Description of Device Parameters

Proline Promass 100
EtherNet/IP

Coriolis flowmeter
Table of contents

1 **About this document** 4
 1.1 Document function 4
 1.2 Target group 4
 1.3 Using this document 4
 1.3.1 Information on the document structure 4
 1.3.2 Structure of a parameter description 6
 1.4 Symbols used 6
 1.4.1 Symbols for certain types of information 6
 1.4.2 Symbols in graphics 7
 1.5 Documentation 7
 1.5.1 Standard documentation 7
 1.5.2 Supplementary device-dependent documentation 7

2 **Overview of the Expert operating menu** 8

3 **Description of device parameters** ... 10
 3.1 "System" submenu 13
 3.1.1 "Display" submenu 13
 3.1.2 "Diagn. handling" submenu 27
 3.1.3 "Administration" submenu 35
 3.2 "Sensor" submenu 40
 3.2.1 "Measured val." submenu 41
 3.2.2 "System units" submenu 49
 3.2.3 "Process param." submenu 64
 3.2.4 "Measurement mode" submenu 72
 3.2.5 "External comp." submenu 74
 3.2.6 "Calculated value" submenu 77
 3.2.7 "Sensor adjustm." submenu 80
 3.2.8 "Calibration" submenu 86
 3.2.9 "Supervision" submenu 88
 3.3 "Communication" submenu 88
 3.3.1 "Configuration" submenu 88
 3.3.2 "WLAN settings" submenu 99
 3.4 "Application" submenu 106
 3.4.1 "Totalizer 1 to n" submenu 106
 3.4.2 "Viscosity" submenu 111
 3.4.3 "Concentration" submenu 112
 3.5 "Diagnostics" submenu 112
 3.5.1 "Diagnostic list" submenu 115
 3.5.2 "Event logbook" submenu 118
 3.5.3 "Device info" submenu 120
 3.5.4 "Min/max val." submenu 124
 3.5.5 "Heartbeat" submenu 133
 3.5.6 "Simulation" submenu 133

4 **Country-specific factory settings** .. 137
 4.1 SI units 137
 4.1.1 System units 137
 4.1.2 Full scale values 137
 4.1.3 On value low flow cut off 138
 4.2 US units 139
 4.2.1 System units 139
 4.2.2 Full scale values 139
 4.2.3 On value low flow cut off 139

5 **Explanation of abbreviated units** .. 141
 5.1 SI units 141
 5.2 US units 141
 5.3 Imperial units 143

Index .. 144
1 About this document

1.1 Document function
The document is part of the Operating Instructions and serves as a reference for parameters, providing a detailed explanation of each individual parameter of the Expert operating menu.

It is used to perform tasks that require detailed knowledge of the function of the device:
- Commissioning measurements under difficult conditions
- Optimal adaptation of the measurement to difficult conditions
- Detailed configuration of the communication interface
- Error diagnostics in difficult cases

1.2 Target group
The document is aimed at specialists who work with the device over the entire life cycle and perform specific configurations.

1.3 Using this document

1.3.1 Information on the document structure
The document lists the submenus and their parameters according to the structure from the Expert menu (→ 8), which is displayed when the "Maintenance" user role is enabled.
Additional information regarding:

- The arrangement of the parameters according to the menu structure of the **Operation** menu, **Setup** menu, **Diagnostics** menu with a brief description:
 Operating Instructions
- Operating concept of the operating menus: Operating Instructions
1.3.2 Structure of a parameter description

The individual parts of a parameter description are described in the following section:

<table>
<thead>
<tr>
<th>Complete parameter name</th>
<th>Write-protected parameter = ☑</th>
</tr>
</thead>
</table>

Navigation	Navigation path to the parameter via the local display (direct access code) or web browser
	Navigation path to the parameter via the operating tool
	The names of the menus, submenus and parameters are abbreviated to the form in which they appear on the display and in the operating tool.

| Prerequisite | The parameter is only available under these specific conditions |

| Description | Description of the parameter function |

Selection	List of the individual options for the parameter
	• Option 1
	• Option 2

| User entry | Input range for the parameter |

| User interface | Display value/data for the parameter |

| Factory setting | Default setting ex works |

Additional information	Additional explanations (e.g. in examples):
	• On individual options
	• On display values/data
	• On the input range
	• On the factory setting
	• On the parameter function

1.4 Symbols used

1.4.1 Symbols for certain types of information

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tip</td>
<td>Indicates additional information.</td>
</tr>
<tr>
<td>Reference to documentation</td>
<td></td>
</tr>
<tr>
<td>Reference to page</td>
<td></td>
</tr>
<tr>
<td>Reference to graphic</td>
<td></td>
</tr>
<tr>
<td>Operation via local display</td>
<td></td>
</tr>
<tr>
<td>Operation via operating tool</td>
<td></td>
</tr>
<tr>
<td>Write-protected parameter</td>
<td></td>
</tr>
</tbody>
</table>
1.4.2 Symbols in graphics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3...</td>
<td>Item numbers</td>
<td>A, B, C...</td>
<td>Views</td>
</tr>
<tr>
<td>A-A, B-B, C-C...</td>
<td>Sections</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.5 Documentation

1.5.1 Standard documentation

Operating Instructions

<table>
<thead>
<tr>
<th>Measuring device</th>
<th>Documentation code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promass A 100</td>
<td>BA01182D</td>
</tr>
<tr>
<td>Promass E 100 (8E1B**....)</td>
<td>BA01064D</td>
</tr>
<tr>
<td>Promass E 100 (8E1C**....)</td>
<td>BA01712D</td>
</tr>
<tr>
<td>Promass F 100</td>
<td>BA01065D</td>
</tr>
<tr>
<td>Promass G 100</td>
<td>BA01347D</td>
</tr>
<tr>
<td>Promass H 100</td>
<td>BA01184D</td>
</tr>
<tr>
<td>Promass I 100</td>
<td>BA01066D</td>
</tr>
<tr>
<td>Promass O 100</td>
<td>BA01185D</td>
</tr>
<tr>
<td>Promass P 100</td>
<td>BA01067D</td>
</tr>
<tr>
<td>Promass S 100</td>
<td>BA01068D</td>
</tr>
<tr>
<td>Promass X 100</td>
<td>BA01186D</td>
</tr>
</tbody>
</table>

1.5.2 Supplementary device-dependent documentation

Special Documentation

<table>
<thead>
<tr>
<th>Content</th>
<th>Documentation code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information on the Pressure Equipment Directive</td>
<td>SD01614D</td>
</tr>
<tr>
<td>Concentration Measurement</td>
<td>SD01152D</td>
</tr>
<tr>
<td>Heartbeat Technology</td>
<td>SD01153D</td>
</tr>
<tr>
<td>Web server</td>
<td>SD01822D</td>
</tr>
</tbody>
</table>
2 Overview of the Expert operating menu

The following table provides an overview of the menu structure of the expert operating menu and its parameters. The page reference indicates where the associated description of the submenu or parameter can be found.

<table>
<thead>
<tr>
<th>Expert</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct access</td>
<td>→ 10</td>
<td></td>
</tr>
<tr>
<td>Locking status</td>
<td>→ 11</td>
<td></td>
</tr>
<tr>
<td>Access stat.disp</td>
<td>→ 12</td>
<td></td>
</tr>
<tr>
<td>Access stat.tool</td>
<td>→ 12</td>
<td></td>
</tr>
<tr>
<td>Ent. access code</td>
<td>→ 13</td>
<td></td>
</tr>
<tr>
<td>➤ System</td>
<td>→ 13</td>
<td></td>
</tr>
<tr>
<td>➤ Display</td>
<td>→ 13</td>
<td></td>
</tr>
<tr>
<td>➤ Diagn. handling</td>
<td>→ 27</td>
<td></td>
</tr>
<tr>
<td>➤ Administration</td>
<td>→ 35</td>
<td></td>
</tr>
<tr>
<td>➤ Sensor</td>
<td>→ 40</td>
<td></td>
</tr>
<tr>
<td>➤ Measured val.</td>
<td>→ 41</td>
<td></td>
</tr>
<tr>
<td>➤ System units</td>
<td>→ 49</td>
<td></td>
</tr>
<tr>
<td>➤ Process param.</td>
<td>→ 64</td>
<td></td>
</tr>
<tr>
<td>➤ Measurement mode</td>
<td>→ 72</td>
<td></td>
</tr>
<tr>
<td>➤ External comp.</td>
<td>→ 74</td>
<td></td>
</tr>
<tr>
<td>➤ Calculated value</td>
<td>→ 77</td>
<td></td>
</tr>
<tr>
<td>➤ Sensor adjustm.</td>
<td>→ 80</td>
<td></td>
</tr>
<tr>
<td>➤ Calibration</td>
<td>→ 86</td>
<td></td>
</tr>
<tr>
<td>➤ Supervision</td>
<td>→ 88</td>
<td></td>
</tr>
<tr>
<td>➤ Communication</td>
<td>→ 88</td>
<td></td>
</tr>
<tr>
<td>➤ Configuration</td>
<td>→ 88</td>
<td></td>
</tr>
</tbody>
</table>
Overview of the Expert operating menu

- **Application**
 - Reset all tot. → 106
 - **Totalizer 1 to n** → 106
 - **Viscosity** → 111
 - **Concentration** → 112

- **Diagnostics**
 - Actual diagnos. → 112
 - Prev.diagnostics → 113
 - Time fr. restart → 114
 - Operating time → 114
 - **Diagnostic list** → 115
 - **Event logbook** → 118
 - **Device info** → 120
 - **Min/max val.** → 124
 - **Heartbeat** → 133
 - **Simulation** → 133
Description of device parameters

In the following section, the parameters are listed according to the menu structure of the local display. Specific parameters for the operating tools are included at the appropriate points in the menu structure.

<table>
<thead>
<tr>
<th>Expert</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct access</td>
<td>→</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Locking status</td>
<td>→</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Access stat.disp</td>
<td>→</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Access stat.tool</td>
<td>→</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Ent. access code</td>
<td>→</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>▶ System</td>
<td>→</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>▶ Sensor</td>
<td>→</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>▶ Communication</td>
<td>→</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>▶ Application</td>
<td>→</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>▶ Diagnostics</td>
<td>→</td>
<td>112</td>
<td></td>
</tr>
</tbody>
</table>

Direct access

<table>
<thead>
<tr>
<th>Navigation</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert → Direct access</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisite

There is a local display with operating elements.

Description

Use this function to enter the access code to enable direct access to the desired parameter via the local display. A parameter number is assigned to each parameter for this purpose.

User entry

0 to 65535

Additional information

The direct access code consists of a 5-digit number (at maximum) and the channel number, which identifies the channel of a process variable: e.g. 00914-2. In the navigation view, this appears on the right-hand side in the header of the selected parameter.
1 Direct access code

Note the following when entering the direct access code:

- The leading zeros in the direct access code do not have to be entered.
 Example: Enter “914” instead of “00914”
- If no channel number is entered, channel 1 is accessed automatically.
 Example: Enter 00914 → Assign variable parameter
- If a different channel is accessed: Enter the direct access code with the corresponding channel number.
 Example: Enter 00914-2 → Assign variable parameter

Locking status

Navigation

Expert → Locking status

Description

Displays the active write protection.

User interface

- Hardware locked
- Temp. locked

Additional information

User interface

If two or more types of write protection are active, the write protection with the highest priority is shown on the local display. In the operating tool all active types of write protection are displayed.

Detailed information on access authorization is provided in the "User roles and associated access authorization" and "Operating concept" sections of the Operations Instructions for the device

Selection

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware locked</td>
<td>The write protection switch (DIP switch) for hardware locking is activated on the I/O electronic module. This locks write access to the parameters.</td>
</tr>
<tr>
<td>Temp. locked</td>
<td>Write access to the parameters is temporarily locked on account of internal processes running in the device (e.g. data upload/download, reset etc.). Once the internal processing has been completed, the parameters can be changed once again.</td>
</tr>
</tbody>
</table>
Access stat.disp

Navigation

Expert → Access stat.disp

Prerequisite

A local display is provided.

Description

Displays the access authorization to the parameters via the local display.

User interface

- Operator
- Maintenance

Factory setting

Operator

Additional information

Description

If the ⚖-symbol appears in front of a parameter, it cannot be modified via the local display with the current access authorization.

Access authorization can be modified via the Ent. access code parameter (→ 13).

For information about the Ent. access code parameter: see the "Disabling write protection via the access code" section of the Operating Instructions for the device

If additional write protection is active, this restricts the current access authorization even further.

Display

Detailed information on access authorization is provided in the "User roles and associated access authorization" and "Operating concept" sections of the Operations Instructions for the device

Access stat.tool

Navigation

Expert → Access stat.tool

Description

Displays the access authorization to the parameters via the operating tool or Web browser.

User interface

- Operator
- Maintenance

Factory setting

Maintenance

Additional information

Description

Access authorization can be modified via the Ent. access code parameter (→ 13).

If additional write protection is active, this restricts the current access authorization even further.

Display

Detailed information on access authorization is provided in the "User roles and associated access authorization" and "Operating concept" sections of the Operations Instructions for the device
Ent. access code

Navigation

Expert → Ent. access code

Description
Use this function to enter the user-specific release code to remove parameter write protection.

User entry
0 to 9999

3.1 "System" submenu

Navigation
Expert → System

3.1.1 "Display" submenu

Navigation
Expert → System → Display
Description of device parameters

Proline Promass 100 EtherNet/IP

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0% bargraph 3</td>
<td>21</td>
</tr>
<tr>
<td>100% bargraph 3</td>
<td>21</td>
</tr>
<tr>
<td>Decimal places 3</td>
<td>22</td>
</tr>
<tr>
<td>Value 4 display</td>
<td>22</td>
</tr>
<tr>
<td>Decimal places 4</td>
<td>23</td>
</tr>
<tr>
<td>Display interval</td>
<td>23</td>
</tr>
<tr>
<td>Display damping</td>
<td>24</td>
</tr>
<tr>
<td>Header</td>
<td>24</td>
</tr>
<tr>
<td>Header text</td>
<td>25</td>
</tr>
<tr>
<td>Separator</td>
<td>25</td>
</tr>
<tr>
<td>Contrast display</td>
<td>26</td>
</tr>
<tr>
<td>Backlight</td>
<td>26</td>
</tr>
<tr>
<td>Access stat.disp</td>
<td>26</td>
</tr>
</tbody>
</table>

Display language

Navigation

Expert → System → Display → Display language

Prerequisite

A local display is provided.

Description

Use this function to select the configured language on the local display.

Selection

- English
- Deutsch *
- Français *
- Español *
- Italiano *
- Nederlands *
- Portuguesa *
- Polski *
- русский язык (Ru) *
- Svenska *
- Türkçe *
- 中文 (Chinese) *
- 日本語 (Japanese) *

* Visibility depends on order options or device settings
Format display

Navigation

Expert → System → Display → Format display

Prerequisite

A local display is provided.

Description

Use this function to select how the measured value is shown on the local display.

Selection

- 1 value, max.
- Bargr. + 1 value
- 2 values
- Val. large + 2 val.
- 4 values

Factory setting

1 value, max.

Additional information

Description

The display format (size, bar graph etc.) and number of measured values displayed simultaneously (1 to 4) can be configured. This setting only applies to normal operation.

- The Value 1 display parameter (→ 17) to Value 4 display parameter (→ 22) are used to specify which measured values are shown on the local display and in what order.

- If more measured values are specified than the display mode selected permits, then the values alternate on the device display. The display time until the next change is configured via the Display interval parameter (→ 23).

* Visibility depends on order options or device settings
Possible measured values shown on the local display:

"1 value, max." option

```
| m[1] | 900.00 kg/h |
```

"Bargr. + 1 value" option

```
| m[1] | 900.00 kg/h |
| U[1] | 900.00 l/h  |
```

"2 values' option

```
| m[1] | 900.00 kg/h |
| U[1] | 900.00 l/h  |
```

"Val. large+2val." option

```
| m[1] | 900.00 kg/h |
| U[1] | 900.00 l/h  |
| ρ[1] | 1.00 kg/l   |
```

"4 values' option

```
| m[1] | 900.00 kg/h |
| U[1] | 900.00 l/h  |
| ρ[1] | 1.00 kg/l   |
| Σ[1] | 213.94 kg   |
```
Value 1 display

Navigation

Expert → System → Display → Value 1 display

Prerequisite

A local display is provided.

Description

Use this function to select one of the measured values to be shown on the local display.

Selection

- Mass flow
- Volume flow
- Correct. vol. flow
- Target mass flow *
- Carrier mass fl. *
- Density
- Ref. density
- Concentration *
- Dynam. viscosity *
- Kinematic visc. *
- TempCompDynVisc *
- TempCompKinVisc *
- Temperature
- Carr. pipe temp. *
- Electronic temp.
- Osc. freq. 0 *
- Osc. freq. 1 *
- Freq. fluct. 0 *
- Freq. fluct. 1 *
- Osc. ampl. 0 *
- Osc. ampl. 1 *
- Freq. fluct. 0 *
- Osc. damping 0 *
- Osc. damping 1 *
- Damping fluct 0
- Damping fluct 1
- Signal asymmetry
- Exc. current 0 *
- Exc. current 1 *
- Sensor integrity *
- None
- Totalizer 1
- Totalizer 2
- Totalizer 3

Factory setting

Mass flow

* Visibility depends on order options or device settings
Description of device parameters

Additional information

Description
If several measured values are displayed at once, the measured value selected here will be the first value to be displayed. The value is only displayed during normal operation.

The Format display parameter (→ 15) is used to specify how many measured values are displayed simultaneously and how.

Dependency
The unit of the displayed measured value is taken from the System units submenu (→ 49).

Selection
- Oscil. frequency option
 Displays the current oscillation frequency of the measuring tubes. This frequency depends on the density of the medium.
- Oscil. amplitude option
 Displays the relative oscillation amplitude of the measuring tubes in relation to the preset value. This value is 100 % under optimum conditions.
- Oscil. damping option
 Displays the current oscillation damping. Oscillation damping is an indicator of the sensor's current need for excitation power.
- Signal asymmetry option
 Displays the relative difference between the oscillation amplitude at the inlet and outlet of the sensor. The measured value is the result of production tolerances of the sensor coils and should remain constant over the life time of a sensor.

0% bargraph 1

Navigation
Expert → System → Display → 0% bargraph 1

Prerequisite
A local display is provided.

Description
Use this function to enter the 0% bar graph value to be shown on the display for the measured value 1.

User entry
Signed floating-point number

Factory setting
Country-specific:
- 0 kg/h
- 0 lb/min

Additional information

Description
The Format display parameter (→ 15) is used to specify that the measured value is to be displayed as a bar graph.

User entry
The unit of the displayed measured value is taken from the System units submenu (→ 49).
100% bargraph 1

Navigation

Expert → System → Display → 100% bargraph 1

Prerequisite

A local display is provided.

Description

Use this function to enter the 100% bar graph value to be shown on the display for the measured value 1.

User entry

Signed floating-point number

Factory setting

Depends on country and nominal diameter → 137

Additional information

The **Format display** parameter (→ 15) is used to specify that the measured value is to be displayed as a bar graph.

The unit of the displayed measured value is taken from the **System units** submenu (→ 49).

Decimal places 1

Navigation

Expert → System → Display → Decimal places 1

Prerequisite

A measured value is specified in the **Value 1 display** parameter (→ 17).

Description

Use this function to select the number of decimal places for measured value 1.

Selection

- x
- x.x
- x.xx
- x.xxx
- x.xxxx

Factory setting

x.xx

Additional information

This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.

Value 2 display

Navigation

Expert → System → Display → Value 2 display

Prerequisite

A local display is provided.
Description
Use this function to select one of the measured values to be shown on the local display.

Selection
For the picklist, see the **Value 1 display** parameter (→ 17)

Factory setting
None

Additional information
Description
If several measured values are displayed at once, the measured value selected here will be the second value to be displayed. The value is only displayed during normal operation.

Dependency
The **Format display** parameter (→ 15) is used to specify how many measured values are displayed simultaneously and how.

Decimal places 2

Navigation
Expert → System → Display → Decimal places 2

Prerequisite
A measured value is specified in the **Value 2 display** parameter (→ 19).

Description
Use this function to select the number of decimal places for measured value 2.

Selection
- x
- x.x
- x.xx
- x.xxx
- x.xxxx

Factory setting
x.xx

Additional information
Description
This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.

Value 3 display

Navigation
Expert → System → Display → Value 3 display

Prerequisite
A local display is provided.

Description
Use this function to select one of the measured values to be shown on the local display.

Selection
For the picklist, see the **Value 1 display** parameter (→ 17)

Factory setting
None
Additional information

Description

If several measured values are displayed at once, the measured value selected here will be the third value to be displayed. The value is only displayed during normal operation.

The **Format display** parameter (→ 15) is used to specify how many measured values are displayed simultaneously and how.

Selection

The unit of the displayed measured value is taken from the **System units** submenu (→ 49).

0% bargraph 3

Navigation

Expert → System → Display → 0% bargraph 3

Prerequisite

A selection was made in the **Value 3 display** parameter (→ 20).

Description

Use this function to enter the 0% bar graph value to be shown on the display for the measured value 3.

User entry

Signed floating-point number

Factory setting

Country-specific:

- 0 kg/h
- 0 lb/min

Additional information

The **Format display** parameter (→ 15) is used to specify that the measured value is to be displayed as a bar graph.

User entry

The unit of the displayed measured value is taken from the **System units** submenu (→ 49).

100% bargraph 3

Navigation

Expert → System → Display → 100% bargraph 3

Prerequisite

A selection was made in the **Value 3 display** parameter (→ 20).

Description

Use this function to enter the 100% bar graph value to be shown on the display for the measured value 3.

User entry

Signed floating-point number

Factory setting

0
Description of device parameters

Additional information

Description

The **Format display** parameter (→ 15) is used to specify that the measured value is to be displayed as a bar graph.

User entry

The unit of the displayed measured value is taken from the **System units** submenu (→ 49).

Decimal places 3

Navigation

Expert → System → Display → Decimal places 3

Prerequisite

A measured value is specified in the **Value 3 display** parameter (→ 20).

Description

Use this function to select the number of decimal places for measured value 3.

Selection

- x
- x.x
- x.xx
- x.xxx
- x.xxxx

Factory setting

x.xx

Additional information

Description

This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.

Value 4 display

Navigation

Expert → System → Display → Value 4 display

Prerequisite

A local display is provided.

Description

Use this function to select one of the measured values to be shown on the local display.

Selection

For the picklist, see the **Value 1 display** parameter (→ 17)

Factory setting

None
Additional information

Description
If several measured values are displayed at once, the measured value selected here will be the fourth value to be displayed. The value is only displayed during normal operation.

The **Format display** parameter (→ 15) is used to specify how many measured values are displayed simultaneously and how.

Selection

The unit of the displayed measured value is taken from the **System units** submenu (→ 49).

Decimal places 4

<table>
<thead>
<tr>
<th>Navigation</th>
<th>专家 → 系统 → 显示 → 位数4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>A measured value is specified in the Value 4 display parameter (→ 22).</td>
</tr>
<tr>
<td>Description</td>
<td>Use this function to select the number of decimal places for measured value 4.</td>
</tr>
</tbody>
</table>
| Selection | • x
• x.x
• x.xx
• x.xxx
• x.xxxx |
| Factory setting | x.xx |

Additional information

This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.

Display interval

<table>
<thead>
<tr>
<th>Navigation</th>
<th>专家 → 系统 → 显示 → 显示间隔</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>A local display is provided.</td>
</tr>
<tr>
<td>Description</td>
<td>Use this function to enter the length of time the measured values are displayed if the values alternate on the display.</td>
</tr>
<tr>
<td>User entry</td>
<td>1 to 10 s</td>
</tr>
<tr>
<td>Factory setting</td>
<td>5 s</td>
</tr>
</tbody>
</table>
Additional information

Description
This type of alternating display only occurs automatically if the number of measured values defined exceeds the number of values the selected display format can display simultaneously.

- The Value 1 display parameter (→ 17) to Value 4 display parameter (→ 22) are used to specify which measured values are shown on the local display.
- The display format of the displayed measured values is specified using the Format display parameter (→ 15).

Display damping

Navigation
Expert → System → Display → Display damping

Prerequisite
A local display is provided.

Description
Use this function to enter a time constant for the reaction time of the local display to fluctuations in the measured value caused by process conditions.

User entry
0.0 to 999.9 s

Factory setting
0.0 s

Additional information

User entry
Use this function to enter a time constant (PT1 element 1) for display damping:
- If a low time constant is entered, the display reacts particularly quickly to fluctuating measured variables.
- On the other hand, the display reacts more slowly if a high time constant is entered.

Damping is switched off if 0 is entered (factory setting).

Header

Navigation
Expert → System → Display → Header

Prerequisite
A local display is provided.

Description
Use this function to select the contents of the header of the local display.

Selection
- Device tag
- Free text

Factory setting
Device tag

Additional information

Description
The header text only appears during normal operation.

1) proportional transmission behavior with first order delay
Selection

- Device tag
 Is defined in the **Device tag** parameter (→ 121).
- Free text
 Is defined in the **Header text** parameter (→ 25).

Description

Use this function to enter a customer-specific text for the header of the local display.

User entry

Max. 12 characters such as letters, numbers or special characters (e.g. @, %, /)

Factory setting

Additional information

Description

The header text only appears during normal operation.

User entry

The number of characters displayed depends on the characters used.

Separator

Navigation

Expert → System → Display → Separator

Prerequisite

A local display is provided.
Description of device parameters

Proline Promass 100 EtherNet/IP

| Description | Use this function to select the decimal separator. |
| Selection | • . (point)
| | • , (comma) |
| Factory setting | . (point) |

Contrast display

Navigation
Expert → System → Display → Contrast display

Prerequisite
A local display is provided.

Description
Use this function to enter a value to adapt the display contrast to the ambient conditions (e.g. the lighting or viewing angle).

User entry
20 to 80 %

Factory setting
Depends on the display

Backlight

Navigation
Expert → System → Display → Backlight

Description
Use this function to switch the backlight of the local display on and off.

Selection
• Disable
• Enable

Factory setting
Enable

Access stat.disp

Navigation
Expert → System → Display → Access stat.disp

Prerequisite
A local display is provided.

Description
Displays the access authorization to the parameters via the local display.

User interface
• Operator
• Maintenance

Factory setting
Operator
Additional information

Description

If the ☑-symbol appears in front of a parameter, it cannot be modified via the local display with the current access authorization.

- Access authorization can be modified via the **Ent. access code** parameter (→ 13).

- For information about the **Ent. access code** parameter: see the 'Disabling write protection via the access code' section of the Operating Instructions for the device.

- If additional write protection is active, this restricts the current access authorization even further.

Display

Detailed information on access authorization is provided in the 'User roles and associated access authorization' and 'Operating concept' sections of the Operations Instructions for the device.

3.1.2 "Diagn. handling" submenu

Navigation

[Expert → System → Diagn. handling](#)

- **Diagn. handling**
 - Alarm delay
 - **Diagn. behavior**

Alarm delay

Description

Use this function to enter the time interval until the device generates a diagnostic message.

- The diagnostic message is reset without a time delay.

User entry

0 to 60 s

Factory setting

0 s

Additional information

This setting affects the following diagnostic messages:

- 046 Sensor limit
- 140 Sensor sig.asym.
- 144 MeasErrorTooHigh
- 190 Special event 1
- 191 Special event 5
- 192 Special event 9
Description of device parameters

- 830 Sensor temp.
- 831 Sensor temp.
- 832 Electronic temp.
- 833 Electronic temp.
- 834 Process temp.
- 835 Process temp.
- 843 Process limit
- 862 Partly filled
- 910 Tube not oscil.
- 912 Medium inhomog.
- 913 Medium unsuitab.
- 944 MonitoringFailed
- 990 Special event 4
- 991 Special event 8
- 992 Special event 12

"Diagn. behavior" submenu

Each item of diagnostic information is assigned a specific diagnostic behavior at the factory. The user can change this assignment for specific diagnostic information in the Diagn. behavior submenu (→ 28).

The following options are available in the Assign behavior of diagnostic no. xxx parameters:

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm</td>
<td>The device stops measurement. The totalizers assume the defined alarm condition. A diagnostic message is generated.</td>
</tr>
<tr>
<td>Warning</td>
<td>The device continues to measure. The totalizers are not affected. A diagnostic message is generated.</td>
</tr>
<tr>
<td>Logbook only</td>
<td>The device continues to measure. The diagnostic message is entered only in the Event logbook submenu (→ 118) (Event list submenu (→ 119)) and is not displayed in alternation with the measured value display.</td>
</tr>
<tr>
<td>Off</td>
<td>The diagnostic event is ignored, and no diagnostic message is generated or entered.</td>
</tr>
</tbody>
</table>

For a list of all the diagnostic events, see the Operating Instructions for the device

Navigation

Expert → System → Diagn. handling → Diagn. behavior
Diagnostic no. 140 (Sensor sig.asym.)

Navigation
- Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 140

Description
Use this function to change the diagnostic behavior of the diagnostic message **140 Sensor sig.asym.**

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
For a detailed description of the options available, see → 28 → 28

Diagnostic no. 046 (Sensor limit)

Navigation
- Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 046

Description
Option for changing the diagnostic behavior of the diagnostic message **046 Sensor limit.**
Description of device parameters

Proline Promass 100 EtherNet/IP

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
For a detailed description of the options available, see → 28

Diagnostic no. 144 (MeasErrorTooHigh)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 144

Description
Option for changing the diagnostic behavior of the diagnostic message 144 MeasErrorTooHigh.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Alarm

Additional information
For a detailed description of the options available, see → 28

Diagnostic no. 832 (Electronic temp.)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 832

Description
Use this function to change the diagnostic behavior of the diagnostic message 832 Electronic temp..

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
For a detailed description of the options available, see → 28
Diagnostic no. 833 (Electronic temp.)

Navigation
- Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 833

Description
Use this function to change the diagnostic behavior of the diagnostic message **833 Electronic temp.**

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
For a detailed description of the options available, see → 28 → 28

Diagnostic no. 834 (Process temp.)

Navigation
- Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 834

Description
Use this function to change the diagnostic behavior of the diagnostic message **834 Process temp.**

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
For a detailed description of the options available, see → 28 → 28

Diagnostic no. 835 (Process temp.)

Navigation
- Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 835

Description
Use this function to change the diagnostic behavior of the diagnostic message **835 Process temp.**

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
For a detailed description of the options available, see → 28 → 28
Diagnostic no. 912 (Medium inhomog.)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 912

Description

Option for changing the diagnostic behavior of the diagnostic message **912 Medium inhomog.**.

Selection

- Off
- Alarm
- Warning
- Logbook only

Factory setting

Warning

Additional information

For a detailed description of the options available, see → 28 → 28

Diagnostic no. 913 (Medium unsuitab.)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 913

Description

Option for changing the diagnostic behavior of the diagnostic message **913 Medium unsuitab.**.

Selection

- Off
- Alarm
- Warning
- Logbook only

Factory setting

Warning

Additional information

For a detailed description of the options available, see → 28 → 28

Diagnostic no. 944 (MonitoringFailed)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 944

Description

Option for changing the diagnostic behavior of the diagnostic message **944 MonitoringFailed**.

Selection

- Off
- Alarm
- Warning
- Logbook only

Factory setting

Warning

Additional information

For a detailed description of the options available, see → 28 → 28
Diagnostic no. 948 (Oscill. damping)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 948

Description
Option for changing the diagnostic behavior of the diagnostic message **948 Oscill. damping**.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
For a detailed description of the options available, see → 28 → 28

Diagnostic no. 192 (Special event 9)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 192

Description
Option for changing the diagnostic behavior of the diagnostic message **192 Special event 9**.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
For a detailed description of the options available, see → 28 → 28

Diagnostic no. 374 (Sensor electron.)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 274

Description
Option for changing the diagnostic behavior of the diagnostic message **374 Sensor electron.**

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
For a detailed description of the options available, see → 28 → 28
Diagnostic no. 392 (Special event 10)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 392

Description
Option for changing the diagnostic behavior of the diagnostic message **392 Special event 10**.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
For a detailed description of the options available, see → 28→ 28

Diagnostic no. 592 (Special event 11)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 592

Description
Option for changing the diagnostic behavior of the diagnostic message **592 Special event 11**.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
For a detailed description of the options available, see → 28→ 28

Diagnostic no. 992 (Special event 12)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 992

Description
Option for changing the diagnostic behavior of the diagnostic message **992 Special event 12**.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning
Additional information

For a detailed description of the options available, see → 28 → 28

3.1.3 "Administration" submenu

Navigation

Expert → System → Administration

"Def. access code" wizard

The **Def. access code** wizard (→ 35) is only available when operating via the local display or Web browser.

If operating via the operating tool, the **Def. access code** parameter (→ 37) can be found directly in the **Administration** submenu. There is no **Confirm code** parameter if the device is operated via the operating tool.

Navigation

Expert → System → Administration → Def. access code

Def. access code

Navigation

Expert → System → Administration → Def. access code → Def. access code

Description

Use this function to enter a user-specific release code to restrict write-access to the parameters. This protects the configuration of the device against any inadvertent changes via the local display or Web browser.

User entry

0 to 9999

Factory setting

0
Additional information

Description
The write protection affects all parameters in the document marked with the symbol.
On the local display, the symbol in front of a parameter indicates that the parameter is write-protected.
The parameters that cannot be write-accessed are grayed out in the Web browser.

Once the access code has been defined, write-protected parameters can only be modified if the access code is entered in the Ent. access code parameter → 13.

If you lose the access code, please contact your Endress+Hauser sales organization.

User entry
A message is displayed if the access code is not in the input range.

Factory setting
If the factory setting is not changed or 0 is defined as the access code, the parameters are not write-protected and the device configuration data can be modified. The user is logged on in the "Maintenance" role.

Confirm code

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → System → Administration → Def. access code → Confirm code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Enter the defined release code a second time to confirm the release code.</td>
</tr>
<tr>
<td>User entry</td>
<td>0 to 9999</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
</tbody>
</table>

"Reset access code" submenu

Navigation Expert → System → Administration → Reset acc. code

<table>
<thead>
<tr>
<th>Reset acc. code</th>
<th>→ 37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating time</td>
<td></td>
</tr>
<tr>
<td>Reset acc. code</td>
<td>→ 37</td>
</tr>
</tbody>
</table>
Operating time

Navigation
Expert → Diagnostics → Operating time
Expert → Diagnostics → Operating time

Description
Use this function to display the length of time the device has been in operation.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information
User interface
The maximum number of days is 9999, which is equivalent to 27 years.

Reset acc. code

Navigation
Expert → System → Administration → Reset acc. code → Reset acc. code

Description
Use this function to enter a reset code to reset the user-specific release code to the factory setting.

User entry
Character string comprising numbers, letters and special characters

Factory setting
0x00

Additional information
Description
For a reset code, contact your Endress+Hauser service organization.

User entry
The reset code can only be entered via:
- Web browser
- DeviceCare, FieldCare (via interface CDI RJ45)
- Fieldbus

Additional parameters in the "Administration" submenu

Def. access code

Navigation
Expert → System → Administration → Def. access code

Description
Use this function to enter a user-specific release code to restrict write-access to the parameters. This protects the configuration of the device against any inadvertent changes via the operating tool.

User entry
0 to 9999
Device reset

Navigation
Expert → System → Administration → Device reset

Description
Use this function to choose whether to reset the device configuration - either entirely or in part - to a defined state.

Selection
- Cancel
- To delivery set.
- Restart device

Factory setting
Cancel

Additional information

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancel</td>
<td>No action is executed and the user exits the parameter.</td>
</tr>
<tr>
<td>To delivery set.</td>
<td>Every parameter for which a customer-specific default setting was ordered is reset to this customer-specific value. All other parameters are reset to the factory setting.</td>
</tr>
<tr>
<td></td>
<td>This option is not visible if no customer-specific settings have been ordered.</td>
</tr>
<tr>
<td>Restart device</td>
<td>The restart resets every parameter whose data are in the volatile memory (RAM) to the factory setting (e.g. measured value data). The device configuration remains unchanged.</td>
</tr>
</tbody>
</table>

Activate SW opt.

Navigation
Expert → System → Administration → Activate SW opt.

Description
Use this function to enter an activation code to enable an additional, ordered software option.
User entry: Max. 10-digit string consisting of numbers.

Factory setting: Depends on the software option ordered.

Additional information:

Description:
If a measuring device was ordered with an additional software option, the activation code is programmed in the device at the factory.

User entry:

To activate a software option subsequently, please contact your Endress+Hauser sales organization.

NOTE!
The activation code is linked to the serial number of the measuring device and varies according to the device and software option.

If an incorrect or invalid code is entered, this results in the loss of software options that have already been activated.

▸ Before you enter a new activation code, make a note of the current activation code.
▸ Enter the new activation code provided by Endress+Hauser when the new software option was ordered.
▸ Once the activation code has been entered, check if the new software option is displayed in the SW option overv. parameter (→ 39).
 ➔ The new software option is active if it is displayed.
 ➔ If the new software option is not displayed or all software options have been deleted, the code entered was either incorrect or invalid.
▸ If the code entered is incorrect or invalid, enter the old activation code.
▸ Have your Endress+Hauser sales organization check the new activation code remembering to specify the serial number or ask for the code again.

Example for a software option
Order code for "Application package", option EB 'Heartbeat Verification + Monitoring'

The software options currently enabled are displayed in the SW option overv. parameter (→ 39).

Web browser:

Once a software option has been activated, the page must be loaded again in the Web browser.

SW option overv.

Navigation: Expert → System → Administration → SW option overv.

Description: Displays all the software options that are enabled in the device.

User interface:
- HBT Verification
- HBT Monitoring
- Concentration
- Viscosity
Additional information

Description
Displays all the options that are available if ordered by the customer.

"HBT Verification" option and "HBT Monitoring" option
Order code for 'Application package', option EB 'Heartbeat Verification + Monitoring'

'Concentration' option
Order code for 'Application package', option ED 'Concentration' and option EE 'Special density'

"Viscosity" option
Only available for Promass I.
Order code for 'Application package', option EG 'Viscosity'

3.2 "Sensor" submenu

Navigation

[Expert] → [Sensor]

- [Measured val.] ➔ 41
- [System units] ➔ 49
- [Process param.] ➔ 64
- [Measurement mode] ➔ 72
- [External comp.] ➔ 74
- [Calculated value] ➔ 77
- [Sensor adjustm.] ➔ 80
- [Calibration] ➔ 86
- [Supervision] ➔ 88
3.2.1 "Measured val." submenu

Navigation
⬇️ Expert → Sensor → Measured val.

| ▶️ Measured val. |
|------------------|-----------------|
| ▶️ Process variab. | → 41 |
| ▶️ Totalizer | → 47 |

"Process variab." submenu

Navigation

| ▶️ Process variab. |
|------------------|-----------------|
| Mass flow | → 42 |
| Volume flow | → 42 |
| Correct vol. flow | → 42 |
| Density | → 43 |
| Ref. density | → 43 |
| Temperature | → 43 |
| Pressure value | → 43 |
| Dynam. viscosity | → 44 |
| Kinematic visc. | → 44 |
| TempCompDynVisc | → 45 |
| TempCompKinVisc | → 45 |
| Concentration | → 45 |
| Target mass flow | → 46 |
| Carrier mass fl. | → 46 |
| Targ. corr. vol. fl | → 46 |
| Carr. corr. vol. fl | → 47 |
Mass flow

Navigation

Description

Displays the mass flow that is currently measured.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the **Mass flow unit** parameter (→ 47)

Volume flow

Navigation

Description

Displays the volume flow currently calculated.

User interface

Signed floating-point number

Additional information

Description

The volume flow is calculated from the mass flow currently measured and the density currently measured.

Dependency

The unit is taken from the **Volume flow unit** parameter (→ 51)

Correct.vol.flow

Navigation

Description

Displays the corrected volume flow currently measured.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the **Cor.volflow unit** parameter (→ 53)
Density

Navigation

Description

Displays the density currently measured.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the **Density unit** parameter (→ 55)

Ref. density

Navigation

Description

Displays the reference density currently calculated.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the **Ref. dens. unit** parameter (→ 56)

Temperature

Navigation

Description

Displays the medium temperature currently measured.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the **Temperature unit** parameter (→ 56)

Pressure value

Navigation

Description

Displays the fixed or external pressure value.

User interface

Signed floating-point number
Additional information

Dependency

The unit is taken from the **Pressure unit** parameter (→ 57).

Dynam. viscosity

Navigation

Prerequisite

For the following order code:

Application package, option **EG** "Viscosity"

The software options currently enabled are displayed in the **SW option overv.** parameter (→ 39).

Description

Displays the dynamic viscosity currently calculated.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the **Dyn. visc. unit** parameter.

Kinematic visc.

Navigation

Prerequisite

For the following order code:

Application package, option **EG** "Viscosity"

The software options currently enabled are displayed in the **SW option overv.** parameter (→ 39).

Description

Displays the kinematic viscosity currently calculated.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the **Kin. visc. unit** parameter.
TempCompDynVisc

Navigation

Prerequisite

For the following order code:
"Application package", option EG "Viscosity"

The software options currently enabled are displayed in the SW option overv. parameter (→ 39).

Description

Displays the temperature compensation currently calculated for the viscosity.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the Dyn. visc. unit parameter.

TempCompKinVisc

Navigation

Prerequisite

For the following order code:
"Application package", option EG "Viscosity"

The software options currently enabled are displayed in the SW option overv. parameter (→ 39).

Description

Displays the temperature compensation currently calculated for the kinetic viscosity.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the Kin. visc. unit parameter.

Concentration

Navigation

Prerequisite

For the following order code:
"Application package", option ED "Concentration"

The software options currently enabled are displayed in the SW option overv. parameter (→ 39).

Description

Displays the concentration currently calculated.

User interface

Signed floating-point number
Additional information

Dependency

The unit is taken from the Concentr. unit parameter.

Target mass flow

Navigation

Prerequisite

With the following conditions:
- Order code for "Application package", option ED 'Concentration'
- The WT-% option or the User conc. option is selected in the Concentr. unit parameter.

Description

Displays the mass flow currently measured for the target medium.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the Mass flow unit parameter (→ 39).

Carrier mass fl.

Navigation

Prerequisite

With the following conditions:
- Order code for "Application package", option ED 'Concentration'
- The WT-% option or the User conc. option is selected in the Concentr. unit parameter.

Description

Displays the mass flow currently measured for the carrier medium.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the Mass flow unit parameter (→ 39).

Targ.corr.vol.fl

Navigation

User interface

Signed floating-point number
Factory setting

0 Nl/h

Carr.corr.vol.fl

Navigation

User interface

Signed floating-point number

Factory setting

0 Nl/h

Target vol. flow

Navigation

User interface

Signed floating-point number

Factory setting

0 l/h

Carrier vol. fl.

Navigation

User interface

Signed floating-point number

Factory setting

0 l/h

"Totalizer" submenu

Navigation

Expert → Sensor → Measured val. → Totalizer

<table>
<thead>
<tr>
<th>Totalizer val. 1 to n</th>
<th>→ 48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tot. overflow 1 to n</td>
<td>→ 48</td>
</tr>
</tbody>
</table>
Totalizer val. 1 to n

Navigation

Expert → Sensor → Measured val. → Totalizer → Totalizer val. 1 to n

Prerequisite

One of the following options is selected in the **Assign variable** parameter (→ 107) of the **Totalizer 1 to n** submenu:

- Volume flow
- Mass flow
- Correct.vol.flow
- Target mass flow *
- Carrier mass fl.*

Description

Displays the current totalizer reading.

User interface

Signed floating-point number

Additional information

Description

As it is only possible to display a maximum of 7 digits in the operating tool, the current counter value is the sum of the totalizer value and the overflow value from the **Tot. overflow 1 to n** parameter if the display range is exceeded.

In the event of an error, the totalizer adopts the mode defined in the **Failure mode** parameter (→ 111).

User interface

The value of the process variable totalized since measuring began can be positive or negative. This depends on the settings in the **Operation mode** parameter (→ 109).

The unit of the selected process variable is specified for the totalizer in the **Unit totalizer** parameter (→ 107).

Example

Calculation of the current totalizer reading when the value exceeds the 7-digit display range of the operating tool:

- Value in the **Totalizer val. 1** parameter: 1968457 m³
- Value in the **Tot. overflow 1** parameter: 1 ⋅ 10⁷ (1 overflow) = 10000000 [m³]
- Current totalizer reading: 11968457 m³

Tot. overflow 1 to n

Navigation

Expert → Sensor → Measured val. → Totalizer → Tot. overflow 1 to n

Prerequisite

One of the following options is selected in the **Assign variable** parameter (→ 107) of the **Totalizer 1 to n** submenu:

- Volume flow
- Mass flow
- Correct.vol.flow
- Target mass flow *
- Carrier mass fl.*

Description

Displays the current totalizer overflow.

Visibility depends on order options or device settings
User interface

Integer with sign

Additional information

Description

If the current totalizer reading exceeds 7 digits, which is the maximum value range that can be displayed by the operating tool, the value above this range is output as an overflow. The current totalizer value is therefore the sum of the overflow value and the totalizer value from the Totalizer val. 1 to n parameter.

User interface

The unit of the selected process variable is specified for the totalizer in the Unit totalizer parameter (→ 107).

Example

Calculation of the current totalizer reading when the value exceeds the 7-digit display range of the operating tool:

- Value in the Totalizer val. 1 parameter: 1968457 m³
- Value in the Tot. overflow 1 parameter: $2 \cdot 10^7$ (2 overflows) = 20000000 [m³]
- Current totalizer reading: 21968457 m³

3.2.2 "System units" submenu

Navigation

Expert → Sensor → System units

<table>
<thead>
<tr>
<th>System units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass flow unit → 50</td>
</tr>
<tr>
<td>Mass unit → 50</td>
</tr>
<tr>
<td>Volume flow unit → 51</td>
</tr>
<tr>
<td>Volume unit → 53</td>
</tr>
<tr>
<td>Corr. volflow unit → 53</td>
</tr>
<tr>
<td>Corr. vol. unit → 54</td>
</tr>
<tr>
<td>Density unit → 55</td>
</tr>
<tr>
<td>Ref. dens. unit → 56</td>
</tr>
<tr>
<td>Temperature unit → 56</td>
</tr>
<tr>
<td>Pressure unit → 57</td>
</tr>
<tr>
<td>Date/time format → 57</td>
</tr>
<tr>
<td>User-spec. units → 58</td>
</tr>
</tbody>
</table>
Mass flow unit

Description
Use this function to select the unit for the mass flow.

Selection

SI units
- g/s
- g/min
- g/h
- g/d
- kg/s
- kg/min
- kg/h
- kg/d
- t/s
- t/min
- t/h
- t/d

US units
- oz/s
- oz/min
- oz/h
- oz/d
- lb/s
- lb/min
- lb/h
- lb/d
- STon/s
- STon/min
- STon/h
- STon/d

Custom-specific units
- User mass/s
- User mass/min
- User mass/h
- User mass/d

Factory setting
Country-specific:
- kg/h (DN > 150 (6”): t/h)
- lb/min

Additional information

Result
The selected unit applies for:

- **Target mass flow** parameter (→ 46)
- **Carrier mass fl.** parameter (→ 46)
- **Mass flow** parameter (→ 42)

Selection

For an explanation of the abbreviated units: → 141

Customer-specific units

The unit for the customer-specific mass is specified in the **Mass text** parameter (→ 59).

Mass unit

Description
Use this function to select the unit for the mass.
Selection

SI units
- g
- kg
- t

US units
- oz
- lb
- STon

Custom-specific units
- User mass

Factory setting

Country-specific:
- kg (DN > 150 (6\(^\circ\)): t)
- lb

Additional information

Selection

For an explanation of the abbreviated units: → 141

Custom-specific units

The unit for the customer-specific mass is specified in the **Mass text** parameter (→ 59).

Volume flow unit

Navigation

Expert → Sensor → System units → Volume flow unit

Description

Use this function to select the unit for the volume flow.
Description of device parameters

Proline Promass 100 EtherNet/IP

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
<th>Imperial units</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm³/s</td>
<td>af/s</td>
<td>gal/s (imp)</td>
</tr>
<tr>
<td>cm³/min</td>
<td>af/min</td>
<td>gal/min (imp)</td>
</tr>
<tr>
<td>cm³/h</td>
<td>af/h</td>
<td>gal/h (imp)</td>
</tr>
<tr>
<td>cm³/d</td>
<td>af/d</td>
<td>gal/d (imp)</td>
</tr>
<tr>
<td>dm³/s</td>
<td>ft³/s</td>
<td>Mgal/s (imp)</td>
</tr>
<tr>
<td>dm³/min</td>
<td>ft³/min</td>
<td>Mgal/min (imp)</td>
</tr>
<tr>
<td>dm³/h</td>
<td>ft³/h</td>
<td>Mgal/h (imp)</td>
</tr>
<tr>
<td>dm³/d</td>
<td>ft³/d</td>
<td>Mgal/d (imp)</td>
</tr>
<tr>
<td>m³/s</td>
<td>fl oz/s (us)</td>
<td>bbl/s (imp;beer)</td>
</tr>
<tr>
<td>m³/min</td>
<td>fl oz/min (us)</td>
<td>bbl/min (imp;beer)</td>
</tr>
<tr>
<td>m³/h</td>
<td>fl oz/h (us)</td>
<td>bbl/h (imp;beer)</td>
</tr>
<tr>
<td>m³/d</td>
<td>fl oz/d (us)</td>
<td>bbl/d (imp;beer)</td>
</tr>
<tr>
<td>l/s</td>
<td>gal/s (us)</td>
<td>bbl/s (imp;oil)</td>
</tr>
<tr>
<td>l/min</td>
<td>gal/min (us)</td>
<td>bbl/min (imp;oil)</td>
</tr>
<tr>
<td>l/h</td>
<td>gal/h (us)</td>
<td>bbl/h (imp;oil)</td>
</tr>
<tr>
<td>l/d</td>
<td>gal/d (us)</td>
<td>bbl/d (imp;oil)</td>
</tr>
<tr>
<td>hl/s</td>
<td>kgal/s (us)</td>
<td>bbl/s (us;liq.)</td>
</tr>
<tr>
<td>hl/min</td>
<td>kgal/min (us)</td>
<td>bbl/min (us;liq.)</td>
</tr>
<tr>
<td>hl/h</td>
<td>kgal/h (us)</td>
<td>bbl/h (us;liq.)</td>
</tr>
<tr>
<td>hl/d</td>
<td>kgal/d (us)</td>
<td>bbl/d (us;liq.)</td>
</tr>
<tr>
<td>Ml/s</td>
<td>Mgal/s (us)</td>
<td>bbl/s (us;beer)</td>
</tr>
<tr>
<td>Ml/min</td>
<td>Mgal/min (us)</td>
<td>bbl/min (us;beer)</td>
</tr>
<tr>
<td>Ml/h</td>
<td>Mgal/h (us)</td>
<td>bbl/h (us;beer)</td>
</tr>
<tr>
<td>Ml/d</td>
<td>Mgal/d (us)</td>
<td>bbl/d (us;beer)</td>
</tr>
<tr>
<td>l/h (DN > 150 (6") : m³/h)</td>
<td>gal/min (us)</td>
<td>bbl/s (us;oil)</td>
</tr>
<tr>
<td>gal/min</td>
<td>bbl/min (us;oil)</td>
<td>bbl/min (us;oil)</td>
</tr>
<tr>
<td>gal/h</td>
<td>bbl/h (us;oil)</td>
<td>bbl/h (us;oil)</td>
</tr>
<tr>
<td>gal/d</td>
<td>bbl/d (us;oil)</td>
<td>bbl/d (us;tank)</td>
</tr>
</tbody>
</table>

Custom-specific units

- User vol./s
- User vol./min
- User vol./h
- User vol./d

Factory setting

Country-specific:

- l/h (DN > 150 (6") : m³/h)
- gal/min (us)
Additional information

Result

The selected unit applies for:

Volume flow parameter (→ 42)

Selection

For an explanation of the abbreviated units: → 141

Customer-specific units

The unit for the customer-specific volume is specified in the **Volume text** parameter (→ 60).

Volume unit

Navigation

Expert → Sensor → System units → Volume unit

Description

Use this function to select the unit for the volume.

Selection

SI units
- cm³
- dm³
- m³
- ml
- l
- hl
- Ml Mega

US units
- af
- ft³
- fl oz (us)
- gal (us)
- kgal (us)
- Mgal (us)
- bbl (us;oil)
- bbl (us;liq.)
- bbl (us;beer)
- bbl (us;tank)

Imperial units
- gal (imp)
- Mgal (imp)
- bbl (imp;beer)
- bbl (imp;oil)

Custom-specific units

User vol.

Factory setting

Country-specific:
- l (DN > 150 (6”: m³)
- gal (us)

Additional information

For an explanation of the abbreviated units: → 141

Customer-specific units

The unit for the customer-specific volume is specified in the **Volume text** parameter (→ 60).

Cor.volflow unit

Navigation

Expert → Sensor → System units → Cor.volflow unit

Description

Use this function to select the unit for the corrected volume flow.
Description of device parameters

Proline Promass 100 EtherNet/IP

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Nl/s</td>
<td>• Sft³/s</td>
</tr>
<tr>
<td>• Nl/min</td>
<td>• Sft³/min</td>
</tr>
<tr>
<td>• Nl/h</td>
<td>• Sft³/h</td>
</tr>
<tr>
<td>• Nl/d</td>
<td>• Sft³/d</td>
</tr>
<tr>
<td>• Nm³/s</td>
<td>• Sgal/s (us)</td>
</tr>
<tr>
<td>• Nm³/min</td>
<td>• Sgal/min (us)</td>
</tr>
<tr>
<td>• Nm³/h</td>
<td>• Sgal/h (us)</td>
</tr>
<tr>
<td>• Nm³/d</td>
<td>• Sgal/d (us)</td>
</tr>
<tr>
<td>• Sm³/s</td>
<td>• Sbbl/s (us;liq.)</td>
</tr>
<tr>
<td>• Sm³/min</td>
<td>• Sbbl/min (us;liq.)</td>
</tr>
<tr>
<td>• Sm³/h</td>
<td>• Sbbl/h (us;liq.)</td>
</tr>
<tr>
<td>• Sm³/d</td>
<td>• Sbbl/d (us;liq.)</td>
</tr>
<tr>
<td></td>
<td>• Sgal (imp)</td>
</tr>
<tr>
<td></td>
<td>• Sgal/min (imp)</td>
</tr>
<tr>
<td></td>
<td>• Sgal/h (imp)</td>
</tr>
<tr>
<td></td>
<td>• Sgal/d (imp)</td>
</tr>
</tbody>
</table>

Custom-specific units

- UserCrVol./s
- UserCrVol./min
- UserCrVol./h
- UserCrVol./d

Factory setting

Country-specific:

- Nl/h (DN > 150 (6’): Nm³/h)
- Sft³/min

Additional information

Result

The selected unit applies for:
Correct.vol.flow parameter (→ 42)

Selection

For an explanation of the abbreviated units: → 141

Corr. vol. unit

Navigation

Expert → Sensor → System units → Corr. vol. unit

Description

Use this function to select the unit for the corrected volume.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
<th>Imperial units</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Nl</td>
<td>• Sft³</td>
<td>Sgal (imp)</td>
</tr>
<tr>
<td>• Nm³</td>
<td>• Sgal (us)</td>
<td></td>
</tr>
<tr>
<td>• Sm³</td>
<td>• Sbbl (us;liq.)</td>
<td></td>
</tr>
</tbody>
</table>

Custom-specific units

UserCrVol.

Factory setting

Country-specific:

- Nl (DN > 150 (6’): Nm³)
- Sft³
Additional information

Selection

For an explanation of the abbreviated units: → 141

Density unit

Navigation

Expert → Sensor → System units → Density unit

Description

Use this function to select the unit for the density.

Selection

SI units
- g/cm³
- g/m³
- kg/dm³
- kg/l
- kg/m³
- SD4°C
- SD15°C
- SD20°C
- SG4°C
- SG15°C
- SG20°C

US units
- lb/ft³
- lb/gal (us)
- lb/bbl (us;liq.)
- lb/bbl (us;beer)
- lb/bbl (us;oil)
- lb/bbl (us;tank)

Imperial units
- lb/gal (imp)
- lb/bbl (imp;beer)
- lb/bbl (imp;oil)

Custom-specific units
User dens.

Factory setting

Country-specific:
- kg/l
- lb/ft³

Additional information

Result

The selected unit applies for:
Density parameter (→ 43)

Selection

- SD = specific density
 The specific density is the ratio of the medium density to the water density at a water temperature of +4 °C (+39 °F), +15 °C (+59 °F), +20 °C (+68 °F).
- SG = specific gravity
 The specific gravity is the ratio of the medium density to the water density at a water temperature of +4 °C (+39 °F), +15 °C (+59 °F), +20 °C (+68 °F).

For an explanation of the abbreviated units: → 141

Customer-specific units

The unit for the customer-specific density is specified in the Density text parameter (→ 62).
Description of device parameters

Ref. dens. unit

Navigation

Expert → Sensor → System units → Ref. dens. unit

Description

Use this function to select the unit for the reference density.

Selection

SI units
- kg/Nm³
- kg/Nl
- g/Scm³
- kg/Sm³

US units

Factory setting

Country-dependent
- kg/Nl
- lb/Sft³

Additional information

Result

The selected unit applies for:
- Ext. ref. density parameter (→ 78)
- Fix ref. density parameter (→ 78)
- Ref. density parameter (→ 43)

Selection

For an explanation of the abbreviated units: → 141

Temperature unit

Navigation

Expert → Sensor → System units → Temperature unit

Description

Use this function to select the unit for the temperature.

Selection

SI units
- °C
- K

US units
- °F
- °R

Factory setting

Country-specific:
- °C
- °F

Additional information

Result

The selected unit applies for:
- Maximum value parameter (→ 125)
- Minimum value parameter (→ 125)
- Maximum value parameter (→ 126)
- Minimum value parameter (→ 126)
- Maximum value parameter (→ 127)
- Minimum value parameter (→ 127)
- External temp. parameter (→ 76)
Pressure unit

Navigation
Expert → Sensor → System units → Pressure unit

Description
Use this function to select the unit for the pipe pressure.

Selection

- **SI units**
 - Pa a
 - kPa a
 - MPa a
 - bar
 - Pa g
 - kPa g
 - MPa g
 - bar g

- **US units**
 - psi a
 - psi g

- **Custom-specific units**
 User pres.

Factory setting
Country-specific:
- bar a
- psi a

Additional information

Result
The unit is taken from:
- Pressure value parameter (→ 43)
- External press. parameter (→ 75)
- Pressure value parameter (→ 75)

Selection
For an explanation of the abbreviated units: → 141

Date/time format

Navigation
Expert → Sensor → System units → Date/time format

Description
Use this function to select the desired time format for calibration history.

Selection
- dd.mm.yy hh:mm
- dd.mm.yy am/pm
- mm/dd/yy hh:mm
- mm/dd/yy am/pm
Description of device parameters

Factory setting

dd.mm.yy hh:mm

Additional information

Selection

For an explanation of the abbreviated units: → 141

"User-spec. units" submenu

Navigation
Expert → Sensor → System units → User-spec. units

```plaintext
[User-spec. units]

- Mass text
- Mass offset
- Mass factor
- Volume text
- Volume offset
- Volume factor
- Corr. vol. text
- Corr vol. offset
- Cor.vol. factor
- Density text
- Density offset
- Density factor
- Pressure text
- Pressure offset
- Pressure factor

→ 59
→ 59
→ 59
→ 60
→ 60
→ 61
→ 61
→ 61
→ 62
→ 62
→ 62
→ 63
→ 63
```
Mass text

Navigation
Expert → Sensor → System units → User-spec. units → Mass text

Description
Use this function to enter a text for the user-specific unit of mass and mass flow. The corresponding time units (s, min, h, d) for mass flow are generated automatically.

User entry
Max. 10 characters such as letters, numbers or special characters (@, %, /)

Factory setting
User mass

Additional information

Result
The defined unit is shown as an option in the choose list of the following parameters:
- Mass flow unit parameter (→ 50)
- Mass unit parameter (→ 50)

Example
If the text CENT for "centner" is entered, the following options are displayed in the picklist for the Mass flow unit parameter (→ 50):
- CENT/s
- CENT/min
- CENT/h
- CENT/d

Mass offset

Navigation
Expert → Sensor → System units → User-spec. units → Mass offset

Description
Use this function to enter the zero point shift for the user-specific mass and mass flow unit.

User entry
Signed floating-point number

Factory setting
0

Additional information

Description
Value in user-specific unit = (factor × value in base unit) + offset

Mass factor

Navigation
Expert → Sensor → System units → User-spec. units → Mass factor

Description
Use this function to enter a quantity factor (without time) for the user-specific mass and mass flow unit.

User entry
Signed floating-point number
Volume text

Navigation

Expert → Sensor → System units → User-spec. units → Volume text

Description

Use this function to enter a text for the user-specific unit of volume and volume flow. The corresponding time units (s, min, h, d) for volume flow are generated automatically.

User entry

Max. 10 characters such as letters, numbers or special characters (@, %, /)

Factory setting

User vol.

Additional information

Example

If the text GLAS is entered, the choose list of the Volume flow unit parameter (→ 51) shows the following options:

- GLAS/s
- GLAS/min
- GLAS/h
- GLAS/d

Volume offset

Navigation

Expert → Sensor → System units → User-spec. units → Volume offset

Description

Use this function to enter the offset for adapting the user-specific volume unit and volume flow unit (without time).

User entry

Signed floating-point number

Factory setting

0

Additional information

Description

Value in user-specific unit = (factor × value in base unit) + offset
Volume factor

Navigation

Expert → Sensor → System units → User-spec. units → Volume factor

Description

Use this function to enter a quantity factor (without time) for the user-specific volume and volume flow unit.

User entry

Signed floating-point number

Factory setting

1.0

Corr. vol. text

Navigation

Expert → Sensor → System units → User-spec. units → Corr. vol. text

Description

Use this function to enter a text for the user-specific unit of the corrected volume and corrected volume flow. The corresponding time units (s, min, h, d) for mass flow are generated automatically.

User entry

Max. 10 characters such as letters, numbers or special characters (@, %, /)

Factory setting

UserCrVol.

Additional information

Result

The defined unit is shown as an option in the choose list of the following parameters:

- Cor.volfloow unit parameter (→ 53)
- Corr. vol. unit parameter (→ 54)

Example

If the text GLAS is entered, the choose list of the Cor.volfloow unit parameter (→ 53) shows the following options:

- GLAS/s
- GLAS/min
- GLAS/h
- GLAS/d

Corr vol. offset

Navigation

Expert → Sensor → System units → User-spec. units → Corr vol. offset

Description

Use this function to enter the offset for adapting the user-specific corrected volume unit and corrected volume flow unit (without time).

Value in user-specific unit = \((factor \times value\text{ in base unit}) + offset\)

User entry

Signed floating-point number

Factory setting

0
Cor.vol. factor

- **Navigation**: Expert → Sensor → System units → User-spec. units → Cor.vol. factor
- **Description**: Use this function to enter a quantity factor (without time) for the user-specific corrected volume unit and corrected volume flow unit.
- **User entry**: Signed floating-point number
- **Factory setting**: 1.0

Density text

- **Navigation**: Expert → Sensor → System units → User-spec. units → Density text
- **Description**: Use this function to enter a text or the user-specific unit of density.
- **User entry**: Max. 10 characters such as letters, numbers or special characters (@, %, /)
- **Factory setting**: User dens.
- **Additional information**: Result
 - The defined unit is shown as an option in the choose list of the Density unit parameter (→ 55).
 - Example
 - Enter text “CE_L” for centners per liter

Density offset

- **Navigation**: Expert → Sensor → System units → User-spec. units → Density offset
- **Description**: Use this function to enter the zero point shift for the user-specific density unit.
 - Value in user-specific unit = (factor × value in base unit) + offset
- **User entry**: Signed floating-point number
- **Factory setting**: 0

Density factor

- **Navigation**: Expert → Sensor → System units → User-spec. units → Density factor
- **Description**: Use this function to enter a quantity factor for the user-specific density unit.
User entry
Signed floating-point number

Factory setting
1.0

Pressure text
Navigation
Expert → Sensor → System units → User-spec. units → Pressure text

Description
Use this function to enter a text for the user-specific pressure unit.

User entry
Max. 10 characters such as letters, numbers or special characters (@, %, /)

Factory setting
User pres.

Additional information
Result
The defined unit is shown as an option in the choose list of the Pressure unit parameter (→ 57).

Pressure offset
Navigation
Expert → Sensor → System units → User-spec. units → Pressure offset

Description
Use this function to enter the offset for adapting the user-specific pressure unit.

User entry
Signed floating-point number

Factory setting
0

Pressure factor
Navigation
Expert → Sensor → System units → User-spec. units → Pressure factor

Description
Use this function to enter a quantity factor for the user-specific pressure unit.

User entry
Signed floating-point number

Factory setting
1.0

Additional information
Example
1 Dyn/cm² = 0.1 Pa → 10 Dyn/cm² = 1 Pa → user entry: 10
3.2.3 "Process param." submenu

Navigation

<table>
<thead>
<tr>
<th>Process param.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow damping</td>
<td>→ 64</td>
</tr>
<tr>
<td>Density damping</td>
<td>→ 65</td>
</tr>
<tr>
<td>Temp. damping</td>
<td>→ 65</td>
</tr>
<tr>
<td>Flow override</td>
<td>→ 66</td>
</tr>
<tr>
<td>Low flow cut off</td>
<td>→ 66</td>
</tr>
<tr>
<td>Partial pipe det</td>
<td>→ 69</td>
</tr>
</tbody>
</table>

Flow damping

Navigation

Expert → Sensor → Process param. → Flow damping

Description

Use this function to enter a time constant for flow damping (PT1 element). Reduction of the variability of the flow measured value (in relation to interference). For this purpose, the depth of the flow filter is adjusted: when the filter setting increases, the reaction time of the device also increases.

User entry

0 to 100.0 s

Factory setting

0 s

Additional information

- The damping is performed by a PT1 element ²).

- **User entry**
 - Value = 0: no damping
 - Value > 0: damping is increased

- **Result**
 - Damping is switched off if 0 is entered (factory setting).

- The damping affects the following variables of the device:
 - Outputs
 - Low flow cut off → 66
 - Totalizers → 106

²) Proportional behavior with first-order lag
Density damping

Navigation
Expert → Sensor → Process param. → Density damping

Description
Use this function to enter a time constant for the damping (PT1 element) of the density measured value.

User entry
0 to 999.9 s

Factory setting
0 s

Additional information

Description
The damping is performed by a PT1 element.

User entry
- Value = 0: no damping
- Value > 0: damping is increased

Damping is switched off if 0 is entered (factory setting).

Temp. damping

Navigation
Expert → Sensor → Process param. → Temp. damping

Description
Use this function to enter a time constant for the damping (PT1 element) of the temperature measured value.

User entry
0 to 999.9 s

Factory setting
0 s

Additional information

Description
The damping is performed by a PT1 element.

User entry
- Value = 0: no damping
- Value > 0: damping is increased

Damping is switched off if 0 is entered (factory setting).

3) Proportional behavior with first-order lag
4) Proportional behavior with first-order lag
Flow override

Description
Use this function to select whether to interrupt the evaluation of measured values. This is useful for the cleaning processes of a pipeline, for example.

Selection
- Off
- On

Factory setting
Off

Additional information

Result
This setting affects all the functions and outputs of the measuring device.

Description

Flow override is active
- The diagnostic message diagnostic message \(C453\) Flow override is displayed.
- Output values
 - Output: Value at zero flow
 - Temperature: proceeding output
 - Totalizers 1-3: Stop being totalized

Positive zero return can also be enabled via the Status input: Assign stat.inp. parameter.

"Low flow cut off" submenu

Navigation

Expert → Sensor → Process param. → Low flow cut off

Assign variable

Description
Use this function to select the process variable for low flow cutoff detection.
Selection
- Off
- Mass flow
- Volume flow
- Correct.vol.flow

Factory setting
Mass flow

On value

Navigation
Expert → Sensor → Process param. → Low flow cut off → On value

Prerequisite
One of the following options is selected in the Assign variable parameter (→ 66):
- Mass flow
- Volume flow
- Correct.vol.flow

Description
Use this function to enter a switch-on value for low flow cut off. Low flow cut off is activated if the value entered is not equal to 0 → 67.

User entry
Positive floating-point number

Factory setting
Depends on country and nominal diameter → 138

Additional information
Dependency
The unit depends on the process variable selected in the Assign variable parameter (→ 66).

Off value

Navigation
Expert → Sensor → Process param. → Low flow cut off → Off value

Prerequisite
One of the following options is selected in the Assign variable parameter (→ 66):
- Mass flow
- Volume flow
- Correct.vol.flow

Description
Use this function to enter a switch-off value for low flow cut off. The off value is entered as a positive hysteresis from the on value → 67.

User entry
0 to 100.0 %

Factory setting
50 %
Additional information

Example

![Diagram](https://example.com/diagram.png)

- **Q**: Flow
- **t**: Time
- **H**: Hysteresis
- **A**: Low flow cut off active
- **1**: Low flow cut off is activated
- **2**: Low flow cut off is deactivated
- **3**: On value entered
- **4**: Off value entered

Pres. shock sup.

- **Prerequisite**: One of the following options is selected in the **Assign variable** parameter (→ 66):
 - Mass flow
 - Volume flow
 - Correct.vol.flow
- **Description**: Use this function to enter the time interval for signal suppression (= active pressure shock suppression).
- **User entry**: 0 to 100 s
- **Factory setting**: 0 s
- **Additional information**

 Pressure shock suppression is enabled
 - **Prerequisite**:
 - Flow rate < on-value of low flow cut off
 - Changing the flow direction
 - **Output values**:
 - Flow displayed: 0
 - Totalizer: the totalizers are pegged at the last correct value

 Pressure shock suppression is disabled
 - **Prerequisite**: the time interval set in this function has elapsed.
 - If the flow also exceeds the switch-off value for low flow cut off, the device starts processing the current flow value again and displays it.

 Example

 When closing a valve, momentarily strong fluid movements may occur in the pipeline, which are registered by the measuring system. These totalized flow values lead to a false totalizer status, particularly during batching processes.
Q Flow
 t Time
 A Drip
 B Pressure shock
 C Pressure shock suppression active as specified by the time entered
 D Pressure shock suppression inactive
 1 Valve closes
 2 Flow falls below the on-value of the low flow cut off; pressure shock suppression is activated
 3 The time entered has elapsed; pressure shock suppression is deactivated
 4 The actual flow value is now displayed and output
 5 On value for low flow cut off
 6 Off value for low flow cut off

"Partial pipe det" submenu

Navigation

Expert → Sensor → Process param. → Partial pipe det

<table>
<thead>
<tr>
<th>Partial pipe det</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign variable</td>
</tr>
<tr>
<td>Low value</td>
</tr>
<tr>
<td>High value</td>
</tr>
<tr>
<td>Response time</td>
</tr>
<tr>
<td>Max. damping</td>
</tr>
</tbody>
</table>
Assign variable

Navigation
Expert → Sensor → Process param. → Partial pipe det → Assign variable

Description
Use this function to select a process variable to detect empty or partially filled measuring tubes.
For gas measurement: Deactivate monitoring due to low gas density.

Selection
- Off
- Density
- Ref.density

Factory setting
Off

Low value

Navigation
Expert → Sensor → Process param. → Partial pipe det → Low value

Prerequisite
One of the following options is selected in the Assign variable parameter (→ 70):
- Density
- Ref.density

Description
Use this function to enter a lower limit value to enable detection of empty or partially filled measuring tubes. If the measured density falls below this value, monitoring is enabled.

User entry
Signed floating-point number

Factory setting
200

Additional information
User entry
The lower limit value must be less than the upper limit value defined in the High value parameter (→ 70).

The unit depends on the process variable selected in the Assign variable parameter (→ 70).

Limit value
If the displayed value is outside the limit value, the measuring device displays the diagnostic message $S862$ Partly filled.

High value

Navigation
Expert → Sensor → Process param. → Partial pipe det → High value

Prerequisite
One of the following options is selected in the Assign variable parameter (→ 70):
- Density
- Ref.density
Description | Use this function to enter an upper limit value to enable detection of empty or partially filled measuring tubes. If the measured density exceeds this value, detection is enabled.

User entry | Signed floating-point number

Factory setting | 6000

Additional information |

Limit value | The upper limit value must be greater than the lower limit value defined in the **Low value** parameter (→ 70).

The unit depends on the process variable selected in the **Assign variable** parameter (→ 70).

Limit value | If the displayed value is outside the limit value, the measuring device displays the diagnostic message **S862 Partly filled**.

Response time

Prerequisite | One of the following options is selected in the **Assign variable** parameter (→ 70):
- Density
- Ref.density

Description | Use this function to enter the minimum length of time (debouncing time) the signal must be present for the diagnostic message **S862 Partly filled** to be triggered if the measuring pipe is empty or partially full.

User entry | 0 to 100 s

Factory setting | 1 s

Max. damping

Navigation | Expert → Sensor → Process param. → Partial pipe det → Max. damping

Prerequisite | One of the following options is selected in the **Assign variable** parameter (→ 70):
- Density
- Ref.density

Description | Use this function to enter a damping value to enable detection of empty or partially filled measuring tubes.

User entry | Positive floating-point number

Factory setting | 0
Additional information

Description

If oscillation damping exceeds the specified value, the measuring device presumes that the pipe is partially filled and the flow signal is set to 0. The measuring device displays the diagnostic message **S862 Partly filled**. In the case of non-homogeneous media or air pockets, the damping of the measuring tubes increases.

User entry

- Damping is disabled if 0 is entered (factory setting).
- Damping is enabled if the value entered is greater than 0.
- The value entered depends on application-specific influence variables, such as the medium, nominal diameter, sensor etc.

Example

- If the pipe is filled normally the value of the oscillation damping is 500.
- If the pipe is partially filled the value of the oscillation damping is > 5000.
- A practical damping value would then be 2000: enter 2000 as the value.

3.2.4 "Measurement mode" submenu

Navigation

Expert → Sensor → Measurement mode

"Measurement mode" menu

- **Select medium** → 72
- **Select gas type** → 73
- **Sound velocity** → 73
- **Temp. coeff. SV** → 74

Select medium

Navigation

Expert → Sensor → Measurement mode → Select medium

Description

Use this function to select the type of medium.

Selection

Liquid

Factory setting

Liquid
Select gas type

Navigation
Expert → Sensor → Measurement mode → Select gas type

Prerequisite
The Gas option is selected in the Select medium parameter (→ 72).

Description
Use this function to select the type of gas for the measuring application.

Selection
- Air
- Ammonia NH3
- Argon Ar
- Sulf. hex.fl.SF6
- Oxygen O2
- Ozone O3
- Nitrog. ox. NOx
- Nitrogen N2
- Nitrous ox. N2O
- Methane CH4
- Hydrogen H2
- Helium He
- Hydrog.chlor.HCl
- Hydrog.sulf. H2S
- Ethylene C2H4
- Carbon diox. CO2
- Carbon monox. CO
- Chlorine Cl2
- Butane C4H10
- Propane C3H8
- Propylene C3H6
- Ethane C2H6
- Others

Factory setting
Methane CH4

Additional information
Description
The gas type needs to be selected so that it is possible to comply with accuracy specifications in gas applications.

Sound velocity

Navigation
Expert → Sensor → Measurement mode → Sound velocity

Prerequisite
In the Select gas type parameter (→ 73), the Others option is selected.

Description
Use this function to enter the sound velocity of the gas at 0 °C (+32 °F).

User entry
1 to 99999.9999 m/s

Factory setting
415.0 m/s
Temp. coeff. SV

Navigation

Expert → Sensor → Measurement mode → Temp. coeff. SV

Prerequisite

The Others option is selected in the Select gas type parameter (→ 73).

Description

Use this function to enter a temperature coefficient for the sound velocity of the gas.

User entry

Positive floating-point number

Factory setting

0 (m/s)/K

3.2.5 "External comp." submenu

Navigation

<table>
<thead>
<tr>
<th>External comp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure compen.</td>
</tr>
<tr>
<td>Pressure value</td>
</tr>
<tr>
<td>External press.</td>
</tr>
<tr>
<td>Temperature mode</td>
</tr>
<tr>
<td>External temp.</td>
</tr>
</tbody>
</table>

Pressure compen.

Navigation

Description

Use this function to select the type of pressure compensation.

Selection

- Off
- Fixed value
- External value

Factory setting

Off
Additional information

Selection
- **Fixed value**
 A fixed pressure value is used for compensation: **Pressure value** parameter (→ 75)
- **External value**
 The pressure value read in via EtherNet/IP is used for compensation.
- **Current input 1**
 The pressure value read in via the current input is used for compensation.

For more information, see the "Cyclic data transmission" section of the Operating Instructions

Pressure value

Navigation

Expert → Sensor → External comp. → Pressure value

Prerequisite

The **Fixed value** option is selected in the **Pressure compen.** parameter (→ 74).

Description

Use this function to enter a value for the process pressure that is used for pressure correction.

User entry

Positive floating-point number

Factory setting

0 bar

Additional information

User entry

The unit is taken from the **Pressure unit** parameter (→ 57)

External press.

Navigation

Prerequisite

The **External value** option is selected in the **Pressure compen.** parameter (→ 74).

Description

Use this function to enter an external pressure value.

User entry

Positive floating-point number

Factory setting

0 bar

Additional information

User entry

The unit is taken from the **Pressure unit** parameter (→ 57)
Temperature mode

Navigation

Expert → Sensor → External comp. → Temperature mode

Description

Use this function to select the temperature mode.

Selection

- Internal value
- External value

Factory setting

Internal value

Additional information

Description

Use this function to select the type of temperature compensation.

Selection

All the options available for selection are used for measured value compensation.

- Internal value

 The temperature value measured internally (temperature sensor of the measuring sensor) is used for compensation.

- External value

 The temperature value read in via EtherNet/IP is used for compensation.

- Current input 1

 The temperature value read in via the current input is used for compensation.

 ![tip]

 For more information, see the "Cyclic data transmission" section of the Operating Instructions

External temp.

Navigation

Prerequisite

In the Temperature mode parameter (→ 76), the External value option is selected.

Description

Use this function to enter the external temperature.

User entry

-273.15 to 99999 °C

Factory setting

Country-specific:

- 0 °C
- +32 °F

Additional information

Description

The unit is taken from the Temperature unit parameter (→ 56)
3.2.6 "Calculated value" submenu

Description of device parameters

Navigation

Expert → Sensor → Calculated value

"Corr. vol.flow." submenu

Navigation

Description

Use this function to select the reference density for calculating the corrected volume flow.

Selection

- Fix ref. density
- Calc ref. density
- Ref. dens API 53
- Ext. ref. density

Factory setting

Calc ref density

Additional information

The Ref. dens API 53 option is suitable only for applications involving LPG⁵, where the flow rate is measured on the basis of the corrected volume flow.

Selecting this option means that the reference density is used, taking into account the values in table 53 E of API MPMS section 11.2. Temperature measurement (measured internally or read into the device from an external source) and density measurement take

Endress+Hauser
place during operation while the medium is flowing. The mass flow is divided by the reference density to give the corrected volume flow and is issued as an output signal.

Ext. ref.density

Navigation

Prerequisite
In the Corr. vol.flow. parameter (→ 77), the Ext. ref.density option is selected.

Description
Displays the reference density which is read in externally, e.g. via the current input.

User interface
Floating point number with sign

Additional information
Dependency

The unit is taken from the Ref. dens. unit parameter (→ 56)

Fix ref.density

Navigation

Prerequisite
The Fix ref.density option is selected in the Corr. vol.flow. parameter (→ 77) parameter.

Description
Use this function to enter a fixed value for the reference density.

User entry
Positive floating-point number

Factory setting
1 kg/Nl

Additional information
Dependency

The unit is taken from the Ref. dens. unit parameter (→ 56)

Ref. temperature

Navigation

Prerequisite
The Calc ref density option is selected in the Corr. vol.flow. parameter (→ 77).

Description
Use this function to enter a reference temperature for calculating the reference density.

User entry
-273.15 to 99999 °C
Factory setting
Country-specific:
- +20 °C
- +68 °F

Additional information
Dependency

The unit is taken from the **Temperature unit** parameter (→ 56)

Reference density calculation

\[
\rho_n = \rho \cdot (1 + \alpha \cdot \Delta t + \beta \cdot \Delta t^2)
\]

- \(\rho_n\): reference density
- \(\rho\): fluid density currently measured
- \(t\): fluid temperature currently measured
- \(t_n\): reference temperature at which the reference density is calculated (e.g. 20 °C)
- \(\Delta t\): \(t - t_n\)
- \(\alpha\): linear expansion coefficient of the fluid, unit = [1/K]; K = Kelvin
- \(\beta\): square expansion coefficient of the fluid, unit = [1/K^2]

Linear exp coeff

Navigation

Expert → Sensor → Calculated value → Corr. vol.flow. → Linear exp coeff

Prerequisite
The **Calc ref density** option is selected in the **Corr. vol.flow.** parameter (→ 77) parameter.

Description
Use this function to enter a linear, fluid-specific expansion coefficient for calculating the reference density.

User entry
Signed floating-point number

Factory setting
0.0

Square exp coeff

Navigation

Prerequisite
The **Calc ref density** option is selected in the **Corr. vol.flow.** parameter (→ 77) parameter.

Description
For fluid with a non-linear expansion pattern: use this function to enter a quadratic, fluid-specific expansion coefficient for calculating the reference density.

User entry
Signed floating-point number

Factory setting
0.0
3.2.7 "Sensor adjustm." submenu

Navigation

Install. direct.

Description

Use this function to change the sign of the medium flow direction.

Selection

- In arrow direct.
- Against arrow

Factory setting

In arrow direct.

Additional information

Before changing the sign: ascertain the actual direction of fluid flow with reference to the direction indicated by the arrow on the sensor nameplate.

"Zero point adj." submenu

- It is generally not necessary to perform zero point adjustment.
- However, this function may be needed in some applications with low flow and strict accuracy requirements.
- A zero point adjustment cannot increase repeatability.
- The following conditions should be met to perform a zero point adjustment successfully without the adjustment finishing in an error:
 - The real flow must be 0.
 - The pressure must be at least 15 psi g.
- The adjustment takes a maximum of 60 s. The more stable the conditions, the faster the adjustment is completed.
- This function can also be used to check the health of the measuring device.
 A healthy measuring device has a maximum zero point deviation of ±100 compared to the factory setting of the measuring device (calibration report).
Zero point adj.

Navigation

Description

Use this function to select the start of the zero point adjustment.

Observe conditions → 80.

Selection

- Cancel
- Busy
- Zero adjust fail
- Start

Factory setting

Cancel

Additional information

Description

- Cancel

 If zero point adjustment has failed, select this option to cancel zero point adjustment.
- Busy

 Is displayed during zero point adjustment.
- Zero adjust fail

 Is displayed if zero point adjustment has failed.
- Start

 Select this option to start zero point adjustment.

Progress

Navigation

Description

The progress of the process is indicated.

User interface

0 to 100 %
"Variable adjust" submenu

Navigation

Description

Use this function to enter the zero point shift for the mass flow trim. The mass flow unit on which the shift is based is kg/s.

User entry

Signed floating-point number

Factory setting

0 kg/s

Additional information

Corrected value = (factor × value) + offset
Mass flow factor

Navigation

Expert → Sensor → Sensor adjust. → Variable adjust → Mass flow factor

Description

Use this function to enter a quantity factor (without time) for the mass flow. This multiplication factor is applied over the mass flow range.

User entry

Positive floating-point number

Factory setting

1

Additional information

Description
Corrected value = (factor × value) + offset

Vol. flow offset

Navigation

Description

Use this function to enter the zero point shift for the volume flow trim. The volume flow unit on which the shift is based is m³/s.

User entry

Signed floating-point number

Factory setting

0 m³/s

Additional information

Description
Corrected value = (factor × value) + offset

Vol. flow factor

Navigation

Description

Use this function to enter a quantity factor (without time) for the volume flow. This multiplication factor is applied over the volume flow range.

User entry

Positive floating-point number

Factory setting

1

Additional information

Description
Corrected value = (factor × value) + offset
Density offset

Navigation
- Expert → Sensor → Sensor adjustm. → Variable adjust → Density offset

Description
Use this function to enter the zero point shift for the density trim. The density unit on which the shift is based is kg/m³.

User entry
Signed floating-point number

Factory setting
0 kg/m³

Additional information
- Description

 Corrected value = (factor × value) + offset

Density factor

Navigation
- Expert → Sensor → Sensor adjustm. → Variable adjust → Density factor

Description
Use this function to enter a quantity factor for the density. This multiplication factor is applied over the density range.

User entry
Positive floating-point number

Factory setting
1

Additional information
- Description

 Corrected value = (factor × value) + offset

Corr. vol offset

Navigation

Description
Use this function to enter the zero point shift for the corrected volume flow trim. The corrected volume flow unit on which the shift is based is 1 Nm³/s.

User entry
Signed floating-point number

Factory setting
0 Nm³/s

Additional information
- Description

 Corrected value = (factor × value) + offset
Corr. vol factor

Navigation

Description
Use this function to enter a quantity factor (without time) for the corrected volume flow. This multiplication factor is applied over the corrected volume flow range.

User entry
Positive floating-point number

Factory setting
1

Additional information
Description

\[
\text{Corrected value} = (\text{factor} \times \text{value}) + \text{offset}
\]

Ref.dens. offset

Navigation
Expert → Sensor → Sensor adjustm. → Variable adjust → Ref.dens. offset

Description
Use this parameter to enter the zero point shift for the reference density trim. The reference density unit on which the shift is based is 1 kg/Nm³.

User entry
Signed floating-point number

Factory setting
0 kg/Nm³

Additional information
Description

\[
\text{Corrected value} = (\text{factor} \times \text{value}) + \text{offset}
\]

Ref.dens. factor

Navigation
Expert → Sensor → Sensor adjustm. → Variable adjust → Ref.dens. factor

Description
Use this function to enter a quantity factor (without time) for the reference density. This multiplication factor is applied over the reference density range.

User entry
Positive floating-point number

Factory setting
1

Additional information
Description

\[
\text{Corrected value} = (\text{factor} \times \text{value}) + \text{offset}
\]
Temp. offset

Navigation
Expert → Sensor → Sensor adjustm. → Variable adjust → Temp. offset

Description
Use this function to enter the zero point shift for the temperature trim. The temperature unit on which the shift is based is K.

User entry
Signed floating-point number

Factory setting
0 K

Additional information
Description
Corrected value = (factor × value) + offset

Temp. factor

Navigation
Expert → Sensor → Sensor adjustm. → Variable adjust → Temp. factor

Description
Use this function to enter a quantity factor for the temperature. In each case, this factor refers to the temperature in K.

User entry
Positive floating-point number

Factory setting
1

Additional information
Description
Corrected value = (factor × value) + offset

3.2.8 "Calibration" submenu

Navigation
Expert → Sensor → Calibration

<table>
<thead>
<tr>
<th>▶ Calibration</th>
<th>→ 87</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cal. factor</td>
<td>→ 87</td>
</tr>
<tr>
<td>Zero point</td>
<td>→ 87</td>
</tr>
<tr>
<td>Nominal diameter</td>
<td>→ 87</td>
</tr>
<tr>
<td>C0 to 5</td>
<td>→ 87</td>
</tr>
</tbody>
</table>
Cal. factor

Navigation

Expert → Sensor → Calibration → Cal. factor

Description
Displays the current calibration factor for the sensor.

User interface
Signed floating-point number

Factory setting
Depends on nominal diameter and calibration.

Zero point

Navigation

Expert → Sensor → Calibration → Zero point

Description
Use this function to enter the zero point correction value for the sensor.

User entry
Signed floating-point number

Factory setting
Depends on nominal diameter and calibration.

Nominal diameter

Navigation

Expert → Sensor → Calibration → Nominal diameter

Description
Displays the nominal diameter of the sensor.

User interface
DNxx / x'

Factory setting
Depends on the size of the sensor

Additional information

Description
The value is also specified on the sensor nameplate.

C0 to 5

Navigation

Expert → Sensor → Calibration → C0 to 5

Description
Displays the current density coefficients C0 to 5 of the sensor.

User interface
Signed floating-point number

Factory setting
0
3.2.9 "Supervision" submenu

Navigation

Expert → Sensor → Supervision

Limit tube damp.

Navigation

Expert → Sensor → Supervision → Limit tube damp.

Description

Use this function to enter a limit value for measuring tube damping.

User entry

Positive floating-point number

Factory setting

Positive floating-point number

Additional information

* If the displayed value is outside the limit value, the measuring device displays the diagnostic message **T5948 Tube damp. high**.
* For detecting inhomogeneous media, for example

3.3 "Communication" submenu

Navigation

Expert → Communication

3.3.1 "Configuration" submenu

Navigation

Expert → Communication → Configuration

- Webserv.language
- MAC Address
- Default netw.set
Webserv.language

Navigation

Expert → Communication → Configuration → Webserv.language

Description

Use this function to select the Web server language setting.

Selection

- English
- Deutsch *
- Français *
- Español *
- Italiano *
- Nederlands *
- Portuguesa *
- Polski *
- русский язык (Ru) *
- Svenska *
- Türkçe *
- 中文 (Chinese) *
- 日本語 (Japanese) *
- 한국어 (Korean) *
- العربية (Ara) *
- Bahasa Indonesia *
- ภาษาไทย (Thai) *
- tiếng Việt (Vit) *
- čeština (Czech) *

Factory setting

English

MAC Address

Navigation

Expert → Communication → Configuration → MAC Address

Description

Displays the MAC address of the measuring device.

* Visibility depends on order options or device settings
6) Media Access Control
Description of device parameters

User interface
Unique 12-digit character string comprising letters and numbers

Factory setting
Each measuring device is given an individual address.

Additional information
Example
For the display format
00:07:05:10:01:5F

Default netw.set

Navigation
Expert → Communication → Configuration → Default netw.set

Description
Displays the use of default network settings.

User interface
- Off
- On

Factory setting
Off

Additional information
User interface
The *On* option is displayed as soon as the last octet of the IP address is set via DIP switches.

DHCP client

Navigation
Expert → Communication → Configuration → DHCP client

Description
Use this function to activate and deactivate the DHCP client functionality.

Selection
- Off
- On

Factory setting
Off

Additional information
Result
If the DHCP client functionality of the Web server is activated, the IP address (→ 90), Subnet mask (→ 91) and Default gateway (→ 91) are set automatically.

Identification is via the MAC address of the measuring device.

IP address

Navigation
Expert → Communication → Configuration → IP address

Description
Use this function to enter the IP address of the device's web server.
Subnet mask

User entry
4 octet: 0 to 255 (in the particular octet)

Factory setting
192.168.1.212

Navigation
Expert → Communication → Configuration → Subnet mask

Description
Use this function to enter the subnet mask.

User entry
4 octet: 0 to 255 (in the particular octet)

Factory setting
255.255.255.0

Default gateway

Navigation
Expert → Communication → Configuration → Default gateway

Description
Use this function to enter the default gateway.

User entry
4 octet: 0 to 255 (in the particular octet)

Factory setting
0.0.0.0

Webserver funct.

Navigation
Expert → Communication → Configuration → Webserver funct.

Description
Use this function to switch the Web server on and off.

Selection
- Off
- On

Factory setting
On
Description of device parameters

Proline Promass 100 EtherNet/IP

Additional information

Description

Once disabled, the Webserver funct. can only be re-enabled via the local display or the operating tool FieldCare.

Selection

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| Off | ● The web server is completely disabled.
 ● Port 80 is locked. |
| On | ● The complete functionality of the web server is available.
 ● JavaScript is used.
 ● The password is transferred in an encrypted state.
 ● Any change to the password is also transferred in an encrypted state. |

Login page

Navigation

[Expert → Communication → Web server → Login page]

Description

Use this function to select the format of the login page.

Selection

- Without header
- With header

Factory setting

With header

Capability flags

Navigation

[Expert → Communication → Configuration → Capability flags]

Description

Displays the DLR (Device Level Ring) properties of the device.

User interface

- Announce-b. node
- Beacon-b. node
- Supervisor cap.
- Redund. gateway
- Flush tab. frame

Factory setting

Beacon-b. node

User description

Navigation

[Expert → Communication → Configuration → User description]

Description

Use this function to enter the user-defined device name and location (separated by a semicolon).
Factory setting: description; location

"Input assembly" submenu

Navigation

Expert → Communication → Configuration → Input assembly

<table>
<thead>
<tr>
<th>Position</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>▶️ 94</td>
</tr>
<tr>
<td>2</td>
<td>▶️ 94</td>
</tr>
<tr>
<td>3</td>
<td>▶️ 95</td>
</tr>
<tr>
<td>4</td>
<td>▶️ 95</td>
</tr>
<tr>
<td>5</td>
<td>▶️ 95</td>
</tr>
<tr>
<td>6</td>
<td>▶️ 95</td>
</tr>
<tr>
<td>7</td>
<td>▶️ 96</td>
</tr>
<tr>
<td>8</td>
<td>▶️ 96</td>
</tr>
<tr>
<td>9</td>
<td>▶️ 96</td>
</tr>
<tr>
<td>10</td>
<td>▶️ 96</td>
</tr>
<tr>
<td>11</td>
<td>▶️ 97</td>
</tr>
<tr>
<td>12</td>
<td>▶️ 97</td>
</tr>
<tr>
<td>13</td>
<td>▶️ 97</td>
</tr>
<tr>
<td>14</td>
<td>▶️ 98</td>
</tr>
<tr>
<td>15</td>
<td>▶️ 98</td>
</tr>
<tr>
<td>16</td>
<td>▶️ 98</td>
</tr>
<tr>
<td>17</td>
<td>▶️ 98</td>
</tr>
<tr>
<td>18</td>
<td>▶️ 99</td>
</tr>
<tr>
<td>19</td>
<td>▶️ 99</td>
</tr>
<tr>
<td>20</td>
<td>▶️ 99</td>
</tr>
</tbody>
</table>
Description of device parameters

Position 1

Navigation
Expert → Communication → Configuration → Input assembly → Position 1

Description
Use this function to select a process variable for input value 1.

Selection
- Off
- Mass flow
- Volume flow
- Correct.vol.flow
- Target mass flow
- Carrier mass fl.
- Density
- Ref.density
- Concentration
- Dynam. viscosity
- Kinematic visc.
- TempCompDynVisc
- TempCompKinVisc
- Temperature
- Carr. pipe temp.
- Electronic temp.
- Osc. freq. 0
- Osc. freq. 1
- Osc. ampl. 0
- Osc. ampl. 1
- Freq. fluct. 0
- Freq. fluct. 1
- Osc. damping 0
- Osc. damping 1
- Damping fluct 0
- Damping fluct 1
- Signal asymmetry
- Exc. current 0
- Exc. current 1
- Spv.exc.curr. 1
- Spv.exc.curr. 2
- Totalizer 1
- Totalizer 2
- Totalizer 3
- Sensor integrity

Factory setting
Mass flow

Position 2

Navigation
Expert → Communication → Configuration → Input assembly → Position 2

Description
Use this function to select a process variable for input value 2.

Selection
Picklist, see Input assembly position 1 parameter (→ 94)

* Visibility depends on order options or device settings
Proline Promass 100 EtherNet/IP

Description of device parameters

Factory setting: Volume flow

Position 3

Navigation: Expert → Communication → Configuration → Input assembly → Position 3

Description: Use this function to select a process variable for input value 3.

Selection: Picklist, see Input assembly position 1 parameter (→ 94)

Factory setting: Correct.vol.flow

Position 4

Navigation: Expert → Communication → Configuration → Input assembly → Position 4

Description: Use this function to select a process variable for input value 4.

Selection: Picklist, see Input assembly position 1 parameter (→ 94)

Factory setting: Temperature

Position 5

Description: Use this function to select a process variable for input value 5.

Selection: Picklist, see Input assembly position 1 parameter (→ 94)

Factory setting: Density

Position 6

Description: Use this function to select a process variable for input value 6.

Selection: Picklist, see Input assembly position 1 parameter (→ 94)

Factory setting: Ref.density
<table>
<thead>
<tr>
<th>Position 7</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
<td>Expert → Communication → Configuration → Input assembly → Position 7</td>
</tr>
<tr>
<td>Description</td>
<td>Use this function to select a process variable for input value 7.</td>
</tr>
<tr>
<td>Selection</td>
<td>Picklist, see Input assembly position 1 parameter (→ 94)</td>
</tr>
<tr>
<td>Factory setting</td>
<td>Spv.exc.curr. 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position 8</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
<td>Expert → Communication → Configuration → Input assembly → Position 8</td>
</tr>
<tr>
<td>Description</td>
<td>Use this function to select a process variable for input value 8.</td>
</tr>
<tr>
<td>Selection</td>
<td>Picklist, see Input assembly position 1 parameter (→ 94)</td>
</tr>
<tr>
<td>Factory setting</td>
<td>Totalizer 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position 9</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
<td>Expert → Communication → Configuration → Input assembly → Position 9</td>
</tr>
<tr>
<td>Description</td>
<td>Use this function to select a process variable for input value 9.</td>
</tr>
<tr>
<td>Selection</td>
<td>Picklist, see Input assembly position 1 parameter (→ 94)</td>
</tr>
<tr>
<td>Factory setting</td>
<td>Totalizer 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position 10</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
<td>Expert → Communication → Configuration → Input assembly → Position 10</td>
</tr>
<tr>
<td>Description</td>
<td>Use this function to select a process variable for input value 10.</td>
</tr>
<tr>
<td>Selection</td>
<td>Picklist, see Input assembly position 1 parameter (→ 94)</td>
</tr>
<tr>
<td>Factory setting</td>
<td>Totalizer 3</td>
</tr>
</tbody>
</table>
Position 11

Navigation
Expert → Communication → Configuration → Input assembly → Position 11

Description
Use this function to select a process variable for input value 11.

Selection
- Off
- Actual diagnos.
- Prev.diagnostics
- Mass flow unit
- Volume flow unit
- Cor.volflow unit
- Temperature unit
- Density unit
- Ref. dens. unit
- Concentr. unit *
- Dyn. visc. unit *
- Kin. visc. unit *
- Current unit
- Unit totalizer 1
- Unit totalizer 2
- Unit totalizer 3
- Verific. results *
- Verific. status *

Factory setting
Mass flow unit

Position 12

Navigation
Expert → Communication → Configuration → Input assembly → Position 12

Description
Use this function to select a process variable for input value 12.

Selection
Picklist, see Input assembly position 11 parameter (→ 97)

Factory setting
Volume flow unit

Position 13

Navigation
Expert → Communication → Configuration → Input assembly → Position 13

Description
Use this function to select a process variable for input value 13.

Selection
Picklist, see Input assembly position 11 parameter (→ 97)

Factory setting
Cor.volflow unit

* Visibility depends on order options or device settings
<table>
<thead>
<tr>
<th>Position 14</th>
<th>Description</th>
<th>Use this function to select a process variable for input value 14.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection</td>
<td>Picklist, see Input assembly position 11 parameter (→ 97)</td>
<td></td>
</tr>
<tr>
<td>Factory setting</td>
<td>Temperature unit</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position 15</th>
<th>Description</th>
<th>Use this function to select a process variable for input value 15.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection</td>
<td>Picklist, see Input assembly position 11 parameter (→ 97)</td>
<td></td>
</tr>
<tr>
<td>Factory setting</td>
<td>Density unit</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position 16</th>
<th>Description</th>
<th>Use this function to select a process variable for input value 16.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection</td>
<td>Picklist, see Input assembly position 11 parameter (→ 97)</td>
<td></td>
</tr>
<tr>
<td>Factory setting</td>
<td>Ref. dens. unit</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position 17</th>
<th>Description</th>
<th>Use this function to select a process variable for input value 17.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection</td>
<td>Picklist, see Input assembly position 11 parameter (→ 97)</td>
<td></td>
</tr>
<tr>
<td>Factory setting</td>
<td>Current unit</td>
<td></td>
</tr>
</tbody>
</table>
Position 18

Navigation
Expert → Communication → Configuration → Input assembly → Position 18

Description
Use this function to select a process variable for input value 18.

Selection
Picklist, see Input assembly position 11 parameter (→ 97)

Factory setting
Unit totalizer 1

Position 19

Navigation
Expert → Communication → Configuration → Input assembly → Position 19

Description
Use this function to select a process variable for input value 19.

Selection
Picklist, see Input assembly position 11 parameter (→ 97)

Factory setting
Unit totalizer 2

Position 20

Navigation
Expert → Communication → Configuration → Input assembly → Position 20

Description
Use this function to select a process variable for input value 20.

Selection
Picklist, see Input assembly position 11 parameter (→ 97)

Factory setting
Unit totalizer 3

3.3.2 "WLAN settings" submenu

Navigation
Expert → Communication → WLAN settings

<table>
<thead>
<tr>
<th>WLAN settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>WLAN</td>
</tr>
<tr>
<td>WLAN mode</td>
</tr>
<tr>
<td>SSID name</td>
</tr>
</tbody>
</table>
Description of device parameters

Proline Promass 100 EtherNet/IP

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network security</td>
<td>101</td>
</tr>
<tr>
<td>Sec. identific.</td>
<td>102</td>
</tr>
<tr>
<td>User name</td>
<td>102</td>
</tr>
<tr>
<td>WLAN password</td>
<td>102</td>
</tr>
<tr>
<td>WLAN IP address</td>
<td>102</td>
</tr>
<tr>
<td>WLAN MAC address</td>
<td>103</td>
</tr>
<tr>
<td>WLAN subnet mask</td>
<td>103</td>
</tr>
<tr>
<td>WLAN MAC address</td>
<td>103</td>
</tr>
<tr>
<td>WLAN passphrase</td>
<td>103</td>
</tr>
<tr>
<td>Assign SSID name</td>
<td>103</td>
</tr>
<tr>
<td>SSID name</td>
<td>104</td>
</tr>
<tr>
<td>WLAN channel</td>
<td>104</td>
</tr>
<tr>
<td>Select antenna</td>
<td>104</td>
</tr>
<tr>
<td>Connection state</td>
<td>105</td>
</tr>
<tr>
<td>Rec.sig.strength</td>
<td>105</td>
</tr>
<tr>
<td>WLAN IP address</td>
<td>102</td>
</tr>
<tr>
<td>Gateway IP addr.</td>
<td>105</td>
</tr>
<tr>
<td>IP address DNS</td>
<td>105</td>
</tr>
</tbody>
</table>

WLAN

Navigation

[Expert ➔ Communication ➔ WLAN settings ➔ WLAN]

Description

Use this function to enable and disable the WLAN connection.

Selection

- Disable
- Enable

Factory setting

Enable
WLAN mode

Navigation

Expert → Communication → WLAN settings → WLAN mode

Description

Use this function to select the WLAN mode.

Selection

- Access point
- WLAN Client

Factory setting

Access point

SSID name

Navigation

Expert → Communication → WLAN settings → SSID name

Prerequisite

The client is activated.

Description

Use this function to enter the user-defined SSID name (max. 32 characters).

User entry

-

Factory setting

-

Network security

Navigation

Expert → Communication → WLAN settings → Network security

Description

Use this function to select the type of security for the WLAN interface.

Selection

- Unsecured
- WPA2-PSK
- EAP-PEAP MSCHAP2
- EAP-PEAP NoAuth.
- EAP-TLS

Factory setting

WPA2-PSK

Additional information

Selection

- Unsecured
 - Access the WLAN connection without identification.
- WPA2-PSK
 - Access the WLAN connection with a network key.
Description of device parameters

Sec. identific.

Navigation

- Expert → Communication → WLAN settings → Sec. identific.

Description

Use this function to select the security settings (download via the menu: Data Management > Security > Download WLAN).

User interface

- Root certificate
- Device certific.
- Dev. private key

User name

Navigation

- Expert → Communication → WLAN settings → User name

Description

Use this function to enter the user name.

User entry

-

Factory setting

-

WLAN password

Navigation

- Expert → Communication → WLAN settings → WLAN password

Description

Use this function to enter the WLAN password.

User entry

-

Factory setting

-

WLAN IP address

Navigation

- Expert → Communication → WLAN settings → WLAN IP address

Description

Use this function to enter the IP address of the measuring device's WLAN connection.

User entry

- 4 octet: 0 to 255 (in the particular octet)

Factory setting

- 192.168.1.212
WLAN MAC address

Navigation

Expert → Communication → WLAN settings → WLAN MAC address

Description

Displays the MAC address of the measuring device.

User interface

Unique 12-digit character string comprising letters and numbers

Factory setting

Each measuring device is given an individual address.

Additional information

Example

For the display format

00:07:05:10:01:5F

WLAN subnet mask

Navigation

Expert → Communication → WLAN settings → WLAN subnet mask

Description

Use this function to enter the subnet mask.

User entry

4 octet: 0 to 255 (in the particular octet)

Factory setting

255.255.255.0

WLAN passphrase

Navigation

Expert → Communication → WLAN settings → WLAN passphrase

Prerequisite

The **WPA2-PSK** option is selected in the **Security type** parameter (→ 101).

Description

Use this function to enter the network key.

User entry

8 to 32-digit character string comprising numbers, letters and special characters

Factory setting

Serial number of the measuring device (e.g. L100A802000)

Assign SSID name

Navigation

Expert → Communication → WLAN settings → Assign SSID name

Description

Use this function to select which name is used for the SSID.

7) Media Access Control

8) Service Set Identifier
Description of device parameters

Proline Promass 100 EtherNet/IP

Selection
- Device tag
- User-defined

Factory setting
User-defined

Additional information
Selection
- Device tag
 The device tag name is used as the SSID.
- User-defined
 A user-defined name is used as the SSID.

SSID name

Navigation
Expert → Communication → WLAN settings → SSID name

Prerequisite
- The User-defined option is selected in the Assign SSID name parameter (→ 103).
- The Access point option is selected in the WLAN mode parameter (→ 101).

Description
Use this function to enter a user-defined SSID name.

User entry
Max. 32-digit character string comprising numbers, letters and special characters

Factory setting

WLAN channel

Navigation
Expert → Communication → WLAN settings → WLAN channel

Description
Use this function to enter the WLAN channel.

User entry
1 to 11

Factory setting
6

Additional information
Description
- It is only necessary to enter a WLAN channel if multiple WLAN devices are in use.
- If just one measuring device is in use, it is recommended to keep the factory setting.

Select antenna

Navigation
Expert → Communication → WLAN settings → Select antenna

Description
Use this function to select whether the external or internal antenna is used for reception.

Selection
- External antenna
- Internal antenna
Factory setting
- **Internal antenna**

Connection state

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Communication → WLAN settings → Connection state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>The connection status is displayed.</td>
</tr>
</tbody>
</table>
| **User interface** | - Connected
- Not connected |
| **Factory setting** | Not connected |

Rec.sig.strength

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Communication → WLAN settings → Rec.sig.strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the signal strength received.</td>
</tr>
</tbody>
</table>
| **User interface** | - Low
- Medium
- High |
| **Factory setting** | High |

Gateway IP addr.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the IP address of the gateway.</td>
</tr>
<tr>
<td>Factory setting</td>
<td>192.168.1.212</td>
</tr>
</tbody>
</table>

IP address DNS

| Navigation | Expert → Communication → WLAN settings → IP address DNS
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the IP address of the domain name server.</td>
</tr>
<tr>
<td>Factory setting</td>
<td>192.168.1.212</td>
</tr>
</tbody>
</table>
3.4 "Application" submenu

Navigation

Expert → Application

Reset all tot.

Navigation

Expert → Application → Reset all tot.

Description

Use this function to reset all totalizers to the value 0 and restart the totaling process. This deletes all the flow values previously totalized.

Selection

- Cancel
- Reset + totalize

Factory setting

Cancel

Additional information

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancel</td>
<td>No action is executed and the user exits the parameter.</td>
</tr>
<tr>
<td>Reset + totalize</td>
<td>Resets all totalizers to 0 and restarts the totaling process. This deletes all the flow values previously totalized.</td>
</tr>
</tbody>
</table>

3.4.1 "Totalizer 1 to n" submenu

Navigation

Expert → Application → Totalizer 1 to n

Totalizer 1 to n

Assign variable

→ 107

Unit totalizer

→ 107

Operation mode

→ 109
Assign variable

Navigation

Expert → Application → Totalizer 1 to n → Assign variable

Description

Use this function to select a process variable for the Totalizer 1 to n.

Selection

- Off
- Volume flow
- Mass flow
- Correct.vol.flow
- Target mass flow*
- Carrier mass fl.*

Factory setting

Mass flow

Additional information

* If the option selected is changed, the device resets the totalizer to 0.

Selection

If the Off option is selected, only Assign variable parameter (→ 107) is still displayed in the Totalizer 1 to n submenu. All other parameters in the submenu are hidden.

Unit totalizer

Navigation

Expert → Application → Totalizer 1 to n → Unit totalizer

Prerequisite

One of the following options is selected in the Assign variable parameter (→ 107) of the Totalizer 1 to n submenu:

- Volume flow
- Mass flow
- Correct.vol.flow
- Target mass flow*
- Carrier mass fl.*

Description

Use this function to select the process variable unit for the Totalizer 1 to n (→ 106).
Selection

SI units
• g
• kg
• t

Custom-specific units
User mass

or

SI units
• cm³
• dm³
• m³
• ml
• l
• hl
• Ml Mega

Custom-specific units
User vol.

or

SI units
• Nl
• Nm³
• l
• Sm³

Custom-specific units
UserCrVol.

Factory setting
Country-specific:
• kg
• lb

Additional information
Description
The unit is selected separately for each totalizer. It is independent of the selection made in the **System units** submenu (→ 49).

Selection
The selection is dependent on the process variable selected in the **Assign variable** parameter (→ 107).
Operation mode

Navigation
Expert → Application → Totalizer 1 to n → Operation mode

Prerequisite
One of the following options is selected in the **Assign variable** parameter (→ 107) of the **Totalizer 1 to n** submenu:
- Volume flow
- Mass flow
- Correct.vol.flow
- Target mass flow *
- Carrier mass fl. *

Description
Use this function to select how the totalizer summates the flow.

Selection
- Net flow total
- Forward total
- Reverse total

Factory setting
Net flow total

Additional information
Selection
- Net flow total
 Flow values in the forward and reverse flow direction are totalized and balanced against one another. Net flow is registered in the flow direction.
- Forward total
 Only the flow in the forward flow direction is totalized.
- Reverse total
 Only the flow in the reverse flow direction is totalized (= reverse flow quantity).

Control Tot. 1 to n

Navigation
Expert → Application → Totalizer 1 to n → Control Tot. 1 to n

Prerequisite
One of the following options is selected in the **Assign variable** parameter (→ 107) of the **Totalizer 1 to n** submenu:
- Volume flow
- Mass flow
- Correct.vol.flow
- Target mass flow *
- Carrier mass fl. *

Description
Use this function to select the control of totalizer value 1-3.

Selection
- Totalize
- Reset + hold
- Preset + hold
- Reset + totalize
- Preset+totalize

Factory setting
Totalize

* Visibility depends on order options or device settings
Additional information

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totalize</td>
<td>The totalizer is started or continues running.</td>
</tr>
<tr>
<td>Reset + hold</td>
<td>The totaling process is stopped and the totalizer is reset to 0.</td>
</tr>
<tr>
<td>Preset + hold</td>
<td>The totaling process is stopped and the totalizer is set to its defined start value from the Preset value parameter.</td>
</tr>
<tr>
<td>Reset + totalize</td>
<td>The totalizer is reset to 0 and the totaling process is restarted.</td>
</tr>
<tr>
<td>Preset + totalize</td>
<td>The totalizer is set to the defined start value from the Preset value parameter and the totaling process is restarted.</td>
</tr>
</tbody>
</table>

Preset value 1 to n

Navigation

Expert → Application → Totalizer 1 to n → Preset value 1 to n

Prerequisite

One of the following options is selected in the Assign variable parameter (→ 107) of the Totalizer 1 to n submenu:
- Volume flow
- Mass flow
- Correct.vol.flow
- Target mass flow *
- Carrier mass fl.

Description

Use this function to enter a start value for the Totalizer 1 to n.

User entry

Signed floating-point number

Factory setting

Country-specific:
- 0 kg
- 0 lb

Additional information

Entry

The unit of the selected process variable is specified for the totalizer in the Unit totalizer parameter (→ 107).

Example

This configuration is suitable for applications such as iterative filling processes with a fixed batch quantity.

* Visibility depends on order options or device settings
Failure mode

Navigation

Prerequisite
One of the following options is selected in the Assign variable parameter (→ 107) of the Totalizer 1 to n submenu:
- Volume flow
- Mass flow
- Correct.vol.flow
- Target mass flow
- Carrier mass fl.

Description
Use this function to select how a totalizer behaves in the event of a device alarm.

Selection
- Stop
- Actual value
- Last valid value

Factory setting
Stop

Additional information

Description

Selection
- Stop
 The totalizer is stopped in the event of a device alarm.
- Actual value
 The totalizer continues to count based on the actual measured value; the device alarm is ignored.
- Last valid value
 The totalizer continues to count based on the last valid measured value before the device alarm occurred.

3.4.2 "Viscosity" submenu

Only available for Promass I.

For detailed information on the parameter descriptions for the Viscosity application package, refer to the Special Documentation for the device.

Navigation

Viscosity

Viscos. damping

Temp. compensat.

* Visibility depends on order options or device settings
3.4.3 "Concentration" submenu

For detailed information on the parameter descriptions for the Concentration application package, refer to the Special Documentation for the device.

Navigation: ➔ Expert → Application → Concentration

3.5 "Diagnostics" submenu

Navigation: ➔ Expert → Diagnostics

Actual diagnos.

Prerequisite: A diagnostic event has occurred.
Description
Displays the current diagnostic message. If two or more messages occur simultaneously, the message with the highest priority is shown on the display.

User interface
Symbol for diagnostic behavior, diagnostic code and short message.

Additional information
Display
- Additional pending diagnostic messages can be viewed in the **Diagnostic list** submenu (→ 115).

Example
- For the display format:
 F271 Main electronic

Timestamp

Navigation
- Expert → Diagnostics → Timestamp

Description
Displays the operating time when the current diagnostic message occurred.

User interface
- Days (d), hours (h), minutes (m) and seconds (s)

Additional information
Display
- The diagnostic message can be viewed via the **Actual diagnos**. parameter (→ 112).

Example
- For the display format:
 24d12h13m00s

Prev.diagnostics

Navigation
- Expert → Diagnostics → Prev.diagnostics

Prerequisite
Two diagnostic events have already occurred.

Description
Displays the diagnostic message that occurred before the current message.

User interface
Symbol for diagnostic behavior, diagnostic code and short message.

Additional information
Example
- For the display format:
 F271 Main electronic
Description of device parameters

Proline Promass 100 EtherNet/IP

<table>
<thead>
<tr>
<th>Navigation</th>
<th> Expert → Diagnostics → Timestamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the operating time when the last diagnostic message before the current message occurred.</td>
</tr>
<tr>
<td>User interface</td>
<td>Days (d), hours (h), minutes (m) and seconds (s)</td>
</tr>
<tr>
<td>Additional information</td>
<td>Display</td>
</tr>
<tr>
<td></td>
<td>The diagnostic message can be viewed via the Prev.diagnostics parameter (→ 113).</td>
</tr>
<tr>
<td>Example</td>
<td>For the display format: 24d12h13m00s</td>
</tr>
</tbody>
</table>

Time fr. restart

<table>
<thead>
<tr>
<th>Navigation</th>
<th>  Expert → Diagnostics → Time fr. restart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to display the time the device has been in operation since the last device restart.</td>
</tr>
<tr>
<td>User interface</td>
<td>Days (d), hours (h), minutes (m) and seconds (s)</td>
</tr>
</tbody>
</table>

Operating time

<table>
<thead>
<tr>
<th>Navigation</th>
<th>  Expert → Diagnostics → Operating time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to display the length of time the device has been in operation.</td>
</tr>
<tr>
<td>User interface</td>
<td>Days (d), hours (h), minutes (m) and seconds (s)</td>
</tr>
<tr>
<td>Additional information</td>
<td>User interface</td>
</tr>
<tr>
<td></td>
<td>The maximum number of days is 9999, which is equivalent to 27 years.</td>
</tr>
</tbody>
</table>
3.5.1 "Diagnostic list" submenu

Navigation

Expert → Diagnostics → Diagnostic list

<table>
<thead>
<tr>
<th>Diagnostic list</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostics 1</td>
<td>115</td>
</tr>
<tr>
<td>Diagnostics 2</td>
<td>116</td>
</tr>
<tr>
<td>Diagnostics 3</td>
<td>116</td>
</tr>
<tr>
<td>Diagnostics 4</td>
<td>117</td>
</tr>
<tr>
<td>Diagnostics 5</td>
<td>118</td>
</tr>
</tbody>
</table>

Diagnostics 1

Navigation

Expert → Diagnostics → Diagnostic list → Diagnostics 1

Description

Displays the current diagnostics message with the highest priority.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

Examples

For the display format:

- F271 Main electronic
- F276 I/O module

Timestamp

Navigation

Expert → Diagnostics → Diagnostic list → Timestamp

Description

Displays the operating time when the diagnostic message with the highest priority occurred.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

Display

The diagnostic message can be viewed via the **Diagnostics 1** parameter (→ 115).

Example

For the display format:

24d12h13m00s
Diagnostics 2

Navigation
Expert → Diagnostics → Diagnostic list → Diagnostics 2

Description
Displays the current diagnostics message with the second-highest priority.

User interface
Symbol for diagnostic behavior, diagnostic code and short message.

Additional information
Examples

For the display format:
- F271 Main electronic
- F276 I/O module

Timestamp

Navigation
Expert → Diagnostics → Diagnostic list → Timestamp

Description
Displays the operating time when the diagnostic message with the second-highest priority occurred.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information
Display

- The diagnostic message can be viewed via the Diagnostics 2 parameter (→ 116).

Example

For the display format:
24d12h13m00s

Diagnostics 3

Navigation
Expert → Diagnostics → Diagnostic list → Diagnostics 3

Description
Displays the current diagnostics message with the third-highest priority.

User interface
Symbol for diagnostic behavior, diagnostic code and short message.

Additional information
Examples

For the display format:
- F271 Main electronic
- F276 I/O module
Timestamp

Navigation
Expert → Diagnostics → Diagnostic list → Timestamp

Description
Displays the operating time when the diagnostic message with the third-highest priority occurred.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information
Display

- The diagnostic message can be viewed via the Diagnostics 3 parameter (→ 116).

Example
For the display format:
24d12h13m00s

Diagnostics 4

Navigation
Expert → Diagnostics → Diagnostic list → Diagnostics 4

Description
Displays the current diagnostics message with the fourth-highest priority.

User interface
Symbol for diagnostic behavior, diagnostic code and short message.

Additional information
Examples

- For the display format:
 - F271 Main electronic
 - F276 I/O module

Timestamp

Navigation
Expert → Diagnostics → Diagnostic list → Timestamp

Description
Displays the operating time when the diagnostic message with the fourth-highest priority occurred.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information
Display

- The diagnostic message can be viewed via the Diagnostics 4 parameter (→ 117).

Example
For the display format:
24d12h13m00s
Diagnostics 5

Navigation

Expert → Diagnostics → Diagnostic list → Diagnostics 5

Description

Displays the current diagnostics message with the fifth-highest priority.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

Examples

For the display format:
- F271 Main electronic
- F276 I/O module

Timestamp

Navigation

Expert → Diagnostics → Diagnostic list → Timestamp

Description

Displays the operating time when the diagnostic message with the fifth-highest priority occurred.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

Display

The diagnostic message can be viewed via the **Diagnostics 5** parameter (→ 118).

Example

For the display format:
24d12h13m00s

3.5.2 "Event logbook" submenu

Navigation

Expert → Diagnostics → Event logbook

Filter options

Event list

→ 119
Filter options

Navigation

Expert → Diagnostics → Event logbook → Filter options

Description

Use this function to select the category whose event messages are displayed in the event list of the operating tool.

Selection

- All
- Failure (F)
- Funct. check (C)
- Out of spec. (S)
- Mainten. req. (M)
- Information (I)

Factory setting

All

Additional information

Description

The status signals are categorized in accordance with VDI/VDE 2650 and NAMUR Recommendation NE 107:

- F = Failure
- C = Function Check
- S = Out of Specification
- M = Maintenance Required

"Event list" submenu

The Event list submenu is only displayed if operating via the local display.

If operating via the FieldCare operating tool, the event list can be read out with a separate FieldCare module.

If operating via the Web browser, the event messages can be found directly in the Event logbook submenu.

Navigation

Expert → Diagnostics → Event logbook → Event list

Event list

Navigation

Expert → Diagnostics → Event logbook → Event list

Description

Displays the history of event messages of the category selected in the Filter options parameter.
User interface

- For a ‘Category I’ event message
 Information event, short message, symbol for event recording and operating time when error occurred
- For a ‘Category F, C, S, M’ event message (status signal)
 Diagnostics code, short message, symbol for event recording and operating time when error occurred

Additional information

Description

A maximum of 20 event messages are displayed in chronological order.
The following symbols indicate whether an event has occurred or has ended:
- Occurred: Occurrence of the event
- Ended: End of the event

Examples

For the display format:
- 1109: Configuration modified
 Occurred 24d12h13m00s
- ☑ F271 Main electronic
 Occurred 01d04h12min30s

HistoROM

A HistoROM is a ‘non-volatile’ device memory in the form of an EEPROM.

3.5.3 "Device info" submenu

Navigation ☑ ☑ Expert → Diagnostics → Device info

<table>
<thead>
<tr>
<th>Device info</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Device tag</td>
<td>→ ☑ 121</td>
</tr>
<tr>
<td>Serial number</td>
<td>→ ☑ 121</td>
</tr>
<tr>
<td>Firmware version</td>
<td>→ ☑ 121</td>
</tr>
<tr>
<td>Device name</td>
<td>→ ☑ 122</td>
</tr>
<tr>
<td>Order code</td>
<td>→ ☑ 122</td>
</tr>
<tr>
<td>Ext. order cd. 1</td>
<td>→ ☑ 122</td>
</tr>
<tr>
<td>Ext. order cd. 2</td>
<td>→ ☑ 123</td>
</tr>
<tr>
<td>Ext. order cd. 3</td>
<td>→ ☑ 123</td>
</tr>
<tr>
<td>Config. counter</td>
<td>→ ☑ 123</td>
</tr>
<tr>
<td>ENP version</td>
<td>→ ☑ 123</td>
</tr>
</tbody>
</table>
Device tag

Navigation
Expert → Diagnostics → Device info → Device tag

Description
Displays a unique name for the measuring point so it can be identified quickly within the plant.

User interface
Max. 32 characters, such as letters, numbers or special characters (e.g. @, %, /).

Factory setting
Promass 100

Serial number

Navigation
Expert → Diagnostics → Device info → Serial number

Description
Displays the serial number of the measuring device.

User interface
A maximum of 11-digit character string comprising letters and numbers.

Additional information
Description

- **Uses of the serial number**
 - To identify the measuring device quickly, e.g. when contacting Endress+Hauser.
 - To obtain specific information on the measuring device using the Device Viewer: www.endress.com/deviceviewer

Firmware version

Navigation
Expert → Diagnostics → Device info → Firmware version

Description
Displays the device firmware version installed.

User interface
Character string in the format xx.yy.zz

Additional information
Display

- The Firmware version is also located:
 - On the title page of the Operating instructions
 - On the transmitter nameplate
Device name

Navigation

Expert → Diagnostics → Device info → Device name

Description

Displays the name of the transmitter. It can also be found on the nameplate of the transmitter.

User interface

Max. 32 characters such as letters or numbers.

Factory setting

Promass 100

Order code

Navigation

Expert → Diagnostics → Device info → Order code

Description

Displays the device order code.

User interface

Character string composed of letters, numbers and certain punctuation marks (e.g. `/`).

Additional information

Description

The order code can be found on the nameplate of the sensor and transmitter in the "Order code" field.

The order code is generated from the extended order code through a process of reversible transformation. The extended order code indicates the attributes for all the device features in the product structure. The device features are not directly readable from the order code.

Uses of the order code

- To order an identical spare device.
- To identify the device quickly and easily, e.g. when contacting Endress+Hauser.

Ext. order cd. 1

Navigation

Expert → Diagnostics → Device info → Ext. order cd. 1

Description

Displays the first part of the extended order code.

On account of length restrictions, the extended order code is split into a maximum of 3 parameters.

User interface

Character string

Additional information

Description

The extended order code indicates the version of all the features of the product structure for the measuring device and thus uniquely identifies the measuring device.

The extended order code can also be found on the nameplate of the sensor and transmitter in the "Ext. ord. cd." field.
Ext. order cd. 2

Navigation
Expert → Diagnostics → Device info → Ext. order cd. 2

Description
Displays the second part of the extended order code.

User interface
Character string

Additional information
For additional information, see *Ext. order cd. 1* parameter (→ 122)

Ext. order cd. 3

Navigation
Expert → Diagnostics → Device info → Ext. order cd. 3

Description
Displays the third part of the extended order code.

User interface
Character string

Additional information
For additional information, see *Ext. order cd. 1* parameter (→ 122)

Config. counter

Navigation
Expert → Diagnostics → Device info → Config. counter

Description
Displays the number of parameter modifications for the device. When the user changes a parameter setting, this counter is incremented.

User interface
0 to 65535

ENP version

Navigation
Expert → Diagnostics → Device info → ENP version

Description
Displays the version of the electronic nameplate.

User interface
Character string

Factory setting
2.02.00

Additional information
Description
This electronic nameplate stores a data record for device identification that includes more data than the nameplates attached to the outside of the device.
3.5.4 "Min/max val." submenu

Navigation

Expert → Diagnostics → Min/max val.

Description

Use this function to select measured variables whose minimum, maximum and average measured values are to be reset.

Selection

- Cancel
- Oscil. amplitude
- Osc. ampl. 1 *
- Oscil. damping
- Tors.oscil.damp. *
- Oscil. frequency
- Tors.oscil.freq.
- Signal asymmetry

Factory setting

Cancel

* Visibility depends on order options or device settings
Additional information

Selection

Detailed description of the options Oscil. frequency, Oscil. amplitude, Oscil. damping and Signal asymmetry: Value 1 display parameter (→ 17)

"Electronic temp." submenu

Navigation

Expert → Diagnostics → Min/max val. → Electronic temp.

Minimum value

Description
Displays the lowest previously measured temperature value of the main electronics module.

User interface
Signed floating-point number

Additional information
Dependency

The unit is taken from the Temperature unit parameter (→ 56)

Maximum value

Description
Displays the highest previously measured temperature value of the main electronics module.

User interface
Signed floating-point number

Additional information
Dependency

The unit is taken from the Temperature unit parameter (→ 56)
"Medium temp." submenu

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value</td>
<td>126</td>
</tr>
<tr>
<td>Maximum value</td>
<td>126</td>
</tr>
</tbody>
</table>

Description
Displays the lowest previously measured medium temperature value.

User interface
Signed floating-point number

Additional information
Dependency
The unit is taken from the Temperature unit parameter (→ 56)

"Carr. pipe temp." submenu

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value</td>
<td>127</td>
</tr>
<tr>
<td>Maximum value</td>
<td>127</td>
</tr>
</tbody>
</table>

Description
Displays the highest previously measured medium temperature value.

User interface
Signed floating-point number

Additional information
Dependency
The unit is taken from the Temperature unit parameter (→ 56)
Minimum value

Navigation

Expert → Diagnostics → Min/max val. → Carr. pipe temp. → Minimum value

Prerequisite

- Only available for:
 - Promass A
 - Promass F
 - PromassG
 - Promass H
 - Promass I
 - Promass O
 - Promass P
 - PromassQ
 - Promass S
 - Promass X

For the following order code
"Application package", option **EB** "Heartbeat Verification + Monitoring"

Description

Displays the lowest previously measured temperature value of the carrier pipe.

User interface

Signed floating-point number

Additional information

- Dependency
 - The unit is taken from the **Temperature unit** parameter (→ 56)

Maximum value

Navigation

Expert → Diagnostics → Min/max val. → Carr. pipe temp. → Maximum value

Prerequisite

- Only available for:
 - Promass A
 - Promass F
 - PromassG
 - Promass H
 - Promass I
 - Promass O
 - Promass P
 - PromassQ
 - Promass S
 - Promass X

For the following order code
"Application package", option **EB** "Heartbeat Verification + Monitoring"

Description

Displays the highest previously measured temperature value of the carrier pipe.

User interface

Signed floating-point number
Additional information
Dependency
The unit is taken from the **Temperature unit** parameter (→ 56)

"Oscil. frequency" submenu

Navigation
Expert → Diagnostics → Min/max val. → Oscil. frequency

<table>
<thead>
<tr>
<th>Oscil. frequency</th>
<th>Minimum value</th>
<th>→</th>
<th>128</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum value</td>
<td>→</td>
<td>128</td>
</tr>
</tbody>
</table>

Minimum value

Navigation
Expert → Diagnostics → Min/max val. → Oscil. frequency → Minimum value

Description
Displays the lowest previously measured oscillation frequency.

User interface
Signed floating-point number

Maximum value

Navigation
Expert → Diagnostics → Min/max val. → Oscil. frequency → Maximum value

Description
Displays the highest previously measured oscillation frequency.

User interface
Signed floating-point number

"Tors.oscil.freq." submenu

Navigation
Expert → Diagnostics → Min/max val. → Tors.oscil.freq.

<table>
<thead>
<tr>
<th>Tors.oscil.freq.</th>
<th>Minimum value</th>
<th>→</th>
<th>129</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum value</td>
<td>→</td>
<td>129</td>
</tr>
</tbody>
</table>
Minimum value

Navigation
Expert → Diagnostics → Min/max val. → Tors.oscil.freq. → Minimum value

Prerequisite
Only available for Promass I.

For the following order code:
Application package, option **EB** "Heartbeat Verification + Monitoring"

Description
Displays the lowest previously measured torsion oscillation frequency.

User interface
Signed floating-point number

Maximum value

Navigation
Expert → Diagnostics → Min/max val. → Tors.oscil.freq. → Maximum value

Prerequisite
Only available for Promass I.

For the following order code:
Application package, option **EB** "Heartbeat Verification + Monitoring"

Description
Displays the highest previously measured torsion oscillation frequency.

User interface
Signed floating-point number

"Oscil. amplitude" submenu

Navigation
Expert → Diagnostics → Min/max val. → Oscil. amplitude

<table>
<thead>
<tr>
<th>Oscil. amplitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value</td>
</tr>
<tr>
<td>129</td>
</tr>
<tr>
<td>Maximum value</td>
</tr>
<tr>
<td>130</td>
</tr>
</tbody>
</table>

Minimum value

Navigation
Expert → Diagnostics → Min/max val. → Oscil. amplitude → Minimum value

Description
Displays the lowest previously measured oscillation amplitude.

User interface
Signed floating-point number
Description of device parameters

Maximum value

Navigation

Expert → Diagnostics → Min/max val. → Oscil. amplitude → Maximum value

Description

Displays the highest previously measured oscillation amplitude.

User interface

Signed floating-point number

"Tor. osc. amp." submenu

Navigation

Expert → Diagnostics → Min/max val. → Tor. osc. amp.

| Minimum value | → 130 |
| Maximum value | → 130 |

Minimum value

Navigation

Expert → Diagnostics → Min/max val. → Tor. osc. amp. → Minimum value

Prerequisite

Only available for Promass I.

For the following order code:

'Application package', option **EB** 'Heartbeat Verification + Monitoring'

Description

Displays the lowest previously measured torsion oscillation amplitude.

User interface

Signed floating-point number

Maximum value

Navigation

Expert → Diagnostics → Min/max val. → Tor. osc. amp. → Maximum value

Prerequisite

Only available for Promass I.

For the following order code:

'Application package', option **EB** 'Heartbeat Verification + Monitoring'

Description

Displays the highest previously measured torsion oscillation amplitude.
User interface

Signed floating-point number

"Oscil. damping" submenu

Navigation

Expert → Diagnostics → Min/max val. → Oscil. damping

Minimum value

Navigation

Expert → Diagnostics → Min/max val. → Oscil. damping → Minimum value

Description

Displays the lowest previously measured oscillation damping.

User interface

Signed floating-point number

Maximum value

Navigation

Expert → Diagnostics → Min/max val. → Oscil. damping → Maximum value

Description

Displays the highest previously measured oscillation damping.

User interface

Signed floating-point number

"Tors.oscil.damp." submenu

Navigation

Expert → Diagnostics → Min/max val. → Tors.oscil.damp.

Description of device parameters

Minimum value

Navigation

Expert → Diagnostics → Min/max val. → Tors. oscil. damp. → Minimum value

Prerequisite

Only available for Promass I.

For the following order code:
Application package, option **EB** "Heartbeat Verification + Monitoring"

Description

Displays the lowest previously measured torsion oscillation damping.

User interface

Signed floating-point number

Maximum value

Navigation

Expert → Diagnostics → Min/max val. → Tors. oscil. damp. → Maximum value

Prerequisite

Only available for Promass I.

For the following order code:
Application package, option **EB** "Heartbeat Verification + Monitoring"

Description

Displays the highest previously measured torsion oscillation damping.

User interface

Signed floating-point number

"Signal asymmetry" submenu

Navigation

Expert → Diagnostics → Min/max val. → Signal asymmetry

Minimum value

Navigation

Expert → Diagnostics → Min/max val. → Signal asymmetry → Minimum value

Description

Displays the lowest previously measured signal asymmetry.

User interface

Signed floating-point number

Maximum value

Navigation

Expert → Diagnostics → Min/max val. → Signal asymmetry → Maximum value

Description

Displays the highest previously measured signal asymmetry.

User interface

Signed floating-point number
Maximum value

Navigation

Expert → Diagnostics → Min/max val. → Signal asymmetry → Maximum value

Description

Displays the highest previously measured signal asymmetry.

User interface

Signed floating-point number

3.5.5 "Heartbeat" submenu

For detailed information on the parameter descriptions for the **Heartbeat Verification+Monitoring** application package, refer to the Special Documentation for the device.

Navigation

Expert → Diagnostics → Heartbeat

3.5.6 "Simulation" submenu

Navigation

Expert → Diagnostics → Simulation

Assign proc. var.

→ 134

Value proc. var.

→ 134

Sim. alarm

→ 135

Event category

→ 135

Sim. diag. event

→ 135
Description of device parameters

Proline Promass 100 EtherNet/IP

Assign proc.var.

Navigation
Expert → Diagnostics → Simulation → Assign proc.var.

Description
Use this function to select a process variable for the simulation process that is activated. The display alternates between the measured value and a diagnostic message of the “Function check” category (C) while simulation is in progress.

Selection
- Off
- Mass flow
- Volume flow
- Correct.vol.flow
- Density
- Ref.density
- Temperature
- Dynam. viscosity
- Kinematic visc.
- TempCompDynVisc
- TempCompKinVisc
- Concentration
- Target mass flow
- Carrier mass fl.

Factory setting
Off

Additional information
Description

The simulation value of the process variable selected is defined in the Value proc. var. parameter (→ 134).

Value proc. var.

Navigation
Expert → Diagnostics → Simulation → Value proc. var.

Prerequisite
One of the following options is selected in the Assign proc.var. parameter (→ 134):
- Mass flow
- Volume flow
- Correct.vol.flow
- Density
- Ref.density
- Temperature
- Dynam. viscosity
- Kinematic visc.
- TempCompDynVisc
- TempCompKinVisc
- Concentration
- Target mass flow
- Carrier mass fl.

* Visibility depends on order options or device settings
Description
Use this function to enter a simulation value for the selected process variable. Subsequent measured value processing and the signal output use this simulation value. In this way, users can verify whether the measuring device has been configured correctly.

User entry
Depends on the process variable selected

Factory setting
0

Additional information
Entry

The unit of the displayed measured value is taken from the **System units** submenu (→ 49).

Sim. alarm

Navigation
Expert → Diagnostics → Simulation → Sim. alarm

Description
Use this function to switch the device alarm on and off.

Selection
- Off
- On

Factory setting
Off

Additional information
Description

The display alternates between the measured value and a diagnostic message of the "Function check" category (C) while simulation is in progress.

Event category

Navigation
Expert → Diagnostics → Simulation → Event category

Description
Use this function to select the category of the diagnostic events that are displayed for the simulation in the **Sim. diag. event** parameter (→ 135).

Selection
- Sensor
- Electronics
- Configuration
- Process

Factory setting
Process

Sim. diag. event

Navigation
Expert → Diagnostics → Simulation → Sim. diag. event

Description
Use this function to select a diagnostic event for the simulation process that is activated.
Selection

- Off
- Diagnostic event picklist (depends on the category selected)

Factory setting

Off

Additional information

Description

For the simulation, you can choose from the diagnostic events of the category selected in the Event category parameter (→ 135).
4 Country-specific factory settings

4.1 SI units

Not valid for USA and Canada.

4.1.1 System units

<table>
<thead>
<tr>
<th>System</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>kg</td>
</tr>
<tr>
<td>Mass flow</td>
<td>kg/h</td>
</tr>
<tr>
<td>Volume</td>
<td>l</td>
</tr>
<tr>
<td>Volume flow</td>
<td>l/h</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>Nl</td>
</tr>
<tr>
<td>Corrected volume flow</td>
<td>Nl/h</td>
</tr>
<tr>
<td>Density</td>
<td>kg/l</td>
</tr>
<tr>
<td>Reference density</td>
<td>kg/Nl</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C</td>
</tr>
<tr>
<td>Pressure</td>
<td>bar a</td>
</tr>
</tbody>
</table>

4.1.2 Full scale values

The factory settings apply to the following parameters: 100% bar graph value 1

<table>
<thead>
<tr>
<th>Nominal diameter</th>
<th>kg/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
</tr>
<tr>
<td>8</td>
<td>400</td>
</tr>
<tr>
<td>15</td>
<td>1300</td>
</tr>
<tr>
<td>15 FB</td>
<td>3600</td>
</tr>
<tr>
<td>25</td>
<td>3600</td>
</tr>
<tr>
<td>25 FB</td>
<td>9000</td>
</tr>
<tr>
<td>40</td>
<td>9000</td>
</tr>
<tr>
<td>40 FB</td>
<td>14000</td>
</tr>
<tr>
<td>50</td>
<td>14000</td>
</tr>
<tr>
<td>50 FB</td>
<td>36000</td>
</tr>
<tr>
<td>80</td>
<td>36000</td>
</tr>
<tr>
<td>100</td>
<td>60000</td>
</tr>
<tr>
<td>150</td>
<td>130 t/h</td>
</tr>
<tr>
<td>250</td>
<td>360 t/h</td>
</tr>
<tr>
<td>350</td>
<td>650 t/h</td>
</tr>
</tbody>
</table>
4.1.3 On value low flow cut off

The switch-on point depends on the type of medium and the nominal diameter.

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>On-value for liquid [kg/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.08</td>
</tr>
<tr>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>4</td>
<td>1.8</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td>26</td>
</tr>
<tr>
<td>15 FB</td>
<td>72</td>
</tr>
<tr>
<td>25</td>
<td>72</td>
</tr>
<tr>
<td>25 FB</td>
<td>180</td>
</tr>
<tr>
<td>40</td>
<td>180</td>
</tr>
<tr>
<td>40 FB</td>
<td>300</td>
</tr>
<tr>
<td>50</td>
<td>300</td>
</tr>
<tr>
<td>50 FB</td>
<td>720</td>
</tr>
<tr>
<td>80</td>
<td>720</td>
</tr>
<tr>
<td>100</td>
<td>1200</td>
</tr>
<tr>
<td>150</td>
<td>2.6 t/h</td>
</tr>
<tr>
<td>250</td>
<td>7.2 t/h</td>
</tr>
<tr>
<td>350</td>
<td>13 t/h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>Switch-on value for gas [kg/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.02</td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
</tr>
<tr>
<td>4</td>
<td>0.45</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>6.5</td>
</tr>
<tr>
<td>15 FB</td>
<td>18</td>
</tr>
<tr>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>25 FB</td>
<td>45</td>
</tr>
<tr>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>40 FB</td>
<td>75</td>
</tr>
<tr>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>50 FB</td>
<td>180</td>
</tr>
<tr>
<td>80</td>
<td>180</td>
</tr>
<tr>
<td>100</td>
<td>300</td>
</tr>
<tr>
<td>150</td>
<td>650</td>
</tr>
<tr>
<td>250</td>
<td>1.8 t/h</td>
</tr>
<tr>
<td>350</td>
<td>3.25 t/h</td>
</tr>
</tbody>
</table>
4.2 US units

Only valid for USA and Canada.

4.2.1 System units

<table>
<thead>
<tr>
<th>System</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>lb</td>
</tr>
<tr>
<td>Mass flow</td>
<td>lb/min</td>
</tr>
<tr>
<td>Volume</td>
<td>gal (us)</td>
</tr>
<tr>
<td>Volume flow</td>
<td>gal/min (us)</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>ft³</td>
</tr>
<tr>
<td>Corrected volume flow</td>
<td>ft³/min</td>
</tr>
<tr>
<td>Density</td>
<td>lb/ft³</td>
</tr>
<tr>
<td>Reference density</td>
<td>lb/ft³</td>
</tr>
<tr>
<td>Temperature</td>
<td>°F</td>
</tr>
<tr>
<td>Pressure</td>
<td>psi a</td>
</tr>
</tbody>
</table>

4.2.2 Full scale values

The factory settings apply to the following parameters:
100% bar graph value 1

<table>
<thead>
<tr>
<th>Nominal diameter [in]</th>
<th>[lb/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>¹/₂₄</td>
<td>0.15</td>
</tr>
<tr>
<td>¹/₁₂</td>
<td>0.75</td>
</tr>
<tr>
<td>¹/₈</td>
<td>3.3</td>
</tr>
<tr>
<td>³/₈</td>
<td>15</td>
</tr>
<tr>
<td>½</td>
<td>50</td>
</tr>
<tr>
<td>½ FB</td>
<td>130</td>
</tr>
<tr>
<td>1</td>
<td>130</td>
</tr>
<tr>
<td>1 FB</td>
<td>330</td>
</tr>
<tr>
<td>1½</td>
<td>330</td>
</tr>
<tr>
<td>1½ FB</td>
<td>550</td>
</tr>
<tr>
<td>2</td>
<td>550</td>
</tr>
<tr>
<td>2 FB</td>
<td>1300</td>
</tr>
<tr>
<td>3</td>
<td>1300</td>
</tr>
<tr>
<td>4</td>
<td>2200</td>
</tr>
<tr>
<td>6</td>
<td>4800</td>
</tr>
<tr>
<td>10</td>
<td>13000</td>
</tr>
<tr>
<td>¼</td>
<td>23500</td>
</tr>
</tbody>
</table>

4.2.3 On value low flow cut off

The switch-on point depends on the type of medium and the nominal diameter.
Country-specific factory settings

Proline Promass 100 EtherNet/IP

<table>
<thead>
<tr>
<th>Nominal diameter [in]</th>
<th>On-value for liquid [lb/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{24})</td>
<td>0.003</td>
</tr>
<tr>
<td>(\frac{1}{12})</td>
<td>0.015</td>
</tr>
<tr>
<td>(\frac{1}{8})</td>
<td>0.066</td>
</tr>
<tr>
<td>(\frac{3}{8})</td>
<td>0.3</td>
</tr>
<tr>
<td>(\frac{1}{4})</td>
<td>1</td>
</tr>
<tr>
<td>(\frac{1}{4} FB)</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>2.6</td>
</tr>
<tr>
<td>1 FB</td>
<td>6.6</td>
</tr>
<tr>
<td>1(\frac{1}{2})</td>
<td>6.6</td>
</tr>
<tr>
<td>1(\frac{1}{2} FB)</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>2 FB</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>44</td>
</tr>
<tr>
<td>6</td>
<td>95</td>
</tr>
<tr>
<td>10</td>
<td>260</td>
</tr>
<tr>
<td>1(\frac{1}{4})</td>
<td>470</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal diameter [in]</th>
<th>Switch-on value for gas [lb/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{24})</td>
<td>0.001</td>
</tr>
<tr>
<td>(\frac{1}{12})</td>
<td>0.004</td>
</tr>
<tr>
<td>(\frac{1}{8})</td>
<td>0.016</td>
</tr>
<tr>
<td>(\frac{3}{8})</td>
<td>0.075</td>
</tr>
<tr>
<td>(\frac{1}{4})</td>
<td>0.25</td>
</tr>
<tr>
<td>(\frac{1}{4} FB)</td>
<td>0.65</td>
</tr>
<tr>
<td>1</td>
<td>0.65</td>
</tr>
<tr>
<td>1 FB</td>
<td>1.65</td>
</tr>
<tr>
<td>1(\frac{1}{2})</td>
<td>1.65</td>
</tr>
<tr>
<td>1(\frac{1}{2} FB)</td>
<td>2.75</td>
</tr>
<tr>
<td>2</td>
<td>2.75</td>
</tr>
<tr>
<td>2 FB</td>
<td>6.5</td>
</tr>
<tr>
<td>3</td>
<td>6.5</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>23.75</td>
</tr>
<tr>
<td>10</td>
<td>65</td>
</tr>
<tr>
<td>1(\frac{1}{4})</td>
<td>117.5</td>
</tr>
</tbody>
</table>
5 Explanation of abbreviated units

5.1 SI units

<table>
<thead>
<tr>
<th>Process variable</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>g/cm³, g/m³</td>
<td>Gram/volume unit</td>
</tr>
<tr>
<td></td>
<td>kg/dm³, kg/l, kg/m³</td>
<td>Kilogram/volume unit</td>
</tr>
<tr>
<td></td>
<td>SD4°C, SD15°C, SD20°C</td>
<td>Specific density: The specific density is the ratio of the density of the fluid to the density of water at a water temperature of 4 °C (39 °F), 15 °C (59 °F), 20 °C (68 °F).</td>
</tr>
<tr>
<td></td>
<td>SG4°C, SG15°C, SG20°C</td>
<td>Specific gravity: The specific gravity is the ratio of the density of the fluid to the density of water at a water temperature of 4 °C (39 °F), 15 °C (59 °F), 20 °C (68 °F).</td>
</tr>
<tr>
<td>Pressure</td>
<td>Pa a, kPa a, MPa a</td>
<td>Pascal, kilopascal, megapascal (absolute)</td>
</tr>
<tr>
<td></td>
<td>bar</td>
<td>Bar</td>
</tr>
<tr>
<td></td>
<td>Pa g, kPa g, MPa g</td>
<td>Pascal, kilopascal, megapascal (relative/gauge)</td>
</tr>
<tr>
<td></td>
<td>bar g</td>
<td>Bar (relative/gauge)</td>
</tr>
<tr>
<td>Mass</td>
<td>g, kg, t</td>
<td>Gram, kilogram, metric ton</td>
</tr>
<tr>
<td>Mass flow</td>
<td>g/s, g/min, g/h, g/d</td>
<td>Gram/time unit</td>
</tr>
<tr>
<td></td>
<td>kg/s, kg/min, kg/h, kg/d</td>
<td>Kilogram/time unit</td>
</tr>
<tr>
<td></td>
<td>t/s, t/min, t/h, t/d</td>
<td>Metric ton/time unit</td>
</tr>
<tr>
<td>Ref.density</td>
<td>kg/Nm³, kg/Nl, g/Scm³, kg/Sm³</td>
<td>Kilogram, gram/standard volume unit</td>
</tr>
<tr>
<td>Corrected</td>
<td>NI, Nm³, Sm³</td>
<td>Normal liter, normal cubic meter, standard cubic meter</td>
</tr>
<tr>
<td>volume</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correct vol. flow</td>
<td>NI/s, NI/min, NI/h, NI/d</td>
<td>Normal liter/time unit</td>
</tr>
<tr>
<td></td>
<td>Nm³/s, Nm³/min, Nm³/h, Nm³/d</td>
<td>Normal cubic meter/time unit</td>
</tr>
<tr>
<td></td>
<td>Sm³/s, Sm³/min, Sm³/h, Sm³/d</td>
<td>Standard cubic meter/time unit</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C, K</td>
<td>Celsius, Kelvin</td>
</tr>
<tr>
<td>Volume</td>
<td>cm³, dm³, m³</td>
<td>Cubic centimeter, cubic decimeter, cubic meter</td>
</tr>
<tr>
<td></td>
<td>ml, l, hl, MI Mega</td>
<td>Milliliter, liter, hectoliter, megaliter</td>
</tr>
<tr>
<td>Volume flow</td>
<td>cm³/s, cm³/min, cm³/h, cm³/d</td>
<td>Cubic centimeter/time unit</td>
</tr>
<tr>
<td></td>
<td>dm³/s, dm³/min, dm³/h, dm³/d</td>
<td>Cubic decimeter/time unit</td>
</tr>
<tr>
<td></td>
<td>m³/s, m³/min, m³/h, m³/d</td>
<td>Cubic meter/time unit</td>
</tr>
<tr>
<td></td>
<td>ml/s, ml/min, ml/h, ml/d</td>
<td>Milliliter/time unit</td>
</tr>
<tr>
<td></td>
<td>l/s, l/min, l/h, l/d</td>
<td>Liter/time unit</td>
</tr>
<tr>
<td></td>
<td>hl/s, hl/min, hl/h, hl/d</td>
<td>Hectoliter/time unit</td>
</tr>
<tr>
<td></td>
<td>MI/s, MI/min, MI/h, MI/d</td>
<td>Megaliter/time unit</td>
</tr>
<tr>
<td>Time</td>
<td>s, m, h, d, y</td>
<td>Second, minute, hour, day, year</td>
</tr>
</tbody>
</table>

5.2 US units

<table>
<thead>
<tr>
<th>Process variable</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>lb/ft³, lb/gal (us)</td>
<td>Pound/cubic foot, pound/gallon</td>
</tr>
<tr>
<td></td>
<td>lb/bbl (us;liq.), lb/bbl (us;beer), lb/bbl (us;oil), lb/bbl (us;tank)</td>
<td>Pound/volume unit</td>
</tr>
<tr>
<td>Process variable</td>
<td>Units</td>
<td>Explanation</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>Pressure</td>
<td>psi a</td>
<td>Pounds per square inch (absolute)</td>
</tr>
<tr>
<td></td>
<td>psi g</td>
<td>Pounds per square inch (gauge)</td>
</tr>
<tr>
<td>Mass</td>
<td>oz, lb, STon</td>
<td>Ounce, pound, standard ton</td>
</tr>
<tr>
<td>Mass flow</td>
<td>oz/s, oz/min, oz/h, oz/d</td>
<td>Ounce/time unit</td>
</tr>
<tr>
<td></td>
<td>lb/s, lb/min, lb/h, lb/d</td>
<td>Pound/time unit</td>
</tr>
<tr>
<td></td>
<td>STon/s, STon/min, STon/h, STon/d</td>
<td>Standard ton/time unit</td>
</tr>
<tr>
<td>Ref. density</td>
<td>lb/Sft³</td>
<td>Weight unit/standard volume unit</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>Sft³, Sgal (us), Sbbl (us;liq.)</td>
<td>Standard cubic foot, standard gallon, standard barrel</td>
</tr>
<tr>
<td>Correct. vol. flow</td>
<td>Sft³/s, Sft³/min, Sft³/h, Sft³/d</td>
<td>Standard cubic foot/time unit</td>
</tr>
<tr>
<td></td>
<td>Sgal/s (us), Sgal/min (us), Sgal/h (us), Sgal/d (us)</td>
<td>Standard gallon/time unit</td>
</tr>
<tr>
<td></td>
<td>Sbbl/s (us;liq.), Sbbl/min (us;liq.), Sbbl/h (us;liq.), Sbbl/d (us;liq.)</td>
<td>Barrel/time unit (normal liquids)</td>
</tr>
<tr>
<td>Temperature</td>
<td>°F, °R</td>
<td>Fahrenheit, Rankine</td>
</tr>
<tr>
<td>Volume</td>
<td>af</td>
<td>Acre foot</td>
</tr>
<tr>
<td></td>
<td>ft³</td>
<td>Cubic foot</td>
</tr>
<tr>
<td></td>
<td>fl oz (us), gal (us), kgal (us), Mgal (us)</td>
<td>Fluid ounce, gallon, kilogallon, million gallon</td>
</tr>
<tr>
<td></td>
<td>bbl (us;liq.), bbl (us;beer), bbl (us;oil), bbl (us;tank)</td>
<td>Barrel (normal liquids), barrel (beer), barrel (petrochemicals), barrel (filling tanks)</td>
</tr>
<tr>
<td>Volume flow</td>
<td>af/s, af/min, af/h, af/d</td>
<td>Acre foot/time unit</td>
</tr>
<tr>
<td></td>
<td>ft³/s, ft³/min, ft³/h, ft³/d</td>
<td>Cubic foot/time unit</td>
</tr>
<tr>
<td></td>
<td>fl oz/s (us), fl oz/min (us), fl oz/h (us), fl oz/d (us)</td>
<td>Fluid ounce/time unit</td>
</tr>
<tr>
<td></td>
<td>gal/s (us), gal/min (us), gal/h (us), gal/d (us)</td>
<td>Gallon/time unit</td>
</tr>
<tr>
<td></td>
<td>kgal/s (us), kgal/min (us), kgal/h (us), kgal/d (us)</td>
<td>Kilogallon/time unit</td>
</tr>
<tr>
<td></td>
<td>Mgal/s (us), Mgal/min (us), Mgal/h (us), Mgal/d (us)</td>
<td>Million gallon/time unit</td>
</tr>
<tr>
<td></td>
<td>bbl/s (us;liq.), bbl/min (us;liq.), bbl/h (us;liq.), bbl/d (us;liq.)</td>
<td>Barrel/time unit (normal liquids)</td>
</tr>
<tr>
<td></td>
<td>Normal liquids: 31.5 gal/bbl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bbl/s (us;beer), bbl/min (us;beer), bbl/h (us;beer), bbl/d (us;beer)</td>
<td>Barrel /time unit (beer)</td>
</tr>
<tr>
<td></td>
<td>Beer: 31.0 gal/bbl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bbl/s (us;oil), bbl/min (us;oil), bbl/h (us;oil), bbl/d (us;oil)</td>
<td>Barrel/time unit (petrochemicals)</td>
</tr>
<tr>
<td></td>
<td>Petrochemicals: 42.0 gal/bbl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bbl/s (us;tank), bbl/min (us;tank), bbl/h (us;tank), bbl/d (us;tank)</td>
<td>Barrel/time unit (filling tank)</td>
</tr>
<tr>
<td></td>
<td>Filling tanks: 55.0 gal/bbl</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>s, m, h, d, y</td>
<td>Second, minute, hour, day, year</td>
</tr>
<tr>
<td></td>
<td>am, pm</td>
<td>Ante meridiem (before midday), post meridiem (after midday)</td>
</tr>
</tbody>
</table>
5.3 Imperial units

<table>
<thead>
<tr>
<th>Process variable</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>lb/gal (imp), lb/bbl (imp;beer), lb/bbl (imp;oil)</td>
<td>Pound/volume unit</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>Sgal (imp)</td>
<td>Standard gallon</td>
</tr>
<tr>
<td>Correct.vol.flow</td>
<td>Sgal/s (imp), Sgal/min (imp), Sgal/h (imp), Sgal/d (imp)</td>
<td>Standard gallon/time unit</td>
</tr>
<tr>
<td>Volume</td>
<td>gal (imp), Mgal (imp)</td>
<td>Gallon, mega gallon</td>
</tr>
<tr>
<td></td>
<td>bbl (imp;beer), bbl (imp;oil)</td>
<td>Barrel (beer), barrel (petrochemicals)</td>
</tr>
<tr>
<td>Volume flow</td>
<td>gal/s (imp), gal/min (imp), gal/h (imp), gal/d (imp)</td>
<td>Gallon/time unit</td>
</tr>
<tr>
<td></td>
<td>Mgal/s (imp), Mgal/min (imp), Mgal/h (imp), Mgal/d (imp)</td>
<td>Mega gallon/time unit</td>
</tr>
</tbody>
</table>
| | bbl/s (imp;beer), bbl/min (imp;beer), bbl/h (imp;beer), bbl/d (imp;beer) | Barrel /time unit (beer)
Beer: 36.0 gal/bbl |
| | bbl/s (imp;oil), bbl/min (imp;oil), bbl/h (imp;oil), bbl/d (imp;oil) | Barrel/time unit (petrochemicals)
Petrochemicals: 34.97 gal/bbl |
| Time | s, m, h, d, y | Second, minute, hour, day, year |
| | am, pm | Ante meridiem (before midday), post meridiem (after midday) |
Index

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Access status display (Parameter)</td>
<td>12, 26</td>
</tr>
<tr>
<td>Access status tooling (Parameter)</td>
<td>12</td>
</tr>
<tr>
<td>Activate SW option (Parameter)</td>
<td>38</td>
</tr>
<tr>
<td>Actual diagnostics (Parameter)</td>
<td>112</td>
</tr>
<tr>
<td>Administration (Submenu)</td>
<td>35</td>
</tr>
<tr>
<td>Alarm delay (Parameter)</td>
<td>27</td>
</tr>
<tr>
<td>Application (Submenu)</td>
<td>106</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 046 (Parameter)</td>
<td>29</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 140 (Parameter)</td>
<td>29</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 144 (Parameter)</td>
<td>30</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 192 (Parameter)</td>
<td>33</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 274 (Parameter)</td>
<td>33</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 392 (Parameter)</td>
<td>34</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 592 (Parameter)</td>
<td>34</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 832 (Parameter)</td>
<td>30</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 833 (Parameter)</td>
<td>31</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 912 (Parameter)</td>
<td>32</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 913 (Parameter)</td>
<td>32</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 944 (Parameter)</td>
<td>32</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 948 (Parameter)</td>
<td>33</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 992 (Parameter)</td>
<td>34</td>
</tr>
<tr>
<td>Assign process variable (Parameter)</td>
<td>66, 70, 107</td>
</tr>
<tr>
<td>Assign simulation process variable (Parameter)</td>
<td>134</td>
</tr>
<tr>
<td>Assign SSID name (Parameter)</td>
<td>103</td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Backlight (Parameter)</td>
<td>26</td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>C0 to 5 (Parameter)</td>
<td>87</td>
</tr>
<tr>
<td>Calculated values (Submenu)</td>
<td>77</td>
</tr>
<tr>
<td>Calibration (Submenu)</td>
<td>86</td>
</tr>
<tr>
<td>Calibration factor (Parameter)</td>
<td>87</td>
</tr>
<tr>
<td>Capability flags (Parameter)</td>
<td>92</td>
</tr>
<tr>
<td>Carrier corrected volume flow (Parameter)</td>
<td>47</td>
</tr>
<tr>
<td>Carrier mass flow (Parameter)</td>
<td>46</td>
</tr>
<tr>
<td>Carrier pipe temperature (Submenu)</td>
<td>126</td>
</tr>
<tr>
<td>Carrier volume flow (Parameter)</td>
<td>47</td>
</tr>
<tr>
<td>Communication (Submenu)</td>
<td>88</td>
</tr>
<tr>
<td>Concentration (Parameter)</td>
<td>45</td>
</tr>
<tr>
<td>Concentration (Submenu)</td>
<td>112</td>
</tr>
<tr>
<td>Configurable input assembly (Submenu)</td>
<td>93</td>
</tr>
<tr>
<td>Configuration (Submenu)</td>
<td>88</td>
</tr>
<tr>
<td>Configuration counter (Parameter)</td>
<td>123</td>
</tr>
<tr>
<td>Confirm access code (Parameter)</td>
<td>36</td>
</tr>
<tr>
<td>Connection state (Parameter)</td>
<td>105</td>
</tr>
<tr>
<td>Contrast display (Parameter)</td>
<td>26</td>
</tr>
<tr>
<td>Control Totalizer 1 to n (Parameter)</td>
<td>109</td>
</tr>
<tr>
<td>Corrected volume flow (Parameter)</td>
<td>42</td>
</tr>
<tr>
<td>Corrected volume flow calculation (Parameter)</td>
<td>77</td>
</tr>
<tr>
<td>Corrected volume flow calculation (Submenu)</td>
<td>77</td>
</tr>
<tr>
<td>Corrected volume flow factor (Parameter)</td>
<td>85</td>
</tr>
<tr>
<td>Corrected volume flow offset (Parameter)</td>
<td>84</td>
</tr>
<tr>
<td>Corrected volume flow unit (Parameter)</td>
<td>53</td>
</tr>
<tr>
<td>Corrected volume unit (Parameter)</td>
<td>54</td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Date/time format (Parameter)</td>
<td>57</td>
</tr>
<tr>
<td>Decimal places 1 (Parameter)</td>
<td>19</td>
</tr>
<tr>
<td>Decimal places 2 (Parameter)</td>
<td>20</td>
</tr>
<tr>
<td>Decimal places 3 (Parameter)</td>
<td>22</td>
</tr>
<tr>
<td>Decimal places 4 (Parameter)</td>
<td>23</td>
</tr>
<tr>
<td>Default gateway (Parameter)</td>
<td>91</td>
</tr>
<tr>
<td>Default network settings (Parameter)</td>
<td>90</td>
</tr>
<tr>
<td>Define access code (Parameter)</td>
<td>35, 37</td>
</tr>
<tr>
<td>Define access code (Wizard)</td>
<td>35</td>
</tr>
<tr>
<td>Density (Parameter)</td>
<td>43</td>
</tr>
<tr>
<td>Density damping (Parameter)</td>
<td>65</td>
</tr>
<tr>
<td>Density factor (Parameter)</td>
<td>84</td>
</tr>
<tr>
<td>Density offset (Parameter)</td>
<td>84</td>
</tr>
<tr>
<td>Density unit (Parameter)</td>
<td>55</td>
</tr>
<tr>
<td>Device information (Submenu)</td>
<td>120</td>
</tr>
<tr>
<td>Device name (Parameter)</td>
<td>122</td>
</tr>
<tr>
<td>Device reset (Parameter)</td>
<td>38</td>
</tr>
<tr>
<td>Device tag (Parameter)</td>
<td>121</td>
</tr>
<tr>
<td>DHCP client (Parameter)</td>
<td>90</td>
</tr>
<tr>
<td>Diagnostic behavior (Submenu)</td>
<td>28</td>
</tr>
<tr>
<td>Diagnostic event category (Parameter)</td>
<td>135</td>
</tr>
<tr>
<td>Diagnostic handling (Submenu)</td>
<td>27</td>
</tr>
<tr>
<td>Diagnostic list (Submenu)</td>
<td>115</td>
</tr>
<tr>
<td>Diagnostics (Submenu)</td>
<td>112</td>
</tr>
<tr>
<td>Diagnostics 1 (Parameter)</td>
<td>115</td>
</tr>
<tr>
<td>Diagnostics 2 (Parameter)</td>
<td>116</td>
</tr>
<tr>
<td>Diagnostics 3 (Parameter)</td>
<td>116</td>
</tr>
<tr>
<td>Diagnostics 4 (Parameter)</td>
<td>117</td>
</tr>
<tr>
<td>Diagnostics 5 (Parameter)</td>
<td>118</td>
</tr>
<tr>
<td>Direct access</td>
<td></td>
</tr>
<tr>
<td>0% bargraph value 1</td>
<td>18</td>
</tr>
<tr>
<td>0% bargraph value 3</td>
<td>21</td>
</tr>
<tr>
<td>2.4 GHz WLAN channel</td>
<td>104</td>
</tr>
<tr>
<td>100% bargraph value 1</td>
<td>19</td>
</tr>
<tr>
<td>100% bargraph value 3</td>
<td>21</td>
</tr>
<tr>
<td>Alarm delay</td>
<td>27</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 046</td>
<td>29</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 140</td>
<td>29</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 144</td>
<td>30</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 192</td>
<td>33</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 274</td>
<td>33</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 392</td>
<td>34</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 592</td>
<td>34</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 832</td>
<td>30</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 833</td>
<td>31</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 834</td>
<td>31</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 835</td>
<td>31</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 912</td>
<td>32</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 913</td>
<td>32</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 944</td>
<td>32</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 948</td>
<td>33</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 992</td>
<td>34</td>
</tr>
<tr>
<td>Assign process variable</td>
<td>66, 70</td>
</tr>
<tr>
<td>Totalizer 1 to n</td>
<td>107</td>
</tr>
<tr>
<td>Assign simulation process variable</td>
<td>134</td>
</tr>
<tr>
<td>Assign SSID name</td>
<td>103</td>
</tr>
<tr>
<td>Backlight</td>
<td>26</td>
</tr>
<tr>
<td>C0 to 5</td>
<td>87</td>
</tr>
<tr>
<td>Calibration factor</td>
<td>87</td>
</tr>
<tr>
<td>Capability flags</td>
<td>92</td>
</tr>
<tr>
<td>Carrier corrected volume flow</td>
<td>47</td>
</tr>
<tr>
<td>Carrier mass flow</td>
<td>46</td>
</tr>
<tr>
<td>Carrier volume flow</td>
<td>47</td>
</tr>
<tr>
<td>Concentration</td>
<td>45</td>
</tr>
<tr>
<td>Configuration counter</td>
<td>123</td>
</tr>
<tr>
<td>Connection state</td>
<td>105</td>
</tr>
<tr>
<td>Contrast display</td>
<td>26</td>
</tr>
<tr>
<td>Control Totalizer 1 to n</td>
<td>109</td>
</tr>
<tr>
<td>Corrected volume flow</td>
<td>42</td>
</tr>
<tr>
<td>Corrected volume flow calculation</td>
<td>77</td>
</tr>
<tr>
<td>Corrected volume flow factor</td>
<td>85</td>
</tr>
<tr>
<td>Corrected volume flow offset</td>
<td>84</td>
</tr>
<tr>
<td>Corrected volume flow unit</td>
<td>53</td>
</tr>
<tr>
<td>Corrected volume unit</td>
<td>54</td>
</tr>
<tr>
<td>Date/time format</td>
<td>57</td>
</tr>
<tr>
<td>Decimal places 1</td>
<td>19</td>
</tr>
<tr>
<td>Decimal places 2</td>
<td>20</td>
</tr>
<tr>
<td>Decimal places 3</td>
<td>22</td>
</tr>
<tr>
<td>Decimal places 4</td>
<td>23</td>
</tr>
<tr>
<td>Default gateway</td>
<td>91</td>
</tr>
<tr>
<td>Default network settings</td>
<td>90</td>
</tr>
<tr>
<td>Define access code</td>
<td>37</td>
</tr>
<tr>
<td>Density</td>
<td>43</td>
</tr>
<tr>
<td>Density damping</td>
<td>65</td>
</tr>
<tr>
<td>Density factor</td>
<td>84</td>
</tr>
<tr>
<td>Density offset</td>
<td>84</td>
</tr>
<tr>
<td>Density unit</td>
<td>55</td>
</tr>
<tr>
<td>Device name</td>
<td>122</td>
</tr>
<tr>
<td>Device reset</td>
<td>38</td>
</tr>
<tr>
<td>Device tag</td>
<td>121</td>
</tr>
<tr>
<td>DHCP client</td>
<td>90</td>
</tr>
<tr>
<td>Diagnostic event category</td>
<td>135</td>
</tr>
<tr>
<td>Diagnostics 1</td>
<td>115</td>
</tr>
<tr>
<td>Diagnostics 2</td>
<td>116</td>
</tr>
<tr>
<td>Diagnostics 3</td>
<td>116</td>
</tr>
<tr>
<td>Diagnostics 4</td>
<td>117</td>
</tr>
<tr>
<td>Diagnostics 5</td>
<td>118</td>
</tr>
<tr>
<td>Direct access</td>
<td>10</td>
</tr>
<tr>
<td>Display damping</td>
<td>24</td>
</tr>
<tr>
<td>Display interval</td>
<td>23</td>
</tr>
</tbody>
</table>

Display language | 14 |
Dynamic viscosity | 44 |
ENP version | 123 |
Enter access code | 13 |
Extended order code 1 | 122 |
Extended order code 2 | 123 |
Extended order code 3 | 123 |
External pressure | 75 |
External reference density | 78 |
External temperature | 76 |
Failure mode |
Totalizer 1 to n | 111 |
Filter options | 119 |
Firmware version | 121 |
Fixed reference density | 78 |
Flow damping | 64 |
Flow override | 66 |
Format display | 15 |
Gateway IP address | 105 |
Header | 24 |
Header text | 25 |
High value partial filled pipe detection | 70 |
Input assembly position 1 | 94 |
Input assembly position 2 | 94 |
Input assembly position 3 | 95 |
Input assembly position 4 | 95 |
Input assembly position 5 | 95 |
Input assembly position 6 | 95 |
Input assembly position 7 | 96 |
Input assembly position 8 | 96 |
Input assembly position 9 | 96 |
Input assembly position 10 | 96 |
Input assembly position 11 | 97 |
Input assembly position 12 | 97 |
Input assembly position 13 | 97 |
Input assembly position 14 | 98 |
Input assembly position 15 | 98 |
Input assembly position 16 | 98 |
Input assembly position 17 | 98 |
Input assembly position 18 | 99 |
Input assembly position 19 | 99 |
Input assembly position 20 | 99 |
Installation direction | 80 |
IP address | 90 |
IP address domain name server | 105 |
Kinematic viscosity | 44 |
Limit value measuring tube damping | 88 |
Linear expansion coefficient | 79 |
Locking status | 11 |
Low value partial filled pipe detection | 70 |
MAC address | 89 |
Mass flow | 42 |
Mass flow factor | 83 |
Mass flow offset | 82 |
Mass flow unit | 50 |
Mass unit | 50 |
Maximum damping partial filled pipe detection | 71 |
Maximum value 125, 126, 127, 128, 129, 130, 131, 132, 133 |
Index

Minimum value 125, 126, 127, 128, 129, 130, 131, 132
Network security 101
Nominal diameter 87
Off value low flow cutoff 67
On value low flow cutoff 67
Operating time 114
Operating time from restart 114
Order code 122
Preset value 1 to n 110
Pressure compensation 74
Pressure shock suppression 68
Pressure unit 57
Pressure value 43, 75
Previous diagnostics 113
Progress 81
Received signal strength 105
Reference density 43
Reference density factor 85
Reference density offset 85
Reference density unit 56
Reference sound velocity 73
Reference temperature 78
Reset access code 37
Reset all totalizers 106
Reset min/max values 124
Response time part. filled pipe detect. 71
Security identification 102
Select antenna 104
Select gas type 73
Select medium 72
Separator 25
Serial number 121
Simulation device alarm 135
Simulation diagnostic event 135
Software option overview 39
Square expansion coefficient 79
SSID name 101, 104
Subnet mask 91
Target corrected volume flow 46
Target mass flow 46
Target volume flow 47
Temp. compensated dynamic viscosity 45
Temp. compensated kinematic viscosity 45
Temperature 43
Temperature coefficient sound velocity 74
Temperature damping 65
Temperature factor 86
Temperature mode 76
Temperature offset 86
Temperature unit 56
Timestamp 113, 114, 115, 116, 117, 118
Totalizer operation mode
 Totalizer 1 to n 109
Totalizer overflow 1 to n 48
Totalizer value 1 to n 48
Unit totalizer
 Totalizer 1 to n 107
User corrected volume factor 62
User corrected volume offset 61
User corrected volume text 61
User density factor 62
User density offset 62
User density text 62
User description 92
User mass factor 59
User mass offset 59
User mass text 59
User name 102
User pressure factor 63
User pressure offset 63
User pressure text 63
User volume factor 61
User volume offset 60
User volume text 60
Value 1 display 17
Value 2 display 19
Value 3 display 20
Value 4 display 22
Value process variable 134
Volume flow 42
Volume flow factor 83
Volume flow offset 83
Volume flow unit 51
Volume unit 53
Web server functionality 91
Web server language 89
WLAN 100
WLAN IP address 102
WLAN MAC address 103
WLAN mode 101
WLAN passphrase 103
WLAN password 102
WLAN subnet mask 103
Zero point 87
Zero point adjustment control 81
Direct access (Parameter) 10
Display (Submenu) 13
Display damping (Parameter) 24
Display interval (Parameter) 23
Display language (Parameter) 14
Document
 Explanation of the structure of a parameter
target group 24
Symbols used 6
Using the document 4
Dynamic viscosity (Parameter) 44
E
Electronic temperature (Submenu) 125
ENP version (Parameter) 123
Enter access code (Parameter) 13
Event list (Submenu) 119
Event logbook (Submenu) 118
Extended order code 1 (Parameter) 122
Extended order code 2 (Parameter) 123
Extended order code 3 (Parameter) 123
External compensation (Submenu) 74
External pressure (Parameter) 75
External reference density (Parameter) 78
External temperature (Parameter) 76
Factory settings .. 137
SI units .. 137
US units .. 139
Failure mode (Parameter) 111
Filter options (Parameter) 119
Firmware version (Parameter) 121
Fixed reference density (Parameter) 78
Flow damping (Parameter) 64
Flow override (Parameter) 66
Format display (Parameter) 15
Function
see Parameter
Gateway IP address (Parameter) 105
Header (Parameter) 24
Header text (Parameter) 25
Heartbeat (Submenu) 133
High value partial filled pipe detection (Parameter) 70
Input assembly position 1 (Parameter) 94
Input assembly position 2 (Parameter) 94
Input assembly position 3 (Parameter) 95
Input assembly position 4 (Parameter) 95
Input assembly position 5 (Parameter) 95
Input assembly position 6 (Parameter) 95
Input assembly position 7 (Parameter) 96
Input assembly position 8 (Parameter) 96
Input assembly position 9 (Parameter) 96
Input assembly position 10 (Parameter) 96
Input assembly position 11 (Parameter) 97
Input assembly position 12 (Parameter) 97
Input assembly position 13 (Parameter) 97
Input assembly position 14 (Parameter) 98
Input assembly position 15 (Parameter) 98
Input assembly position 16 (Parameter) 98
Input assembly position 17 (Parameter) 98
Input assembly position 18 (Parameter) 99
Input assembly position 19 (Parameter) 99
Input assembly position 20 (Parameter) 99
Installation direction (Parameter) 80
IP address (Parameter) 90
IP address domain name server (Parameter) 105
Kinematic viscosity (Parameter) 44
Limit value measuring tube damping (Parameter) ... 88
Linear expansion coefficient (Parameter) 79
Locking status (Parameter) 11
Low flow cut off (Submenu) 66
Low value partial filled pipe detection (Parameter) ... 70
MAC address (Parameter) 89
Mass flow (Parameter) 42
Mass flow factor (Parameter) 83
Mass flow offset (Parameter) 82
Mass flow unit (Parameter) 50
Mass unit (Parameter) 50
Maximum damping partial filled pipe detection (Parameter) ... 71
Maximum value (Parameter) 125, 126, 127, 128, 129, 130, 131, 132
Measured values (Submenu) 41
Measurement mode (Submenu) 72
Min/max values (Submenu) 124
Minimum value (Parameter) 125, 126, 127, 128, 129, 130, 131, 132
Network security (Parameter) 101
Nominal diameter (Parameter) 87
Off value low flow cutoff (Parameter) 67
On value low flow cutoff (Parameter) 67
Operating time (Parameter) 114
Operating time from restart (Parameter) 114
Order code (Parameter) 122
Oscillation amplitude (Submenu) 129
Oscillation damping (Submenu) 131
Oscillation frequency (Submenu) 128
Parameter
Structure of a parameter description 6
Partially filled pipe detection (Submenu) 69
Preset value 1 to n (Parameter) 110
Pressure compensation (Parameter) 74
Pressure shock suppression (Parameter) 68
Pressure unit (Parameter) 57
Received signal strength (Parameter) 105
Reference density (Parameter) 43
Reference density factor (Parameter) 85
Reference density offset (Parameter) 85
Reference density unit (Parameter)	56
Reference sound velocity (Parameter)	73
Reference temperature (Parameter)	78
Reset access code (Parameter)	37
Reset access code (Submenu)	36
Reset all totalizers (Parameter)	106
Reset min/max values (Parameter)	124
Response time part. filled pipe detect. (Parameter)	71

S

Security identification (Parameter)	102
Select antenna (Parameter)	104
Select gas type (Parameter)	73
Select medium (Parameter)	72
Sensor (Submenu)	40
Sensor adjustment (Submenu)	80
Serial number (Parameter)	121
Signal asymmetry (Submenu)	132
Simulation (Submenu)	133
Simulation device alarm (Parameter)	135
Simulation diagnostic event (Parameter)	135
Software option overview (Parameter)	39
Square expansion coefficient (Parameter)	79
SSID name (Parameter)	101, 104

Administration	35
Application	106
Calculated values	77
Calibration	86
Carrier pipe temperature	126
Communication	88
Concentration	112
Configurable input assembly	93
Configuration	88
Corrected volume flow calculation	77
Device information	120
Diagnostic behavior	28
Diagnostic handling	27
Diagnostic list	115
Diagnostics	112
Display	13
Electronic temperature	125
Event list	119
Event logbook	118
External compensation	74
Heartbeat	133
Low flow cut off	66
Measured values	41
Measurement mode	72
Medium temperature	126
Min/max values	124
Oscillation amplitude	129
Oscillation damping	131
Oscillation frequency	128
Partially filled pipe detection	69
Process parameters	64
Process variable adjustment	82
Process variables	41

Reset access code	36
Sensor	40
Sensor adjustment	80
Signal asymmetry	132
Simulation	133
Supervision	88
System	13
System units	49
Torsion oscillation amplitude	130
Torsion oscillation damping	131
Torsion oscillation frequency	128
Totalizer	47
Totalizer 1 to n	106
User-specific units	106
Viscosity	111
VLAN settings	99
Zero point adjustment	80
Subnet mask (Parameter)	91
Supervision (Submenu)	88
System (Submenu)	13
System units (Submenu)	49

Target corrected volume flow (Parameter)	46
Target group	4
Target mass flow (Parameter)	46
Target volume flow (Parameter)	47
Temp. compensated dynamic viscosity (Parameter)	45
Temp. compensated kinematic viscosity (Parameter)	45
Temperature (Parameter)	43
Temperature coefficient sound velocity (Parameter)	74
Temperature damping (Parameter)	65
Temperature factor (Parameter)	86
Temperature mode (Parameter)	76
Temperature offset (Parameter)	86
Temperature unit (Parameter)	56
Timestamp (Parameter)	113, 114, 115, 116, 117, 118
Torsion oscillation amplitude (Submenu)	130
Torsion oscillation damping (Submenu)	131
Torsion oscillation frequency (Submenu)	128
Totalizer (Submenu)	47
Totalizer 1 to n (Submenu)	106
Totalizer operation mode (Parameter)	109
Totalizer overflow 1 to n (Parameter)	48
Totalizer value 1 to n (Parameter)	48

Unit totalizer (Parameter)	107
User corrected volume factor (Parameter)	62
User corrected volume offset (Parameter)	61
User corrected volume text (Parameter)	61
User density factor (Parameter)	62
User density offset (Parameter)	62
User density text (Parameter)	62
User description (Parameter)	92
User mass factor (Parameter)	59
User mass offset (Parameter)	59
User mass text (Parameter)	59
User name (Parameter)	102
User pressure factor (Parameter) 63
User pressure offset (Parameter) 63
User pressure text (Parameter) 63
User volume factor (Parameter) 61
User volume offset (Parameter) 60
User volume text (Parameter) 60
User-specific units (Submenu) 58

V
Value 1 display (Parameter) 17
Value 2 display (Parameter) 19
Value 3 display (Parameter) 20
Value 4 display (Parameter) 22
Value process variable (Parameter) 134
Viscosity (Submenu) .. 111
Volume flow (Parameter) 42
Volume flow factor (Parameter) 83
Volume flow offset (Parameter) 83
Volume flow unit (Parameter) 51
Volume unit (Parameter) 53

W
Web server functionality (Parameter) 91
Web server language (Parameter) 89
Wizard
 Define access code 35
WLAN (Parameter) .. 100
WLAN IP address (Parameter) 102
WLAN MAC address (Parameter) 103
WLAN mode (Parameter) 101
WLAN passphrase (Parameter) 103
WLAN password (Parameter) 102
WLAN settings (Submenu) 99
WLAN subnet mask (Parameter) 103

Z
Zero point (Parameter) 87
Zero point adjustment (Submenu) 80
Zero point adjustment control (Parameter) 81