Description of Device Parameters

Proline Promass 100

HART

Coriolis flowmeter
Table of contents

1 About this document 4
1.1 Document function 4
1.2 Target group 4
1.3 Using this document 4
 1.3.1 Information on the document structure 4
 1.3.2 Structure of a parameter description 6
1.4 Symbols used 6
 1.4.1 Symbols for certain types of information 6
 1.4.2 Symbols in graphics 7
1.5 Documentation 7
 1.5.1 Standard documentation 7
 1.5.2 Supplementary device-dependent documentation 7

2 Overview of the Expert operating menu 8

3 Description of device parameters ... 10
3.1 "System" submenu 13
 3.1.1 "Display" submenu 13
 3.1.2 "Administration" submenu 27
 3.1.3 "Diagn. handling" submenu 33
3.2 "Sensor" submenu 42
 3.2.1 "Measured val." submenu 42
 3.2.2 "System units" submenu 53
 3.2.3 "Process param." submenu 68
 3.2.4 "Measurement mode" submenu 76
 3.2.5 "External comp." submenu 78
 3.2.6 "Calculated value" submenu 80
 3.2.7 "Sensor adjustm." submenu 83
 3.2.8 "Calibration" submenu 90
 3.2.9 "Supervision" submenu 91
3.3 "Output" submenu 92
 3.3.1 "Current output 1" submenu 92
 3.3.2 "PFS output" submenu 107
3.4 "Communication" submenu 131
 3.4.1 "HART input" submenu 132
 3.4.2 "HART output" submenu 137
 3.4.3 "Web server" submenu 154
 3.4.4 "Diag. config." submenu 157
3.5 "Application" submenu 164
 3.5.1 "Totalizer 1 to n" submenu 165
 3.5.2 "Viscosity" submenu 170
 3.5.3 "Concentration" submenu 170
3.6 "Diagnostics" submenu 170
 3.6.1 "Diagnostic list" submenu 173
 3.6.2 "Event logbook" submenu 177
 3.6.3 "Device info" submenu 178
 3.6.4 "Min/max val." submenu 182
 3.6.5 "Heartbeat" submenu 191
 3.6.6 "Simulation" submenu 192

4 Country-specific factory settings .. 199
4.1 SI units 199
 4.1.1 System units 199
 4.1.2 Full scale values 200
 4.1.3 Output current span 200
 4.1.4 Pulse value 200
 4.1.5 On value low flow cut off 200
4.2 US units 201
 4.2.1 System units 201
 4.2.2 Full scale values 202
 4.2.3 Output current span 202
 4.2.4 Pulse value 202
 4.2.5 On value low flow cut off 203

5 Explanation of abbreviated units .. 205
5.1 SI units 205
5.2 US units 205
5.3 Imperial units 207

Index 208
1 About this document

1.1 Document function
The document is part of the Operating Instructions and serves as a reference for parameters, providing a detailed explanation of each individual parameter of the Expert operating menu.

It is used to perform tasks that require detailed knowledge of the function of the device:
- Commissioning measurements under difficult conditions
- Optimal adaptation of the measurement to difficult conditions
- Detailed configuration of the communication interface
- Error diagnostics in difficult cases

1.2 Target group
The document is aimed at specialists who work with the device over the entire life cycle and perform specific configurations.

1.3 Using this document

1.3.1 Information on the document structure
The document lists the submenus and their parameters according to the structure from the Expert menu (→ 8), which is displayed when the "Maintenance" user role is enabled.
Additional information regarding:
- The arrangement of the parameters according to the menu structure of the **Operation** menu, **Setup** menu, **Diagnostics** menu with a brief description: Operating Instructions
- Operating concept of the operating menus: Operating Instructions

![Sample graphic for the schematic layout of the operating menu](image)
1.3.2 Structure of a parameter description
The individual parts of a parameter description are described in the following section:

<table>
<thead>
<tr>
<th>Complete parameter name</th>
<th>Write-protected parameter</th>
</tr>
</thead>
</table>

Navigation
- Navigation path to the parameter via the local display (direct access code) or web browser
- Navigation path to the parameter via the operating tool
 - The names of the menus, submenus and parameters are abbreviated to the form in which they appear on the display and in the operating tool.

Prerequisite
The parameter is only available under these specific conditions

Description
Description of the parameter function

Selection
- List of the individual options for the parameter
 - Option 1
 - Option 2

User entry
Input range for the parameter

User interface
Display value/data for the parameter

Factory setting
Default setting ex works

Additional information
Additional explanations (e.g. in examples):
- On individual options
- On display values/data
- On the input range
- On the factory setting
- On the parameter function

1.4 Symbols used

1.4.1 Symbols for certain types of information

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Indicates additional information.</td>
</tr>
<tr>
<td></td>
<td>Reference to documentation</td>
</tr>
<tr>
<td></td>
<td>Reference to page</td>
</tr>
<tr>
<td></td>
<td>Reference to graphic</td>
</tr>
<tr>
<td></td>
<td>Operation via local display</td>
</tr>
<tr>
<td></td>
<td>Operation via operating tool</td>
</tr>
<tr>
<td></td>
<td>Write-protected parameter</td>
</tr>
</tbody>
</table>
1.4.2 Symbols in graphics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3 ...</td>
<td>Item numbers</td>
<td>A, B, C, ...</td>
<td>Views</td>
</tr>
<tr>
<td>A-A, B-B, C-C, ...</td>
<td>Sections</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.5 Documentation

1.5.1 Standard documentation

Operating Instructions

<table>
<thead>
<tr>
<th>Measuring device</th>
<th>Documentation code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promass A 100</td>
<td>BA01187D</td>
</tr>
<tr>
<td>Promass E 100 (8E1B**,...)</td>
<td>BA01167D</td>
</tr>
<tr>
<td>Promass E 100 (8E1C**,...)</td>
<td>BA01713D</td>
</tr>
<tr>
<td>Promass F 100</td>
<td>BA01168D</td>
</tr>
<tr>
<td>Promass G 100</td>
<td>BA01346D</td>
</tr>
<tr>
<td>Promass H 100</td>
<td>BA01189D</td>
</tr>
<tr>
<td>Promass I 100</td>
<td>BA01190D</td>
</tr>
<tr>
<td>Promass O 100</td>
<td>BA01191D</td>
</tr>
<tr>
<td>Promass P 100</td>
<td>BA01192D</td>
</tr>
<tr>
<td>Promass S 100</td>
<td>BA01193D</td>
</tr>
<tr>
<td>Promass X 100</td>
<td>BA01194D</td>
</tr>
</tbody>
</table>

1.5.2 Supplementary device-dependent documentation

Special Documentation

<table>
<thead>
<tr>
<th>Content</th>
<th>Documentation code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information on the Pressure Equipment Directive</td>
<td>SD01614D</td>
</tr>
<tr>
<td>Concentration Measurement</td>
<td>SD01152D</td>
</tr>
<tr>
<td>Heartbeat Technology</td>
<td>SD01153D</td>
</tr>
<tr>
<td>Web server</td>
<td>SD01820D</td>
</tr>
</tbody>
</table>
Overview of the Expert operating menu

The following table provides an overview of the menu structure of the expert operating menu and its parameters. The page reference indicates where the associated description of the submenu or parameter can be found.

<table>
<thead>
<tr>
<th>Expert</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct access</td>
<td>→ 10</td>
</tr>
<tr>
<td>Locking status</td>
<td>→ 11</td>
</tr>
<tr>
<td>Access stat.disp</td>
<td>→ 12</td>
</tr>
<tr>
<td>Access stat.tool</td>
<td>→ 12</td>
</tr>
<tr>
<td>Ent. access code</td>
<td>→ 13</td>
</tr>
<tr>
<td>System</td>
<td>→ 13</td>
</tr>
<tr>
<td>Display</td>
<td>→ 13</td>
</tr>
<tr>
<td>Diagn. handling</td>
<td>→ 33</td>
</tr>
<tr>
<td>Administration</td>
<td>→ 27</td>
</tr>
<tr>
<td>Sensor</td>
<td>→ 42</td>
</tr>
<tr>
<td>Measured val.</td>
<td>→ 42</td>
</tr>
<tr>
<td>System units</td>
<td>→ 53</td>
</tr>
<tr>
<td>Process param.</td>
<td>→ 68</td>
</tr>
<tr>
<td>Measurement mode</td>
<td>→ 76</td>
</tr>
<tr>
<td>External comp.</td>
<td>→ 78</td>
</tr>
<tr>
<td>Calculated value</td>
<td>→ 80</td>
</tr>
<tr>
<td>Sensor adjustm.</td>
<td>→ 83</td>
</tr>
<tr>
<td>Calibration</td>
<td>→ 90</td>
</tr>
<tr>
<td>Supervision</td>
<td>→ 91</td>
</tr>
</tbody>
</table>
Overview of the Expert operating menu

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>92</td>
</tr>
<tr>
<td>- Curr. output 1</td>
<td>92</td>
</tr>
<tr>
<td>- PFS output 1</td>
<td>107</td>
</tr>
<tr>
<td>Communication</td>
<td>131</td>
</tr>
<tr>
<td>- HART input</td>
<td>132</td>
</tr>
<tr>
<td>- HART output</td>
<td>137</td>
</tr>
<tr>
<td>- Web server</td>
<td>154</td>
</tr>
<tr>
<td>- Diag. config.</td>
<td>157</td>
</tr>
<tr>
<td>Application</td>
<td>164</td>
</tr>
<tr>
<td>- Reset all tot.</td>
<td>164</td>
</tr>
<tr>
<td>- Totalizer 1 to n</td>
<td>165</td>
</tr>
<tr>
<td>- Viscosity</td>
<td>170</td>
</tr>
<tr>
<td>- Concentration</td>
<td>170</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>170</td>
</tr>
<tr>
<td>- Actual diagnos.</td>
<td>171</td>
</tr>
<tr>
<td>- Prev. diagnos.</td>
<td>171</td>
</tr>
<tr>
<td>- Time fr. restart</td>
<td>172</td>
</tr>
<tr>
<td>- Operating time</td>
<td>172</td>
</tr>
<tr>
<td>- Diagnostic list</td>
<td>173</td>
</tr>
<tr>
<td>- Event logbook</td>
<td>177</td>
</tr>
<tr>
<td>- Device info</td>
<td>178</td>
</tr>
<tr>
<td>- Min/max val.</td>
<td>182</td>
</tr>
<tr>
<td>- Heartbeat</td>
<td>191</td>
</tr>
<tr>
<td>- Simulation</td>
<td>192</td>
</tr>
</tbody>
</table>
Description of device parameters

In the following section, the parameters are listed according to the menu structure of the local display. Specific parameters for the operating tools are included at the appropriate points in the menu structure.

Direct access

Navigation

- **Expert** → Direct access

Prerequisite

There is a local display with operating elements.

Description

Use this function to enter the access code to enable direct access to the desired parameter via the local display. A parameter number is assigned to each parameter for this purpose.

User entry

0 to 65535

Additional information

User entry

The direct access code consists of a 5-digit number (at maximum) and the channel number, which identifies the channel of a process variable: e.g. 00914-2. In the navigation view, this appears on the right-hand side in the header of the selected parameter.
1 Direct access code

Note the following when entering the direct access code:
- The leading zeros in the direct access code do not have to be entered.
 Example: Enter "914" instead of "00914"
- If no channel number is entered, channel 1 is accessed automatically.
 Example: Enter 00914 → Assign variable parameter
- If a different channel is accessed: Enter the direct access code with the corresponding channel number.
 Example: Enter 00914-2 → Assign variable parameter

Locking status

Navigation
- Expert → Locking status

Description
Displays the active write protection.

User interface
- Hardware locked
- Temp. locked

Additional information
User interface
If two or more types of write protection are active, the write protection with the highest priority is shown on the local display. In the operating tool all active types of write protection are displayed.

Detailed information on access authorization is provided in the "User roles and associated access authorization" and "Operating concept" sections of the Operations Instructions for the device

Selection

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware locked (priority 1)</td>
<td>The write protection switch (DIP switch) for locking the hardware is activated on the main electronic module. This locks write access to the parameters.</td>
</tr>
<tr>
<td>Temp. locked (priority 2)</td>
<td>Write access to the parameters is temporarily locked on account of internal processes running in the device (e.g. data upload/download, reset etc.). Once the internal processing has been completed, the parameters can be changed once again.</td>
</tr>
</tbody>
</table>
Access stat.disp

Navigation

Expert → Access stat.disp

Prerequisite

A local display is provided.

Description

Displays the access authorization to the parameters via the local display.

User interface

- Operator
- Maintenance

Factory setting

Operator

Additional information

Description

If the ⬇-symbol appears in front of a parameter, it cannot be modified via the local display with the current access authorization.

Access authorization can be modified via the Ent. access code parameter (→ 13).

For information about the Ent. access code parameter: see the 'Disabling write protection via the access code' section of the Operating Instructions for the device.

If additional write protection is active, this restricts the current access authorization even further.

Display

Detailed information on access authorization is provided in the "User roles and associated access authorization" and "Operating concept" sections of the Operations Instructions for the device.

Access stat.tool

Navigation

Expert → Access stat.tool

Description

Displays the access authorization to the parameters via the operating tool or Web browser.

User interface

- Operator
- Maintenance

Factory setting

Maintenance

Additional information

Description

Access authorization can be modified via the Ent. access code parameter (→ 13).

If additional write protection is active, this restricts the current access authorization even further.

Display

Detailed information on access authorization is provided in the "User roles and associated access authorization" and "Operating concept" sections of the Operations Instructions for the device.
Ent. access code

Navigation

Ent. access code

Description

Use this function to enter the user-specific release code to remove parameter write protection.

User entry

0 to 9999

3.1 "System" submenu

Navigation

System → 13

Diagn. handling → 33

Administration → 27

3.1.1 "Display" submenu

Navigation

Display → 14

Format display → 15

Value 1 display → 17

0% bargraph 1 → 18

100% bargraph 1 → 19

Decimal places 1 → 19

Value 2 display → 19

Decimal places 2 → 20

Value 3 display → 20
Display language

Navigation

Expert → System → Display → Display language

Prerequisite

A local display is provided.

Description

Use this function to select the configured language on the local display.

Selection

- English
- Deutsch *
- Français *
- Español *
- Italiano *
- Nederlands *
- Portuguesa *
- Polski *
- русский язык (Ru) *
- Svenska *
- Türkçe *
- 中文 (Chinese) *
- 日本語 (Japanese) *

* Visibility depends on order options or device settings
Format display

Navigation

Expert → System → Display → Format display

Prerequisite

A local display is provided.

Description

Use this function to select how the measured value is shown on the local display.

Selection

- 1 value, max.
- Bargr. + 1 value
- 2 values
- Val. large+2val.
- 4 values

Factory setting

1 value, max.

Additional information

Description

The display format (size, bar graph etc.) and number of measured values displayed simultaneously (1 to 4) can be configured. This setting only applies to normal operation.

- The Value 1 display parameter (→ 17) to Value 4 display parameter (→ 22) are used to specify which measured values are shown on the local display and in what order.
- If more measured values are specified than the display mode selected permits, then the values alternate on the device display. The display time until the next change is configured via the Display interval parameter (→ 23).

* Visibility depends on order options or device settings
Possible measured values shown on the local display:

"1 value, max." option

"Bargr. + 1 value" option

"2 values' option

"Val. large+2val." option

"4 values' option
Value 1 display

Navigation

Expert → System → Display → Value 1 display

Prerequisite

A local display is provided.

Description

Use this function to select one of the measured values to be shown on the local display.

Selection

- Mass flow
- Volume flow
- Correct. vol. flow
- Target mass flow *
- Carrier mass fl. *
- Density
- Ref. density
- Concentration *
- Dynam. viscosity *
- Kinematic visc. *
- TempCompDynVisc *
- TempCompKinVisc *
- Temperature
- Carr. pipe temp. *
- Electronic temp.
- Osc. freq. 0
- Osc. freq. 1 *
- Freq. fluct. 0
- Freq. fluct. 1 *
- Osc. ampl. 0 *
- Osc. ampl. 1 *
- Freq. fluct. 0
- Osc. damping 0
- Osc. damping 1 *
- Damping fluct 0
- Damping fluct 1
- Signal asymmetry
- Exc. current 0
- Exc. current 1 *
- Sensor integrity *
- None
- Totalizer 1
- Totalizer 2
- Totalizer 3
- Curr. output 1

Factory setting

Mass flow

* Visibility depends on order options or device settings
Additional information Description
If several measured values are displayed at once, the measured value selected here will be
the first value to be displayed. The value is only displayed during normal operation.

The Format display parameter (→ 15) is used to specify how many measured
values are displayed simultaneously and how.

Dependency
The unit of the displayed measured value is taken from the System units submenu
(→ 53).

Selection
• Oscil. frequency option
 Displays the current oscillation frequency of the measuring tubes. This frequency
depends on the density of the medium.
• Oscil. amplitude option
 Displays the relative oscillation amplitude of the measuring tubes in relation to the
preset value. This value is 100 % under optimum conditions.
• Oscil. damping option
 Displays the current oscillation damping. Oscillation damping is an indicator of the
sensor's current need for excitation power.
• Signal asymmetry option
 Displays the relative difference between the oscillation amplitude at the inlet and outlet
of the sensor. The measured value is the result of production tolerances of the sensor
coils and should remain constant over the life time of a sensor.

0% bargraph 1

Navigation Expert → System → Display → 0% bargraph 1

Prerequisite
A local display is provided.

Description
Use this function to enter the 0% bar graph value to be shown on the display for the
measured value 1.

User entry
Signed floating-point number

Factory setting
Country-specific:
• 0 kg/h
• 0 lb/min

Additional information Description
The Format display parameter (→ 15) is used to specify that the measured value
is to be displayed as a bar graph.

User entry
The unit of the displayed measured value is taken from the System units submenu
(→ 53).
100% bargraph 1

Navigation
Expert → System → Display → 100% bargraph 1

Prerequisite
A local display is provided.

Description
Use this function to enter the 100% bar graph value to be shown on the display for the measured value 1.

User entry
Signed floating-point number

Factory setting
Depends on country and nominal diameter → 199

Additional information
Description

The Format display parameter (→ 15) is used to specify that the measured value is to be displayed as a bar graph.

User entry

The unit of the displayed measured value is taken from the System units submenu (→ 53).

Decimal places 1

Navigation
Expert → System → Display → Decimal places 1

Prerequisite
A measured value is specified in the Value 1 display parameter (→ 17).

Description
Use this function to select the number of decimal places for measured value 1.

Selection
- x
- x.x
- x.xx
- x.xxx
- x.xxxx

Factory setting
x.xx

Additional information
Description

This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.

Value 2 display

Navigation
Expert → System → Display → Value 2 display

Prerequisite
A local display is provided.
Description of device parameters

Description
Use this function to select one of the measured values to be shown on the local display.

Selection
For the picklist, see the **Value 1 display** parameter (→ 17)

Factory setting
None

Additional information
Description
If several measured values are displayed at once, the measured value selected here will be the second value to be displayed. The value is only displayed during normal operation.

![Info icon] The **Format display** parameter (→ 15) is used to specify how many measured values are displayed simultaneously and how.

Dependency
![Info icon] The unit of the displayed measured value is taken from the **System units** submenu (→ 53).

Decimal places 2

Navigation
Expert → System → Display → Decimal places 2

Prerequisite
A measured value is specified in the **Value 2 display** parameter (→ 19).

Description
Use this function to select the number of decimal places for measured value 2.

Selection
- x
- x.x
- x.xx
- x.xxx
- x.xxxx

Factory setting
x.xx

Additional information
Description
This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.

Value 3 display

Navigation
Expert → System → Display → Value 3 display

Prerequisite
A local display is provided.

Description
Use this function to select one of the measured values to be shown on the local display.

Selection
For the picklist, see the **Value 1 display** parameter (→ 17)

Factory setting
None
Additional information

Description

If several measured values are displayed at once, the measured value selected here will be the third value to be displayed. The value is only displayed during normal operation.

The Format display parameter (→ 15) is used to specify how many measured values are displayed simultaneously and how.

Selection

The unit of the displayed measured value is taken from the System units submenu (→ 53).

0% bargraph 3

Navigation

Expert → System → Display → 0% bargraph 3

Prerequisite

A selection was made in the Value 3 display parameter (→ 20).

Description

Use this function to enter the 0% bar graph value to be shown on the display for the measured value 3.

User entry

Signed floating-point number

Factory setting

Country-specific:
- 0 kg/h
- 0 lb/min

Additional information

Description

The Format display parameter (→ 15) is used to specify that the measured value is to be displayed as a bar graph.

User entry

The unit of the displayed measured value is taken from the System units submenu (→ 53).

100% bargraph 3

Navigation

Expert → System → Display → 100% bargraph 3

Prerequisite

A selection was made in the Value 3 display parameter (→ 20).

Description

Use this function to enter the 100% bar graph value to be shown on the display for the measured value 3.

User entry

Signed floating-point number

Factory setting

0
Additional information

Description

The **Format display** parameter (→ 15) is used to specify that the measured value is to be displayed as a bar graph.

User entry

The unit of the displayed measured value is taken from the **System units** submenu (→ 53).

Decimal places 3

Navigation

Expert → System → Display → Decimal places 3

Prerequisite

A measured value is specified in the **Value 3 display** parameter (→ 20).

Description

Use this function to select the number of decimal places for measured value 3.

Selection

- x
- .xx
- .xxx
- .xxxx
- .xxxxx

Factory setting

x.xx

Additional information

This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.

Value 4 display

Navigation

Expert → System → Display → Value 4 display

Prerequisite

A local display is provided.

Description

Use this function to select one of the measured values to be shown on the local display.

Selection

For the picklist, see the **Value 1 display** parameter (→ 17)

Factory setting

None
Additional information

Description
If several measured values are displayed at once, the measured value selected here will be the fourth value to be displayed. The value is only displayed during normal operation.

The Format display parameter (→ 15) is used to specify how many measured values are displayed simultaneously and how.

Selection

The unit of the displayed measured value is taken from the System units submenu (→ 53).

Decimal places 4

Navigation

Expert → System → Display → Decimal places 4

Prerequisite

A measured value is specified in the Value 4 display parameter (→ 22).

Description

Use this function to select the number of decimal places for measured value 4.

Selection

- x
- x.x
- x.xx
- x.xxx
- x.xxxx

Factory setting

x.xx

Additional information

Description

This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.

Display interval

Navigation

Expert → System → Display → Display interval

Prerequisite

A local display is provided.

Description

Use this function to enter the length of time the measured values are displayed if the values alternate on the display.

User entry

1 to 10 s

Factory setting

5 s
Additional information

Description

This type of alternating display only occurs automatically if the number of measured values defined exceeds the number of values the selected display format can display simultaneously.

- The Value 1 display parameter (→ 17) to Value 4 display parameter (→ 22) are used to specify which measured values are shown on the local display.
- The display format of the displayed measured values is specified using the Format display parameter (→ 15).

Display damping

Navigation

Expert → System → Display → Display damping

Prerequisite

A local display is provided.

Description

Use this function to enter a time constant for the reaction time of the local display to fluctuations in the measured value caused by process conditions.

User entry

0.0 to 999.9 s

Factory setting

0.0 s

Additional information

User entry

Use this function to enter a time constant (PT1 element 1) for display damping:

- If a low time constant is entered, the display reacts particularly quickly to fluctuating measured variables.
- On the other hand, the display reacts more slowly if a high time constant is entered.

Damping is switched off if 0 is entered (factory setting).

Header

Navigation

Expert → System → Display → Header

Prerequisite

A local display is provided.

Description

Use this function to select the contents of the header of the local display.

Selection

- Device tag
- Free text

Factory setting

Device tag

Additional information

Description

The header text only appears during normal operation.

1) proportional transmission behavior with first order delay
1 Position of the header text on the display

Selection

- Device tag
 Is defined in the **Device tag** parameter (→ 179).
- Free text
 Is defined in the **Header text** parameter (→ 25).

Header text

Navigation

Expert → System → Display → Header text

Prerequisite

In the **Header** parameter (→ 24), the **Free text** option is selected.

Description

Use this function to enter a customer-specific text for the header of the local display.

User entry

Max. 12 characters such as letters, numbers or special characters (e.g. @, %, /)

Factory setting

Additional information

Description

The header text only appears during normal operation.

User entry

The number of characters displayed depends on the characters used.

Separator

Navigation

Expert → System → Display → Separator

Prerequisite

A local display is provided.
Description

Use this function to select the decimal separator.

Selection

- . (point)
- , (comma)

Factory setting

. (point)

Contrast display

Navigation

Expert → System → Display → Contrast display

Prerequisite

A local display is provided.

Description

Use this function to enter a value to adapt the display contrast to the ambient conditions (e.g. the lighting or viewing angle).

User entry

20 to 80 %

Factory setting

Depends on the display

Backlight

Navigation

Expert → System → Display → Backlight

Description

Use this function to switch the backlight of the local display on and off.

Selection

- Disable
- Enable

Factory setting

Enable

Access stat.disp

Navigation

Expert → System → Display → Access stat.disp

Prerequisite

A local display is provided.

Description

Displays the access authorization to the parameters via the local display.

User interface

- Operator
- Maintenance

Factory setting

Operator
Additional information

Description

If the ⚠-symbol appears in front of a parameter, it cannot be modified via the local display with the current access authorization.

- Access authorization can be modified via the **Ent. access code** parameter (→ 27).

- For information about the **Ent. access code** parameter: see the 'Disabling write protection via the access code' section of the Operating Instructions for the device.

- If additional write protection is active, this restricts the current access authorization even further.

Display

- Detailed information on access authorization is provided in the 'User roles and associated access authorization' and 'Operating concept' sections of the Operations Instructions for the device.

3.1.2 "Administration" submenu

Navigation

[Expert → System → Administration]

<table>
<thead>
<tr>
<th>► Administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>► Def. access code</td>
</tr>
<tr>
<td>Device reset</td>
</tr>
<tr>
<td>Activate SW opt.</td>
</tr>
<tr>
<td>SW option overv.</td>
</tr>
</tbody>
</table>

"Def. access code" wizard

- The **Def. access code** wizard (→ 27) is only available when operating via the local display or Web browser.

 - If operating via the operating tool, the **Def. access code** parameter (→ 30) can be found directly in the Administration submenu. There is no **Confirm code** parameter if the device is operated via the operating tool.

Navigation

[Expert → System → Administration → Def. access code]

<table>
<thead>
<tr>
<th>► Def. access code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Def. access code</td>
</tr>
<tr>
<td>Confirm code</td>
</tr>
</tbody>
</table>
Description of device parameters

Def. access code

Navigation

[Expert → System → Administration → Def. access code → Def. access code]

Description

Use this function to enter a user-specific release code to restrict write-access to the parameters. This protects the configuration of the device against any inadvertent changes via the local display or Web browser.

User entry

0 to 9 999

Factory setting

0

Additional information

Description

The write protection affects all parameters in the document marked with the symbol.

On the local display, the symbol in front of a parameter indicates that the parameter is write-protected.

The parameters that cannot be write-accessed are grayed out in the Web browser.

Once the access code has been defined, write-protected parameters can only be modified if the access code is entered in the parameter (→ 13).

If you lose the access code, please contact your Endress+Hauser sales organization.

User entry

A message is displayed if the access code is not in the input range.

Factory setting

If the factory setting is not changed or 0 is defined as the access code, the parameters are not write-protected and the device configuration data can be modified. The user is logged on in the "Maintenance" role.

Confirm code

Navigation

[Expert → System → Administration → Def. access code → Confirm code]

Description

Enter the defined release code a second time to confirm the release code.

User entry

0 to 9 999

Factory setting

0
"Reset access code" submenu

Navigation
Expert → System → Administration → Reset acc. code

<table>
<thead>
<tr>
<th>Reset acc. code</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating time</td>
<td>→ 29</td>
<td></td>
</tr>
<tr>
<td>Reset acc. code</td>
<td>→ 29</td>
<td></td>
</tr>
</tbody>
</table>

Operating time

Navigation
Expert → Diagnostics → Operating time

Description
Use this function to display the length of time the device has been in operation.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information
User interface
The maximum number of days is 9999, which is equivalent to 27 years.

Reset acc. code

Navigation
Expert → System → Administration → Reset acc. code → Reset acc. code

Description
Use this function to enter a reset code to reset the user-specific release code to the factory setting.

User entry
Character string comprising numbers, letters and special characters

Factory setting
0x00

Additional information
Description
For a reset code, contact your Endress+Hauser service organization.

User entry
The reset code can only be entered via:
- Web browser
- DeviceCare, FieldCare (via interface CDI RJ45)
- Fieldbus
Description of device parameters

Proline Promass 100 HART

Additional parameters in the "Administration" submenu

<table>
<thead>
<tr>
<th>Def. access code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>User entry</td>
</tr>
<tr>
<td>Factory setting</td>
</tr>
<tr>
<td>Additional information</td>
</tr>
<tr>
<td>User entry</td>
</tr>
<tr>
<td>Factory setting</td>
</tr>
</tbody>
</table>

Device reset

Navigation	Expert → System → Administration → Device reset
Description	Use this function to choose whether to reset the device configuration - either entirely or in part - to a defined state.
Selection	• Cancel • To delivery set. • Restart device
Factory setting	Cancel
Additional information
Selection

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancel</td>
<td>No action is executed and the user exits the parameter.</td>
</tr>
</tbody>
</table>
| To delivery set. | Every parameter for which a customer-specific default setting was ordered is reset to this customer-specific value. All other parameters are reset to the factory setting.
 | This option is not visible if no customer-specific settings have been ordered. |
| Restart device | The restart resets every parameter whose data are in the volatile memory (RAM) to the factory setting (e.g. measured value data). The device configuration remains unchanged. |

Activate SW opt.

Navigation

Expert → System → Administration → Activate SW opt.

Description

Use this function to enter an activation code to enable an additional, ordered software option.

User entry

Max. 10-digit string consisting of numbers.

Factory setting

Depends on the software option ordered

Additional information

Description

If a measuring device was ordered with an additional software option, the activation code is programmed in the device at the factory.

User entry

To activate a software option subsequently, please contact your Endress+Hauser sales organization.

NOTE!

The activation code is linked to the serial number of the measuring device and varies according to the device and software option.

If an incorrect or invalid code is entered, this results in the loss of software options that have already been activated.

- Before you enter a new activation code, make a note of the current activation code.
- Enter the new activation code provided by Endress+Hauser when the new software option was ordered.
- Once the activation code has been entered, check if the new software option is displayed in the SW option overv. parameter (→ 32).
 - The new software option is active if it is displayed.
 - If the new software option is not displayed or all software options have been deleted, the code entered was either incorrect or invalid.
- If the code entered is incorrect or invalid, enter the old activation code.
Have your Endress+Hauser sales organization check the new activation code remembering to specify the serial number or ask for the code again.

Example for a software option

Order code for “Application package”, option **EB** ‘Heartbeat Verification + Monitoring’

The software options currently enabled are displayed in the **SW option overv.** parameter (→ 32).

Web browser

Once a software option has been activated, the page must be loaded again in the Web browser.

SW option overv.

Navigation

Expert → System → Administration → SW option overv.

Description

Displays all the software options that are enabled in the device.

User interface

- HBT Verification
- HBT Monitoring
- Concentration
- Viscosity

Additional information

Description

Displays all the options that are available if ordered by the customer.

‘HBT Verification’ option and ‘HBT Monitoring’ option

Order code for ‘Application package’, option **EB** ‘Heartbeat Verification + Monitoring’

‘Concentration’ option

Order code for ‘Application package’, option **ED** ‘Concentration’ and option **EE** ‘Special density’

‘Viscosity’ option

Only available for Promass I.

Order code for ‘Application package’, option **EG** ‘Viscosity’
3.1.3 "Diagn. handling" submenu

Navigation

Expert → System → Diagn. handling

Description

Use this function to enter the time interval until the device generates a diagnostic message.

The diagnostic message is reset without a time delay.

User entry

0 to 60 s

Factory setting

0 s

Additional information

This setting affects the following diagnostic messages:

- 046 Sensor limit
- 140 Sensor sig.asym.
- 144 MeasErrorTooHigh
- 190 Special event 1
- 191 Special event 5
- 192 Special event 9
- 830 Sensor temp.
- 831 Sensor temp.
- 832 Electronic temp.
- 833 Electronic temp.
- 834 Process temp.
- 835 Process temp.
- 843 Process limit
- 862 Partly filled
- 910 Tube not oscill.
- 912 Medium inhomog.
- 913 Medium unsuitab.
- 944 MonitoringFailed
- 990 Special event 4
- 991 Special event 8
- 992 Special event 12
"Diagn. behavior" submenu

For a list of all the diagnostic events, see the Operating Instructions for the device

Modifying the diagnostic behavior of a diagnostic event. Each diagnostic event is assigned a certain diagnostic behavior at the factory. The user can change this assignment for certain diagnostics events.

The following options are available in the Assign behavior of diagnostic no. xxx parameters:

- **Off** option
 The device continues to measure. The diagnostic event is ignored; it is neither entered into the Event logbook, nor is a diagnostic message generated.

- **Alarm** option
 The device continues to measure. The signal outputs assume the specified alarm condition. A diagnostic message is generated.

- **Warning** option
 The device continues to measure. A diagnostic message is generated.

- **Logbook only** option
 The device continues to measure. The diagnostic message is entered in the Event logbook submenu (→ 177) (Event list submenu (→ 177)) only and is not displayed in alternation with the measured value display.

Navigation
Expert → System → Diagn. handling → Diagn. behavior

<table>
<thead>
<tr>
<th>Diagnostic no.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic no. 441</td>
<td>35</td>
</tr>
<tr>
<td>Diagnostic no. 442</td>
<td>35</td>
</tr>
<tr>
<td>Diagnostic no. 443</td>
<td>36</td>
</tr>
<tr>
<td>Diagnostic no. 140</td>
<td>36</td>
</tr>
<tr>
<td>Diagnostic no. 046</td>
<td>36</td>
</tr>
<tr>
<td>Diagnostic no. 144</td>
<td>37</td>
</tr>
<tr>
<td>Diagnostic no. 832</td>
<td>37</td>
</tr>
<tr>
<td>Diagnostic no. 833</td>
<td>37</td>
</tr>
<tr>
<td>Diagnostic no. 834</td>
<td>38</td>
</tr>
<tr>
<td>Diagnostic no. 835</td>
<td>38</td>
</tr>
<tr>
<td>Diagnostic no. 912</td>
<td>38</td>
</tr>
<tr>
<td>Diagnostic no. 913</td>
<td>39</td>
</tr>
<tr>
<td>Diagnostic no. 944</td>
<td>39</td>
</tr>
<tr>
<td>Diagnostic no. 948</td>
<td>40</td>
</tr>
</tbody>
</table>
Diagnostic no. 441 (Curr.output 1)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 441

Description

Option for changing the diagnostic behavior of the diagnostic message **441 Curr.output 1**.

Selection

- Off
- Alarm
- Warning
- Logbook only

Factory setting

Warning

Additional information

For a detailed description of the options available, see → 34

Diagnostic no. 442 (Freq. output)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 442

Prerequisite

The measuring device has a pulse/frequency/switch output.

Description

Use this function to change the diagnostic behavior of the diagnostic message **442 Freq. output**.

Selection

- Off
- Alarm
- Warning
- Logbook only

Factory setting

Warning

Additional information

Selection

For a detailed description of the options available, see → 34
Diagnostic no. 443 (Pulse output)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 443

Prerequisite
The measuring device has a pulse/frequency/switch output.

Description
Use this function to change the diagnostic behavior of the diagnostic message **443 Pulse output**.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
For a detailed description of the options available, see → 34

Diagnostic no. 140 (Sensor sig.asym.)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 140

Description
Use this function to change the diagnostic behavior of the diagnostic message **140 Sensor sig.asym.**.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
For a detailed description of the options available, see → 34

Diagnostic no. 046 (Sensor limit)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 046

Description
Option for changing the diagnostic behavior of the diagnostic message **046 Sensor limit**.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning
Additional information

For a detailed description of the options available, see → 34

Diagnostic no. 144 (MeasErrorTooHigh)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 144

Description

Option for changing the diagnostic behavior of the diagnostic message 144 MeasErrorTooHigh.

Selection

• Off
• Alarm
• Warning
• Logbook only

Factory setting

Alarm

Additional information

For a detailed description of the options available, see → 34

Diagnostic no. 832 (Electronic temp.)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 832

Description

Use this function to change the diagnostic behavior of the diagnostic message 832 Electronic temp..

Selection

• Off
• Alarm
• Warning
• Logbook only

Factory setting

Warning

Additional information

For a detailed description of the options available, see → 34

Diagnostic no. 833 (Electronic temp.)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 833

Description

Use this function to change the diagnostic behavior of the diagnostic message 833 Electronic temp..

Selection

• Off
• Alarm
• Warning
• Logbook only
Diagnostic no. 834 (Process temp.)

- **Navigation:**

 ![Diagram](Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 834)

- **Description:**

 Use this function to change the diagnostic behavior of the diagnostic message **834 Process temp.**.

- **Selection:**

 - Off
 - Alarm
 - Warning
 - Logbook only

- **Factory setting:**

 Warning

- **Additional information:**

 For a detailed description of the options available, see → 34

Diagnostic no. 835 (Process temp.)

- **Navigation:**

 ![Diagram](Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 835)

- **Description:**

 Use this function to change the diagnostic behavior of the diagnostic message **835 Process temp.**.

- **Selection:**

 - Off
 - Alarm
 - Warning
 - Logbook only

- **Factory setting:**

 Warning

- **Additional information:**

 For a detailed description of the options available, see → 34

Diagnostic no. 912 (Medium inhomog.)

- **Navigation:**

 ![Diagram](Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 912)

- **Description:**

 Option for changing the diagnostic behavior of the diagnostic message **912 Medium inhomog.**.
Description of device parameters

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
For a detailed description of the options available, see → 34

Diagnostic no. 913 (Medium unsuitab.)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 913

Description
Option for changing the diagnostic behavior of the diagnostic message 913 Medium unsuitab.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
For a detailed description of the options available, see → 34

Diagnostic no. 944 (MonitoringFailed)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 944

Description
Option for changing the diagnostic behavior of the diagnostic message 944 MonitoringFailed.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
For a detailed description of the options available, see → 34
Diagnostic no. 948 (Oscill. damping)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 948

Description
Option for changing the diagnostic behavior of the diagnostic message **948 Oscill. damping**.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
For a detailed description of the options available, see → 34

Diagnostic no. 192 (Special event 9)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 192

Description
Option for changing the diagnostic behavior of the diagnostic message **192 Special event 9**.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
For a detailed description of the options available, see → 34

Diagnostic no. 374 (Sensor electron.)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 374

Description
Option for changing the diagnostic behavior of the diagnostic message **374 Sensor electron.**

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
For a detailed description of the options available, see → 34
Diagnostic no. 392 (Special event 10)

Navigation
 hann Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 392

Description
 Option for changing the diagnostic behavior of the diagnostic message 392 Special event 10.

Selection
 • Off
 • Alarm
 • Warning
 • Logbook only

Factory setting
 Warning

Additional information
 For a detailed description of the options available, see → 34

Diagnostic no. 592 (Special event 11)

Navigation
 hann Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 592

Description
 Option for changing the diagnostic behavior of the diagnostic message 592 Special event 11.

Selection
 • Off
 • Alarm
 • Warning
 • Logbook only

Factory setting
 Warning

Additional information
 For a detailed description of the options available, see → 34

Diagnostic no. 992 (Special event 12)

Navigation
 hann Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 992

Description
 Option for changing the diagnostic behavior of the diagnostic message 992 Special event 12.

Selection
 • Off
 • Alarm
 • Warning
 • Logbook only

Factory setting
 Warning
3.2 "Sensor" submenu

Navigation

[Expert → Sensor]

- Measured val. → 42
- System units → 53
- Process param. → 68
- Measurement mode → 76
- External comp. → 78
- Calculated value → 80
- Sensor adjustm. → 83
- Calibration → 90
- Supervision → 91

3.2.1 "Measured val." submenu

Navigation

[Expert → Sensor → Measured val.]

- Process variab. → 43
- Totalizer → 49
- Output values → 51
"Process variab." submenu

Navigation

Description

Displays the mass flow that is currently measured.
Volume flow

Navigation

Description
Displays the volume flow currently calculated.

User interface
Signed floating-point number

Additional information
Description

The volume flow is calculated from the mass flow currently measured and the density currently measured.

Dependency

The unit is taken from the **Volume flow unit** parameter (→ 55)

Correct.vol.flow

Navigation

Description
Displays the corrected volume flow currently measured.

User interface
Signed floating-point number

Additional information
Dependency

The unit is taken from the **Cor.volflow unit** parameter (→ 57)

Density

Navigation

Description
Displays the density currently measured.

User interface
Signed floating-point number

Additional information
Dependency

The unit is taken from the **Density unit** parameter (→ 59)
Ref. density

Navigation

Description
Displays the reference density currently calculated.

User interface
Signed floating-point number

Additional information
Dependency
- The unit is taken from the Ref. dens. unit parameter (→ 60)

Temperature

Navigation

Description
Displays the medium temperature currently measured.

User interface
Signed floating-point number

Additional information
Dependency
- The unit is taken from the Temperature unit parameter (→ 60)

Pressure value

Navigation

Description
Displays the fixed or external pressure value.

User interface
Signed floating-point number

Additional information
Dependency
- The unit is taken from the Pressure unit parameter (→ 61)

Dynam. viscosity

Navigation

Prerequisite
For the following order code:
"Application package", option EG "Viscosity"

- The software options currently enabled are displayed in the SW option overv. parameter (→ 32).
Description of device parameters

Proline Promass 100 HART

Description
Displays the dynamic viscosity currently calculated.

User interface
Signed floating-point number

Additional information

Dependency

The unit is taken from the **Dyn. visc. unit** parameter.

Kinematic visc.

Navigation

Prerequisite
For the following order code:

'Application package', option **EG** 'Viscosity'

The software options currently enabled are displayed in the **SW option overv.** parameter (→ 32).

Description
Displays the kinematic viscosity currently calculated.

User interface
Signed floating-point number

Additional information

Dependency

The unit is taken from the **Kin. visc. unit** parameter.

TempCompDynVisc

Navigation

![Diagram](Expert → Sensor → Measured val. → Process variab. → TempCompDynVisc)

Prerequisite
For the following order code:

'Application package', option **EG** 'Viscosity'

The software options currently enabled are displayed in the **SW option overv.** parameter (→ 32).

Description
Displays the temperature compensation currently calculated for the viscosity.

User interface
Signed floating-point number

Additional information

Dependency

The unit is taken from the **Dyn. visc. unit** parameter.
TempCompKinVisc

Navigation

Prerequisite

For the following order code:
"Application package", option **EG** "Viscosity"

![Note] The software options currently enabled are displayed in the **SW option overv.** parameter (→ 32).

Description

Displays the temperature compensation currently calculated for the kinetic viscosity.

User interface

Signed floating-point number

Additional information

Dependency

![Note] The unit is taken from the **Kin. visc. unit** parameter.

Concentration

Navigation

Prerequisite

For the following order code:
"Application package", option **ED** "Concentration"

![Note] The software options currently enabled are displayed in the **SW option overv.** parameter (→ 32).

Description

Displays the concentration currently calculated.

User interface

Signed floating-point number

Additional information

Dependency

![Note] The unit is taken from the **Concentr. unit** parameter.

Target mass flow

Navigation

Prerequisite

With the following conditions:
- Order code for "Application package", option **ED** "Concentration"
- The **WT-%** option or the **User conc.** option is selected in the **Concentr. unit** parameter.

![Note] The software options currently enabled are displayed in the **SW option overv.** parameter (→ 32).

Description

Displays the mass flow currently measured for the target medium.

User interface

Signed floating-point number
Additional information
Dependency

The unit is taken from the Mass flow unit parameter (→ 54)

Carrier mass fl.

Navigation

Prerequisite

With the following conditions:
- Order code for "Application package", option ED 'Concentration'
- The WT-% option or the User conc. option is selected in the Concentr. unit parameter.

The software options currently enabled are displayed in the SW option overv. parameter (→ 32).

Description

Displays the mass flow currently measured for the carrier medium.

User interface

Signed floating-point number

Additional information
Dependency

The unit is taken from the Mass flow unit parameter (→ 54)

Targ.corr.vol.fl

Navigation

User interface

Signed floating-point number

Factory setting

0 Nl/h

Carr.corr.vol.fl

Navigation

User interface

Signed floating-point number

Factory setting

0 Nl/h

Target vol. flow

Navigation

User interface

Signed floating-point number
Proline Promass 100 HART

Factory setting

0 l/h

Carrier vol. fl.

Navigation

User interface

Signed floating-point number

Factory setting

0 l/h

"Totalizer" submenu

Navigation

Expert → Sensor → Measured val. → Totalizer

Totalizer

Totalizer val. 1 to n

→ 49

Tot. overflow 1 to n

→ 50

Totalizer val. 1 to n

Prerequisite

One of the following options is selected in the Assign variable parameter (→ 165) of the Totalizer 1 to n submenu:

• Volume flow
• Mass flow
• Correct.vol.flow
• Target mass flow *
• Carrier mass fl.*

Description

Displays the current totalizer reading.

User interface

Signed floating-point number

* Visibility depends on order options or device settings
Additional information

Description
As it is only possible to display a maximum of 7 digits in the operating tool, the current counter value is the sum of the totalizer value and the overflow value from the Tot. overflow 1 to n parameter if the display range is exceeded.

In the event of an error, the totalizer adopts the mode defined in the Failure mode parameter (→ 169).

User interface
The value of the process variable totalized since measuring began can be positive or negative. This depends on the settings in the Operation mode parameter (→ 167).

The unit of the selected process variable is specified for the totalizer in the Unit totalizer parameter (→ 166).

Example
Calculation of the current totalizer reading when the value exceeds the 7-digit display range of the operating tool:
- Value in the Totalizer val. 1 parameter: 1,968,457 m³
- Value in the Tot. overflow 1 parameter: 1 \cdot 10^7 (1 overflow) = 10,000,000 [m³]
- Current totalizer reading: 11,968,457 m³

Tot. overflow 1 to n

Navigation
Expert → Sensor → Measured val. → Totalizer → Tot. overflow 1 to n

Prerequisite
One of the following options is selected in the Assign variable parameter (→ 165) of the Totalizer 1 to n submenu:
- Volume flow
- Mass flow
- Correct.vol.flow
- Target mass flow *
- Carrier mass fl. *

Description
Displays the current totalizer overflow.

User interface
Integer with sign

Additional information
Description
If the current totalizer reading exceeds 7 digits, which is the maximum value range that can be displayed by the operating tool, the value above this range is output as an overflow.

* Visibility depends on order options or device settings
The current totalizer value is therefore the sum of the overflow value and the totalizer value from the **Totalizer val. 1 to n** parameter.

User interface

The unit of the selected process variable is specified for the totalizer in the **Unit totalizer** parameter (→ 166).

Example

Calculation of the current totalizer reading when the value exceeds the 7-digit display range of the operating tool:

- Value in the **Totalizer val. 1** parameter: 1968457 m³
- Value in the **Tot. overflow 1** parameter: \(2 \times 10^7\) (2 overflows) = 20 000 000 [m³]
- Current totalizer reading: 21 968 457 m³

"Output values" submenu

Navigation

Expert → Sensor → Measured val. → Output values

<table>
<thead>
<tr>
<th>Output values</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Output curr. 1</td>
<td>→ 51</td>
</tr>
<tr>
<td>Measur. curr. 1</td>
<td>→ 51</td>
</tr>
<tr>
<td>Pulse output 1</td>
<td>→ 52</td>
</tr>
<tr>
<td>Output freq. 1</td>
<td>→ 52</td>
</tr>
<tr>
<td>Switch status 1</td>
<td>→ 53</td>
</tr>
</tbody>
</table>

Output curr. 1

Navigation

Expert → Sensor → Measured val. → Output values → Output curr. 1

Description

Displays the current value currently calculated for the current output.

User interface

0 to 22.5 mA

Measur. curr. 1

Navigation

Expert → Sensor → Measured val. → Output values → Measur. curr. 1

Description

Use this function to display the actual measured value of the output current.
Description of device parameters

Proline Promass 100 HART

User interface 0 to 30 mA

Pulse output 1

Navigation

Expert → Sensor → Measured val. → Output values → Pulse output 1

Prerequisite

In the Operating mode parameter (→ 108), the Pulse option is selected.

Description

Displays the pulse frequency currently output.

User interface

Positive floating-point number

Additional information

Description

- The pulse output is an open collector output.
- This is configured at the factory in such a way that the transistor is conductive for the duration of the pulse (NO contact) and is safety-oriented.
- The Value per pulse parameter (→ 110) and Pulse width parameter (→ 111) can be used to define the value (i.e. the measured value amount that corresponds to a pulse) and the duration of the pulse.

The output behavior can be reversed via the Invert outp.sig. parameter (→ 131) i.e. the transistor does not conduct for the duration of the pulse.

In addition, the behavior of the output in the event of a device alarm (Failure mode parameter (→ 112)) can be configured.

Output freq. 1

Navigation

Expert → Sensor → Measured val. → Output values → Output freq. 1

Prerequisite

In the Operating mode parameter (→ 108), the Frequency option is selected.

Description

Displays the actual value of the output frequency which is currently measured.

User interface

0.0 to 12 500.0 Hz
Switch status 1

Navigation

Expert → Sensor → Measured val. → Output values → Switch status 1

Prerequisite

The Switch option is selected in the Operating mode parameter (→ 108).

Description

Displays the current switch status of the status output.

User interface

- Open
- Closed

Additional information

User interface

- Open
 The switch output is not conductive.
- Closed
 The switch output is conductive.

3.2.2 "System units" submenu

Navigation

Expert → Sensor → System units

<table>
<thead>
<tr>
<th>System units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass flow unit</td>
</tr>
<tr>
<td>Mass unit</td>
</tr>
<tr>
<td>Volume flow unit</td>
</tr>
<tr>
<td>Volume unit</td>
</tr>
<tr>
<td>Corr. volflow unit</td>
</tr>
<tr>
<td>Corr. vol. unit</td>
</tr>
<tr>
<td>Density unit</td>
</tr>
<tr>
<td>Ref. dens. unit</td>
</tr>
<tr>
<td>Temperature unit</td>
</tr>
<tr>
<td>Pressure unit</td>
</tr>
<tr>
<td>Date/time format</td>
</tr>
<tr>
<td>User-spec. units</td>
</tr>
</tbody>
</table>
Mass flow unit

Navigation
Expert → Sensor → System units → Mass flow unit

Description
Use this function to select the unit for the mass flow.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/s</td>
<td>oz/s</td>
</tr>
<tr>
<td>g/min</td>
<td>oz/min</td>
</tr>
<tr>
<td>g/h</td>
<td>oz/h</td>
</tr>
<tr>
<td>g/d</td>
<td>oz/d</td>
</tr>
<tr>
<td>kg/s</td>
<td>lb/s</td>
</tr>
<tr>
<td>kg/min</td>
<td>lb/min</td>
</tr>
<tr>
<td>kg/h</td>
<td>lb/h</td>
</tr>
<tr>
<td>kg/d</td>
<td>lb/d</td>
</tr>
<tr>
<td>t/s</td>
<td>STon/s</td>
</tr>
<tr>
<td>t/min</td>
<td>STon/min</td>
</tr>
<tr>
<td>t/h</td>
<td>STon/h</td>
</tr>
<tr>
<td>t/d</td>
<td>STon/d</td>
</tr>
</tbody>
</table>

Custom-specific units
- User mass/s
- User mass/min
- User mass/h
- User mass/d

Factory setting
Country-specific:
- kg/h (DN > 150 (6\(^{\circ}\)): t/h)
- lb/min

Additional information

Result
The selected unit applies for:
- Target mass flow parameter (→ 47)
- Carrier mass fl. parameter (→ 48)
- Mass flow parameter (→ 43)

Selection
For an explanation of the abbreviated units: → 205

Customer-specific units
- The unit for the customer-specific mass is specified in the Mass text parameter (→ 63).

Mass unit

Navigation
Expert → Sensor → System units → Mass unit

Description
Use this function to select the unit for the mass.
Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>oz</td>
</tr>
<tr>
<td>kg</td>
<td>lb</td>
</tr>
<tr>
<td>t</td>
<td>STon</td>
</tr>
</tbody>
</table>

Custom-specific units

User mass

Factory setting

Country-specific:
- kg (DN > 150 (6”): t)
- lb

Additional information

Selection

For an explanation of the abbreviated units: → 205

Customer-specific units

The unit for the customer-specific mass is specified in the Mass text parameter (→ 63).

Volume flow unit

Navigation

Expert → Sensor → System units → Volume flow unit

Description

Use this function to select the unit for the volume flow.
Selection

- **SI units**
 - cm³/s
 - cm³/min
 - cm³/h
 - cm³/d
 - dm³/s
 - dm³/min
 - dm³/h
 - dm³/d
 - m³/s
 - m³/min
 - m³/h
 - m³/d
 - l/s
 - l/min
 - l/h
 - l/d
 - hl/s
 - hl/min
 - hl/h
 - hl/d
 - Ml/s
 - Ml/min
 - Ml/h
 - Ml/d

- **US units**
 - af/s
 - af/min
 - af/h
 - af/d
 - ft³/s
 - ft³/min
 - ft³/h
 - ft³/d
 - fl oz/s (us)
 - fl oz/min (us)
 - fl oz/h (us)
 - fl oz/d (us)
 - gal/s (us)
 - gal/min (us)
 - gal/h (us)
 - gal/d (us)
 - kgal/s (us)
 - kgal/min (us)
 - kgal/h (us)
 - kgal/d (us)
 - bbl/s (us; liq.)
 - bbl/min (us; liq.)
 - bbl/h (us; liq.)
 - bbl/d (us; liq.)
 - bbl/s (us; beer)
 - bbl/min (us; beer)
 - bbl/h (us; beer)
 - bbl/d (us; beer)
 - bbl/s (us; oil)
 - bbl/min (us; oil)
 - bbl/h (us; oil)
 - bbl/d (us; oil)
 - bbl/s (us; tank)
 - bbl/min (us; tank)
 - bbl/h (us; tank)
 - bbl/d (us; tank)

- **Imperial units**
 - gal/s (imp)
 - gal/min (imp)
 - gal/h (imp)
 - gal/d (imp)
 - Mgal/s (imp)
 - Mgal/min (imp)
 - Mgal/h (imp)
 - Mgal/d (imp)
 - bbl/s (imp; beer)
 - bbl/min (imp; beer)
 - bbl/h (imp; beer)
 - bbl/d (imp; beer)
 - bbl/s (imp; oil)
 - bbl/min (imp; oil)
 - bbl/h (imp; oil)
 - bbl/d (imp; oil)

- **Custom-specific units**
 - User vol./s
 - User vol./min
 - User vol./h
 - User vol./d

Factory setting

- **Country-specific:**
 - l/h (DN > 150 (6’): m³/h)
 - gal/min (us)
Additional information

Result
The selected unit applies for:
Volume flow parameter (→ 44)

Selection
For an explanation of the abbreviated units: → 205

Customer-specific units
The unit for the customer-specific volume is specified in the Volume text parameter (→ 64).

Volume unit

Navigation
Expert → Sensor → System units → Volume unit

Description
Use this function to select the unit for the volume.

Selection
SI units
- cm³
- dm³
- m³
- ml
- l
- hl
- Ml Mega

US units
- af
- ft³
- fl oz (us)
- gal (us)
- kgal (us)
- Mgal (us)

Imperial units
- gal (imp)
- Mgal (imp)
- bbl (imp;beer)
- bbl (imp;oil)

Custom-specific units
User vol.

Factory setting
Country-specific:
- l (DN > 150 (6\): m³)
- gal (us)

Additional information
Selection
For an explanation of the abbreviated units: → 205

Customer-specific units
The unit for the customer-specific volume is specified in the Volume text parameter (→ 64).

Cor.volflow unit

Navigation
Expert → Sensor → System units → Cor.volflow unit

Description
Use this function to select the unit for the corrected volume flow.
Description of device parameters

Proline Promass 100 HART

Selection

SI units
• NL/s
• NL/min
• NL/h
• NL/d
• Nm³/s
• Nm³/min
• Nm³/h
• Nm³/d
• Sm³/s
• Sm³/min
• Sm³/h
• Sm³/d

US units
• Sft³/s
• Sft³/min
• Sft³/h
• Sft³/d
• Sg/min (us)
• Sgal/h (us)
• Sgal/d (us)
• Sbbl/s (us;liq.)
• Sbbl/min (us;liq.)
• Sbbl/h (us;liq.)
• Sbbl/d (us;liq.)
• Sg/min (imp)
• Sagal/h (imp)
• Sg/min (imp)

Custom-specific units
• UserCrVol./s
• UserCrVol./min
• UserCrVol./h
• UserCrVol./d

Factory setting

Country-specific:
• NL/h (DN > 150 (6’): Nm³/h)
• Sft³/min

Additional information

The selected unit applies for:
Correct. vol. flow parameter (→ 44)

Selection

For an explanation of the abbreviated units: → 205

Corr. vol. unit

Navigation

Expert → Sensor → System units → Corr. vol. unit

Description

Use this function to select the unit for the corrected volume.

Selection

SI units
• NL
• Nm³
• Sm³

US units
• Sft³
• Sgal (us)
• Sbbl (us;liq.)

Imperial units
• Sg (imp)

Custom-specific units
UserCrVol.

Factory setting

Country-specific:
• NL (DN > 150 (6’): Nm³)
• Sft³
Additional information

Selection

For an explanation of the abbreviated units: → 205

Density unit

Navigation

Expert → Sensor → System units → Density unit

Description

Use this function to select the unit for the density.

Selection

- **SI units**
 - g/cm³
 - g/m³
 - kg/dm³
 - kg/l
 - kg/m³
 - SD4°C
 - SD15°C
 - SD20°C
 - SG4°C
 - SG15°C
 - SG20°C

- **US units**
 - lb/ft³
 - lb/gal (us)
 - lb/bbl (us; liq.)
 - lb/bbl (us; beer)
 - lb/bbl (us; oil)
 - lb/bbl (us; tank)

- **Imperial units**
 - lb/gal (imp)
 - lb/bbl (imp; beer)
 - lb/bbl (imp; oil)

Custom-specific units

User dens.

Factory setting

Country-specific:
- kg/l
- lb/ft³

Additional information

Result

The selected unit applies for:

-Density parameter (→ 44)

Selection

- SD = specific density
 The specific density is the ratio of the medium density to the water density at a water temperature of +4 °C (+39 °F), +15 °C (+59 °F), +20 °C (+68 °F).
- SG = specific gravity
 The specific gravity is the ratio of the medium density to the water density at a water temperature of +4 °C (+39 °F), +15 °C (+59 °F), +20 °C (+68 °F).

For an explanation of the abbreviated units: → 205

Customer-specific units

The unit for the customer-specific density is specified in the Density text parameter (→ 66).
Ref. dens. unit

Navigation
Expert → Sensor → System units → Ref. dens. unit

Description
Use this function to select the unit for the reference density.

Selection

SI units
- kg/Nm³
- kg/Nl
- g/Scm³
- kg/Sm³

US units
- lb/Sft³

Factory setting
Country-dependent
- kg/Nl
- lb/Sft³

Additional information

Result
The selected unit applies for:
- Ext. ref. density parameter (→ 81)
- Fix ref. density parameter (→ 82)
- Ref. density parameter (→ 45)

Selection

For an explanation of the abbreviated units: → 205

Temperature unit

Navigation
Expert → Sensor → System units → Temperature unit

Description
Use this function to select the unit for the temperature.

Selection

SI units
- °C
- K

US units
- °F
- °R

Factory setting
Country-specific:
- °C
- °F

Additional information

Result
The selected unit applies for:
- Maximum value parameter (→ 184)
- Minimum value parameter (→ 183)
- Maximum value parameter (→ 184)
- Minimum value parameter (→ 184)
- Maximum value parameter (→ 186)
- Minimum value parameter (→ 185)
- External temp. parameter (→ 80)
Pressure unit

Navigation

[Expert → Sensor → System units → Pressure unit]

Description

Use this function to select the unit for the pipe pressure.

Selection

SI units
- Pa
- kPa
- MPa
- bar

US units
- psi

Custom-specific units
- User pres.

Factory setting

Country-specific:
- bar
- psi

Additional information

Result

The unit is taken from:
- Pressure value parameter (→ 79)
- External press. parameter (→ 79)
- Pressure value parameter (→ 45)

Selection

For an explanation of the abbreviated units: → 205

Customer-specific units

The unit for the customer-specific energy is defined in the Pressure text parameter (→ 67).

Date/time format

Navigation

[Expert → Sensor → System units → Date/time format]

Description

Use this function to select the desired time format for calibration history.
Description of device parameters

Proline Promass 100 HART

Selection
- dd.mm.yy hh:mm
- dd.mm.yy am/pm
- mm/dd/yy hh:mm
- mm/dd/yy am/pm

Factory setting
dd.mm.yy hh:mm

Additional information
Selection
For an explanation of the abbreviated units: → 205

"User-spec. units" submenu

Navigation
Expert → Sensor → System units → User-spec. units

>User-spec. units

- Mass text → 63
- Mass offset → 63
- Mass factor → 63
- Volume text → 64
- Volume offset → 64
- Volume factor → 65
- Corr. vol. text → 65
- Corr vol. offset → 65
- Cor.vol factor → 66
- Density text → 66
- Density offset → 66
- Density factor → 66
- Pressure text → 67
- Pressure offset → 67
- Pressure factor → 67
Mass text

Navigation

Expert → Sensor → System units → User-spec. units → Mass text

Description

Use this function to enter a text for the user-specific unit of mass and mass flow. The corresponding time units (s, min, h, d) for mass flow are generated automatically.

User entry

Max. 10 characters such as letters, numbers or special characters (@, %, /)

Factory setting

User mass

Additional information

Result

The defined unit is shown as an option in the choose list of the following parameters:

- **Mass flow unit** parameter (→ 54)
- **Mass unit** parameter (→ 54)

Example

If the text CENT for "centner" is entered, the following options are displayed in the picklist for the **Mass flow unit** parameter (→ 54):

- CENT/s
- CENT/min
- CENT/h
- CENT/d

Mass offset

Navigation

Expert → Sensor → System units → User-spec. units → Mass offset

Description

Use this function to enter the zero point shift for the user-specific mass and mass flow unit.

User entry

Signed floating-point number

Factory setting

0

Additional information

Description

Value in user-specific unit = (factor × value in base unit) + offset

Mass factor

Navigation

Expert → Sensor → System units → User-spec. units → Mass factor

Description

Use this function to enter a quantity factor (without time) for the user-specific mass and mass flow unit.

User entry

Signed floating-point number
Description of device parameters

Factory setting

1.0

Additional information

Example

Mass of 1 Zentner = 50 kg → 0.02 Zentner = 1 kg → entry: 0.02

Volume text

Navigation

Expert → Sensor → System units → User-spec. units → Volume text

Description

Use this function to enter a text for the user-specific unit of volume and volume flow. The corresponding time units (s, min, h, d) for volume flow are generated automatically.

User entry

Max. 10 characters such as letters, numbers or special characters (@, %, /)

Factory setting

User vol.

Additional information

Result

The defined unit is shown as an option in the choose list of the following parameters:

- **Volume flow unit** parameter (→ 55)
- **Volume unit** parameter (→ 57)

Example

If the text GLAS is entered, the choose list of the **Volume flow unit** parameter (→ 55) shows the following options:

- GLAS/s
- GLAS/min
- GLAS/h
- GLAS/d

Volume offset

Navigation

Expert → Sensor → System units → User-spec. units → Volume offset

Description

Use this function to enter the offset for adapting the user-specific volume unit and volume flow unit (without time).

User entry

Signed floating-point number

Factory setting

0

Additional information

Description

Value in user-specific unit = (factor × value in base unit) + offset
Volume factor

Navigation

Expert → Sensor → System units → User-spec. units → Volume factor

Description

Use this function to enter a quantity factor (without time) for the user-specific volume and volume flow unit.

User entry

Signed floating-point number

Factory setting

1.0

Corr. vol. text

Navigation

Expert → Sensor → System units → User-spec. units → Corr. vol. text

Description

Use this function to enter a text for the user-specific unit of the corrected volume and corrected volume flow. The corresponding time units (s, min, h, d) for mass flow are generated automatically.

User entry

Max. 10 characters such as letters, numbers or special characters (@, %, /)

Factory setting

UserCrVol.

Additional information

Result

The defined unit is shown as an option in the choose list of the following parameters:

- Corr.volflow unit parameter (→ 57)
- Corr. vol. unit parameter (→ 58)

Example

If the text GLAS is entered, the choose list of the Corr.volflow unit parameter (→ 57) shows the following options:

- GLAS/s
- GLAS/min
- GLAS/h
- GLAS/d

Corr vol. offset

Navigation

Expert → Sensor → System units → User-spec. units → Corr. vol. offset

Description

Use this function to enter the offset for adapting the user-specific corrected volume unit and corrected volume flow unit (without time).

Value in user-specific unit = (factor × value in base unit) + offset

User entry

Signed floating-point number

Factory setting

0
Cor. vol. factor

Navigation
Expert → Sensor → System units → User-spec. units → Cor. vol. factor

Description
Use this function to enter a quantity factor (without time) for the user-specific corrected volume unit and corrected volume flow unit.

User entry
Signed floating-point number

Factory setting
1.0

Density text

Navigation
Expert → Sensor → System units → User-spec. units → Density text

Description
Use this function to enter a text or the user-specific unit of density.

User entry
Max. 10 characters such as letters, numbers or special characters (@, %, /)

Factory setting
User dens.

Additional information
Result
The defined unit is shown as an option in the choose list of the Density unit parameter (→ 59).

Example
Enter text “CE_L” for centners per liter

Density offset

Navigation
Expert → Sensor → System units → User-spec. units → Density offset

Description
Use this function to enter the zero point shift for the user-specific density unit.

User entry
Signed floating-point number

Factory setting
0

Density factor

Navigation
Expert → Sensor → System units → User-spec. units → Density factor

Description
Use this function to enter a quantity factor for the user-specific density unit.
<table>
<thead>
<tr>
<th>User entry</th>
<th>Signed floating-point number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factory setting</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Pressure text

Navigation

Expert → Sensor → System units → User-spec. units → Pressure text

Description

Use this function to enter a text for the user-specific pressure unit.

User entry

Max. 10 characters such as letters, numbers or special characters (@, %, /)

Factory setting

User pres.

Additional information

The defined unit is shown as an option in the choose list of the **Pressure unit** parameter (→ 61).

Pressure offset

Navigation

Expert → Sensor → System units → User-spec. units → Pressure offset

Description

Use this function to enter the offset for adapting the user-specific pressure unit.

User entry

Signed floating-point number

Factory setting

0

Pressure factor

Navigation

Expert → Sensor → System units → User-spec. units → Pressure factor

Description

Use this function to enter a quantity factor for the user-specific pressure unit.

User entry

Signed floating-point number

Factory setting

1.0

Additional information

Example

1 Dyn/cm² = 0.1 Pa → 10 Dyn/cm² = 1 Pa → user entry: 10
3.2.3 "Process param." submenu

Navigation

Expert → Sensor → Process param. → Flow damping

Description

Use this function to enter a time constant for flow damping (PT1 element). Reduction of the variability of the flow measured value (in relation to interference). For this purpose, the depth of the flow filter is adjusted: when the filter setting increases, the reaction time of the device also increases.

User entry

0 to 100.0 s

Factory setting

0 s

Additional information

Description

The damping is performed by a PT1 element 2).

User entry

- Value = 0: no damping
- Value > 0: damping is increased

Damping is switched off if 0 is entered (factory setting).

Result

The damping affects the following variables of the device:
- Outputs → 92
- Low flow cut off → 70
- Totalizers → 165

2) Proportional behavior with first-order lag
Density damping

Navigation
Expert → Sensor → Process param. → Density damping

Description
Use this function to enter a time constant for the damping (PT1 element) of the density measured value.

User entry
0 to 999.9 s

Factory setting
0 s

Additional information

Description

The damping is performed by a PT1 element 3).

User entry

- Value = 0: no damping
- Value > 0: damping is increased

Damping is switched off if 0 is entered (factory setting).

Temp. damping

Navigation
Expert → Sensor → Process param. → Temp. damping

Description
Use this function to enter a time constant for the damping (PT1 element) of the temperature measured value.

User entry
0 to 999.9 s

Factory setting
0 s

Additional information

Description

The damping is performed by a PT1 element 4).

User entry

- Value = 0: no damping
- Value > 0: damping is increased

Damping is switched off if 0 is entered (factory setting).

3) Proportional behavior with first-order lag
4) Proportional behavior with first-order lag
Flow override

Navigation

Description

Use this function to select whether to interrupt the evaluation of measured values. This is useful for the cleaning processes of a pipeline, for example.

Selection

- Off
- On

Factory setting

Off

Additional information

Result

This setting affects all the functions and outputs of the measuring device.

Description

Flow override is active

- The diagnostic message diagnostic message \(\Delta C453 \) Flow override is displayed.
- Output values
 - Output: Value at zero flow
 - Temperature: proceeding output
 - Totalizers 1-3: Stop being totalized

Result

Positive zero return can also be enabled via the Status input: Assign stat.inp. parameter.

"Low flow cut off" submenu

Navigation

Expert → Sensor → Process param. → Low flow cut off

<table>
<thead>
<tr>
<th>Assign variable</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>On value</td>
<td>71</td>
</tr>
<tr>
<td>Off value</td>
<td>71</td>
</tr>
<tr>
<td>Pres. shock sup.</td>
<td>72</td>
</tr>
</tbody>
</table>

Assign variable

Navigation

Expert → Sensor → Process param. → Low flow cut off → Assign variable

Description

Use this function to select the process variable for low flow cutoff detection.
Selection
- Off
- Mass flow
- Volume flow
- Correct.vol.flow

Factory setting
Mass flow

On value

Navigation
Expert → Sensor → Process param. → Low flow cut off → On value

Prerequisite
One of the following options is selected in the Assign variable parameter (→ 70):
- Mass flow
- Volume flow
- Correct.vol.flow

Description
Use this function to enter a switch-on value for low flow cut off. Low flow cut off is activated if the value entered is not equal to 0 → 71.

User entry
Positive floating-point number

Factory setting
Depends on country and nominal diameter → 200

Additional information
Dependency
The unit depends on the process variable selected in the Assign variable parameter (→ 70).

Off value

Navigation
Expert → Sensor → Process param. → Low flow cut off → Off value

Prerequisite
One of the following options is selected in the Assign variable parameter (→ 70):
- Mass flow
- Volume flow
- Correct.vol.flow

Description
Use this function to enter a switch-off value for low flow cut off. The off value is entered as a positive hysteresis from the on value→ 71.

User entry
0 to 100.0 %

Factory setting
50 %
Description of device parameters

Proline Promass 100 HART

Additional information

Example

![Diagram](image.png)

- **Q**: Flow
- **t**: Time
- **H**: Hysteresis
- **A**: Low flow cut off active
- **1**: Low flow cut off is activated
- **2**: Low flow cut off is deactivated
- **3**: On value entered
- **4**: Off value entered

Pres. shock sup.

Navigation

Prerequisite

One of the following options is selected in the **Assign variable** parameter (→ 70):

- Mass flow
- Volume flow
- Correct.vol.flow

Description

Use this function to enter the time interval for signal suppression (= active pressure shock suppression).

User entry

0 to 100 s

Factory setting

0 s

Additional information

Pressure shock suppression is enabled

- **Prerequisite**:
 - Flow rate < on-value of low flow cut off
 - Changing the flow direction
- **Output values**
 - Current output: outputs the current corresponding to zero flow.
 - Flow displayed: 0
 - Totalizer: the totalizers are pegged at the last correct value

Pressure shock suppression is disabled

- **Prerequisite**: the time interval set in this function has elapsed.
 - If the flow also exceeds the switch-off value for low flow cut off, the device starts processing the current flow value again and displays it.

Example

When closing a valve, momentarily strong fluid movements may occur in the pipeline, which are registered by the measuring system. These totalized flow values lead to a false totalizer status, particularly during batching processes.
Description of device parameters

Q Flow
t Time
A Drip
B Pressure shock
C Pressure shock suppression active as specified by the time entered
D Pressure shock suppression inactive
1 Valve closes
2 Flow falls below the on-value of the low flow cut off: pressure shock suppression is activated
3 The time entered has elapsed; pressure shock suppression is deactivated
4 The actual flow value is now displayed and output
5 On value for low flow cut off
6 Off value for low flow cut off

"Partial pipe det" submenu

Navigation
Expert → Sensor → Process param. → Partial pipe det

<table>
<thead>
<tr>
<th>Partial pipe det</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign variable</td>
<td>→ 74</td>
</tr>
<tr>
<td>Low value</td>
<td>→ 74</td>
</tr>
<tr>
<td>High value</td>
<td>→ 74</td>
</tr>
<tr>
<td>Response time</td>
<td>→ 75</td>
</tr>
<tr>
<td>Max. damping</td>
<td>→ 75</td>
</tr>
</tbody>
</table>
Assign variable

Navigation
Expert → Sensor → Process param. → Partial pipe det → Assign variable

Description
Use this function to select a process variable to detect empty or partially filled measuring tubes.
For gas measurement: Deactivate monitoring due to low gas density.

Selection
- Off
- Density
- Ref. density

Factory setting
Off

Low value

Navigation
Expert → Sensor → Process param. → Partial pipe det → Low value

Prerequisite
One of the following options is selected in the Assign variable parameter (→ 74):
- Density
- Ref. density

Description
Use this function to enter a lower limit value to enable detection of empty or partially filled measuring tubes. If the measured density falls below this value, monitoring is enabled.

User entry
Signed floating-point number

Factory setting
200

Additional information
User entry

The lower limit value must be less than the upper limit value defined in the High value parameter (→ 74).

Limit value

If the displayed value is outside the limit value, the measuring device displays the diagnostic message **S862 Partly filled**.

High value

Navigation
Expert → Sensor → Process param. → Partial pipe det → High value

Prerequisite
One of the following options is selected in the Assign variable parameter (→ 74):
- Density
- Ref. density
Description

Use this function to enter an upper limit value to enable detection of empty or partially filled measuring tubes. If the measured density exceeds this value, detection is enabled.

User entry
Signed floating-point number

Factory setting
6000

Additional information

User entry

The upper limit value must be greater than the lower limit value defined in the **Low value** parameter (→ 74).

- The unit depends on the process variable selected in the **Assign variable** parameter (→ 74).

Limit value

- If the displayed value is outside the limit value, the measuring device displays the diagnostic message **ΔS862 Partly filled**.

Response time

Navigation

ensation → Process param. → Partial pipe det → Response time

Prerequisite

One of the following options is selected in the **Assign variable** parameter (→ 74):
- Density
- Ref.density

Description

Use this function to enter the minimum length of time (debouncing time) the signal must be present for the diagnostic message **ΔS862 Partly filled** to be triggered if the measuring pipe is empty or partially full.

User entry

0 to 100 s

Factory setting

1 s

Max. damping

Navigation

ensation → Process param. → Partial pipe det → Max. damping

Prerequisite

One of the following options is selected in the **Assign variable** parameter (→ 74):
- Density
- Ref.density

Description

Use this function to enter a damping value to enable detection of empty or partially filled measuring tubes.

User entry

Positive floating-point number

Factory setting

0
Additional information

Description

If oscillation damping exceeds the specified value, the measuring device presumes that the pipe is partially filled and the flow signal is set to 0. The measuring device displays the diagnostic message \textit{S862 Partly filled}. In the case of non-homogeneous media or air pockets, the damping of the measuring tubes increases.

User entry

- Damping is disabled if 0 is entered (factory setting).
- Damping is enabled if the value entered is greater than 0.
- The value entered depends on application-specific influence variables, such as the medium, nominal diameter, sensor etc.

Example

- If the pipe is filled normally the value of the oscillation damping is 500.
- If the pipe is partially filled the value of the oscillation damping is > 5000.
- A practical damping value would then be 2000: enter 2000 as the value.

3.2.4 "Measurement mode" submenu

Navigation

\hspace{1cm} Expert \rightarrow Sensor \rightarrow Measurement mode

\begin{center}
\begin{tabular}{|l|}
\hline
\hspace{1cm} Measurement mode \\
\hline
Select medium \rightarrow 76 \\
Select gas type \rightarrow 77 \\
Sound velocity \rightarrow 77 \\
Temp. coeff. SV \rightarrow 78 \\
\hline
\end{tabular}
\end{center}

Select medium

Navigation

\hspace{1cm} Expert \rightarrow Sensor \rightarrow Measurement mode \rightarrow Select medium

Description

Use this function to select the type of medium.

Selection

Liquid

Factory setting

Liquid
Select gas type

Navigation

[Expert → Sensor → Measurement mode → Select gas type]

Prerequisite

The **Gas** option is selected in the **Select medium** parameter (→ 76).

Description

Use this function to select the type of gas for the measuring application.

Selection

- Air
- Ammonia NH3
- Argon Ar
- Sulf. hex.fl.SF6
- Oxygen O2
- Ozone O3
- Nitrog. ox. NOx
- Nitrogen N2
- Nitrous ox. N2O
- Methane CH4
- Hydrogen H2
- Helium He
- Hydrog.chlor.HCl
- Hydrog.sulf. H2S
- Ethylene C2H4
- Carbon diox. CO2
- Carbon monox. CO
- Chlorine Cl2
- Butane C4H10
- Propane C3H8
- Propylene C3H6
- Ethane C2H6
- Others

Factory setting

Methane CH4

Additional information

Description

The gas type needs to be selected so that it is possible to comply with accuracy specifications in gas applications.

Sound velocity

Navigation

[Expert → Sensor → Measurement mode → Sound velocity]

Prerequisite

In the **Select gas type** parameter (→ 77), the **Others** option is selected.

Description

Use this function to enter the sound velocity of the gas at 0 °C (+32 °F).

User entry

1 to 99999.9999 m/s

Factory setting

415.0 m/s
Temp. coeff. SV

Navigation

Navigate to Expert → Sensor → Measurement mode → Temp. coeff. SV

Prerequisite

The Others option is selected in the Select gas type parameter (→ 77).

Description

Use this function to enter a temperature coefficient for the sound velocity of the gas.

User entry

Positive floating-point number

Factory setting

0 (m/s)/K

3.2.5 "External comp." submenu

Navigation

Navigate to Expert → Sensor → External comp.

Description

Use this function to select the process variable which is taken from an external device.

Selection

- Off
- Pressure
- Temperature

Factory setting

Off
Pressure compen.

Navigation

Description

Use this function to select the type of pressure compensation.

Selection

- Off
- Fixed value
- External value

Factory setting

Off

Additional information

Selection

- Fixed value
 A fixed pressure value is used for compensation: *Pressure value* parameter (→ 79)
- External value
 The pressure value read in via HART is used for compensation.
- **Current input 1** option, **Current input 2** option
 The pressure value read in via the current input is used for compensation.

Pressure value

Navigation

Expert → Sensor → External comp. → Pressure value

Prerequisite

The **Fixed value** option is selected in the Pressure compen. parameter (→ 79).

Description

Use this function to enter a value for the process pressure that is used for pressure correction.

User entry

Positive floating-point number

Factory setting

0 bar

Additional information

User entry

The unit is taken from the Pressure unit parameter (→ 61)

External press.

Navigation

Prerequisite

The **External value** option is selected in the Pressure compen. parameter (→ 79).

Description

Use this function to enter an external pressure value.

User interface

Positive floating-point number

Factory setting

0 bar
External temp.

Additional information
User entry

The unit is taken from the **Pressure unit** parameter (→ 61)

Navigation

Prerequisite
In the **External value** parameter (→ 78), the **Temperature** option is selected.

Description
Use this function to enter the external temperature.

User entry
-273.15 to 99999 °C

Factory setting
Country-specific:

- 0 °C
- +32 °F

Additional information
Description

The unit is taken from the **Temperature unit** parameter (→ 60)

3.2.6 "Calculated value" submenu

Navigation
Expert → Sensor → Calculated value

- **Calculated value**
 - **Corr. vol.flow.** → 80

"Corr. vol.flow." submenu

Navigation

- **Corr. vol.flow.** → 81
 - **Ext. ref.density** → 81
 - **Fix ref.density** → 82
 - **Ref. temperature** → 82

Navigation

Description

Use this function to select the reference density for calculating the corrected volume flow.

Selection

- Fix ref. density
- Calc ref density
- Ref. dens API 53

Factory setting

Calc ref density

Additional information

The **Ref. dens API 53** option is suitable only for applications involving LPG\(^5\), where the flow rate is measured on the basis of the corrected volume flow.

Selecting this option means that the reference density is used, taking into account the values in table 53 E of API MPMS section 11.2. Temperature measurement (measured internally or read into the device from an external source) and density measurement take place during operation while the medium is flowing. The mass flow is divided by the reference density to give the corrected volume flow and is issued as an output signal.

Ext. ref. density

Navigation

Expert → Sensor → Calculated value → Corr. vol. flow → Ext. ref. density

Description

Displays the reference density which is read in externally, e.g. via the current input, HART input.

User interface

Floating point number with sign

Additional information

Dependency

The unit is taken from the **Ref. dens. unit** parameter (→ 60)

\(^5\) liquefied petroleum gas
Fix ref. density

Navigation

Prerequisite
The Fix ref. density option is selected in the Corr. vol.flow. parameter (→ 81) parameter.

Description
Use this function to enter a fixed value for the reference density.

User entry
Positive floating-point number

Factory setting
1 kg/Nl

Additional information
Dependency
The unit is taken from the Ref. dens. unit parameter (→ 60)

Ref. temperature

Navigation

Prerequisite
The Calc ref density option is selected in the Corr. vol.flow. parameter (→ 81).

Description
Use this function to enter a reference temperature for calculating the reference density.

User entry
–273.15 to 99999 °C

Factory setting
Country-specific:
- +20 °C
- +68 °F

Additional information
Dependency
The unit is taken from the Temperature unit parameter (→ 60)

Reference density calculation

\[
\rho_n = \rho \cdot (1 + \alpha \cdot \Delta t + \beta \cdot \Delta t^2)
\]

- \(\rho_n\): reference density
- \(\rho\): fluid density currently measured
- \(t\): fluid temperature currently measured
- \(t_N\): reference temperature at which the reference density is calculated (e.g. 20 °C)
- \(\Delta t\): \(t - t_N\)
- \(\alpha\): linear expansion coefficient of the fluid, unit = \([1/K]\); K = Kelvin
- \(\beta\): square expansion coefficient of the fluid, unit = \([1/K^2]\)
Linear exp coeff

Navigation

Expert → Sensor → Calculated value → Corr. vol.flow. → Linear exp coeff

Prerequisite

The **Calc ref density** option is selected in the **Corr. vol.flow.** parameter (→ 81) parameter.

Description

Use this function to enter a linear, fluid-specific expansion coefficient for calculating the reference density.

User entry

Signed floating-point number

Factory setting

0.0

Square exp coeff

Navigation

Prerequisite

The **Calc ref density** option is selected in the **Corr. vol.flow.** parameter (→ 81) parameter.

Description

For fluid with a non-linear expansion pattern: use this function to enter a quadratic, fluid-specific expansion coefficient for calculating the reference density.

User entry

Signed floating-point number

Factory setting

0.0

3.2.7 "Sensor adjustm." submenu

Navigation

- **Sensor adjustm.**
 - Install. direct. → 84
 - **Zero point adj.** → 84
 - **Variable adjust** → 85
Install. direct.

Navigation

Description

Use this function to change the sign of the medium flow direction.

Selection

• In arrow direct.
• Against arrow

Factory setting

In arrow direct.

Additional information

Description

Before changing the sign: ascertain the actual direction of fluid flow with reference to the direction indicated by the arrow on the sensor nameplate.

“Zero point adj.” submenu

• It is generally not necessary to perform zero point adjustment.
• However, this function may be needed in some applications with low flow and strict accuracy requirements.
• A zero point adjustment cannot increase repeatability.
• The following conditions should be met to perform a zero point adjustment successfully without the adjustment finishing in an error:
 – The real flow must be 0.
 – The pressure must be at least 15 psi g.
• The adjustment takes a maximum of 60 s. The more stable the conditions, the faster the adjustment is completed.
• This function can also be used to check the health of the measuring device.
 A healthy measuring device has a maximum zero point deviation of ±100 compared to the factory setting of the measuring device (calibration report).

Navigation

Zero point adj.

Navigation

Description

Use this function to select the start of the zero point adjustment.

Observe conditions → 84.
Selection

- Cancel
- Busy
- Zero adjust fail
- Start

Factory setting
Cancel

Additional information

Description

- Cancel
 If zero point adjustment has failed, select this option to cancel zero point adjustment.
- Busy
 Is displayed during zero point adjustment.
- Zero adjust fail
 Is displayed if zero point adjustment has failed.
- Start
 Select this option to start zero point adjustment.

Progress

Navigation

Description
The progress of the process is indicated.

User interface
0 to 100%

"Variable adjust" submenu

Navigation

Expert → Sensor → Sensor adjustm. → Variable adjust

<table>
<thead>
<tr>
<th>Variable adjust</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass flow offset</td>
<td>→ 86</td>
</tr>
<tr>
<td>Mass flow factor</td>
<td>→ 86</td>
</tr>
<tr>
<td>Vol. flow offset</td>
<td>→ 86</td>
</tr>
<tr>
<td>Vol. flow factor</td>
<td>→ 87</td>
</tr>
<tr>
<td>Density offset</td>
<td>→ 87</td>
</tr>
<tr>
<td>Density factor</td>
<td>→ 87</td>
</tr>
<tr>
<td>Corr. vol offset</td>
<td>→ 88</td>
</tr>
<tr>
<td>Corr. vol factor</td>
<td>→ 88</td>
</tr>
</tbody>
</table>
Description of device parameters

Proline Promass 100 HART

- **Ref.dens. offset**
 - → 88

- **Ref.dens. factor**
 - → 89

- **Temp. offset**
 - → 89

- **Temp. factor**
 - → 89

Mass flow offset

Navigation

Description
Use this function to enter the zero point shift for the mass flow trim. The mass flow unit on which the shift is based is kg/s.

User entry
Signed floating-point number

Factory setting
0 kg/s

Additional information
Description
Corrected value = (factor × value) + offset

Mass flow factor

Navigation

Description
Use this function to enter a quantity factor (without time) for the mass flow. This multiplication factor is applied over the mass flow range.

User entry
Positive floating-point number

Factory setting
1

Additional information
Description
Corrected value = (factor × value) + offset

Vol. flow offset

Navigation

Description
Use this function to enter the zero point shift for the volume flow trim. The volume flow unit on which the shift is based is m³/s.
Proline Promass 100 HART

Description of device parameters

User entry
Signed floating-point number

Factory setting
0 m³/s

Additional information

Vol. flow factor

Description
Use this function to enter a quantity factor (without time) for the volume flow. This multiplication factor is applied over the volume flow range.

User entry
Positive floating-point number

Factory setting
1

Additional information

Density offset

Description
Use this function to enter the zero point shift for the density trim. The density unit on which the shift is based is kg/m³.

User entry
Signed floating-point number

Factory setting
0 kg/m³

Additional information

Density factor

Description
Use this function to enter a quantity factor for the density. This multiplication factor is applied over the density range.

User entry
Positive floating-point number
Corr. vol offset

Navigation

Description
Use this function to enter the zero point shift for the corrected volume flow trim. The corrected volume flow unit on which the shift is based is 1 Nm³/s.

User entry
Signed floating-point number

Factory setting
0 Nm³/s

Additional information
Corrected value = (factor × value) + offset

Corr. vol factor

Navigation

Description
Use this function to enter a quantity factor (without time) for the corrected volume flow. This multiplication factor is applied over the corrected volume flow range.

User entry
Positive floating-point number

Factory setting
1

Additional information
Corrected value = (factor × value) + offset

Ref.dens. offset

Navigation
Expert → Sensor → Sensor adjustm. → Variable adjust → Ref.dens. offset

Description
Use this parameter to enter the zero point shift for the reference density trim. The reference density unit on which the shift is based is 1 kg/Nm³.

User entry
Signed floating-point number

Factory setting
0 kg/Nm³
Ref. dens. factor

Navigation

Expert → Sensor → Sensor adjustm. → Variable adjust → Ref. dens. factor

Description

Use this function to enter a quantity factor (without time) for the reference density. This multiplication factor is applied over the reference density range.

User entry

Positive floating-point number

Factory setting

1

Additional information

Description

Corrected value = (factor × value) + offset

Temp. offset

Navigation

Expert → Sensor → Sensor adjustm. → Variable adjust → Temp. offset

Description

Use this function to enter the zero point shift for the temperature trim. The temperature unit on which the shift is based is K.

User entry

Signed floating-point number

Factory setting

0 K

Additional information

Description

Corrected value = (factor × value) + offset

Temp. factor

Navigation

Expert → Sensor → Sensor adjustm. → Variable adjust → Temp. factor

Description

Use this function to enter a quantity factor for the temperature. In each case, this factor refers to the temperature in K.

User entry

Positive floating-point number

Factory setting

1
Additional information

Description

Corrected value = (factor × value) + offset

3.2.8 "Calibration" submenu

Navigation

Expert → Sensor → Calibration

Cal. factor

Description
Displays the current calibration factor for the sensor.

User interface
Signed floating-point number

Factory setting
Depends on nominal diameter and calibration.

Zero point

Description
Use this function to enter the zero point correction value for the sensor.

User entry
Signed floating-point number

Factory setting
Depends on nominal diameter and calibration.
Nominal diameter

Navigation

Expert → Sensor → Calibration → Nominal diameter

Description

Displays the nominal diameter of the sensor.

User interface

DNxx / x"

Factory setting

Depends on the size of the sensor

Additional information

Description

The value is also specified on the sensor nameplate.

C0 to 5

Navigation

Expert → Sensor → Calibration → C0 to 5

Description

Displays the current density coefficients C0 to 5 of the sensor.

User interface

Signed floating-point number

Factory setting

0

3.2.9 "Supervision" submenu

Navigation

Expert → Sensor → Supervision

Limit tube damp.

Navigation

Expert → Sensor → Supervision → Limit tube damp.

Description

Use this function to enter a limit value for measuring tube damping.

User entry

Positive floating-point number

Factory setting

Positive floating-point number
Additional information

Limit value

- If the displayed value is outside the limit value, the measuring device displays the diagnostic message **Tube damp. high**.
- For detecting inhomogeneous media, for example...

3.3 "Output" submenu

Navigation

- Expert → Output

3.3.1 "Current output 1" submenu

Navigation

- Expert → Output → Curr.output 1

- **Assign curr.**
- **Current span**
- **Fixed current**
- **0/4 mA value**
- **20 mA value**
- **Measuring mode**
- **Damping out.**
- **Response time**
- **Failure mode**
- **Failure current**
- **Output curr. 1**
- **Measur. curr. 1**
Assign curr.

Navigation

[专家模式] → 输出 → Curr.output 1 → Assign curr.

Description

使用此功能来选择当前输出的工艺变量。

- Description of the options Oscil. frequency, Oscil. amplitude, Oscil. damping and Signal asymmetry: Value 1 display parameter (→ 页 17)

Selection

- Off
- Mass flow
- Volume flow
- Correct.vol.flow
- Target mass flow
- Carrier mass fl.
- Density
- Ref.density
- Concentration
- Dyn. viscosity
- Kinematic visc.
- TempCompDynVisc
- TempCompKinVisc
- Temperature
- Carr. pipe temp.
- Electronic temp.
- Osc. freq. 0
- Osc. freq. 1
- Osc. ampl. 0
- Osc. ampl. 1
- Freq. fluct. 0
- Freq. fluct. 1
- Osc. damping 0
- Osc. damping 1
- Damping fluct 0
- Damping fluct 1
- Signal asymmetry
- Exc. current 0
- Exc. current 1
- Sensor integrity

Factory setting

- Mass flow

Current span

Navigation

[专家模式] → 输出 → Curr.output 1 → Current span

Description

使用此功能来选择工艺值输出的电流范围以及信号报警的上、下限。

* Visibility depends on order options or device settings
Description of device parameters

Proline Promass 100 HART

Selection

- 4...20 mA NAMUR
- 4...20 mA US
- 4...20 mA
- 0...20 mA
- Fixed current

Factory setting

Country-specific:

- 4...20 mA NAMUR
- 4...20 mA US

Additional information

Description

- In the event of a device alarm, the current output adopts the value specified in the Failure mode parameter (→ 105).
- If the measured value is outside the measuring range, the diagnostic message \(\triangle S441 \text{ Curr.output 1} \) is displayed.
- The measuring range is specified via the 0/4 mA value parameter (→ 95) and 20 mA value parameter (→ 97).

"Fixed current" option

- This option is used for a HART Multidrop network.
- It can only be used for the 4...20 mA HART current output (current output 1).
- The current value is set via the Fixed current parameter (→ 95).

Example

Shows the relationship between the current span for the output of the process variable and the lower and upper alarm levels:

<table>
<thead>
<tr>
<th>Selection</th>
<th>1 (mA)</th>
<th>2 (mA)</th>
<th>3 (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4...20 mA NAMUR</td>
<td>3.8 to 20.5 mA</td>
<td>< 3.6 mA</td>
<td>> 21.95 mA</td>
</tr>
<tr>
<td>4...20 mA US</td>
<td>3.9 to 20.8 mA US</td>
<td>< 3.6 mA</td>
<td>> 21.95 mA</td>
</tr>
<tr>
<td>4...20 mA</td>
<td>4 to 20.5 mA</td>
<td>< 3.6 mA</td>
<td>> 21.95 mA</td>
</tr>
<tr>
<td>0...20 mA</td>
<td>0 to 20.5 mA</td>
<td>< 0 mA</td>
<td>> 21.95 mA</td>
</tr>
</tbody>
</table>

If the flow exceeds or falls below the upper or lower signal on alarm level, the diagnostic message \(\triangle S441 \text{ Curr.output 1} \) is displayed.
Fixed current

Navigation
Expert → Output → Curr.output 1 → Fixed current

Prerequisite
The Fixed current option is selected in the Current span parameter (→ 93).

Description
Use this function to enter a constant current value for the current output.

User entry
0 to 22.5 mA

Factory setting
22.5 mA

0/4 mA value

Navigation
Expert → Output → Curr.output 1 → 0/4 mA value

Prerequisite
One of the following options is selected in the Current span parameter (→ 93):
- 4...20 mA NAMUR
- 4...20 mA US
- 4...20 mA
- 0...20 mA

Description
Use this function to enter a value for the 0/4 mA current.

User entry
Signed floating-point number

Factory setting
Country-specific:
- 0 kg/h
- 0 lb/min

Additional information
Description
Positive and negative values are permitted depending on the process variable assigned in the Assign curr. parameter (→ 93). In addition, the value can be greater than or smaller than the value assigned for the 20 mA current in the 20 mA value parameter (→ 97).

Dependency
The unit depends on the process variable selected in the Assign curr. parameter (→ 93).

Current output behavior
The current output behaves differently depending on the settings configured in the following parameters:
- Current span (→ 93)
- Measuring mode (→ 97)
- Failure mode (→ 105)

Configuration examples
Some examples of parameter settings and their effect on the current output are given in the following section.
Configuration example A
Measuring mode with **Forward flow** option
- **0/4 mA value** parameter (→ 95) = not equal to zero flow (e.g. -250 m³/h)
- **20 mA value** parameter (→ 97) = not equal to zero flow (e.g. +750 m³/h)
- Calculated current value = 8 mA at zero flow

The operational range of the measuring device is defined by the values entered for the **0/4 mA value** parameter (→ 95) and **20 mA value** parameter (→ 97). If the effective flow exceeds or falls below this operational range, the diagnostic message **△S441 Curr.output 1** is displayed.

Configuration example B
Measuring mode with **Forward/Reverse** option

The current output signal is independent of the direction of flow (absolute amount of the measured variable). The values for the **0/4 mA value** parameter (→ 95) and **20 mA value** parameter (→ 97) must have the same sign. The value for the **20 mA value** parameter (→ 97) (e.g. reverse flow) corresponds to the mirrored value for the **20 mA value** parameter (→ 97) (e.g. forward flow).

Configuration example C
Measuring mode with **Rev. flow comp.** option
If flow is characterized by severe fluctuations (e.g. when using reciprocating pumps), flow components outside the measuring range are buffered, balanced and output after a maximum delay of 60 s → 97.
20 mA value

Navigation

Expert → Output → Curr.output 1 → 20 mA value

Prerequisite

One of the following options is selected in the Current span parameter (→ 93):

- 4...20 mA NAMUR
- 4...20 mA US
- 4...20 mA
- 0...20 mA

Description

Use this function to enter a value for the 20 mA current.

User entry

Signed floating-point number

Factory setting

Depends on country and nominal diameter (→ 199)

Additional information

Description

Positive and negative values are permitted depending on the process variable assigned in the Assign curr. parameter (→ 93). In addition, the value can be greater than or smaller than the value assigned for the 0/4 mA current in the 0/4 mA value parameter (→ 95).

Dependency

The unit depends on the process variable selected in the Assign curr. parameter (→ 93).

Example

- Value assigned to 0/4 mA = –250 m³/h
- Value assigned to 20 mA = +750 m³/h
- Calculated current value = 8 mA (at zero flow)

If the Forward/Reverse option is selected in the Measuring mode parameter (→ 97), different signs cannot be entered for the values of the 0/4 mA value parameter (→ 95) and 20 mA value parameter (→ 97). The diagnostic message S441 Curr.output 1 is displayed.

Configuration examples

Observe the configuration examples for the 0/4 mA value parameter (→ 95).

Measuring mode

Navigation

Expert → Output → Curr.output 1 → Measuring mode

Prerequisite

One of the following options is selected in the Assign curr. parameter (→ 93):

- Mass flow
- Volume flow
- Correct.vol.flow
- Target mass flow *
- Carrier mass fl. *

* Visibility depends on order options or device settings
Density
Ref.density
Concentration
Dynam. viscosity
Kinematic visc.
TempCompDynVisc
TempCompKinVisc
Temperature
Carr. pipe temp.
Electronic temp.
Osc. freq. 0
Osc. freq. 1
Osc. ampl. 0
Osc. ampl. 1
Freq. fluct. 0
Freq. fluct. 1
Osc. damping 0
Osc. damping 1
Osc.damp.fluct 0
Osc.damp.fluct 1
Signal asymmetry
Exc. current 0
Exc. current 1
HBSI

Detailed description of the options Oscil. frequency, Oscil. amplitude, Oscil. damping and Signal asymmetry: Value 1 display parameter (→ 17)

One of the following options is selected in the Current span parameter (→ 93):
4...20 mA NAMUR
4...20 mA US
4...20 mA
0...20 mA

Description
Use this function to select the measuring mode for the current output.

Selection
Forward flow
Forward/Reverse
Rev. flow comp.

Factory setting
Forward flow

Additional information
The process variable that is assigned to the current output via the Assign curr. parameter (→ 93) is displayed below the parameter.

Forward flow option
The current output signal is proportional to the process variable assigned. The measuring range is defined by the values that are assigned to the 0/4 mA and 20 mA current value.

* Visibility depends on order options or device settings
The flow components outside the scaled measuring range are taken into account for signal output as follows:

- Both values are defined such that they are not equal to zero flow e.g.:
 - 0/4 mA current value = -5 m³/h
 - 20 mA current value = 10 m³/h
- If the effective flow exceeds or falls below this measuring range, the diagnostic message \(\Delta S441 \text{ Curr.output 1} \) is displayed.

'Forward/Reverse' option

<table>
<thead>
<tr>
<th></th>
<th>Current</th>
<th>Flow</th>
<th>1 Value assigned to the 0/4 mA current</th>
<th>2 Forward flow</th>
<th>3 Reverse flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The current output signal is independent of the direction of flow (absolute amount of the measured variable). The values for the 0/4 mA value parameter (→ 95) and 20 mA value parameter (→ 97) must have the same sign.
- The value for the 20 mA value parameter (→ 97) (e.g. reverse flow) corresponds to the mirrored value for the 20 mA value parameter (→ 97) (e.g. forward flow).

'Rev. flow comp.' option

The Rev. flow comp. option is primarily used to compensate for abrupt reverse flow which can occur in connection with positive displacement pumps as a result of wear or high viscosity. The reverse flows are recorded in a buffer and balanced against forward flow the next time flow is in the forward direction.

If buffering cannot be processed within approx. 60 s, the diagnostic message \(\Delta S441 \text{ Curr.output 1} \) is displayed.

Flow values can aggregate in the buffer in the event of prolonged and unwanted fluid reverse flow. However, these flows are not taken into consideration by the current output configuration, i.e. the reverse flow is not compensated.

If this option is set, the measuring device does not attenuate the flow signal. The flow signal is not attenuated.

Examples of how the current output behaves

Example 1

Defined measuring range: lower range value and upper range value with the same sign
Description of device parameters

Proline Promass 100 HART

2 Measuring range

I Current
Q Flow
1 Lower range value (value assigned to 0/4 mA current)
2 Upper range value (value assigned to 20 mA current)

With the following flow response:

3 Flow response

Q Flow
t Time

With **Forward flow** option

The current output signal is proportional to the process variable assigned. The flow components outside the scaled measuring range are not taken into account for signal output.

With **Forward/Reverse** option

The current output signal is independent of the direction of flow.

With **Rev. flow comp.** option
Flow components outside the span are buffered, balanced and output after a maximum delay of 60 s.

\[I = A \]

$S = A$

Example 2

Defined measuring range: lower range value and upper range value with different signs

\[I \] Current
\[t \] Time
\[S \] Flow components saved
\[A \] Balancing of saved flow components

With flow a (−) outside, b (− -) inside the measuring range

\[Q \] Flow
\[t \] Time
\[1 \] Lower range value (value assigned to 0/4 mA current)
\[2 \] Upper range value (value assigned to 20 mA current)

With **Forward flow** option

- a (−): The flow components outside the scaled measuring range cannot be taken into account for signal output.
 The diagnostic message **ΔS441 Curr.output 1** is displayed.
- b (− -): The current output signal is proportional to the process variable assigned.
Description of device parameters

Proline Promass 100 HART

I [mA] vs. t

With **Forward/Reverse** option

This option is not possible in this case as the values for the **0/4 mA value** parameter (→ 95) and **20 mA value** parameter (→ 97) have different signs.

With **Rev. flow comp.** option

Flow components outside the span are buffered, balanced and output after a maximum delay of 60 s.

Damping out.

Navigation

Expert → Output → Curr.output 1 → Damping out.

Prerequisite

One of the following options is selected in the **Assign curr.** parameter (→ 93):

- Mass flow
- Volume flow
- Correct.vol.flow
- Target mass flow
- Carrier mass fl.
- Density
- Ref.density
- Concentration
- Dynam. viscosity
- Kinematic visc.
- TempCompDynVisc
- TempCompKinVisc
- Temperature
- Carr. pipe temp.
- Electronic temp.
- Osc. freq. 0

* Visibility depends on order options or device settings
Proline Promass 100 HART

Description of device parameters

- Osc. freq. 1 *
- Osc. ampl. 0 *
- Osc. ampl. 1 *
- Freq. fluct. 0
- Freq. fluct. 1 *
- Osc. damping 0
- Osc. damping 1 *
- Osc.damp.fluct 0
- Osc.damp.fluct 1 *
- Signal asymmetry
- Exc. current 0
- Exc. current 1 *
- HBSI *

Detailed description of the options Oscil. frequency, Oscil. amplitude, Oscil. damping and Signal asymmetry: Value 1 display parameter (→ 17)

One of the following options is selected in the **Current span** parameter (→ 93):
- 4...20 mA NAMUR
- 4...20 mA US
- 4...20 mA
- 0...20 mA

Description

Use this function to enter a time constant for the reaction time of the current output signal to fluctuations in the measured value caused by process conditions.

User entry

0.0 to 999.9 s

Factory setting

1.0 s

Additional information

Use this function to enter a time constant (PT1 element 6) for current output damping:
- If a low time constant is entered, the current output reacts particularly quickly to fluctuating measured variables.
- On the other hand, the current output reacts more slowly if a high time constant is entered.

Damping is switched off if 0 is entered (factory setting).

Response time

Navigation

Expert → Output → Curr.output 1 → Response time

Prerequisite

One of the following options is selected in the **Assign curr.** parameter (→ 93):
- Mass flow
- Volume flow
- Correct.vol.flow
- Target mass flow *
- Carrier mass fl.
- Density
- Ref.density
- Concentration *

* Visibility depends on order options or device settings

6) Proportional transmission behavior with first order delay
Description of device parameters

- Dynam. viscosity *
- Kinematic visc.
- TempCompDynVisc *
- TempCompKinVisc *
- Temperature
- Carr. pipe temp. *
- Electronic temp.
- Osc. freq. 0
- Osc. freq. 1 *
- Osc. ampl. 0 *
- Osc. ampl. 1 *
- Freq. fluct. 0
- Freq. fluct. 1 *
- Osc. damping 0
- Osc. damping 1 *
- Osc.damp.fluct 0
- Osc.damp.fluct 1 *
- Signal asymmetry
- Exc. current 0
- Exc. current 1 *
- HBSI *

Detailed description of the options Oscil. frequency, Oscil. amplitude, Oscil. damping and Signal asymmetry: Value 1 display parameter (→ 17)

One of the following options is selected in the Current span parameter (→ 93):
- 4...20 mA NAMUR
- 4...20 mA US
- 4...20 mA
- 0...20 mA

Description
Displays the response time. This specifies how quickly the current output reaches the measured value change of 63 % of 100 % of the measured value change.

User interface
Positive floating-point number

Additional information

The response time is made up of the time specified for the following dampings:
- Current output damping → 102
 and
- Depending on the measured variable assigned to the output.
 - Flow damping
 or
 - Density damping
 or
 - Temperature damping

* Visibility depends on order options or device settings
Failure mode

Navigation

Expert → Output → Curr.output 1 → Failure mode

Prerequisite

One of the following options is selected in the Assign curr. parameter (→ 93):

• Mass flow
• Volume flow
• Correct.vol.flow
• Target mass flow *
• Carrier mass fl. *
• Density
• Ref.density
• Concentration *
• Dynam. viscosity *
• Kinematic visc.
• TempCompDynVisc *
• TempCompKinVisc *
• Temperature
• Carr. pipe temp. *
• Electronic temp.
• Osc. freq. 0
• Osc. freq. 1 *
• Osc. ampl. 0 *
• Osc. ampl. 1 *
• Freq. fluct. 0
• Freq. fluct. 1 *
• Osc. damping 0
• Osc. damping 1 *
• Osc.damp.fluct 0
• Osc.damp.fluct 1 *
• Signal asymmetry
• Exc. current 0
• Exc. current 1 *
• HBSI *

Detailed description of the options Oscil. frequency, Oscil. amplitude, Oscil. damping and Signal asymmetry: Value 1 display parameter (→ 17)

One of the following options is selected in the Current span parameter (→ 93):

• 4...20 mA NAMUR
• 4...20 mA US
• 4...20 mA
• 0...20 mA

Description

Use this function to select the value of the current output in the event of a device alarm.

Selection

• Min.
• Max.
• Last valid value
• Actual value
• Defined value

Factory setting

Max.

* Visibility depends on order options or device settings
Description of device parameters

Additional information

Description

This setting does not affect the failsafe mode of other outputs and totalizers. This is specified in separate parameters.

Min. option

The current output adopts the value of the lower level for signal on alarm.

Min. option

The signal on alarm level is defined via the **Current span** parameter (→ 93).

Max. option

The current output adopts the value of the upper level for signal on alarm.

Max. option

The signal on alarm level is defined via the **Current span** parameter (→ 93).

Last valid value option

The current output adopts the last measured value that was valid before the device alarm occurred.

Actual value option

The current output adopts the measured value on the basis of the current flow measurement; the device alarm is ignored.

Defined value option

The current output adopts a defined measured value.

Defined value option

The measured value is defined via the **Failure current** parameter (→ 106).

Failure current

Navigation

Expert → Output → Curr.output 1 → Failure current

Prerequisite

The **Defined value** option is selected in the **Failure mode** parameter (→ 105).

Description

Use this function to enter a fixed value that the current output adopts in the event of a device alarm.

User entry

0 to 22.5 mA

Factory setting

22.5 mA

Output curr. 1

Navigation

Expert → Output → Curr.output 1 → Output curr. 1

Description

Displays the current value currently calculated for the current output.

User interface

0 to 22.5 mA
Measur. curr. 1

Navigation

Expert → Output → Curr.output 1 → Measur. curr. 1

Description

Use this function to display the actual measured value of the output current.

User interface

0 to 30 mA

3.3.2 "PFS output" submenu

Navigation

Expert → Output → PFS output

<table>
<thead>
<tr>
<th>PFS output 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating mode</td>
</tr>
<tr>
<td>Assign pulse</td>
</tr>
<tr>
<td>Value per pulse</td>
</tr>
<tr>
<td>Pulse width</td>
</tr>
<tr>
<td>Measuring mode</td>
</tr>
<tr>
<td>Failure mode</td>
</tr>
<tr>
<td>Pulse output 1</td>
</tr>
<tr>
<td>Assign freq.</td>
</tr>
<tr>
<td>Min. freq. value</td>
</tr>
<tr>
<td>Max. freq. value</td>
</tr>
<tr>
<td>Val. at min.freq</td>
</tr>
<tr>
<td>Val. at max.freq</td>
</tr>
<tr>
<td>Measuring mode</td>
</tr>
<tr>
<td>Damping out.</td>
</tr>
<tr>
<td>Response time</td>
</tr>
<tr>
<td>Failure mode</td>
</tr>
</tbody>
</table>
Description of device parameters

Operating mode

Navigation
Expert → Output → PFS output 1 → Operating mode

Description
Use this function to select the operating mode of the output as a pulse, frequency or switch output.

Selection
- Pulse
- Frequency
- Switch

Factory setting
Pulse

Additional information
"Pulse" option
- Quantity-dependent pulse with configurable pulse width
- Whenever a specific mass, volume, corrected volume, target mass or carrier mass is reached (pulse value), a pulse is output, the duration of which was set previously (pulse width).
- The pulses are never shorter than the set duration.
Example
- Flow rate approx. 100 g/s
- Pulse value 0.1 g
- Pulse width 0.05 ms
- Pulse rate 1000 Impuls/s

\[B < P \]

5 Quantity-proportional pulse (pulse value) with pulse width to be configured

- **B**: Pulse width entered
- **P**: Pauses between the individual pulses

'Frequency' option

Flow-proportional frequency output with 1:1 on/off ratio

An output frequency is output that is proportional to the value of a process variable, such as mass flow, volume flow, corrected volume flow, target mass flow, carrier mass flow, density, reference density, concentration, dynamic viscosity, kinematic viscosity, temperature-compensated dynamic viscosity, temperature-compensated kinematic viscosity, temperature, carrier tube temperature, electronic temperature, vibration frequency, frequency fluctuation, oscillation amplitude, oscillation damping, oscillation damping fluctuation, signal asymmetry or excitation current.

Example
- Flow rate approx. 100 g/s
- Max. frequency 10 kHz
- Flow rate at max. frequency 1000 g/s
- Output frequency approx. 1000 Hz

\[U[V] \]

6 Flow-proportional frequency output

'Switch' option

Contact for displaying a condition (e.g. alarm or warning if a limit value is reached)

Example
Alarm response without alarm

\[U[V] \]

7 No alarm, high level
Assign pulse

Navigation

Expert → Output → PFS output 1 → Assign pulse

Prerequisite

The Pulse option is selected in the Operating mode parameter (→ 108).

Description

Use this function to select the process variable for the pulse output.

Selection

- Off
- Mass flow
- Volume flow
- Correct.vol.flow
- Target mass flow *
- Carrier mass fl. *

Factory setting

Off

Value per pulse

Navigation

Expert → Output → PFS output 1 → Value per pulse

Prerequisite

In the Operating mode parameter (→ 108), the Pulse option is selected, and one of the following options is selected in the Assign pulse parameter (→ 110):

- Mass flow
- Volume flow
- Correct.vol.flow
- Target mass flow *
- Carrier mass fl. *

Description

Use this function to enter the value for the measured value that a pulse is equivalent to.

User entry

Signed floating-point number

Factory setting

Depends on country and nominal diameter → 200

* Visibility depends on order options or device settings
Additional information
Entry
Weighting of the pulse output with a quantity.
The lower the pulse value, the
- better the resolution.
- the higher the frequency of the pulse response.

Pulse width

Navigation

Expert → Output → PFS output 1 → Pulse width

Prerequisite
In the Operating mode parameter (→ 108), the Pulse option is selected, and one of the following options is selected in the Assign pulse parameter (→ 110):
- Mass flow
- Volume flow
- Correct.vol.flow
- Target mass flow *
- Carrier mass fl. *

Description
Use this function to enter the duration of the output pulse.

User entry
0.05 to 2.000 ms

Factory setting
100 ms

Additional information
Description
- Define how long a pulse is (duration).
- The maximum pulse rate is defined by \(f_{\text{max}} = \frac{1}{2 \times \text{pulse width}} \).
- The interval between two pulses lasts at least as long as the set pulse width.
- The maximum flow is defined by \(Q_{\text{max}} = f_{\text{max}} \times \text{pulse value} \).
- If the flow exceeds these limit values, the measuring device displays the diagnostic message \(S443 \text{ Pulse output 1} \).

Example
- Pulse value: 0.1 g
- Pulse width: 0.1 ms
- \(f_{\text{max}} = \frac{1}{2 \times 0.1 \text{ ms}} = 5 \text{ kHz} \)
- \(Q_{\text{max}} = 5 \text{ kHz} \times 0.1 \text{ g} = 0.5 \text{ kg/s} \)

* Visibility depends on order options or device settings
Measuring mode

Navigation
Expert → Output → PFS output 1 → Measuring mode

Prerequisite
In the Operating mode parameter (→ 108) the Pulse option is selected and in the Assign pulse parameter (→ 110) one of the following options is selected:
- Mass flow
- Volume flow
- Correct.vol.flow
- Target mass flow *
- Carrier mass fl. *

Description
Use this function to select the measuring mode for the pulse output.

Selection
- Forward flow
- Forward/Reverse
- Reverse flow
- Rev. flow comp.

Factory setting
Forward flow

Additional information
Selection
- Forward flow
 Positive flow is output, negative flow is not output.
- Forward/Reverse
 Positive and negative flow are output (absolute value), but a distinction is not made between positive and negative flow.
- Reverse flow
 Negative flow is output, positive flow is not output.
- Rev. flow comp.
 The flow components outside the span are buffered, balanced and output after a maximum delay of 60 s.

For a detailed description of the options available, see the Measuring mode parameter (→ 97)

Examples

For a detailed description of the configuration examples, see the Measuring mode parameter (→ 97)

Failure mode

Navigation
Expert → Output → PFS output 1 → Failure mode

Prerequisite
In the Operating mode parameter (→ 108), the Pulse option is selected, and one of the following options is selected in the Assign pulse parameter (→ 110):
- Mass flow
- Volume flow
- Correct.vol.flow
- Target mass flow *
- Carrier mass fl. *

* Visibility depends on order options or device settings
Description
Use this function to select the failure mode of the pulse output in the event of a device alarm.

Selection
- Actual value
- No pulses

Factory setting
No pulses

Additional information
Description

The dictates of safety render it advisable to ensure that the pulse output shows a predefined behavior in the event of a device alarm.

Selection

- Actual value
 In the event of a device alarm, the pulse output continues on the basis of the current flow measurement. The fault is ignored.
- No pulses
 In the event of a device alarm, the pulse output is 'switched off'.

NOTICE! A device alarm is a measuring device error that must be taken seriously. It can affect the measurement quality such that the quality can no longer be guaranteed. The **Actual value** option is only recommended if it can be guaranteed that all possible alarm conditions will not affect the measurement quality.

Pulse output 1

Navigation
Expert → Output → PFS output 1 → Pulse output 1

Prerequisite
In the **Operating mode** parameter (→ 108), the **Pulse** option is selected.

Description
Displays the pulse frequency currently output.

User interface
Positive floating-point number

Additional information
Description

- The pulse output is an open collector output.
- This is configured at the factory in such a way that the transistor is conductive for the duration of the pulse (NO contact) and is safety-oriented.
- The **Value per pulse** parameter (→ 110) and **Pulse width** parameter (→ 111) can be used to define the value (i.e. the measured value amount that corresponds to a pulse) and the duration of the pulse.

![Graph showing pulse output behavior](image)

<table>
<thead>
<tr>
<th>0</th>
<th>Non-conductive</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Conductive</td>
</tr>
<tr>
<td>NC</td>
<td>NC contact (normally closed)</td>
</tr>
<tr>
<td>NO</td>
<td>NO contact (normally open)</td>
</tr>
</tbody>
</table>
The output behavior can be reversed via the **Invert outp.sig.** parameter (→ 131) i.e. the transistor does not conduct for the duration of the pulse.

In addition, the behavior of the output in the event of a device alarm (**Failure mode** parameter (→ 112)) can be configured.

Assign freq.

Navigation

Expert → Output → PFS output 1 → Assign freq.

Prerequisite

The **Frequency** option is selected in the **Operating mode** parameter (→ 108).

Description

Use this function to select the process variable for the frequency output.

Detailed description of the options Oscil. frequency, Oscil. amplitude, Oscil. damping and Signal asymmetry: Value 1 display parameter (→ 17)

Selection

- Off
- Mass flow
- Volume flow
- Correct.vol.flow
- Target mass flow *
- Carrier mass fl. *
- Density
- Ref.density
- Concentration *
- Dynam. viscosity *
- Kinematic visc.
- TempCompDynVisc *
- TempCompKinVisc *
- Temperature
- Carr. pipe temp.
- Electronic temp.
- Osc. freq. 0
- Osc. freq. 1 *
- Freq. fluct. 0
- Freq. fluct. 1 *
- Osc. ampl. 0 *
- Osc. ampl. 1 *
- Osc. damping 0
- Osc. damping 1 *
- Damping fluct 0
- Damping fluct 1 *
- Signal asymmetry
- Exc. current 0
- Exc. current 1 *

Factory setting

Off

* Visibility depends on order options or device settings
Min. freq. value

Navigation

Expert → Output → PFS output 1 → Min. freq. value

Prerequisite

In the Operating mode parameter (→ 108), the Frequency option is selected, and one of the following options is selected in the Assign freq. parameter (→ 114):

- Mass flow
- Volume flow
- Correct.vol.flow
- Target mass flow *
- Carrier mass fl. *
- Density
- Ref. density
- Concentration *
- Dyn. viscosity *
- Kinematic visc.
- TempCompDynVisc *
- TempCompKinVisc *
- Temperature
- Carr. pipe temp. *
- Electronic temp.
- Osc. freq. 0
- Osc. freq. 1 *
- Freq. fluct. 0
- Freq. fluct. 1 *
- Osc. ampl. 0 *
- Osc. ampl. 1 *
- Osc. damping 0
- Osc. damping 1 *
- Osc.damp.fluct 0
- Osc.damp.fluct 1 *
- Signal asymmetry
- Exc. current 0
- Exc. current 1 *

Detailed description of the options Oscil. frequency, Oscil. amplitude, Oscil. damping and Signal asymmetry. Value 1 display parameter (→ 17)

Description

Use this function to enter the start value frequency.

User entry

0.0 to 10000.0 Hz

Factory setting

0.0 Hz

* Visibility depends on order options or device settings
Max. freq. value

Navigation

Expert → Output → PFS output 1 → Max. freq. value

Prerequisite

In the Operating mode parameter (→ 108), the Frequency option is selected, and one of the following options is selected in the Assign freq. parameter (→ 114):
- Mass flow
- Volume flow
- Correct. vol. flow
- Target mass flow *
- Carrier mass fl. *
- Density
- Ref. density
- Concentration *
- Dynam. viscosity *
- Kinematic visc.
- TempCompDynVisc *
- TempCompKinVisc *
- Temperature
- Carr. pipe temp. *
- Electronic temp.
- Osc. freq. 0
- Osc. freq. 1 *
- Freq. fluct. 0
- Freq. fluct. 1 *
- Osc. ampl. 0 *
- Osc. ampl. 1 *
- Osc. damping 0
- Osc. damping 1 *
- Osc. damp. fluct 0
- Osc. damp. fluct 1 *
- Signal asymmetry
- Exc. current 0
- Exc. current 1 *

* Visibility depends on order options or device settings

Description

Use this function to enter the end value frequency.

User entry

0.0 to 10000.0 Hz

Factory setting

10000.0 Hz
Val. at min.freq

Navigation

Expert → Output → PFS output 1 → Val. at min.freq

Prerequisite

In the **Operating mode** parameter (→ 108), the **Frequency** option is selected, and one of the following options is selected in the **Assign freq.** parameter (→ 114):

- Mass flow
- Volume flow
- Correct.vol.flow
- Target mass flow *
- Carrier mass fl. *
- Density
- Ref.density
- Concentration *
- Dynam. viscosity *
- Kinematic visc.
- TempCompDynVisc *
- TempCompKinVisc *
- Temperature
- Carr. pipe temp. *
- Electronic temp.
- Osc. freq. 0
- Osc. freq. 1 *
- Freq. fluct. 0
- Freq. fluct. 1 *
- Osc. ampl. 0 *
- Osc. ampl. 1 *
- Osc. damping 0
- Osc. damping 1 *
- Osc.damp.fluct 0
- Osc.damp.fluct 1 *
- Signal asymmetry
- Exc. current 0
- Exc. current 1 *

Detailed description of the options **Oscil. frequency**, **Oscil. amplitude**, **Oscil. damping** and **Signal asymmetry**: **Value 1 display** parameter (→ 17)

Description

Use this function to enter the measured value for the start value frequency.

User entry

Signed floating-point number

Factory setting

Depends on country and nominal diameter

Additional information

* Dependency

The entry depends on the process variable selected in the **Assign freq.** parameter (→ 114).

* Visibility depends on order options or device settings
Description of device parameters

Val. at max.freq

Navigation

[Endress+Hauser](#)
Expert → Output → PFS output 1 → Val. at max.freq

Prerequisite

In the **Operating mode** parameter (→ 108), the **Frequency** option is selected, and one of the following options is selected in the Assign freq. parameter (→ 114):

- Mass flow
- Volume flow
- Correct.vol.flow
- Target mass flow *
- Carrier mass fl. *
- Density
- Ref.density
- Concentration *
- Dynam. viscosity *
- Kinematic visc.
- TempCompDynVisc *
- TempCompKinVisc *
- Temperature
- Carr. pipe temp. *
- Electronic temp.
- Osc. freq. 0
- Osc. freq. 1 *
- Freq. fluct. 0
- Freq. fluct. 1 *
- Osc. ampl. 0 *
- Osc. ampl. 1 *
- Osc. damping 0
- Osc. damping 1 *
- Osc.damp.fluct 0
- Osc.damp.fluct 1 *
- Signal asymmetry
- Exc. current 0
- Exc. current 1 *

Detailed description of the options Oscil. frequency, Oscil. amplitude, Oscil. damping and Signal asymmetry: Value 1 display parameter (→ 17)

Description

Use this function to enter the measured value for the end value frequency.

User entry

Signed floating-point number

Factory setting

Depends on country and nominal diameter

Additional information

Description

Use this function to enter the measured value for the end value frequency. The selected process variable is output as a proportional frequency.

Dependency

The entry depends on the process variable selected in the Assign freq. parameter (→ 114).

* Visibility depends on order options or device settings
Description of device parameters

Measuring mode

Navigation

Expert → Output → PFS output 1 → Measuring mode

Prerequisite

In the Operating mode parameter (→ 108) the Frequency option is selected and in the Assign freq. parameter (→ 114) one of the following options is selected:
- Mass flow
- Volume flow
- Correct . vol . flow
- Target mass flow
- Carrier mass fl.
- Density
- Ref . density
- Concentration
- Dynam . viscosity
- Kinematic visc.
- Temp . CompDynVisc
- Temp . CompKinVisc
- Temperature
- Carr . pipe temp.
- Electronic temp.
- Osc . freq . 0
- Osc . freq . 1
- Freq . fluct . 0
- Freq . fluct . 1
- Osc . ampl . 0
- Osc . ampl . 1
- Osc . damping 0
- Osc . damping 1
- Osc . damp . fluct 0
- Osc . damp . fluct 1
- Signal asymmetry
- Exc . current 0
- Exc . current 1

Detailed description of the options Oscil . frequency, Oscil . amplitude, Oscil . damping and Signal asymmetry: Value 1 display parameter (→ 17)

Description

Use this function to select the measuring mode for the frequency output.

Selection

- Forward flow
- Forward/Reverse
- Rev . flow comp.

Factory setting

Forward flow

Additional information

Selection

For a detailed description of the options available, see the Measuring mode parameter (→ 97)

Examples

For a detailed description of the configuration examples, see the Measuring mode parameter (→ 97)

* Visibility depends on order options or device settings
Navigation

Expert → Output → PFS output 1 → Damping out.

Prerequisite

In the **Operating mode** parameter (→ 108) the **Frequency** option is selected and in the **Assign freq.** parameter (→ 114) one of the following options is selected:

- Mass flow
- Volume flow
- Correct.vol.flow
- Target mass flow *
- Carrier mass fl. *
- Density
- Ref. density
- Concentration *
- Dynam. viscosity *
- Kinematic visc.
- TempCompDynVisc *
- TempCompKinVisc *
- Temperature
- Carr. pipe temp. *
- Electronic temp.
- Osc. freq. 0
- Osc. freq. 1 *
- Freq. fluct. 0
- Freq. fluct. 1 *
- Osc. ampl. 0 *
- Osc. ampl. 1 *
- Osc. damping 0
- Osc. damping 1 *
- Osc.damp.fluct 0
- Osc.damp.fluct 1 *
- Signal asymmetry
- Exc. current 0 *
- Exc. current 1 *

Detailed description of the options Oscil. frequency, Oscil. amplitude, Oscil. damping and Signal asymmetry: Value 1 display parameter (→ 17)

Description

Use this function to enter a time constant for the reaction time of the output signal to fluctuations in the measured value.

User entry

0 to 999.9 s

Factory setting

0.0 s

Additional information

* User entry

Use this function to enter a time constant (PT1 element?) for frequency output damping:

- If a low time constant is entered, the current output reacts particularly quickly to fluctuating measured variables.
- On the other hand, the current output reacts more slowly if a high time constant is entered.

Damping is switched off if 0 is entered (factory setting).

* Visibility depends on order options or device settings
7) proportional transmission behavior with first order delay
The frequency output is subject to separate damping that is independent of all preceding time constants.

Response time

Navigation

Expert → Output → PFS output 1 → Response time

Prerequisite

In the Operating mode parameter (→ 108) the Frequency option is selected and in the Assign freq. parameter (→ 114) one of the following options is selected:

- Mass flow
- Volume flow
- Correct.vol.flow
- Target mass flow *
- Carrier mass fl. *
- Density
- Ref. density
- Concentration *
- Dynam. viscosity *
- Kinematic visc.
- TempCompDynVisc *
- TempCompKinVisc *
- Temperature
- Carr. pipe temp. *
- Electronic temp.
- Osc. freq. 0
- Osc. freq. 1 *
- Freq. fluct. 0
- Freq. fluct. 1 *
- Osc. ampl. 0 *
- Osc. ampl. 1 *
- Osc. damping 0
- Osc. damping 1 *
- Osc.damp.fluct 0
- Osc.damp.fluct 1 *
- Signal asymmetry
- Exc. current 0
- Exc. current 1 *

Detailed description of the options Oscil. frequency, Oscil. amplitude, Oscil. damping and Signal asymmetry: Value 1 display parameter (→ 17)

Description

Displays the response time. This specifies how quickly the pulse/frequency/switch output reaches the measured value change of 63 % of 100 % of the measured value change.

User interface

Positive floating-point number

Visibility depends on order options or device settings
Description of device parameters

Additional information

Description

The response time is made up of the time specified for the following dampings:

- Damping of pulse/frequency/switch output → 102 and
- Depending on the measured variable assigned to the output.
 - Flow damping
 or
 - Density damping
 or
 - Temperature damping

Failure mode

Navigation

Expert → Output → PFS output 1 → Failure mode

Prerequisite

In the Operating mode parameter (→ 108), the Frequency option is selected, and one of the following options is selected in the Assign freq. parameter (→ 114):

- Mass flow
- Volume flow
- Correct.vol.flow
- Target mass flow *
- Carrier mass fl.
- Density
- Ref.density
- Concentration *
- Dynam. viscosity *
- Kinematic visc.
- TempCompDynVisc *
- TempCompKinVisc *
- Temperature
- Carr. pipe temp. *
- Electronic temp.
- Osc. freq. 0
- Osc. freq. 1 *
- Freq. fluct. 0
- Freq. fluct. 1 *
- Osc. ampl. 0 *
- Osc. ampl. 1 *
- Osc. damping 0
- Osc. damping 1 *
- Osc.damp.fluct 0
- Osc.damp.fluct 1 *
- Signal asymmetry
- Exc. current 0
- Exc. current 1 *

Detailed description of the options Oscil. frequency, Oscil. amplitude, Oscil. damping and Signal asymmetry. Value 1 display parameter (→ 17)

Description

Use this function to select the failure mode of the frequency output in the event of a device alarm.

* Visibility depends on order options or device settings
Selection

- Actual value
- Defined value
- 0 Hz

Factory setting

0 Hz

Additional information

Selection

- Actual value
 In the event of a device alarm, the frequency output continues on the basis of the current flow measurement. The device alarm is ignored.
- Defined value
 In the event of a device alarm, the frequency output continues on the basis of a predefined value. The Failure freq. (→ 123) replaces the current measured value, making it possible to bypass the device alarm. The actual measurement is switched off for the duration of the device alarm.
- 0 Hz
 In the event of a device alarm, the frequency output is "switched off".

NOTICE! A device alarm is a measuring device error that must be taken seriously. It can affect the measurement quality such that the quality can no longer be guaranteed. The Actual value option is only recommended if it can be guaranteed that all possible alarm conditions will not affect the measurement quality.

Failure freq.

Navigation

Expert → Output → PFS output 1 → Failure freq.

Prerequisite

In the Operating mode parameter (→ 108), the Frequency option is selected, and one of the following options is selected in the Assign freq. parameter (→ 114):

- Mass flow
- Volume flow
- Correct.vol.flow
- Target mass flow *
- Carrier mass fl. *
- Density
- Ref.density
- Concentration *
- Dynam. viscosity *
- Kinematic visc.
- TempCompDynVisc *
- TempCompKinVisc *
- Temperature
- Carr. pipe temp. *
- Electronic temp.
- Osc. freq. 0
- Osc. freq. 1 *
- Freq. fluct. 0
- Freq. fluct. 1 *
- Osc. ampl. 0 *
- Osc. ampl. 1 *
- Osc. damping 0
- Osc. damping 1 *
- Osc.damp.fluct 0

* Visibility depends on order options or device settings
Osc.damp.fluct 1
- Visibility depends on order options or device settings
- Signal asymmetry
- Exc. current 0
- Exc. current 1

Description
Use this function to enter the value for the frequency output in the event of a device alarm in order to bypass the alarm.

User entry
0.0 to 12 500.0 Hz

Factory setting
0.0 Hz

Output freq. 1

Navigation
- Expert → Output → PFS output 1 → Output freq. 1

Prerequisite
In the Operating mode parameter (→ 108), the Frequency option is selected.

Description
Displays the actual value of the output frequency which is currently measured.

User interface
0.0 to 12 500.0 Hz

Switch out funct

Navigation
- Expert → Output → PFS output 1 → Switch out funct

Prerequisite
The Switch option is selected in the Operating mode parameter (→ 108).

Description
Use this function to select a function for the switch output.

Selection
- Off
- On
- Diag. behavior
- Limit
- Fl. direct.check
- Status

Factory setting
Off

* Visibility depends on order options or device settings
Additional information

Selection

- Off
 The switch output is permanently switched off (open, non-conductive).
- On
 The switch output is permanently switched on (closed, conductive).
- Diag. behavior
 Indicates if the diagnostic event is present or not. Is used to output diagnostic information and to react to it appropriately at the system level.
- Limit
 Indicates if a specified limit value has been reached for the process variable. Is used to output diagnostic information relating to the process and to react to it appropriately at the system level.
- Fl. direct.check
 Indicates the flow direction (forward or reverse flow).
- Status
 Indicates the device status depending on whether empty pipe detection or low flow cut off is selected.

Assign diag. beh

Navigation

Expert → Output → PFS output 1 → Assign diag. beh

Prerequisite

- In the Operating mode parameter (→ 108), the Switch option is selected.
- In the Switch out funct parameter (→ 124), the Diag. behavior option is selected.

Description

Use this function to select the diagnostic event category that is displayed for the switch output.

Selection

- Alarm
- Alarm or warning
- Warning

Factory setting

Alarm

Additional information

Description

If no diagnostic event is pending, the switch output is closed and conductive.

Selection

- Alarm
 The switch output signals only diagnostic events in the alarm category.
- Alarm or warning
 The switch output signals diagnostic events in the alarm and warning category.
- Warning
 The switch output signals only diagnostic events in the warning category.
Assign limit

Navigation

Expert → Output → PFS output 1 → Assign limit

Prerequisite

- The **Switch** option is selected in the **Operating mode** parameter (→ 108).
- The **Limit** option is selected in the **Switch out funct** parameter (→ 124).

Description

Use this function to select a process variable for the limit function.

Selection

- Mass flow
- Volume flow
- Correct.vol.flow
- Target mass flow
- Carrier mass fl.
- Density
- Ref. density
- Dynam. viscosity
- Concentration
- Kinematic visc.
- TempCompDynVisc
- TempCompKinVisc
- Temperature
- Totalizer 1
- Totalizer 2
- Totalizer 3
- Meas. tube damp.

Factory setting

Mass flow

Additional information

Description

Behavior of status output when Switch-on value > Switch-off value:

- Process variable > Switch-on value: transistor is conductive
- Process variable < Switch-off value: transistor is non-conductive

1	Switch-on value
2	Switch-off value
3	Conductive
4	Non-conductive
A	Process variable
B	Status output

* Visibility depends on order options or device settings
Behavior of status output when Switch-on value < Switch-off value:
- Process variable < Switch-on value: transistor is conductive
- Process variable > Switch-off value: transistor is non-conductive

Behavior of status output when Switch-on value = Switch-off value:
- Process variable > Switch-on value: transistor is conductive
- Process variable < Switch-off value: transistor is non-conductive

Switch-on value

Navigation
Expert → Output → PFS output 1 → Switch-on value

Prerequisite
- In the Operating mode parameter (→ 108), the Switch option is selected.
- In the Switch out funct parameter (→ 124), the Limit option is selected.

Description
Use this function to enter the measured value for the switch-on point.

User entry
Signed floating-point number
Factory setting

Country-specific:
- 0 kg/h
- 0 lb/min

Additional information

Description

Use this function to enter the limit value for the switch-on value (process variable > switch-on value = closed, conductive).

When using a hysteresis: Switch-on value > Switch-off value.

Dependency

The unit depends on the process variable selected in the **Assign limit** parameter (→ 126).

Switch-off value

Navigation

Expert → Output → PFS output 1 → Switch-off value

Prerequisite

- In the Operating mode parameter (→ 108), the Switch option is selected.
- In the Switch out funct parameter (→ 124), the Limit option is selected.

Description

Use this function to enter the measured value for the switch-off point.

User entry

Signed floating-point number

Factory setting

Country-specific:
- 0 kg/h
- 0 lb/min

Additional information

Description

Use this function to enter the limit value for the switch-off value (process variable < switch-off value = open, non-conductive).

When using a hysteresis: Switch-on value > Switch-off value.

Dependency

The unit depends on the process variable selected in the **Assign limit** parameter (→ 126).

Assign dir.check

Navigation

Expert → Output → PFS output 1 → Assign dir.check

Prerequisite

- The Switch option is selected in the Operating mode parameter (→ 108).
- The Fl. direct.check option is selected in the Switch out funct parameter (→ 124).

Description

Use this function to select a process variable for monitoring the flow direction.
Selection

- Off
- Volume flow
- Mass flow
- Correct.vol.flow

Factory setting
Mass flow

Assign status

Navigation
Expert → Output → PFS output 1 → Assign status

Prerequisite
- The Switch option is selected in the Operating mode parameter (→ 108).
- The Status option is selected in the Switch out funct parameter (→ 124).

Description
Use this function to select a device status for the switch output.

Selection
- Partial pipe det
- Low flow cut off

Factory setting
Partial pipe det

Additional information

Options
If empty pipe detection or low flow cut off are enabled, the output is conductive. Otherwise, the switch output is non-conductive.

Switch-on delay

Navigation
Expert → Output → PFS output 1 → Switch-on delay

Prerequisite
- The Switch option is selected in the Operating mode parameter (→ 108).
- The Limit option is selected in the Switch out funct parameter (→ 124).

Description
Use this function to enter a delay time for switching on the switch output.

User entry
0.0 to 100.0 s

Factory setting
0.0 s

Switch-off delay

Navigation
Expert → Output → PFS output 1 → Switch-off delay

Prerequisite
- The Switch option is selected in the Operating mode parameter (→ 108).
- The Limit option is selected in the Switch out funct parameter (→ 124).

Description
Use this function to enter a delay time for switching off the switch output.
User entry
0.0 to 100.0 s

Factory setting
0.0 s

Failure mode

Navigation
Expert → Output → PFS output 1 → Failure mode

Description
Use this function to select a failsafe mode for the switch output in the event of a device alarm.

Selection
- Actual status
- Open
- Closed

Factory setting
Open

Additional information
- **Options**
 - Actual status
 In the event of a device alarm, faults are ignored and the current behavior of the input value is output by the switch output. The Actual status option behaves in the same way as the current input value.
 - Open
 In the event of a device alarm, the switch output’s transistor is set to non-conductive.
 - Closed
 In the event of a device alarm, the switch output’s transistor is set to conductive.

Switch status 1

Navigation
Expert → Output → PFS output 1 → Switch status 1

Prerequisite
The Switch option is selected in the Operating mode parameter (→ 108).

Description
Displays the current switch status of the status output.

User interface
- Open
- Closed

Additional information
- **User interface**
 - Open
 The switch output is not conductive.
 - Closed
 The switch output is conductive.
Invert outp.sig.

Navigation
Expert → Output → PFS output 1 → Invert outp.sig.

Description
Use this function to select whether to invert the output signal.

Selection
• No
• Yes

Factory setting
No

Additional information
Selection
No option (passive - negative)

Yes option (passive - positive)

3.4 "Communication" submenu

Navigation
Expert → Communication

- HART input → 132
- HART output → 137
- Web server → 154
- Diag. config. → 157
3.4.1 "HART input" submenu

Navigation

Expert → Communication → HART input

<table>
<thead>
<tr>
<th>► HART Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>► Configuration → 132</td>
</tr>
<tr>
<td>► Input → 136</td>
</tr>
</tbody>
</table>

"Configuration" submenu

Navigation

Expert → Communication → HART input → Configuration

<table>
<thead>
<tr>
<th>► Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capture mode → 132</td>
</tr>
<tr>
<td>Device ID → 133</td>
</tr>
<tr>
<td>Device type → 133</td>
</tr>
<tr>
<td>Manufacturer ID → 134</td>
</tr>
<tr>
<td>Burst command → 134</td>
</tr>
<tr>
<td>Slot number → 135</td>
</tr>
<tr>
<td>Timeout → 135</td>
</tr>
<tr>
<td>Failure mode → 135</td>
</tr>
<tr>
<td>Failure value → 136</td>
</tr>
</tbody>
</table>

Capture mode

Navigation

Expert → Communication → HART input → Configuration → Capture mode

Description

Use this function to select the capture mode via burst or master communication.

Selection

- Off
- Burst network
- Master network

Factory setting

Off
Additional information

Burst network option

The device records data transmitted via burst in the network.

An external pressure sensor must be in the burst mode.

Master network option

In this case, the device must be located in a HART network in which a HART master (control) queries the measured values of the up to 64 network participants. The device reacts only to the responses of a specific device in the network. Device ID, device type, manufacturer ID and the HART commands used by the master must be defined.

Device ID

Navigation

Expert → Communication → HART input → Configuration → Device ID

Prerequisite

The Master network option is selected in the Capture mode parameter → 132.

Description

Use this function to enter the device ID of the HART slave device whose data are to be recorded.

User entry

6-digit value:
- Via local operation: enter as hexadecimal or decimal number
- Via operating tool: enter as decimal number

Factory setting

0

Additional information

In addition to the device ID and manufacturer ID, the device type is part of the unique ID. Each HART device is uniquely identified by the unique device ID.

Device type

Navigation

Expert → Communication → HART input → Configuration → Device type

Prerequisite

In the Capture mode parameter → 132, the Master network option is selected.

Description

Use this function to enter the device type of the HART slave device whose data are to be recorded.

User entry

2-digit hexadecimal number

Factory setting

0x00

Additional information

In addition to the device ID and manufacturer ID, the device type is part of the unique ID. Each HART device is uniquely identified by the unique device ID.
Manufacturer ID

Navigation
Expert → Communication → HART input → Configuration → Manufacturer ID

Prerequisite
The Master network option is selected in the Capture mode parameter (→ 132).

Description
Use this function to enter the manufacturer ID of the HART slave device whose data are to be recorded.

User entry
2-digit value:
- Via local operation: enter as hexadecimal or decimal number
- Via operating tool: enter as decimal number

Factory setting
0

Additional information
In addition to the device ID and manufacturer ID, the device type is part of the unique ID. Each HART device is uniquely identified by the unique device ID.

Burst command

Navigation
Expert → Communication → HART input → Configuration → Burst command

Prerequisite
The Burst network option or the Master network option are selected in the Capture mode parameter (→ 132).

Description
Use this function to select the burst command to be recorded.

Selection
- Command 1
- Command 3
- Command 9
- Command 33

Factory setting
Command 1

Additional information
Selection
- Command 1
 Use this function to capture the primary variable.
- Command 3
 Use this function to capture the dynamic HART variables and the current.
- Command 9
 Use this function to capture the dynamic HART variables including the associated status.
- Command 33
 Use this function to capture the dynamic HART variables including the associated unit.
Slot number

Navigation

Navigate to Expert → Communication → HART input → Configuration → Slot number

Prerequisite

The Burst network option or the Master network option is selected in the Capture mode parameter (→ 132).

Description

Use this function to enter the position of the process variable to be recorded in the burst command.

User entry

1 to 4

Factory setting

1

Additional information

<table>
<thead>
<tr>
<th>Slot</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PV</td>
</tr>
<tr>
<td>2</td>
<td>SV</td>
</tr>
<tr>
<td>3</td>
<td>TV</td>
</tr>
<tr>
<td>4</td>
<td>QV</td>
</tr>
</tbody>
</table>

Timeout

Navigation

Navigate to Expert → Communication → HART input → Configuration → Timeout

Prerequisite

The Burst network option or the Master network option is selected in the Capture mode parameter (→ 132).

Description

Use this function to enter the maximum permitted interval between two HART frames.

User entry

1 to 120 s

Factory setting

5 s

Additional information

If the interval is exceeded, the measuring device displays the diagnostic message F882 Input signal.

Failure mode

Navigation

Navigate to Expert → Communication → HART input → Configuration → Failure mode

Prerequisite

In the Capture mode parameter (→ 132), the Burst network option or Master network option is selected.
Description

Use this function to select the device behavior if no data are recorded within the maximum permitted interval.

Selection

- Alarm
- Last valid value
- Defined value

Factory setting

Alarm

Additional information

Options

- Alarm
 An error message is set.
- Last valid value
 The last valid measured value is used.
- Defined value
 A user-defined measured value is used: (Failure value parameter (→ 136)).

Failure value

Navigation
Expert → Communication → HART input → Configuration → Failure value

Prerequisite

The following conditions are met:

- In the Capture mode parameter (→ 132), the Burst network option or Master network option is selected.
- In the Failure mode parameter (→ 135), the Defined value option is selected.

Description

Use this function to enter the measured value to be used if no data are recorded within the maximum permitted interval.

User entry

Signed floating-point number

Factory setting

0

"Input" submenu

Navigation
Expert → Communication → HART input → Input

<table>
<thead>
<tr>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
</tr>
<tr>
<td>Status</td>
</tr>
</tbody>
</table>
Value

Navigation
†† Expert → Communication → HART input → Input → Value

Description
Displays the value of the device variable recorded by the HART input.

User interface
0 to 99999.9999 °C

Additional information
Dependency

The unit is taken from the Temperature unit parameter († † 60)

Status

Navigation
†† Expert → Communication → HART input → Input → Status

Description
Displays the value of the device variable recorded by the HART input in accordance with
the HART specification.

User interface
• Manual/Fixed
• Good
• Poor accuracy
• Bad

3.4.2 "HART output" submenu

Navigation
†† Expert → Communication → HART output

<table>
<thead>
<tr>
<th>★ HART output</th>
</tr>
</thead>
<tbody>
<tr>
<td>★ Configuration</td>
</tr>
<tr>
<td>★ Burst config.</td>
</tr>
<tr>
<td>★ Information</td>
</tr>
<tr>
<td>★ Output</td>
</tr>
</tbody>
</table>
"Configuration" submenu

Navigation
Expert → Communication → HART output → Configuration

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>User entry</th>
<th>Factory setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>HART short tag</td>
<td>Use this function to enter a brief description for the measuring point. This can be edited and displayed via HART protocol or using the local display.</td>
<td>Max. 8 characters: A to Z, 0 to 9 and certain special characters (e.g. punctuation marks, @, %).</td>
<td>PROMASS</td>
</tr>
<tr>
<td>Device tag</td>
<td>Use this function to enter the name for the measuring point.</td>
<td>Max. 32 characters, such as letters, numbers or special characters (e.g. @, %, /).</td>
<td>Promass</td>
</tr>
<tr>
<td>HART address</td>
<td>Use this function to enter the address via which the data exchange takes place via HART protocol.</td>
<td>0 to 63</td>
<td></td>
</tr>
</tbody>
</table>

Navigation
Expert → Communication → HART output → Configuration → HART short tag

Navigation
Expert → Communication → HART output → Configuration → Device tag

Navigation
Expert → Communication → HART output → Configuration → HART address
For addressing in a HART Multidrop network, the **Fixed current** option must be set in the **Current span** parameter (→ 93) (current output 1).

No. of preambles

Navigation

Expert → Communication → HART output → Configuration → No. of preambles

Description

Use this function to enter the number of preambles in the HART protocol.

User entry

2 to 20

Factory setting

5

Additional information

User entry

As every modem component can "swallow" a byte, 2-byte preambles at least must be defined.

"Burst configuration 1 to n" submenu

Navigation

Expert → Communication → HART output → Burst config. → Burst config. 1 to n
Burst mode 1 to n

Navigation

Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Burst mode 1 to n

Description
Use this function to select whether to activate the HART burst mode for burst message X.

Selection
- Off
- On

Factory setting
Off

Additional information
Options
- Off
 The measuring device transmits data only when requested by the HART master.
- On
 The measuring device transmits data regularly without being requested.

Burst command 1 to n

Navigation

Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Burst command 1 to n

Description
Use this function to select the HART command that is sent to the HART master.

Selection
- Command 1
- Command 2
- Command 3
- Command 9
- Command 33
- Command 48

Factory setting
Command 2
Additional information Selection

- Command 1
 Read out the primary variable.
- Command 2
 Read out the current and the main measured value as a percentage.
- Command 3
 Read out the dynamic HART variables and the current.
- Command 9
 Read out the dynamic HART variables including the related status.
- Command 33
 Read out the dynamic HART variables including the related unit.
- Command 48
 Read out the complete device diagnostics.

"Command 33" option

The HART device variables are defined via Command 107.

The following measured variables (HART device variables) can be read out:

- Mass flow
- Volume flow
- Correct.vol.flow
- Target mass flow *
- Carrier mass fl. *
- Density
- Ref.density
- Concentration *
- Dynam. viscosity *
- Kinematic visc.
- TempCompDynVisc *
- TempCompKinVisc *
- Temperature
- Totalizer 1...3
- HBSI *
- Pressure
- HART input
- Percent of range
- Measur. curr.
- Primary var (PV)
- Second.var(SV)
- Tertiary var(TV)
- Quaterna.var(QV)

Commands

- Information about the defined details of the command: HART specifications
- The measured variables (HART device variables) are assigned to the dynamic variables in the Output submenu (→ 92).

* Visibility depends on order options or device settings
Burst variable 0

Navigation

Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Burst variable 0

Description

For HART command 9 and 33: select the HART device variable or the process variable.

Selection

- Mass flow
- Volume flow
- Correct.vol.flow
- Target mass flow
- Carrier mass fl.
- Density
- Ref.density
- Concentration
- Dynam. viscosity
- Kinematic visc.
- TempCompDynVisc
- TempCompKinVisc
- Temperature
- Totalizer 1
- Totalizer 2
- Totalizer 3
- Sensor integrity
- Pressure
- HART input
- Percent of range
- Measur. curr.
- Primary var (PV)
- Second.var(SV)
- Tertiary var(TV)
- Quaterna.var(QV)
- Not used

Factory setting

Volume flow

Additional information

Selection

The **Not used** option is set if a burst message is not configured.

Burst variable 1

Navigation

Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Burst variable 1

Description

For HART command 9 and 33: select the HART device variable or the process variable.

Selection

See the **Burst variable 0** parameter (→ 142).

Factory setting

Not used

* Visibility depends on order options or device settings
Burst variable 2

Navigation
Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Burst variable 2

Description
For HART command 9 and 33: select the HART device variable or the process variable.

Selection
See the Burst variable 0 parameter (→ 142).

Factory setting
Not used

Burst variable 3

Navigation
Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Burst variable 3

Description
For HART command 9 and 33: select the HART device variable or the process variable.

Selection
See the Burst variable 0 parameter (→ 142).

Factory setting
Not used

Burst variable 4

Navigation
Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Burst variable 4

Description
For HART command 9: select the HART device variable or the process variable.

Selection
See the Burst variable 0 parameter (→ 142).

Factory setting
Not used

Burst variable 5

Navigation
Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Burst variable 5

Description
For HART command 9: select the HART device variable or the process variable.

Selection
See the Burst variable 0 parameter (→ 142).

Factory setting
Not used
Burst variable 6

Navigation
Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Burst variable 6

Description
For HART command 9: select the HART device variable or the process variable.

Selection
See the Burst variable 0 parameter (→ 142).

Factory setting
Not used

Burst variable 7

Navigation
Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Burst variable 7

Description
For HART command 9: select the HART device variable or the process variable.

Selection
See the Burst variable 0 parameter (→ 142).

Factory setting
Not used

Trigger mode

Navigation
Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Trigger mode

Description
Use this function to select the event that triggers burst message X.

Selection
- Continuous
- Window
- Rising
- Falling
- On change

Factory setting
Continuous
Additional information

Options
- Continuous
 The message is sent continuously, at least at intervals corresponding to the time frame specified in the Burst min per parameter (→ 145).
- Window
 The message is sent if the specified measured value has changed by the value in the Trigger level parameter (→ 145).
- Rising
 The message is sent if the specified measured value exceeds the value in the Trigger level parameter (→ 145).
- Falling
 The message is sent if the specified measured value drops below the value in the Trigger level parameter (→ 145).
- On change
 The message is sent if a measured value changes in the burst message.

Trigger level

Navigation
Diagram
Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Trigger level

Description
For entering the burst trigger value.

User entry
Positive floating-point number

Additional information
Description
Together with the option selected in the Trigger mode parameter (→ 144) the burst trigger value determines the time of burst message X.

Min. upd. per.

Navigation
Diagram
Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Min. upd. per.

Description
Use this function to enter the minimum time span between two burst commands of burst message X.

User entry
Positive integer

Factory setting
1000 ms
Max. upd. per.

Navigation

Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Max. upd. per.

Description

Use this function to enter the maximum time span between two burst commands of burst message X.

User entry

Positive integer

Factory setting

2 000 ms

"Information" submenu

Navigation

Expert → Communication → HART output → Information

<table>
<thead>
<tr>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device revision</td>
</tr>
<tr>
<td>Device ID</td>
</tr>
<tr>
<td>Device type</td>
</tr>
<tr>
<td>Manufacturer ID</td>
</tr>
<tr>
<td>HART revision</td>
</tr>
<tr>
<td>HART descriptor</td>
</tr>
<tr>
<td>HART message</td>
</tr>
<tr>
<td>Hardware rev.</td>
</tr>
<tr>
<td>Software rev.</td>
</tr>
<tr>
<td>HART date code</td>
</tr>
</tbody>
</table>

Device revision

Navigation

Expert → Communication → HART output → Information → Device revision

Description

Displays the device revision with which the device is registered with the HART Communication Foundation.
Proline Promass 100 HART

Description of device parameters

<table>
<thead>
<tr>
<th>User interface</th>
<th>2-digit hexadecimal number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factory setting</td>
<td>2</td>
</tr>
<tr>
<td>Additional information</td>
<td>Description</td>
</tr>
<tr>
<td></td>
<td>The device revision is needed to assign the appropriate device description file (DD) to the device.</td>
</tr>
</tbody>
</table>

Device ID

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Communication → HART output → Information → Device ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to view the device ID for identifying the measuring device in a HART network.</td>
</tr>
<tr>
<td>User interface</td>
<td>6-digit hexadecimal number</td>
</tr>
<tr>
<td>Additional information</td>
<td>Description</td>
</tr>
<tr>
<td></td>
<td>In addition to the device type and manufacturer ID, the device ID is part of the unique ID. Each HART device is uniquely identified by the unique device ID.</td>
</tr>
</tbody>
</table>

Device type

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Communication → HART output → Information → Device type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the device type with which the measuring device is registered with the HART Communication Foundation.</td>
</tr>
<tr>
<td>User interface</td>
<td>2-digit hexadecimal number</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0x4A (for Promass 100)</td>
</tr>
<tr>
<td>Additional information</td>
<td>Description</td>
</tr>
<tr>
<td></td>
<td>The device type is specified by the manufacturer. It is needed to assign the appropriate device description file (DD) to the device.</td>
</tr>
</tbody>
</table>

Manufacturer ID

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Communication → HART output → Information → Manufacturer ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to view the manufacturer ID with which the measuring device is registered with the HART Communication Foundation.</td>
</tr>
<tr>
<td>User interface</td>
<td>2-digit hexadecimal number</td>
</tr>
<tr>
<td>Description of device parameters</td>
<td>Proline Promass 100 HART</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------------------</td>
</tr>
</tbody>
</table>

Factory setting

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factory setting</td>
<td>0x11 (for Endress+Hauser)</td>
</tr>
</tbody>
</table>

HART revision

Navigation

Expert → Communication → HART output → Information → HART revision

Description

Use this function to display the HART protocol revision of the measuring device.

User interface

5 to 7

Factory setting

7

HART descriptor

Navigation

Expert → Communication → HART output → Information → HART descriptor

Description

Use this function to enter a description for the measuring point. This can be edited and displayed via HART protocol or using the local display.

User entry

Max. 16 characters such as letters, numbers or special characters (e.g. @, %, /)

Factory setting

Promass 100

HART message

Navigation

Expert → Communication → HART output → Information → HART message

Description

Use this function to enter a HART message which is sent via the HART protocol when requested by the master.

User entry

Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /)

Factory setting

Promass 100

Hardware rev.

Navigation

Expert → Communication → HART output → Information → Hardware rev.

Description

Displays the hardware revision of the measuring device.

User interface

0 to 255

Factory setting

1
Software rev.

Navigation

Description
Displays the software revision of the measuring device.

User interface
0 to 255

Factory setting
2

HART date code

Navigation

Expert → Communication → HART output → Information → HART date code

Description
Use this function to enter the date information for individual use.

User entry
Date entry format: yyyy-mm-dd

Factory setting
2009-07-20

Additional information
Example
Device installation date

"Output" submenu

Navigation

Expert → Communication → HART output → Output

| Output |
|-------|---
| Assign PV | → 150
| Primary var (PV) | → 150
| Assign SV | → 151
| Second var(SV) | → 151
| Assign TV | → 152
| Tertiary var(TV) | → 152
| Assign QV | → 153
| Quaterna var(QV) | → 153

Endress+Hauser
Assign PV

Navigation

Expert → Communication → HART output → Output → Assign PV

Description

Use this function to select a measured variable (HART device variable) for the primary dynamic variable (PV).

Selection

- Off
- Mass flow
- Volume flow
- Correct.vol.flow
- Target mass flow *
- Carrier mass fl.
- Density
- Ref.density
- Concentration *
- Dynam. viscosity *
- Kinematic visc.
- TempCompDynVisc *
- TempCompKinVisc *
- Temperature
- Carr. pipe temp. *
- Electronic temp.
- Osc. freq. 0
- Osc. freq. 1 *
- Osc. ampl. 0 *
- Osc. ampl. 1 *
- Freq. fluct. 0
- Freq. fluct. 1 *
- Osc. damping 0
- Osc. damping 1 *
- Damping fluct 0
- Damping fluct 1 *
- Signal asymmetry
- Exc. current 0
- Exc. current 1 *
- Sensor integrity

Factory setting

Mass flow

Additional information

* Detailed description of the options Oscil. frequency, Oscil. amplitude, Oscil. damping and Signal asymmetry: Value 1 display parameter (→ 17)

Primary var (PV)

Navigation

Expert → Communication → HART output → Output → Primary var (PV)

Description

Displays the current measured value of the primary dynamic variable (PV).

* Visibility depends on order options or device settings
User interface
Signed floating-point number

Additional information

The measured value displayed depends on the process variable selected in the Assign PV parameter (→ 150).

Dependency
The unit of the displayed measured value is taken from the System units submenu (→ 53).

Assign SV

Navigation
Expert → Communication → HART output → Output → Assign SV

Description
Use this function to select a measured variable (HART device variable) for the secondary dynamic variable (SV).

Selection
- Mass flow
- Volume flow
- Correct.vol.flow*
- Target mass flow*
- Carrier mass fl.
- Density
- Ref.density
- Concentration*
- Dynam. viscosity*
- Kinematic visc.
- TempCompDynVisc*
- TempCompKinVisc*
- Temperature
- Totalizer 1
- Totalizer 2
- Totalizer 3
- Sensor integrity

Factory setting
Totalizer 1

Second.var(SV)

Navigation
Expert → Communication → HART output → Output → Second.var(SV)

Description
Displays the current measured value of the secondary dynamic variable (SV).

User interface
Signed floating-point number

* Visibility depends on order options or device settings
Additional information

User interface

The measured value displayed depends on the process variable selected in the **Assign SV** parameter (→ 151).

Dependency

The unit of the displayed measured value is taken from the **System units** submenu (→ 53).

Assign TV

Navigation

.getObject(Expert) → Communication → HART output → Output → Assign TV

Description

Use this function to select a measured variable (HART device variable) for the tertiary (third) dynamic variable (TV).

Selection

- Mass flow
- Volume flow
- Correct.vol.flow
- Target mass flow
- Carrier mass fl.
- Density
- Ref.density
- Concentration
- Dynam. viscosity
- Kinematic visc.
- TempCompDynVisc
- TempCompKinVisc
- Temperature
- Totalizer 1
- Totalizer 2
- Totalizer 3
- Sensor integrity

Factory setting

Density

Tertiary var(TV)

Navigation

GetObject(Expert) → Communication → HART output → Output → Tertiary var(TV)

Description

Displays the current measured value of the tertiary dynamic variable (TV).

User interface

Positive floating-point number

* Visibility depends on order options or device settings
Additional information

User interface
The measured value displayed depends on the process variable selected in the Assign TV parameter (→ 152).

Dependency
The unit of the displayed measured value is taken from the System units submenu (→ 53).

Assign QV

Navigation
Expert → Communication → HART output → Output → Assign QV

Description
Use this function to select a measured variable (HART device variable) for the quaternary (fourth) dynamic variable (QV).

Selection
- Mass flow
- Volume flow
- Correct.vol.flow
- Target mass flow
- Carrier mass fl.
- Density
- Ref.density
- Concentration
- Dynam. viscosity
- Kinematic visc.
- TempCompDynVisc
- TempCompKinVisc
- Temperature
- Totalizer 1
- Totalizer 2
- Totalizer 3
- Sensor integrity

Factory setting
Temperature

Quaterna.var(QV)

Navigation
Expert → Communication → HART output → Output → Quaterna.var(QV)

Description
Displays the current measured value of the quaternary dynamic variable (QV).

User interface
0 to 99999.9999 °C

* Visibility depends on order options or device settings
Additional information

User interface

The measured value displayed depends on the process variable selected in the **Assign QV** parameter (→ 153).

Dependency

The unit of the displayed measured value is taken from the **System units** submenu (→ 153).

3.4.3 "Web server" submenu

Navigation

[Expert] → [Communication] → [Web server]

Description

Use this function to select the Web server language setting.

Selection

- English
- Deutsch
- Français
- Español
- Italiano
- Nederlands
- Portuguesa
- Polski
- русский язык(Ru)
- Svenska
- Türkçe
- 中文 (Chinese)

* Visibility depends on order options or device settings
MAC Address

Navigation
Expert → Communication → Web server → MAC Address

Description
Displays the MAC address of the measuring device.

User interface
Unique 12-digit character string comprising letters and numbers

Factory setting
Each measuring device is given an individual address.

Additional information
Example
For the display format
00:07:05:10:01:5F

DHCP client

Navigation
Expert → Communication → Configuration → DHCP client
 Setup → Communication → DHCP client

Description
Use this function to activate and deactivate the DHCP client functionality.

Selection
- Off
- On

Factory setting
Off

Additional information
Result
If the DHCP client functionality of the Web server is activated, the IP address (→ 156), Subnet mask (→ 156) and Default gateway (→ 156) are set automatically.

Identification is via the MAC address of the measuring device.

Visibility depends on order options or device settings

Media Access Control
IP address

Navigation
Expert → Communication → Web server → IP address

Description
Displays the IP address of the device's web server.

User interface
4 octet: 0 to 255 (in the particular octet)

Factory setting
192.168.1.212

Subnet mask

Navigation
Expert → Communication → Web server → Subnet mask

Description
Displays the subnet mask.

User interface
4 octet: 0 to 255 (in the particular octet)

Factory setting
255.255.255.0

Default gateway

Navigation
Expert → Communication → Web server → Default gateway

Description
Displays the default gateway.

User interface
4 octet: 0 to 255 (in the particular octet)

Factory setting
0.0.0.0

Webserver funct.

Navigation
Expert → Communication → Web server → Webserver funct.

Description
Use this function to switch the Web server on and off.

Selection
- Off
- On

Factory setting
On
Additional information

Description

Once disabled, the Webserver funct. can only be re-enabled via the local display or the operating tool FieldCare.

Selection

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| Off | ● The web server is completely disabled.
 ● Port 80 is locked. |
| On | ● The complete functionality of the web server is available.
 ● JavaScript is used.
 ● The password is transferred in an encrypted state.
 ● Any change to the password is also transferred in an encrypted state. |

3.4.4 "Diag. config." submenu

For a list of all the diagnostic events, see the Operating Instructions for the device

Assign a category to the particular diagnostic event:

- **Failure (F)** option

 A device error has occurred. The measured value is no longer valid.

- **Funct. check (C)** option

 The device is in service mode (e.g. during a simulation).

- **Out of spec. (S)** option

 The device is being operated:
 - Outside its technical specification limits (e.g. outside the process temperature range)
 - Outside of the configuration carried out by the user (e.g. maximum flow in parameter 20 mA value)

- **Mainten. req. (M)** option

 Maintenance is required. The measured value is still valid.

- **No effect (N)** option

 Has no effect on the condensed status.

Navigation

Expert → Communication → Diag. config.

<table>
<thead>
<tr>
<th>Event category</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Event category 046</td>
<td>→ 158</td>
</tr>
<tr>
<td>Event category 140</td>
<td>→ 158</td>
</tr>
<tr>
<td>Event category 274</td>
<td>→ 159</td>
</tr>
<tr>
<td>Event category 441</td>
<td>→ 159</td>
</tr>
<tr>
<td>Event category 442</td>
<td>→ 159</td>
</tr>
<tr>
<td>Event category 443</td>
<td>→ 160</td>
</tr>
<tr>
<td>Event category 832</td>
<td>→ 160</td>
</tr>
</tbody>
</table>
Event category 046 (Sensor limit)

Navigation
Expert → Communication → Diag. config. → Event category 046

Description
Use this function to assign a category to the diagnostic message **046 Sensor limit**.

Selection
- Failure (F)
- Funct. check (C)
- Out of spec. (S)
- Mainten. req. (M)
- No effect (N)

Factory setting
Out of spec. (S)

Additional information
For a detailed description of the event categories available for selection:

Event category 140 (Sensor sig.asym.)

Navigation
Expert → Communication → Diag. config. → Event category 140

Description
Use this function to assign a category to the diagnostic message **140 Sensor sig.asym.**

Selection
- Failure (F)
- Funct. check (C)
- Out of spec. (S)
- Mainten. req. (M)
- No effect (N)

Factory setting
Out of spec. (S)
Additional information

For a detailed description of the event categories available for selection:

Event category 274 (Main electronic)

Navigation

Expert → Communication → Diag. config. → Event category 274

Description

Use this function to assign a category to the diagnostic message 274 Main electronic.

Selection

- Failure (F)
- Funct. check (C)
- Out of spec. (S)
- Mainten. req. (M)
- No effect (N)

Factory setting

Out of spec. (S)

Additional information

For a detailed description of the event categories available for selection:

Event category 441 (Curr.output 1)

Navigation

Expert → Communication → Diag. config. → Event category 441

Description

Use this option to select a category for the diagnostic message 441 Curr. output 1.

Selection

- Failure (F)
- Funct. check (C)
- Out of spec. (S)
- Mainten. req. (M)
- No effect (N)

Factory setting

Out of spec. (S)

Additional information

For a detailed description of the event categories available for selection:

Event category 442 (Freq. output)

Navigation

Expert → Communication → Diag. config. → Event category 442

Prerequisite
The pulse/frequency/switch output is available.

Description

Use this function to select the category assigned to diagnostic message 442 Freq. output.
Selection
- Failure (F)
- Funct. check (C)
- Out of spec. (S)
- Mainten. req. (M)
- No effect (N)

Factory setting
Out of spec. (S)

Additional information
For a detailed description of the event categories available for selection:

Event category 443 (Pulse output)

Navigation
Expert → Communication → Diag. config. → Event category 443

Prerequisite
The pulse/frequency/switch output is available.

Description
Use this function to select the category assigned to diagnostic message 443 Pulse output.

Selection
- Failure (F)
- Funct. check (C)
- Out of spec. (S)
- Mainten. req. (M)
- No effect (N)

Factory setting
Out of spec. (S)

Additional information
For a detailed description of the event categories available for selection:

Event category 832 (Electronic temp.)

Navigation
Expert → Communication → Diag. config. → Event category 832

Description
Use this function to select a category for the diagnostic message 832 Electronic temp.

Selection
- Failure (F)
- Funct. check (C)
- Out of spec. (S)
- Mainten. req. (M)
- No effect (N)

Factory setting
Out of spec. (S)

Additional information
For a detailed description of the event categories available for selection:
Event category 830 (Sensor temp.)

Navigation

Expert → Communication → Diag. config. → Event category 830

Prerequisite

- Order code for "Application package", option EB "Heartbeat Verification + Monitoring"
- If the carrier tube temperature is provided:
 - Promass F
 - Promass G
 - Promass H
 - Promass I
 - Promass O
 - Promass P
 - Promass S
 - Promass X

Description

Use this function to assign a category to the diagnostic message 830 Sensor temp..

Selection

- Failure (F)
- Funct. check (C)
- Out of spec. (S)
- Mainten. req. (M)
- No effect (N)

Factory setting

Out of spec. (S)

Additional information

For a detailed description of the event categories available for selection:

Event category 831 (Sensor temp.)

Navigation

Expert → Communication → Diag. config. → Event category 831

Prerequisite

- Order code for "Application package", option EB "Heartbeat Verification + Monitoring"
- If the carrier tube temperature is provided:
 - Promass F
 - Promass G
 - Promass H
 - Promass I
 - Promass O
 - Promass P
 - Promass S
 - Promass X

Description

Use this function to assign a category to the diagnostic message 831 Sensor temp..

Selection

- Failure (F)
- Funct. check (C)
- Out of spec. (S)
- Mainten. req. (M)
- No effect (N)

Factory setting

Out of spec. (S)
Additional information

For a detailed description of the event categories available for selection:

Event category 833 (Electronic temp.)

Navigation

Expert → Communication → Diag. config. → Event category 833

Description

Use this option to select a category for the diagnostic message 833 Electronic temp.

Selection

- Failure (F)
- Funct. check (C)
- Out of spec. (S)
- Mainten. req. (M)
- No effect (N)

Factory setting

Out of spec. (S)

Additional information

Selection

For a detailed description of the event categories available for selection:

Event category 834 (Process temp.)

Navigation

Expert → Communication → Diag. config. → Event category 834

Description

Use this option to select a category for the diagnostic message 834 Process temp.

Selection

- Failure (F)
- Funct. check (C)
- Out of spec. (S)
- Mainten. req. (M)
- No effect (N)

Factory setting

Out of spec. (S)

Additional information

Selection

For a detailed description of the event categories available for selection:

Event category 835 (Process temp.)

Navigation

Expert → Communication → Diag. config. → Event category 835

Description

Use this option to select a category for the diagnostic message 835 Process temp.
Selection
- Failure (F)
- Funct. check (C)
- Out of spec. (S)
- Mainten. req. (M)
- No effect (N)

Factory setting
Out of spec. (S)

Additional information Selection
For a detailed description of the event categories available for selection:

Event category 862 (Empty pipe)

Navigation
Expert → Communication → Diag. config. → Event category 862

Description
Use this option to select a category for the diagnostic message 862 Empty pipe.

Selection
- Failure (F)
- Funct. check (C)
- Out of spec. (S)
- Mainten. req. (M)
- No effect (N)

Factory setting
Out of spec. (S)

Additional information
For a detailed description of the event categories available for selection:

Event category 912 (Medium inhomog.)

Navigation
Expert → Communication → Diag. config. → Event category 912

Description
Use this function to assign a category to the diagnostic message 912 Medium inhomog.

Selection
- Failure (F)
- Funct. check (C)
- Out of spec. (S)
- Mainten. req. (M)
- No effect (N)

Factory setting
Out of spec. (S)

Additional information
For a detailed description of the event categories available for selection:
Event category 913 (Medium unsuitab.)

Navigation

Expert → Communication → Diag. config. → Event category 913

Description

Use this function to assign a category to the diagnostic message 913 Medium unsuitab..

Selection

- Failure (F)
- Funct. check (C)
- Out of spec. (S)
- Mainten. req. (M)
- No effect (N)

Factory setting

Out of spec. (S)

Additional information

For a detailed description of the event categories available for selection:

3.5 "Application" submenu

Navigation

Expert → Application

Reset all tot.

Navigation

Expert → Application → Reset all tot.

Description

Use this function to reset all totalizers to the value 0 and restart the totaling process. This deletes all the flow values previously totalized.

Selection

- Cancel
- Reset + totalize

Factory setting

Cancel
Additional information

Selection

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancel</td>
<td>No action is executed and the user exits the parameter.</td>
</tr>
<tr>
<td>Reset + totalize</td>
<td>Resets all totalizers to 0 and restarts the totaling process. This deletes all the flow values previously totalized.</td>
</tr>
</tbody>
</table>

3.5.1 "Totalizer 1 to n" submenu

Navigation

Expert → Application → Totalizer 1 to n

<table>
<thead>
<tr>
<th>▶ Totalizer 1 to n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign variable</td>
</tr>
<tr>
<td>Unit totalizer</td>
</tr>
<tr>
<td>Operation mode</td>
</tr>
<tr>
<td>Control Tot. 1 to n</td>
</tr>
<tr>
<td>Preset value 1 to n</td>
</tr>
<tr>
<td>Failure mode</td>
</tr>
</tbody>
</table>

Assign variable

Navigation

Expert → Application → Totalizer 1 to n → Assign variable

Description

Use this function to select a process variable for the Totalizer 1 to n.

Selection

- Off
- Volume flow
- Mass flow
- Correct.vol.flow
- Target mass flow *
- Carrier mass fl. *

Factory setting

Mass flow

* Visibility depends on order options or device settings
Description of device parameters

Proline Promass 100 HART

Additional information

Description

- If the option selected is changed, the device resets the totalizer to 0.

Selection

- If the Off option is selected, only Assign variable parameter (→ 165) is still displayed in the Totalizer 1 to n submenu. All other parameters in the submenu are hidden.

Unit totalizer

Navigation

- Expert → Application → Totalizer 1 to n → Unit totalizer

Prerequisite

One of the following options is selected in the Assign variable parameter (→ 165) of the Totalizer 1 to n submenu:
- Volume flow
- Mass flow
- Correct.vol.flow
- Target mass flow *
- Carrier mass fl.

Description

- Use this function to select the process variable unit for the Totalizer 1 to n (→ 165).

Selection

SI units
- g
- kg
- t

US units
- oz
- lb
- STon

Custom-specific units
- User mass

or

SI units
- cm³
- dm³
- m³
- ml
- l
- hl
- Ml Mega

US units
- fl oz (us)
- gal (us)
- kgal (us)
- Mgal (us)

Imperial units
- gal (imp)
- Mgal (imp)
- bbl (imp;beer)
- bbl (imp;oil)

Custom-specific units
- User vol.

or

* Visibility depends on order options or device settings
Description of device parameters

SI units
- Nl
- Nm³
- Sl
- Sm³

US units
- Sft³
- Sgal (us)
- Sbbl (us; liq.)

Imperial units
- Sgal (imp)

Custom-specific units
- UserCrVol.

Factory setting
Country-specific:
- kg
- lb

Additional information
Description
The unit is selected separately for each totalizer. It is independent of the selection made in the System units submenu (→ 53).

Selection
The selection is dependent on the process variable selected in the Assign variable parameter (→ 165).

Operation mode

Navigation
Expert → Application → Totalizer 1 to n → Operation mode

Prerequisite
One of the following options is selected in the Assign variable parameter (→ 165) of the Totalizer 1 to n submenu:
- Volume flow
- Mass flow
- Correct.vol.flow
- Target mass flow *
- Carrier mass fl. *

Description
Use this function to select how the totalizer summates the flow.

Selection
- Net flow total
- Forward total
- Reverse total

Factory setting
Net flow total

Additional information
Selection
- Net flow total
 Flow values in the forward and reverse flow direction are totalized and balanced against one another. Net flow is registered in the flow direction.
- Forward total
 Only the flow in the forward flow direction is totalized.
- Reverse total
 Only the flow in the reverse flow direction is totalized (= reverse flow quantity).

* Visibility depends on order options or device settings
Control Tot. 1 to n

Navigation

Expert → Application → Totalizer 1 to n → Control Tot. 1 to n

Prerequisite

One of the following options is selected in the Assign variable parameter (→ 165) of the Totalizer 1 to n submenu:
- Volume flow
- Mass flow
- Correct.vol.flow
- Target mass flow*
- Carrier mass fl.*

Description

Use this function to select the control of totalizer value 1-3.

Selection

- Totalize
- Reset + hold
- Preset + hold
- Reset + totalize
- Preset+totalize

Factory setting

Totalize

Additional information

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totalize</td>
<td>The totalizer is started or continues running.</td>
</tr>
<tr>
<td>Reset + hold</td>
<td>The totaling process is stopped and the totalizer is reset to 0.</td>
</tr>
<tr>
<td>Preset + hold</td>
<td>The totaling process is stopped and the totalizer is set to its defined start value from the Preset value parameter.</td>
</tr>
<tr>
<td>Reset + totalize</td>
<td>The totalizer is reset to 0 and the totaling process is restarted.</td>
</tr>
<tr>
<td>Preset+totalize</td>
<td>The totalizer is set to the defined start value from the Preset value parameter and the totaling process is restarted.</td>
</tr>
</tbody>
</table>

Preset value 1 to n

Navigation

Expert → Application → Totalizer 1 to n → Preset value 1 to n

Prerequisite

One of the following options is selected in the Assign variable parameter (→ 165) of the Totalizer 1 to n submenu:
- Volume flow
- Mass flow
- Correct.vol.flow
- Target mass flow*
- Carrier mass fl.*

Description

Use this function to enter a start value for the Totalizer 1 to n.

User entry

Signed floating-point number

* Visibility depends on order options or device settings
Factory setting

Country-specific:
- 0 kg
- 0 lb

Additional information

Entry

The unit of the selected process variable is specified for the totalizer in the **Unit totalizer** parameter (→ § 166).

Example

This configuration is suitable for applications such as iterative filling processes with a fixed batch quantity.

Failure mode

Navigation

Expert → Application → Totalizer 1 to n → Failure mode

Prerequisite

One of the following options is selected in the **Assign variable** parameter (→ § 165) of the **Totalizer 1 to n** submenu:
- Volume flow
- Mass flow
- Correct.vol.flow
- Target mass flow*
- Carrier mass fl.*

Description

Use this function to select how a totalizer behaves in the event of a device alarm.

Selection

- Stop
- Actual value
- Last valid value

Factory setting

Stop

Additional information

Description

This setting does not affect the failsafe mode of other totalizers and the outputs. This is specified in separate parameters.

Selection

- Stop
 - The totalizer is stopped in the event of a device alarm.
- Actual value
 - The totalizer continues to count based on the actual measured value; the device alarm is ignored.
- Last valid value
 - The totalizer continues to count based on the last valid measured value before the device alarm occurred.

* Visibility depends on order options or device settings
3.5.2 "Viscosity" submenu

Only available for Promass I.

For detailed information on the parameter descriptions for the Viscosity application package, refer to the Special Documentation for the device.

Navigation

Expert → Application → Viscosity

- Viscosity
 - Viscos. damping
 - Temp. compensat.
 - Dynam. viscosity
 - Kinematic visc.

3.5.3 "Concentration" submenu

For detailed information on the parameter descriptions for the Concentration application package, refer to the Special Documentation for the device.

Navigation

Expert → Application → Concentration

- Concentration

3.6 "Diagnostics" submenu

Navigation

Expert → Diagnostics

- Diagnostics
 - Actual diagnos. → 171
 - Prev.diagnostics → 171
 - Time fr. restart → 172
 - Operating time → 172
 - Diagnostic list → 173
 - Event logbook → 177
 - Device info → 178
 - Min/max val. → 182
Actual diagnos.

Navigation

- Expert → Diagnostics → Actual diagnos.

Prerequisite

A diagnostic event has occurred.

Description

Displays the current diagnostic message. If two or more messages occur simultaneously, the message with the highest priority is shown on the display.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

- **Display**
 - Additional pending diagnostic messages can be viewed in the [Diagnostic list](#) submenu (→ 173).

 Example

 For the display format:

 ![F271 Main electronic](#)

Timestamp

Navigation

- Expert → Diagnostics → Timestamp

Description

Displays the operating time when the current diagnostic message occurred.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

- **Display**
 - The diagnostic message can be viewed via the Actual diagnos. parameter (→ 171).

 Example

 For the display format:

 24d12h13m00s

Prev.diagnostics

Navigation

- Expert → Diagnostics → Prev.diagnostics

Prerequisite

Two diagnostic events have already occurred.
Description of device parameters

Proline Promass 100 HART

Description
Displays the diagnostic message that occurred before the current message.

User interface
Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

Example

For the display format:

- **F271 Main electronic**

Timestamp

Navigation

- Expert → Diagnostics → Timestamp

Description
Displays the operating time when the last diagnostic message before the current message occurred.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information

Display

The diagnostic message can be viewed via the `Prev.diagnostics` parameter (→ 171).

Example

For the display format:

- **24d12h13m00s**

Time fr. restart

Navigation

- Expert → Diagnostics → Time fr. restart

Description
Use this function to display the time the device has been in operation since the last device restart.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Operating time

Navigation

- Expert → Diagnostics → Operating time

Description
Use this function to display the length of time the device has been in operation.

User interface
Days (d), hours (h), minutes (m) and seconds (s)
Additional information

User interface
The maximum number of days is 9999, which is equivalent to 27 years.

3.6.1 "Diagnostic list" submenu

Navigation
Expert → Diagnostics → Diagnostic list

<table>
<thead>
<tr>
<th>Diagnostic list</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostics 1</td>
</tr>
<tr>
<td>Diagnostics 2</td>
</tr>
<tr>
<td>Diagnostics 3</td>
</tr>
<tr>
<td>Diagnostics 4</td>
</tr>
<tr>
<td>Diagnostics 5</td>
</tr>
</tbody>
</table>

Diagnostics 1

Navigation
Expert → Diagnostics → Diagnostic list → Diagnostics 1

Description
Displays the current diagnostics message with the highest priority.

User interface
Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

Examples
For the display format:
- ☒F271 Main electronic
- ☒F276 I/O module

Timestamp

Navigation
Expert → Diagnostics → Diagnostic list → Timestamp

Description
Displays the operating time when the diagnostic message with the highest priority occurred.

User interface
Days (d), hours (h), minutes (m) and seconds (s)
Additional information

Display

The diagnostic message can be viewed via the **Diagnostics 1** parameter (→ 173).

Example

For the display format:

24d12h13m00s

Diagnostics 2

Navigation

Expert → Diagnostics → Diagnostic list → Diagnostics 2

Description

Displays the current diagnostics message with the second-highest priority.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

Examples

For the display format:

- ☠F271 Main electronic
- ☠F276 I/O module

Timestamp

Navigation

Expert → Diagnostics → Diagnostic list → Timestamp

Description

Displays the operating time when the diagnostic message with the second-highest priority occurred.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

Display

The diagnostic message can be viewed via the **Diagnostics 2** parameter (→ 174).

Example

For the display format:

24d12h13m00s

Diagnostics 3

Navigation

Expert → Diagnostics → Diagnostic list → Diagnostics 3

Description

Displays the current diagnostics message with the third-highest priority.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.
Additional information

Examples
For the display format:
- F271 Main electronic
- F276 I/O module

Timestamp

Navigation
Diagram Expert → Diagnostics → Diagnostic list → Timestamp

Description
Displays the operating time when the diagnostic message with the third-highest priority occurred.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information
Display

The diagnostic message can be viewed via the Diagnostics 3 parameter (→ 174).

Example
For the display format:
24d12h13m00s

Diagnostics 4

Navigation
Diagram Diagram Expert → Diagnostics → Diagnostic list → Diagnostics 4

Description
Displays the current diagnostics message with the fourth-highest priority.

User interface
Symbol for diagnostic behavior, diagnostic code and short message.

Additional information
Examples
For the display format:
- F271 Main electronic
- F276 I/O module

Timestamp

Navigation
Diagram Expert → Diagnostics → Diagnostic list → Timestamp

Description
Displays the operating time when the diagnostic message with the fourth-highest priority occurred.

User interface
Days (d), hours (h), minutes (m) and seconds (s)
Additional information
Display

The diagnostic message can be viewed via the **Diagnostics 4** parameter (→ 175).

Example

For the display format:

24d12h13m00s

Diagnostics 5

<table>
<thead>
<tr>
<th>Navigation</th>
<th>➤ ➤ Expert → Diagnostics → Diagnostic list → Diagnostics 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the current diagnostics message with the fifth-highest priority.</td>
</tr>
<tr>
<td>User interface</td>
<td>Symbol for diagnostic behavior, diagnostic code and short message.</td>
</tr>
<tr>
<td>Additional information</td>
<td>Examples</td>
</tr>
</tbody>
</table>

For the display format:

- ☐F271 Main electronic
- ☐F276 I/O module

Timestamp

<table>
<thead>
<tr>
<th>Navigation</th>
<th>➤ Expert → Diagnostics → Diagnostic list → Timestamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the operating time when the diagnostic message with the fifth-highest priority occurred.</td>
</tr>
<tr>
<td>User interface</td>
<td>Days (d), hours (h), minutes (m) and seconds (s)</td>
</tr>
<tr>
<td>Additional information</td>
<td>Display</td>
</tr>
</tbody>
</table>

The diagnostic message can be viewed via the **Diagnostics 5** parameter (→ 176).

Example

For the display format:

24d12h13m00s
3.6.2 "Event logbook" submenu

Navigation
 Expert → Diagnostics → Event logbook

Filter options

Description
Use this function to select the category whose event messages are displayed in the event list of the operating tool.

Selection
- All
- Failure (F)
- Funct. check (C)
- Out of spec. (S)
- Mainten. req. (M)
- Information (I)

Factory setting
All

Additional information
The status signals are categorized in accordance with VDI/VDE 2650 and NAMUR Recommendation NE 107:
- F = Failure
- C = Function Check
- S = Out of Specification
- M = Maintenance Required

"Event list" submenu

The Event list submenu is only displayed if operating via the local display.
If operating via the FieldCare operating tool, the event list can be read out with a separate FieldCare module.
If operating via the Web browser, the event messages can be found directly in the Event logbook submenu.

Navigation
 Expert → Diagnostics → Event logbook → Event list
Event list

Navigation

Expert → Diagnostics → Event logbook → Event list

Description

Displays the history of event messages of the category selected in the Filter options parameter.

User interface

- For a "Category I" event message
 Information event, short message, symbol for event recording and operating time when error occurred
- For a "Category F, C, S, M" event message (status signal)
 Diagnostics code, short message, symbol for event recording and operating time when error occurred

Additional information

Description

A maximum of 20 event messages are displayed in chronological order.

The following symbols indicate whether an event has occurred or has ended:

- ☒: Occurrence of the event
- ☐: End of the event

Examples

For the display format:

- I1091 Configuration modified
 ☒ 24d12h13m00s
- F271 Main electronic
 ☒ 01d04h12min30s

HistoROM

A HistoROM is a "non-volatile" device memory in the form of an EEPROM.

3.6.3 "Device info" submenu

Navigation

Expert → Diagnostics → Device info

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Device tag</td>
<td>→ 179</td>
</tr>
<tr>
<td>Serial number</td>
<td>→ 179</td>
</tr>
<tr>
<td>Firmware version</td>
<td>→ 179</td>
</tr>
<tr>
<td>Device name</td>
<td>→ 180</td>
</tr>
</tbody>
</table>
Device tag

Navigation

Expert → Diagnostics → Device info → Device tag

Description

Displays a unique name for the measuring point so it can be identified quickly within the plant.

User interface

Max. 32 characters, such as letters, numbers or special characters (e.g. @, %, /).

Factory setting

Promass 100

Serial number

Navigation

Expert → Diagnostics → Device info → Serial number

Description

Displays the serial number of the measuring device.

The number can be found on the nameplate of the sensor and transmitter.

User interface

A maximum of 11-digit character string comprising letters and numbers.

Additional information

Uses of the serial number

- To identify the measuring device quickly, e.g. when contacting Endress+Hauser.
- To obtain specific information on the measuring device using the Device Viewer: www.endress.com/deviceviewer

Firmware version

Navigation

Expert → Diagnostics → Device info → Firmware version

Description

Displays the device firmware version installed.
User interface
Character string in the format xx.yy.zz

Additional information
Display

- The Firmware version is also located:
 - On the title page of the Operating instructions
 - On the transmitter nameplate

Device name

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Diagnostics → Device info → Device name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the name of the transmitter. It can also be found on the nameplate of the transmitter.</td>
</tr>
<tr>
<td>User interface</td>
<td>Max. 32 characters such as letters or numbers.</td>
</tr>
<tr>
<td>Factory setting</td>
<td>Promass 100</td>
</tr>
</tbody>
</table>

Order code

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Diagnostics → Device info → Order code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the device order code.</td>
</tr>
<tr>
<td>User interface</td>
<td>Character string composed of letters, numbers and certain punctuation marks (e.g. /).</td>
</tr>
<tr>
<td>Additional information</td>
<td>Description</td>
</tr>
<tr>
<td></td>
<td>The order code can be found on the nameplate of the sensor and transmitter in the 'Order code' field.</td>
</tr>
<tr>
<td></td>
<td>The order code is generated from the extended order code through a process of reversible transformation. The extended order code indicates the attributes for all the device features in the product structure. The device features are not directly readable from the order code.</td>
</tr>
<tr>
<td></td>
<td>Uses of the order code</td>
</tr>
<tr>
<td></td>
<td>- To order an identical spare device.</td>
</tr>
<tr>
<td></td>
<td>- To identify the device quickly and easily, e.g. when contacting Endress+Hauser.</td>
</tr>
</tbody>
</table>

Ext. order cd. 1

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Diagnostics → Device info → Ext. order cd. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the first part of the extended order code.</td>
</tr>
<tr>
<td></td>
<td>On account of length restrictions, the extended order code is split into a maximum of 3 parameters.</td>
</tr>
<tr>
<td>User interface</td>
<td>Character string</td>
</tr>
</tbody>
</table>
The extended order code indicates the version of all the features of the product structure for the measuring device and thus uniquely identifies the measuring device.

The extended order code can also be found on the nameplate of the sensor and transmitter in the "Ext. ord. cd." field.

Ext. order cd. 2

Navigation

Expert → Diagnostics → Device info → Ext. order cd. 2

Description

Displays the second part of the extended order code.

User interface

Character string

Additional information

For additional information, see Ext. order cd. 1 parameter (→ 180)

Ext. order cd. 3

Navigation

Expert → Diagnostics → Device info → Ext. order cd. 3

Description

Displays the third part of the extended order code.

User interface

Character string

Additional information

For additional information, see Ext. order cd. 1 parameter (→ 180)

Config. counter

Navigation

Expert → Diagnostics → Device info → Config. counter

Description

Displays the number of parameter modifications for the device. When the user changes a parameter setting, this counter is incremented.

User interface

0 to 65535

ENP version

Navigation

Expert → Diagnostics → Device info → ENP version

Description

Displays the version of the electronic nameplate.

User interface

Character string
Factory setting 2.02.00

Additional information

Description
This electronic nameplate stores a data record for device identification that includes more data than the nameplates attached to the outside of the device.

3.6.4 "Min/max val." submenu

Navigation

- Expert → Diagnostics → Min/max val.

<table>
<thead>
<tr>
<th>Min/max val.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset min/max → 182</td>
</tr>
<tr>
<td>Electronic temp. → 183</td>
</tr>
<tr>
<td>Medium temp. → 184</td>
</tr>
<tr>
<td>Carr. pipe temp. → 185</td>
</tr>
<tr>
<td>Oscil. frequency → 186</td>
</tr>
<tr>
<td>Tors. oscil. freq. → 187</td>
</tr>
<tr>
<td>Oscil. amplitude → 188</td>
</tr>
<tr>
<td>Tor. osc. amp. → 188</td>
</tr>
<tr>
<td>Oscil. damping → 189</td>
</tr>
<tr>
<td>Tors. oscil. damp. → 190</td>
</tr>
<tr>
<td>Signal asymmetry → 191</td>
</tr>
</tbody>
</table>

Reset min/max

Navigation

- Expert → Diagnostics → Min/max val. → Reset min/max

Description
Use this function to select measured variables whose minimum, maximum and average measured values are to be reset.
Proline Promass 100 HART

Description of device parameters

Selection

- Cancel
- Oscil. amplitude
- Osc. ampl. 1
- Oscil. damping
- Tors.oscil.damp.
- Oscil. frequency
- Tors.oscil.freq.
- Signal asymmetry

Factory setting

Cancel

Additional information

Selection

Detailed description of the options Oscil. frequency, Oscil. amplitude, Oscil. damping and Signal asymmetry: Value 1 display parameter (→ 17)

"Electronic temp." submenu

Navigation

Expert → Diagnostics → Min/max val. → Electronic temp.

Electronic temp.

Minimum value

→ 183

Maximum value

→ 184

Minimum value

Navigation

Expert → Diagnostics → Min/max val. → Electronic temp. → Minimum value

Description

Displays the lowest previously measured temperature value of the main electronics module.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the Temperature unit parameter (→ 60)

* Visibility depends on order options or device settings
Maximum value

Navigation
Expert → Diagnostics → Min/max val. → Electronic temp. → Maximum value

Description
Displays the highest previously measured temperature value of the main electronics module.

User interface
Signed floating-point number

Additional information
Dependency

The unit is taken from the **Temperature unit** parameter (→ 60)

"Medium temp." submenu

Navigation
Expert → Diagnostics → Min/max val. → Medium temp.

Minimum value

Navigation
Expert → Diagnostics → Min/max val. → Medium temp. → Minimum value

Description
Displays the lowest previously measured medium temperature value.

User interface
Signed floating-point number

Additional information
Dependency

The unit is taken from the **Temperature unit** parameter (→ 60)

Maximum value

Navigation
Expert → Diagnostics → Min/max val. → Medium temp. → Maximum value

Description
Displays the highest previously measured medium temperature value.

User interface
Signed floating-point number
Additional information

Dependency

The unit is taken from the Temperature unit parameter (→ 60)

"Carr. pipe temp." submenu

Navigation

Expert → Diagnostics → Min/max val. → Carr. pipe temp.

Minimum value

Prerequisite

Only available for:
- Promass A
- Promass F
- PromassG
- Promass H
- Promass I
- Promass O
- Promass P
- PromassQ
- Promass S
- Promass X

For the following order code
"Application package", option EB "Heartbeat Verification + Monitoring"

Description

Displays the lowest previously measured temperature value of the carrier pipe.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the Temperature unit parameter (→ 60)
Description of device parameters

Proline Promass 100 HART

Maximum value

Navigation

Expert → Diagnostics → Min/max val. → Carr. pipe temp. → Maximum value

Prerequisite

Only available for:
• Promass A
• Promass F
• Promass G
• Promass H
• Promass I
• Promass O
• Promass P
• Promass Q
• Promass S
• Promass X

For the following order code
Application package, option EB "Heartbeat Verification + Monitoring"

Description

Displays the highest previously measured temperature value of the carrier pipe.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the Temperature unit parameter (→ 60)

"Oscil. frequency" submenu

Navigation

Expert → Diagnostics → Min/max val. → Oscil. frequency

<table>
<thead>
<tr>
<th>Oscil. frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value → 186</td>
</tr>
<tr>
<td>Maximum value → 187</td>
</tr>
</tbody>
</table>

Minimum value

Navigation

Expert → Diagnostics → Min/max val. → Oscil. frequency → Minimum value

Description

Displays the lowest previously measured oscillation frequency.

User interface

Signed floating-point number
Maximum value

Navigation

Expert → Diagnostics → Min/max val. → Oscil. frequency → Maximum value

Description

Displays the highest previously measured oscillation frequency.

User interface

Signed floating-point number

"Tors.oscil.freq." submenu

Navigation

Expert → Diagnostics → Min/max val. → Tors.oscil.freq.

<table>
<thead>
<tr>
<th>Minimum value</th>
<th>→</th>
<th>187</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum value</td>
<td>→</td>
<td>187</td>
</tr>
</tbody>
</table>

Minimum value

Navigation

Expert → Diagnostics → Min/max val. → Tors.oscil.freq. → Minimum value

Prerequisite

Only available for Promass I.

For the following order code:
"Application package", option EB "Heartbeat Verification + Monitoring"

Description

Displays the lowest previously measured torsion oscillation frequency.

User interface

Signed floating-point number

Maximum value

Navigation

Expert → Diagnostics → Min/max val. → Tors.oscil.freq. → Maximum value

Prerequisite

Only available for Promass I.

For the following order code:
"Application package", option EB "Heartbeat Verification + Monitoring"

Description

Displays the highest previously measured torsion oscillation frequency.
User interface

Signed floating-point number

"Oscil. amplitude" submenu

Navigation

Expert → Diagnostics → Min/max val. → Oscil. amplitude

<table>
<thead>
<tr>
<th>Oscil. amplitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value</td>
</tr>
<tr>
<td>Maximum value</td>
</tr>
</tbody>
</table>

Minimum value

Navigation

Expert → Diagnostics → Min/max val. → Oscil. amplitude → Minimum value

Description
Displays the lowest previously measured oscillation amplitude.

User interface
Signed floating-point number

Maximum value

Navigation

Expert → Diagnostics → Min/max val. → Oscil. amplitude → Maximum value

Description
Displays the highest previously measured oscillation amplitude.

User interface
Signed floating-point number

"Tor. osc. amp." submenu

Navigation

Expert → Diagnostics → Min/max val. → Tor. osc. amp.

<table>
<thead>
<tr>
<th>Tor. osc. amp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value</td>
</tr>
<tr>
<td>Maximum value</td>
</tr>
</tbody>
</table>
Minimum value

Navigation
Expert → Diagnostics → Min/max val. → Tor. osc. amp. → Minimum value

Prerequisite
Only available for Promass I.

For the following order code:
'Application package', option EB 'Heartbeat Verification + Monitoring'

Description
Displays the lowest previously measured torsion oscillation amplitude.

User interface
Signed floating-point number

Maximum value

Navigation
Expert → Diagnostics → Min/max val. → Tor. osc. amp. → Maximum value

Prerequisite
Only available for Promass I.

For the following order code:
'Application package', option EB 'Heartbeat Verification + Monitoring'

Description
Displays the highest previously measured torsion oscillation amplitude.

User interface
Signed floating-point number

"Oscil. damping" submenu

Navigation
Expert → Diagnostics → Min/max val. → Oscil. damping

Minimum value
Minimum value → 189

Maximum value
Maximum value → 190

Minimum value

Navigation
Expert → Diagnostics → Min/max val. → Oscil. damping → Minimum value

Description
Displays the lowest previously measured oscillation damping.

User interface
Signed floating-point number
Maximum value

Navigation
Expert → Diagnostics → Min/max val. → Oscil. damping → Maximum value

Description
Displays the highest previously measured oscillation damping.

User interface
Signed floating-point number

"Tors.oscil.damp." submenu

Navigation
Expert → Diagnostics → Min/max val. → Tors.oscil.damp.

Minimum value

| Minimum value | → 190 |

Maximum value

| Maximum value | → 190 |

Minimum value

Navigation
Expert → Diagnostics → Min/max val. → Tors.oscil.damp. → Minimum value

Prerequisite
Only available for Promass I.
For the following order code:
'Application package', option **EB** 'Heartbeat Verification + Monitoring'

Description
Displays the lowest previously measured torsion oscillation damping.

User interface
Signed floating-point number

Maximum value

Navigation
Expert → Diagnostics → Min/max val. → Tors.oscil.damp. → Maximum value

Prerequisite
Only available for Promass I.
For the following order code:
'Application package', option **EB** 'Heartbeat Verification + Monitoring'

Description
Displays the highest previously measured torsion oscillation damping.
User interface
Signed floating-point number

"Signal asymmetry" submenu

Navigation

Expert → Diagnostics → Min/max val. → Signal asymmetry

<table>
<thead>
<tr>
<th>Signal asymmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value</td>
</tr>
<tr>
<td>Maximum value</td>
</tr>
</tbody>
</table>

Minimum value

Navigation

Expert → Diagnostics → Min/max val. → Signal asymmetry → Minimum value

Description
Displays the lowest previously measured signal asymmetry.

User interface
Signed floating-point number

Maximum value

Navigation

Expert → Diagnostics → Min/max val. → Signal asymmetry → Maximum value

Description
Displays the highest previously measured signal asymmetry.

User interface
Signed floating-point number

3.6.5 "Heartbeat" submenu

For detailed information on the parameter descriptions for the Heartbeat Verification+Monitoring application package, refer to the Special Documentation for the device

Navigation

Expert → Diagnostics → Heartbeat

<table>
<thead>
<tr>
<th>Heartbeat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform.verif.</td>
</tr>
</tbody>
</table>
3.6.6 "Simulation" submenu

Navigation
Expert → Diagnostics → Simulation

Assign proc.var.

Description
Use this function to select a process variable for the simulation process that is activated. The display alternates between the measured value and a diagnostic message of the "Function check" category (C) while simulation is in progress.
Selection

- Off
- Mass flow
- Volume flow
- Correct.vol.flow
- Density
- Ref.density
- Temperature
- Dynam. viscosity *
- Kinematic visc.
- TempCompDynVisc *
- TempCompKinVisc *
- Concentration *
- Target mass flow *
- Carrier mass fl.

Factory setting

Off

Additional information

Description

The simulation value of the process variable selected is defined in the **Value proc. var.** parameter (→ 193).

Value proc. var.

Navigation

Expert → Diagnostics → Simulation → Value proc. var.

Prerequisite

One of the following options is selected in the **Assign proc.var.** parameter (→ 192):

- Mass flow
- Volume flow
- Correct.vol.flow
- Density
- Ref.density
- Temperature
- Dynam. viscosity *
- Kinematic visc.
- TempCompDynVisc *
- TempCompKinVisc *
- Concentration *
- Target mass flow *
- Carrier mass fl.

Description

Use this function to enter a simulation value for the selected process variable. Subsequent measured value processing and the signal output use this simulation value. In this way, users can verify whether the measuring device has been configured correctly.

User entry

Depends on the process variable selected

Factory setting

0

Additional information

Entry

The unit of the displayed measured value is taken from the **System units** submenu (→ 53).

* Visibility depends on order options or device settings
Sim.curr.out. 1

Navigation
Expert → Diagnostics → Simulation → Sim.curr.out. 1

Description
Use this function to switch simulation of the current output on and off. The display alternates between the measured value and a diagnostic message of the "Function check" category while simulation is in progress.

Selection
- Off
- On

Factory setting
Off

Additional information

Description
The desired simulation value is specified in the Value curr.out 1 parameter (→ 194).

Selection
- Off
 Current simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- On
 Current simulation is active.

Value curr.out 1

Navigation
Expert → Diagnostics → Simulation → Value curr.out 1

Prerequisite
In the Sim.curr.out. 1 parameter, the On option is selected.

Description
Use this function to enter a current value for the simulation. In this way, users can verify the correct adjustment of the current output and the correct function of downstream switching units.

User entry
0 to 22.5 mA

Frequency sim. 1

Navigation
Expert → Diagnostics → Simulation → Frequency sim. 1

Prerequisite
In the Operating mode parameter (→ 108), the Frequency option is selected.

Description
Use this function to switch simulation of the frequency output on and off. The display alternates between the measured value and a diagnostic message of the "Function check" category while simulation is in progress.

Selection
- Off
- On
Factory setting

Off

Additional information

Description

The desired simulation value is defined in the **Freq. value** parameter (→ 195).

Selection

- **Off**

 Frequency simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.

- **On**

 Frequency simulation is active.

Freq. value 1

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Diagnostics → Simulation → Freq. value 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>In the Frequency sim. parameter (→ 194), the On option is selected.</td>
</tr>
<tr>
<td>Description</td>
<td>Use this function to enter a frequency value for the simulation. In this way, users can verify the correct adjustment of the frequency output and the correct function of downstream switching units.</td>
</tr>
<tr>
<td>User entry</td>
<td>0.0 to 12 500.0 Hz</td>
</tr>
</tbody>
</table>

Pulse sim. 1

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Diagnostics → Simulation → Pulse sim. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>In the Operating mode parameter (→ 108), the Pulse option is selected.</td>
</tr>
<tr>
<td>Description</td>
<td>Use this function to switch simulation of the pulse output on and off. The display alternates between the measured value and a diagnostic message of the ‘Function check’ category (C) while simulation is in progress.</td>
</tr>
<tr>
<td>Selection</td>
<td></td>
</tr>
<tr>
<td>- Off</td>
<td></td>
</tr>
<tr>
<td>- Fixed value</td>
<td></td>
</tr>
<tr>
<td>- Down-count. val.</td>
<td></td>
</tr>
<tr>
<td>Factory setting</td>
<td>Off</td>
</tr>
</tbody>
</table>
Additional information

Description

The desired simulation value is defined in the **Pulse value** parameter (→ 196).

Selection

- **Off**
 Pulse simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- **Fixed value**
 Pulses are continuously output with the pulse width specified in the **Pulse width** parameter (→ 111).
- **Down-count. val.**
 The pulses specified in the **Pulse value** parameter (→ 196) are output.

Pulse value 1

Navigation

Expert → Diagnostics → Simulation → Pulse value 1

Prerequisite

In the **Pulse sim.** parameter (→ 195), the **Down-count. val.** option is selected.

Description

Use this function to enter a pulse value for the simulation. In this way, users can verify the correct adjustment of the pulse output and the correct function of downstream switching units.

User entry

0 to 65535

Switch sim. 1

Navigation

Expert → Diagnostics → Simulation → Switch sim. 1

Prerequisite

In the **Operating mode** parameter (→ 108), the **Switch** option is selected.

Description

Use this function to switch simulation of the switch output on and off. The display alternates between the measured value and a diagnostic message of the "Function check" category (C) while simulation is in progress.

Selection

- **Off**
- **On**

Factory setting

Off
Additional information

Description

The desired simulation value is defined in the Switch status parameter (→ 197).

Selection

- Off
 Switch simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- On
 Switch simulation is active.

Switch status 1

Navigation

Expert → Diagnostics → Simulation → Switch status 1

Prerequisite

In the Switch sim. parameter (→ 196) Switch sim. 1 to n parameter Switch sim. 1 to n parameter, the On option is selected.

Description

Use this function to select a switch value for the simulation. In this way, users can verify the correct adjustment of the switch output and the correct function of downstream switching units.

Selection

- Open
- Closed

Additional information

Selection

- Open
 Switch simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- Closed
 Switch simulation is active.

Sim. alarm

Navigation

Expert → Diagnostics → Simulation → Sim. alarm

Description

Use this function to switch the device alarm on and off.

Selection

- Off
- On

Factory setting

Off

Additional information

Description

The display alternates between the measured value and a diagnostic message of the "Function check" category (C) while simulation is in progress.
Event category

Navigation
Expert → Diagnostics → Simulation → Event category

Description
Use this function to select the category of the diagnostic events that are displayed for the simulation in the **Sim. diag. event** parameter (→ 198).

Selection
- Sensor
- Electronics
- Configuration
- Process

Factory setting
Process

Sim. diag. event

Navigation
Expert → Diagnostics → Simulation → Sim. diag. event

Description
Use this function to select a diagnostic event for the simulation process that is activated.

Selection
- Off
- Diagnostic event picklist (depends on the category selected)

Factory setting
Off

Additional information
Description
For the simulation, you can choose from the diagnostic events of the category selected in the **Event category** parameter (→ 198).
4 Country-specific factory settings

4.1 SI units

Not valid for USA and Canada.

4.1.1 System units

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>kg</td>
</tr>
<tr>
<td>Mass flow</td>
<td>kg/h</td>
</tr>
<tr>
<td>Volume</td>
<td>l</td>
</tr>
<tr>
<td>Volume flow</td>
<td>l/h</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>Nl</td>
</tr>
<tr>
<td>Corrected volume flow</td>
<td>Nl/h</td>
</tr>
<tr>
<td>Density</td>
<td>kg/l</td>
</tr>
<tr>
<td>Reference density</td>
<td>kg/Nl</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C</td>
</tr>
<tr>
<td>Pressure</td>
<td>bar a</td>
</tr>
</tbody>
</table>

4.1.2 Full scale values

The factory settings applie to the following parameters:
- 20 mA value (full scale value of the current output)
- 100% bar graph value 1

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>[kg/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
</tr>
<tr>
<td>8</td>
<td>400</td>
</tr>
<tr>
<td>15</td>
<td>1300</td>
</tr>
<tr>
<td>15 FB</td>
<td>3600</td>
</tr>
<tr>
<td>25</td>
<td>3600</td>
</tr>
<tr>
<td>25 FB</td>
<td>9000</td>
</tr>
<tr>
<td>40</td>
<td>9000</td>
</tr>
<tr>
<td>40 FB</td>
<td>14000</td>
</tr>
<tr>
<td>50</td>
<td>14000</td>
</tr>
<tr>
<td>50 FB</td>
<td>36000</td>
</tr>
<tr>
<td>80</td>
<td>36000</td>
</tr>
<tr>
<td>100</td>
<td>60000</td>
</tr>
<tr>
<td>150</td>
<td>130 t/h</td>
</tr>
<tr>
<td>250</td>
<td>360 t/h</td>
</tr>
<tr>
<td>350</td>
<td>650 t/h</td>
</tr>
</tbody>
</table>
4.1.3 Output current span

| Current output 1 | 4 to 20 mA NAMUR |

4.1.4 Pulse value

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>[kg/p]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.001</td>
</tr>
<tr>
<td>2</td>
<td>0.01</td>
</tr>
<tr>
<td>4</td>
<td>0.01</td>
</tr>
<tr>
<td>8</td>
<td>0.1</td>
</tr>
<tr>
<td>15</td>
<td>0.1</td>
</tr>
<tr>
<td>15 FB</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>25 FB</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
</tr>
<tr>
<td>40 FB</td>
<td>10</td>
</tr>
<tr>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>50 FB</td>
<td>10</td>
</tr>
<tr>
<td>80</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>150</td>
<td>100</td>
</tr>
<tr>
<td>250</td>
<td>100</td>
</tr>
<tr>
<td>350</td>
<td>100</td>
</tr>
</tbody>
</table>

4.1.5 On value low flow cut off

The switch-on point depends on the type of medium and the nominal diameter.

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>On-value for liquid [kg/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.08</td>
</tr>
<tr>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>4</td>
<td>1.8</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td>26</td>
</tr>
<tr>
<td>15 FB</td>
<td>72</td>
</tr>
<tr>
<td>25</td>
<td>72</td>
</tr>
<tr>
<td>25 FB</td>
<td>180</td>
</tr>
<tr>
<td>40</td>
<td>180</td>
</tr>
<tr>
<td>40 FB</td>
<td>300</td>
</tr>
<tr>
<td>50</td>
<td>300</td>
</tr>
<tr>
<td>50 FB</td>
<td>720</td>
</tr>
<tr>
<td>80</td>
<td>720</td>
</tr>
<tr>
<td>100</td>
<td>1200</td>
</tr>
<tr>
<td>Nominal diameter [mm]</td>
<td>On-value for liquid [kg/h]</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>150</td>
<td>2.6 t/h</td>
</tr>
<tr>
<td>250</td>
<td>7.2 t/h</td>
</tr>
<tr>
<td>350</td>
<td>13 t/h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>Switch-on value for gas [kg/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.02</td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
</tr>
<tr>
<td>4</td>
<td>0.45</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>6.5</td>
</tr>
<tr>
<td>15 FB</td>
<td>18</td>
</tr>
<tr>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>25 FB</td>
<td>45</td>
</tr>
<tr>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>40 FB</td>
<td>75</td>
</tr>
<tr>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>50 FB</td>
<td>180</td>
</tr>
<tr>
<td>80</td>
<td>180</td>
</tr>
<tr>
<td>100</td>
<td>300</td>
</tr>
<tr>
<td>150</td>
<td>650</td>
</tr>
<tr>
<td>250</td>
<td>1.8 t/h</td>
</tr>
<tr>
<td>350</td>
<td>3.25 t/h</td>
</tr>
</tbody>
</table>

4.2 US units

Only valid for USA and Canada.

4.2.1 System units

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>lb</td>
</tr>
<tr>
<td>Mass flow</td>
<td>lb/min</td>
</tr>
<tr>
<td>Volume</td>
<td>gal (us)</td>
</tr>
<tr>
<td>Volume flow</td>
<td>gal/min (us)</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>ft³</td>
</tr>
<tr>
<td>Corrected volume flow</td>
<td>ft³/min</td>
</tr>
<tr>
<td>Density</td>
<td>lb/ft³</td>
</tr>
<tr>
<td>Reference density</td>
<td>lb/ft³</td>
</tr>
<tr>
<td>Temperature</td>
<td>°F</td>
</tr>
<tr>
<td>Pressure</td>
<td>psi a</td>
</tr>
</tbody>
</table>
4.2.2 Full scale values

The factory settings apply to the following parameters:
- 20 mA value (full scale value of the current output)
- 100% bar graph value 1

<table>
<thead>
<tr>
<th>Nominal diameter [in]</th>
<th>[lb/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2₄</td>
<td>0.15</td>
</tr>
<tr>
<td>1/₁₂</td>
<td>0.75</td>
</tr>
<tr>
<td>1/₈</td>
<td>3.3</td>
</tr>
<tr>
<td>3/₈</td>
<td>15</td>
</tr>
<tr>
<td>½</td>
<td>50</td>
</tr>
<tr>
<td>½ FB</td>
<td>130</td>
</tr>
<tr>
<td>1</td>
<td>130</td>
</tr>
<tr>
<td>1 FB</td>
<td>330</td>
</tr>
<tr>
<td>1½</td>
<td>330</td>
</tr>
<tr>
<td>1½ FB</td>
<td>550</td>
</tr>
<tr>
<td>2</td>
<td>550</td>
</tr>
<tr>
<td>2 FB</td>
<td>1300</td>
</tr>
<tr>
<td>3</td>
<td>1300</td>
</tr>
<tr>
<td>4</td>
<td>2200</td>
</tr>
<tr>
<td>6</td>
<td>4800</td>
</tr>
<tr>
<td>10</td>
<td>13000</td>
</tr>
<tr>
<td>14</td>
<td>23500</td>
</tr>
</tbody>
</table>

4.2.3 Output current span

Current output 1

| 4 to 20 mA US |

4.2.4 Pulse value

<table>
<thead>
<tr>
<th>Nominal diameter [in]</th>
<th>[lb/p]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2₄</td>
<td>0.002</td>
</tr>
<tr>
<td>1/₁₂</td>
<td>0.02</td>
</tr>
<tr>
<td>1/₈</td>
<td>0.02</td>
</tr>
<tr>
<td>3/₈</td>
<td>0.2</td>
</tr>
<tr>
<td>½</td>
<td>0.2</td>
</tr>
<tr>
<td>½ FB</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1 FB</td>
<td>2</td>
</tr>
<tr>
<td>1½</td>
<td>2</td>
</tr>
<tr>
<td>1½ FB</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>2 FB</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
</tr>
</tbody>
</table>
4.2.5 On value low flow cut off

The switch-on point depends on the type of medium and the nominal diameter.

<table>
<thead>
<tr>
<th>Nominal diameter [in]</th>
<th>On-value for liquid [lb/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>¹/₂₄</td>
<td>0.003</td>
</tr>
<tr>
<td>¹/₁₂</td>
<td>0.015</td>
</tr>
<tr>
<td>¹/₈</td>
<td>0.066</td>
</tr>
<tr>
<td>³/₈</td>
<td>0.3</td>
</tr>
<tr>
<td>½</td>
<td>1</td>
</tr>
<tr>
<td>½ FB</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>2.6</td>
</tr>
<tr>
<td>1 FB</td>
<td>6.6</td>
</tr>
<tr>
<td>1½</td>
<td>6.6</td>
</tr>
<tr>
<td>1½ FB</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>2 FB</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>44</td>
</tr>
<tr>
<td>6</td>
<td>95</td>
</tr>
<tr>
<td>10</td>
<td>260</td>
</tr>
<tr>
<td>¹/₄</td>
<td>470</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal diameter [in]</th>
<th>Switch-on value for gas [lb/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>¹/₂₄</td>
<td>0.001</td>
</tr>
<tr>
<td>¹/₁₂</td>
<td>0.004</td>
</tr>
<tr>
<td>¹/₈</td>
<td>0.016</td>
</tr>
<tr>
<td>³/₈</td>
<td>0.075</td>
</tr>
<tr>
<td>½</td>
<td>0.25</td>
</tr>
<tr>
<td>½ FB</td>
<td>0.65</td>
</tr>
<tr>
<td>1</td>
<td>0.65</td>
</tr>
<tr>
<td>1 FB</td>
<td>1.65</td>
</tr>
<tr>
<td>1½</td>
<td>1.65</td>
</tr>
<tr>
<td>1½ FB</td>
<td>2.75</td>
</tr>
<tr>
<td>2</td>
<td>2.75</td>
</tr>
<tr>
<td>2 FB</td>
<td>6.5</td>
</tr>
<tr>
<td>Nominal diameter [in]</td>
<td>Switch-on value for gas [lb/min]</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>3</td>
<td>6.5</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>23.75</td>
</tr>
<tr>
<td>10</td>
<td>65</td>
</tr>
<tr>
<td>14</td>
<td>117.5</td>
</tr>
</tbody>
</table>
5 Explanation of abbreviated units

5.1 SI units

<table>
<thead>
<tr>
<th>Process variable</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>g/cm³, g/m³</td>
<td>Gram/volume unit</td>
</tr>
<tr>
<td></td>
<td>kg/dm³, kg/l, kg/m³</td>
<td>Kilogram/volume unit</td>
</tr>
<tr>
<td>SD4°C, SD15°C, SD20°C</td>
<td>Specific density: The specific density is the ratio of the density of the fluid to the density of water at a water temperature of 4 °C (39 °F), 15 °C (59 °F), 20 °C (68 °F).</td>
<td></td>
</tr>
<tr>
<td>SGA4°C, SG15°C, SG20°C</td>
<td>Specific gravity: The specific gravity is the ratio of the density of the fluid to the density of water at a water temperature of 4 °C (39 °F), 15 °C (59 °F), 20 °C (68 °F).</td>
<td></td>
</tr>
<tr>
<td>Pressure</td>
<td>Pa a, kPa a, MPa a</td>
<td>Pascal, kilopascal, megapascal (absolute)</td>
</tr>
<tr>
<td></td>
<td>bar</td>
<td>Bar</td>
</tr>
<tr>
<td></td>
<td>Pa g, kPa g, MPa g</td>
<td>Pascal, kilopascal, megapascal (relative/gauge)</td>
</tr>
<tr>
<td></td>
<td>bar g</td>
<td>Bar (relative/gauge)</td>
</tr>
<tr>
<td>Mass</td>
<td>g, kg, t</td>
<td>Gram, kilogram, metric ton</td>
</tr>
<tr>
<td>Mass flow</td>
<td>g/s, g/min, g/h, g/d</td>
<td>Gram/time unit</td>
</tr>
<tr>
<td></td>
<td>kg/s, kg/min, kg/h, kg/d</td>
<td>Kilogram/time unit</td>
</tr>
<tr>
<td></td>
<td>t/s, t/min, t/h, t/d</td>
<td>Metric ton/time unit</td>
</tr>
<tr>
<td>Ref. density</td>
<td>kg/Nm³, kg/Nl, g/Sm³, kg/Sm³</td>
<td>Kilogram, gram/standard volume unit</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>Nl, Nm³, Sm³</td>
<td>Normal liter, normal cubic meter, standard cubic meter</td>
</tr>
<tr>
<td>Correct. vol. flow</td>
<td>Nl/s, Nl/min, Nl/h, Nl/d</td>
<td>Normal liter/time unit</td>
</tr>
<tr>
<td></td>
<td>Nm³/s, Nm³/min, Nm³/h, Nm³/d</td>
<td>Normal cubic meter/time unit</td>
</tr>
<tr>
<td></td>
<td>Sm³/s, Sm³/min, Sm³/h, Sm³/d</td>
<td>Standard cubic meter/time unit</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C, K</td>
<td>Celsius, Kelvin</td>
</tr>
<tr>
<td>Volume</td>
<td>cm³, dm³, m³</td>
<td>Cubic centimeter, cubic decimeter, cubic meter</td>
</tr>
<tr>
<td></td>
<td>ml, l, hl, Ml Mega</td>
<td>Milliliter, liter, hectoliter, megaliter</td>
</tr>
<tr>
<td>Volume flow</td>
<td>cm³/s, cm³/min, cm³/h, cm³/d</td>
<td>Cubic centimeter/time unit</td>
</tr>
<tr>
<td></td>
<td>dm³/s, dm³/min, dm³/h, dm³/d</td>
<td>Cubic decimeter/time unit</td>
</tr>
<tr>
<td></td>
<td>m³/s, m³/min, m³/h, m³/d</td>
<td>Cubic meter/time unit</td>
</tr>
<tr>
<td></td>
<td>ml/s, ml/min, ml/h, ml/d</td>
<td>Milliliter/time unit</td>
</tr>
<tr>
<td></td>
<td>l/s, l/min, l/h, l/d</td>
<td>Liter/time unit</td>
</tr>
<tr>
<td></td>
<td>hl/s, hl/min, hl/h, hl/d</td>
<td>Hectoliter/time unit</td>
</tr>
<tr>
<td></td>
<td>Ml/s, Ml/min, Ml/h, Ml/d</td>
<td>Megaliter/time unit</td>
</tr>
<tr>
<td>Time</td>
<td>s, m, h, d, y</td>
<td>Second, minute, hour, day, year</td>
</tr>
</tbody>
</table>

5.2 US units

<table>
<thead>
<tr>
<th>Process variable</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>lb/ft³, lb/gal (us)</td>
<td>Pound/cubic foot, pound/gallon</td>
</tr>
<tr>
<td></td>
<td>lb/bbl (us;lq.), lb/bbl (us;beer), lb/bbl (us;oil), lb/bbl (us;tank)</td>
<td>Pound/volume unit</td>
</tr>
<tr>
<td>Process variable</td>
<td>Units</td>
<td>Explanation</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>Pressure</td>
<td>psi a</td>
<td>Pounds per square inch (absolute)</td>
</tr>
<tr>
<td></td>
<td>psi g</td>
<td>Pounds per square inch (gauge)</td>
</tr>
<tr>
<td>Mass</td>
<td>oz, lb, STon</td>
<td>Ounce, pound, standard ton</td>
</tr>
<tr>
<td>Mass flow</td>
<td>oz/s, oz/min, oz/h, oz/d</td>
<td>Ounce/time unit</td>
</tr>
<tr>
<td></td>
<td>lb/s, lb/min, lb/h, lb/d</td>
<td>Pound/time unit</td>
</tr>
<tr>
<td></td>
<td>STon/s, STon/min, STon/h, STon/d</td>
<td>Standard ton/time unit</td>
</tr>
<tr>
<td>Ref. density</td>
<td>lb/Sft³</td>
<td>Weight unit/standard volume unit</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>Sft³, Sgal (us), Sbbl (us;liq.)</td>
<td>Standard cubic foot, standard gallon, standard barrel</td>
</tr>
<tr>
<td>Correct. vol. flow</td>
<td>Sft³/s, Sft³/min, Sft³/h, Sft³/d</td>
<td>Standard cubic foot/time unit</td>
</tr>
<tr>
<td></td>
<td>Sgal/s (us), Sgal/min (us), Sgal/h (us), Sgal/d (us)</td>
<td>Standard gallon/time unit</td>
</tr>
<tr>
<td></td>
<td>Sbbl/s (us;liq.), Sbbl/min (us;liq.), Sbbl/h (us;liq.), Sbbl/d (us;liq.)</td>
<td>Barrel/time unit (normal liquids)</td>
</tr>
<tr>
<td>Temperature</td>
<td>°F, °R</td>
<td>Fahrenheit, Rankine</td>
</tr>
<tr>
<td>Volume</td>
<td>af</td>
<td>Acre foot</td>
</tr>
<tr>
<td></td>
<td>ft³</td>
<td>Cubic foot</td>
</tr>
<tr>
<td></td>
<td>fl oz (us), gal (us), kgal (us), Mgal (us)</td>
<td>Fluid ounce, gallon, kilogallon, million gallon</td>
</tr>
<tr>
<td></td>
<td>bbl (us;liq.), bbl (us;beer), bbl (us;oil), bbl (us;tank)</td>
<td>Barrel (normal liquids), barrel (beer), barrel (petrochemicals), barrel (filling tanks)</td>
</tr>
<tr>
<td>Volume flow</td>
<td>af/s, af/min, af/h, af/d</td>
<td>Acre foot/time unit</td>
</tr>
<tr>
<td></td>
<td>ft³/s, ft³/min, ft³/h, ft³/d</td>
<td>Cubic foot/time unit</td>
</tr>
<tr>
<td></td>
<td>fl oz (us), fl oz/min (us), fl oz/h (us), fl oz/d (us)</td>
<td>Fluid ounce/time unit</td>
</tr>
<tr>
<td></td>
<td>gal/s (us), gal/min (us), gal/h (us), gal/d (us)</td>
<td>Gallon/time unit</td>
</tr>
<tr>
<td></td>
<td>kgal/s (us), kgal/min (us), kgal/h (us), kgal/d (us)</td>
<td>Kilogallon/time unit</td>
</tr>
<tr>
<td></td>
<td>Mgal/s (us), Mgal/min (us), Mgal/h (us), Mgal/d (us)</td>
<td>Million gallon/time unit</td>
</tr>
<tr>
<td></td>
<td>bbl/s (us;liq.), bbl/min (us;liq.), bbl/h (us;liq.), bbl/d (us;liq.)</td>
<td>Barrel/time unit (normal liquids)</td>
</tr>
<tr>
<td></td>
<td>bbl/s (us;beer), bbl/min (us;beer), bbl/h (us;beer), bbl/d (us;beer)</td>
<td>Barrel/time unit (beer)</td>
</tr>
<tr>
<td></td>
<td>Beer: 31.0 gal/bbl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bbl/s (us;oil), bbl/min (us;oil), bbl/h (us;oil), bbl/d (us;oil)</td>
<td>Barrel/time unit (petrochemicals)</td>
</tr>
<tr>
<td></td>
<td>Petrochemicals: 42.0 gal/bbl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bbl/s (us;tank), bbl/min (us;tank), bbl/h (us;tank), bbl/d (us;tank)</td>
<td>Barrel/time unit (filling tank)</td>
</tr>
<tr>
<td></td>
<td>Filling tanks: 55.0 gal/bbl</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>s, m, h, d, y</td>
<td>Second, minute, hour, day, year</td>
</tr>
<tr>
<td></td>
<td>am, pm</td>
<td>Ante meridiem (before midday), post meridiem (after midday)</td>
</tr>
</tbody>
</table>
5.3 Imperial units

<table>
<thead>
<tr>
<th>Process variable</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>lb/gal (imp), lb/bbl (imp;beer),</td>
<td>Pound/volume unit</td>
</tr>
<tr>
<td></td>
<td>lb/bbl (imp;oil)</td>
<td></td>
</tr>
<tr>
<td>Corrected volume</td>
<td>Sgal (imp)</td>
<td>Standard gallon</td>
</tr>
<tr>
<td>Correct.vol.flow</td>
<td>Sgal/s (imp), Sgal/min (imp),</td>
<td>Standard gallon/time unit</td>
</tr>
<tr>
<td></td>
<td>Sgal/h (imp), Sgal/d (imp)</td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>gal (imp), Mgal (imp)</td>
<td>Gallon, mega gallon</td>
</tr>
<tr>
<td></td>
<td>bbl (imp;beer), bbl (imp;oil)</td>
<td>Barrel (beer), barrel (petrochemicals)</td>
</tr>
<tr>
<td>Volume flow</td>
<td>gal/s (imp), gal/min (imp), gal/h (imp),</td>
<td>Gallon/time unit</td>
</tr>
<tr>
<td></td>
<td>gal/d (imp)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mgal/s (imp), Mgal/min (imp),</td>
<td>Mega gallon/time unit</td>
</tr>
<tr>
<td></td>
<td>Mgal/h (imp), Mgal/d (imp)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bbl/s (imp;beer), bbl/min (imp;beer), bbl/h (imp;beer), bbl/d (imp;beer)</td>
<td>Barrel/time unit (beer)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Beer: 36.0 gal/bbl</td>
</tr>
<tr>
<td></td>
<td>bbl/s (imp;oil), bbl/min (imp;oil), bbl/h (imp;oil), bbl/d (imp;oil)</td>
<td>Barrel/time unit (petrochemicals)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Petrochemicals: 34.97 gal/bbl</td>
</tr>
<tr>
<td>Time</td>
<td>s, m, h, d, y</td>
<td>Second, minute, hour, day, year</td>
</tr>
<tr>
<td></td>
<td>am, pm</td>
<td>Ante meridiem (before midday), post meridiem (after midday)</td>
</tr>
</tbody>
</table>
Index

0 ... 9
- 0/4 mA value (Parameter) ... 95
- 0% bargraph value 1 (Parameter) 18
- 0% bargraph value 3 (Parameter) 21
- 20 mA value (Parameter) ... 97
- 100% bargraph value 1 (Parameter) 19
- 100% bargraph value 3 (Parameter) 21

A
- Access status display (Parameter) 12, 26
- Activate SW option (Parameter) 12
- Actual diagnostics (Parameter) 171
- Administration (Submenu) 27
- Alarm delay (Parameter) ... 33
- Application (Submenu) ... 164
- Assign behavior of diagnostic no. 046 (Parameter) 36
- Assign behavior of diagnostic no. 140 (Parameter) 36
- Assign behavior of diagnostic no. 144 (Parameter) 37
- Assign behavior of diagnostic no. 192 (Parameter) 40
- Assign behavior of diagnostic no. 274 (Parameter) 40
- Assign behavior of diagnostic no. 392 (Parameter) 41
- Assign behavior of diagnostic no. 441 (Parameter) 35
- Assign behavior of diagnostic no. 442 (Parameter) 35
- Assign behavior of diagnostic no. 443 (Parameter) 36
- Assign behavior of diagnostic no. 592 (Parameter) 41
- Assign behavior of diagnostic no. 832 (Parameter) 37
- Assign behavior of diagnostic no. 833 (Parameter) 37
- Assign behavior of diagnostic no. 834 (Parameter) 38
- Assign behavior of diagnostic no. 835 (Parameter) 38
- Assign behavior of diagnostic no. 912 (Parameter) 38
- Assign behavior of diagnostic no. 913 (Parameter) 39
- Assign behavior of diagnostic no. 944 (Parameter) 39
- Assign behavior of diagnostic no. 948 (Parameter) 40
- Assign behavior of diagnostic no. 992 (Parameter) 41
- Assign current output (Parameter) 93
- Assign diagnostic behavior (Parameter) 125
- Assign flow direction check (Parameter) 128
- Assign frequency output (Parameter) 114
- Assign limit (Parameter) 126
- Assign process variable (Parameter) 70, 74, 165
- Assign pulse output (Parameter) 110
- Assign PV (Parameter) ... 150
- Assign QV (Parameter) .. 153
- Assign simulation process variable (Parameter) 192
- Assign status (Parameter) 129
- Assign SV (Parameter) .. 151
- Assign TV (Parameter) ... 152

B
- Backlight (Parameter) .. 26
- Burst command (Parameter) 134
- Burst command 1 to n (Parameter) 140
- Burst configuration 1 to n (Submenu) 139
- Burst mode 1 to n (Parameter) 140
- Burst trigger level (Parameter) 145
- Burst trigger mode (Parameter) 144
- Burst variable 0 (Parameter) 142
- Burst variable 1 (Parameter) 142
- Burst variable 2 (Parameter) 143
- Burst variable 3 (Parameter) 143
- Burst variable 4 (Parameter) 143
- Burst variable 5 (Parameter) 143
- Burst variable 6 (Parameter) 144
- Burst variable 7 (Parameter) 144
- Carrier corrected volume flow (Parameter) 48
- Carrier flow (Parameter) .. 48
- Carrier pipe temperature (Submenu) 185
- Carrier volume flow (Parameter) 49
- Communication (Submenu) 131
- Concentration (Parameter) 47
- Concentration (Submenu) 170
- Configuration (Submenu) 132, 138
- Configuration counter (Parameter) 181
- Confirm access code (Parameter) 144
- Contrast display (Parameter) 26
- Control Totalizer 1 to n (Parameter) 168
- Corrected volume flow (Parameter) 144
- Corrected volume flow calculation (Parameter) 81
- Corrected volume flow calculation (Submenu) 80
- Corrected volume flow factor (Parameter) 88
- Corrected volume flow offset (Parameter) 88
- Corrected volume flow unit (Parameter) 57
- Corrected volume unit (Parameter) 58
- Current output 1 (Submenu) 92
- Current span (Parameter) 93
- Damping output (Parameter) 102, 120
- Date/time format (Parameter) 61
- Decimal places 1 (Parameter) 19
- Decimal places 2 (Parameter) 20
- Decimal places 3 (Parameter) 22
- Decimal places 4 (Parameter) 23
- Default gateway (Parameter) 156
- Define access code (Parameter) 28, 30
- Define access code (Wizard) 27
- Density (Parameter) ... 44
- Density damping (Parameter) 69
- Density factor (Parameter) 87
- Density offset (Parameter) 87
- Density unit (Parameter) 59
- Device ID (Parameter) 133, 147
- Device information (Submenu) 178
- Device name (Parameter) 180
Index

Decimal places 3 .. 22
Decimal places 4 .. 23
Default gateway .. 156
Define access code 30
Density ... 44
Density damping .. 69
Density factor .. 87
Density offset .. 87
Density unit ... 59
Device ID .. 133, 147
Device name ... 180
Device reset ... 30
Device revision .. 146
Device tag .. 138, 179
Device type ... 133, 147
Diagnostic event category 198
Diagnostics 1 ... 173
Diagnostics 2 ... 174
Diagnostics 3 ... 174
Diagnostics 4 ... 175
Diagnostics 5 ... 176
Direct access ... 10
Display damping .. 24
Display interval ... 23
Display language 14
Dynamic viscosity 45
ENP version .. 181
Enter access code 13
Event category 046 158
Event category 140 158
Event category 274 159
Event category 441 159
Event category 442 159
Event category 443 160
Event category B30 161
Event category B31 161
Event category B32 160
Event category B33 162
Event category B34 162
Event category B35 162
Event category B62 163
Event category 912 163
Event category 913 164
Extended order code 1 180
Extended order code 2 181
Extended order code 3 181
External pressure 79
External reference density 81
External temperature 80
External value .. 78
Failure current ...
 Current output 1 106
Failure frequency
 Pulse/frequency/sweep output 1 123
Failure mode ... 135
 Current output 1 105
 Pulse/frequency/sweep output 1 112, 122, 130
 Totalizer 1 to n 169
Failure value .. 136
Filter options ... 177
Firmware version 179
Fixed current .. 95
 Current output 1 95
Fixed reference density 82
Flow damping .. 68
Flow override .. 70
Format display .. 15
Frequency simulation 1 194
Frequency value 1 195
Hardware revision 148
HART address .. 138
HART date code .. 149
HART descriptor .. 148
HART message .. 148
HART revision .. 148
HART short tag .. 158
Header .. 24
 Header text ... 25
High value partial filled pipe detection 74
Installation direction 84
Invert output signal
 Pulse/frequency/sweep output 1 131
IP address ... 156
Kinematic viscosity 46
Limit value measuring tube damping 91
Linear expansion coefficient 83
Locking status ... 11
Low value partial filled pipe detection 74
MAC address ... 155
Manufacturer ID .. 134, 147
Mass flow ... 43
Mass flow factor 86
Mass flow offset 86
Mass flow unit ... 54
Mass unit ... 54
Max. update period
 Burst configuration 1 to n 146
Maximum damping partial filled pipe det. 75
Maximum frequency value
 Pulse/frequency/sweep output 1 116
Maximum value .. 184, 186, 187, 188, 189, 190, 191
Measured current 1 51, 107
Measuring mode ..
 Current output 1 97
 Pulse/frequency/sweep output 1 112, 119
Measuring value at maximum frequency
 Pulse/frequency/sweep output 1 118
Measuring value at minimum frequency
 Pulse/frequency/sweep output 1 117
Min. update period
 Burst configuration 1 to n 145
Minimum frequency value
 Pulse/frequency/sweep output 1 115
Minimum value .. 183, 184, 185, 186, 187, 188, 189, 190, 191
No. of preambles 139
Nominal diameter 91
Off value low flow cutoff 71
Proline Promass 100 HART

Endress+Hauser
On value low flow cutoff .. 71
Operating mode
 Pulse/frequency/slot output 1 108
Operating time .. 172
Operating time from restart 172
Order code ... 180
Output current 1 .. 51, 106
Output frequency 1 .. 52, 124
Preset value 1 to n .. 168
Pressure compensation 79
Pressure shock suppression 72
Pressure unit .. 61
Pressure value ... 45, 79
Previous diagnostics .. 171
Primary variable (PV) ... 150
Progress .. 85
Pulse output 1 ... 52, 113
Pulse simulation 1 ... 195
Pulse value 1 .. 196
Pulse width
 Pulse/frequency/slot output 1 111
Quaternary variable (QV) 153
Reference density ... 45
Reference density factor 89
Reference density offset 88
Reference density unit ... 60
Reference sound velocity 77
Reference temperature ... 82
Reset access code .. 29
Reset all totalizers .. 164
Reset min/max values ... 182
Response time
 Current output 1 .. 103
 Pulse/frequency/slot output 1 121
Response time part. filled pipe detect. 75
Secondary variable (SV) ... 151
Select gas type .. 77
Select medium .. 76
Separator .. 25
Serial number ... 179
Simulation current output 1 194
Simulation device alarm .. 197
Simulation diagnostic event 198
Slot number .. 135
Software option overview 32
Software revision ... 149
Square expansion coefficient 83
Status ... 137
Subnet mask .. 156
Switch output function
 Pulse/frequency/slot output 1 124
Switch output simulation 1 196
Switch status 1 .. 53, 130, 197
Switch-off delay
 Pulse/frequency/slot output 1 129
Switch-off value
 Pulse/frequency/slot output 1 128
Switch-on delay
 Pulse/frequency/slot output 1 129
Switch-on value
 Pulse/frequency/slot output 1 127
Target corrected volume flow 48
Target mass flow .. 47
Target volume flow .. 48
Temp. compensated dynamic viscosity 46
Temp. compensated kinematic viscosity 47
Temperature .. 45
Temperature coefficient sound velocity 78
Temperature damping .. 69
Temperature factor .. 89
Temperature offset ... 89
Temperature unit ... 60
Tertiary variable (TV) .. 152
Timeout ... 135
Timestamp ... 171, 172, 173, 174, 175, 176
Totalizer operation mode
 Totalizer 1 to n ... 167
Totalizer overflow 1 to n 50
Totalizer value 1 to n .. 49
Unit totalizer
 Totalizer 1 to n ... 166
 User corrected volume factor 66
 User corrected volume offset 65
 User corrected volume text 65
 User density factor .. 66
 User density offset .. 66
 User density text .. 66
 User mass factor .. 63
 User mass offset .. 63
 User mass text .. 63
 User pressure factor .. 67
 User pressure offset .. 67
 User pressure text ... 67
 User volume factor .. 65
 User volume offset .. 64
 User volume text .. 64
 Value ... 137
 Value 1 display ... 17
 Value 2 display .. 19
 Value 3 display .. 20
 Value 4 display .. 22
 Value current output 1 194
 Value per pulse
 Pulse/frequency/slot output 1 110
 Value process variable 193
 Volume flow .. 44
 Volume flow factor .. 87
 Volume flow offset .. 86
 Volume flow unit ... 55
 Volume unit ... 57
 Web server functionality 156
 Web server language .. 154
 Zero point .. 90
 Zero point adjustment control 84
 Direct access Parameter 10
 Display (Parameter) .. 13
 Display damping (Parameter) 24
 Display interval (Parameter) 23

Endress+Hauser

211
Index
Display language (Parameter) ... 14
Document
 - Explanation of the structure of a parameter description 6
 - Function .. 4
 - Structure .. 4
 - Symbols used ... 6
 - Target group .. 4
 - Using the document .. 4
Dynamic function ... 4
Electronic viscosity (Parameter) ... 45

E
Electronic temperature (Submenu) 183
ENP version (Parameter) .. 181
Enter access code (Parameter) .. 13
Event category 046 (Parameter) .. 158
Event category 140 (Parameter) .. 158
Event category 274 (Parameter) .. 159
Event category 441 (Parameter) .. 159
Event category 442 (Parameter) .. 159
Event category 443 (Parameter) .. 160
Event category 830 (Parameter) .. 161
Event category 831 (Parameter) .. 161
Event category 832 (Parameter) .. 161
Event category 833 (Parameter) .. 161
Event category 834 (Parameter) .. 162
Event category 835 (Parameter) .. 162
Event category 862 (Parameter) .. 163
Event category 912 (Parameter) .. 164
Event category 913 (Parameter) .. 164
Event list (Submenu) .. 177
Event logbook (Submenu) .. 177
Extended order code 1 (Parameter) 180
Extended order code 2 (Parameter) 181
Extended order code 3 (Parameter) 181
External compensation (Submenu) 78
External pressure (Parameter) .. 79
External reference density (Parameter) 81
External temperature (Parameter) 80
External value (Parameter) .. 78

F
Factory settings .. 199
 - SI units ... 199
 - US units .. 201
Failure current (Parameter) .. 106
Failure frequency (Parameter) .. 123
Failure mode (Parameter) 105, 112, 122, 130, 135, 169
Failure value (Parameter) .. 136
Filter options (Parameter) ... 177
Firmware version (Parameter) .. 179
Fixed current (Parameter) .. 95
Fixed reference density (Parameter) 82
Flow damping (Parameter) .. 68
Flow override (Parameter) ... 70
Format display (Parameter) .. 15
Frequency simulation 1 (Parameter) 194
Frequency value 1 (Parameter) .. 195

Function
 - see Parameter

H
Hardware revision (Parameter) .. 148
HART address (Parameter) ... 138
HART date code (Parameter) ... 149
HART descriptor (Parameter) ... 148
HART input (Submenu) ... 132
HART message (Parameter) .. 148
HART output (Submenu) .. 137
HART revision (Parameter) ... 148
HART short tag (Parameter) .. 138
Header (Parameter) .. 24
Header text (Parameter) .. 25
Heartbeat (Submenu) .. 191
High value partial filled pipe detection (Parameter) 74

I
Information (Submenu) ... 146
Input (Submenu) ... 136
Installation direction (Parameter) 84
Invert output signal (Parameter) ... 131
IP address (Parameter) ... 156

K
Kinematic viscosity (Parameter) .. 46

L
Limit value measuring tube damping (Parameter) 91
Linear expansion coefficient (Parameter) 83
Locking status (Parameter) .. 11
Low flow cut off (Submenu) .. 70
Low value partial filled pipe detection (Parameter) 74

M
MAC address (Parameter) .. 155
Manufacturer ID (Parameter) 134, 147
Mass flow (Parameter) ... 43
Mass flow factor (Parameter) .. 86
Mass flow offset (Parameter) .. 86
Mass flow unit (Parameter) ... 54
Mass unit (Parameter) ... 54
Max. update period (Parameter) .. 146
Maximum damping partial filled pipe detection (Parameter) ... 75
Maximum frequency value (Parameter) 116
Maximum value (Parameter) 184, 186, 187, 188, 189, 190, 191
Measured current 1 (Parameter) 51, 107
Measured values (Submenu) .. 42
Measurement mode (Submenu) .. 76
Measuring value at maximum frequency (Parameter) 118
Measuring value at minimum frequency (Parameter) 117
Medium temperature (Submenu) 184
Min. update period (Parameter) 145
Min/max values (Submenu) .. 182
Minimum frequency value (Parameter) 115
Minimum value (Parameter) 183, 184, 185, 186, 187, 188, 189, 190, 191

N
No. of preambles (Parameter) 139
Nominal diameter (Parameter) 91

O
Off value low flow cutoff (Parameter) 71
On value low flow cutoff (Parameter) 71
Operating mode (Parameter) 108
Operating time (Parameter) 172
Operating time from restart (Parameter) 172
Order code (Parameter) 180
Oscillation amplitude (Submenu) 188
Oscillation damping (Submenu) 189
Oscillation frequency (Submenu) 186
Output (Submenu) 92, 149
Output current 1 (Parameter) 51, 106
Output frequency 1 (Parameter) 52, 124
Output values (Submenu) 51

P
Parameter
 Structure of a parameter description 6
 Partially filled pipe detection (Submenu) 73
 Preset value 1 to n (Parameter) 168
 Pressure compensation (Parameter) 79
 Pressure shock suppression (Parameter) 72
 Pressure unit (Parameter) 61
 Pressure value (Parameter) 45, 79
 Previous diagnostics (Parameter) 171
 Primary variable (PV) (Parameter) 150
 Process parameters (Submenu) 68
 Process variable adjustment (Submenu) 85
 Process variables (Submenu) 43
 Progress (Parameter) 85
 Pulse output 1 (Parameter) 52, 113
 Pulse simulation 1 (Parameter) 195
 Pulse value 1 (Parameter) 196
 Pulse width (Parameter) 111
 Pulse/frequency/switch output (Submenu) ... 107

Q
Quaternary variable (QV) (Parameter) 153

R
Reference density (Parameter) 45
Reference density factor (Parameter) 89
Reference density offset (Parameter) 88
Reference density unit (Parameter) 60
Reference sound velocity (Parameter) 77
Reference temperature (Parameter) 82
Reset access code (Parameter) 29
Reset access code (Submenu) 29
Reset all totalizers (Parameter) 164
Reset min/max values (Parameter) 182
Response time (Parameter) 103, 121
Response time part. filled pipe detect. (Parameter) 75
Proline Promass 100 HART

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process variables</td>
<td>43</td>
</tr>
<tr>
<td>Pulse/frequency/switch output</td>
<td>107</td>
</tr>
<tr>
<td>Reset access code</td>
<td>29</td>
</tr>
<tr>
<td>Sensor</td>
<td>42</td>
</tr>
<tr>
<td>Sensor adjustment</td>
<td>83</td>
</tr>
<tr>
<td>Signal asymmetry</td>
<td>191</td>
</tr>
<tr>
<td>Simulation</td>
<td>192</td>
</tr>
<tr>
<td>Supervision</td>
<td>91</td>
</tr>
<tr>
<td>System</td>
<td>13</td>
</tr>
<tr>
<td>System units</td>
<td>53</td>
</tr>
<tr>
<td>Torsion oscillation amplitude</td>
<td>188</td>
</tr>
<tr>
<td>Torsion oscillation damping</td>
<td>190</td>
</tr>
<tr>
<td>Torsion oscillation frequency</td>
<td>187</td>
</tr>
<tr>
<td>Totalizer</td>
<td>49</td>
</tr>
<tr>
<td>Totalizer 1 to n</td>
<td>165</td>
</tr>
<tr>
<td>User-specific units</td>
<td>62</td>
</tr>
<tr>
<td>Viscosity</td>
<td>170</td>
</tr>
<tr>
<td>Web server</td>
<td>154</td>
</tr>
<tr>
<td>Zero point adjustment</td>
<td>84</td>
</tr>
<tr>
<td>Subnet mask (Parameter)</td>
<td>156</td>
</tr>
<tr>
<td>Supervision (Submenu)</td>
<td>91</td>
</tr>
<tr>
<td>Switch output function (Parameter)</td>
<td>124</td>
</tr>
<tr>
<td>Switch output simulation 1 (Parameter)</td>
<td>196</td>
</tr>
<tr>
<td>Switch status 1 (Parameter)</td>
<td>53, 130, 197</td>
</tr>
<tr>
<td>Switch-off delay (Parameter)</td>
<td>129</td>
</tr>
<tr>
<td>Switch-off value (Parameter)</td>
<td>128</td>
</tr>
<tr>
<td>Switch-on delay (Parameter)</td>
<td>129</td>
</tr>
<tr>
<td>Switch-on value (Parameter)</td>
<td>127</td>
</tr>
<tr>
<td>System (Submenu)</td>
<td>13</td>
</tr>
<tr>
<td>System units (Submenu)</td>
<td>53</td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Value (Parameter)</td>
<td>137</td>
</tr>
<tr>
<td>Value 1 display (Parameter)</td>
<td>17</td>
</tr>
<tr>
<td>Value 2 display (Parameter)</td>
<td>19</td>
</tr>
<tr>
<td>Value 3 display (Parameter)</td>
<td>20</td>
</tr>
<tr>
<td>Value 4 display (Parameter)</td>
<td>22</td>
</tr>
<tr>
<td>Value current output 1 (Parameter)</td>
<td>194</td>
</tr>
<tr>
<td>Value per pulse (Parameter)</td>
<td></td>
</tr>
<tr>
<td>Value process variable (Parameter)</td>
<td>193</td>
</tr>
<tr>
<td>Viscosity (Submenu)</td>
<td>170</td>
</tr>
<tr>
<td>Volume flow (Parameter)</td>
<td>44</td>
</tr>
<tr>
<td>Volume flow factor (Parameter)</td>
<td>87</td>
</tr>
<tr>
<td>Volume flow offset (Parameter)</td>
<td>86</td>
</tr>
<tr>
<td>Volume flow unit (Parameter)</td>
<td>55</td>
</tr>
<tr>
<td>Volume unit (Parameter)</td>
<td>57</td>
</tr>
<tr>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Web server (Submenu)</td>
<td>154</td>
</tr>
<tr>
<td>Web server functionality (Parameter)</td>
<td>156</td>
</tr>
<tr>
<td>Web server language (Parameter)</td>
<td>154</td>
</tr>
<tr>
<td>Wizard</td>
<td></td>
</tr>
<tr>
<td>Define access code</td>
<td>27</td>
</tr>
<tr>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>Zero point (Parameter)</td>
<td>90</td>
</tr>
<tr>
<td>Zero point adjustment (Submenu)</td>
<td>84</td>
</tr>
<tr>
<td>Zero point adjustment control (Parameter)</td>
<td>84</td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Unit totalizer (Parameter)</td>
<td>166</td>
</tr>
<tr>
<td>User corrected volume factor (Parameter)</td>
<td>66</td>
</tr>
<tr>
<td>User corrected volume offset (Parameter)</td>
<td>65</td>
</tr>
<tr>
<td>User corrected volume text (Parameter)</td>
<td>65</td>
</tr>
<tr>
<td>User density factor (Parameter)</td>
<td>66</td>
</tr>
<tr>
<td>User density offset (Parameter)</td>
<td>66</td>
</tr>
<tr>
<td>User density text (Parameter)</td>
<td>66</td>
</tr>
<tr>
<td>User mass factor (Parameter)</td>
<td>63</td>
</tr>
<tr>
<td>User mass offset (Parameter)</td>
<td>63</td>
</tr>
<tr>
<td>User mass text (Parameter)</td>
<td>63</td>
</tr>
<tr>
<td>User pressure factor (Parameter)</td>
<td>67</td>
</tr>
<tr>
<td>User pressure offset (Parameter)</td>
<td>67</td>
</tr>
<tr>
<td>User pressure text (Parameter)</td>
<td>67</td>
</tr>
<tr>
<td>User volume factor (Parameter)</td>
<td>65</td>
</tr>
<tr>
<td>User volume offset (Parameter)</td>
<td>64</td>
</tr>
<tr>
<td>User volume text (Parameter)</td>
<td>64</td>
</tr>
<tr>
<td>User-specific units (Submenu)</td>
<td>62</td>
</tr>
</tbody>
</table>

Endress+Hauser

214