Техническое описание Зонд для спектроскопии Rxn-10 Raman

Универсальный зонд для спектроскопии Raman

Область применения

Зонд Rxn-10, предназначенный для разработки продуктов и процессов, обеспечивает высокую точность измерений в широком спектральном диапазоне. Компактный, легкий и гибкий прибор идеально подходит для анализа твердых веществ и жидкостей. Благодаря сменной оптике он легко адаптируется к различным условиям применения. Теперь он совместим с нашим новым оптоволоконным кабелем Raman KFOC1B, имеет сертификаты более высокого уровня и обеспечивает более гибкую установку в лабораторных и промышленных средах.

- Химическая промышленность: контроль реакций, смешивание, контроль катализаторов, анализ углеводородов, оптимизация технологических установок.
- Полимерная промышленность: контроль реакций полимеризации, контроль экструзии, смешивание полимеров
- Фармацевтическая промышленность: контроль реакции активного фармацевтического ингредиента (АФИ), кристаллизация
- **Биофармацевтическая промышленность:** контроль, оптимизация, контроль клеточных культур и ферментации
- Пищевая промышленность: картирование зональной неоднородности мяса и рыбы

Характеристики прибора

- алюминий 6061, нержавеющая сталь 316L и нержавеющая сталь 303;
- в оболочке из ПВХ, запатентованная конструкция;
- запатентованные электрооптические (EO) или волоконно-электрооптические (FC/EO) преобразователи для внешних систем.

Преимущества

- Многофункциональность для измерения параметров твердых веществ и жидкостей
- Легкий и компактный прибор
- Встроенная защитная блокировка лазера с индикацией включения лазера и затвором зонда
- Адаптируемый выход, совместимый с различными вариантами отбора проб
- Решение самых различных задач благодаря простой установке бесконтактной и погружной оптики, а также оптики для биопроцессов
- Широкий спектральный диапазон с доступом к критической области низкого волнового коэффициента
- Улучшенный вариант оптоволоконного кабеля Raman KFOC1B, имеющий сертификат CMR и обеспечивающий повышенную огнестойкость, упрощенное соответствие нормативным требованиям и повышенную гибкость для облегчения прокладки и работы с ним

Содержание

Информация о настоящем	
документе	4
Символы	4
Принцип действия и конструкция	
системы	5
СИСТЕМЫ Область применения	
	5

Оптика зонда Rxn-10	5
Монтаж	7
Технические характеристики 8	3
Технические характеристики зонда	3
Технические характеристики оптоволоконного кабеля	9
Размеры зонда10	0
МДВ: воздействие на глаза1	1
МДВ: воздействие на кожу	1

Информация о настоящем документе

Символы

Предупреждающие знаки

▲ ПРЕДУПРЕЖДЕНИЕ

Причины (последствия)

Последствия несоблюдения (если применимо)

▶ Меры по устранению

Следует соблюдать стандартные меры предосторожности при работе с лазерными изделиями.

 Если зонды не установлены в пробоотборной камере, они всегда должны быть закрыты затворами или направлены в сторону от людей, к объекту рассеяния.

ОСТОРОЖНО

Причины (последствия) Последствия несоблюдения

▶ Меры по устранению

(если применимо)

Мощность лазерного излучения, поступающего на зонд Rxn-10, не должна превышать 499 мВт.

Если допустить попадание постороннего света в неиспользуемый зонд, он будет создавать помехи для сбора данных с используемого зонда и может привести к сбою калибровки или погрешностям измерения.

 В неиспользуемых зондах ВСЕГДА следует закрывать затвор, чтобы предотвратить попадание в зонд постороннего света. Если имеется защитный колпачок для оптики, наденьте его на неиспользуемую оптическую систему.

УВЕДОМЛЕНИЕ

Причина / ситуация

Последствия несоблюдения (если применимо)

▶ Действие / примечание

При установке головки зонда на месте пользователь должен обеспечить наличие устройства для снятия натяжения в точке установки, которое соответствует требованиям к радиусу изгиба.

Принцип действия и конструкция системы

Область применения

Использование прибора в других целях представляет угрозу для безопасности людей и всей измерительной системы и приводит к аннулированию гарантии.

Защитная блокировка лазера

Зонд Rxn-10 в установленном виде является частью схемы блокировки. Если оптоволоконный кабель разорван, лазер выключится в течение миллисекунд после обрыва.

УВЕДОМЛЕНИЕ

Если кабели не проложены надлежащим образом, это может привести к необратимому повреждению.

- Обращайтесь с зондами и кабелями осторожно, не допуская их перегибов.
- ► Монтаж оптоволоконных кабелей необходимо выполнять с минимальным радиусом изгиба в соответствии с документом "Оптоволоконный кабель Raman. Техническое описание" (TI01641C).

Зонд Rxn-10

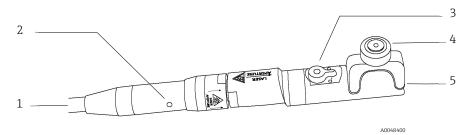


Рисунок 1: Зонд Rxn-10

#	Наименование	Описание
1	Оптоволоконный кабель	Используется для подключения зонда к анализатору Raman Rxn через электрооптический (EO) оптоволоконный кабель, подключенный к зонду Rxn-10.
2	Индикатор лазерного излучения	Индикатор загорается, когда существует вероятность включения лазера.
3	Затвор для прерывания лазерного излучения	Его закрытие блокирует лазерное излучение. Позиция "I" указывает на потенциальное излучение. Если перевести рычаг в положение "O", лазерное излучение будет прервано.
4	Винт с накатной головкой	Затяните, чтобы закрепить оптику на зонде при отсутствии резьбового интерфейса.
5	Интерфейс оптики	Вставьте оптику или резьбовой адаптер.

Оптика зонда Rxn-10

Зонд совместим со следующими типами оптики для различных областей применения:

	Оптика	Область применения
Бесконтакт- ная оптика	A0048410 A0048676	Для твердых веществ или мутных сред. Также хорошо подходит для работы с чувствительными или агрессивными жидкостями, когда имеется опасность загрязнения пробы или повреждения оптических компонентов.
Погружная оптика (IO)	A0048411	Для использования в реакционных сосудах, лабораторных реакторах или технологических потоках.
bIO-оптика	A0048412	Для проведения непрерывных поточных измерений в стендовых биореакторах / ферментерах, в которых требуется вход в головную пластину.
Многофункц иональная оптика для биопроцессов и биологи- ческий защитный рукав	A0051184	Для проведения непрерывных поточных измерений в стендовых биореакторах / ферментерах, в которых требуется вход в головную пластину.
Одноразовая оптическая система Raman	A0048413	Для использования с одноразовыми фитингами.

	Оптика	Область применения
Измерительный блок Raman (включает в себя измерительный микростенд и микроячейку)	A0052578	Для использования с жидкостями с низкой скоростью потока, когда контроль динамического технологического потока дает полезную информацию, а также когда особенно важно получить показатели скорости или предел обнаружения.

Монтаж

Во время монтажа следует соблюдать стандартные меры предосторожности для глаз и кожи при использовании лазерных приборов класса 3В (согласно EN 60825 / IEC 60825-14 или ANSI Z136.1).

Технические характеристики

Технические характеристики зонда

Технические характеристики зонда Rxn-10 приведены ниже.

Параметр		Описание		
Длина волны лазера	с бесконтактной или погружной оптикой	532 нм, 785 нм или 1000 нм		
	c bIO-оптикой или одноразовой оптикой Raman	785 нм или 1000 нм		
	с многофункциональной оптикой для биопроцессов и биологическим защитным рукавом или измерительным микростендом и измерительной микроячейкой	785 нм		
Максимальная мощн поступающего на гол	ность лазерного излучения, повку зонда	< 499 мВт		
Рабочее расстояние		См. документ "Дополнительная оптика для зонда Rxn-10. Техническое описание" (TI01635C)		
Пробоотборный инте	ерфейс	См. документ "Дополнительная оптика для зонда Rxn-10. Техническое описание" (TI01635C)		
Поляризация на про	бе	Без поляризации		
Температура окружа	ющей среды	От -10 до 70 °C (от 14 до 158 °F)		
Температурный скач	юк	≤ 30 °C/мин (≤ 54 °F/мин)		
Относительная влаж	НОСТЬ	От 20 до 60 %, без конденсации		
Спектральный охват		Спектральный охват зонда ограничен охватом используемого анализатора		
Мощность 532 нм (при использовании стандартного излучения на пробе лазера 120 мВт)		> 45 mBT		
	785 нм (при использовании стандартного лазера 400 мВт)	> 150 mBT		
	1000 нм (при использовании стандартного лазера 400 мВт)	> 150 mBT		
Материалы изготовления	корпус зонда	Алюминий 6061, нержавеющая сталь 316L и нержавеющая сталь 303		
	оптоволоконный кабель	Конструкция: в оболочке из ПВХ, запатентованная конструкция		
		Подключения: запатентованные электрооптические (EO) или волоконно-электрооптические (FC/EO) преобразователи для внешних систем		
Зонд	длина (без учета радиуса изгиба оптоволоконного кабеля)	203 мм (8 дюймов)		
	длина (с учетом радиуса изгиба оптоволоконного кабеля)	356 мм (14,02 дюйма)		
	диаметр (без кабеля)	19 мм (0,75 дюйма)		
	вес (с кабелем)	0,5 кг (прибл. 1 фунт)		

Технические характеристики оптоволоконного кабеля

Технические характеристики оптоволоконных кабелей приведены ниже.

Оптоволоконный кабель Raman KFOC1		
Параметр	Описание	
Общие характеристики	Встроенный медный провод для функции блокировки Арамидные (кевларовые) внутренние упрочняющие элементы Огнестойкий Устойчивый к грибку	
Номинальные характеристики кабеля (только кабель)	Рабочая температура: от -40 °C до 70 °C (от -40 °F до 158 °F) Температура хранения: от -55 °C до 70 °C (от -67 °F до 158 °F) Сертификация: CSA-C/US AWM I/II, A/B, 80C, 30V, FTI, FT2, VW-1, FT4 Классификация: AWM I/II A/B 80C 30V FT4	
Радиус изгиба	152,4 мм (6 дюймов)	
Терминирование	Электрооптическое (ЕО) с разъемами	

Оптоволоконный кабель Raman KFOC1B имеет улучшенные номинальные характеристики и сертификат CMR, что облегчает соблюдение местных законов и нормативных требований. Данный сертификат обеспечивает более плавное внедрение в технологических условиях. Данные кабели прошли независимые испытания и сертификацию третьей стороной и обеспечивают повышенную защиту от распространения огня.

Благодаря классификации CMR оптоволоконный кабель Raman KFOC1B готов к немедленному монтажу в кабельных лотках, стояках и всех типах кабелепроводов без необходимости дополнительных оценок.

Оптоволоконный кабель Raman KFOC1B		
Параметр	Описание	
Общие характеристики	Встроенный медный провод для функции блокировки Упрочняющие элементы из стеклопластика (FRP) Огнестойкий Устойчивый к грибку	
Номинальные характеристики кабеля (только кабель)	Рабочая температура: от -40 °C до 70 °C (от -40 °F до 158 °F) Температура хранения: от -55 °C до 70 °C (от -67 °F до 158 °F) Сертификация: cULus AWM I/II, A/B, 80C, 30V, FTI, FT2, VW-1, FT4 Классификация: CMR-FO, AWM I/II A/B 80C 30V FT4	
Радиус изгиба	152,4 мм (6 дюймов)	
Терминирование	Электрооптические (ЕО) разъемы	

Размеры зонда

Размеры зонда Rxn-10 приведены ниже.

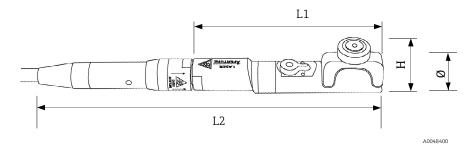


Рисунок 2. Размеры зонда Rxn-10

Размер	Измерение	Описание
L1	111 мм 4,37 дюйма	Длина корпуса зонда без оптоволоконного кабеля
L2	203 мм 8 дюймов	Длина с подключенным оптоволоконным кабелем Примечание. Без учета дополнительного минимального радиуса изгиба кабеля
Н	33 мм 1,3 дюйма	Высота зонда, включая винт с накатной головкой
Ø	19 мм 0,75 дюйма	Диаметр зонда без оптоволоконного кабеля

МДВ: воздействие на глаза

Для расчета максимально допустимого воздействия (МДВ) при воздействии точечного источника лазерного луча на глаза руководствуйтесь приведенными ниже таблицами из стандарта ANSI Z136.1.

Может также потребоваться коэффициент коррекции (\mathcal{C}_{A}), который можно определить ниже.

Длина волны λ (нм)	Поправочный коэффициент С _А
400-700	1
700-1050	10 ^{0,002} (λ-700)
1050-1400	5

Максимально допустимое воздействие (МДВ) точечного источника лазерного излучения на глаза			
Длина волны	Продолжительность	Расчет МДВ	
λ (нм)	воздействия t (c)	(Дж∙см ⁻²)	(Вт∙см⁻²)
	от 10 ⁻¹³ до 10 ⁻¹¹	1,0 × 10 ⁻⁷	-
532	от 10 ⁻¹¹ до 5 × 10 ⁻⁶	2,0 × 10 ⁻⁷	-
532	от 5 × 10 ⁻⁶ до 10	$1.8 t^{0.75} \times 10^{-3}$	-
	от 10 до 30 000	-	1 × 10 ⁻³

Максимально допустимое воздействие (МДВ) точечного источника лазерного излучения на глаза				
Длина волны	Продолжительност ь воздействия t (c)	Расчет МДВ		МДВ, где
λ (нм)		(Дж∙см⁻²)	(Вт∙см⁻²)	$C_{\rm A} = 1,4791$
	от 10 ⁻¹³ до 10 ⁻¹¹	$1,5 C_{\rm A} \times 10^{-8}$	-	2,2 × 10 ⁻⁸ (Дж·см ⁻²)
	от 10 ⁻¹¹ до 10 ⁻⁹	2,7 C _A t ^{0,75}	-	Введите время (t) и рассчитайте
785 и 993	от 10 ⁻⁹ до 18 × 10 ⁻⁶	$5,0 C_{\rm A} \times 10^{-7}$	-	7,40 × 10 ⁻⁷ (Дж·см ⁻²)
	от 18 × 10 ⁻⁶ до 10	$1.8 C_{\rm A} t^{0.75} \times 10^{-3}$	-	Введите время (t) и рассчитайте
	от 10 до 3 × 10 ⁴	-	$C_{\rm A} \times 10^{-3}$	1,4971 × 10 ⁻³ (B _T ·cм ⁻²)

МДВ: воздействие на кожу

Для расчета МДВ при воздействии лазерного луча на кожу руководствуйтесь приведенной ниже таблицей из стандарта ANSI Z136.1.

Максимально допустимое воздействие (МДВ) лазерного луча на кожу				
_	Продолжительност ь воздействия t (c)	Расчет МДВ		
Длина волны λ (нм)		(Дж∙см ⁻²)	(Вт·см ⁻²)	МДВ, где C _A = 1,4791
532, 785 и 993	от 10 ⁻⁹ до 10 ⁻⁷	$2 C_{\rm A} \times 10^{-2}$	-	2,9582 × 10 ⁻² (Дж·см ⁻²)
	от 10 ⁻⁷ до 10	1,1 C _A t ^{0,25}	-	Введите время (t) и рассчитайте
	от 10 до 3 × 10 ⁴	-	0,2 C _A	2,9582 × 10 ⁻¹ (Вт·см ⁻²)

