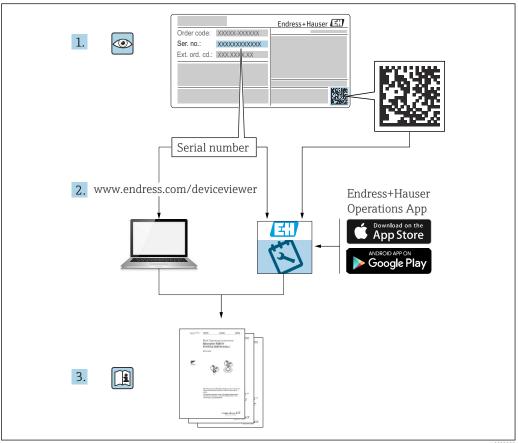
Инструкция по эксплуатации Micropilot FMR67B PROFIBUS PA

Бесконтактный радарный уровнемер



A002355

- Убедитесь в том, что документ хранится в безопасном месте и всегда доступен при работе с прибором
- В целях предотвращения опасности для персонала и имущества внимательно ознакомьтесь с разделом «Основные указания по технике безопасности», а также со всеми другими указаниями по технике безопасности, содержащимися в документе и имеющими отношение к рабочим процедурам

Изготовитель сохраняет за собой право на изменение технических характеристик без предварительного уведомления. Актуальную информацию и обновления настоящего руководства по эксплуатации можно получить в региональной торговой организации Endress+Hauser.

Содержание

1	Информация об этом документе б		5.3.3 Антенна с покрытием из РТFE с	
1.1	Назначение документа 6		защитой от конденсата	10
1.2	Символы 6		, , , ,	18
	1.2.1 Символы техники безопасности 6		5.3.4 Антенна, монтаж заподлицо	19
	1.2.2 Описание информационных		, , , ,	19
	символов и рисунков 6		5.3.5 Монтируемая заподлицо антенна	
1.3	Список аббревиатур		80 мм (3 дюйм) с приспособлением	19
1.4	Документация		для выравнивания	19
1.5	Зарегистрированные товарные знаки 8		1 11	20
			, 0	20
2	Основные указания по технике		1 1 3	21
_	безопасности		5.3.9 Изменение положения установки	
2.1	Требования к работе персонала 9			22
2.2	Назначение	,	5.3.10 Закрывание крышек корпуса	
2.3	Техника безопасности на рабочем месте 10	5.4	Проверка после монтажа	23
2.4	Эксплуатационная безопасность			
2.5	Безопасность изделия	6	Электрическое подключение 2	25
2.6	ІТ-безопасность	6.1	Требования, предъявляемые к	
2.7	ИТ-безопасность прибора 11		подключению	25
	• •		6.1.1 Крышка с крепежным винтом	
3	Описание изделия 12		6.1.2 Выравнивание потенциалов	25
		6.2	Подключение прибора	
3.1	Конструкция изделия		6.2.1 Сетевое напряжение	27
			6.2.2 Технические характеристики	
4	Приемка и идентификация		кабеля	
	изделия 13		6.2.3 Защита от перенапряжения	
4.1	Приемка		· · · · · · · · · · · · · · · · · · ·	28
4.2	Идентификация изделия			29
1.2	4.2.1 Заводская табличка		6.2.6 Кабельные вводы	
	4.2.2 Адрес изготовителя	6.3	, , , ,	
4.3	Хранение и транспортировка	0.5	6.3.1 Кабельные вводы	
	4.3.1 Условия хранения	6.4	Проверки после подключения	
	4.3.2 Транспортировка изделия до точки	0.4	проверки после подключении	71
	измерения	7	Опции управления	33
		_		
5	Монтаж	7.1 7.2	Обзор опций управления	33
5.1	Общие инструкции	,		33
5.2	Требования, предъявляемые к монтажу 15		*	33
	5.2.1 Внутренние элементы резервуара 15		<u> </u>	34
	5.2.2 Предотвращение эхо-помех 16	7.3		34
	5.2.3 Выравнивание оси антенны по		7.3.1 Уровни доступа и соответствующая	
	вертикали		авторизация	34
	5.2.4 Выравнивание оси конуса	7.4	Доступ к меню управления посредством	
	радиолуча антенны 16		местного дисплея	34
	5.2.5 Способы оптимизации		7.4.1 Дисплей прибора (опционально)	34
5.3	Установка прибора		7.4.2 Управление через технологию	
	5.3.1 Рупорная антенна		беспроводной связи Bluetooth®	
	65 мм (2,56 дюйм)		·	35
	5.3.2 Рупорная антенна	7.5	Доступ к меню управления посредством	
	65 мм (2,56 дюйм) с		J 1 ' 1 1	37
	приспособлением для выравнивания	7.6		37
	выравливалия		7.6.1 Совокупность функций	37

7.7	FieldCare 37 7.7.1 Диапазон функций 37		11.3.3 Сигнал состояния	
В	Интеграция в систему 39	g 11.4	текстовое описание события Информация о способах	53
	1 .		исправленияВызов	54
3.1	Данные протокола		11.4.1 Графический дисплей с кнопками	54
2 2	8.1.1 PROFIBUS PA		11.4.2 Меню управления	
3.2	Основной файл прибора (GSD)	11.7	Адаптация диагностической информации .	
	8.2.1 GSD-файл конкретного	11.6	Список диагностических событий	
	производителя	1 11./	Журнал событий	
	8.2.2 GSD-файл профиля	0	J1	57
	8.2.3 Совместимость с другими	1	11.7.2 Фильтрация журнала событий	
2 2	приборами	1		
3.3	Циклическая передача данных 42 8.3.1 Блочная модель 42	1 110	Сброс параметров прибора	58
	8.3.2 Описание модулей		11.8.1 Сброс пароля с помощью	
	о. э. г. описание модулеи		управляющей программы	58
_	7	_	11.8.2 Сброс параметров прибора с	
9	Ввод в эксплуатацию 45	>	помощью управляющей	
9.1	Предварительные условия 45	5	программы	59
9.2	Монтаж и функциональная проверка 45	5	11.8.3 Сброс параметров прибора с	
9.3	Установление соединения с помощью ПО		помощью кнопок на электронной	
	FieldCare и DeviceCare 4	1110	BCTABKE	
	9.3.1 По протоколу PROFIBUS PA 45	1 1110		
	9.3.2 Через сервисный интерфейс (CDI) 46	0	История изменений встроенного ПО	60
9.4	Настройка языка управления 40		_	
	9.4.1 Локальный дисплей		Техническое обслуживание	60
	9.4.2 Управляющая программа 46	1 14.1	Очистка	60
9.5	Настройка прибора 47		12.1.1 Очистка поверхностей, не	
	9.5.1 Измерение уровня сыпучих сред 47	7	контактирующих с	
	9.5.2 Ввод в эксплуатацию с помощью	_	технологической средой	60
2.6	мастера		12.1.2 Очистка поверхностей,	
9.6	Запись графика Эхо-кривая		контактирующих с	
9.7	Подменю "Моделирование" 48	8	технологической средой	
10	Эксплуатация	12.2	Уплотнения	61
10	, ·		D	~ 2
10.1	Считывание сведений о состоянии	13	Ремонт	62
100	блокировки прибора		Общая информация	62
10.2	Чтение измеренных значений		13.1.1 Принцип ремонта	62
10.3 10.4	Адаптация прибора к условиям процесса 49 Технология Heartbeat (опционально) 49		13.1.2 Ремонт приборов во	
10.4	10.4.1 Heartbeat Verification	o l	взрывозащищенном исполнении	
	10.4.2 Heartbeat Verification/Monitoring 49	15.4	Запасные части	
	10.4.2 Heartbeat verification/Monitoring 4.	9 13.3	Замена	
1 1	П	10.7	13.3.1 HistoROM	
11	Диагностика и устранение	13.4 13.5	Возврат	
	неисправностей 50	0 15.5	1 пинации	رن
11.1	Общие сведения об устранении	o 14	Принадлежности	64
	неисправностей	0	- · · ·	O-I
	11.1.1 Ошибки общего характера 50	0 14.1	Козырек для защиты от атмосферных	
11.2	Ошибка – управление с помощью	1/2	воздействий: сталь 316L, XW112	64
110	приложения SmartBlue	1	Козырек для защиты от атмосферных	c 1.
11.3	Диагностическое сообщение 52		воздействий, пластмассовый, XW111	
	11.3.1 Диагностическая информация,	14.3	Регулируемое уплотнение фланца	65
	отображаемая на локальном дисплее	2	·	66
	дисплее	۷		
	отображаемая в управляющей		14.3.4 Регулируемое уплотнение ASME	50
	программе	2	3"/JIS 80A	66
	iipoi paimite	-	- J	

	14.3.5	Регулируемое уплотнение ASME 4".	67
	14.3.6	Регулируемое уплотнение ASME	
		6"/JIS 150A	67
14.4	Выносн	ой дисплей FHX50B	68
14.5	Гермет	ичное уплотнение	70
14.6		pert SMT70	70
14.7	DeviceC	Care SFE100	70
14.8		re SFE500	70
14.9			70
14.10			71
14.11	Fieldga	te SFG500	71
15	Техни	ческие данные	73
15.1	Вхол		73
15.2		• • • • • • • • • • • • • • • • • • • •	74
15.3		я окружающей среды	76
15.4		етры технологического процесса	87
	-	-	
Алфа	авитнь	ый указатель	89

1 Информация об этом документе

1.1 Назначение документа

Настоящее руководство по эксплуатации содержит информацию, необходимую на различных стадиях срока службы прибора: начиная с идентификации изделия, приемки и хранения, монтажа, подключения, ввода в эксплуатацию, эксплуатации и завершая устранением неисправностей, техническим обслуживанием и утилизацией.

1.2 Символы

1.2.1 Символы техники безопасности

Λ ΟΠΑCΗΟ

Этот символ предупреждает об опасной ситуации. Если не предотвратить такую ситуацию, она приведет к серьезной или смертельной травме.

№ ОСТОРОЖНО

Этот символ предупреждает об опасной ситуации. Если не предотвратить эту ситуацию, она может привести к серьезной или смертельной травме.

№ ВНИМАНИЕ

Этот символ предупреждает об опасной ситуации. Если не предотвратить эту ситуацию, она может привести к травме легкой или средней степени тяжести.

УВЕДОМЛЕНИЕ

Этот символ указывает на информацию о процедуре и на другие действия, которые не приводят к травмам.

1.2.2 Описание информационных символов и рисунков

√ Разрешено

Обозначает разрешенные процедуры, процессы или действия.

Х Запрещено

Обозначает запрещенные процедуры, процессы или действия.

Рекомендация

Указывает на дополнительную информацию.

Ссылка на документацию

Ссылка на страницу

Ссылка на рисунок.

Указание, обязательное для соблюдения

1., 2., 3.

Серия шагов

┕

Результат шага

1, 2, 3, ...

Номера пунктов

A, B, C, ...

Виды

1.3 Список аббревиатур

МРД

Максимальное рабочее давление Значение МРД указано на заводской табличке.

$\varepsilon_{\rm r}$ (значение Dk)

Относительная диэлектрическая проницаемость

плк

Программируемый логический контроллер (ПЛК)

CDI

Единый интерфейс данных

1.4 Документация

Общие сведения о сопутствующей технической документации можно получить следующими способами.

- Программа *Device Viewer*www.endress.com/deviceviewer: введите серийный номер с заводской таблички.
- *Приложение Endress+Hauser Operations*: введите серийный номер с заводской таблички или просканируйте матричный штрих-код на заводской табличке.

В разделе "Документация" (Downloads) на веб-сайте компании Endress+Hauser (www.endress.com/downloads) размещены документы следующих типов:

Тип документа	Назначение и содержание документа					
Техническое описание (TI)	Информация о технических характеристиках и комплектации прибора для планирования его применения В документе содержатся все технические характеристики прибора, а также обзор его вспомогательных компонентов и дополнительного оборудования.					
Краткое руководство по эксплуатации (КА)	Информация по быстрой подготовке прибора к эксплуатации В кратком руководстве по эксплуатации содержится наиболее важная информация от приемки прибора до его ввода в эксплуатацию.					
Руководство по эксплуатации (BA)	Справочный документ Руководство по эксплуатации содержит всю информацию, которая требуется на различных этапах жизненного цикла прибора: от идентификации изделия, приемки, хранения, монтажа, подключения, эксплуатации и ввода в эксплуатацию до устранения неисправностей, технического обслуживания и утилизации.					
Описание параметров прибора (GP)	Справочник по параметрам Документ содержит подробное пояснение по каждому отдельному параметру. Документ предназначен для лиц, работающих с прибором на протяжении всего срока службы и выполняющих его настройку.					
Указания по технике безопасности (XA)	При наличии определенного сертификата к прибору также прилагаются правила техники безопасности для электрооборудования, предназначенного для эксплуатации во взрывоопасных зонах. Данные указания являются неотъемлемой частью руководства по эксплуатации. Заводская табличка с указаниями по технике безопасности (ХА), относящимися к прибору.					
Сопроводительная документация для конкретного прибора (SD/FY)	Строго соблюдайте инструкции, приведенные в соответствующей сопроводительной документации. Сопроводительная документация является составной частью документации, прилагаемой к прибору.					

1.5 Зарегистрированные товарные знаки

PROFIBUS®

PROFIBUS и соответствующе товарные знаки (товарный знак Ассоциации, товарные знаки для технологий, сертификационный товарный знак и сертифицированный компанией PI товарный знак) являются зарегистрированными товарными знаками PROFIBUS User Organization e.V. (организации пользователей Profibus), Карлсруэ, Германия

Bluetooth®

Тестовый символ и логотипы $Bluetooth^{@}$ являются зарегистрированными товарными знаками, принадлежащими Bluetooth SIG, Inc., и любое использование таких знаков компанией Endress+Hauser осуществляется по лицензии. Другие товарные знаки и торговые наименования принадлежат соответствующим владельцам.

Apple[®]

Apple, логотип Apple, iPhone и iPod touch являются товарными знаками компании Apple Inc., зарегистрированными в США и других странах. App Store – знак обслуживания Apple Inc.

Android®

Android, Google Play и логотип Google Play – товарные знаки Google Inc.

KALREZ®, VITON®

Зарегистрированные товарные знаки DuPont Performance Elastomers L.L.C., Уилмингтон, США

2 Основные указания по технике безопасности

2.1 Требования к работе персонала

Требования к персоналу, выполняющему монтаж, ввод в эксплуатацию, диагностику и техобслуживание:

- Обученные квалифицированные специалисты должны иметь соответствующую квалификацию для выполнения конкретных функций и задач.
- ▶ Получить разрешение на выполнение данных работ от руководства предприятия.
- Ознакомиться с нормами федерального/национального законодательства.
- ► Перед началом работы внимательно ознакомиться с инструкциями, представленными в руководстве, с дополнительной документацией, а также с сертификатами (в зависимости от цели применения).
- Следовать инструкциям и соблюдать основные условия.

Обслуживающий персонал должен соответствовать следующим требованиям:

- ► Получить инструктаж и разрешение у руководства предприятия в соответствии с требованиями выполняемой задачи.
- ▶ Следовать инструкциям, представленным в данном руководстве.

2.2 Назначение

Область применения и технологическая среда

Измерительный прибор, описанный в настоящем руководстве по эксплуатации, предназначен для непрерывного измерения уровня сыпучих материалов неконтактным способом. Поскольку рабочая частота прибора составляет около 80 ГГц, максимальная пиковая мощность излучения – менее 1,5 мВт, а средняя выходная мощность – менее 70 мкВт, прибор можно устанавливать снаружи закрытых металлических емкостей (например, над грудами вещества). Эксплуатация не представляет какой бы то ни было угрозы ни людям, ни животным.

При соблюдении предельных значений, указанных в разделе «Технические характеристики», и условий, указанных в руководствах и дополнительной документации, измерительный прибор можно использовать только для выполнения следующих измерений:

- ▶ измеряемые переменные процесса: уровень, расстояние, мощность сигнала;
- рассчитываемые переменные процесса: объем или масса в сосуде любой формы.

Чтобы обеспечить нахождение измерительного прибора в исправном состоянии во время эксплуатации, необходимо соблюдать следующие условия:

- ► Используйте измерительный прибор только с теми средами, в отношении которых смачиваемые части прибора обладают достаточной стойкостью.
- ► Соблюдайте предельные значения, указанные в разделе «Технические характеристики».

Использование не по назначению

Изготовитель не несет ответственности за повреждения, вызванные неправильным использованием или использованием прибора не по назначению.

Избегайте механических повреждений.

► Не прикасайтесь к поверхностям прибора (например, для очистки) твердыми или заостренными предметами.

Пояснение по поводу сложных ситуаций

► Сведения о специальных жидкостях, в том числе жидкостях для очистки: специалисты Endress+Hauser готовы предоставить всю необходимую информацию, касающуюся устойчивости к коррозии материалов, находящихся в

контакте с жидкостями, но не несут какой-либо ответственности и не предоставляют каких бы то ни было гарантий.

Остаточные риски

За счет теплопередачи от выполняемого процесса, а также вследствие рассеивания мощности электронных компонентов корпус электроники и встроенные компоненты (например дисплей, главный модуль электроники и электронный модуль ввода / вывода) могут нагреться до 80°C (176°F). Во время работы датчик может нагреваться до температуры, близкой к температуре среды.

Опасность ожогов при соприкосновении с поверхностями!

► При повышенной температуре жидкости следует обеспечить защиту от прикосновения для предотвращения ожогов.

2.3 Техника безопасности на рабочем месте

При работе с прибором следует соблюдать следующие правила.

- ► В соответствии с федеральным/национальным законодательством персонал должен использовать средства индивидуальной защиты.
- ▶ Подключение прибора выполняется при отключенном сетевом напряжении.

2.4 Эксплуатационная безопасность

Повреждение прибора!

- ► Эксплуатация прибора должна осуществляться, только когда он находится в исправном рабочем состоянии и не представляет угрозу безопасности.
- ▶ Ответственность за бесперебойную работу прибора несет оператор.

Модификация прибора

Несанкционированное изменение конструкции прибора запрещено и может представлять непредвиденную опасность!

 Если модификация все же необходима, обратитесь за консультацией к изготовителю.

Ремонт

Для обеспечения постоянной эксплуатационной безопасности и надежности необходимо соблюдать следующие правила:

- ▶ Ремонт прибора возможен только при наличии специального разрешения.
- ▶ Соблюдайте федеральные/национальные нормы, касающиеся ремонта электрических приборов.
- Допускается использование только оригинальных аксессуаров и запасных частей.

2.5 Безопасность изделия

Описываемый прибор разработан в соответствии со сложившейся инженерной практикой, отвечает современным требованиям безопасности, прошел испытания и поставляется с завода в безопасном для эксплуатации состоянии.

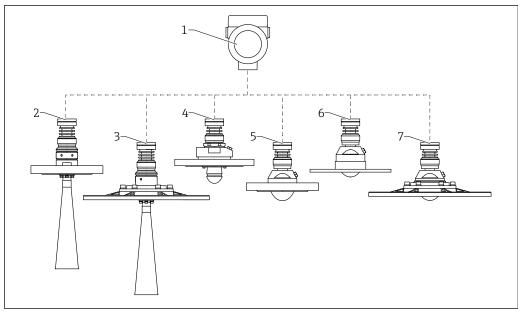
Он соответствует общим стандартам безопасности и требованиям законодательства. Кроме того, прибор соответствует директивам ЕС, которые перечислены в составленной для него декларации соответствия требованиям ЕС. Изготовитель подтверждает это нанесением на прибор маркировки СЕ.

2.6 IT-безопасность

Гарантия изготовителя действует только в том случае, если изделие установлено и используется в соответствии с руководством по эксплуатации. Изделие оснащено

механизмами безопасности для защиты от любого непреднамеренного изменения настроек.

Меры ИТ-безопасности, которые обеспечивают дополнительную защиту изделия и связанной с ним передачи данных, должны быть реализованы самим оператором в соответствии с действующими в его компании стандартами безопасности.


2.7 ИТ-безопасность прибора

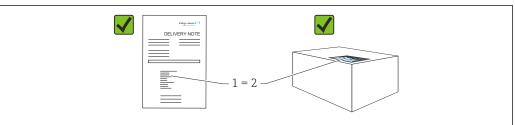
Прибор оснащен специальными функциями для поддержания защитных мер оператором. Эти функции доступны для настройки пользователем и при правильном применении обеспечивают повышенную эксплуатационную безопасность. Обзор наиболее важных функций приведен в следующем разделе:

- Защита от записи с помощью аппаратного переключателя
- Код доступа (применяется для управления с использованием дисплея, интерфейса Bluetooth или ПО FieldCare, DeviceCare, PDM)

3 Описание изделия

3.1 Конструкция изделия

A004666


🗷 1 Конструкция прибора MicropilotFMR67B

- 1 Корпус электроники
- 2 Рупорная антенна DN65 с фланцем
- 3 Рупорная антенна DN65 с фланцем UNI и приспособлением для выравнивания
- 4 Антенна с защитой от конденсата 50 мм (2 дюйм), с фланцем; по отдельному заказу с соединением для продувочного воздуха
- 5 Монтируемая заподлицо антенна, 80 мм (3 дюйм), с фланцем; по отдельному заказу с соединением для продувочного воздуха
- 5 Монтируемая заподлицо антенна, 80 мм (3 дюйм), с фланцем UNI; по отдельному заказу с соединением для продувочного воздуха
- 7 Монтируемая заподлицо антенна, 80 мм (3 дюйм), с фланцем UNI и приспособлением для выравнивания; по отдельному заказу с соединением для продувочного воздуха

12

4 Приемка и идентификация изделия

4.1 Приемка

A0016870

Во время приемки необходимо проверить соблюдение следующих условий.

- Совпадает ли код заказа, указанный в накладной (1), с кодом заказа, который указан на наклейке изделия (2)?
- Не поврежден ли товар?
- Соответствует ли информация, указанная на заводской табличке, с данными заказа и накладной?
- Имеется ли в наличии документация?
- Если применимо (см. заводскую табличку): имеются ли указания по технике безопасности (XA)?
- Если одно из этих условий не выполнено, обратитесь в торговую организацию компании-изготовителя.

4.2 Идентификация изделия

Существуют следующие варианты идентификации изделия:

- данные, указанные на заводской табличке;
- расширенный код заказа с разбивкой по характеристикам изделия, указанный в накладной.
- ► Программа *Device Viewer*(www.endress.com/deviceviewer): введите серийный номер с заводской таблички.
 - ▶ Отображается вся информация о приборе.
- ▶ Приложение Endress+Hauser Operations: ввод серийного номера с заводской таблички или сканирование двухмерного штрих-кода с заводской таблички.
 - ▶ Отображается вся информация о приборе.

4.2.1 Заводская табличка

Вы получили правильное устройство?

На заводской табличке приведены следующие сведения о приборе:

- Информация об изготовителе, обозначение прибора
- Код заказа
- Расширенный код заказа
- Серийный номер
- Обозначение (TAG) (опция)
- Технические характеристики, например сетевое напряжение, потребление тока, температура окружающей среды, сведения о передаче данных (опция)
- Степень защиты
- Сертификаты с соответствующими символами
- Ссылка на правила техники безопасности (ХА) (опция)

• Сравните данные на заводской табличке с данными заказа.

4.2.2 Адрес изготовителя

Endress+Hauser SE+Co. KG Hauptstraße 1 79689 Maulburg, Германия

Место изготовления: см. заводскую табличку.

4.3 Хранение и транспортировка

4.3.1 Условия хранения

- Используйте оригинальную упаковку
- Храните измерительный прибор в чистом сухом помещении. Примите меры по защите от ударных повреждений

Диапазон температуры хранения

См. техническое описание.

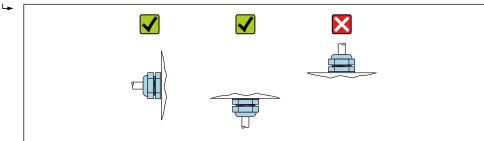
4.3.2 Транспортировка изделия до точки измерения

▲ ОСТОРОЖНО

Неправильная транспортировка!

Корпус или датчик могут быть повреждены или оторваны. Опасность несчастного случая!

- ► Транспортировать измерительный прибор к точке измерения следует в оригинальной упаковке или захватив его за присоединение к процессу.
- ► Всегда закрепляйте подъемное оборудование (стропы, проушины и т. п.) за присоединение к процессу и никогда не поднимайте прибор за корпус или датчик. Обращайте внимание на расположение центра тяжести прибора, чтобы прибор не наклонялся и не мог неожиданно соскользнуть.

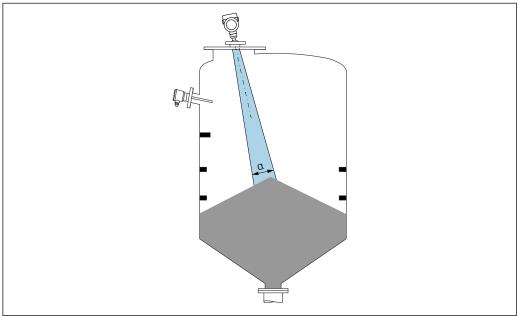

5 Монтаж

5.1 Общие инструкции

▲ ОСТОРОЖНО

Потеря степени защиты в случае распаковки прибора во влажной среде

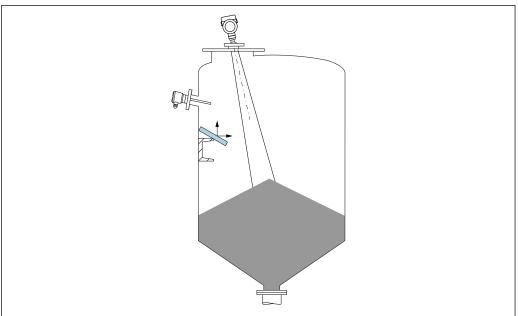
- ▶ Устанавливайте прибор исключительно в сухом месте!
- 1. Смонтируйте прибор или поверните корпус так, чтобы кабельные вводы не были направлены вверх.



A002926

- 2. В обязательном порядке плотно затягивайте крышку корпуса и кабельные вводы.
- 3. Затягивайте контргайки кабельных вводов.
- 4. При прокладывании кабеля необходимо предусмотреть провисающую петлю для стока воды.

5.2 Требования, предъявляемые к монтажу


5.2.1 Внутренние элементы резервуара

A003181

Избегайте установки внутренних устройств (датчиков уровня, датчиков температуры, стержней, вакуумных колец, теплообменников, перегородок и т. п.) в зоне распространения сигнального луча. Учитывайте угол расхождения луча α .

5.2.2 Предотвращение эхо-помех

A002101

Установленные под углом металлические отражатели для рассеивания сигнального луча способствуют предотвращению эхо-помех.

5.2.3 Выравнивание оси антенны по вертикали

Сориентируйте антенну перпендикулярно поверхности среды.

Если направление передачи антенны не перпендикулярно измеряемой среде (или при наличии дополнительных интерференционных сигналов), максимальная зона действия луча антенны может быть уменьшена.

5.2.4 Выравнивание оси конуса радиолуча антенны

Учитывая характер направленности, радиальное выравнивание антенны не обязательно.

5.2.5 Способы оптимизации

Маскирование помех

Процесс измерения можно оптимизировать путем электронного подавления эхопомех.

См. параметр Подтвердить расстояние.

5.3 Установка прибора

5.3.1 Рупорная антенна 65 мм (2,56 дюйм)

Информация о монтажном штуцере

Зависимость максимально допустимой длины штуцера $H_{\text{макс.}}$ от диаметра штуцера D.

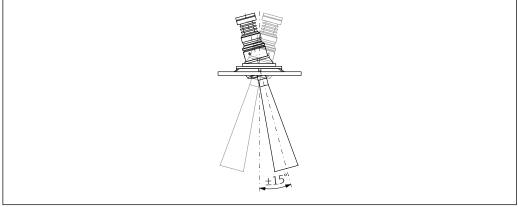
 ФD
 Н_{макс.}

 80 до 100 мм (3,2 до 4 дюйм)
 1700 мм (67 дюйм)

 100 до 150 мм (4 до 6 дюйм)
 2 100 мм (83 дюйм)

 ≥ 150 мм (6 дюйм)
 3 200 мм (126 дюйм)

Зависимость максимально допустимой длины штуцера $H_{\text{макс.}}$ от диаметра штуцера (D)


👔 При большей длине штуцера следует ожидать ухудшения точности измерений.

Учитывайте следующие обстоятельства.

- Конец штуцера должен быть гладким, без заусенцев.
- Край штуцера должен быть закругленным.
- Необходимо выполнить маскирование помех.
- Если высота штуцера превышает указанное в таблице значение, обратитесь в службу поддержки компании-изготовителя.

5.3.2 Рупорная антенна 65 мм (2,56 дюйм) с приспособлением для выравнивания

Для рупорной антенны выпускаются фланцы UNI с встроенным приспособлением для выравнивания 65 мм (2,56 дюйм). С помощью приспособления для выравнивания можно задать угол наклона до 15 град в любом направлении. Приспособление для выравнивания используется для оптимального выравнивания измерительного сигнала по отношению к поверхности сыпучего материала.

A004889

🖻 2 Рупорная антенна с приспособлением для выравнивания

Информация о монтажном штуцере

Зависимость максимально допустимой длины штуцера $H_{\text{макс.}}$ от диаметра штуцера D.

 ФD
 Н_{макс.}

 80 до 100 мм (3,2 до 4 дюйм)
 1700 мм (67 дюйм)

 100 до 150 мм (4 до 6 дюйм)
 2 100 мм (83 дюйм)

 ≥ 150 мм (6 дюйм)
 3 200 мм (126 дюйм)

Зависимость максимально допустимой длины штуцера $H_{\text{макс.}}$ от диаметра штуцера (D)

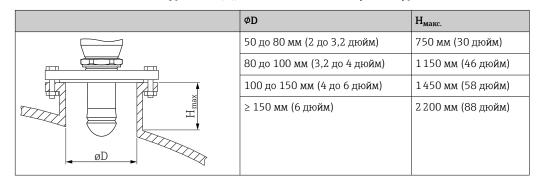
🚹 При большей длине штуцера следует ожидать ухудшения точности измерений.

Учитывайте следующие обстоятельства.

øD

- Конец штуцера должен быть гладким, без заусенцев.
- Край штуцера должен быть закругленным.
- Необходимо выполнить маскирование помех.
- Если высота штуцера превышает указанное в таблице значение, обратитесь в службу поддержки компании-изготовителя.

5.3.3 Антенна с покрытием из PTFE с защитой от конденсата 50 мм (2 дюйм)


Информация о резьбовых соединениях

- Заворачивайте прибор только за шестигранный участок.
- Инструмент: рожковый гаечный ключ 55 мм
- Максимально допустимый момент затяжки: 50 Нм (36 фунт сила фут)

Информация о монтажном патрубке

Зависимость максимально допустимой длины штуцера $H_{\text{макс.}}$ от диаметра штуцера D.

Максимальная длина патрубка $H_{\text{макс.}}$ зависит от диаметра патрубка D

🚹 При большей длине штуцера следует ожидать ухудшения точности измерений.

Учитывайте следующие обстоятельства.

- Конец штуцера должен быть гладким, без заусенцев.
- Край штуцера должен быть закругленным.
- Необходимо выполнить маскирование помех.
- Если высота штуцера превышает указанное в таблице значение, обратитесь в службу поддержки компании-изготовителя.

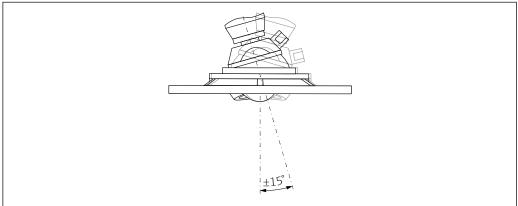
5.3.4 Антенна, монтаж заподлицо 80 мм (3 дюйм)

Информация о монтажном штуцере

Зависимость максимально допустимой длины штуцера $H_{\text{макс.}}$ от диаметра штуцера D.

Установка штуцера антенны, монтаж заподлицо 80 мм (3 дюйм)

	ØD	H _{Makc.}	
	80 до 100 мм (3,2 до 4 дюйм)	1750 мм (70 дюйм)	
	100 до 150 мм (4 до 6 дюйм)	2200 мм (88 дюйм)	
øD H	≥ 150 мм (6 дюйм)	3300 мм (132 дюйм)	


👔 При большей длине штуцера следует ожидать ухудшения точности измерений.

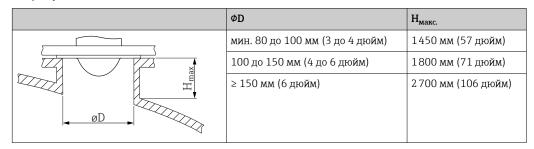
Учитывайте следующие обстоятельства.

- Конец штуцера должен быть гладким, без заусенцев.
- Край штуцера должен быть закругленным.
- Необходимо выполнить маскирование помех.
- Если высота штуцера превышает указанное в таблице значение, обратитесь в службу поддержки компании-изготовителя.

5.3.5 Монтируемая заподлицо антенна 80 мм (3 дюйм) с приспособлением для выравнивания

Для монтируемой заподлицо антенны выпускаются фланцы UNI с встроенным приспособлением для выравнивания 80 мм (3 дюйм). С помощью приспособления для выравнивания можно установить угол наклона до 15 град в любом направлении. Приспособление для выравнивания используется для оптимального выравнивания измерительного сигнала по отношению к поверхности сыпучего материала.

🗷 3 Монтируемая заподлицо антенна с приспособлением для выравнивания

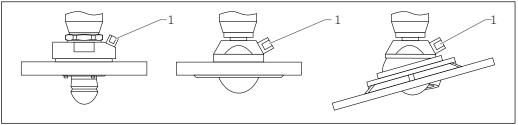

Информация о монтажном штуцере

Зависимость максимально допустимой длины штуцера H_{makc} , от диаметра штуцера D.

Endress+Hauser 19

A0046592

Зависимость максимально допустимой длины штуцера ($H_{\text{макс.}}$) от диаметра штуцера (D)


👔 При большей длине штуцера следует ожидать ухудшения точности измерений.

Учитывайте следующие обстоятельства.

- Конец штуцера должен быть гладким, без заусенцев.
- Край штуцера должен быть закругленным.
- Необходимо выполнить маскирование помех.
- Если высота штуцера превышает указанное в таблице значение, обратитесь в службу поддержки компании-изготовителя.

5.3.6 Присоединение продувочного воздуха

В условиях сильной запыленности встроенное присоединение для продувочного воздуха позволяет предотвратить засорение антенны. Рекомендован импульсный режим.

A00465

- 🛮 4 💮 Антенна с переходником для подачи продувочного воздуха
- 1 Продувочный штуцер NPT 1/4" или G 1/4"

Диапазон давления продувочного воздуха

Импульсный режим:

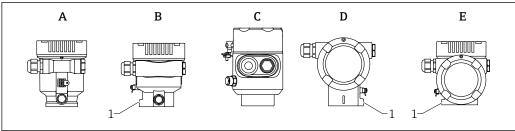
Макс. 6 бар (87 фунт/кв. дюйм)

• Непрерывная работа:

200 до 500 мбар (3 до 7,25 фунт/кв. дюйм)

Присоединение продувочного воздуха

- Инструменты:
 - рожковый гаечный ключ 13 мм (G 1/4"):
 - рожковый гаечный ключ 14 мм (NPT);
 - рожковый гаечный ключ 17 мм (переходник NPT).
- Минимальный момент затяжки: 6 Нм (4,4 фунт сила фут)
- Максимальный момент затяжки:7 Нм
- i
- Используйте только осушенный продувочный воздух.
 - Продувка должна выполняться только по необходимости, так как слишком частая продувка может вызвать механические повреждения (истирание).


5.3.7 Поворот корпуса

Корпус можно развернуть на угол до 380°, ослабив стопорный винт.

20

Преимущества

- Простой монтаж благодаря оптимальному выравниванию корпуса
- Простота доступа к прибору при эксплуатации
- Оптимальная читаемость показаний на локальном дисплее (опционально)

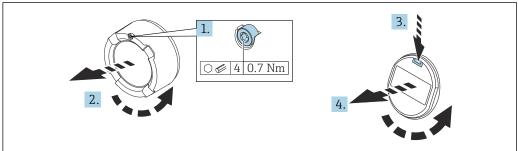
A0046660

- А Пластмассовый корпус с одним отсеком (без стопорного винта)
- В Алюминиевый корпус с одним отсеком
- С Корпус с одним отсеком, 316L, гигиенический (без стопорного винта)
- D Корпус с двумя отсеками
- Е Корпус с двумя отсеками, L-образная форма
- 1 Стопорный винт

УВЕДОМЛЕНИЕ

Корпус невозможно отвернуть полностью.

- ▶ Ослабьте наружный стопорный винт не более чем на 1,5 оборота. Если винт вывернуть слишком далеко или полностью (за пределы точки входа резьбы), мелкие детали (контрдиск) могут ослабнуть и выпасть.
- ▶ Затяните крепежный винт (с шестигранным гнездом 4 мм (0,16 дюйм)) моментом не более 3,5 Нм (2,58 фунт сила фут) ± 0,3 Нм (0,22 фунт сила фут).


5.3.8 Поворот дисплея

▲ ОСТОРОЖНО

Электропитание включено!

Опасность поражения электрическим током и/или взрыва!

▶ Прежде чем открывать измерительный прибор, выключите электропитание.

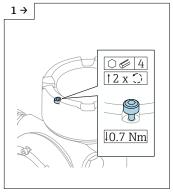

A003822

- 1. Если имеется: ослабьте винт фиксатора крышки отсека электроники с помощью шестигранного ключа.
- 2. Отверните крышку отсека электроники от корпуса преобразователя и проверьте уплотнение крышки.
- 3. Отожмите блокировочный механизм и снимите дисплей.

4. Поверните дисплей в необходимое положение (не более 4 × 90 град в каждом направлении). Поместите дисплей в отсек электроники в необходимом положении и вдавите до щелчка. Заверните крышку отсека электроники на корпус преобразователя. Если имеется: затяните фиксатор крышки шестигранным ключом 0,7 Нм (0,52 фунт сила фут) ±0,2 Нм (0,15 фунт сила фут).

5.3.9 Изменение положения установки дисплейного модуля

В случае использования корпуса с двумя отсеками L-образной формы монтажное положение дисплея можно изменить.


A004840

▲ ОСТОРОЖНО

Электропитание включено!

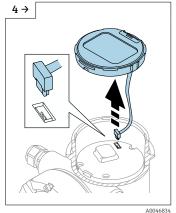
Опасность поражения электрическим током и (или) взрыва!

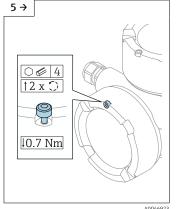

▶ Прежде чем открывать измерительный прибор, выключите электропитание.

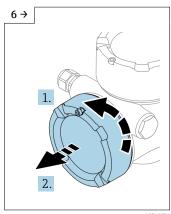
A0046831

2.

A0046832

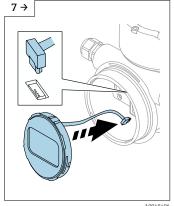


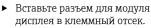

A0046833

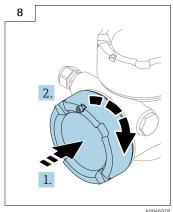

 Если установлено: ослабьте винт замка крышки дисплея с помощью шестигранного ключа.

 Открутите крышку дисплея и проверьте уплотнение крышки.

 Нажмите на механизм разблокировки, снимите модуль дисплея.






▶ Отсоедините разъем.

 Если установлено: ослабьте винт замка крышки клеммного отсека с помощью шестигранного ключа. Открутите крышку клеммного отсека, проверьте уплотнение крышки.
 Прикрутите эту крышку к отсеку электронного модуля, а не к крышке дисплея. Если установлено: затяните замок крышки с помощью шестигранного ключа

 Установите модуль дисплея в нужное положение до щелчка.

 Плотно прикрутите крышку дисплея к корпусу. Если установлено: затяните замок крышки с помощью шестигранного ключа 0,7 Нм (0,52 фунт сила фут).

5.3.10 Закрывание крышек корпуса

УВЕДОМЛЕНИЕ

Резьба и корпус повреждены в результате загрязнения!

- ▶ Удалите загрязнение (например, песок) с резьбы крышки и корпуса.
- ▶ Если при закрывании крышки ощущается сопротивление, проверьте резьбу на наличие загрязнений и очистите ее.

🚹 Резьба корпуса

На резьбу отсека для электроники и клеммного отсека может быть нанесено антифрикционное покрытие.

Следующее указание относится ко всем материалам корпуса:

№ Не смазывайте резьбу корпуса.

5.4 Проверка после монтажа

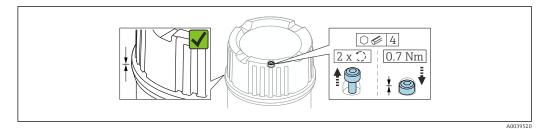
□ Не поврежден ли прибор (внешний осмотр)?

	Соответствуют ли норме идентификация и маркировка точки измерения шний осмотр)?
	В достаточной ли мере измерительный прибор защищен от воздействия осадков и нечного света?
	Плотно ли затянуты крепежный винт и фиксирующий зажим?
	оответствует ли измерительный прибор техническим условиям точки измерения? меры технических условий приведены ниже.
•	Рабочая температура
• 🗆	Рабочее давление
•	Температура окружающей среды
•	Диапазон измерения

24

6 Электрическое подключение

6.1 Требования, предъявляемые к подключению


6.1.1 Крышка с крепежным винтом

В приборах, предназначенных для использования во взрывоопасных зонах с определенной степенью взрывозащиты, крышка фиксируется крепежным винтом.

УВЕДОМЛЕНИЕ

Если стопорный винт расположен ненадлежащим образом, надежная герметизация крышки не будет обеспечена.

- Откройте крышку: ослабьте стопорный винт крышки не более чем на 2 оборота, чтобы винт не выпал. Установите крышку и проверьте уплотнение крышки.
- Закройте крышку: плотно заверните крышку на корпус и убедитесь в том, что стопорный винт расположен должным образом. Между крышкой и корпусом не должно быть зазора.

🗷 5 Крышка с крепежным винтом

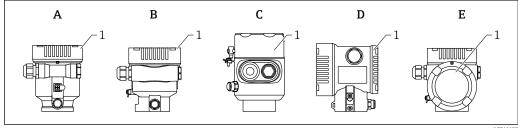
A0050983

🗷 6 Крышка с крепежным винтом; гигиеничный корпус (только для пылевзрывозащиты)

6.1.2 Выравнивание потенциалов

Запрещается подключать защитное заземление на приборе. При необходимости линия выравнивания потенциалов может быть подключена к внешней клемме заземления корпуса до подключения прибора.

- Α Корпус с одним отсеком, пластик
- Корпус с одним отсеком, алюминий с покрытием
- Корпус с одним отсеком, 316L, гигиеническое исполнение (приборы, предназначенные для Cиспользования во взрывоопасных зонах)
- D Корпус с двумя отсеками, алюминий с покрытием
- Е Корпус с двумя отсеками L-образной формы, алюминий с покрытием
- Клемма заземления для подключения линии выравнивания потенциалов


▲ ОСТОРОЖНО

Искрообразование или недопустимо высокая температура поверхности.

Опасность взрыва!

- ▶ Указания по технике безопасности при использовании прибора во взрывоопасных зонах приведены в отдельной документации.
- Для обеспечения оптимальной электромагнитной совместимости выполните следующие условия:
 - Обеспечьте минимально возможную длину линии выравнивания потенциалов
 - Соблюдайте минимальные требования к поперечному сечению $2.5 \text{ mm}^2 (14 \text{ AWG})$

6.2 Подключение прибора

- Корпус с одним отсеком, пластик Α
- В Корпус с одним отсеком, алюминий с покрытием
- С Корпус с одним отсеком, 316L, гигиеническое исполнение
- D Корпус с двумя отсеками, алюминий с покрытием
- Корпус с двумя отсеками L-образной формы, алюминий с покрытием
- Крышка клеммного отсека
- Приборы с корпусом с одним отсеком из стали 316L в гигиеническом исполнении и резьбовым соединением для кабелепровода должны подключаться как концевые приборы; можно использовать только один кабельный ввод.
- Резьба корпуса

На резьбу отсека для электроники и клеммного отсека может быть нанесено антифрикционное покрытие.

Следующее указание относится ко всем материалам корпуса:

№ Не смазывайте резьбу корпуса.

6.2.1 Сетевое напряжение

Сетевое напряжение зависит от выбранного типа сертификата прибора

Безопасная зона, Ex d, Ex e	9 до 32 В пост. тока
Ex i	9 до 30 В пост. тока
Номинальный ток	14 mA
Ток ошибки FDE (Fault Disconnection Electronic)	0 mA

- Для питания используйте только подходящие и сертифицированные компоненты Profibus PA (например, сегментный соединитель DP/PA)
- Соответствие требованиям FISCO/FNICO согласно стандарту IEC 60079-27
- Питание не зависит от полярности

Дисплей прибора и Bluetooth

Дисплей и функция Bluetooth (опция заказа) зависят от напряжения питания в момент включения прибора.

Сетевое напряжение

- <12 В пост. тока; фоновая подсветка выключена</p>
- <10 В пост. тока; функция Bluetooth также отключена

6.2.2 Технические характеристики кабеля

Номинальная площадь поперечного сечения

- Сетевое напряжение
 0,5 до 2,5 мм² (20 до 13 AWG)
- Защитное заземление или заземление экрана кабеля
 > 1 мм² (17 AWG)
- Наружная клемма заземления 0,5 до 4 мм² (20 до 12 AWG)

Наружный диаметр кабеля

Наружный диаметр кабеля зависит от используемого кабельного уплотнения

- Соединение (пластик):
 - Ø5 до 10 мм (0,2 до 0,38 дюйм)
- Соединение (никелированная латунь):
 Ø7 до 10,5 мм (0,28 до 0,41 дюйм)
- Соединение (нержавеющая сталь):
 Ø7 до 12 мм (0,28 до 0,47 дюйм)
- Пспользуйте экранированный двухжильный кабель (со скрученными жилами), предпочтительно кабель типа А.

Дополнительная информация о технических характеристиках кабеля приведена в следующих документах:

- Руководство по эксплуатации BA00034S «Рекомендации по планированию и вводу в эксплуатацию PROFIBUS DP/PA»
- № Руководство по сборке PROFIBUS 8.022
- IEC 61158-2 (MBP).

6.2.3 Защита от перенапряжения

Защиту от перенапряжения можно по желанию заказать с помощью кода заказа "Установленные принадлежности" в спецификации изделия.

Приборы без дополнительной защиты от перенапряжения

Приборы соответствуют производственному стандарту IEC/DIN EN IEC 61326-1 (таблица 2 "Промышленная среда").

В зависимости от типа порта (источник питания постоянного тока, порт ввода / вывода) применяются различные уровни испытаний в соответствии со стандартом IEC/DIN EN 61326-1 в отношении переходных перенапряжений (IEC/DIN EN 61000-4-5 Surge):

Испытательный уровень на портах питания постоянного тока и портах ввода / вывода составляет 1000 В между фазой и землей.

Приборы с дополнительной защитой от перенапряжения

- Напряжение пробоя: не менее 400 В пост. тока.
- Испытание выполнено согласно стандарту IEC/DIN EN 60079-14, подпункт 12.3 (IEC/DIN EN 60060-1, глава 7).
- Номинальный ток разряда: 10 кА.

УВЕДОМЛЕНИЕ

Прибор может быть разрушен чрезмерно высоким электрическим напряжением.

▶ Всегда заземляйте прибор с помощью встроенной защиты от перенапряжения.

Категория перенапряжения

Категория перенапряжения II

6.2.4 Подключение проводки

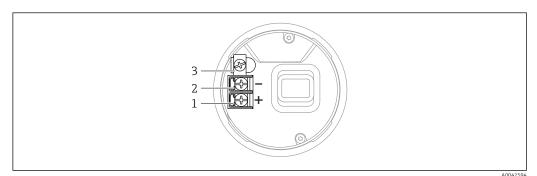
▲ ОСТОРОЖНО

Возможно наличие сетевого напряжения!

Опасность поражения электрическим током и/или взрыва!

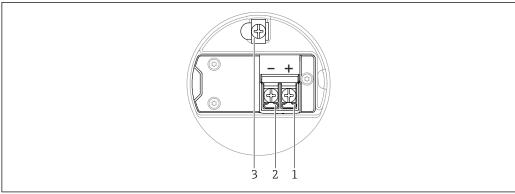
- ► Если прибор используется во взрывоопасной зоне, необходимо обеспечить его соответствие национальным стандартам и требованиям, приведенным в документации по технике безопасности (ХА). Необходимо использовать штатные кабельные уплотнения.
- ► Сетевое напряжение должно соответствовать техническим требованиям, указанным на заводской табличке.
- ▶ Подключение прибора выполняется при отключенном сетевом напряжении.
- ► При необходимости линия выравнивания потенциалов может быть подключена к внешней клемме заземления прибора до линии электроснабжения.
- ▶ Соответствие требованиям FISCO / FNICO согласно стандарту IEC 60079-27.
- ▶ Питание не зависит от полярности.
- ► Кабели должны быть надлежащим образом изолированы с учетом сетевого напряжения и категории перенапряжения.
- ► Соединительные кабели должны обеспечивать достаточную температурную стабильность с учетом температуры окружающей среды.
- ▶ Эксплуатируйте измерительный прибор только с закрытыми крышками.

Подключите прибор в следующем порядке:


- 1. Разблокируйте фиксатор крышки (при наличии).
- 2. Отверните крышку.
- 3. Пропустите кабели сквозь кабельные уплотнения или кабельные вводы.
- 4. Подключите кабель.
- 5. Затяните кабельные уплотнения или кабельные вводы, чтобы обеспечить их герметичность. Затяните контргайку кабельного ввода на корпусе.
- 6. Плотно затяните крышку клеммного отсека.

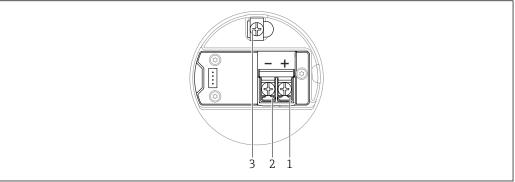
28

7. Если имеется: затяните фиксатор крышки шестигранным ключом 0,7 Hм (0,52 фунт сила фут)±0,2 Hм (0,15 фунт сила фут).


6.2.5 Назначение клемм

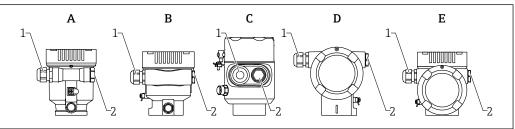
Корпус с одним отсеком

- **₽** 7 Клеммы подключения и клемма заземления в клеммном отсеке, корпус с одним отсеком
- Положительная клемма
- Отрицательная клемма
- 3 Внутренняя клемма заземления


Корпус с двумя отсеками

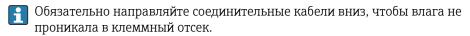
A0042803

- € 8 Соединительные клеммы и клемма заземления в клеммном отсеке
- Плюсовая клемма
- 2 Минусовая клемма
- Внутренняя клемма заземления


Корпус с двумя отсеками L-образной формы

A0045842

- 🗉 9 Соединительные клеммы и клемма заземления в клеммном отсеке
- 1 Плюсовая клемма
- 2 Минусовая клемма
- 3 Внутренняя клемма заземления

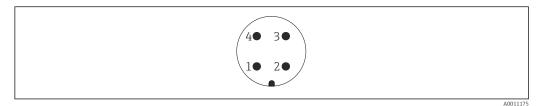

6.2.6 Кабельные вводы

A00465

- А Корпус с одним отсеком, пластик
- В Корпус с одним отсеком, алюминий с покрытием
- С Корпус с одним отсеком, 316L, гигиеническое исполнение
- D Корпус с двумя отсеками, алюминий с покрытием
- Е Корпус с двумя отсеками L-образной формы, алюминий с покрытием
- 1 Кабельный ввод
- 2 Заглушка

Количество и тип кабельных вводов зависят от заказанного исполнения прибора.

При необходимости сформируйте провисающую петлю для отвода влаги или используйте защитный козырек от непогоды.


6.2.7 Доступные разъемы приборов

Если прибор оснащен разъемом, то вскрывать корпус для подключения не требуется.

Используйте прилагаемые уплотнения, чтобы предотвратить проникновение влаги внутрь прибора.

30

Приборы с разъемом М12

🛂 10 🛮 Внешний вид разъема на приборе

- 1 Сигнал +
- 2 Не используется
- 3 Сигнал –
- 4 Заземление

В качестве аксессуаров можно заказать различные штепсельные гнезда M12 для приборов с разъемами M12.

6.3 Обеспечение требуемой степени защиты

6.3.1 Кабельные вводы

- Соединение M20, пластик, IP66/68 NEMA, тип 4X/6P
- Соединение M20, никелированная латунь, IP66/68 NEMA, тип 4X/6P
- Соединение M20, 316L, IP66/68 NEMA, тип 4X/6P
- Резьба M20, IP66/68 NEMA, тип 4X/6P
- Резьба G1/2, IP66/68 NEMA, тип 4X/6Р Если выбрана резьба G1/2, прибор в стандартной комплектации поставляется с резьбой M20; при этом в комплект поставки входит переходник на G1/2 вместе с сопроводительной документацией
- Резьба NPT 1/2, IP66/68 NEMA, тип 4X/6P
- Заглушка для защиты при транспортировке: IP22, NEMA, тип 2
- Разъем М12
 - Если корпус закрыт, а соединительный кабель подключен: IP66/67, NEMA, тип 4X
 - Если корпус открыт или соединительный кабель не подключен: IP20, NEMA, тип 1

УВЕДОМЛЕНИЕ

Разъем M12: утрата соответствия классу защиты IP вследствие ненадлежащего монтажа!

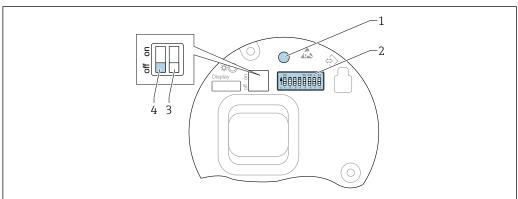
- ► Степень защиты относится только к такому состоянию, при котором соединительный кабель подключен, а уплотнение плотно затянуто.
- ► Степень защиты действует только в том случае, если соединительный кабель соответствует классу защиты IP67 NEMA, тип 4X.
- Классы защиты IP действуют только при наличии защитной заглушки или подсоединенного кабеля.

6.4 Проверки после подключения

□ Нет ли повреждений на приборе или кабелях (внешний осмотр)?
 □ Соответствуют ли используемые кабели техническим требованиям?
 □ Оснащены ли проложенные кабели средствами снятия натяжения?
 □ Кабельные уплотнения установлены, надежно затянуты и герметичны?
 □ Соответствует ли сетевое напряжение техническим условиям, указанным на заводской табличке?

□ Крышка прикручена правильно?

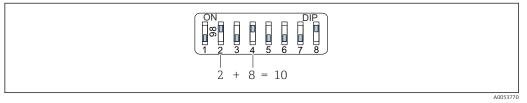
31


□ Фиксатор крышки затянут правильно?

7 Опции управления

7.1 Обзор опций управления

- Управление с помощью кнопок управления и DIP-переключателей на электронной вставке
- Управление с помощью сенсорных кнопок управления на дисплее прибора (опционально)
- Управление через беспроводную технологию Bluetooth® (при наличии опционального дисплея прибора с модулем Bluetooth) посредством приложения SmartBlue, коммуникатора FieldXpert или ПО DeviceCare
- Управление с помощью управляющей программы (Endress+Hauser FieldCare/ DeviceCare, PDM и т. п.)

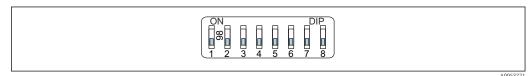

7.2 Кнопки управления и DIP-переключатели на электронной вставке PROFIBUS PA

A0050986

- 🗷 11 Кнопки управления и DIP-переключатели на электронной вставке PROFIBUS PA
- 1 Кнопка управления для сброса пароля (используемого для входа в систему через интерфейс Bluetooth, а также для уровня доступа Техническое обслуживание)
- 2 DIP-переключатель для настройки адреса
- 3 DIP-переключатель без функции
- 4 DIP-переключатель для блокирования и разблокирования прибора
- Настройка, выполняемая DIP-переключателями на электронной вставке, приоритетна по сравнению с настройкой, выполняемой другими средствами управления (например, ПО FieldCare/DeviceCare).

7.2.1 Аппаратная адресация

Пример аппаратной адресации; переключатель 8 установлен в положение «ВКЛ.»; переключатели 1-7 определяют адрес.


- 1. Установите переключатель 8 в положение «ВКЛ.».
- 2. Используя переключатели 1–7, настройте адрес, как указано в таблице ниже.

Изменение адреса в приборе происходит через 10 секунд. Прибор перезапускается.

Назначение значений переключателя

Переключатель	1	2	3	4	5	6	7
Значение в положение «ВКЛ.»	1	2	4	8	16	32	64
Значение в положение «ВЫКЛ.»	0	0	0	0	0	0	0

7.2.2 Программная адресация

- Пример программной адресации; переключатель 8 установлен в положение «ВЫКЛ.»; адрес определяется в меню управления
- 1. Установите переключатель 8 в положение «ВЫКЛ».
- 2. Прибор автоматически перезапускается и сообщает сохраненный в нем адрес PROFIBUS. Заводская настройка адрес PROFIBUS 126 или адрес PROFIBUS, заказанный с кодом заказа «Маркировка», опция «Адрес шины».
- 3. Настройте адрес с помощью меню управления: Применение → Profibus → Конфигурация → Адрес прибора

7.3 Структура и функции меню управления

Различия между структурами меню управления локального дисплея и управляющих программ Endress+Hauser FieldCare или DeviceCare можно суммировать следующим образом:

Локальный дисплей пригоден для настройки в простых условиях применения.

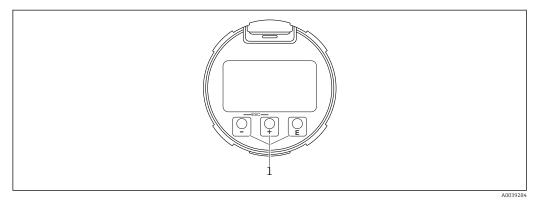
Управляющие программы (FieldCare, DeviceCare, SmartBlue, PDM и пр.) могут использоваться для настройки параметров широкого применения.

Мастер настройки помогает пользователю ввести прибор в эксплуатацию в различных условиях применения. Пользователь получает рекомендации на различных этапах настройки.

7.3.1 Уровни доступа и соответствующая авторизация

Если для прибора задан определенный код доступа, то для пользователей двух уровней доступа, **Оператор** и **Техническое обслуживание** (на момент поставки прибора), предусмотрены разные варианты доступа к параметрам для записи. Этот код доступа защищает настройку прибора от несанкционированного доступа.

При вводе недействительного кода доступа пользователь получает права доступа, соответствующие уровню **Оператор**.


7.4 Доступ к меню управления посредством местного дисплея

7.4.1 Дисплей прибора (опционально)

Воздействовать на оптические кнопки управления можно сквозь крышку. Вскрывать прибор для этого не требуется.

Функции:

- Отображение измеренных значений, а также сообщений о неисправностях и уведомлений
- При обнаружении ошибки цвет подсветки дисплея меняется с зеленого на красный
- Чтобы упростить управление, дисплей прибора можно снять
- По заказу дисплей прибора может быть оснащен беспроводным интерфейсом Bluetooth®.

🗷 14 Графический дисплей с оптическими кнопками управления (1)

- ± кнопка
 - Переход вниз по списку выбора
 - Редактирование числовых значений или символов в пределах функции
- ⊟ кнопка
 - Переход вверх по списку выбора
 - Редактирование числовых значений или символов в пределах функции
- Е кнопка
 - Переход от основного окна к главному меню
 - Подтверждение ввода
 - Переход к следующему пункту
 - Выбор пункта меню и активация режима редактирования
 - Блокирование/разблокирование работы дисплея
 - Нажмите и удерживайте кнопку Е, чтобы просмотреть краткое описание выбранного параметра (если оно есть)
- Кнопка ± и кнопка = (функция ESC)
 - Выход из режима редактирования параметра без сохранения измененного значения
 - Меню на уровне выбора: при одновременном нажатии кнопок происходит переход на один уровень выше в структуре меню.
 - Чтобы вернуться на более высокий уровень меню, нажмите кнопки одновременно и удерживайте их.

7.4.2 Управление через технологию беспроводной связи Bluetooth® (опционально)

Предварительные условия

- Прибор с дисплеем, оснащенным модулем Bluetooth
- Смартфон или планшет с приложением SmartBlue, разработанным компанией Endress+Hauser, или ПК с установленным ПО DeviceCare версии 1.07.05 или более поздней либо коммуникатор FieldXpert SMT70

Соединение имеет диапазон до 25 м (82 фут). Диапазон может варьироваться в зависимости от условий окружающей обстановки, таких как крепления, стены или потолки.

Нопки управления на дисплее блокируются при подключении к прибору через интерфейс Bluetooth.

Мигающий символ Bluetooth указывает на то, что подключение по технологии Bluetooth доступно.

Обратите внимание на следующее.

Если дисплей с модулем Bluetooth снят с одного прибора и установлен на другой прибор:

- все данные для входа в систему сохраняются на дисплее с модулем Bluetooth, но не в приборе;
- пароль, измененный пользователем, также сохраняется в дисплее с модулем Bluetooth.

Управление посредством приложения SmartBlue

Управлять прибором и настраивать его можно с помощью приложения SmartBlue.

- Для этого необходимо загрузить на мобильное устройство приложение SmartBlue.
- Информация о совместимости приложения SmartBlue с мобильными устройствами приведена в Apple App Store (устройства на базе IOS) или Google Play Store (устройства на базе Android).
- Неправильная эксплуатация не допущенными к ней лицами предотвращается благодаря шифрованию связи и парольной защите шифрования.
- Функция Bluetooth® может быть отключена после первоначальной настройки прибора.

A0033202

🖻 15 QR-код для бесплатного приложения Endress+Hauser SmartBlue

Загрузка и установка:

- 1. Отсканируйте QR-код или введите строку **SmartBlue** в поле поиска в Apple App Store (iOS) или Google Play Store (Android).
- 2. Установите и запустите приложение SmartBlue.
- 3. Для устройств на базе Android: включите функцию отслеживания местоположения (GPS) (не требуется для устройств на базе iOS).
- 4. Выберите устройство, готовое к приему, из отображаемого списка устройств.

Войдите в систему:

- 1. Введите имя пользователя: admin.
- 2. Введите исходный пароль: серийный номер прибора.

3. Смените пароль после первого входа.

🚹 Примечания по паролю и коду сброса

- Если заданный пользователем пароль утерян, доступ можно восстановить с помощью кода сброса. Код сброса представляет собой серийный номер прибора в обратном порядке. После ввода кода сброса исходный пароль снова становится действительным.
- Как и пароль, код сброса также можно изменить.
- Если заданный пользователем код сброса утерян, пароль больше нельзя будет сбросить через приложение SmartBlue. В данном случае обратитесь в сервисный центр Endress+Hauser.

7.5 Доступ к меню управления посредством управляющей программы

Доступ посредством управляющей программы возможен следующими методами:

- С помощью связи Profibus PA
- Через прибор, разработанный компанией Endress+Hauser, Commubox FXA291
 При помощи адаптера Commubox FXA291 можно установить подключение через интерфейс CDI между прибором и ПК/ноутбуком с ОС Windows и USB-портом

7.6 DeviceCare

7.6.1 Совокупность функций

Инструмент для подключения и конфигурирования полевых приборов Endress +Hauser.

Быстрее всего можно настроить полевые приборы Endress+Hauser с помощью специальной программы DeviceCare. В сочетании с диспетчерами типовых приборов (DTM) ПО DeviceCare представляет собой удобное решение комплексного характера.

Более подробные сведения см. в буклете «Инновации» (INO1047S).

7.7 FieldCare

7.7.1 Диапазон функций

Средство управления производственными активами на основе технологии FDT, разработанное специалистами Endress+Hauser. С помощью ПО FieldCare можно настраивать все интеллектуальные полевые приборы в системе и управлять ими. Благодаря использованию информации о состоянии ПО FieldCare также является простым, но эффективным способом проверки состояния и исправности приборов.

Средства доступа:

- Протокол PROFIBUS PA
- Сервисный интерфейс, CDI

Типичные функции:

- настройка параметров преобразователей;
- загрузка/выгрузка и сохранение данных прибора;
- протоколирование точки измерения;
- визуализация архива измеренных значений (строчный регистратор) и журнала событий.

Более подробные сведения о ПО FieldCare см. в руководствах по эксплуатации BA00027S и BA00059S.

38

8 Интеграция в систему

В соответствии с EN 50170 (том 2), IEC 61158-2 (МВР) тип 1, версия профиля PROFIBUS PA 3.02

8.1 Данные протокола

8.1.1 PROFIBUS PA

Идентификатор производителя:

17 (0x11)

Идентификационный номер:

0х1568 или 0х9700

Версия профиля:

3.02

Файл GSD и версия

Информация и файлы находятся в свободном доступе по следующим адресам:

- www.endress.com
 - На странице с информацией о приборе: Документы/ПО → Драйверы прибора
- www.profibus.com

Выходные значения

Аналоговый вход:

- Уровень линеаризованый
- Расстояние
- объём
- Напряжение на клеммах
- Температура электроники
- Температура датчика
- Абсолютная амплитуда отражённого сигнала
- Относительная амплитуда эхо-сигнала
- Область соединений
- Коэф-т налипаний, опционально (Руководство → Heartbeat Technology
 → Обнаружение налипаний → Коэф-т налипаний)
- Коэф-т пены, опционально (Диагностика → Heartbeat Technology → Обнаружение пены → Коэф-т пены)

Цифровой вход:

- Доступен только в том случае, если был выбран пакет приложений Heartbeat Verification + Monitoring.
- 168 Обнаружены налипания, опционально (Руководство → Heartbeat Technology
 → Обнаружение налипаний → 168 Обнаружены налипания)
- 952 Обнаружена пена, опционально (Руководство → Heartbeat Technology
 → Обнаружение пены → 952 Обнаружена пена)

Входные значения

Аналоговый выход:

Аналоговое значение от ПЛК для вывода на дисплей

Поддерживаемые функции

- Идентификация и техническое обслуживание
 Простейшая идентификация прибора по системе управления и заводской табличке
- Автоматическое создание идентификатора
 Режим совместимости GSD для общего профиля 0х9700 «Преобразователь с одним аналоговым входом»
- Диагностика на физическом уровне
 Проверка монтажа сегмента PROFIBUS и прибора с использованием напряжения на клеммах и мониторинга сообщений
- Выгрузка / загрузка по PROFIBUS
 Чтение и запись параметров с помощью выгрузки / загрузки по PROFIBUS
 происходит до десяти раз быстрее
- Краткая информация о состоянии
 Кратчайшая и интуитивно понятная диагностическая информация с разбивкой выдаваемых диагностических сообщений по категориям

8.2 Основной файл прибора (GSD)

In order to integrate the field devices into the bus system, the PROFIBUS system needs a description of the device parameters, such as output data, input data, data format, data volume and supported transmission rate. These data are available in the general station description (GSD) which is provided to the PROFIBUS Master when the communication system is commissioned.

Кроме того, можно интегрировать растровые изображения приборов, которые отображаются в виде значков в структуре сети.

С помощью основного файла прибора (GSD) с версией профиля 3.0 можно взаимно заменять полевые приборы от различных производителей без перенастройки.

В общем случае могут использоваться две разные версии GSD-файлов: с версией профиля 3.0 и выше.

- Перед настройкой пользователь должен решить, какой GSD-файл будет использоваться для управления системой.
- Эту настройку можно изменить с помощью ведущего устройства класса 2.

8.2.1 GSD-файл конкретного производителя

Данный тип GSD-файла дает доступ к полной функциональности измерительного прибора без ограничений. Это означает, что будут доступны все параметры процесса, функции и диагностическая информация, связанные с определенным прибором.

GSD-файл конкретного производителя	Идент. номер	Имя файла
PROFIBUS PA	0x1568	EH3x1568.gsd

Необходимость использования GSD-файла конкретного производителя указывается в параметр **Ident number selector** путем выбора опция **FMR6хB 0х1568**.

Получение GSD-файла конкретного производителя:

www.endress.com → Документация

8.2.2 GSD-файл профиля

Отличия заключаются в количестве блоков аналоговых входов (AI) и измеренных значений. При настройке системы с помощью GSD-файла профиля поддерживается

взаимозаменяемость приборов от различных производителей. При этом, однако, необходимо соблюдать правильность порядка циклических параметров процесса.

Идент. номер	Поддерживаемые блоки
0x9700	1 аналоговый вход

GSD-файл профиля, который необходимо использовать, указывается в параметр **Ident number selector** путем выбора опция **0х9700 (1AI)** или опция **FMR6хB 0х1568**.

8.2.3 Совместимость с другими приборами

Данный прибор обеспечивает совместимость при циклическом обмене данными с системой автоматизации (ведущее устройство класса 1) для следующих приборов: Общий преобразователь 1 AI PROFIBUS PA (версия профиля 3.02, идент. номер 0х9700)

Замена этих приборов возможна без необходимости перенастройки сети PROFIBUS в блоке автоматизации, хотя название и идентификационный номер приборов отличаются.

После замены прибор определяется автоматически (заводская настройка), или идентификатор прибора устанавливается вручную.

Автоматическая идентификация (заводская настройка)

Прибор автоматически распознает общий профиль, настроенный в системе автоматизации, и делает доступными для циклического обмена те же входные данные и данные о состоянии измеряемых величин. Автоматическая идентификация устанавливается в параметр Ident number selector путем выбора опция Automatic mode (заводская настройка).

Ручная настройка

Ручная настройка выбирается в параметр **Ident number selector** с помощью опция **FMR6xB 0x1568** (производитель) или опция **0x9700 (1AI)** (общий).

Затем прибор создает аналогичные входные и выходные данные и данные о состоянии измеряемых величин, доступные для циклического обмена данными.

- При ациклической конфигурации прибора средствами программного обеспечения (ведущее устройство класса 2) доступ осуществляется непосредственно через структуру блоков или параметры прибора.
- Если параметры прибора, подлежащего замене, были изменены (настройка параметров больше не соответствует первоначальной заводской настройке), данные параметры следует соответствующим образом изменить в новом используемом приборе с помощью программного обеспечения (ведущее устройство класса 2), чтобы обеспечить идентичный режим работы.
- Циклический обмен данными прибора Micropilot FMR6xB не совместим с прибором Micropilot FMR5x или Micropilot FMR4x

8.3 Циклическая передача данных

Циклическая передача данных при использовании основного файла прибора (GSD).

8.3.1 Блочная модель

Блочная модель описывает то, какие входные и выходные данные предоставляются измерительным прибором для циклического обмена данными. Циклический обмен

данными происходит при участии ведущего устройства PROFIBUS (класс 1), например в системе управления.

Блок преобразователя

- ullet Блок аналогового входа 1 до 6; выходные значения аналогового входа o
- ullet Блок цифрового входа 1 до 2; выходные значения цифрового входа o
- Блок аналогового выхода 1; входное значение аналогового выхода ←

Определенный порядок расположения модулей

Прибор работает как модульное ведомое устройство PROFIBUS. По сравнению с компактным ведомым устройством, модульное ведомое устройство имеет разное исполнение и состоит из нескольких индивидуальных модулей. Основной файл прибора (GSD) содержит описание отдельных модулей (входные и выходные данные), а также индивидуальные параметры этих модулей.

Модули присвоены гнездам на постоянной основе, т. е. при конфигурировании модулей необходимо соблюдать их порядок и расположение.

Гнездо	Модуль	Функциональный блок
0106	AI (аналоговый вход)	Блок аналогового входа 1 до 6
0708	DI (цифровой вход)	Блок цифрового входа 1 до 2
09	DO (цифровой выход)	Блок цифрового выхода 1

В целях оптимизации скорости передачи данных по сети PROFIBUS рекомендуется конфигурировать только те модули, которые обрабатываются в системе ведущего устройства PROFIBUS. Если при этом между сконфигурированными модулями образуются пропуски, их необходимо заполнить модулями EMPTY_MODULE.

8.3.2 Описание модулей

Структура данных описана с точки зрения ведущего устройства PROFIBUS:

- Входные данные: отправляются из измерительного прибора в ведущее устройство PROFIBUS.
- Выходные данные: отправляются в измерительный прибор из ведущего устройства PROFIBUS.

Модуль АІ (аналоговый вход)

Передача входной переменной из измерительного прибора в ведущее устройство PROFIBUS (класс 1).

Выбранная входная переменная вместе с данными состояния циклически передается в ведущее устройство PROFIBUS (класс 1) через модуль аналогового входа. Входная переменная представлена в первых четырех байтах в форме числа с плавающей запятой согласно стандарту IEEE 754. Пятый байт содержит стандартизированную информацию о состоянии входной переменной.

Имеется шесть блоков аналоговых входов (гнездо 1 до 6); подменю **Аналоговый вход 1 до 6**

Входная переменная:

Входную переменную можно определить с помощью параметр **Channel**.

Применение \rightarrow Profibus \rightarrow Аналоговый вход \rightarrow Аналоговый вход 1 до 6 \rightarrow Channel

Опции:

- Уровень линеаризованый
- объём
- Расстояние
- Напряжение на клеммах
- Температура электроники
- Температура датчика
- Абсолютная амплитуда отражённого сигнала
- Относительная амплитуда эхо-сигнала
- Область соединений
- Опция Коэф-т налипаний Видимость зависит от опций заказа или настроек прибораРуководство → Heartbeat Technology → Обнаружение налипаний → Конфигурация → Коэф-т налипаний
- Опция Коэф-т пены Видимость зависит от опций заказа или настроек прибораРуководство → Heartbeat Technology → Обнаружение пены → Конфигурация → Коэф-т пены

Заводская настройка: опция Уровень линеаризованый

Структура данных

Байт 1	Байт 2	Байт 3	Байт 4	Байт 5
Измеряемая величина: число с плавающей запятой (IEEE 754)		Состояние		

Модуль АО (аналоговый выход)

Передача отображаемой информации из ведущего устройства PROFIBUS (класс 1) в измерительный прибор.

Значение аналогового выхода вместе с информацией о состоянии может циклически передаваться из ведущего устройства PROFIBUS (класс 1) в измерительный прибор через модуль аналогового выхода и выводиться на локальный дисплей. Значение отображается в первых четырех байтах в форме числа с плавающей запятой согласно стандарту IEEE 754. Пятый байт содержит стандартизированную информацию о состоянии выходного значения.

Доступен один блок аналогового выхода (гнездо 9).

Применение \rightarrow Profibus \rightarrow Аналоговый выход \rightarrow Аналоговый выход $1 \rightarrow$ Out valueпараметр **Out value**; Shows an analog output value (AO) that is output from the controller to the device and can be shown on the local display. To show the AO on the local display, it must be assigned to a display output parameter as a value. This assignment is made in the menu under "System-Display".

Структура данных

Байт 1	Байт 2	Байт 3	Байт 4	Байт 5
Измеряемая величина: число с плавающей запятой (IEEE 754)		Состояние		
	(IEEE	. /)4)		

Модуль DI (цифровой вход)

Передача значений дискретного входа из измерительного прибора в ведущее устройство PROFIBUS (класс 1). Значения дискретного входа используются измерительным прибором для передачи информации о состоянии функций прибора в ведущее устройство PROFIBUS (класс 1).

Модуль DI циклически передает значение дискретного входа вместе с информацией о состоянии в ведущее устройство PROFIBUS (класс 1). Значение дискретного входа описывается в первом байте. Второй байт содержит стандартизированную информацию о состоянии входного значения.

Доступно два блока дискретных входов (гнездо 7 до 8).

i

Блоки цифровых входов доступны только в том случае, если имеется опция Heartbeat и настроена одна или обе функции Heartbeat Monitoring опция **Обнаружена пена** и опция **Обнаружены налипания**.

Функция прибора:

Функцию прибора можно определить с помощью параметр **Channel**.

Применение \rightarrow Profibus \rightarrow Цифровой вход \rightarrow Цифровой вход 1 до 2 \rightarrow Channel

Опции:

- Опция Коэф-т налипаний Видимость зависит от опций заказа или настроек прибораРуководство → Heartbeat Technology → Обнаружение налипаний → Конфигурация → Коэф-т налипаний
- Опция Коэф-т пены Видимость зависит от опций заказа или настроек прибораРуководство → Heartbeat Technology → Обнаружение пены → Конфигурация → Коэф-т пены

Заводская настройка: опция нет

Структура данных

Байт 1	Байт 2
Цифровые	Состояние

Модуль EMPTY_MODULE

Данный модуль используется для присвоения пропусков, возникающих в результате неиспользования модулей в гнездах.

Прибор работает как модульное ведомое устройство PROFIBUS. В отличие от компактного ведомого устройства, модульное ведомое устройство PROFIBUS может иметь различную конструкцию и состоит из нескольких отдельных модулей. GSD-файл содержит описание этих модулей и их индивидуальные параметры.

Модули присваиваются гнездам на постоянной основе. При конфигурировании модулей необходимо соблюдать их порядок и расположение. Если при этом между сконфигурированными модулями образуются пропуски, их необходимо заполнить модулями EMPTY MODULE.

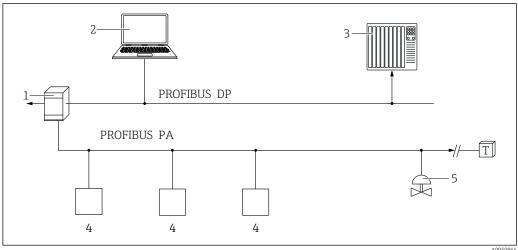
9 Ввод в эксплуатацию

В любой конфигурационной программе предусмотрен ассистент по вводу в эксплуатацию, который сопровождает пользователя при настройке наиболее важных параметров конфигурации (меню Руководство мастер Ввод в работу).

9.1 Предварительные условия

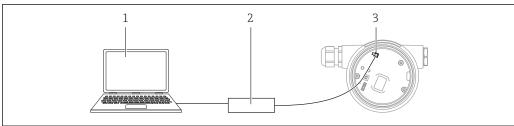
Диапазон измерения и единица измерения, используемая для передачи измеряемого значения, соответствуют техническим характеристикам, которые указаны на заводской табличке.

9.2 Монтаж и функциональная проверка


Перед вводом измерительной точки в эксплуатацию убедитесь в том, что были выполнены проверки после монтажа и подключения.

🖺 Проверка после монтажа

Проверка после подключения


9.3 Установление соединения с помощью ПО FieldCare и DeviceCare

9.3.1 По протоколу PROFIBUS PA

- Сегментный соединитель
- Компьютер с устройством PROFlusb и программным обеспечением (например, DeviceCare/FieldCare)
- ПЛК (программируемый логический контроллер)
- Преобразователь
- Дополнительные функции (клапаны и т. д.)

9.3.2 Через сервисный интерфейс (CDI)

A00391

- 1 Компьютер с управляющей программой FieldCare/DeviceCare
- 2 Commubox
- 3 Сервисный интерфейс (CDI) прибора (единый интерфейс доступа к данным Endress+Hauser)

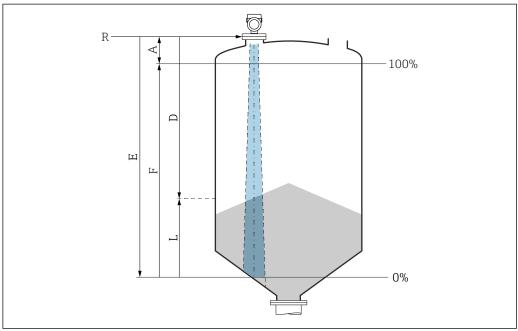
9.4 Настройка языка управления

9.4.1 Локальный дисплей

Настройка языка управления

- 🚹 Прежде чем настраивать язык управления, следует разблокировать дисплей.
- 1. Нажмите кнопку 🗉 и удерживайте ее не менее 2 с.
 - ▶ Отображается диалоговое окно.
- 2. Разблокируйте работу дисплея.
- 3. Выберите параметр **Language** в главном меню.
- 4. Нажмите кнопку **E**.
- Выберите необходимый язык кнопкой ± или □.
- 6. Нажмите кнопку Е.
- Работа дисплея блокируется автоматически (кроме мастер **Режим безопасности**):
 - через 1 мин, если при активной основной странице не нажата ни одна кнопка;
 - через 10 мин, если при активном меню управления не нажата ни одна кнопка.

9.4.2 Управляющая программа


Установите язык отображения

Система \rightarrow Дисплей \rightarrow Language

Выбор в параметр **Language**; Видимость зависит от опций заказа или настроек прибора

9.5 Настройка прибора

9.5.1 Измерение уровня сыпучих сред

Параметры конфигурации для измерения уровня сыпучих сред

- R Контрольная точка измерения
- Α Длина антенны + 10 мм (0,4 дюйм)
- D Расстояние
- L Уровень
- Е Параметр "Калибровка пустой емкости" (= 0%)
- Параметр "Калибровка заполненной емкости" (= 100%)

9.5.2 Ввод в эксплуатацию с помощью мастера

В ПО FieldCare, DeviceCare, SmartBlue и на дисплее предусмотрен мастер Ввод в работу для сопровождения пользователя на начальном этапе ввода в эксплуатацию.

Выполните эту настройку, чтобы ввести прибор в эксплуатацию. Для каждого параметра введите необходимое значение или выберите соответствующую опцию.

ПРИМЕЧАНИЕ

Если выйти из мастера до завершения настройки всех необходимых параметров, прибор может перейти в неопределенное состояние!

В этом случае рекомендуется сбросить настройки до значений по умолчанию.

9.6 Запись графика Эхо-кривая

Эхо-кривая сохраняется только в соответствующей управляющей программе.

Запись текущего графика Эхо-кривая в качестве контрольной эхо-кривой для последующего использования в диагностических целях.

После настройки измерения рекомендуется записать текущий график Эхо-кривая в качестве контрольного графика.

Параметр Сохранить эталонную кривую в подменю Эхо-кривая используется для записи графика Эхо-кривая.

Диагностика \rightarrow Эхо-кривая \rightarrow Сохранить эталонную кривую

▶ В параметр Сохранить эталонную кривую активируйте опция Эталонная кривая вручную

9.7 Подменю "Моделирование"

Моделирование переменной процесса, импульсного выходного сигнала или диагностического события.

10 Эксплуатация

10.1 Считывание сведений о состоянии блокировки прибора

Отображение активной защиты от записи в параметр Статус блокировки.

- Локальный дисплей
 - На основной странице отображается символ 🗈.
- Управляющая программа (FieldCare/DeviceCare)
 Навигация: Система → Управление прибором → Статус блокировки

10.2 Чтение измеренных значений

Любые измеряемые значения можно считывать с помощью подменю **Измеренное значение**.

Навигация: меню Применение → подменю Измеренные значения

10.3 Адаптация прибора к условиям процесса

Для этой цели предусмотрены следующие меню.

- Базовые настройки в меню Руководство
- Расширенные настройки в следующих разделах.
 - Меню Диагностика
 - Меню Применение
 - Меню Система

10.4 Технология Heartbeat (опционально)

10.4.1 Heartbeat Verification

Мастер "Heartbeat Verification"

Этот мастер настройки используется для запуска автоматической проверки функциональности устройства.

- Мастер можно использовать посредством управляющей программы или дисплея
 Мастер можно запустить через дисплей, но отображается только результат (опция Пройдено или опция Не пройдено).
- Мастер сопровождает пользователя в процессе формирования отчета о проверке

10.4.2 Heartbeat Verification/Monitoring

- Подменю **Heartbeat** доступно только при управлении с помощью ПО FieldCare, DeviceCare или приложения SmartBlue. Оно содержит мастеры настройки, которые доступны с пакетами приложений Heartbeat Verification и Heartbeat Monitoring.
- Документация, которая относится к программному обеспечению Heartbeat Technology, приведена на веб-сайте компании Endress+Hauser: www.endress.com

 «Документация».

11 Диагностика и устранение неисправностей

11.1 Общие сведения об устранении неисправностей

11.1.1 Ошибки общего характера

Прибор не отвечает

- Возможная причина: сетевое напряжение не соответствует техническим требованиям, указанным на заводской табличке Способ устранения неисправности: подключите прибор к источнику питания регламентированного напряжения
- Возможная причина: отсутствует контакт соединительных кабелей с клеммами
 Способ устранения неисправности: проверьте и при необходимости восстановите
 электрический контакт между кабелями и клеммами

Значения на дисплее не видны

 Возможная причина: слишком большая или слишком маленькая яркость дисплея Способ устранения:

Отрегулируйте контрастность с помощью параметра параметр **Контрастность писплея**

Путь навигации: Система → Дисплей → Контрастность дисплея

- Возможная причина: неправильное подключение разъема кабеля дисплея Способ устранения неисправности: подключите разъем правильно
- Возможная причина: неисправен дисплей
 Способ устранения неисправности: замените дисплей

При запуске прибора или подключении дисплея отображается сообщение Communication error (ошибка связи)

- Возможная причина: влияние электромагнитных помех
 Способ устранения неисправности: проверьте заземление прибора
- Возможная причина: ошибка подключения или неисправность разъема дисплея Способ устранения неисправности: замените дисплей

Не работает связь через интерфейс CDI

Возможная причина: ошибочная настройка СОМ-порта компьютера Способ устранения неисправности: проверьте параметры СОМ-порта компьютера и при необходимости исправьте их

Прибор выполняет измерение недостоверно

Возможная причина: ошибочная настройка параметров Способ устранения неисправности: проверьте и исправьте настройку параметров

11.2 Ошибка – управление с помощью приложения SmartBlue

Управление с помощью приложения SmartBlue возможно только на приборах, оснащенных дисплеем с Bluetooth (поставляется опционально).

Прибор не отображается в списке активных устройств

- Возможная причина: отсутствует соединение через интерфейс Bluetooth Способ устранения неисправности: включите интерфейс Bluetooth на полевом приборе и/или на смартфоне/планшете с помощью дисплея или программного обеспечения
- Возможная причина: превышен радиус действия сигнала Bluetooth Способ устранения неисправности: уменьшите расстояние между полевым прибором и смартфоном/планшетом
 - Радиус действия подключения до 25 м (82 фут).
 - Радиус действия при наличии взаимной видимости 10 м (33 фут).
- Возможная причина: геопозиционирование не включено на устройстве Android или не разрешено для приложения SmartBlue.
 - Способ устранения неисправности: включите/отключите службу геолокации на устройстве Android для приложения SmartBlue.
- Дисплей не оснащен модулем Bluetooth.
- Не подключен модуль Historom.

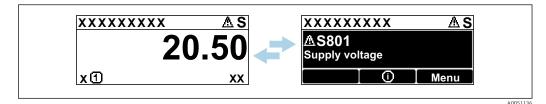
Прибор числится в списке активных устройств, однако подключение установить не удается

- Возможная причина: прибор уже соединен с другим смартфоном/планшетом по технологии Bluetooth
 - Допускается только одно соединение типа «точка-точка» Способ устранения неисправности: отсоедините смартфон/планшет от другого устройства
- Возможная причина: ошибочный ввод имени пользователя и пароля Способ устранения неисправности: стандартное имя пользователя admin, а паролем является серийный номер прибора, указанный на его заводской табличке (только если пароль не был изменен пользователем ранее) Если пароль забыт, обратитесь в сервисный центр Endress+Hauser (www.addresses.endress.com)

Не удается установить соединение посредством приложения SmartBlue

- Возможная причина: введен недействительный пароль Способ устранения неисправности: введите действительный пароль, учитывая регистр символов
- Возможная причина: забыт пароль
 Способ устранения неисправности: обратитесь в сервисный центр Endress+Hauser (www.addresses.endress.com)

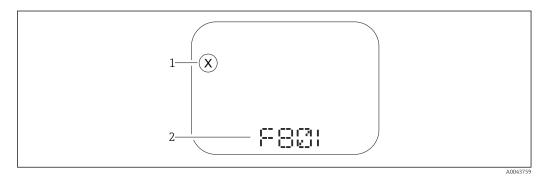
Невозможно войти в систему через приложение SmartBlue


- Возможная причина: прибор вводится в работу впервые
 Способ устранения неисправности: введите имя пользователя (admin) и пароль (серийный номер прибора) с учетом регистра символов
- Возможная причина: электрический ток и напряжение не соответствуют требованиям.
 - Способ устранения неисправности: увеличьте сетевое напряжение

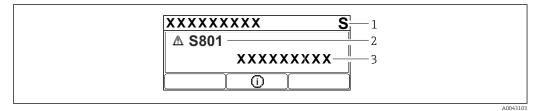
Невозможно управлять прибором посредством приложения SmartBlue

- Возможная причина: введен недействительный пароль Способ устранения неисправности: введите действительный пароль, учитывая регистр символов
- Возможная причина: забыт пароль
 Способ устранения неисправности: обратитесь в сервисный центр Endress+Hauser (www.addresses.endress.com)
- Возможная причина: у пользователя, для которого выбрана опция **Оператор**, нет надлежащей авторизации
 - Способ устранения неисправности: Система → Администрирование пользователей → Уровень доступа пользователя Измените на опция **Техническое обслуживание**

11.3 Диагностическое сообщение


Неисправность, обнаруженная системой самоконтроля прибора, отображается в виде диагностического сообщения, чередующегося с измеренным значением.

🗷 17 Диагностическое сообщение, чередующееся с измеренным значением


Если одновременно происходят два или более диагностических события, отображается только диагностическое сообщение с наивысшим приоритетом.

11.3.1 Диагностическая информация, отображаемая на локальном дисплее

🖪 18 🛮 Дисплей с сегментами без кнопок

- 1 Символ состояния, обозначающий уровень события
- 2 Символ состояния с диагностическим событием

19 Графический дисплей с кнопками

- Сигнал состояния
- 2 Символ состояния с диагностическим событием и предшествующий символ, обозначающий уровень события
- 3 Текст сообщения о событии

11.3.2 Диагностическая информация, отображаемая в управляющей программе

Если в приборе произошло диагностическое событие, то в верхней левой области состояния управляющей программы отображается сигнал состояния вместе с соответствующим символом уровня события согласно рекомендациям NAMUR NE 107.

Нажмите на сигнал состояния, чтобы просмотреть подробные сведения о нем.

Диагностические сообщения из списка ожидания можно также отобразить с помощью опции параметр **Диагностика активна**.

Сообщения о диагностических событиях и меры по устранению неисправностей могут быть распечатаны с помощью опции подменю **Перечень сообщений диагностики**.

11.3.3 Сигнал состояния

F

Отказ (F)

Произошла ошибка прибора. Измеренное значение недействительно.

C

Проверка функций (С)

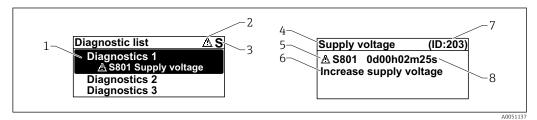
Прибор находится в сервисном режиме (например, во время моделирования).

S

Не соответствует спецификации (S)

Управление прибором:

- За пределами спецификации (например, во время запуска или очистки)
- За пределами параметров настройки, заданных пользователем (например, частота датчика выходит за пределы настроенного диапазона)


M

Требуется техническое обслуживание (М)

Требуется техническое обслуживание. Измеренное значение остается действительным.

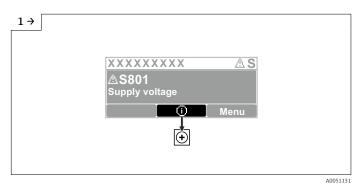
11.3.4 Диагностическое событие и текстовое описание события

Неисправность можно выявить при помощи диагностического события. Текст сообщения о событии помогает получить информацию о неисправности. Кроме того, перед описанием диагностического события отображается соответствующий символ состояния.

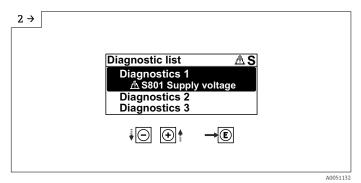
- 1 Диагностическое сообщение
- 2 Символ уровня события
- 3 Сигнал состояния
- 4 Краткое описание
- 5 Символ уровня события, сигнал состояния, диагностический номер
- 6 Рекомендуемые меры
- 7 Сервисный идентификатор
- 8 Время события

Символ уровня события

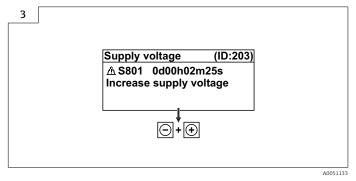
😵 Состояние выдачи аварийного сигнала


Измерение прервано. Сигнальные выходы переходят в определенное аварийное состояние. Выдается диагностическое сообщение.

△ Состояние выдачи предупреждения


Измерение продолжается. Выдается диагностическое сообщение.

11.4 Информация о способах исправленияВызов


11.4.1 Графический дисплей с кнопками

• Откройте меню подменю Перечень сообщений диагностики

▶ Выберите диагностическое событие и подтвердите

▶ Информация о способах исправленияЗакрытие

11.4.2 Меню управления

С помощью параметра подменю **Диагностический лист** можно просмотреть диагностические сообщения в очереди на обработку (до 5). Если количество необработанных сообщений превышает 5, на дисплей выводятся сообщения с наивысшим приоритетом.

Путь навигации

Диагностика → Перечень сообщений диагностики

Диагностические сообщения из списка ожидания можно также отобразить с помощью опции параметр **Диагностика активна**.

Навигация: Диагностика → Диагностика активна

11.5 Адаптация диагностической информации

Уровень события можно настроить:

Навигация: Диагностика o Настройки диагностики o Конфигурация

11.6 Список диагностических событий

Если Информация о способах исправления отображается Contact the Service Department (свяжитесь с сервисной службой) (www.addresses.endress.com), подготовьте service ID (сервисный идентификатор).

Количество диагностик	Краткий текст	Действия по восстановлению	Сигнал статуса [заводские]	Характеристики диагностики [заводские]
Диагностика	датчика			
062	Сбой соединения датчика	Проверьте соединение сенсора	F	Alarm
151	Сбой электроники датчика	Перезапустите прибор Обратитесь в сервисную службу	F	Alarm
168	Обнаружены налипания	1. Проверьте условия процесса 2. Увеличьте давление системы	М	Warning ¹⁾
Диагностика	электроники			
242	Несовместимая прошивка	Проверьте программное обеспечение Перепрограммируйте или замените основной электронный модуль	F	Alarm
252	Несовместимый модуль	1. Проверить, правильный ли блок электроники подключен 2. Заменить модуль электроники	F	Alarm
270	Неисправность основного электрон.модуля	Замените основную электронику или устройство.	F	Alarm
272	Неисправность блока основной электроники	Перезапустите прибор Обратитесь в сервисную службу	F	Alarm
273	Неисправность основного электрон.модуля	Замените основную электронику или устройство.	F	Alarm
282	Некорректное хранение данных	Перезапустите прибор	F	Alarm
283	Несовместимость содержимого памяти	Перезапустите прибор Обратитесь в сервисную службу	F	Alarm
287	Несовместимость содержимого памяти	1. Перезапустите прибор 2. Обратитесь в сервисную службу	М	Warning
388	Электроника и HistoROM неисправны	1. Перезапустите устройство 2. Замените электронику и HistoROM 3. Свяжитесь с сервисом	F	Alarm

Количество диагностик	Краткий текст	Действия по восстановлению	Сигнал статуса [заводские]	Характеристики диагностики [заводские]
	⊥ конфигурации			
410	Сбой передачи данных	1. Повторите передачу данных 2. Проверьте присоединение	F	Alarm
412	Обработка загрузки	Выполняется загрузка, пожалуйста, подождите	С	Warning
435	Ошибка линеаризации	Проверьте таблицу линеаризации	F	Alarm
437	Конфигурация несовместима	Обновите прошивку Выполните сброс до заводских настроек	F	Alarm
438	Массив данных отличается	Проверьте файл с массивом данных Проверьте параметризацию устройства Скачайте файл с новой параметризацией устройства	M	Warning
482	Блок в OOS (нерабочем состоянии)	Установить режим блока ABTO	F	Alarm
484	Моделир. режима неисправности активиров.	Деактивировать моделирование	С	Alarm
485	Моделирование переменной процесса	Деактивировать моделирование	С	Warning
495	Моделирование диагност. событий активно	Деактивировать моделирование	S	Warning
497	Моделирование выхода активно	Отключить режим моделирования	С	Warning
538	Неправильная конфигурация датчика	Проверьте настройки датчика Проверьте настройки прибора	F	Alarm
585	Моделир. расстояние до уровня продукта	Деактивировать моделирование	С	Warning
586	Записать карту помех	Запись маскирования, пожалуйста, подождите.	С	Warning
Циагностика 1	процесса			
801	Слишком низкое напряжение питания	Напряжение питания слишком низкое, увеличьте напряжение питания	F	Alarm
802	Слишком высокое напряжение питания	Уменьшите напряжение питания	S	Warning
825	Темп. электроники вне доп. диапазона	Проверьте температуру окружающей среды Проверьте рабочую температуру	S	Warning
826	Температура датчика вне диапазона	Проверьте температуру окружающей среды Проверьте рабочую температуру	S	Warning
941	Эхо сигнал потерян	Проверьте параметр "Значение DC"	S	Warning ¹⁾

Количество диагностик	Краткий текст	Действия по восстановлению	Сигнал статуса [заводские]	Характеристики диагностики [заводские]
942	На безопасном расстоянии	Проверьте уровень Проверьте безопасное расстояние Сбросьте удержание тревоги	S	Warning ¹⁾
952	Обнаружена пена	1. Проверьте условия процесса 2. Увеличьте давление системы	S	Warning ¹⁾
968	Достигнут предел изм. уровня	1. Проверьте уровень 2. Проверьте предельные параметры	S	Warning

¹⁾ Параметры диагностики могут быть изменены.

11.7 Журнал событий

11.7.1 Журнал событий

В подменю подменю **Журнал событий** можно просмотреть хронологический обзор сообщений о произошедших событиях. Это подменю доступно только при использовании локального дисплея с кнопками. При управлении посредством FieldCare перечень событий можно просмотреть с помощью функции Event List / HistoROM (Перечень событий/HistoROM) программы FieldCare.

Навигация:

Диагностика → Журнал событий → Перечень событий

В хронологическом порядке могут отображаться до 100 сообщений о событиях.

Журнал событий содержит записи о следующих событиях:

- Диагностические события
- Информационные события

Кроме времени наступления события (исчисляемого в часах работы прибора), с каждым событием связывается символ, который указывает состояние события (происходит ли в данный момент):

- Диагностическое событие
 - 🕀: наступление события
 - 🕒: окончание события
- Информационное событие
 - **Э**: наступление события

Вызов и закрытие мер по устранению ошибок

- 1. Нажмите ᠍.
 - □ Появится сообщение с описанием мер по устранению выбранного диагностического события.
- 2. Одновременно нажмите □ и ±.
 - └ Сообщение о рекомендуемых мерах закроется.

11.7.2 Фильтрация журнала событий

С помощью фильтров можно определить категорию сообщений о событиях для отображения в разделе подменю **Перечень событий**.

Навигация: Диагностика → Журнал событий

Категории фильтра

- Bce
- Отказ (F)
- Проверка функций (С)
- Не соответствует спецификации (S)
- Требуется техническое обслуживание (M)
- Информация

11.7.3 Обзор информационных событий

Номер данных	Наименование данных
I1000	(Прибор ОК)
I1079	Датчик изменён
I1089	Питание включено
I1090	Сброс конфигурации
I1091	Конфигурация изменена
I11074	Проверка прибора активна
I1110	Переключатель защиты от записи изменен
I1151	Сброс истории
I1154	Сброс измер напряжения клемм мин/макс
I1155	Сброс измерения температуры электроники
I1157	Журнал событий ошибок
I1256	Дисплей: статус доступа изменен
I1335	Прошивка изменена
I1397	Fieldbus: статус доступа изменен
I1398	CDI: статус доступа изменен
I1440	Главный модуль электроники изменен
I1444	Проверка прибора успешно завершена
I1445	Проверка прибора не выполнена
I1461	Ошибка проверки датчика
I1512	Началась загрузка
I1513	Загрузка завершена
I1514	Загрузка началась
I1515	Загрузка завершена
I1551	Исправлена ошибка назначения
I1552	Не выполнено: поверка гл.электрон.
I1556	Безопасный режим выкл
I1956	Сброс

11.8 Сброс параметров прибора

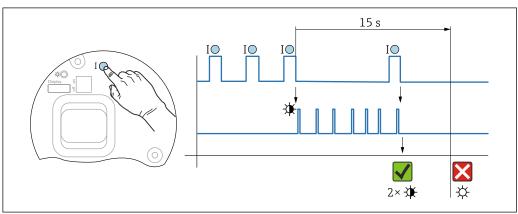
11.8.1 Сброс пароля с помощью управляющей программы

Введите код для сброса текущего пароля Техническое обслуживание. Код предоставляется местной службой поддержки.

Навигация: Система ightarrow Администрирование пользователей ightarrow Сброс пароля

📵 Подробные сведения о параметре параметр Сброс пароля см. в документе «Описание параметров прибора».

11.8.2 Сброс параметров прибора с помощью управляющей программы

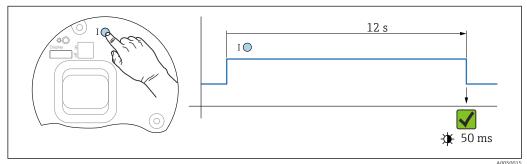

Сбросить конфигурацию прибора - полностью или частично - к определенному состоянию

Навигация: Система → Управление прибором → Сброс параметров прибора

📵 Подробные сведения о параметре параметр Сброс параметров прибора см. в документе «Описание параметров прибора».

11.8.3 Сброс параметров прибора с помощью кнопок на электронной вставке

Сброс пароля


₹ 20 Последовательность сброса пароля

Удаление/сброс пароля

- 1. Нажмите управляющую кнопку **I** три раза.
 - 🕒 Функция сброса пароля запущена, светодиод мигает.
- 2. Нажмите управляющую кнопку I один раз и удерживайте ее в течение 15 с.
 - ▶ Пароль сбрасывается, светодиод кратковременно мигает.

Если управляющая кнопка I не нажата в течение 15 с, действие отменяется и светодиод больше не горит.

Сброс параметров прибора на заводские настройки

🗷 21 Последовательность сброса на заводские настройки

Сбросьте параметры прибора на заводские настройки

- ► Нажмите управляющую кнопку **I** и удерживайте ее не менее 12 с.

11.9 Информация о приборе

Вся информация о приборе содержится здесь: подменю Информация.

Навигация: Система → Информация

Подробные сведения о параметре подменю Информация см. в документе «Описание параметров прибора».

11.10 История изменений встроенного ПО

Версию программного обеспечения для прибора можно явно указать в структуре оформления заказа. Это позволяет обеспечить совместимость версии ПО при интеграции с существующей или планируемой системой.

Версия 01.00.00

- Исходное ПО
- Действительно с 11.01.2023

12 Техническое обслуживание

Специальное техническое обслуживание не требуется.

12.1 Очистка

12.1.1 Очистка поверхностей, не контактирующих с технологической средой

- Рекомендация: используйте безворсовую ткань, сухую или слегка смоченную водой.
- Не используйте острые предметы или агрессивные чистящие средства, способные разъедать поверхности (например, экраны и корпуса) и уплотнительные материалы.
- Не используйте пар высокого давления.
- Учитывайте степень защиты прибора.
- Используемое чистящее средство должно быть совместимым с материалами конфигурации прибора. Не используйте чистящие средства с концентрированными минеральными кислотами, основаниями или органическими растворителями.

12.1.2 Очистка поверхностей, контактирующих с технологической средой

В отношении очистки и стерилизации на месте (CIP/SIP) необходимо учитывать следующие моменты.

- Используйте только те чистящие средства, к которым материалы, находящиеся в контакте с окружающей средой, обладают достаточной стойкостью.
- Не превышайте максимально допустимую температуру технологической среды.

12.2 **Уплотнения**

Технологические уплотнения, которыми уплотняется присоединение к процессу прибора, необходимо периодически заменять. Периодичность замены уплотнений зависит от частоты выполнения циклов очистки, температуры очистки и температуры среды.

13 Ремонт

13.1 Общая информация

13.1.1 Принцип ремонта

Принцип ремонта компании Endress+Hauser

- Приборы имеют модульную конструкцию
- Ремонт может осуществляться сервисным центром Endress+Hauser или специалистами заказчика, прошедшими соответствующее обучение
- Запасные части объединены в логические комплекты и снабжены соответствующими руководствами по замене
- Сведения об обслуживании и запасных частях можно получить в региональном торговом представительстве Endress+Hauser.

13.1.2 Ремонт приборов во взрывозащищенном исполнении

▲ ОСТОРОЖНО

Ненадлежащий ремонт может поставить под угрозу электробезопасность! Опасность взрыва!

- ► В соответствии с национальным законодательством ремонт приборов с сертификатами взрывозащиты может осуществляться только специализированным персоналом или специалистами сервисного центра производителя.
- ► Требуется соблюдение действующих отраслевых стандартов и национального законодательства в отношении взрывоопасных зон, указаний по технике безопасности и сертификатов.
- ▶ Используйте только фирменные запасные части производителя.
- Учитывайте обозначение прибора, указанное на заводской табличке. Для замены могут использоваться только аналогичные детали.
- ▶ Выполняйте ремонт в соответствии с инструкциями.
- ▶ Вносить изменения в конструкцию сертифицированного прибора и модифицировать его до уровня иного сертифицированного исполнения могут только специалисты сервисного центра производителя.

13.2 Запасные части

Запасные части, доступные в настоящее время для продукта, см. в Интернете по адресу: https://www.endress.com/deviceviewer (→ Введите серийный номер)

13.3 Замена

После замены всего прибора или модуля электроники параметры можно снова загрузить в прибор через интерфейс связи. Для этого следует предварительно выгрузить данные в компьютер с помощью ПО FieldCare/DeviceCare.

13.3.1 HistoROM

Выполнять калибровку прибора заново после замены дисплея или электроники преобразователя не обязательно.

🚹 Запасные части поставляются без модуля HistoROM.

После замены электроники преобразователя снимите модуль HistoROM и подключите его к новому компоненту.

13.4 Возврат

Требования, предъявляемые к безопасному возврату прибора, могут варьироваться в зависимости от типа прибора и национального законодательства.

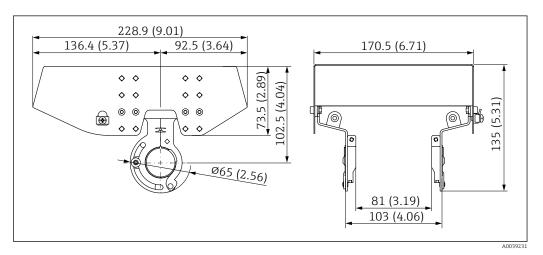
- 1. Подробнее см. на сайте: https://www.endress.com/support/return-material

 □ Выберите регион.
- 2. При возврате прибора упаковывайте его таким образом, чтобы он был надежно защищен от внешних воздействий. Наибольшую степень защиты обеспечивает оригинальная упаковка.

13.5 Утилизация

Если этого требует Директива 2012/19 EC об отходах электрического и электронного оборудования (WEEE),

изделия маркируются указанным символом, с тем чтобы свести к минимуму возможно как несортированных коммунальных отходов. Не утилизируйте изделия с такой маркировкой как несортированные коммунальные отходы. Вместо этого верните их изготовителю для утилизации в соответствии с действующими правилами.

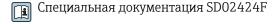

14 Принадлежности

14.1 Козырек для защиты от атмосферных воздействий: сталь 316L, XW112

Защитный козырек от погодных явлений можно заказать вместе с прибором (позиция спецификации «Прилагаемые аксессуары»).

Применяется для защиты от прямых солнечных лучей, атмосферных осадков и льда.

Козырек для защиты от атмосферных воздействий из стали 316L предназначен для защиты двухкамерного корпуса, изготовленного из алюминия или стали 316L. В комплект поставки входит держатель для прямого монтажа на корпус.

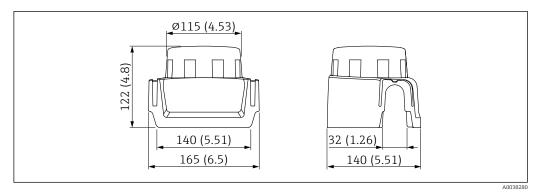

 22 Размеры козырька для защиты от атмосферных воздействий: сталь 316L, XW112. Единица измерения мм (дюйм)

Материал

- Козырек для защиты от атмосферных воздействий: сталь 316L
- Зажимной винт: А4
- Держатель: сталь 316L

Код заказа аксессуара:

71438303



14.2 Козырек для защиты от атмосферных воздействий, пластмассовый, XW111

Защитный козырек от погодных явлений можно заказать вместе с прибором (позиция спецификации «Прилагаемые аксессуары»).

Применяется для защиты от прямых солнечных лучей, атмосферных осадков и льда.

Пластмассовый козырек для защиты от атмосферных воздействий для корпуса с одним отсеком из алюминия. В комплект поставки входит держатель для прямого монтажа на корпус.

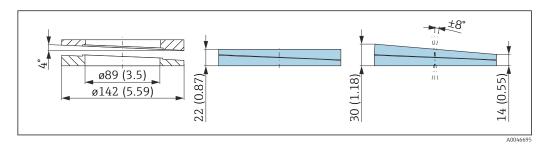
23 Размеры козырька для защиты от атмосферных воздействий, пластмассовый, XW111. Единица измерения мм (дюйм)

Материал

Пластик

Код заказа аксессуара:

71438291


Специальная документация SD02423F

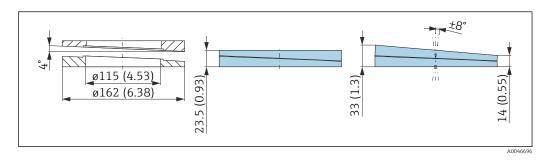
14.3 Регулируемое уплотнение фланца

Регулируемое уплотнение фланца позволяет совместить датчик с поверхностью продукта. Уплотнение можно заказать отдельно или вместе с прибором через позицию спецификации «Прилагаемые аксессуары».

14.3.1 Регулируемое уплотнение DN80

Регулируемое уплотнение DN80 подходит для фланцев EN DN80 PN10/PN40

Технические характеристики


- Материал: EPDM
- Рекомендуемый размер винта: М14
- Рекомендуемая длина винта: 100 мм (3,9 дюйм)
- Рабочее давление: −0,1 до 0,1 бар (−1,45 до 1,45 фунт/кв. дюйм)
- Рабочая температура: −40 до +80 °C (−40 до +176 °F)

Информация о заказе

- Уплотнение фланца можно заказать вместе с прибором в разделе «Прилагаемые аксессуары».
- Код заказа: 71074263

14.3.2 Регулируемое уплотнение DN100

Регулируемое уплотнение DN100 подходит для фланцев EN DN100 PN10/PN16

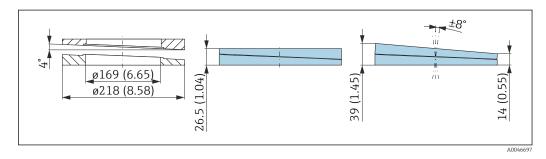
Технические характеристики

■ Материал: EPDM

• Рекомендуемый размер винта: М14

■ Рекомендуемая длина винта: 100 мм (3,9 дюйм)

Рабочее давление: −0,1 до 0,1 бар (−1,45 до 1,45 фунт/кв. дюйм)


Рабочая температура: -40 до +80 °С (-40 до +176 °F)

Информация о заказе

- Уплотнение фланца можно заказать вместе с прибором в разделе «Прилагаемые аксессуары».
- Код заказа: 71074264

14.3.3 Регулируемое уплотнение DN150

Регулируемое уплотнение DN150 совместимо с фланцами EN DN150 PN10/PN19

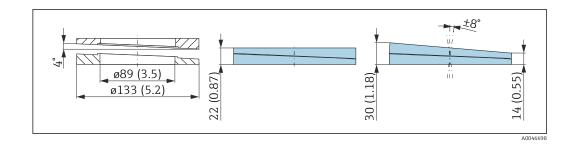
Технические характеристики

■ Материал: EPDM

■ Рекомендуемый размер винта: М18

Рекомендуемая длина винта: 110 мм (4,3 дюйм)

Рабочее давление: −0,1 до 0,1 бар (−1,45 до 1,45 фунт/кв. дюйм)


Рабочая температура: −40 до +80 °C (−40 до +176 °F)

Информация для оформления заказа

- Фланцевое уплотнение можно заказать вместе с прибором через позицию спецификации «Прилагаемые аксессуары».
- Код заказа: 71074265

14.3.4 Регулируемое уплотнение ASME 3"/JIS 80A

Регулируемое уплотнение, ASME 3"/ JIS 80A подходит для фланцев ASME 3" 150 lbs и JIS 80A 10K

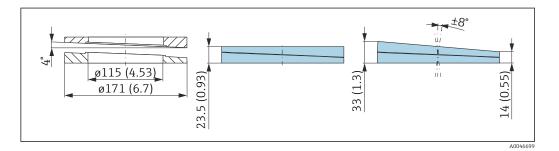
Технические характеристики

■ Материал: EPDM

■ Рекомендуемый размер винта: М14

■ Рекомендуемая длина винта: 100 мм (3,9 дюйм)

Рабочее давление: −0,1 до 0,1 бар (−1,45 до 1,45 фунт/кв. дюйм)


■ Рабочая температура: -40 до +80 °C (-40 до +176 °F)

Информация о заказе

- Уплотнение фланца можно заказать вместе с прибором в разделе «Прилагаемые аксессуары».
- Код заказа: 71249070

14.3.5 Регулируемое уплотнение ASME 4"

Регулируемое уплотнение ASME 4" подходит для фланцев ASME 4" 150 lbs

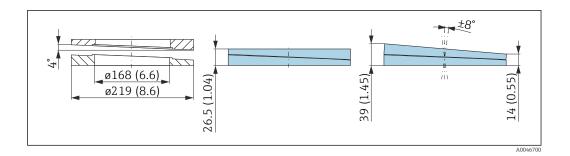
Технические характеристики

■ Материал: EPDM

■ Рекомендуемый размер винта: М14

■ Рекомендуемая длина винта: 100 мм (3,9 дюйм)

Рабочее давление: −0,1 до 0,1 бар (−1,45 до 1,45 фунт/кв. дюйм)


Рабочая температура: -40 до +80 °С (-40 до +176 °F)

Информация о заказе

- Уплотнение фланца можно заказать вместе с прибором в разделе «Прилагаемые аксессуары».
- Код заказа: 71249072

14.3.6 Регулируемое уплотнение ASME 6"/JIS 150A

Perулируемое уплотнение ASME 6"/ JIS 150A подходит для фланцев ASME 6" 150 lbs и JIS 150A 10K

Технические характеристики

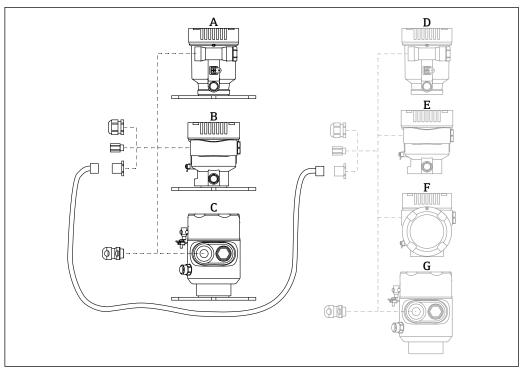
■ Материал: EPDM

• Рекомендуемый размер винта: М18

• Рекомендуемая длина винта: 100 мм (3,9 дюйм)

Рабочее давление: −0,1 до 0,1 бар (−1,45 до 1,45 фунт/кв. дюйм)

Рабочая температура: −40 до +80 °C (−40 до +176 °F)


Информация о заказе

- Уплотнение фланца можно заказать вместе с прибором в разделе «Прилагаемые аксессуары».
- Код заказа: 71249073

14.4 Выносной дисплей FHX50В

Выносной дисплей следует заказывать через Product Configurator (конфигуратор изделия).

Если предполагается использование выносного дисплея, то необходимо заказывать прибор в исполнении «Подготовлен для дисплея FHX50В».

- Корпус с одним отсеком, пластмассовый, выносной дисплей
- В Корпус с одним отсеком, алюминиевый, выносной дисплей
- Корпус с одним отсеком, гигиеническое исполнение из стали 316L, выносной дисплей
- Сторона прибора, корпус с одним отсеком, пластмассовый, с подготовкой для подключения дисплея
- Е Сторона прибора, корпус с одним отсеком, алюминиевый, подготовленный для подключения дисплея FHX50B
- Сторона прибора, корпус с двумя отсеками, L-образной формы, подготовленный для подключения дисплея FHX50В
- Сторона прибора, корпус с одним отсеком, гигиеническое исполнение из стали 316L, подготовленный для подключения дисплея FHX50В

Материал корпуса с одним отсеком, выносной дисплей

- Алюминий
- Пластик

Степень зашиты:

- IP68 / NEMA 6P
- IP66 / NEMA 4x

Соединительный кабель:

- Соединительный кабель (опция) длиной до 30 м (98 фут)
- Стандартный кабель, поставляемый заказчиком, длиной до 60 м (197 фут) Рекомендация: EtherLine®-P CAT.5e от LAPP.

Спецификация поставляемого заказчиком соединительного кабеля

Технология подключения к Push-in CAGE CLAMP®, активация нажатием кнопки

- Площадь поперечного сечения проводника:
 - Сплошной проводник 0,2 до 0,75 мм² (24 до 18 AWG)
 - Тонкожильный проводник 0,2 до 0,75 мм² (24 до 18 AWG)
 - Тонкожильный проводник; с изолированной втулкой 0.25 до 0.34 мм²
 - Тонкожильный проводник; без изолированной втулки 0,25 до 0,34 мм²
- Длина зачистки 7 до 9 мм (0,28 до 0,35 дюйм)
- Наружный диаметр: 6 до 10 мм (0,24 до 0,4 дюйм)
- Максимальная длина кабеля: 60 м (197 фут)

Температура окружающей среды:

- -40 до +80 °C (-40 до +176 °F)
- Опционально: −50 до +80 °C (−58 до +176 °F)

👔 Специальная документация SD02991F

14.5 Герметичное уплотнение

Химически инертное стеклянное уплотнение; предотвращающее попадание газов в блок электроники.

По желанию можно выбрать в разделе «Установленные аксессуары» при заказе изделия.

14.6 Field Xpert SMT70

Универсальный высокопроизводительный планшет для настройки приборов во взрывоопасных зонах (зона 2) и невзрывоопасных зонах

Техническое описание TI01342S

14.7 DeviceCare SFE100

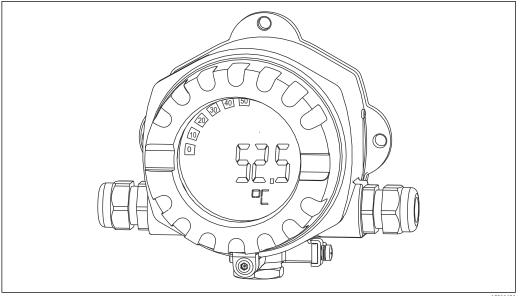
Конфигурационный инструмент для полевых приборов с интерфейсом HART, PROFIBUS или FOUNDATION Fieldbus

Техническое описание, TI01134S

14.8 FieldCare SFE500

Инструментальное средство для управления парком приборов на основе технологии FDT

С его помощью можно настраивать все интеллектуальные полевые приборы в системе и управлять ими. Использование информации о состоянии также является простым, но эффективным способом проверки состояния и исправности приборов.



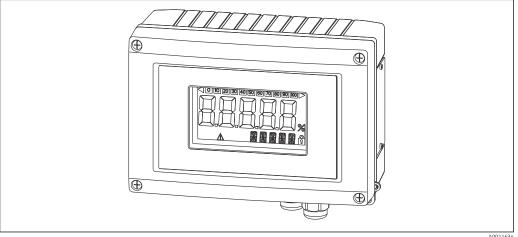
Техническое описание (TI00028S)

14.9 RID14

8-канальный полевой индикатор для систем полевых шин

70

A001163

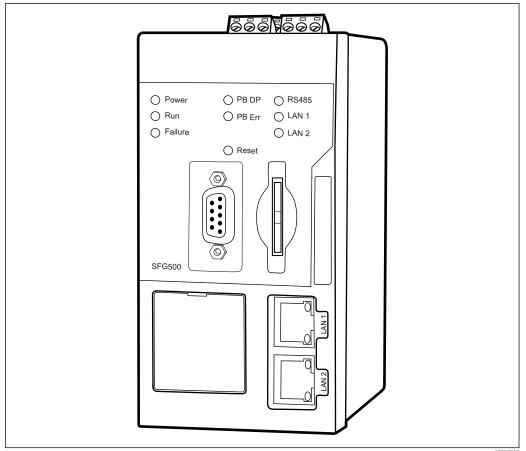

Отображение 8 значений процесса или расчетных значений для протокола FOUNDATION Fieldbus $^{\text{TM}}$ или PROFIBUS $^{\text{®}}$ PA

Техническое описание ТІОО145R и руководство по эксплуатации ВАО1267K

14.10 RID16

8-канальный полевой индикатор для систем полевых шин

A0011634


Отображение 8 значений процесса или расчетных значений для протокола FOUNDATION Fieldbus или PROFIBUS PA

Техническое описание TI00146R и руководство по эксплуатации BA00284R

14.11 Fieldgate SFG500

Интеллектуальный шлюз Ethernet/PROFIBUS

Параллельный доступ к сетям PROFIBUS, контроль состояния устройств PROFIBUS и HART

Основной режим шлюза Ethernet со встроенным веб-сервером и адаптивным ведущим устройством PROFIBUS (класс 2) для связи с устройствами PROFIBUS.

Код для заказа аксессуаров:

71116672

руководство по эксплуатации BA01579S

72

15 Технические данные

15.1 Вход

Измеряемая переменная

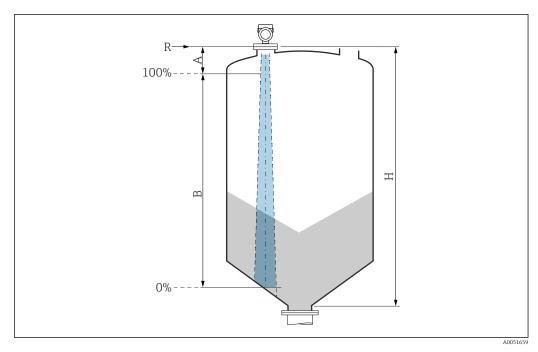
Измеряемая переменная соответствует расстоянию между контрольной точкой и поверхностью среды. Уровень рассчитывается на основе введенного известного расстояния E, соответствующего пустому резервуару.

Диапазон измерений

Диапазон измерения начинается в той точке, в которой луч достигает днища резервуара. Уровень, находящийся ниже этой точки, измерить невозможно, особенно при наличии конического выпуска. Максимальный диапазон измерения в таких условиях применения можно увеличить при помощи приспособления для выравнивания.

Максимальный диапазон измерения

Максимальный диапазон измерения зависит от размера и конструкции антенны.


Антенна	Максимальный диапазон измерения
Рупор, сталь 316L, 65 мм (2,6 дюйм)	125 м (410 фут)
С защитой от конденсата, РТFE, 50 мм (2 дюйм)	50 м (164 фут)
Монтируемая заподлицо, РТFE, 80 мм (3 дюйм)	125 м (410 фут)

Реальный диапазон измерения

Фактический диапазон измерений зависит от размера антенны, отражающих свойств среды, монтажной позиции и любых возможных паразитных отражений.

Теоретически измерение возможно вплоть до кончика антенны.

В зависимости от положения продукта (угол естественного откоса) и во избежание материального ущерба от абразивной среды и образования отложений на антенне конец диапазона измерений должен заканчиваться в 10 мм (0,4 дюйм) от кончика антенны.

А Длина антенны + 10 мм (0,4 дюйм)

- В Фактический диапазон измерений
- Н Высота бункера (емкости)
- R Контрольная точка измерения; зависит от антенной системы
- 📵 Подробнее о контрольной точке см. здесь → 🖺 Механическая конструкция.
- Значения относительной проницаемости ($\varepsilon_{\rm r}$) многих сред, часто применяемых в промышленности, приведены в разделе:
 - Относительная проницаемость (значение ε_r), Compendium CP01076F
 - Приложение "DC Values" компании Endress+Hauser (доступно для операционных систем Android и iOS)

Рабочая частота

Примерно 80 ГГц

В один резервуар можно установить до 8 приборов, причем эти приборы не будут влиять друг на друга.

Мощность передачи

- Пиковая мощность: <1,5 мВт
- Средняя выходная мощность: <70 мкВт

15.2 Выход

PROFIBUS PA

В соответствии со стандартом EN 50170 (том 2), IEC 61158-2

Кодирование сигнала:

Manchester Bus Powered (MBP), тип 1

Скорость передачи данных:

31,25 kBit/s, режим напряжения

Гальваническая развязка:

Да

Аварийный сигнал

Диагностика в соответствии с PROFIBUS PA, профиль 3.02

Локальный дисплей

Сигнал состояния (в соответствии с рекомендацией NAMUR NE 107): Отображение простых текстовых сообщений

Программное обеспечение через сервисный интерфейс (CDI)

Сигнал состояния (в соответствии с рекомендацией NAMUR NE 107): Отображение простых текстовых сообщений

Программное обеспечение с помощью связи PROFIBUS PA

Сигнал состояния (в соответствии с рекомендацией NAMUR NE 107): Отображение простых текстовых сообщений

Линеаризация

Функция линеаризации, имеющаяся в приборе, позволяет преобразовывать измеренное значение в любую требуемую единицу измерения длины, веса, расхода или объема.

Заранее запрограммированные кривые линеаризации

Таблицы линеаризации для расчета объема в перечисленных ниже резервуарах предварительно запрограммированы в системе прибора.

- Дно пирамидоидальное
- Коническое дно
- Дно под углом
- Горизонтальный цилиндр
- Резервуар сферический

Также доступен ручной ввод дополнительных таблиц, каждая из которых может содержать до 32 пар значений.

Данные протокола

PROFIBUS PA

Идентификатор производителя:

17 (0x11)

Идентификационный номер:

0х1568 или 0х9700

Версия профиля:

3.02

Файл GSD и версия

Информация и файлы находятся в свободном доступе по следующим адресам:

- www.endress.com
 - На странице с информацией о приборе: Документы/ПО → Драйверы прибора
- www.profibus.com

Выходные значения

Аналоговый вход:

- Уровень линеаризованый
- Расстояние
- объём
- Напряжение на клеммах
- Температура электроники
- Температура датчика
- Абсолютная амплитуда отражённого сигнала
- Относительная амплитуда эхо-сигнала
- Область соединений
- Коэф-т налипаний, опционально (Руководство → Heartbeat Technology → Обнаружение налипаний → Коэф-т налипаний)
- Коэф-т пены, опционально (Диагностика → Heartbeat Technology → Обнаружение пены → Коэф-т пены)

Цифровой вход:

- ☑ Доступен только в том случае, если был выбран пакет приложений Heartbeat Verification + Monitoring.
- 168 Обнаружены налипания, опционально (Руководство → Heartbeat Technology
 → Обнаружение налипаний → 168 Обнаружены налипания)
- 952 Обнаружена пена, опционально (Руководство → Heartbeat Technology
 → Обнаружение пены → 952 Обнаружена пена)

Входные значения

Аналоговый выход:

Аналоговое значение от ПЛК для вывода на дисплей

Поддерживаемые функции

- Идентификация и техническое обслуживание
 Простейшая идентификация прибора по системе управления и заводской табличке
- Автоматическое создание идентификатора Режим совместимости GSD для общего профиля 0х9700 «Преобразователь с одним аналоговым входом»
- Диагностика на физическом уровне
 Проверка монтажа сегмента PROFIBUS и прибора с использованием напряжения на клеммах и мониторинга сообщений
- Выгрузка / загрузка по PROFIBUS
 Чтение и запись параметров с помощью выгрузки / загрузки по PROFIBUS
 происходит до десяти раз быстрее
- Краткая информация о состоянии
 Кратчайшая и интуитивно понятная диагностическая информация с разбивкой выдаваемых диагностических сообщений по категориям

15.3 Условия окружающей среды

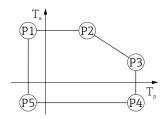
Диапазон температуры окружающей среды

Следующие значения действительны для рабочей температуры до +85 °C (+185 °F). При более высокой рабочей температуре допустимая температура окружающей среды снижается.

- Прибор без ЖК-дисплея:
 Стандартный вариант: −40 до +85 °C (−40 до +185 °F)
- С ЖК-дисплеем: -40 до +85 °C (-40 до +185 °F) с ограничением оптических свойств, напр. быстродействия и контрастности. Можно использовать без ограничений до -20 до +60 °C (-4 до +140 °F)
- При эксплуатации на открытых площадках в условиях интенсивного солнечного света:
 - устанавливайте прибор в затененном месте;
 - избегайте воздействия прямых солнечных лучей, особенно в регионах с теплым климатом;
 - используйте защитный козырек от погодных явлений (см. раздел «Аксессуары»).

Пределы температуры окружающей среды

Допустимая температура окружающей среды (T_a) зависит от выбранного материала корпуса (Конфигуратор выбранного продукта \rightarrow Корпус; Материал \rightarrow) и выбранного диапазона рабочей температуры (Конфигуратор выбранного продукта \rightarrow Применение \rightarrow).

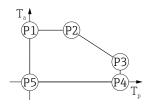

В случае температуры (T_p) на присоединении к процессу допустимая температура окружающей среды (T_a) снижается.

i

В приведенной ниже информации учитываются только функциональные аспекты. К сертифицированным исполнениям прибора могут применяться дополнительные ограничения.

Пластмассовый корпус

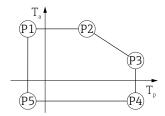
Пластмассовый корпус; рабочая температура -40 до +80 °C (-40 до +176 °F)


A0032024

 \blacksquare 24 Пластмассовый корпус; рабочая температура -40 до +80 $^{\circ}$ C (-40 до +176 $^{\circ}$ F)

Если приборы поставляются в пластмассовом корпусе и с сертификатом CSA C/US, выбранная рабочая температура

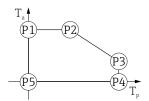
```
-40 до +80\,^{\circ}С (-40 до +176\,^{\circ}F) ограничивается пределом 0 до +80\,^{\circ}С (+32 до +176\,^{\circ}F).
```


Ограничение рабочей температуры 0 до $+80 \,^{\circ}\mathrm{C}$ ($+32 \,\mathrm{do}\,+176 \,^{\circ}\mathrm{F}$) для приборов с сертификатом CSA C/US и пластмассовым корпусом

A0048826

■ 25 Пластмассовый корпус; рабочая температура 0 до +80 °C (+32 до +176 °F) для приборов с сертификатом CSA C/US

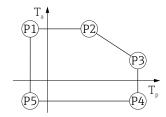
Пластмассовый корпус; рабочая температура -40 до +150 °C (-40 до +302 °F)



A0032024

■ 26 Пластмассовый корпус; рабочая температура -40 до +150 °C (-40 до +302 °F)

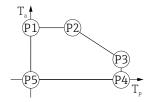
Если приборы поставляются в пластмассовом корпусе и с сертификатом CSA C/US, выбранная рабочая температура -40 до +150 °C (-40 до +302 °F) ограничивается пределом 0 до +150 °C (+32 до +302 °F).


Ограничение рабочей температуры 0 до $+150\,^{\circ}$ С ($+32\,$ до $+302\,^{\circ}$ F) для приборов с сертификатом CSA C/US и пластмассовым корпусом

A0048826

் 27 Пластмассовый корпус; рабочая температура 0 до +150 $^{\circ}$ C (+32 до +302 $^{\circ}$ F) для приборов с сертификатом CSA C/US

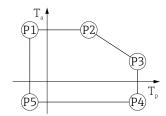
Пластмассовый корпус; рабочая температура -40 до +200 °C (-40 до +392 °F)



A0032024

 \blacksquare 28 Пластмассовый корпус; рабочая температура -40 до +200 $^{\circ}$ С (-40 до +392 $^{\circ}$ F)

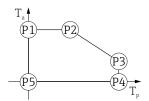
Если приборы поставляются в пластмассовом корпусе и с сертификатом CSA C/US, выбранная рабочая температура -40 до +200 °C (-40 до +392 °F) ограничивается пределом 0 до +200 °C (+32 до +392 °F).


Ограничение рабочей температуры 0 до $+200\,^{\circ}$ С ($+32\,$ до $+392\,^{\circ}$ F) для приборов с сертификатом CSA C/US и пластмассовым корпусом

A0048826

■ 29 Пластмассовый корпус; рабочая температура 0 до +200 °C (+32 до +392 °F) для приборов с сертификатом CSA C/US

Пластмассовый корпус; рабочая температура -40 до +280 °C (-40 до +536 °F)

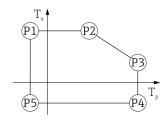

A0032024

 \blacksquare 30 Пластмассовый корпус; рабочая температура -40 до +280 $^{\circ}$ С (-40 до +536 $^{\circ}$ F)

```
\begin{array}{llll} P1 & = & T_p \colon -40\,^{\circ}\text{C} \, (-40\,^{\circ}\text{F}) & | & T_a \colon +76\,^{\circ}\text{C} \, (+169\,^{\circ}\text{F}) \\ P2 & = & T_p \colon +76\,^{\circ}\text{C} \, (+169\,^{\circ}\text{F}) & | & T_a \colon +76\,^{\circ}\text{C} \, (+169\,^{\circ}\text{F}) \\ P3 & = & T_p \colon +280\,^{\circ}\text{C} \, (+536\,^{\circ}\text{F}) & | & T_a \colon +48\,^{\circ}\text{C} \, (+118\,^{\circ}\text{F}) \\ P4 & = & T_p \colon +280\,^{\circ}\text{C} \, (+536\,^{\circ}\text{F}) & | & T_a \colon -40\,^{\circ}\text{C} \, (-40\,^{\circ}\text{F}) \\ P5 & = & T_p \colon -40\,^{\circ}\text{C} \, (-40\,^{\circ}\text{F}) & | & T_a \colon -40\,^{\circ}\text{C} \, (-40\,^{\circ}\text{F}) \\ \end{array}
```

Если приборы поставляются в пластмассовом корпусе и с сертификатом CSA C/US, выбранная рабочая температура—40 до +280 °C (-40 до +536 °F) ограничивается пределом 0 до +280 °C (+32 до +536 °F).

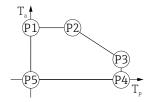
Ограничение рабочей температуры 0 до $+280\,^{\circ}$ С ($+32\,$ до $+536\,^{\circ}$ F) для приборов с сертификатом CSA C/US и пластмассовым корпусом



A0048826

் 31 Пластмассовый корпус; рабочая температура 0 до +280 $^{\circ}$ C (+32 до +536 $^{\circ}$ F) для приборов с сертификатом CSA C/US

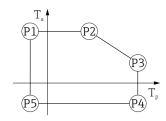
```
\begin{array}{llll} P1 & = & T_p : \ 0 \ ^{\circ} \ (+32 \ ^{\circ} F) & | & T_a : \ +76 \ ^{\circ} \ (+169 \ ^{\circ} F) \\ P2 & = & T_p : \ +76 \ ^{\circ} \ (+169 \ ^{\circ} F) & | & T_a : \ +76 \ ^{\circ} \ (+169 \ ^{\circ} F) \\ P3 & = & T_p : \ +280 \ ^{\circ} \ (+536 \ ^{\circ} F) & | & T_a : \ +48 \ ^{\circ} \ (+118 \ ^{\circ} F) \\ P4 & = & T_p : \ +280 \ ^{\circ} \ (+536 \ ^{\circ} F) & | & T_a : \ 0 \ ^{\circ} \ (+32 \ ^{\circ} F) \\ P5 & = & T_p : \ 0 \ ^{\circ} \ (+32 \ ^{\circ} F) & | & T_a : \ 0 \ ^{\circ} \ (+32 \ ^{\circ} F) \\ \end{array}
```


Пластмассовый корпус; рабочая температура -40 до +450 °C (-40 до +842 °F)

A0032024

Если приборы поставляются в пластмассовом корпусе и с сертификатом CSA C/US, выбранная рабочая температура -40 до +450 °C (-40 до +842 °F) ограничивается пределом 0 до +450 °C (+32 до +842 °F).

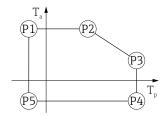
Ограничение рабочей температуры 0 до +450 °C (+32 до +842 °F) для приборов с сертификатом CSA C/US и пластмассовым корпусом



A0048826

☑ 33 Пластмассовый корпус; рабочая температура 0 до +450 °C (+32 до +842 °F) для приборов с сертификатом CSA C/US

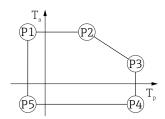
Алюминиевый корпус с покрытием


Алюминиевый корпус; рабочая температура -40 до +80 °C (-40 до +176 °F)

A0032024

 \blacksquare 34 — Алюминиевый корпус с покрытием; рабочая температура -40 до +80 $^{\circ}$ C (-40 до +176 $^{\circ}$ F)

Алюминиевый корпус; рабочая температура -40 до +150 °C (-40 до +302 °F)

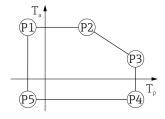


A0032024

 \blacksquare 35 — Алюминиевый корпус с покрытием; рабочая температура -40 до +150 $^{\circ}$ C (-40 до +302 $^{\circ}$ F)

P5 = T_p : -40 °C (-40 °F) | T_a : -40 °C (-40 °F)

Алюминиевый корпус; рабочая температура -40 до +200 °C (-40 до +392 °F)

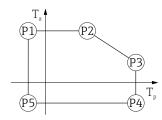


A0032024

 \blacksquare 36 — Алюминиевый корпус с покрытием; рабочая температура -40 до +200 $^{\circ}$ C (-40 до +392 $^{\circ}$ F)

```
\begin{array}{llll} P1 & = & T_p \colon -40 \, ^{\circ} \! \text{C} \, (-40 \, ^{\circ} \! \text{F}) & | & T_a \colon +79 \, ^{\circ} \! \text{C} \, (+174 \, ^{\circ} \! \text{F}) \\ P2 & = & T_p \colon +79 \, ^{\circ} \! \text{C} \, (+174 \, ^{\circ} \! \text{F}) & | & T_a \colon +79 \, ^{\circ} \! \text{C} \, (+174 \, ^{\circ} \! \text{F}) \\ P3 & = & T_p \colon +200 \, ^{\circ} \! \text{C} \, (+392 \, ^{\circ} \! \text{F}) & | & T_a \colon +47 \, ^{\circ} \! \text{C} \, (+1117 \, ^{\circ} \! \text{F}) \\ P4 & = & T_p \colon +200 \, ^{\circ} \! \text{C} \, (+392 \, ^{\circ} \! \text{F}) & | & T_a \colon -40 \, ^{\circ} \! \text{C} \, (-40 \, ^{\circ} \! \text{F}) \\ P5 & = & T_p \colon -40 \, ^{\circ} \! \text{C} \, (-40 \, ^{\circ} \! \text{F}) & | & T_a \colon -40 \, ^{\circ} \! \text{C} \, (-40 \, ^{\circ} \! \text{F}) \\ \end{array}
```

Алюминиевый корпус; рабочая температура -40 до +280 °C (-40 до +536 °F)



A0032024

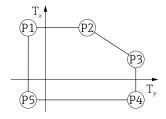
 \blacksquare 37 — Алюминиевый корпус с покрытием; рабочая температура -40 до +280 $^{\circ}$ С (-40 до +536 $^{\circ}$ F)

82

Алюминиевый корпус; рабочая температура -40 до +450 °C (-40 до +842 °F)

A0032024

🗷 38 Алюминиевый корпус с покрытием; рабочая температура −40 до +450 °C (−40 до +842 °F)

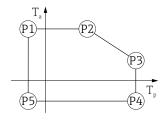

P1 = T_p : -40 °C (-40 °F) | T_a : +79 °C (+174 °F) P2 = T_p : +79 °C (+174 °F) | T_a : +79 °C (+174 °F) P3 = T_p : +450 °C (+842 °F) | T_a : +39 °C (+102 °F)

 $P4 = T_p$: +450 °C (+842 °F) | T_a : -40 °C (-40 °F)

 $P5 = T_p: -40 \,^{\circ}\text{C} (-40 \,^{\circ}\text{F}) \mid T_a: -40 \,^{\circ}\text{C} (-40 \,^{\circ}\text{F})$

Корпус 316L

Корпус 316L; рабочая температура −40 до +80 $^{\circ}$ C (−40 до +176 $^{\circ}$ F)


A0032024

 \blacksquare 39 Корпус 316L; рабочая температура -40 до +80 $^{\circ}$ (-40 до +176 $^{\circ}$ F)

 $P4 = T_p$: +80 °C (+176 °F) | T_a : -40 °C (-40 °F)

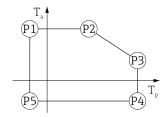
 $P5 = T_p: -40 \,^{\circ}\text{C} (-40 \,^{\circ}\text{F}) \mid T_a: -40 \,^{\circ}\text{C} (-40 \,^{\circ}\text{F})$

Корпус 316L; рабочая температура -40 до +150 $^{\circ}$ C (-40 до +302 $^{\circ}$ F)

A0032024

 \blacksquare 40 Корпус 316L; диапазон рабочей температуры: -40 до +150 $^{\circ}$ С (-40 до +302 $^{\circ}$ F)

 $P1 = T_p: -40 \,^{\circ}\text{C} (-40 \,^{\circ}\text{F}) \mid T_a: +77 \,^{\circ}\text{C} (+171 \,^{\circ}\text{F})$

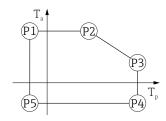

 $P2 = T_p$: +77 °C (+171 °F) | T_a : +77 °C (+171 °F)

P3 = T_p : +150 °C (+302 °F) | T_a : +43 °C (+109 °F)

 $P4 = T_p$: +150 °C (+302 °F) | T_a : -40 °C (-40 °F)

 $P5 = T_p: -40 \,^{\circ}\text{C} \, (-40 \,^{\circ}\text{F}) \mid T_a: -40 \,^{\circ}\text{C} \, (-40 \,^{\circ}\text{F})$

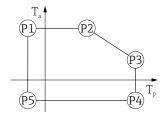
Корпус 316L; рабочая температура −40 до +200 °C (−40 до +392 °F)



A0032024

■ 41 Корпус 316L; рабочая температура -40 до +200 °C (-40 до +392 °F)

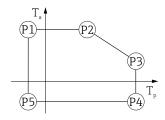
P1 = T_p : -40 °C (-40 °F) | T_a : +77 °C (+171 °F) P2 = T_p : +77 °C (+171 °F) | T_a : +77 °C (+171 °F) P3 = T_p : +200 °C (+392 °F) | T_a : +38 °C (+100 °F) P4 = T_p : +200 °C (+392 °F) | T_a : -40 °C (-40 °F) P5 = T_p : -40 °C (-40 °F) | T_a : -40 °C (-40 °F)


Корпус 316L; рабочая температура -40 до +280 °C (-40 до +536 °F)

A0032024

 \blacksquare 42 Корпус 316L; рабочая температура –40 до +280 $^{\circ}$ С (–40 до +536 $^{\circ}$ F)

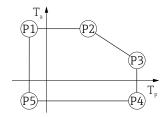
Корпус 316L; рабочая температура -40 до +450 $^{\circ}$ C (-40 до +842 $^{\circ}$ F)



A0032024

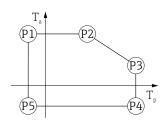
 \blacksquare 43 Корпус 316L; рабочая температура –40 до +450 $^{\circ}$ C (–40 до +842 $^{\circ}$ F)

Корпус 316L, гигиенический


Корпус 316L, гигиенический; рабочая температура -40 до +80 °C (-40 до +176 °F)

A0032024

 \blacksquare 44 Корпус 316L, гигиенический; рабочая температура –40 до +80 $^{\circ}$ C (–40 до +176 $^{\circ}$ F)


Корпус 316L, гигиенический; рабочая температура -40 до +150 °C (-40 до +302 °F)

A0032024

 \blacksquare 45 Корпус 316L, гигиенический; диапазон рабочей температуры: -40 до +150 $^{\circ}$ C (-40 до +302 $^{\circ}$ F)

Корпус 316L, гигиенический; рабочая температура -40 до +200 °C (-40 до +392 °F)

A0032024

 \blacksquare 46 Корпус 316L, гигиенический; рабочая температура -40 до +200 $^{\circ}$ C (-40 до +392 $^{\circ}$ F)

Температура хранения

- Прибор без ЖК-дисплея: -40 до +90 °C (-40 до +194 °F)
- С ЖК-дисплеем: -40 до +85 °C (-40 до +185 °F)

Климатический класс

DIN EN 60068-2-38 (испытание Z/AD)

Высота установки в
соответствии с IEC
61010-1, ред. 3

Как правило, до 5000 м (16404 фут) над уровнем моря

Степень защиты

Испытание в соответствии с IEC 60529 и NEMA 250

Корпус

IP66/68, NEMA, тип 4X/6P

Условие испытания согласно IP68: 1,83 м под водой в течение 24 часов.

Кабельные вводы

- Соединение M20, пластик, IP66/68 NEMA, тип 4X/6P
- Соединение M20, никелированная латунь, IP66/68 NEMA, тип 4X/6P
- Соединение M20, 316L, IP66/68 NEMA, тип 4X/6P
- Соединение M20, гигиеническое исполнение, IP66/68/69 NEMA, тип 4X/6P
- Резьба М20, IP66/68 NEMA, тип 4X/6Р
- Резьба G ½, IP66/68 NEMA, тип 4X/6Р
 Если выбрана резьба G ½, то прибор поставляется со стандартной резьбой M20 и переходником M20 на резьбу G M20 ½ вместе с сопроводительной документацией
- Резьба NPT ½, IP66/68 NEMA, тип 4X/6P
- Разъем М12
 - Если корпус закрыт, а соединительный кабель подключен: IP66/67 NEMA, тип 4X
 - Если корпус открыт или соединительный кабель не подключен: IP20, NEMA, тип 1

УВЕДОМЛЕНИЕ

Разъем M12: утрата соответствия классу защиты IP вследствие ненадлежащего монтажа!

- ► Степень защиты относится только к такому состоянию, при котором соединительный кабель подключен, а уплотнение плотно затянуто.
- ► Степень защиты действует только в том случае, если соединительный кабель соответствует классу защиты IP67 NEMA, тип 4X.
- Классы защиты действуют только при наличии защитной заглушки или подключенного кабеля.

Вибростойкость

DIN EN 60068-2-64 / IEC 60068-2-64 для 5 до 2 000 Hz: 1,25 $(\text{м/c}^2)^2/\Gamma$ ц

Электромагнитная совместимость (ЭМС)

- Электромагнитная совместимость соответствует стандартам серии EN 61326 и рекомендациям NAMUR по ЭМС (NE21)
- Максимальная погрешность измерения при испытании на ЭМС: < 0,5 % от текущего измеренного цифрового значения

Более подробные сведения приведены в Декларации соответствия требованиям ЕС.

15.4 Параметры технологического процесса

Диапазон рабочего давления

▲ ОСТОРОЖНО

Максимально допустимое давление для прибора зависит от компонента с наименьшим номинальным давлением (компоненты: технологическое соединение, дополнительные установленные компоненты или аксессуары).

- Эксплуатируйте прибор только в пределах допустимых значений, указанных для компонентов!
- ▶ МРД (максимальное рабочее давление): указано на заводской табличке. Это значение относится к исходной базовой температуре +20 °C (+68 °F) и может воздействовать на прибор в течение неограниченного времени. Обратите внимание на зависимость МРД от температуры. Значения давления, допустимые при более высокой температуре для фланцев, см. в стандартах EN 1092-1 (с учетом температурной стабильности материалы 1.4435 и 1.4404 сгруппированы в соответствии со стандартом EN 1092-1; химический состав двух материалов может быть идентичным), ASME B16.5, JIS B2220 (в каждом случае действует текущая редакция стандарта). Значения МРД, которые не соответствуют этим правилам, приведены в соответствующих разделах технического описания.
- ▶ В директиве для оборудования, работающего под давлением (2014/68/EU), используется аббревиатура **PS**. Это соответствует максимальному рабочему давлению (МРД) прибора.

В следующих таблицах отражены зависимости между материалом уплотнения, диапазоном рабочей температуры (T_p) и рабочего давления для каждого присоединения к процессу, которое может быть выбрано для используемой антенны.

Антенна с защитой от конденсата 50 мм (2 дюйм)

Технологическое соединение, фланец UNI

	Уплотнение	T _p	Диапазон рабочего давления
	FKM Viton GLT	−40 до +80 °C (−40 до +176 °F)	-1 до 3 бар (-14,5 до 43,5 фунт/кв. дюйм)
A0047827			

При наличии сертификата CRN диапазон давления может быть ограничен более жестко.

Рупорная антенна 65 мм (2,6 дюйм)

Технологическое соединение, стандартный фланец

	Уплотнение	T _p	Диапазон рабочего давления
	Графит	−40 до +280 °С (−40 до +536 °F)	-1 до 160 бар (-14,5 до 2320,6 фунт/кв. дюйм)
A0047836	Графит	−40 до +450 °C (−40 до +842 °F)	-1 до 160 бар (-14,5 до 2320,6 фунт/кв. дюйм)

Технологическое соединение, фланец UNI, алюминий, регулировка

	Уплотнение	$T_{\rm p}$	Диапазон рабочего давления
A0048812	Графит	−40 до +280 °C (−40 до +536 °F)	-1 до 1 бар (-14,5 до 14,5 фунт/кв. дюйм)

При наличии сертификата CRN диапазон давления может быть ограничен более жестко.

Антенна, монтаж заподлицо, ПТФЭ, 80 мм (3 дюйм)

Технологическое соединение, стандартный фланец с выходом для продувки

	Уплотнение	T _p	Диапазон рабочего давления
	FKM Viton GLT	–40 до +150 °С (–40 до +302 °F)	-1 до 16 бар (-14,5 до 232 фунт/кв. дюйм)
	FKM Viton GLT	–40 до +200 °C (–40 до +392 °F)	-1 до 16 бар (-14,5 до 232 фунт/кв. дюйм)
A0047828			

Технологическое соединение, фланец UNI, 316L, с выходом для продувки

	Уплотнение	T_p	Диапазон рабочего давления
	FKM Viton GLT	−40 до +150 °C (−40 до +302 °F)	р _{изб.} = -1 до 1 бар (-14,5 до 14,5 фунт/кв. дюйм)
	FKM Viton GLT	−40 до +200 °C (−40 до +392 °F)	р _{изб.} = -1 до 1 бар (-14,5 до 14,5 фунт/кв. дюйм)
A0047829			

Технологическое соединение, фланец UNI, алюминий, регулировка, с выходом для продувки

	Уплотнение	T_p	Диапазон рабочего давления
	FKM Viton GLT	−40 до +150 °С (−40 до +302 °F)	-1 до 1 бар (-14,5 до 14,5 фунт/кв. дюйм)
	FKM Viton GLT	–40 до +200 °C (–40 до +392 °F)	-1 до 1 бар (-14,5 до 14,5 фунт/кв. дюйм)
A0047830			

При наличии сертификата CRN диапазон давления может быть ограничен более жестко.

Диэлектрическая постоянная

Для сыпучих продуктов

 $\varepsilon_r \ge 1.6$

По вопросам работы с продуктами, имеющими диэлектрическую постоянную меньше указанной, обратитесь в Endress+Hauser.

88

Алфавитный указатель

А Адрес шины
Б Безопасность изделия
В Возврат
Д Декларация соответствия
Назначение 6 Доступ для записи 34 Доступ для чтения 34
Ж Журнал событий
З Запасные части
И Использование измерительного прибора см. Назначение Использование измерительных приборов Использование не по назначению 9 Сложные ситуации 9
К Климатический класс 85 Кнопки управления 33 Код доступа 34 Ошибка при вводе 34 Крепежный винт 25
М Маркировка СЕ
Назначение 9 Назначение документа 6 Назначение полномочий доступа к параметрам 34 Доступ для записи 34 Доступ для чтения 34 Настройки Адаптация измерительного прибора к условиям процесса 49
Область применения 9 Остаточные риски 10

Основной файл прибора	
П	
Поворот дисплея	21
Список событий	62
Программная адресация	34
С Сервисный интерфейс (CDI) Сигнал состояния Список событий	53
T	
Текст сообщения о событии	10
Технологическая среда	
Технология беспроводной связи Bluetooth®	
У	
Указания по технике безопасности Основные	. 9
Устранение неисправностей	50
Φ	
Фильтрация журнала событий	57
Ч	
Чтение измеренных значений	49
Э	
Эксплуатационная безопасность	
D	
DeviceCare DIP-переключатели	
E EMPTY_MODULE	44
P.	
F FieldCare	
G	<i>(</i> , 0
GSD	40

www.addresses.endress.com