstellung von analogen Messwerten

Zu Einzelheiten: Dokument Technische Information TI00150R und Betriebsanleitung BA00287R

Dokumentation

Eine Übersicht zum Umfang der zugehörigen Technischen Dokumentation bieten:

- Device Viewer (www.endress.com/deviceviewer): Seriennummer vom Typenschild eingeben
- Endress+Hauser Operations App: Seriennummer vom Typenschild eingeben oder Matrixcode auf dem Typenschild einscannen

Standarddokumentation

Dokumenttyp Betriebsanleitung (BA)

Installation und Erstinbetriebnahme – Enthält alle Funktionen im Bedienmenü, die für eine gewöhnliche Messaufgabe benötigt werden. Darüber hinaus gehende Funktionen sind nicht enthalten.

Dokumenttyp Beschreibung Geräteparameter (GP)

Das Dokument ist Teil der Betriebsanleitung und dient als Nachschlagewerk für Parameter: Es liefert detaillierte Erläuterungen zu jedem einzelnen Parameter des Bedienmenüs.

Dokumenttyp Kurzanleitung (KA)

Schnell zum 1. Messwert – Beinhaltet alle wesentlichen Informationen von der Warenannahme bis zum elektrischen Anschluss.

Dokumenttyp Sicherheitshinweise, Zertifikate

Abhängig von der Zulassung liegen dem Gerät bei Auslieferung Sicherheitshinweise bei, z. B. XA. Die Dokumentationen sind integraler Bestandteil der Betriebsanleitung.

Auf dem Typenschild ist angegeben, welche Sicherheitshinweise (XA) für das jeweilige Gerät relevant sind.

Geräteabhängige Zusatzdokumentation

Je nach bestellter Geräteausführung werden weitere Dokumente mitgeliefert: Anweisungen der entsprechenden Zusatzdokumentation konsequent beachten. Die Zusatzdokumentation ist fester Bestandteil der Dokumentation zum Gerät.

Eingetragene Marken

Apple[®]

Apple, das Apple Logo, iPhone und iPod touch sind Marken der Apple Inc., die in den USA und weiteren Ländern eingetragen sind. App Store ist eine Dienstleistungsmarke der Apple Inc.

Android[®]

Android, Google Play und das Google Play-Logo sind Marken von Google Inc.

Bluetooth®

Die *Bluetooth*®-Wortmarke und -Logos sind eingetragene Marken von Bluetooth SIG. Inc. und jegliche Verwendung solcher Marken durch Endress+Hauser erfolgt unter Lizenz. Andere Marken und Handelsnamen sind die ihrer jeweiligen Eigentümer.

HART®

Eingetragene Marke der FieldComm Group, Austin, Texas, USA

www.addresses.endress.com

