01.00.zz (Device firmware) Products Solutions Services # Operating Instructions Proline Promag L 400 Modbus RS485 Electromagnetic flowmeter - Make sure the document is stored in a safe place such that it is always available when working on or with the device. - To avoid danger to individuals or the facility, read the "Basic safety instructions" section carefully, as well as all other safety instructions in the document that are specific to working procedures. - The manufacturer reserves the right to modify technical data without prior notice. Your Endress+Hauser Sales Center will supply you with current information and updates to these instructions. # Table of contents | 1 | About this document 6 | 6 | Installation | 21 | |---|--|-----|---|--| | 1.1
1.2 | Document function6Symbols used61.2.1Safety symbols61.2.2Electrical symbols61.2.3Communication symbols61.2.4Tool symbols71.2.5Symbols for
certain types of information71.2.6Symbols in graphics7Documentation8 | 6.1 | Installation conditions | . 21
. 23
26
. 27
. 27 | | 1.7 | 1.3.1 Standard documentation 8 1.3.2 Supplementary device-dependent documentation 8 | | remote version | 34 | | 1.4 | Registered trademarks 9 | 6.3 | Post-installation check | . 37 | | 2 | Basic safety instructions 10 | 7 | Electrical connection | 38 | | 2.1
2.2
2.3
2.4
2.5
2.6
2.7 | Requirements for the personnel 10 Designated use 10 Workplace safety 11 Operational safety 11 Product safety 11 IT security 12 Device-specific IT security 12 2.7.1 Protecting access via hardware write protection 12 2.7.2 Protecting access via a password 12 2.7.3 Access via fieldbus 13 2.7.4 Access via Web server 13 | 7.1 | Connection conditions | . 38
. 40
. 40
. 41
. 42
. 42
. 42 | | 3 | Product description 14 | 7.3 | Special connection instructions | . 49 | | 3.1 | Product design | 7.4 | 7.3.1 Connection examples | 49 | | 4 | Incoming acceptance and product identification | 7.5 | Ensuring the degree of protection 7.5.1 Degree of protection IP66/67, Type 4X enclosure | . 50 | | 4.1
4.2 | Incoming acceptance15Product identification154.2.1Transmitter nameplate16 | 7.6 | Post-connection check | | | | 4.2.2 Sensor nameplate 17 | 8 | Operation options | 51 | | | 4.2.3 Symbols on measuring device 18 | 8.1 | Overview of operation options Structure and function of the operating | | | 5 5.1 5.2 | Storage and transport19Storage conditions19Transporting the product195.2.1 Measuring devices without lifting
lugs195.2.2 Measuring devices with lifting lugs205.2.3 Transporting with a fork lift20Packaging disposal20 | 8.3 | menu | 55
57
. 59
. 59
61 | | | 8.3.8 | Calling up help text | | | 10.7.2 Write protection via write protection | | |------|-----------------|---|----------|--------|---|-----------------------------------| | | 8.3.9
8.3.10 | Changing the parameters User roles and related access | 63 | | switch | 97 | | | 8.3.11 | authorization | 64 | 11 | Operation | 99 | | | 0.5.11 | code | 64 | | Reading the device locking status $\ldots \ldots$ | | | | 8.3.12 | | | 11.2 | Adjusting the operating language | | | | | lock | 65 | | Configuring the display | 99 | | 8.4 | Access | to the operating menu via the Web | | 11.4 | Reading measured values | | | | | r | | | 11.4.1 Process variables | 99
100 | | | 8.4.1 | Function range | 65 | 11.5 | Adapting the measuring device to the process | 100 | | | 8.4.2 | Prerequisites | | 11.7 | 1 3 3 | 101 | | | 8.4.3 | Establishing a connection | 67 | 11.6 | | 101 | | | 8.4.4
8.4.5 | Logging on | 69
70 | 11.0 | 11.6.1 Function scope of the "Control | | | | 8.4.6 | User interface | | | | 102 | | | 8.4.7 | Logging out | | | 11.6.2 Function scope of the "Reset all | | | 8.5 | | to the operating menu via the | , , | | totalizers" parameter | 102 | | 0.5 | | ng tool | 72 | 11.7 | Showing data logging | 102 | | | 8.5.1 | Connecting the operating tool | 72 | | | | | | 8.5.2 | FieldCare | 74 | 12 | Diagnostics and troubleshooting 1 | 105 | | | 8.5.3 | DeviceCare | 75 | 12.1 | General troubleshooting | 105 | | | | | | 12.2 | Diagnostic information via light emitting | 102 | | 9 | Syster | n integration | 76 | | - | 106 | | 9.1 | Overvie | w of device description files | 76 | | 12.2.1 Transmitter | 106 | | ,,_ | 9.1.1 | Current version data for the device | | 12.3 | 3 | 108 | | | 9.1.2 | Operating tools | | | 3 | 108 | | 9.2 | Modbu | s RS485 information | 76 | | J 1 | 110 | | | 9.2.1 | Function codes | 76 | 12.4 | 3 | 110 | | | 9.2.2 | Register information | 77 | | 3 1 | 110 | | | 9.2.3 | Response time | | 10 5 | 3 1 3 | 111 | | | 9.2.4 | Modbus data map | 78 | 12.5 | Diagnostic information in DeviceCare or FieldCare | 111 | | | | | | | 12.5.1 Diagnostic options | | | 10 | Comn | nissioning | 80 | | | 112 | | 10.1 | Functio | n check | 80 | 12.6 | Diagnostic information via communication | | | 10.2 | | ng on the measuring device | | | interface | 113 | | 10.3 | | the operating language | I . | | | 113 | | 10.4 | Configu | rring the measuring device | 80 | | 12.6.2 Configuring error response mode | 113 | | | | Defining the tag name | | 12.7 | 1 3 3 | 113 | | | | Setting the system units | 82 | | | 113 | | | 10.4.3 | Configuring the communication | 0.0 | 12.8 | 3 | 114 | | | 10 / / | interface | | | 3 3 | 116 | | | | Configuring the local display | | | 5 | 117 | | | | Configuring county pine detection | 86
87 | 12.11 | 3 | 117117 | | 10.5 | | Configuring empty pipe detection ed settings | 88 | | 5 | 118 | | 10.5 | | Carrying out a sensor adjustment | | | | 118 | | | | Configuring the totalizer | | 12.12 | | 119 | | | | Carrying out additional display | | 10,110 | 12.12.1 Function scope of the "Device reset" | | | | | configurations | 91 | | | 119 | | | 10.5.4 | Performing electrode cleaning | | 12.13 | | 119 | | | | Using parameters for device | | | | 121 | | | | administration | 94 | | | | | 10.6 | | ion | 95 | 13 | Maintenance | 122 | | 10.7 | | ing settings from unauthorized | 06 | 13.1 | Maintenance tasks | | | | | Minita protection via aggregate | | 10.1 | 13.1.1 Exterior cleaning | | | | 10./.1 | Write protection via access code | 70 | | 13.1.2 Interior cleaning | | | 13.2 | 13.1.3 Replacing seals | 122
122 | | |-------|--|------------|--| | 13.3 | Endress+Hauser services | 122 | | | 14 | Repairs | 123 | | | 14.1 | General notes | 123 | | | | 14.1.1 Repair and conversion concept | 123 | | | | 14.1.2 Notes for repair and conversion | 123 | | | 14.2 | Spare parts | 123 | | | 14.3 | Endress+Hauser services | 123 | | | 14.4 | Return | 123 | | | 14.5 | Disposal | 124 | | | | 14.5.1 Removing the measuring device | 124 | | | | 14.5.2 Disposing of the measuring device | 124 | | | 15 | Accessories | 125 | | | 15.1 | Device-specific accessories | 125 | | | | 15.1.1 For the transmitter | 125 | | | | 15.1.2 For the sensor | 125 | | | 15.2 | Communication-specific accessories | 125 | | | 15.3 | Service-specific accessories | 126 | | | 15.4 | System components | 126 | | | 16 | Technical data | 127 | | | 16.1 | Application | 127 | | | 16.2 | Function and system design | 127 | | | 16.3 | Input | 127 | | | 16.4 | Output | 130 | | | 16.5 | Power supply | 131 | | | 16.6 | Performance characteristics | 133 | | | 16.7 | Installation | 134 | | | 16.8 | Environment | 134 | | | 16.9 | Process | 135 | | | | Mechanical construction | 137
149 | | | | 1 3 | | | | | 1 1 | | | | | Application packages | | | | 16.14 | Accessories | | | | 10.15 | Supplementary documentation | 155 | | | | C | 156 | | # 1 About this document #### 1.1 Document function These Operating Instructions contain all the information that is required in various phases of the life cycle of the device: from product identification, incoming acceptance and storage, to mounting, connection, operation and commissioning through to troubleshooting, maintenance and disposal. # 1.2 Symbols used ## 1.2.1 Safety symbols | Symbol | Meaning | |------------------|--| | ▲ DANGER | DANGER! This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in serious or fatal injury. | | A WARNING | WARNING! This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury. | | ▲ CAUTION | CAUTION! This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in minor or medium injury. | | NOTICE | NOTE! This symbol contains information on procedures and other facts which do not result in personal injury. | # 1.2.2 Electrical symbols | Symbol | Meaning | |-------------------|---| | === | Direct current | | ~ | Alternating current | | $\overline{\sim}$ | Direct current and alternating current | | <u></u> | Ground connection A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system. | | | Protective Earth (PE) A terminal which must be connected to ground prior to establishing any other connections. | | | The
ground terminals are situated inside and outside the device: Inner ground terminal: Connects the protectiv earth to the mains supply. Outer ground terminal: Connects the device to the plant grounding system. | ## 1.2.3 Communication symbols | Symbol | Meaning | |---------|--| | | Wireless Local Area Network (WLAN) Communication via a wireless, local network. | | * | Bluetooth Wireless data transmission between devices over a short distance. | | Symbol | Meaning | |----------|--| | • | LED Light emitting diode is off. | | 以 | LED Light emitting diode is on. | | | LED Light emitting diode is flashing. | # 1.2.4 Tool symbols | Symbol | Meaning | |----------|---------------------------| | O | Torx screwdriver | | 96 | Phillips head screwdriver | | Ó | Open-ended wrench | # 1.2.5 Symbols for certain types of information | Symbol | Meaning | |------------|--| | ✓ | Permitted Procedures, processes or actions that are permitted. | | ✓ ✓ | Preferred Procedures, processes or actions that are preferred. | | X | Forbidden Procedures, processes or actions that are forbidden. | | i | Tip Indicates additional information. | | <u> </u> | Reference to documentation. | | A | Reference to page. | | | Reference to graphic. | | • | Notice or individual step to be observed. | | 1., 2., 3 | Series of steps. | | L | Result of a step. | | ? | Help in the event of a problem. | | | Visual inspection. | # 1.2.6 Symbols in graphics | Symbol | Meaning | |----------------|-----------------| | 1, 2, 3, | Item numbers | | 1., 2., 3., | Series of steps | | A, B, C, | Views | | A-A, B-B, C-C, | Sections | | Symbol | Meaning | |--------|--------------------------------| | EX | Hazardous area | | × | Safe area (non-hazardous area) | | ≋➡ | Flow direction | #### 1.3 Documentation - For an overview of the scope of the associated Technical Documentation, refer to the following: - The *W@M Device Viewer*: Enter the serial number from the nameplate (www.endress.com/deviceviewer) - The *Endress+Hauser Operations App*: Enter the serial number from the nameplate or scan the 2-D matrix code (QR code) on the nameplate. - For a detailed list of the individual documents along with the documentation code $\rightarrow \stackrel{ riangle}{=} 155$ #### 1.3.1 Standard documentation | Document type | Purpose and content of the document | |---|--| | Technical Information | Planning aid for your device The document contains all the technical data on the device and provides an overview of the accessories and other products that can be ordered for the device. | | Sensor Brief Operating Instructions | Guides you quickly to the 1st measured value - Part 1 The Sensor Brief Operating Instructions are aimed at specialists with responsibility for installing the measuring device. | | | Incoming acceptance and product identification Storage and transport Installation | | Transmitter Brief Operating
Instructions | Guides you quickly to the 1st measured value - Part 2 The Transmitter Brief Operating Instructions are aimed at specialists with responsibility for commissioning, configuring and parameterizing the measuring device (until the first measured value). | | | Product description Installation Electrical connection Operation options System integration Commissioning Diagnostic information | | Description of Device Parameters | Reference for your parameters The document provides a detailed explanation of each individual parameter in the Expert operating menu. The description is aimed at those who work with the device over the entire life cycle and perform specific configurations. The document provides Modbus-specific information for each individual parameter in the Expert operating menu. | ### 1.3.2 Supplementary device-dependent documentation Additional documents are supplied depending on the device version ordered: Always comply strictly with the instructions in the supplementary documentation. The supplementary documentation is an integral part of the device documentation. # 1.4 Registered trademarks ### Modbus[®] Registered trademark of SCHNEIDER AUTOMATION, INC. #### Microsoft® Registered trademark of the Microsoft Corporation, Redmond, Washington, USA # 2 Basic safety instructions # 2.1 Requirements for the personnel The personnel for installation, commissioning, diagnostics and maintenance must fulfill the following requirements: - ► Trained, qualified specialists must have a relevant qualification for this specific function and task. - ► Are authorized by the plant owner/operator. - ► Are familiar with federal/national regulations. - ▶ Before starting work, read and understand the instructions in the manual and supplementary documentation as well as the certificates (depending on the application). - ▶ Follow instructions and comply with basic conditions. The operating personnel must fulfill the following requirements: - ► Are instructed and authorized according to the requirements of the task by the facility's owner-operator. - ▶ Follow the instructions in this manual. ## 2.2 Designated use #### Application and media The measuring device described in these Brief Operating Instructions is intended only for flow measurement of liquids with a minimum conductivity of 5 μ S/cm. Depending on the version ordered, the measuring device can also measure potentially explosive, flammable, poisonous and oxidizing media. Measuring devices for use in hazardous areas, in hygienic applications or where there is an increased risk due to process pressure, are labeled accordingly on the nameplate. To ensure that the measuring device remains in proper condition for the operation time: - ► Keep within the specified pressure and temperature range. - ▶ Only use the measuring device in full compliance with the data on the nameplate and the general conditions listed in the Operating Instructions and supplementary documentation. - ► Based on the nameplate, check whether the ordered device is permitted for the intended use in the hazardous area (e.g. explosion protection, pressure vessel safety). - ► Use the measuring device only for media to which the process-wetted materials are sufficiently resistant. - ▶ If the measuring device is not operated at atmospheric temperature, compliance with the relevant basic conditions specified in the associated device documentation is absolutely essential: "Documentation" section → 🖺 8. - ► Protect the measuring device permanently against corrosion from environmental influences. #### Incorrect use Non-designated use can compromise safety. The manufacturer is not liable for damage caused by improper or non-designated use. #### **MARNING** #### Danger of breakage due to corrosive or abrasive fluids! - ▶ Verify the compatibility of the process fluid with the sensor material. - ► Ensure the resistance of all fluid-wetted materials in the process. - ► Keep within the specified pressure and temperature range. #### NOTICE #### Verification for borderline cases: ► For special fluids and fluids for cleaning, Endress+Hauser is glad to provide assistance in verifying the corrosion resistance of fluid-wetted materials, but does not accept any warranty or liability as minute changes in the temperature, concentration or level of contamination in the process can alter the corrosion resistance properties. #### Residual risks #### **A** WARNING The electronics and the medium may cause the surfaces to heat up. This presents a burn hazard! ► For elevated fluid temperatures, ensure protection against contact to prevent burns. ## 2.3 Workplace safety For work on and with the device: ► Wear the required personal protective equipment according to federal/national regulations. For welding work on the piping: ▶ Do not ground the welding unit via the measuring device. If working on and with the device with wet hands: ▶ Due to the increased risk of electric shock, gloves must be worn. ## 2.4 Operational safety Risk of injury. - ▶ Operate the device in proper technical condition and fail-safe condition only. - ▶ The operator is responsible for interference-free operation of the device. #### Conversions to the device Unauthorized modifications to the device are not permitted and can lead to unforeseeable dangers. ▶ If, despite this, modifications are required, consult with Endress+Hauser. #### Repair To ensure continued operational safety and reliability, - ► Carry out repairs on the device only if they are expressly permitted. - ▶ Observe federal/national regulations pertaining to repair of an electrical device. - ▶ Use original spare parts and accessories from Endress+Hauser only. # 2.5 Product safety This measuring device is designed in accordance with good engineering practice to meet state-of-the-art safety requirements, has been tested, and left the factory in a condition in which it is safe to operate. It meets general safety standards and legal requirements. It also complies with the EU directives listed in the device-specific EU Declaration of Conformity. Endress+Hauser confirms this by affixing the CE mark to the device. # 2.6 IT security We only provide a warranty if the device is installed and used as described in the Operating Instructions. The device is equipped with security mechanisms to protect it
against any inadvertent changes to the device settings. IT security measures in line with operators' security standards and designed to provide additional protection for the device and device data transfer must be implemented by the operators themselves. # 2.7 Device-specific IT security The device offers a range of specific functions to support protective measures on the operator's side. These functions can be configured by the user and guarantee greater inoperation safety if used correctly. An overview of the most important functions is provided in the following section. #### 2.7.1 Protecting access via hardware write protection Write access to the device parameters via the local display or operating tool (e.g. FieldCare, DeviceCare) can be disabled via a write protection switch (DIP switch on the motherboard). When hardware write protection is enabled, only read access to the parameters is possible. #### 2.7.2 Protecting access via a password Different passwords are available to protect write access to the device parameters or access to the device via the WLAN interface. - User-specific access code Protect write access to the device parameters via the local display, Web browser or operating tool (e.g. FieldCare, DeviceCare). Access authorization is clearly regulated through the use of a user-specific access code. - WLAN passphrase The network key protects a connection between an operating unit (e.g. notebook or tablet) and the device via the WLAN interface which can be ordered as an option. #### User-specific access code Write access to the device parameters via the local display or operating tool (e.g. FieldCare, DeviceCare) can be protected by the modifiable, user-specific access code ($\Rightarrow \triangleq 96$). When the device is delivered, the device does not have an access code and is equivalent to 0000 (open). #### WLAN passphrase A connection between an operating unit (e.g. notebook or tablet) and the device via the WLAN interface ($\rightarrow \boxminus 72$) which can be ordered as an option is protected by the network key. The WLAN authentication of the network key complies with the IEEE 802.11 standard. When the device is delivered, the network key is pre-defined depending on the device. It can be changed via the **WLAN settings** submenu in the **WLAN passphrase** parameter. #### General notes on the use of passwords - The access code and network key supplied with the device should be changed during commissioning. - Follow the general rules for generating a secure password when defining and managing the access code or network key. - The user is responsible for the management and careful handling of the access code and network key. - For information on configuring the access code or on what to do if you lose the #### 2.7.3 Access via fieldbus When communicating via fieldbus, access to the device parameters can be restricted to "Read only" access. The option can be changed in the **Fieldbus writing access** parameter. This does not affect cyclic measured value transmission to the higher-order system, which is always quaranteed. For detailed information, see the "Description of Device Parameters" document pertaining to the device $\rightarrow \implies 155$ #### 2.7.4 Access via Web server The device can be operated and configured via a Web browser with the integrated Web server ($\rightarrow \triangleq 65$). The connection is via the service interface (CDI-RJ45) or the WLAN interface. The Web server is enabled when the device is delivered. The Web server can be disabled if necessary (e.g. after commissioning) via the **Web server functionality** parameter. The device and status information can be hidden on the login page. This prevents unauthorized access to the information. For detailed information, see the "Description of Device Parameters" document pertaining to the device $\rightarrow = 155$ # **3** Product description The device consists of a transmitter and a sensor. Two device versions are available: - Compact version transmitter and sensor form a mechanical unit. - Remote version transmitter and sensor are mounted in separate locations. # 3.1 Product design ■ 1 Important components of the compact version - 1 Display module - 2 Smart sensor electronics module - 3 HistoROM DAT (plug-in memory) - 4 Main electronics module - 5 Terminals (screw terminals, some available as plug-in terminals) or fieldbus connectors - 6 Transmitter housing, compact version - 7 Cable glands - 8 Sensor, compact version # 4 Incoming acceptance and product identification ## 4.1 Incoming acceptance - If one of the conditions is not satisfied, contact your Endress+Hauser Sales Center. - Depending on the device version, the CD-ROM might not be part of the delivery! The Technical Documentation is available via the Internet or via the Endress+Hauser Operations App, see the "Product identification" section → 16. ### 4.2 Product identification The following options are available for identification of the measuring device: - Nameplate specifications - Order code with breakdown of the device features on the delivery note - Enter serial numbers from nameplates in *W@M Device Viewer* (www.endress.com/deviceviewer): All information about the measuring device is displayed. - Enter the serial number from the nameplates into the *Endress+Hauser Operations App* or scan the 2-D matrix code (QR code) on the nameplate with the *Endress+Hauser Operations App*: all the information for the measuring device is displayed. For an overview of the scope of the associated Technical Documentation, refer to the following: - The chapters "Additional standard documentation on the device" \rightarrow \blacksquare 8 and "Supplementary device-dependent documentation" \rightarrow \blacksquare 8 - The *W@M Device Viewer*: Enter the serial number from the nameplate (www.endress.com/deviceviewer) - The *Endress+Hauser Operations App*: Enter the serial number from the nameplate or scan the 2-D matrix code (QR code) on the nameplate. #### 4.2.1 Transmitter nameplate ■ 2 Example of a transmitter nameplate - 1 Manufacturing location - 2 Name of the transmitter - 3 Order code - 4 Serial number (ser. no.) - 5 Extended order code (Ext. ord. cd.) - 6 Permitted ambient temperature (T_a) - 7 Firmware version (FW) and device revision (Dev.Rev.) from the factory - 8 Degree of protection - 9 Permitted temperature range for cable - 10 2-D matrix code - 11 Manufacturing date: year-month - 12 CE mark, C-Tick - 13 Electrical connection data, e.g. available inputs and outputs, supply voltage ### 4.2.2 Sensor nameplate A0032085 #### **■** 3 Example of sensor nameplate - 1 Name of the sensor - 2 Manufacturing location - 3 Order code - 4 Serial number (ser. no.) - 5 Extended order code (Ext. ord. cd.) - 6 Nominal diameter of sensor - 7 Test pressure of the sensor - 8 Medium temperature range - 9 Material of lining and electrodes - 10 Degree of protection: e.g. IP, NEMA - 11 Permitted ambient temperature (T_a) - 12 2-D matrix code - 13 CE mark, C-Tick - 14 Flow direction - 15 Manufacturing date: year-month #### Order code The measuring device is reordered using the order code. #### Extended order code - The device type (product root) and basic specifications (mandatory features) are always listed. - Of the optional specifications (optional features), only the safety and approvalrelated specifications are listed (e.g. LA). If other optional specifications are also ordered, these are indicated collectively using the # placeholder symbol (e.g. #LA#). - If the ordered optional specifications do not include any safety and approval-related specifications, they are indicated by the + placeholder symbol (e.g. XXXXXX-ABCDE +). # 4.2.3 Symbols on measuring device | Symbol | Meaning | |----------|---| | Δ | WARNING! This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury. | | <u> </u> | Reference to documentation Refers to the corresponding device documentation. | | | Protective ground connection A terminal which must be connected to ground prior to establishing any other connections. | # 5 Storage and transport # 5.1 Storage conditions Observe the following notes for storage: - ► Store in the original packaging to ensure protection from shock. - ▶ Do not remove protective covers or protective caps installed on process connections. They prevent mechanical damage to the sealing surfaces and contamination in the measuring tube. - ▶ Protect from direct sunlight to avoid unacceptably high surface temperatures. - ► Select a storage location where moisture cannot collect in the measuring device as fungus and bacteria infestation can damage the lining. - ▶ Store in a dry and dust-free place. - ► Do not store outdoors. Storage temperature → 🗎 134 # 5.2 Transporting the product Transport the measuring device to the measuring point in the original packaging. A002925 Do not remove protective covers or caps installed on process connections. They prevent mechanical damage to the sealing surfaces and contamination in the measuring tube. ### 5.2.1 Measuring devices without lifting lugs #### **WARNING** Center of gravity of the measuring device is higher than the suspension points of the webbing slings. Risk of injury if the measuring device slips. - ► Secure the measuring device against slipping or turning. - ▶ Observe the weight specified on the packaging (stick-on label). A002921 #### 5.2.2 Measuring devices with lifting lugs #### **A** CAUTION #### Special transportation instructions for devices with lifting lugs - ▶ Only use the lifting lugs fitted on the device or flanges to transport the device. - ► The device must always be secured at two lifting lugs at least. #### 5.2.3 Transporting with a fork lift If transporting in wood crates, the floor structure enables the crates
to be lifted lengthwise or at both sides using a forklift. #### **A** CAUTION #### Risk of damaging the magnetic coil - ► If transporting by forklift, do not lift the sensor by the metal casing. - ▶ This would buckle the casing and damage the internal magnetic coils. A0029319 # 5.3 Packaging disposal All packaging materials are environmentally friendly and 100% recyclable: - Measuring device secondary packaging: polymer stretch film that conforms to EC Directive 2002/95/EC (RoHS). - Packaging: - Wood crate, treated in accordance with ISPM 15 standard, which is confirmed by the affixed IPPC logo. or - Carton in accordance with European Packaging Directive 94/62EC; recyclability is confirmed by the affixed RESY symbol. - Seaworthy packaging (optional): Wood crate, treated in accordance with ISPM 15 standard, which is confirmed by the affixed IPPC logo. - Carrying and mounting hardware: - Disposable plastic pallet - Plastic straps - Plastic adhesive strips - Dunnage: Paper cushion 20 # 6 Installation #### 6.1 Installation conditions ## 6.1.1 Mounting position #### Mounting location A0029343 Preferably install the sensor in an ascending pipe, and ensure a sufficient distance to the next pipe elbow: $h \ge 2 \times DN$ #### Installation in down pipes Install a siphon with a vent valve downstream of the sensor in down pipes whose length $h \ge 5$ m (16.4 ft). This precaution is to avoid low pressure and the consequent risk of damage to the measuring tube. This measure also prevents the system losing prime. A002898 - 4 Installation in a down pipe - 1 Vent valve - 2 Pipe siphon - h Length of down pipe #### *Installation in partially filled pipes* A partially filled pipe with a gradient necessitates a drain-type configuration. A002925 #### For heavy sensors $DN \ge 350 (14")$ #### Orientation The direction of the arrow on the sensor nameplate helps you to install the sensor according to the flow direction (direction of medium flow through the piping). | | Orientatio | Recommendation | | |---|---|----------------|-----------------------------| | A | Vertical orientation | A0015591 | | | В | Horizontal orientation, transmitter at top | A0015589 | ✓ ✓ 1) | | С | Horizontal orientation, transmitter at bottom | A0015590 | √ √ ²⁾ 3) | | D | Horizontal orientation, transmitter at side | A0015592 | × | - Applications with low process temperatures may decrease the ambient temperature. To maintain the minimum ambient temperature for the transmitter, this orientation is recommended. - 2) Applications with high process temperatures may increase the ambient temperature. To maintain the maximum ambient temperature for the transmitter, this orientation is recommended. - 3) To prevent the electronics module from overheating in the case of a sharp rise in temperature (e.g. CIP- or SIP processes), install the device with the transmitter component pointing downwards. #### Horizontal - Ideally, the measuring electrode plane should be horizontal. This prevents brief insulation of the two measuring electrodes by entrained air bubbles. - Empty pipe detection only works if the transmitter housing is pointing upwards as otherwise there is no guarantee that the empty pipe detection function will actually respond to a partially filled or empty measuring tube. 1 EPD electrode for empty pipe detection - 2 Measuring electrodes for signal detection - 3 Reference electrode for potential equalization #### Inlet and outlet runs If possible, install the sensor upstream from fittings such as valves, T-pieces or elbows. Observe the following inlet and outlet runs to comply with accuracy specifications: Order code for "Design", option A "Insertion length short, ISO/DVGW until DN400, DN450-2000 1:1" and order code for "Design", option B "Insertion length long, ISO/DVGW until DN400, DN450-2000 1:1.3" Order code for "Design", option C "Insertion length short ISO/DVGW until DN300, w/o inlet and outlet runs, constricted meas.tube" Installation dimensions For the dimensions and installation lengths of the device, see the "Technical Information" document, "Mechanical construction" section. ### 6.1.2 Requirements from environment and process #### Ambient temperature range | Transmitter | -40 to +60 °C (-40 to +140 °F) | |---------------|---| | Local display | -20 to $+60$ °C (-4 to $+140$ °F), the readability of the display may be impaired at temperatures outside the temperature range. | | Sensor | Process connection material, carbon steel: 10 to +60 °C (+14 to +140 °F) Process connection material, stainless steel: 40 to +60 °C (-40 to +140 °F) | | Liner | Do not exceed or fall below the permitted temperature range of the liner . | If operating outdoors: - Install the measuring device in a shady location. - Avoid direct sunlight, particularly in warm climatic regions. - Avoid direct exposure to weather conditions. - If the compact version of the device is insulated at low temperatures, the insulation must also include the device neck. - Protect the display against impact. - Protect the display from abrasion by sand in desert areas. - You can order a display guard from Endress+Hauser : → 🗎 125 #### Temperature tables - Observe the interdependencies between the permitted ambient and fluid temperatures when operating the device in hazardous areas. - For detailed information on the temperature tables, see the separate document entitled "Safety Instructions" (XA) for the device. #### System pressure A0028777 Never install the sensor on the pump suction side in order to avoid the risk of low pressure, and thus damage to the liner. - Furthermore, install pulse dampers if reciprocating, diaphragm or peristaltic pumps are used - **■** Information on the liner's resistance to partial vacuum \rightarrow 🗎 135 - Information on the shock resistance of the measuring system \rightarrow 🗎 135 - Information on the vibration resistance of the measuring system $\rightarrow \triangleq 134$ #### **Vibrations** A002900 ■ 7 Measures to avoid device vibrations (L > 10 m (33 ft)) In the event of very strong vibrations, the pipe and sensor must be supported and fixed. It is also advisable to mount the sensor and transmitter separately. - Information on the shock resistance of the measuring system → 135 - Information on the vibration resistance of the measuring system $\rightarrow \triangleq 134$ #### **Adapters** Suitable adapters to DIN EN 545 (double-flange reducers) can be used to install the sensor in larger-diameter pipes. The resultant increase in the rate of flow improves measuring accuracy with very slow-moving fluids. The nomogram shown here can be used to calculate the pressure loss caused by reducers and expanders. - The nomogram only applies to liquids with a viscosity similar to that of water. - 1. Calculate the ratio of the diameters d/D. - 2. From the nomogram read off the pressure loss as a function of flow velocity (downstream from the reduction) and the d/D ratio. #### Length of connecting cable To ensure correct measuring results when using the remote version, observe the maximum permitted length of the connecting cable L_{max} . This length is determined by the conductivity of the fluid. If measuring liquids in general: 5 μ S/cm \blacksquare 8 Permitted length of connecting cable for remote version Colored area = permitted range L_{max} =length of connecting cable in [m] ([ft]) [μ S/cm] = fluid conductivity ## **6.1.3** Special mounting instructions #### Display protection ► To ensure that the optional display protection can be easily opened, maintain the following minimum head clearance: 350 mm (13.8 in) #### Temporary immersion in water A remote version with IP67 protection, Type 6 is optionally available for temporary immersion in water for up to 168 hours at \leq 3 m (10 ft) or in exceptional cases for use for up to 48 hours at \leq 10 m (30 ft). Compared with the standard degree of protection IP67, Type 4X enclosure, the version IP67, Type 6 enclosure has been designed to withstand short-term or temporary flooding. ■ 9 Engineering unit in m(ft) Replacement of cable gland on connection housing # 6.2 Mounting the measuring device ## 6.2.1 Required tools #### For transmitter - Torque wrench - For wall mounting: Open-ended wrench for hexagonal screw max. M5 - For pipe mounting: - Open-ended wrench AF 8 - Phillips head screwdriver PH 2 - For turning the transmitter housing (compact version): - Phillips head screwdriver PH 2 - Torx screwdriver TX 20 - Open-ended wrench AF 7 #### For sensor For flanges and other process connections: Corresponding mounting tools #### 6.2.2 Preparing the measuring device - 1. Remove all remaining transport packaging. - 2. Remove any protective covers or protective caps present from the sensor. - 3. Remove stick-on label on the electronics compartment cover. #### 6.2.3 Mounting the sensor #### **▲** WARNING #### Danger due to improper process sealing! - ► Ensure that the inside diameters of the gaskets are greater than or equal to that of the process connections and piping. - ▶ Ensure that the gaskets are clean and undamaged. - ► Install the gaskets correctly. - 1. Ensure that the direction of the arrow on the sensor matches the flow direction of the medium. - 2. To ensure compliance with device specifications, install the measuring device between the pipe flanges in a way that it is centered in the measurement section. - 3. If using ground disks, comply with the Installation Instructions provided. - 4. Observe required screw tightening torques $\rightarrow \triangleq 28$. - 5. Install the measuring device or turn the transmitter housing so that the
cable entries do not point upwards. A002926 #### Mounting the seals #### **A** CAUTION An electrically conductive layer could form on the inside of the measuring tube! Risk of measuring signal short circuit. ▶ Do not use electrically conductive sealing compounds such as graphite. Comply with the following instructions when installing seals: - 1. Make sure that the seals do not protrude into the piping cross-section. - 2. For DIN flanges: only use seals according to DIN EN 1514-1. - 3. For "hard rubber" lining: additional seals are always required. - 4. For "polyurethane" lining: generally additional seals are **not** required. - 5. For "PTFE" lining: generally additional seals are **not** required. #### Mounting the ground cable/ground disks Comply with the information on potential equalization and detailed mounting instructions for the use of ground cables/ground disks . #### Screw tightening torques Please note the following: - The screw tightening torques listed below apply only to lubricated threads and to pipes not subjected to tensile stress. - Tighten the screws uniformly and in diagonally opposite sequence. - Overtightening the screws will deform the sealing faces or damage the seals. Screw tightening torques for EN 1092-1 (DIN 2501), PN 6/10/16 | Nominal
diameter | Pressure rating | Screws | Flange
thickness | Max. screw tightening torque [Nm] | | | |---------------------|-----------------|----------|---------------------|-----------------------------------|------------------|------| | [mm] | [bar] | [mm] | [mm] | Hard rubber | Polyurethan
e | PTFE | | 25 | PN 10/16 | 4 × M12 | 18 | - | 6 | 11 | | 32 | PN 10/16 | 4 × M16 | 18 | - | 16 | 27 | | 40 | PN 10/16 | 4 × M16 | 18 | - | 16 | 29 | | 50 | PN 10/16 | 4 × M16 | 18 | - | 15 | 40 | | 65 ¹⁾ | PN 10/16 | 8 × M16 | 18 | - | 10 | 22 | | 80 | PN 10/16 | 8 × M16 | 20 | - | 15 | 30 | | 100 | PN 10/16 | 8 × M16 | 20 | - | 20 | 42 | | 125 | PN 10/16 | 8 × M16 | 22 | - | 30 | 55 | | 150 | PN 10/16 | 8 × M20 | 22 | - | 50 | 90 | | 200 | PN 16 | 12 × M20 | 24 | - | 65 | 87 | | 250 | PN 16 | 12 × M24 | 26 | - | 126 | 151 | | 300 | PN 16 | 12 × M24 | 28 | - | 139 | 177 | | 350 | PN 6 | 12 × M20 | 22 | 111 | 120 | - | | 350 | PN 10 | 16 × M20 | 26 | 112 | 118 | - | | 350 | PN 16 | 16 × M24 | 30 | 152 | 165 | - | | 400 | PN 6 | 16 × M20 | 22 | 90 | 98 | - | | 400 | PN 10 | 16 × M24 | 26 | 151 | 167 | - | | 400 | PN 16 | 16 × M27 | 32 | 193 | 215 | - | | 450 | PN 6 | 16 × M20 | 22 | 112 | 126 | - | | Nominal
diameter | Pressure rating | Screws | Flange
thickness | Max. screv | w tightening tor | que [Nm] | |---------------------|-----------------|----------|---------------------|-------------|------------------|----------| | [mm] | [bar] | [mm] | [mm] | Hard rubber | Polyurethan
e | PTFE | | 450 | PN 10 | 20 × M24 | 28 | 153 | 133 | - | | 500 | PN 6 | 20 × M20 | 24 | 119 | 123 | - | | 500 | PN 10 | 20 × M24 | 28 | 155 | 171 | - | | 500 | PN 16 | 20 × M30 | 34 | 275 | 300 | - | | 600 | PN 6 | 20 × M24 | 30 | 139 | 147 | - | | 600 | PN 10 | 20 × M27 | 28 | 206 | 219 | - | | 600 ¹⁾ | PN 16 | 20 × M33 | 36 | 415 | 443 | - | | 700 | PN 6 | 24 × M24 | 24 | 148 | 139 | - | | 700 | PN 10 | 24 × M27 | 30 | 246 | 246 | - | | 700 | PN 16 | 24 × M33 | 36 | 278 | 318 | - | | 800 | PN 6 | 24 × M27 | 24 | 206 | 182 | - | | 800 | PN 10 | 24 × M30 | 32 | 331 | 316 | - | | 800 | PN 16 | 24 × M36 | 38 | 369 | 385 | - | | 900 | PN 6 | 24 × M27 | 26 | 230 | 637 | - | | 900 | PN 10 | 28 × M30 | 34 | 316 | 307 | - | | 900 | PN 16 | 28 × M36 | 40 | 353 | 398 | - | | 1000 | PN 6 | 28 × M27 | 26 | 218 | 208 | - | | 1000 | PN 10 | 28 × M33 | 34 | 402 | 405 | - | | 1000 | PN 16 | 28 × M39 | 42 | 502 | 518 | - | | 1200 | PN 6 | 32 × M30 | 28 | 319 | 299 | - | | 1200 | PN 10 | 32 × M36 | 38 | 564 | 568 | - | | 1200 | PN 16 | 32 × M45 | 48 | 701 | 753 | - | | 1400 | PN 6 | 36 × M33 | 32 | 430 | - | - | | 1400 | PN 10 | 36 × M39 | 42 | 654 | - | - | | 1400 | PN 16 | 36 × M45 | 52 | 729 | - | - | | 1600 | PN 6 | 40 × M33 | 34 | 440 | - | - | | 1600 | PN 10 | 40 × M45 | 46 | 946 | - | - | | 1600 | PN 16 | 40 × M52 | 58 | 1007 | - | - | | 1800 | PN 6 | 44 × M36 | 36 | 547 | - | - | | 1800 | PN 10 | 44 × M45 | 50 | 961 | - | - | | 1800 | PN 16 | 44 × M52 | 62 | 1108 | - | _ | | 2 000 | PN 6 | 48 × M39 | 38 | 629 | - | _ | | 2 000 | PN 10 | 48 × M45 | 54 | 1047 | - | _ | | 2 000 | PN 16 | 48 × M56 | 66 | 1324 | - | _ | | 2200 | PN 6 | 52 × M39 | 42 | 698 | - | _ | | 2200 | PN 10 | 52 × M52 | 58 | 1217 | - | _ | | 2 400 | PN 6 | 56 × M39 | 44 | 768 | - | _ | | 2 400 | PN 10 | 56 × M52 | 62 | 1229 | _ | _ | ¹⁾ Designed acc. to EN 1092-1 (not to DIN 2501) Screw tightening torques for EN 1092-1 (DIN 2501), PN 10/16/25, P245GH/stainless; calculated according to EN 1591-1:2014 for flanges as per EN 1092-1:2013 | Nominal
diameter | Pressure
rating | Screws | Flange thickness | | Nom. screw tightening torque
[Nm] | | | |---------------------|--------------------|----------|------------------|-----|--------------------------------------|--|--| | [mm] | [bar] | [mm] | [mm] | PUR | HG | | | | 350 | PN 6 | 12 × M20 | 22 | 75 | 60 | | | | 350 | PN 10 | 16 × M20 | 26 | 80 | 70 | | | | 350 | PN 16 | 16 × M24 | 30 | 135 | 125 | | | | 400 | PN 6 | 16 × M20 | 22 | 70 | 65 | | | | 400 | PN 10 | 16 × M24 | 26 | 120 | 100 | | | | 400 | PN 16 | 16 × M27 | 32 | 190 | 175 | | | | 450 | PN 6 | 16 × M20 | 22 | 90 | 70 | | | | 450 | PN 10 | 20 × M24 | 28 | 110 | 100 | | | | 450 | PN 16 | 20 × M27 | 34 | 190 | 175 | | | | 500 | PN 6 | 20 × M20 | 24 | 70 | 65 | | | | 500 | PN 10 | 20 × M24 | 28 | 120 | 110 | | | | 500 | PN 16 | 20 × M30 | 36 | 235 | 225 | | | | 600 | PN 6 | 20 × M24 | 30 | 105 | 105 | | | | 600 | PN 10 | 20 × M27 | 30 | 160 | 165 | | | | 600 | PN 16 | 20 × M33 | 40 | 340 | 340 | | | | 700 | PN 6 | 24 × M24 | 30 | 110 | 110 | | | | 700 | PN 10 | 24 × M27 | 35 | 190 | 190 | | | | 700 | PN 16 | 24 × M33 | 40 | 340 | 340 | | | | 800 | PN 6 | 24 × M27 | 30 | 145 | 145 | | | | 800 | PN 10 | 24 × M30 | 38 | 260 | 260 | | | | 800 | PN 16 | 24 × M36 | 41 | 455 | 465 | | | | 900 | PN 6 | 24 × M27 | 34 | 180 | 170 | | | | 900 | PN 10 | 28 × M30 | 38 | 275 | 265 | | | | 900 | PN 16 | 28 × M36 | 48 | 475 | 475 | | | | 1000 | PN 6 | 28 × M27 | 38 | 185 | 175 | | | | 1000 | PN 10 | 28 × M33 | 44 | 360 | 350 | | | | 1000 | PN 16 | 28 × M39 | 59 | 620 | 630 | | | | 1200 | PN 6 | 32 × M30 | 42 | 250 | 235 | | | | 1200 | PN 10 | 32 × M36 | 55 | 480 | 470 | | | | 1200 | PN 16 | 32 × M45 | 78 | 900 | 890 | | | | 1400 | PN 6 | 36 × M33 | 56 | - | 300 | | | | 1400 | PN 10 | 36 × M39 | 65 | - | 600 | | | | 1400 | PN 16 | 36 × M45 | 84 | - | 1050 | | | | 1600 | PN 6 | 40 × M33 | 63 | - | 340 | | | | 1600 | PN 10 | 40 × M45 | 75 | - | 810 | | | | 1600 | PN 16 | 40 × M52 | 102 | - | 1420 | | | | 1800 | PN 6 | 44 × M36 | 69 | _ | 430 | | | | 1800 | PN 10 | 44 × M45 | 85 | - | 920 | | | | 1800 | PN 16 | 44 × M52 | 110 | - | 1600 | | | | Nominal
diameter | Pressure
rating | Screws | Flange thickness | Nom. screw tightening torque
[Nm] | | |---------------------|--------------------|----------|------------------|--------------------------------------|------| | [mm] | [bar] | [mm] | [mm] | PUR | HG | | 2 000 | PN 6 | 48 × M39 | 74 | - | 530 | | 2 000 | PN 10 | 48 × M45 | 90 | - | 1040 | | 2 000 | PN 16 | 48 × M56 | 124 | - | 1900 | | 2 200 | PN 6 | 52 × M39 | 81 | - | 580 | | 2 200 | PN 10 | 52 × M52 | 100 | - | 1290 | | 2 400 | PN 6 | 56 × M39 | 87 | - | 650 | | 2 400 | PN 10 | 56 × M52 | 110 | - | 1410 | # Screw tightening torques for ASME B16.5, Class 150 $\,$ | Nominal | diameter | Screws | Max. screw tightening torque [Nm] ([lbf · ft]) | | | | |---------|----------|------------|--|--------------|-----------|--| | [mm] | [in] | [in] | Hard rubber | Polyurethane | PTFE | | | 25 | 1 | 4 × 5/8 | _ | 5 (4) | 14 (13) | | | 40 | 1 ½ | 8 × 5/8 | _ | 10 (7) | 21 (15) | | | 50 | 2 | 4 × 5/8 | _ | 15 (11) | 40 (29) | | | 80 | 3 | 4 × 5/8 | _ | 25 (18) | 65 (48) | | | 100 | 4 | 8 × 5/8 | _ | 20 (15) | 44 (32) | | | 150 | 6 | 8 × ¾ | _ | 45 (33) | 90 (66) | | | 200 | 8 | 8 × ¾ | _ | 65 (48) | 87 (64) | | | 250 | 10 | 12 × 7/8 | _ | 126 (93) | 151 (112) | | | 300 | 12 | 12 × 7/8 | _ | 146 (108) | 177 (131) | | | 350 | 14 | 12 × 1 | 135 (100) | 158 (117) | _ | | | 400 | 16 | 16 × 1 | 128 (94) | 150 (111) | - | | | 450 | 18 | 16 × 1 1/8 | 204 (150) | 234 (173) | - | | | 500 | 20 | 20 × 1 1/8 | 183 (135) | 217 (160) | _ | | | 600 | 24 | 20 × 1 1/4 | 268 (198) | 307 (226) | _ | | ### Screw tightening torques for AWWA C207, Class D | Nominal | diameter | Screws | Max. screw | tightening torque [Nr | n] ([lbf · ft]) | |---------|----------|------------|-------------|-----------------------|-----------------| | [mm] | [in] | [in] | Hard rubber | Polyurethane | PTFE | | 700 | 28 | 28 × 1 1/4 | 247 (182) | 292 (215) | _ | | 750 | 30 | 28 × 1 1/4 | 287 (212) | 302 (223) | - | | 800 | 32 | 28 × 1 ½ | 394 (291) | 422 (311) | _ | | 900 | 36 | 32 × 1 ½ | 419 (309) | 430 (317) | _ | | 1000 | 40 | 36 × 1 ½ | 420 (310) | 477 (352) | _ | | 1050 | 42 | 36 × 1 ½ | 528 (389) | 518 (382) | _ | | 1200 | 48 | 44 × 1 ½ | 552 (407) | 531 (392) | _ | | 1350 | 54 | 44 × 1 ¾ | 730 (538) | - | _ | | 1500 | 60 | 52 × 1 ¾ | 758 (559) | _ | _ | | 1650 | 66 | 52 × 1 ¾ | 946 (698) | _ | _ | | 1800 | 72 | 60 × 1 ¾ | 975 (719) | _ | _ | | Nominal diameter Screws | | Max. screw tightening torque [Nm] ([lbf · ft]) | | | | |-------------------------|------|--|-------------|--------------|------| | [mm] | [in] | [in] | Hard rubber | Polyurethane | PTFE | | 2 000 | 78 | 64 × 2 | 853 (629) | - | - | | 2 150 | 84 | 64 × 2 | 931 (687) | - | - | | 2 300 | 90 | 68 × 2 ¼ | 1048 (773) | - | - | Screw tightening torques for AS 2129, Table E | Nominal diameter | Screws | Max. se | e [Nm] | | |------------------|----------|-------------|--------------|------| | [mm] | [mm] |
Hard rubber | Polyurethane | PTFE | | 350 | 12 × M24 | 203 | - | - | | 400 | 12 × M24 | 226 | _ | _ | | 450 | 16 × M24 | 226 | _ | _ | | 500 | 16 × M24 | 271 | _ | _ | | 600 | 16 × M30 | 439 | _ | - | | 700 | 20 × M30 | 355 | _ | _ | | 750 | 20 × M30 | 559 | _ | _ | | 800 | 20 × M30 | 631 | _ | _ | | 900 | 24 × M30 | 627 | - | _ | | 1000 | 24 × M30 | 634 | _ | _ | | 1200 | 32 × M30 | 727 | _ | _ | Screw tightening torques for AS 4087, PN 16 | Nominal diameter | Screws | Max. s | crew tightening torqu | e [Nm] | |------------------|----------|-------------|-----------------------|--------| | [mm] | [mm] | Hard rubber | Polyurethane | PTFE | | 350 | 12 × M24 | 203 | _ | _ | | 375 | 12 × M24 | 137 | _ | _ | | 400 | 12 × M24 | 226 | _ | _ | | 450 | 12 × M24 | 301 | - | - | | 500 | 16 × M24 | 271 | - | - | | 600 | 16 × M27 | 393 | _ | _ | | 700 | 20 × M27 | 330 | _ | _ | | 750 | 20 × M30 | 529 | _ | _ | | 800 | 20 × M33 | 631 | - | - | | 900 | 24 × M33 | 627 | - | _ | | 1000 | 24 × M33 | 595 | - | _ | | 1200 | 32 × M33 | 703 | _ | _ | ## 6.2.4 Mounting the transmitter of the remote version ### **A** CAUTION #### Ambient temperature too high! Danger of electronics overheating and housing deformation. - ► Do not exceed the permitted maximum ambient temperature . - ► If operating outdoors: Avoid direct sunlight and exposure to weathering, particularly in warm climatic regions. #### **A** CAUTION #### Excessive force can damage the housing! ► Avoid excessive mechanical stress. The transmitter of the remote version can be mounted in the following ways: - Wall mounting - Pipe mounting #### Wall mounting **■** 10 Engineering unit mm (in) - 1. Drill the holes. - 2. Insert wall plugs into the drilled holes. - 3. Screw in the securing screws slightly at first. - 4. Fit the transmitter housing over the securing screws and mount in place. - 5. Tighten the securing screws. #### Post mounting #### **A** WARNING ## Excessive tightening torque applied to the fixing screws! Risk of damaging the plastic transmitter. ► Tighten the fixing screws as per the tightening torque: ■ 11 Engineering unit mm (in) ## 6.2.5 Turning the transmitter housing To provide easier access to the connection compartment or display module, the transmitter housing can be turned. - A003208 - 2. Open the housing cover. - 3. Unlock the display module. - 4. Remove the display module. - 5. Loosen the fixing screws of the smart sensor electronics module (when reassembling, pay attention to the tightening torque $\rightarrow \triangleq 36$). - 6. Remove the smart sensor electronics module (when reassembling, pay attention to the coding of the plug $\Rightarrow \triangleq 36$). A003208 - 7. Loosen the fixing screws of the main electronics module (when reassembling, pay attention to the tightening torque $\rightarrow \triangleq 36$). - 8. Remove the main electronics module. A003208 - 9. Loosen the fixing screws of the transmitter housing (when reassembling, pay attention to the tightening torque $\rightarrow \triangleq 36$). - 10. Lift the transmitter housing. - 11. Turn the housing to the desired position in increments of 90°. #### Reassembling the transmitter housing #### **A** WARNING #### Excessive tightening torque applied to the fixing screws! Risk of damaging the plastic transmitter. ► Tighten the fixing screws as per the tightening torque: | Step
→ 🖺 34 | Fixing screw | Tightening torques for housing made of: | | |----------------|---------------------------------|---|-------------------| | | | Aluminum | Plastic | | 1 | Housing cover | 2.5 Nm (1.8 lbf ft) | 1 Nm (0.7 lbf ft) | | 5 | Smart sensor electronics module | 0.6 Nm (0.4 lbf ft) | | | 7 | Main electronics module | 1.5 Nm (1.1 lbf ft) | | | 9/10 | Transmitter housing | 5.5 Nm (4.1 lbf ft) | | #### **NOTICE** #### Plug of the smart sensor electronics module connected incorrectly! No measuring signal is output. ▶ Plug in the plug of the smart sensor electronics module as per the coding. A002158 ► Reverse the procedure to reassemble the measuring device. ### 6.2.6 Turning the display module The display module can be turned to optimize display readability and operability. A003209 - 1. Loosen the fixing screws of the housing cover (when reassembling, pay attention to the tightening torque $\rightarrow \triangleq 37$). - 2. Open the housing cover. - 3. Unlock the display module. 4. Pull out the display module and turn it to the desired position in increments of 90°. ## Reassembling the transmitter housing ## **A** WARNING ## Excessive tightening torque applied to the fixing screws! Risk of damaging the plastic transmitter. ► Tighten the fixing screws as per the tightening torque: | Step | Fixing screw | Tightening torque for housing made of: | | |---------------|---------------|--|-------------------| | (see graphic) | | Aluminum | Plastic | | 1 | Housing cover | 2.5 Nm (1.8 lbf ft) | 1 Nm (0.7 lbf ft) | ▶ Reverse the procedure to reassemble the measuring device. ## 6.3 Post-installation check | Is the device undamaged (visual inspection)? | | |--|--| | Does the measuring device conform to the measuring point specifications? For example: Process temperature Process pressure (refer to the section on "Pressure-temperature ratings" in the "Technical Information" document) Ambient temperature Measuring range | | | Has the correct orientation for the sensor been selected? According to sensor type According to medium temperature According to medium properties (outgassing, with entrained solids) | | | Does the arrow on the sensor nameplate match the direction of flow of the fluid through the piping ? | | | Are the measuring point identification and labeling correct (visual inspection)? | | | Is the device adequately protected from precipitation and direct sunlight? | | | Have the fixing screws been tightened with the correct tightening torque? | | ## 7 Electrical connection ## **NOTICE** The measuring device does not have an internal circuit breaker. - ► For this reason, assign the measuring device a switch or power-circuit breaker so that the power supply line can be easily disconnected from the mains. - ▶ Although the measuring device is equipped with a fuse, additional overcurrent protection (maximum 16 A) should be integrated into the system installation. ## 7.1 Connection conditions ## 7.1.1 Requirements for connecting cable The connecting cables provided by the customer must fulfill the following requirements. ## Electrical safety In accordance with applicable federal/national regulations. #### Permitted temperature range - The installation quidelines that apply in the country of installation must be observed. - The cables must be suitable for the minimum and maximum temperatures to be expected. ## Power supply cable Standard installation cable is sufficient. #### Signal cable Modbus RS485 The EIA/TIA-485 standard specifies two types of cable (A and B) for the bus line which can be used for every transmission rate. Cable type A is recommended. | Cable type | A | | |--------------------------|--|--| | Characteristic impedance | 135 to 165 Ω at a measuring frequency of 3 to 20 MHz | | | Cable capacitance | < 30 pF/m | | | Wire cross-section | > 0.34 mm ² (22 AWG) | | | Cable type | Twisted pairs | | | Loop resistance | ≤110 Ω/km | | | Signal damping | Max. 9 dB over the entire length of the cable cross-section | | | Shield | Copper braided shielding or braided shielding with foil shield. When grounding the cable shield, observe the grounding concept of the plant. | | ## Connecting cable for remote version Electrode cable | Standard cable | 3 \times 0.38 mm ² (20 AWG) with common, braided copper shield ($\phi \sim$ 9.5 mm (0.37 in)) and individual shielded cores | | |--------------------------------------|---|--| | Cable for empty pipe detection (EPD) | 4 \times 0.38 mm ² (20 AWG) with common, braided copper shield ($\phi \sim$ 9.5 mm (0.37 in)) and individual shielded cores | | | Conductor resistance | ≤50 Ω/km (0.015 Ω/ft) | | | Capacitance: core/shield | ≤420 pF/m (128 pF/ft) | |--------------------------|--------------------------------| | Operating temperature | −20 to +80 °C (−68 to +176 °F) | #### Coil current cable | Standard cable | 3 ×0.75 mm² (18 AWG) with common, braided copper shield ($\phi \sim 9$ mm (0.35 in)) | |---|---| | Conductor resistance | ≤37 Ω/km (0.011 Ω/ft) | | Capacitance: core/core, shield grounded | ≤120 pF/m (37 pF/ft) | | Operating temperature | −20 to +80 °C (−68 to +176 °F) | | Test voltage for cable insulation | ≤ AC 1433 V r.m.s. 50/60 Hz or ≥ DC 2026 V | A0029151 ■ 12 Cable cross-section - a Electrode cable - b Coil current cable - 1 Core - 2 Core insulation - 3 Core shield - 4 Core jacket - 5 Core reinforcement - 6 Cable shield - 7 Outer jacket #### Reinforced connecting cables Reinforced connecting cables with an additional, reinforcing metal braid should be used for: - $\mbox{ } \blacksquare$ When laying the cable directly in the ground - Where there is a risk of damage from rodents Operation in zones of severe electrical interference Grounding is by means of the ground terminal provided for the purpose inside the connection housing. The stripped and twisted lengths of cable shield to the ground terminal must be as short as
possible. #### Cable diameter - Cable glands supplied: - For standard cable: M20 × 1.5 with cable ϕ 6 to 12 mm (0.24 to 0.47 in) - For reinforced cable: M20 × 1.5 with cable ϕ 9.5 to 16 mm (0.37 to 0.63 in) - (Plug-in) spring terminals for wire cross-sections 0.5 to 2.5 mm² (20 to 14 AWG) ## 7.1.2 Required tools - Torque wrench - For cable entries: Use corresponding tools - Wire stripper - When using stranded cables: Crimper for wire end ferrule ## 7.1.3 Terminal assignment #### Transmitter The sensor can be ordered with terminals. | Connection methods available | | Descible entires for order code | | |------------------------------|----------------------------|--|--| | Outputs | Power "Floatrical connecti | Possible options for order code "Electrical connection" | | | terminals | terminals | Option A: coupling M20x1 Option B: thread M20x1 Option C: thread G ½" Option D: thread NPT ½" | | ## Supply voltage | Order code
"Power supply" | Terminal numbers | terminal voltage | | Frequency range | |---|--------------------|------------------|-------------|-----------------| | | 1 (L+/L), 2 (L-/N) | DC 24 V | ±25% | _ | | Option L (wide range power unit) | | AC 24 V | ±25% | 50/60 Hz, ±4 Hz | | . 31 | | AC 100 to 240 V | -15 to +10% | 50/60 Hz, ±4 Hz | ## Signal transmission Modbus RS485 | Order code for "Output" and "Input" | Terminal numbers | | |-------------------------------------|------------------|--------| | | 26 (+) | 27 (-) | | Option M | В | А | #### Remote version 13 Remote version terminal assignment - A Transmitter wall-mount housing - B Sensor connection housing - 1 Electrode cable - 2 Coil current cable - n.c. Not connected, insulated cable shields Terminal No. and cable colors: 6/5 = brown; 7/8 = white; 4 = green; 36/37 = yellow ## 7.1.4 Shielding and grounding #### Modbus The shielding and grounding concept requires compliance with the following: - Electromagnetic compatibility (EMC) - Explosion protection - Personal protection equipment - National installation regulations and guidelines - Observe cable specification. - Keep the stripped and twisted lengths of cable shield to the ground terminal as short as possible. - Seamless cable shielding. ## Grounding of the cable shield To comply with EMC requirements: - Ensure the cable shield is grounded to the potential matching line at multiple points. - Connect every local ground terminal to the potential matching line. #### NOTICE In systems without potential matching, the multiple grounding of the cable shield causes mains frequency equalizing currents! Damage to the bus cable shield. ▶ Only ground the bus cable shield to either the local ground or the protective ground at one end. ## 7.1.5 Requirements for the supply unit #### Supply voltage Transmitter | Order code for "Power supply" | terminal voltage | | Frequency range | |-------------------------------|------------------|-------------|-----------------| | | DC 24 V | ±25% | _ | | Option L | AC 24 V | ±25% | 50/60 Hz, ±4 Hz | | | AC 100 to 240 V | -15 to +10% | 50/60 Hz, ±4 Hz | ## 7.1.6 Preparing the measuring device Carry out the steps in the following order: - 1. Mount the sensor and transmitter. - 2. Connection housing, sensor: Connect connecting cable. - 3. Transmitter: Connect connecting cable. - 4. Transmitter: Connect signal cable and cable for supply voltage. #### **NOTICE** ## Insufficient sealing of the housing! Operational reliability of the measuring device could be compromised. - ▶ Use suitable cable glands corresponding to the degree of protection. - 1. Remove dummy plug if present. - 2. If the measuring device is supplied without cable glands: Provide suitable cable gland for corresponding connecting cable. - 3. If the measuring device is supplied with cable glands:Observe requirements for connecting cables → 38. ## 7.1.7 Preparing the connecting cable for the remote version When terminating the connecting cable, pay attention to the following points: - In the case of the electrode cable: Make sure that the ferrules do not touch the core shields on the sensor side. Minimum distance = 1 mm (exception: green "GND" cable) - 2. In the case of the coil current cable: Insulate one core of the three-core cable at the level of the core reinforcement. You only require two cores for the connection. - 3. For cables with fine-wire cores (stranded cables): Fit the cores with ferrules. ## Transmitter - A = Termination of the cables - B = Termination of the fine-wire cores with ferrules - $1 = \text{Red ferrules}, \phi 1.0 \text{ mm } (0.04 \text{ in})$ - 2 =White ferrules, ϕ 0.5 mm (0.02 in) - * = Stripping only for reinforced cables #### Sensor - $1 = \text{Red ferrules}, \phi 1.0 \text{ mm } (0.04 \text{ in})$ - $2 = \text{White ferrules}, \phi 0.5 \text{ mm } (0.02 \text{ in})$ - * = Stripping only for reinforced cables #### 7.2 Connecting the measuring device #### **WARNING** #### Risk of electric shock! Components carry dangerous voltages! - ▶ Have electrical connection work carried out by correspondingly trained specialists only. - Observe applicable federal/national installation codes and regulations. - Comply with local workplace safety regulations. - Observe grounding concept of the plant. - Never mount or wire the measuring device while it is connected to the supply voltage. - Before the supply voltage is applied, connect the protective ground to the measuring device. #### 7.2.1 Connecting the remote version ## **MARNING** #### Risk of damaging the electronic components! - Connect the sensor and transmitter to the same potential equalization. - Only connect the sensor to a transmitter with the same serial number. - Ground the connection housing of the sensor via the external screw terminal. The following procedure (in the action sequence given) is recommended for the remote version: - 1. Mount the sensor and transmitter. - 2. Connect the connecting cable for the remote version. 3. Connect the transmitter. #### Connecting the connecting cable to the sensor connection housing Δ0032103 ■ 16 Sensor: connection module - 1. Loosen the securing clamp of the housing cover. - 2. Unscrew and lift off the housing cover. - 3. Push the cable through the cable entry . To ensure tight sealing, do not remove the sealing ring from the cable entry. - 5. Connect the cable in accordance with the terminal assignment $\rightarrow \triangleq 41$. - 6. Firmly tighten the cable glands. ## 7. **A** WARNING # Housing degree of protection may be voided due to insufficient sealing of the housing. ► Screw in the screw without using any lubricant. The threads on the cover are coated with a dry lubricant. Reverse the procedure to reassemble the sensor. #### Connecting the connecting cable to the transmitter A003210 ■ 17 Transmitter: main electronics module with terminals - 1. Loosen the 4 fixing screws on the housing cover. - 2. Open the housing cover. - 3. Push the cable through the cable entry . To ensure tight sealing, do not remove the sealing ring from the cable entry. - 5. Connect the cable in accordance with the terminal assignment $\rightarrow \triangleq 41$. - 6. Firmly tighten the cable glands. - 7. **A** WARNING Housing degree of protection may be voided due to insufficient sealing of the housing. ► Screw in the screw without using any lubricant. Reverse the removal procedure to reassemble the transmitter. ## 7.2.2 Connecting the transmitter ### **WARNING** Housing degree of protection may be voided due to insufficient sealing of the housing. ► Screw in the screw without using any lubricant. The threads on the cover are coated with a dry lubricant. Tightening torques for plastic housing | Housing cover fixing screw | 1.3 Nm | | |----------------------------|-------------|--| | Cable entry | 4.5 to 5 Nm | | | Ground terminal | 2.5 Nm | | ■ 18 Connecting the supply voltage and Modbus RS485 - 1. Loosen the 4 fixing screws on the housing cover. - 2. Open the housing cover. - 3. Push the cable through the cable entry . To ensure tight sealing, do not remove the sealing ring from the cable entry. - 4. Strip the cable and cable ends. In the case of stranded cables, also fit ferrules. - 5. Connect the cable in accordance with the terminal assignment $\rightarrow \triangleq 40$. For supply voltage: open the shock protection cover. - 6. Firmly tighten the cable glands. ## 7. **A** WARNING Housing degree of protection may be voided due to insufficient sealing of the housing. ► Screw in the screw without using any lubricant. Reverse the removal procedure to reassemble the transmitter. #### 7.2.3 Ensure potential equalization #### Requirements ## **A** CAUTION #### Electrode damage can result in the complete failure of the device! - ▶ Same electrical potential for the medium and sensor - ▶ Remote version: same electrical potential for the sensor and transmitter - ► Company-internal grounding concepts - ▶ Pipe material and grounding ### Connection example, standard scenario Metal, grounded pipe **■** 19 Potential equalization via measuring tube ### Connection example in special situations *Unlined* and ungrounded metal pipe This connection method also applies in situations where: - The customary potential equalization is not used - Equalizing currents are present Copper wire, at least 6 mm² (0.0093 in²) Ground cable ■ 20 Potential equalization via ground terminal and pipe flanges - 1. Connect both sensor flanges to the pipe flange via a ground cable and ground them. - 2. If DN \leq 300 (12"): Mount the ground cable directly on the conductive flange coating of the sensor with the flange screws. - 3. If DN ≥ 350 (14"): Mount the ground cable directly on the metal transport bracket. Observe screw tightening torques: see the Sensor Brief Operating
Instructions. - 4. Connect the connection housing of the transmitter or sensor to ground potential by means of the ground terminal provided for the purpose. - For remote device versions, the ground terminal in the example always refers to the sensor and **not** to the transmitter. Plastic pipe or pipe with insulating liner This connection method also applies in situations where: - The customary potential equalization is not used - Equalizing currents are present Ground cable Copper wire, at least 6 mm² (0.0093 in²) A002933 - 21 Potential equalization via ground terminal and ground disks - 1. Connect the ground disks to the ground terminal via the ground cable. - 2. Connect the ground disks to ground potential. - For remote device versions, the ground terminal in the example always refers to the sensor and **not** to the transmitter. Pipe with a cathodic protection unit This connection method is only used if the following two conditions are met: - Metal pipe without liner or pipe with electrically conductive liner - Cathodic protection is integrated in the personal protection equipment Ground cable Copper wire, at least 6 mm² (0.0093 in²) .0029340 Prerequisite: The sensor is installed in the pipe in a way that provides electrical insulation. 1. Connect the two flanges of the pipe to one another via a ground cable. - 2. Guide the shield of the signal lines through a capacitor. - 3. Connect the measuring device to the power supply such that it is floating in relation to the protective ground (isolation transformer). - For remote device versions, the ground terminal in the example always refers to the sensor and **not** to the transmitter. ## 7.3 Special connection instructions ## 7.3.1 Connection examples ## Modbus RS485 \blacksquare 22 Connection example for Modbus RS485, non-hazardous area and Zone 2/Div. 2 - 1 Control system (e.g. PLC) - 2 Cable shield: the cable shield must be grounded at both ends to comply with EMC requirements; observe cable specifications - 3 Distribution box - 4 Transmitter ## 7.4 Hardware settings ## 7.4.1 Enabling the terminating resistor ## Modbus RS485 To avoid incorrect communication transmission caused by impedance mismatch, terminate the Modbus RS485 cable correctly at the start and end of the bus segment. ■ 23 Terminating resistor can be enabled via DIP switch on the main electronics module ## 7.5 Ensuring the degree of protection ## 7.5.1 Degree of protection IP66/67, Type 4X enclosure The measuring device fulfills all the requirements for the IP66/67 degree of protection, Type 4X enclosure. To guarantee IP66/67 degree of protection, Type 4X enclosure, carry out the following steps after the electrical connection: - 1. Check that the housing seals are clean and fitted correctly. Dry, clean or replace the seals if necessary. - 2. Tighten all housing screws and screw covers. - 3. Firmly tighten the cable glands. - 4. To ensure that moisture does not enter the cable entry, route the cable so that it loops down before the cable entry ("water trap"). A002927 5. Insert dummy plugs into unused cable entries. ## 7.6 Post-connection check | Are cables or the device undamaged (visual inspection)? | | |--|--| | Do the cables used meet the requirements→ 🖺 38? | | | Do the cables have adequate strain relief? | | | Are all the cable glands installed, firmly tightened and leak-tight? Cable run with "water trap" → 🖺 50 ? | | | Only for remote version: is the sensor connected to the right transmitter? Check the serial number on the nameplate of the sensor and transmitter. | | | Does the supply voltage match the specifications on the transmitter nameplate $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | | | Is the terminal assignment correct $\rightarrow \triangleq 40$? | | | If supply voltage is present, do values appear on the display module? | | | Is the potential equalization established correctly ? | | | Are all housing covers installed and the screws tightened with the correct tightening torque? | | #### **Operation options** 8 #### Overview of operation options 8.1 - Local operation via display module - Computer with Web browser (e.g. Internet Explorer) or with operating tool (e.g. FieldCare, AMS Device Manager, SIMATIC PDM) - Control system (e.g. PLC) ## 8.2 Structure and function of the operating menu ## 8.2.1 Structure of the operating menu For an overview of the operating menu for experts: "Description of Device Parameters" document supplied with the device→ 155 \blacksquare 24 Schematic structure of the operating menu ## 8.2.2 Operating philosophy The individual parts of the operating menu are assigned to certain user roles (operator, maintenance etc.). Each user role contains typical tasks within the device lifecycle. | Menu/parameter | | User role and tasks | Content/meaning | |----------------|-------------------|---|--| | Language | task-oriented | Role "Operator", "Maintenance" Tasks during operation: Configuring the operational | Defining the operating language Defining the Web server operating language Resetting and controlling totalizers | | Operation | | display Reading measured values | Configuring the operational display (e.g. display format, display contrast) Resetting and controlling totalizers | | Setup | | "Maintenance" role Commissioning: Configuration of the measurement | Wizards for fast commissioning: Set the system units Set the input Configure the outputs Configuring the operational display Define the output conditioning Set the low flow cut off Configure empty pipe detection Advanced setup For more customized configuration of the measurement (adaptation to special measuring conditions) Configuration of totalizers Configuration of electrode cleaning (optional) | | Diagnostics | <u>.</u> | "Maintenance" role Fault elimination: Diagnostics and elimination of process and device errors Measured value simulation | Administration (define access code, reset measuring device) Contains all parameters for error detection and analyzing process and device errors: Diagnostic list Contains up to 5 currently pending diagnostic messages. Event logbook Contains event messages that have occurred. Device information Contains information for identifying the device. Measured values Contains all current measured values. Data logging submenu with "Extended HistoROM" order option Storage and visualization of measured values Heartbeat The functionality of the device is checked on demand and the verification results are documented. Simulation | | Expert | function-oriented | Tasks that require detailed knowledge of the function of the device: Commissioning measurements under difficult conditions Optimal adaptation of the measurement to difficult conditions Detailed configuration of the communication interface Error diagnostics in difficult cases | Contains all the parameters of the device and makes it possible to access these parameters directly using an access code. The structure of this menu is based on the function blocks of the device: System Contains all higher-order device parameters which do not concern the measurement or the communication interface. Sensor Configuration of the measurement. Input Configuring the status input. Output Configuring of the analog current outputs as well as the pulse/frequency and switch output. Communication Configuration of the digital communication interface and the Web server. Application Configure the functions that go beyond the actual measurement (e.g. totalizer). Diagnostics Error detection and analysis of process and device errors and for device simulation and Heartbeat Technology. | ## 8.3 Access to the operating menu via the local display ## 8.3.1 Operational display A002934 - 1 Operational display - 2 Device tag→ 🖺 81 - 3 Status area - 4 Display area for measured values (4-line) - 5 Operating elements → 🖺 59 #### Status area The following symbols appear in the status area of the operational display at the top right: - Status signals → 🗎 108 - **F**: Failure - **C**: Function check - **S**: Out of specification - **M**: Maintenance required - Diagnostic behavior → 🖺 109 - 🐼: Alarm - $\underline{\bar{\mathbb{A}}}$: Warning - 🛱: Locking (the device is locked via the hardware) - ←: Communication (communication via remote operation is active) ## Display area In the display area, each measured value is prefaced by certain symbol types for further description: Appears only if a
diagnostics event is present for this measured variable. #### Measured values | Symbol | Meaning | |--------|--------------| | Ü | Volume flow | | G | Conductivity | | ṁ | Mass flow | |------------|---| | Σ | Totalizer The measurement channel number indicates which of the three totalizers is displayed. | | (-) | Output The measurement channel number indicates which of the outputs is displayed. | | € | Status input | #### Measurement channel numbers | Symbol | Meaning | |--------|----------------------------| | 14 | Measurement channel 1 to 4 | The measurement channel number is displayed only if more than one channel is present for the same measured variable type (e.g. Totalizer 1 to 3). #### Diagnostic behavior The diagnostic behavior pertains to a diagnostic event that is relevant to the displayed measured variable. For information on the symbols $\rightarrow \stackrel{\text{\tiny le}}{=} 109$ The number and display format of the measured values can be configured via the **Format display** parameter ($\Rightarrow \triangleq 85$). ## 8.3.2 Navigation view #### Navigation path The navigation path - displayed at the top left in the navigation view - consists of the following elements: Display For more information about the icons in the menu, refer to the "Display area" section $\Rightarrow \triangleq 56$ #### Status area The following appears in the status area of the navigation view in the top right corner: - In the submenu - The direct access code for the parameter you are navigating to (e.g. 0022-1) - If a diagnostic event is present, the diagnostic behavior and status signal - In the wizard If a diagnostic event is present, the diagnostic behavior and status signal - i ## Display area #### Menus | Symbol | Meaning | |--------|---| | P | Operation Appears: In the menu next to the "Operation" selection At the left in the navigation path in the Operation menu | | ۶ | Setup Appears: In the menu next to the "Setup" selection At the left in the navigation path in the Setup menu | | પ્ | Diagnostics Appears: In the menu next to the "Diagnostics" selection At the left in the navigation path in the Diagnostics menu | | 3,4€ | Expert Appears: In the menu next to the "Expert" selection At the left in the navigation path in the Expert menu | ## Submenus, wizards, parameters | Symbol | Meaning | |--------|--| | • | Submenu | | 17: | Wizard | | Ø. | Parameters within a wizard No display symbol exists for parameters in submenus. | #### Locking | Symbol | Meaning | |--------|--| | û | Parameter locked When displayed in front of a parameter name, indicates that the parameter is locked. By a user-specific access code By the hardware write protection switch | ## Wizard operation | Symbol | Meaning | |----------|--| | — | Switches to the previous parameter. | | √ | Confirms the parameter value and switches to the next parameter. | | E | Opens the editing view of the parameter. | ## 8.3.3 Editing view ## Input mask The following input symbols are available in the input mask of the numeric and text editor: #### Numeric editor | Symbol | Meaning | |----------|--| | 9 | Selection of numbers from 0 to 9. | | · | Inserts decimal separator at the input position. | | _ | Inserts minus sign at the input position. | | √ | Confirms selection. | | + | Moves the input position one position to the left. | | X | Exits the input without applying the changes. | | С | Clears all entered characters. | ## Text editor | Symbol | Meaning | |------------------|--| | (Aa1@) | Toggle Between upper-case and lower-case letters For entering numbers For entering special characters | | ABC_

XYZ | Selection of letters from A to Z. | | abc _

xyz | Selection of letters from a to z. | | ····^
& | Selection of special characters. | | √ | Confirms selection. | | €×C←→ | Switches to the selection of the correction tools. | | X | Exits the input without applying the changes. | | C | Clears all entered characters. | ## Correction symbols under $\nearrow c \leftrightarrow$ | Symbol | Meaning | |---------------|--| | C | Clears all entered characters. | | \rightarrow | Moves the input position one position to the right. | | € | Moves the input position one position to the left. | | ** | Deletes one character immediately to the left of the input position. | ## 8.3.4 Operating elements | Operating key(s) | Meaning | |------------------|--| | | Minus key | | | In a menu, submenu Moves the selection bar upwards in a choose list. | | | With a Wizard Confirms the parameter value and goes to the previous parameter. | | | With a text and numeric editor In the input screen, moves the selection bar to the left (backwards). | | | Plus key | | | In a menu, submenu Moves the selection bar downwards in a choose list. | | (+) | With a Wizard Confirms the parameter value and goes to the next parameter. | | | With a text and numeric editor Moves the selection bar to the right (forwards) in an input screen. | | | Enter key | | | For operational display Pressing the key briefly opens the operating menu. Pressing the key for 2 s opens the context menu including the option for activating the keypad lock. | | E | In a menu, submenu Pressing the key briefly: Opens the selected menu, submenu or parameter. Starts the wizard. If help text is open, closes the help text of the parameter. Pressing the key for 2 s for parameter: If present, opens the help text for the function of the parameter. | | | With a Wizard Opens the editing view of the parameter. | | | With a text and numeric editor ■ Pressing the key briefly: - Opens the selected group. - Carries out the selected action. ■ Pressing the key for 2 s confirms the edited parameter value. | | | Escape key combination (press keys simultaneously) | | <u></u> ++ | In a menu, submenu Pressing the key briefly: Exits the current menu level and takes you to the next higher level. If help text is open, closes the help text of the parameter. Pressing the key for 2 s returns you to the operational display ("home position"). | | | With a Wizard Exits the wizard and takes you to the next higher level. | | | With a text and numeric editor Closes the text or numeric editor without applying changes. | | (-)+(E) | Minus/Enter key combination (press the keys simultaneously) | | | Press the key for 3 s: deactivate the keypad lock. | | -++E | Minus/Plus/Enter key combination (press the keys simultaneously) | | | For operational display Enables or disables the keypad lock (only SD02 display module). | ## 8.3.5 Opening the context menu Using the context menu, the user can call up the following menus quickly and directly from the operational display: - Setup - Simulation ## Calling up and closing the context menu The user is in the operational display. - 1. Press E for 2 s. - ► The context menu opens. A0034608-EN Endress+Hauser - 2. Press \Box + \pm simultaneously. - The context menu is closed and the operational display appears. ## Calling up the menu via the context menu - 1. Open the context menu. - 2. Press 🛨 to navigate to the desired menu. - 3. Press **E** to confirm the selection. - ► The selected menu opens. 60 ## 8.3.6 Navigating and selecting from list Different operating elements are used to navigate through the operating menu. The navigation path is displayed on the left in the header. Icons are displayed in front of the individual menus. These icons are also shown in the header during navigation. For an explanation of the navigation view with symbols and operating elements $\Rightarrow \triangleq 55$ Example: Setting the number of displayed measured values to "2 values" ## 8.3.7 Calling the parameter directly A parameter number is assigned to every parameter to be able to access a parameter directly via the onsite display. Entering this access code in the **Direct access** parameter calls up the desired parameter directly. ## Navigation path Expert → Direct access The direct access code consists of a 5-digit number (at maximum) and the channel number, which identifies the channel of a process variable: e.g. 00914-2. In the navigation view, this appears on the right-hand side in the header of the selected parameter. 1 Direct access code Note the following when entering the direct access code: - The leading zeros in the direct access code do not have to be entered. Example: Enter "914" instead of "00914" - If no channel number is entered, channel 1 is accessed automatically. Example: Enter 00914 → Assign process variable parameter - If a different channel is accessed: Enter the direct access code with the corresponding channel number. Example: Enter **00914-2** → **Assign process
variable** parameter For the direct access codes of the individual parameters, see the "Description of Device Parameters" document for the device ## 8.3.8 Calling up help text Help text is available for some parameters and can be called up from the navigation view. The help text provides a brief explanation of the parameter function and thereby supports swift and safe commissioning. #### Calling up and closing the help text The user is in the navigation view and the selection bar is on a parameter. - 1. Press E for 2 s. - ► The help text for the selected parameter opens. A0014002-EN - 25 Example: Help text for parameter "Enter access code" - 2. Press \Box + \pm simultaneously. - The help text is closed. 62 ## 8.3.9 Changing the parameters For a description of the editing view - consisting of the text editor and numeric editor - with symbols $\rightarrow \implies 57$, for a description of the operating elements $\rightarrow \implies 59$ **Example:** Changing the tag name in the "Tag description" parameter from 001-FT-101 to 001-FT-102 A0029563-EI A message is displayed if the value entered is outside the permitted value range. Ent. access code Invalid or out of range input value Min:0 Max:9999 A0014049-E #### 8.3.10 User roles and related access authorization The two user roles "Operator" and "Maintenance" have different write access to the parameters if the customer defines a user-specific access code. This protects the device configuration via the local display from unauthorized access $\rightarrow \implies 96$. #### Defining access authorization for user roles An access code is not yet defined when the device is delivered from the factory. Access authorization (read and write access) to the device is not restricted and corresponds to the "Maintenance" user role. - ▶ Define the access code. - The "Operator" user role is redefined in addition to the "Maintenance" user role. Access authorization differs for the two user roles. Access authorization to parameters: "Maintenance" user role | Access code status | Read access | Write access | |--|-------------|-----------------| | An access code has not yet been defined (factory setting). | V | V | | After an access code has been defined. | V | ✓ ¹⁾ | 1) The user only has write access after entering the access code. Access authorization to parameters: "Operator" user role | Access code status | Read access | Write access | |--|-------------|--------------| | After an access code has been defined. | V | 1) | - Despite the defined access code, certain parameters can always be modified and thus are excepted from the write protection, as they do not affect the measurement. Refer to the "Write protection via access code" section - The user role with which the user is currently logged on is indicated by the **Access** status display parameter. Navigation path: Operation \rightarrow Access status display ## 8.3.11 Disabling write protection via access code Parameter write protection via local operation can be disabled by entering the user-specific access code in the **Enter access code** parameter via the respective access option. - 1. After you press ©, the input prompt for the access code appears. - 2. Enter the access code. - ► The 🗈-symbol in front of the parameters disappears; all previously write-protected parameters are now re-enabled. ## 8.3.12 Enabling and disabling the keypad lock The keypad lock makes it possible to block access to the entire operating menu via local operation. As a result, it is no longer possible to navigate through the operating menu or change the values of individual parameters. Users can only read the measured values on the operational display. The keypad lock is switched on and off via the context menu. #### Switching on the keypad lock - The keypad lock is switched on automatically: - If the device has not been operated via the display for > 1 minute. - Each time the device is restarted. #### To activate the keylock manually: - 1. The device is in the measured value display. - Press **E** for at least 2 seconds. - ► A context menu appears. - 2. In the context menu select the **Keylock on** option. - ► The keypad lock is switched on. - If the user attempts to access the operating menu while the keypad lock is active, the **Keylock on** message appears. #### Switching off the keypad lock - 1. The keypad lock is switched on. Press © for at least 2 seconds. - ► A context menu appears. - 2. In the context menu select the **Keylock off** option. - ► The keypad lock is switched off. ## 8.4 Access to the operating menu via the Web browser ## 8.4.1 Function range Thanks to the integrated Web server, the device can be operated and configured via a Web browser and via a service interface (CDI-RJ45) . The structure of the operating menu is the same as for the local display. In addition to the measured values, status information on the device is also displayed and allows the user to monitor the status of the device. Furthermore the device data can be managed and the network parameters can be configured. For additional information on the Web server, refer to the Special Documentation for the device → 🗎 155 ## 8.4.2 Prerequisites ## Computer hardware | Hardware | Interface | | |------------|---|--| | | CDI-RJ45 | WLAN | | Interface | The computer must have an RJ45 interface. | The operating unit must have a WLAN interface. | | Connection | Standard Ethernet cable with RJ45 connector. | Connection via Wireless LAN. | | Screen | Recommended size: ≥12" (depends on the screen resolution) | | ## Computer software | Software Interface | | | |-------------------------------|--|------| | | CDI-RJ45 | WLAN | | Recommended operating systems | Microsoft Windows 7 or higher. Mobile operating systems: iOS Android Microsoft Windows XP is supported | | | Web browsers supported | Microsoft Internet Explorer 8 or higher Microsoft Edge Mozilla Firefox Google Chrome Safari | | ## Computer settings | Settings | Interface | | |---|---|---| | | CDI-RJ45 | WLAN | | User rights | Appropriate user rights (e.g. administrator rights) for TCP/IP and proxy server settings are necessary (for adjusting the IP address, subnet mask etc.). | | | Proxy server settings of the
Web browser | The Web browser setting <i>Use a Proxy Server for Your LAN</i> must be deselected . | | | JavaScript | JavaScript must be enabled. If JavaScript cannot be enabled: enter http://192.168.1.212/basic.html in the address line of the Web browser. A fully functional but simplified version of the operating menu structure starts in the Web browser. When installing a new firmware version: To enable correct data display, clear the temporary memory (cache) of the Web browser under Internet options. | | | | | | | | | | | Network connections | Only the active network connections to the measuring device should be used. | | | | Switch off all other network connections such as WLAN. | Switch off all other network connections. | In the event of connection problems: $\rightarrow \stackrel{\triangle}{=} 106$ Measuring device: Via CDI-RJ45 service interface | Device | CDI-RJ45 service interface | | |------------------|---|--| | Measuring device | The measuring device has an RJ45 interface. | | | Web server | Web server must be enabled; factory setting: ON | | | | For information on enabling the Web server $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | | Measuring device: via WLAN interface | Device | WLAN interface | |------------------|---| | Measuring device | The measuring device has a WLAN antenna:
Transmitter with integrated WLAN antenna | | Web server | Web server and WLAN must be enabled; factory setting: ON | | | For information on enabling the Web server $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | ## 8.4.3 Establishing a connection ## Via service interface (CDI-RJ45) Preparing the measuring device Configuring the Internet protocol of the computer The following information refers to the default Ethernet settings of the device. IP address of the device: 192.168.1.212 (factory setting) - 1. Switch on the measuring device. - 2. Connect to the computer using a cable. - 3. If a 2nd network card is not used, close all the applications on the notebook. - Applications requiring Internet or a network, such as e-mail, SAP applications, Internet or Windows Explorer. - 4. Close any open Internet browsers. - 5. Configure the properties of the Internet protocol (TCP/IP) as defined in the table: | IP address | 192.168.1.XXX; for XXX all numerical sequences except: 0, 212 and 255 \rightarrow e.g. 192.168.1.213 | |-----------------|--| | Subnet mask | 255.255.255.0 | | Default gateway | 192.168.1.212 or leave cells empty | #### Via WLAN interface Configuring
the Internet protocol of the mobile terminal ## **NOTICE** If the WLAN connection is lost during the configuration, settings made may be lost. ▶ Make sure that the WLAN connection is not disconnected while configuring the device. ## **NOTICE** In principle, avoid simultaneous access to the measuring device via the service interface (CDI-RJ45) and the WLAN interface from the same mobile terminal. This could cause a network conflict. - ▶ Only activate one service interface (CDI-RJ45 service interface or WLAN interface). - ► If simultaneous communication is necessary: configure different IP address ranges, e.g. 192.168.0.1 (WLAN interface) and 192.168.1.212 (CDI-RJ45 service interface). #### Preparing the mobile terminal ► Enable WLAN reception on the mobile terminal. Establishing a connection from the mobile terminal to the measuring device - 1. In the WLAN settings of the mobile terminal: Select the measuring device using the SSID (e.g. EH_Promag__A802000). - 2. If necessary, select the WPA2 encryption method. - 3. Enter the password: serial number of the measuring device ex-works (e.g. L100A802000). - LED on display module flashes: it is now possible to operate the measuring device with the Web browser, FieldCare or DeviceCare. - 🙌 The serial number can be found on the nameplate. - To ensure the safe and swift assignment of the WLAN network to the measuring point, it is advisable to change the SSID name. It should be possible to clearly assign the new SSID name to the measuring point (e.g. tag name) because it is displayed as the WLAN network. #### Disconnecting ► After configuring the device: Terminate the WLAN connection between the operating unit and measuring device. #### Starting the Web browser 1. Start the Web browser on the computer. - 2. Enter the IP address of the Web server in the address line of the Web browser: 192.168.1.212 - ► The login page appears. - 1 Picture of device - 2 Device name - 3 Device tag - 4 Status signal - 5 Current measured values - 6 Operating language - 7 User role - 8 Access code -) Login - 10 Reset access code ## 8.4.4 Logging on - 1. Select the preferred operating language for the Web browser. - 2. Enter the user-specific access code. - 3. Press **OK** to confirm your entry. Access code 0000 (factory setting); can be changed by customer If no action is performed for 10 minutes, the Web browser automatically returns to the login page. ## 8.4.5 User interface A003287 - 1 Picture of device - 2 Device name - 3 Device tag - 4 Status signal - 5 Current measured values - 6 Navigation area - 7 Local display language ## Header The following information appears in the header: - Device tag - Device status with status signal \rightarrow 🗎 111 - Current measured values ## **Function** row | Functions | Meaning | |--------------------------|---| | Measured values | Displays the measured values of the measuring device | | Menu | Access to the operating menu from the measuring device The structure of the operating menu is the same as for the local display For detailed information on the structure of the operating menu, see the Operating Instructions for the measuring device | | Device status | Displays the diagnostic messages currently pending, listed in order of priority | | Data
management | Data exchange between PC and measuring device: Device configuration: Load settings from the device (XML format, save configuration) Save settings to the device (XML format, restore configuration) Logbook - Export Event logbook (.csv file) Documents - Export documents: Export backup data record (.csv file, create documentation of the measuring point configuration) Verification report (PDF file, only available with the "Heartbeat Verification" application package) | | Network
configuration | Configuration and checking of all the parameters required for establishing the connection to the measuring device: Network settings (e.g. IP address, MAC address) Device information (e.g. serial number, firmware version) | | Logout | End the operation and call up the login page | #### Navigation area If a function is selected in the function bar, the submenus of the function open in the navigation area. The user can now navigate through the menu structure. #### Working area Depending on the selected function and the related submenus, various actions can be performed in this area: - Configuring parameters - Reading measured values - Calling up help text - Starting an upload/download ## 8.4.6 Disabling the Web server The Web server of the measuring device can be switched on and off as required using the **Web server functionality** parameter. ### **Navigation** "Expert" menu \rightarrow Communication \rightarrow Web server #### Parameter overview with brief description | Parameter | Description | Selection | Factory setting | |--------------------------|-----------------------------------|-----------|-----------------| | Web server functionality | Switch the Web server on and off. | Off On | On | ### Function scope of the "Web server functionality" parameter | Option | Description | |--------|--| | Off | The web server is completely disabled.Port 80 is locked. | | On | The complete functionality of the web server is available. JavaScript is used. The password is transferred in an encrypted state. Any change to the password is also transferred in an encrypted state. | ## Enabling the Web server If the Web server is disabled it can only be re-enabled with the **Web server functionality** parameter via the following operating options: - Via local display - Via Bedientool "FieldCare" - Via "DeviceCare" operating tool ## 8.4.7 Logging out - Before logging out, perform a data backup via the **Data management** function (upload configuration from device) if necessary. - 1. Select the **Logout** entry in the function row. - ► The home page with the Login box appears. - 2. Close the Web browser. - 3. If no longer needed: Reset modified properties of the Internet protocol (TCP/IP) \rightarrow \triangleq 67. ## 8.5 Access to the operating menu via the operating tool The structure of the operating menu in the operating tools is the same as for operation via the local display. ## 8.5.1 Connecting the operating tool ## Via Modbus RS485 protocol This communication interface is available in device versions with a Modbus-RS485 output. ■ 26 Options for remote operation via Modbus-RS485 protocol (active) - Control system (e.g. PLC) - 2 Computer with Web browser (e.g. Internet Explorer) for accessing the integrated device Web server or with operating tool (e.g. FieldCare, DeviceCare) with COM DTM "CDI Communication TCP/IP" or Modbus DTM - 3 Transmitter ### Via service interface (CDI-RJ45) 27 Connection via service interface (CDI-RJ45) - 1 Computer with Web browser (e.g. Microsoft Internet Explorer, Microsoft Edge) for accessing the integrated device Web server or with "FieldCare", "DeviceCare" operating tool with COM DTM "CDI Communication TCP/IP" or Modbus DTM - 2 Standard Ethernet connecting cable with RJ45 plug - 3 Service interface (CDI-RJ45) of the measuring device with access to the integrated Web server #### Via WLAN interface The optional WLAN interface is available on the following device version: Order code for "Display", option **W1** "WLAN display": 4-line, illuminated, graphic display; touch control + WLAN - 1 Transmitter with integrated WLAN antenna - 2 LED lit constantly: WLAN reception is enabled on measuring device - 3 LED flashing: WLAN connection established between operating unit and measuring device - 4 Computer with WLAN interface and Web browser (e.g. Microsoft Internet Explorer, Microsoft Edge) for accessing the integrated device Web server or with operating tool (e.g. FieldCare, DeviceCare) - 5 Mobile handheld terminal with WLAN interface and Web browser (e.g. Microsoft Internet Explorer, Microsoft Edge) for accessing the integrated device Web server or operating tool (e.g. FieldCare, DeviceCare) - 6 Smartphone or tablet - 7 SmartBlue App | Function | WLAN: IEEE 802.11 b/g (2.4 GHz) | |-------------------------------------|---| | Encryption | WPA2-PSK/AES 128 bit | | Configurable WLAN channels | 1 to 11 | | Degree of protection | IP67 | | Available antennas | Internal antenna External antenna (optional) In the event of poor transmission/reception conditions at the place of installation. Only one antenna active in each case! | | Max. range | 50 m (164 ft) | | Materials:
External WLAN antenna | Antenna: ASA plastic (acrylic ester-styrene-acrylonitrile) and nickel-plated brass Adapter: Stainless steel and nickel-plated brass Cable: Polyethylene Connector: Nickel-plated brass Angle bracket: Stainless steel | Configuring the Internet protocol of the mobile terminal ### NOTICE If the WLAN connection is lost during the
configuration, settings made may be lost. ▶ Make sure that the WLAN connection is not disconnected while configuring the device. ### **NOTICE** In principle, avoid simultaneous access to the measuring device via the service interface (CDI-RJ45) and the WLAN interface from the same mobile terminal. This could cause a network conflict. - ▶ Only activate one service interface (CDI-RJ45 service interface or WLAN interface). - ▶ If simultaneous communication is necessary: configure different IP address ranges, e.g. 192.168.0.1 (WLAN interface) and 192.168.1.212 (CDI-RJ45 service interface). ### Preparing the mobile terminal ► Enable WLAN reception on the mobile terminal. Establishing a connection from the mobile terminal to the measuring device - 1. In the WLAN settings of the mobile terminal: Select the measuring device using the SSID (e.g. EH Promag A802000). - 2. If necessary, select the WPA2 encryption method. - 3. Enter the password: serial number of the measuring device ex-works (e.g. L100A802000). - LED on display module flashes: it is now possible to operate the measuring device with the Web browser, FieldCare or DeviceCare. - The serial number can be found on the nameplate. - To ensure the safe and swift assignment of the WLAN network to the measuring point, it is advisable to change the SSID name. It should be possible to clearly assign the new SSID name to the measuring point (e.g. tag name) because it is displayed as the WLAN network. #### Disconnecting ► After configuring the device: Terminate the WLAN connection between the operating unit and measuring device. #### 8.5.2 FieldCare ### **Function scope** FDT-based plant asset management tool from Endress+Hauser. It can configure all smart field devices in a system and helps you manage them. By using the status information, it is also a simple but effective way of checking their status and condition. #### Access is via: ### Typical functions: - Configuring parameters of transmitters - Loading and saving device data (upload/download) - Documentation of the measuring point - Visualization of the measured value memory (line recorder) and event logbook - For additional information about FieldCare, see Operating Instructions BA00027S and BA00059S ### Source for device description files See information $\rightarrow \triangleq 76$ #### Establishing a connection For additional information, see Operating Instructions BA00027S and BA00059S #### User interface - 1 Header - 2 Picture of device - 3 Tag name - 4 Status area with status signal → 111 - 6 Display area for current measured values - 5 Edit toolbar with additional functions such as save/restore, event list and create documentation - Navigation area with operating menu structure - 8 Working area ### 8.5.3 DeviceCare ### **Function scope** Tool to connect and configure Endress+Hauser field devices. The fastest way to configure Endress+Hauser field devices is with the dedicated "DeviceCare" tool. Together with the device type managers (DTMs) it presents a convenient, comprehensive solution. For details, see Innovation Brochure INO1047S ### Source for device description files See information $\rightarrow \blacksquare 76$ ## 9 System integration ## 9.1 Overview of device description files ### 9.1.1 Current version data for the device | Firmware version | 01.00.zz | On the title page of the Operating instructions On the transmitter nameplate Firmware version Diagnostics → Device information → Firmware version | |----------------------------------|----------|--| | Release date of firmware version | 07.2014 | | For an overview of the different firmware versions for the device ### 9.1.2 Operating tools The suitable device description file for the individual operating tools is listed in the table below, along with information on where the file can be acquired. | Operating tool via
Service interface (CDI) | Sources for obtaining device descriptions | | |---|--|--| | FieldCare | www.endress.com → Download Area CD-ROM (contact Endress+Hauser) DVD (contact Endress+Hauser) | | | DeviceCare | www.endress.com → Download Area CD-ROM (contact Endress+Hauser) DVD (contact Endress+Hauser) | | ### 9.2 Modbus RS485 information ### 9.2.1 Function codes Function codes are used to define which read or write action is carried out via the Modbus protocol. The measuring device supports the following function codes: | Code | Name | Description | Application | |------|-------------------------------------|---|--| | 03 | Read holding
register | Master reads one or more Modbus registers from the device. A maximum of 125 consecutive registers can be read with 1 telegram: 1 register = 2 bytes The measuring device does not make a distinction between function codes 03 and 04; these codes therefore | Read device parameters with read
and write access
Example:
Read volume flow | | | | yield the same result. | | | 04 | Read input
register | Master reads one or more Modbus registers from the device. A maximum of 125 consecutive registers can be read with 1 telegram: 1 register = 2 bytes The measuring device does | Read device parameters with read access Example: Read totalizer value | | | | not make a distinction
between function codes 03
and 04; these codes therefore
yield the same result. | | | 06 | Write single
registers | Master writes a new value to one Modbus register of the measuring device. | Write only 1 device parameter
Example: reset totalizer | | | | Use function code 16 to write multiple registers with just 1 telegram. | | | 08 | Diagnostics | Master checks the communication connection to the measuring device. | | | | | The following "Diagnostics codes" are supported: Sub-function 00 = Return query data (loopback test) Sub-function 02 = Return diagnostics register | | | 16 | Write multiple registers | Master writes a new value to multiple Modbus registers of the device. A maximum of 120 consecutive registers can be written with 1 telegram. If the required device parameters are not available | Write multiple device parameters | | | | as a group, yet must
nevertheless be addressed
with a single telegram, use
Modbus data map → 🖺 78 | | | 23 | Read/Write
multiple
registers | Master reads and writes a maximum of 118 Modbus registers of the measuring device simultaneously with 1 telegram. Write access is executed before read access. | Write and read multiple device parameters Example: Read mass flow Reset totalizer | Broadcast messages are only allowed with function codes 06, 16 and 23. #### Register information 9.2.2 For an overview of Modbus-specific information relating to the individual device parameters: Description of device parameters. #### 9.2.3 Response time Response time of the measuring device to the request telegram of the Modbus master: typically 3 to 5 ms #### 9.2.4 Modbus data map ### Function of the Modbus data map The device offers a special memory area, the Modbus data map (for a maximum of 16 device parameters), to allow users to call up multiple device parameters via Modbus RS485 and not only individual device parameters or a group of consecutive device parameters. Grouping of device parameters is flexible and the Modbus master can read or write to the entire data block simultaneously with a single request telegram. ### Structure of the Modbus data map The Modbus data map consists of two data sets: - Scan list: Configuration area The device parameters to be grouped are defined in a list in that their Modbus RS485 register addresses are entered in the list. - Data area The measuring device reads out the register addresses entered in the scan list cyclically and writes the associated device data (values) to the data area. For an overview of device parameters with their individual Modbus register address, please refer to the additional document on Modbus RS485 register information ### Scan list configuration For configuration, the Modbus RS485 register addresses of the device parameters to be grouped must be entered in the scan list. Please note the following basic requirements of the scan list: | Max. entries | 16 device parameters | |-----------------------------|---| | Supported device parameters | Only parameters with the following characteristics are supported: • Access type: read or write access • Data type: float or integer | Configuring the scan list via FieldCare Carried out using the operating menu of the measuring device: Expert \rightarrow Communication \rightarrow Modbus data map \rightarrow Scan list register 0 -15 | Scan list | | | |-----------|------------------------|--| | No. | Configuration register | | | 0 | Scan list register 0 | | | | | | | 15 | Scan list register 15 | | 78 Configuring the scan list via Modbus RS485 Carried out using register addresses 5001 - 5016 | Scan list | | | | | |-----------|-----------------------|-----------|------------------------|--| | No. | Modbus RS485 register | Data type | Configuration register | | | 0 | 5001 | Integer | Scan list register 0 | | | | | Integer | | |
 15 | 5016 | Integer | Scan list register 15 | | ### Reading out data via Modbus RS485 The Modbus master accesses the data area of the Modbus data map to read out the current values of the device parameters defined in the scan list. | Master access to data area | Via register addresses 5051-5081 | |----------------------------|----------------------------------| |----------------------------|----------------------------------| | Data area | | | | | |--------------------------------|--------------------------|---------------|------------|--| | Device parameter value | Modbus RS485
register | Data type* | Access** | | | Value of scan list register 0 | 5051 | Integer/float | Read/write | | | Value of scan list register 1 | 5053 | Integer/float | Read/write | | | Value of scan list register | | | | | | Value of scan list register 15 | 5081 | Integer/float | Read/write | | $[\]mbox{\ensuremath{\mbox{*}}}$ Data type depends on the device parameters entered in the scan list. ^{**} Data access depends on the device parameters entered in the scan list. If the device parameter entered supports read and write access, the parameter can also be accessed via the data area. ## 10 Commissioning ### 10.1 Function check Before commissioning the measuring device: - ▶ Make sure that the post-installation and post-connection checks have been performed. - "Post-installation check" checklist → 🖺 37 - "Post-connection check" checklist → 🖺 50 ### 10.2 Switching on the measuring device - ▶ After a successful function check, switch on the measuring device. - After a successful startup, the local display switches automatically from the startup display to the operational display. ### 10.3 Setting the operating language Factory setting: English or ordered local language ■ 28 Taking the example of the local display 10.4 Configuring the measuring device - The Setup menu with its guided wizards contains all the parameters needed for standard operation. - Navigation to the **Setup** menu 29 Taking the example of the local display ### Navigation "Setup" menu ### 10.4.1 Defining the tag name To enable fast identification of the measuring point within the system, you can enter a unique designation using the **Device tag** parameter and thus change the factory setting. \blacksquare 30 Header of the operational display with tag name 1 Tag name Enter the tag name in the "FieldCare" operating tool $\rightarrow \triangle 75$ ### Navigation "Setup" menu \rightarrow Device tag ### Parameter overview with brief description | Parameter | Description | User entry | Factory setting | |------------|---|---|-----------------| | Device tag | Enter the name for the measuring point. | Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /). | Promag | ### 10.4.2 Setting the system units In the **System units** submenu the units of all the measured values can be set. Depending on the device version, not all submenus and parameters are available in every device. The selection can vary depending on the order code. ### Navigation "Setup" menu \rightarrow System units | Parameter | Prerequisite | Description | Selection | Factory setting | |-------------------|--|---|------------------|-------------------------------------| | Volume flow unit | - | Select volume flow unit. Result The selected unit applies for: Output Low flow cut off Simulation process variable | Unit choose list | Country-specific: l/h gal/min (us) | | Volume unit | - | Select volume unit. | Unit choose list | Country-specific: m³ gal (us) | | Conductivity unit | The On option is selected in the Conductivity measurement parameter parameter. | Select conductivity unit. Effect The selected unit applies for: Simulation process variable | Unit choose list | μS/cm | | Temperature unit | - | Select temperature unit. Result The selected unit applies for: Maximum value parameter Minimum value parameter | Unit choose list | Country-specific: | | Mass flow unit | - | Select mass flow unit. Result The selected unit applies for: Output Low flow cut off Simulation process variable | Unit choose list | Country-specific: • kg/h • lb/min | | Mass unit | - | Select mass unit. | Unit choose list | Country-specific: • kg • lb | | Density unit | - | Select density unit. Result The selected unit applies for: Output Simulation process variable | Unit choose list | Country-specific: • kg/l • lb/ft³ | ### 10.4.3 Configuring the communication interface The **Communication** submenu guides you systematically through all the parameters that have to be configured for selecting and setting the communication interface. ### Navigation "Setup" menu \rightarrow Communication | Parameter | Description | User entry / Selection | Factory setting | |--------------------|---|---|-----------------| | Bus address | Enter device address. | 1 to 247 | 247 | | Baudrate | Define data transfer speed. | 1200 BAUD 2400 BAUD 4800 BAUD 9600 BAUD 19200 BAUD 38400 BAUD 57600 BAUD 115200 BAUD | 19200 BAUD | | Data transfer mode | Select data transfer mode. | • ASCII
• RTU | RTU | | Parity | Select parity bits. | Picklist ASCII option: • 0 = Even option • 1 = Odd option Picklist RTU option: • 0 = Even option • 1 = Odd option • 2 = None / 1 stop bit option • 3 = None / 2 stop bits option | Even | | Byte order | Select byte transmission sequence. | ■ 0-1-2-3
■ 3-2-1-0
■ 1-0-3-2
■ 2-3-0-1 | 1-0-3-2 | | Failure mode | Select measured value output behavior when a diagnostic message occurs via Modbus communication. NaN ¹⁾ | NaN value Last valid value | NaN value | #### 1) Not a Number ### 10.4.4 Configuring the local display The **Display** wizard guides you systematically through all the parameters that can configured for configuring the local display. ### Navigation "Setup" menu → Display Endress+Hauser 84 | 100% bargraph value 1 | → 🖺 85 | |-----------------------|--------| | Value 2 display | → 🖺 85 | | Value 3 display | → 🖺 85 | | 0% bargraph value 3 | → 🖺 85 | | 100% bargraph value 3 | → 🖺 85 | | Value 4 display | → 🖺 85 | | Parameter | Prerequisite | Description | Selection / User
entry | Factory setting | |-----------------------|---|---|---|---| | Format display | A local display is provided. | Select how measured values are shown on the display. | 1 value, max. size 1 bargraph + 1 value 2 values 1 value large + 2 values 4 values | 1 value, max. size | | Value 1 display | A local display is provided. | Select the measured value that is shown on the local display. | Volume flow Mass flow Corrected volume flow Flow velocity Conductivity Corrected conductivity Electronic temperature Totalizer 1 Totalizer 2 Totalizer 3 | Volume flow | | 0% bargraph value 1 | A local display is provided. | Enter 0% value for bar graph display. | Signed floating-point
number | Country-specific: Ol/h Ogal/min (us) | | 100% bargraph value 1 | A local display is provided. | Enter 100% value for bar graph display. | Signed floating-point number | Depends on country
and nominal
diameter | | Value 2 display | A local display is provided. | Select the measured value that is shown on the local display. | For the picklist, see
the Value 1 display
parameter | None | | Value 3 display | A local display is provided. | Select the measured value that is shown on the local display. | For the picklist, see the Value 1 display parameter (→ 🖺 85) | None | | 0% bargraph value 3 | A selection was made in the Value 3 display parameter. | Enter 0% value for bar graph display. | Signed floating-point number | Country-specific: • 0 l/h • 0 gal/min (us) | | 100% bargraph value 3 | A selection was made in the Value 3 display parameter. | Enter 100% value for bar graph display. | Signed floating-point number | 0 | | Value 4 display | A local display is provided. | Select the measured value that is shown on the local display. | For the picklist, see the Value 1 display parameter (→ 🖺 85) | None | ### 10.4.5 Configuring the low flow cut off The **Low flow cut off** wizard systematically guides the user through all the parameters that must be set to configure low flow cut off. ### Navigation "Setup" menu \rightarrow Low flow cut off ### Parameter overview with brief description | Parameter | Prerequisite | Description | Selection / User
entry | Factory setting | |----------------------------|--|--|--|---| | Assign process
variable | - | Select process variable for low flow cut off. | Off Volume flow Mass flow | Volume flow | | On value low flow cutoff | One of the following options is selected in the Assign process variable parameter (→ 🖺 86): Volume flow Mass flow | Enter on value for low flow cut off. | Signed floating-point
number | Depends on country
and nominal
diameter | | Off value low flow cutoff | One of the following options is selected in the Assign process variable parameter (→ 🖺 86): Volume flow Mass flow | Enter off value for low flow cut off. | 0 to 100.0 % | 50 % | | Pressure shock suppression | One of the following options is selected in the Assign process variable parameter (→ 🖺 86): Volume flow Mass flow | Enter time frame for signal suppression (= active pressure shock suppression). | 0 to 100 s | 0 s | ### 10.4.6 Configuring empty pipe detection The **Empty pipe detection** wizard guides you systematically through all the parameters that have to be set for configuring empty pipe detection. ### Navigation "Setup" menu \rightarrow Empty pipe detection ### Parameter overview with brief description | Parameter | Prerequisite | Description | Selection / User
interface / User
entry | Factory setting | |------------------------------------|--|---|---|-----------------| | Empty pipe detection | - | Switch empty pipe detection on and off. | Off
On | Off | | New adjustment | The On option is selected in the Empty pipe detection parameter. | Select type of adjustment. | CancelEmpty pipe adjustFull pipe adjust | Cancel | | Progress | The On option is selected in the Empty pipe detection parameter. | Shows the progress. | OkBusyNot ok | - | | Switch point empty pipe detection | The On option is selected in the Empty pipe detection parameter. | Enter hysteresis in %, below this value the measuring tube will detected as empty. | 0 to 100 % | 50 % | | Response time empty pipe detection | In the Empty pipe detection parameter (→ 🖺 87), the On option is selected. | Enter the time before diagnostic message S862 'Pipe empty' is displayed for empty pipe detection. | 0 to 100 s | 1s | ## 10.5 Advanced settings The **Advanced setup** submenu together with its submenus contains parameters for specific settings. Navigation to the "Advanced setup" submenu ### Navigation "Setup" menu \rightarrow Advanced setup | ► Advanced setup | | |------------------------------|--------| | Enter access code | | | ► Sensor adjustment | → 🖺 89 | | ► Totalizer 1 to n | → 🖺 89 | | ► Display | → 🖺 91 | | ► Electrode cleaning circuit | → 🖺 93 | | ► Administration | → 🖺 94 | ### 10.5.1 Carrying out a sensor adjustment The **Sensor adjustment** submenu contains parameters that pertain to the functionality of the sensor. #### **Navigation** "Setup" menu \rightarrow Advanced setup \rightarrow Sensor adjustment ### Parameter overview with brief description | Parameter | Description | Selection | Factory setting | |------------------------|---|--|-------------------------| | Installation direction | Set sign of flow direction to match the direction of the arrow on the sensor. | Flow in arrow directionFlow against arrow direction | Flow in arrow direction | ### 10.5.2 Configuring the totalizer In the "Totalizer 1 to n" submenu the individual totalizer can be configured. ### Navigation "Setup" menu \rightarrow Advanced setup \rightarrow Totalizer 1 to n ### Parameter overview with brief description | Parameter | Prerequisite | Description | Selection | Factory setting | |-------------------------|--|---|--|------------------------------------| | Assign process variable | - | Select process variable for totalizer. | Off Volume flow Mass flow | Volume flow | | Unit totalizer | One of the following options is selected in the Assign process variable parameter (→ 🖺 89) of the Totalizer 1 to n submenu: Volume flow Mass flow | Select process variable totalizer unit. | Unit choose list | Country-specific: • 1 • gal (us) | | Parameter | Prerequisite | Description | Selection | Factory setting | |--------------------------|--|---|--|-----------------| | Totalizer operation mode | One of the following options is selected in the Assign process variable parameter (→ 🖺 89) of the Totalizer 1 to n submenu: Volume flow Mass flow | Select totalizer calculation mode. | Net flow total Forward flow total Reverse flow total | Net flow total | | Failure mode | One of the following options is selected in the Assign process variable parameter (→ 🖺 89) of the Totalizer 1 to n submenu: Volume flow Mass flow | Define totalizer behavior in alarm condition. | StopActual valueLast valid value | Stop | ## 10.5.3 Carrying out additional display configurations In the $\bf Display$ submenu you can set all the parameters associated with the configuration of the local display. ### Navigation "Setup" menu \rightarrow Advanced setup \rightarrow Display | ► Display | | | | |-----------|-----------------------|---|--------| | | Format display | | → 🖺 92 | | | Value 1 display | | → 🗎 92 | | | 0% bargraph value 1 | | → 🗎 92 | | | 100% bargraph value 1 |] | → 🗎 92 | | | Decimal places 1 |] | → 🖺 92 | | | Value 2 display | | → 🖺 92 | | | Decimal places 2 | | → 🖺 92 | | | Value 3 display | | → 🖺 92 | | | 0% bargraph value 3 | | → 🗎 92 | | | 100% bargraph value 3 | | → 🗎 92 | | | Decimal places 3 | | → 🗎 92 | | | Value 4 display | | → 🗎 92 | | | Decimal places 4 | | → 🗎 93 | | | Display language | | → 🗎 93 | | | Display interval | | → 🗎 93 | | | Display damping | | → 🗎 93 | | | Header | | → 🗎 93 | | | Header text | | → 🗎 93 | | | Separator | | → 🗎 93 | | | Backlight | | → 🖺 93 | | | |] | | | Parameter | Prerequisite | Description | Selection / User
entry | Factory setting | |-----------------------|--|---|---|---| | Format display | A local display is provided. | Select how measured values are shown on the display. | 1 value, max. size 1 bargraph + 1 value 2 values 1 value large + 2 values 4 values | 1 value, max. size | | Value 1 display | A local display is provided. | Select the measured value that is shown on the local display. | Volume flow Mass flow Corrected volume flow Flow velocity Conductivity Corrected conductivity Electronic temperature Totalizer 1 Totalizer 2 Totalizer 3 | Volume flow | | 0% bargraph value 1 | A local display is provided. | Enter 0% value for bar graph display. | Signed floating-point number | Country-specific: 0 l/h 0 gal/min (us) | | 100% bargraph value 1 | A local display is provided. | Enter 100% value for bar graph display. | Signed floating-point number | Depends on country
and nominal
diameter | | Decimal places 1 | A measured value is specified in the Value 1 display parameter. | Select the number of decimal places for the display value. | • X
• X.X
• X.XX
• X.XXX | x.xx | | Value 2 display | A local display is provided. | Select the measured value that is shown on the local display. | For the picklist, see the Value 1 display parameter | None | | Decimal places 2 | A measured value is specified in the Value 2 display parameter. | Select the number of decimal places for the display value. | X X.X X.XX X.XXX X.XXXX | x.xx | | Value 3 display | A local display is provided. | Select the measured value that is shown on the local display. | For the picklist, see the Value 1 display parameter (→ 🖺 85) | None | | 0% bargraph value 3 | A selection was made in the Value 3 display parameter. | Enter 0% value for bar graph display. | Signed floating-point number | Country-specific: 0 l/h 0 gal/min (us) | | 100% bargraph value 3 | A selection was made in the Value 3 display parameter. | Enter 100% value for bar graph display. | Signed floating-point number | 0 | | Decimal places 3 | A measured value is specified in the Value 3 display parameter. | Select the number of decimal places for the display value. | • x
• x.x
• x.xx
• x.xxx
• x.xxx | x.xx | | Value 4 display | A local display is provided. | Select the measured value that is shown on the local display. | For the picklist, see the Value 1
display parameter (→ 🖺 85) | None | | Parameter | Prerequisite | Description | Selection / User
entry | Factory setting | |------------------|--|---|--|---| | Decimal places 4 | A measured value is specified in the Value 4 display parameter. | Select the number of decimal places for the display value. | X X.X X.XX X.XXX X.XXX | x.xx | | Display language | A local display is provided. | Set display language. | English Deutsch* Français* Español* Italiano* Nederlands* Portuguesa* Polski* pyсский язык (Russian)* Svenska* Türkçe* 中文 (Chinese)* 日本語 (Japanese)* 한국어 (Korean)* 한국어 (Korean)* 한국어 (Korean)* 한국에 (Arabic)* Bahasa Indonesia* ลาษาไทย (Thai)* tiếng Việt (Vietnamese)* čeština (Czech)* | English (alternatively, the ordered language is preset in the device) | | Display interval | A local display is provided. | Set time measured values are shown on display if display alternates between values. | 1 to 10 s | 5 s | | Display damping | A local display is provided. | Set display reaction time to fluctuations in the measured value. | 0.0 to 999.9 s | 0.0 s | | Header | A local display is provided. | Select header contents on local display. | Device tagFree text | Device tag | | Header text | In the Header parameter, the Free text option is selected. | Enter display header text. | Max. 12 characters such as letters, numbers or special characters (e.g. @, %, /) | | | Separator | A local display is provided. | Select decimal separator for displaying numerical values. | • . (point) • , (comma) | . (point) | | Backlight | A local display is provided. | Switch the local display backlight on and off. | DisableEnable | Enable | $^{^{\}star}$ Visibility depends on order options or device settings ### 10.5.4 Performing electrode cleaning The **Electrode cleaning circuit** wizard guides the user systematically through all the parameters that have to be set for configuring electrode cleaning. The wizard only appears if the device was ordered with an electrode cleaning circuit. ### Navigation "Setup" menu \rightarrow Advanced setup \rightarrow Electrode cleaning circuit | ► Electrode cleaning circuit | | |------------------------------|--------| | Electrode cleaning circuit | → 🖺 94 | | ECC duration | → 🖺 94 | | ECC recovery time | → 🖺 94 | | ECC cleaning cycle | → 🖺 94 | | ECC Polarity | → 🖺 94 | ### Parameter overview with brief description | Parameter | Prerequisite | Description | Selection / User
entry / User
interface | Factory setting | |----------------------------|---|---|---|---| | Electrode cleaning circuit | For the following order code: "Application package", option EC "ECC electrode cleaning" | Enable the cyclic electrode cleaning circuit. | • Off
• On | Off | | ECC duration | For the following order code: "Application package", option EC "ECC electrode cleaning" | Enter the duration of electrode cleaning in seconds. | 0.01 to 30 s | 2 s | | ECC recovery time | For the following order code: "Application package", option EC "ECC electrode cleaning" | Define recovery time after electrode cleaning. During this time the current output values will be held at last valid value. | Positive floating-
point number | 5 s | | ECC cleaning cycle | For the following order code: "Application package", option EC "ECC electrode cleaning" | Enter the pause duration between electrode cleaning cycles. | 0.5 to 168 h | 0.66 h | | ECC Polarity | For the following order code: "Application package", option EC "ECC electrode cleaning" | Select the polarity of the electrode cleaning circuit. | PositiveNegative | Depends on the electrode material: Platinum: Negative option Tantalum, Alloy C22, stainless steel: Positive option | ## 10.5.5 Using parameters for device administration The **Administration** submenu systematically guides the user through all the parameters that can be used for device administration purposes. ### **Navigation** "Setup" menu → Advanced setup → Administration ### Parameter overview with brief description | Parameter | Description | User entry / Selection | Factory setting | |---------------------|---|--|-----------------| | Define access code | Restrict write-access to parameters to protect the configuration of the device against unintentional changes via the local display. | 0 to 9 999 | 0 | | Confirm access code | Confirm the entered access code. | 0 to 9999 | 0 | | Device reset | Reset the device configuration - either entirely or in part - to a defined state. | CancelTo delivery settingsRestart device | Cancel | #### Simulation 10.6 The **Simulation** submenu enables you to simulate, without a real flow situation, various process variables in the process and the device alarm mode and to verify downstream signal chains (switching valves or closed-control loops). The parameters displayed depend on: - The selected device order - The set operating mode of the pulse/frequency/switch outputs ### Navigation "Diagnostics" menu → Simulation | Parameter | Prerequisite | Description | Selection / User
entry | Factory setting | |------------------------------------|---|---|---|-----------------| | Assign simulation process variable | - | Select a process variable for the simulation process that is activated. | Off Volume flow Mass flow Conductivity* | Off | | Value process variable | One of the following options is selected in the Assign simulation process variable parameter (→ 🗎 96): • Volume flow • Mass flow • Corrected volume flow • Flow velocity • Conductivity* • Corrected conductivity* • Temperature | Enter the simulation value for the selected process variable. | Depends on the process variable selected | 0 | | Simulation device alarm | - | Switch the device alarm on and off. | Off On | Off | | Diagnostic event category | - | Select a diagnostic event category. | SensorElectronicsConfigurationProcess | Process | | Simulation diagnostic event | - | Select a diagnostic event for the simulation process that is activated. | Off Diagnostic event
picklist (depends
on the category
selected) | Off | Visibility depends on order options or device settings ### 10.7 Protecting settings from unauthorized access The following options exist for protecting the configuration of the measuring device from unintentional modification after commissioning: - Write protection via access code for the local display and Web browser - Write protection via write protection switch - Write protection via keypad lock ### 10.7.1 Write protection via access code The effects of the user-specific access code are as follows: - Via local operation, the parameters for the measuring device configuration are writeprotected and their values can no longer be changed. - Device access is protected via the Web browser, as are the parameters for the measuring device configuration. ### Defining the access code via local display - 1. Navigate to the **Define access code** parameter. - 2. Define a max. 16-digit character string comprising numbers, letters and special characters as the access code. - 3. Enter the access code again in the to confirm the code. - ► The 🗈-symbol appears in front of all write-protected parameters. The device automatically locks the write-protected parameters again if a key is not pressed for 10 minutes in the navigation and editing view. The device locks the write-protected parameters automatically after 60 s if the user skips back to the operational display mode from the navigation and editing view. - If parameter write protection is activated via an access code, it can also only be deactivated via this access code → 64. - The user role with which the user is currently logged on via the local display is indicated by the → 64 Access status display parameter. Navigation path: Operation → Access status display ### Parameters which can always be modified via the local display Certain parameters that do not affect the measurement are excepted from parameter write protection via the local display. Despite the user-specific access code, they can always be modified, even if the other parameters are locked. #### Defining the access code via the Web browser - 1. Navigate to the **Define access code** parameter. - 2. Define a max.
16-digit numeric code as an access code. - 3. Enter the access code again in the to confirm the code. - ► The Web browser switches to the login page. - If no action is performed for 10 minutes, the Web browser automatically returns to the login page. - If parameter write protection is activated via an access code, it can also only be deactivated via this access code → 64. - The user role with which the user is currently logged on via Web browser is indicated by the **Access status tooling** parameter. Navigation path: Operation → Access status tooling ### 10.7.2 Write protection via write protection switch Unlike parameter write protection via a user-specific access code, this allows write access to the entire operating menu - except for the **"Contrast display" parameter** - to be locked. The parameter values are now read only and cannot be edited any more (exception "Contrast display" parameter): - Via local display - Via MODBUS RS485 protocol - 1. Loosen the 4 fixing screws on the housing cover and open the housing cover. - 2. Setting the write protection switch (WP) on the main electronics module to the **ON** position enables the hardware write protection. Setting the write protection switch (WP) on the main electronics module to the **OFF** position (factory setting) disables the hardware write protection. - If the hardware write protection is enabled: The Hardware locked option is displayed in the Locking status parameter. In addition, on the local display the ⑤ -symbol appears in front of the parameters in the header of the operational display and in the navigation view. If the hardware write protection is disabled: No option is displayed in the **Locking status** parameter. On the local display, the a-symbol disappears from in front of the parameters in the header of the operational display and in the navigation view. ### 3. **WARNING** **Excessive tightening torque applied to the fixing screws!** Risk of damaging the plastic transmitter. ▶ Tighten the fixing screws as per the tightening torque . Reverse the removal procedure to reassemble the transmitter. #### 11 **Operation** #### 11.1 Reading the device locking status Device active write protection: Locking status parameter Operation → Locking status Function scope of the "Locking status" parameter | Options | Description | |--------------------|---| | None | The access status displayed in the Access status display parameter applies → 🖺 64. Only appears on local display. | | Hardware locked | The DIP switch for hardware locking is activated on the main electronics module. This locks write access to the parameters (e.g. via local display or operating tool) . | | Temporarily locked | Write access to the parameters is temporarily locked on account of internal processes running in the device (e.g. data upload/download, reset etc.). Once the internal processing has been completed, the parameters can be changed once again. | #### Adjusting the operating language 11.2 Petailed information: - To configure the operating language → 🖺 80 - For information on the operating languages supported by the measuring device → 🖺 149 #### 11.3 Configuring the display Detailed information: - On the basic settings for the local display $\rightarrow \triangleq 84$ #### 11.4 Reading measured values With the **Measured values** submenu, it is possible to read all the measured values. #### **Navigation** "Diagnostics" menu → Measured values → Output values #### 11.4.1 **Process variables** The Process variables submenu contains all the parameters needed to display the current measured values for each process variable. ### Navigation "Diagnostics" menu \rightarrow Measured values \rightarrow Process variables ### Parameter overview with brief description | Parameter | Prerequisite | Description | User interface | |--------------|---|--|------------------------------| | Volume flow | - | Displays the volume flow currently measured. | Signed floating-point number | | | | Dependency The unit is taken from the Volume flow unit parameter ($\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$ | | | Mass flow | - | Displays the mass flow currently calculated. | Signed floating-point number | | | | Dependency The unit is taken from the Mass flow unit parameter ($\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$ | | | Conductivity | The On option is selected in the Conductivity measurement | Displays the conductivity currently measured. | Signed floating-point number | | | parameter. | Dependency The unit is taken from the Conductivity unit parameter (→ 🖺 83). | | ### 11.4.2 "Totalizer" submenu The **Totalizer** submenu contains all the parameters needed to display the current measured values for every totalizer. ### Navigation "Diagnostics" menu \rightarrow Measured values \rightarrow Totalizer 100 | Parameter | Prerequisite | Description | User interface | |---------------------------|---|---|---------------------------------| | Totalizer value 1 to n | One of the following options is selected in the Assign process variable parameter (→ 🖺 89) of the Totalizer 1 to n submenu: Volume flow Mass flow | Displays the current totalizer counter value. | Signed floating-point
number | | Totalizer overflow 1 to n | One of the following options is selected in the Assign process variable parameter (→ 🖺 89) of the Totalizer 1 to n submenu: Volume flow Mass flow | Displays the current totalizer overflow. | Integer with sign | # 11.5 Adapting the measuring device to the process conditions The following are available for this purpose: - Basic settings using the **Setup** menu (\rightarrow **B** 80) - Advanced settings using the Advanced setup submenu (→ 🖺 88) ### 11.6 Performing a totalizer reset The totalizers are reset in the **Operation** submenu: - Control Totalizer - Reset all totalizers ### **Navigation** "Operation" menu → Totalizer handling | Parameter | Prerequisite | Description | Selection / User
entry | Factory setting | |--------------------------|---|--|--|-----------------| | Control Totalizer 1 to n | One of the following options is selected in the Assign process variable parameter (→ 🖺 89) of the Totalizer 1 to n submenu: Volume flow Mass flow | Control totalizer value. | Totalize Reset + hold Preset + hold Reset + totalize Preset + totalize | Totalize | | Preset value 1 to n | One of the following options is selected in the Assign process variable parameter (→ 🖺 89) of the Totalizer 1 to n submenu: Volume flow Mass flow | Specify start value for totalizer. Dependency The unit of the selected process variable is specified for the totalizer in the Unit totalizer parameter (→ ■ 89). | Signed floating-point
number | 01 | | Reset all totalizers | _ | Reset all totalizers to 0 and start. | CancelReset + totalize | Cancel | ### 11.6.1 Function scope of the "Control Totalizer" parameter | Options | Description | |-------------------|---| | Totalize | The totalizer is started or continues running. | | Reset + hold | The totaling process is stopped and the totalizer is reset to 0. | | Preset + hold | The totaling process is stopped and the totalizer is set to its defined start value from the Preset value parameter. | | Reset + totalize | The totalizer is reset to 0 and the totaling process is restarted. | | Preset + totalize | The totalizer is set to the defined start value from the Preset value parameter and the totaling process is restarted. | ### 11.6.2 Function scope of the "Reset all totalizers" parameter | Options | Description | |------------------|--| | Cancel | No action is executed and the user exits the parameter. | | Reset + totalize | Resets all totalizers to 0 and restarts the totaling process. This deletes all the flow values previously totalized. | ## 11.7 Showing data logging The **Extended HistoROM** application package must be enabled in the device (order option) for the **Data logging** submenu to appear. This contains all the parameters for the measured value history. Data logging is also available via: - Plant Asset Management Tool FieldCare → 🖺 74. - Web browser ### **Function range** - A total of 1000 measured values can be stored - 4 logging channels - Adjustable logging interval for data logging - Display of the measured value trend for each logging channel in the form of a chart A0034352 - x-axis: depending on the number of channels selected displays 250 to 1000 measured values of a process variable. - y-axis: displays the approximate measured value span and constantly
adapts this to the ongoing measurement. - If the length of the logging interval or the assignment of the process variables to the channels is changed, the content of the data logging is deleted. #### **Navigation** "Diagnostics" menu \rightarrow Data logging | Parameter | Prerequisite | Description | Selection / User
entry | Factory setting | |--------------------|--|--|--|-----------------| | Assign channel 1 | The Extended HistoROM application package is available. The software options currently enabled are displayed in the Software option overview parameter. | | Off Volume flow Mass flow Flow velocity Conductivity* Electronic temperature | Off | | Assign channel 2 | The Extended HistoROM application package is available. The software options currently enabled are displayed in the Software option overview parameter. | Assign process variable to logging channel. | Picklist, see Assign channel 1 parameter (→ 🖺 104) | Off | | Assign channel 3 | The Extended HistoROM application package is available. The software options currently enabled are displayed in the Software option overview parameter. | Assign process variable to logging channel. | Picklist, see Assign channel 1 parameter (→ 🖺 104) | Off | | Assign channel 4 | The Extended HistoROM application package is available. The software options currently enabled are displayed in the Software option overview parameter. | Assign process variable to logging channel. | Picklist, see Assign channel 1 parameter (→ 🖺 104) | Off | | Logging interval | The Extended HistoROM application package is available. | Define the logging interval for data logging. This value defines the time interval between the individual data points in the memory. | 1.0 to 3 600.0 s | 10.0 s | | Clear logging data | The Extended HistoROM application package is available. | Clear the entire logging data. | CancelClear data | Cancel | ^{*} Visibility depends on order options or device settings ## 12 Diagnostics and troubleshooting ## 12.1 General troubleshooting For local display | Error | Possible causes | Solution | |---|---|--| | Local display dark and no output signals | Supply voltage does not match the value indicated on the nameplate. | Apply the correct supply voltage → 🖺 46→ 🖺 46. | | Local display dark and no output signals | No contact between connecting cables and terminals. | Check the connection of the cables and correct if necessary. | | Local display dark and no output signals | Terminals are not plugged into the main electronics module correctly. | Check terminals. | | Local display dark and no output signals | Main electronics module is defective. | Order spare part → 🖺 123. | | Local display dark and no output signals | The connector between the main electronics module and display module is not plugged in correctly. | Check the connection and correct if necessary. | | Local display dark and no output signals | The connecting cable is not plugged in correctly. | Check the connection of the electrode cable and correct if necessary. Check the connection of the coil current cable and correct if necessary. | | Local display is dark, but signal output is within the valid range | Display is set too bright or too dark. | Set the display brighter by simultaneously pressing ± + E. Set the display darker by simultaneously pressing □ + E. | | Local display is dark, but signal output is within the valid range | Display module is defective. | Order spare part → 🖺 123. | | Backlighting of local display is red | Diagnostic event with "Alarm" diagnostic behavior has occurred. | Take remedial measures | | Text on local display appears in a foreign language and cannot be understood. | Incorrect operating language is configured. | 1. Press □ + ± for 2 s ("home position"). 2. Press □. 3. Set the desired language in the Display language parameter (→ ■ 93). | | Message on local display:
"Communication Error"
"Check Electronics" | Communication between the display module and the electronics is interrupted. | Check the cable and the connector between the main electronics module and display module. Order spare part → 123. | ### For output signals | Error | Possible causes | Solution | |---|--|--| | Signal output outside the valid range | Main electronics module is defective. | Order spare part $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | | Device shows correct value on local display, but signal output is incorrect, though in the valid range. | Configuration error | Check and correct the parameter configuration. | | Device measures incorrectly. | Configuration error or device is operated outside the application. | Check and correct parameter configuration. Observe limit values specified in the "Technical Data". | ### For access | Error | Possible causes | Solution | |--|---|--| | No write access to parameters | Hardware write protection enabled | Set the write protection switch on main electronics module to the OFF position → 🗎 97. | | No write access to parameters | Current user role has limited access authorization | 1. Check user role → 🖺 64.
2. Enter correct customer-specific access code → 🗎 64. | | No connection via Modbus RS485 | Modbus RS485 bus cable connected incorrectly | Check terminal assignment . | | No connection via Modbus RS485 | Modbus RS485 cable incorrectly terminated | Check terminating resistor → 🖺 49. | | No connection via Modbus RS485 | Incorrect settings for the communication interface | Check the Modbus RS485 configuration → 🖺 83. | | Not connecting to Web server | Web server disabled | Using the "FieldCare" or "DeviceCare" operating tool, check whether the Web server of the measuring device is enabled, and enable it if necessary → 🖺 71. | | | Incorrect setting for the Ethernet interface of the computer | 1. Check the properties of the Internet protocol (TCP/IP) → 🗎 67. 2. Check the network settings with the IT manager. | | Not connecting to Web server | Incorrect IP address | Check the IP address:
192.168.1.212 → 🖺 67 | | Web browser frozen and operation no longer possible | Data transfer active | Wait until data transfer or current action is finished. | | | Connection lost | Check cable connection and power supply. Refresh the Web browser and restart if necessary. | | Content of Web browser incomplete or difficult to read | Not using optimum version of Web server. | Use the correct Web browser version . Clear the Web browser cache and restart the Web browser. | | | Unsuitable view settings. | Change the font size/display ratio of the Web browser. | | No or incomplete display of contents in the Web browser | JavaScript not enabled JavaScript cannot be enabled | 1. Enable JavaScript. 2. Enter http://192.168.1.212/basic.html as the IP address. | | Operation with FieldCare or
DeviceCare via CDI-RJ45 service
interface (port 8000) | Firewall of computer or network is preventing communication | Depending on the settings of the firewall used on the computer or in the network, the firewall must be adapted or disabled to allow FieldCare/DeviceCare access. | | Flashing of firmware with FieldCare or DeviceCare via CDI-RJ45 service interface (via port 8000 or TFTP ports) | Firewall of computer or network is preventing communication | Depending on the settings of the firewall used on the computer or in the network, the firewall must be adapted or disabled to allow FieldCare/DeviceCare access. | ## 12.2 Diagnostic information via light emitting diodes ### 12.2.1 Transmitter Different LEDs in the transmitter provide information on the device status. 106 | LED | Color | Meaning | | |----------------|--------------------|--|--| | Supply voltage | Off | Supply voltage is off or too low | | | | Green | Supply voltage is ok | | | Alarm | Off | Device status is ok | | | | Flashing red | A device error of diagnostic behavior "Warning" has occurred | | | | Red | A device error of diagnostic behavior "Alarm" has occurred Boot loader is active | | | Communication | Flashing white | Modbus RS485 communication is active | | | Alarm | Green | Measuring device is ok | | | | Flashing green | Measuring device not configured | | | | Off | Firmware error | | | | Red | Main error | | | | Flashing red | Error | | | | Flashing red/green | Start measuring device | | ### 12.3 Diagnostic information on local display ### 12.3.1 Diagnostic message Faults detected by the self-monitoring system of the measuring device are displayed as a diagnostic message in alternation with
the operational display. If two or more diagnostic events are pending simultaneously, only the message of the diagnostic event with the highest priority is shown. - Other diagnostic events that have occurred can be displayed in the **Diagnostics** menu: - Via parameter - Via submenus \rightarrow 🗎 117 ### Status signals The status signals provide information on the state and reliability of the device by categorizing the cause of the diagnostic information (diagnostic event). The status signals are categorized according to VDI/VDE 2650 and NAMUR Recommendation NE 107: F = Failure, C = Function Check, S = Out of Specification, M = Maintenance Required | Symbol | Meaning | |--------|--| | F | Failure A device error has occurred. The measured value is no longer valid. | | С | Function check The device is in service mode (e.g. during a simulation). | | S | Out of specification The device is operated: Outside its technical specification limits (e.g. outside the process temperature range) | | М | Maintenance required Maintenance is required. The measured value remains valid. | ## Diagnostic behavior | Symbol | Meaning | |--------|---| | 8 | Alarm Measurement is interrupted. Signal outputs and totalizers assume the defined alarm condition. A diagnostic message is generated. The background lighting changes to red. | | Δ | Warning Measurement is resumed. The signal outputs and totalizers are not affected. A diagnostic message is generated. | ## Diagnostic information The fault can be identified using the diagnostic information. The short text helps you by providing information about the fault. In addition, the corresponding symbol for the diagnostic behavior is displayed in front of the diagnostic information on the local display. ## Operating elements | Key | Meaning | | |-----|--|--| | | Plus key | | | (+) | In a menu, submenu Opens the message about remedy information. | | | | Enter key | | | E | In a menu, submenu Opens the operating menu. | | ## 12.3.2 Calling up remedial measures A0029431-EN - 31 Message about remedial measures - 1 Diagnostic information - 2 Short text - 3 Service ID - 4 Diagnostic behavior with diagnostic code - 5 Operation time of occurrence - 6 Remedial measures - 1. The user is in the diagnostic message. Press ± (① symbol). - ► The **Diagnostic list** submenu opens. - 2. Select the desired diagnostic event with \pm or \Box and press \Box . - The message about the remedial measures opens. - 3. Press \Box + \pm simultaneously. - ► The message about the remedial measures closes. The user is in the **Diagnostics** menu at an entry for a diagnostics event, e.g. in the **Diagnostic list** submenu or **Previous diagnostics** parameter. - 1. Press E. - └ The message for the remedial measures for the selected diagnostic event opens. - 2. Press \Box + \pm simultaneously. - ► The message for the remedial measures closes. # 12.4 Diagnostic information in the Web browser ### 12.4.1 Diagnostic options Any faults detected by the measuring device are displayed in the Web browser on the home page once the user has logged on. A0032880 - 1 Status area with status signal - In addition, diagnostic events which have occurred can be shown in the **Diagnostics** menu: - Via parameter - Via submenu → 🖺 117 #### Status signals The status signals provide information on the state and reliability of the device by categorizing the cause of the diagnostic information (diagnostic event). | Symbol | Meaning | |--------------|--| | 8 | Failure A device error has occurred. The measured value is no longer valid. | | 7 | Function check The device is in service mode (e.g. during a simulation). | | <u>^</u> ? | Out of specification The device is operated: Outside its technical specification limits (e.g. outside the process temperature range) | | & | Maintenance required Maintenance is required. The measured value is still valid. | The status signals are categorized in accordance with VDI/VDE 2650 and NAMUR Recommendation NE 107. ## 12.4.2 Calling up remedy information Remedy information is provided for every diagnostic event to ensure that problems can be rectified quickly. These measures are displayed in red along with the diagnostic event and the related diagnostic information. # 12.5 Diagnostic information in DeviceCare or FieldCare ### 12.5.1 Diagnostic options Any faults detected by the measuring device are displayed on the home page of the operating tool once the connection has been established. - 1 Status area with status signal→ 🖺 108 - 2 Diagnostic information → 🖺 109 - 3 Remedy information with Service ID - In addition, diagnostic events which have occurred can be shown in the **Diagnostics** menu: - Via parameter - Via submenu → 🖺 117 #### Diagnostic information The fault can be identified using the diagnostic information. The short text helps you by providing information about the fault. In addition, the corresponding symbol for the diagnostic behavior is displayed in front of the diagnostic information on the local display. # 12.5.2 Calling up remedy information Remedy information is provided for every diagnostic event to ensure that problems can be rectified quickly: - On the home page Remedy information is displayed in a separate field below the diagnostics information. - In the **Diagnostics** menu Remedy information can be called up in the working area of the user interface. The user is in the **Diagnostics** menu. - 1. Call up the desired parameter. - 2. On the right in the working area, mouse over the parameter. - ► A tool tip with remedy information for the diagnostic event appears. # 12.6 Diagnostic information via communication interface ## 12.6.1 Reading out diagnostic information Diagnostic information can be read out via Modbus RS485 register addresses. - Via register address **6821** (data type = string): diagnosis code, e.g. F270 - Via register address **6859** (data type = integer): diagnosis number, e.g. 270 - For an overview of diagnostic events with diagnosis number and diagnosis code $\rightarrow \stackrel{ riangle}{=} 114$ ## 12.6.2 Configuring error response mode The error response mode for Modbus RS485 communication can be configured in the **Communication** submenu using 2 parameters. #### Navigation path Setup → Communication Parameter overview with brief description | Parameters | Description | Selection | Factory setting | |--------------|---|---|-----------------| | Failure mode | Select measured value output behavior when a diagnostic message occurs via Modbus communication. This effect of this parameter depends on the option selected in the Assign diagnostic behavior parameter. | NaN value Last valid value NaN = not a number | NaN value | # 12.7 Adapting the diagnostic information # 12.7.1 Adapting the diagnostic behavior Each item of diagnostic information is assigned a specific diagnostic behavior at the factory. The user can change this assignment for specific diagnostic information in the **Diagnostic behavior** submenu. Expert \rightarrow System \rightarrow Diagnostic handling \rightarrow Diagnostic behavior You can assign the following options to the diagnostic number as the diagnostic behavior: | Options | Description | |---------|--| | Alarm | The device stops measurement. The measured value output via Modbus RS485 and the totalizers assume the defined alarm condition. A diagnostic message is generated. The background lighting changes to red. | | Warning | The device continues to measure. The measured value output via Modbus RS485 and the totalizers are not affected. A diagnostic message is generated. | | Options | Description | |--------------------|--| | Logbook entry only | The device continues to measure. The diagnostic message is displayed only in the Event logbook submenu (Event list submenu) and is not displayed in alternation with the operational display. | | Off | The diagnostic event is ignored, and no diagnostic message is generated or entered. | # 12.8 Overview of diagnostic information - The amount of diagnostic information and the number of measured variables affected increase if the measuring device has one or more application packages. | Diagnostic
number | Short text | Remedy instructions | Status
signal
[from the
factory] | Diagnostic
behavior
[from the
factory] | | | |----------------------|---------------------------|--|---|---|--|--| | Diagnostic of s | Diagnostic of sensor | | | | | | | 004 | Sensor | Change sensor Contact service | S | Alarm | | | | 022 | Sensor temperature | Change main electronic module Change sensor | F | Alarm | | | |
043 | Sensor short circuit | Check sensor and cable Change sensor or cable | S | Warning | | | | 062 | Sensor connection | Check sensor connections Contact service | F | Alarm | | | | 082 | Data storage | Check module connections Contact service | F | Alarm | | | | 083 | Memory content | Restart device Contact service | F | Alarm | | | | 190 | Special event 1 | Contact service | F | Alarm | | | | Diagnostic of e | lectronic | | 1 | • | | | | 201 | Device failure | Restart device Contact service | F | Alarm | | | | 222 | Electronic drift | Change main electronic module | F | Alarm | | | | 242 | Software incompatible | Check software Flash or change main electronics module | F | Alarm | | | | 252 | Modules incompatible | Check electronic modules Change electronic modules | F | Alarm | | | | 262 | Module connection | Check module connections Change main electronics | F | Alarm | | | | 270 | Main electronic failure | Change main electronic module | F | Alarm | | | | 271 | Main electronic failure | Restart device Change main electronic module | F | Alarm | | | | 272 | Main electronic failure | Restart device Contact service | F | Alarm | | | | 273 | Main electronic failure | Change electronic | F | Alarm | | | | 281 | Electronic initialization | Firmware update active, please wait! | F | Alarm | | | | 283 | Memory content | Reset device Contact service | F | Alarm | | | | Diagnostic
number | Short text | Remedy instructions | Status
signal
[from the
factory] | Diagnostic
behavior
[from the
factory] | |----------------------|---------------------------------------|---|---|---| | 302 | Device verification active | Device verification active, please wait. | С | Warning | | 311 | Electronic failure | Reset device Contact service | F | Alarm | | 311 | Electronic failure | Do not reset device Contact service | М | Warning | | 322 | Electronic drift | Perform verification manually Change electronic | S | Warning | | 382 | Data storage | Insert DAT module Change DAT module | F | Alarm | | 383 | Memory content | Restart device Check or change DAT module 3. Contact service | F | Alarm | | 390 | Special event 2 | Contact service | F | Alarm | | Diagnostic of c | onfiguration | | | | | 410 | Data transfer | Check connection Retry data transfer | F | Alarm | | 411 | Up-/download active | Up-/download active, please wait | С | Warning | | 437 | Configuration incompatible | Restart device Contact service | F | Alarm | | 438 | Dataset | Check data set file Check device configuration Up- and download new configuration | М | Warning | | 453 | Flow override | Deactivate flow override | С | Warning | | 484 | Simulation failure mode | Deactivate simulation | С | Alarm | | 485 | Simulation measured variable | Deactivate simulation | С | Warning | | 495 | Simulation diagnostic event | Deactivate simulation | С | Warning | | 500 | Electrode 1 potential exceeded | Check process cond. Increase system pressure | F | Alarm | | 500 | Electrode difference voltage too high | | F | Alarm | | 530 | Electrode cleaning is running | Check process cond. Increase system pressure | С | Warning | | 531 | Empty pipe detection | Execute EPD adjustment | S | Warning | | 537 | Configuration | Check IP addresses in network Change IP address | F | Warning | | 590 | Special event 3 | Contact service | F | Alarm | | Diagnostic of p | process | | | | | 832 | Electronic temperature too high | Reduce ambient temperature | S | Warning 1) | | 833 | Electronic temperature too low | Increase ambient temperature | S | Warning 1) | | 834 | Process temperature too high | Reduce process temperature | S | Warning 1) | | 835 | Process temperature too low | Increase process temperature | S | Warning 1) | | Diagnostic
number | Short text | Remedy instructions | Status
signal
[from the
factory] | Diagnostic
behavior
[from the
factory] | |----------------------|------------------|--|---|---| | 842 | Process limit | Low flow cut off active! 1. Check low flow cut off configuration | S | Warning | | 862 | Empty pipe | Check for gas in process Adjust empty pipe detection | S | Warning | | 882 | Input signal | Check input configuration Check external device or process conditions | F | Alarm | | 937 | EMC interference | Change main electronic module | S | Warning 1) | | 938 | EMC interference | Check ambient conditions regarding EMC influence Change main electronic module | F | Alarm | | 990 | Special event 4 | Contact service | F | Alarm | 1) Diagnostic behavior can be changed. # 12.9 Pending diagnostic events The **Diagnostics** menu allows the user to view the current diagnostic event and the previous diagnostic event separately. - To call up the measures to rectify a diagnostic event: - Via local display → 110 - Via Web browser \rightarrow 🗎 111 - Via "FieldCare" operating tool → 🖺 112 - Via "DeviceCare" operating tool \rightarrow 🖺 112 - Other pending diagnostic events can be displayed in the **Diagnostic list** submenu $\rightarrow \stackrel{\square}{=} 117$ ## Navigation "Diagnostics" menu ### Parameter overview with brief description | Parameter | Prerequisite | Description | User interface | |-----------------------------|--|---|--| | Actual diagnostics | A diagnostic event has occurred. | Shows the current occured diagnostic event along with its diagnostic information. | Symbol for diagnostic
behavior, diagnostic code
and short message. | | | | If two or more messages occur simultaneously, the message with the highest priority is shown on the display. | | | Previous diagnostics | Two diagnostic events have already occurred. | Shows the diagnostic event that occurred prior to the current diagnostic event along with its diagnostic information. | Symbol for diagnostic
behavior, diagnostic code
and short message. | | Operating time from restart | - | Shows the time the device has been in operation since the last device restart. | Days (d), hours (h),
minutes (m) and seconds
(s) | | Operating time | - | Indicates how long the device has been in operation. | Days (d), hours (h),
minutes (m) and seconds
(s) | # 12.10 Diagnostic list Up to 5 currently pending diagnostic events can be displayed in the **Diagnostic list** submenu along with the associated diagnostic information. If more than 5 diagnostic events are pending, the events with the highest priority are shown on the display. #### Navigation path Diagnostics → Diagnostic list A0014006-EN ■ 32 Taking the example of the local display To call up the measures to rectify a diagnostic event: - Via local display \rightarrow 🗎 110 - Via Web browser \rightarrow 🗎 111 - Via "FieldCare" operating tool → 🗎 112 - Via "DeviceCare" operating tool → 🗎 112 # 12.11 Event logbook ## 12.11.1 Reading out the event logbook A chronological overview of the event messages that have occurred is provided in the Events list submenu. ## Navigation path **Diagnostics** menu → **Event logbook** submenu → Event list ■ 33 Taking the example of the local display - A maximum of 20 event messages can be displayed in chronological order. - If the **Extended HistoROM** application package (order option) is enabled in the device, the event list can contain up to 100 entries . The event history includes entries for: - Diagnostic events → 🖺 114 - Information events → 🖺 118 In addition to the operation time of its occurrence, each event is also assigned a symbol that indicates whether the event has occurred or is ended: - Diagnostic event - →: Occurrence of the event - →: End of the event - Information event - €: Occurrence of the event - To call up the measures to rectify a diagnostic event: - Via local display → 110 - Via Web browser → 🖺 111 - Via "FieldCare" operating tool → 🖺 112 - Via "DeviceCare" operating tool → 🗎 112 ## 12.11.2 Filtering the event logbook Using the **Filter options** parameter you can define which category of event message is displayed in the **Events list** submenu. #### Navigation path Diagnostics \rightarrow Event logbook \rightarrow Filter options #### Filter categories - All - Failure (F) - Function check (C) - Out of specification (S) - Maintenance required (M) - Information (I) #### 12.11.3 Overview of information events Unlike a diagnostic event, an information event is displayed in the event logbook only and not in the diagnostic list. | Info number | Info name | |-------------|-----------------------| | I1000 | (Device ok) | | I1089 | Power on | | I1090 | Configuration reset | | I1091 | Configuration changed | | I1092 | Trend data deleted | | Info number | Info name | |-------------|--| | I1110 | Write protection switch changed | | I1137 | Electronic changed | | I1151 | History reset | | I1155 | Reset electronic temperature | | I1156 | Memory error trend | | I1157 | Memory error event list | | I1185 | Display backup done | | I1186 | Restore via display done | | I1187 | Settings downloaded with display | | I1188 | Display data cleared | | I1189 | Backup compared | | I1256 | Display: access status changed | | I1264 | Safety sequence aborted | | I1335 | Firmware changed | | I1351 | Empty pipe detection adjustment failure | | I1353 | Empty pipe detection adjustment ok | | I1361 | Wrong web server login | | I1397 | Fieldbus: access status changed | | I1398 | CDI: access status changed | | I1444 | Device verification passed | | I1445 | Device
verification failed | | I1457 | Failed:Measured error verification | | I1459 | Failed: I/O module verification | | I1461 | Failed: Sensor verification | | I1462 | Failed:Sensor electronic module verific. | # 12.12 Resetting the measuring device Using the **Device reset** parameter ($\rightarrow \implies$ 95) it is possible to reset the entire device configuration or some of the configuration to a defined state. # 12.12.1 Function scope of the "Device reset" parameter | Options | Description | | | |----------------------|---|--|--| | Cancel | No action is executed and the user exits the parameter. | | | | To delivery settings | Every parameter for which a customer-specific default setting was ordered is reset to this customer-specific value. All other parameters are reset to the factory setting. | | | | Restart device | The restart resets every parameter whose data are in the volatile memory (RAM) to the factory setting (e.g. measured value data). The device configuration remains unchanged. | | | # 12.13 Device information The **Device information** submenu contains all parameters that display different information for device identification. # Navigation "Diagnostics" menu \rightarrow Device information | ► Device information | | |-----------------------|---------| | Device tag | → 🖺 120 | | Serial number | → 🖺 120 | | Firmware version | → 🖺 120 | | Device name | → 🖺 120 | | Order code | → 🖺 120 | | Extended order code 1 | → 🖺 121 | | Extended order code 2 | → 🖺 121 | | Extended order code 3 | → 🖺 121 | | ENP version | → 🗎 121 | | IP address | → 🗎 121 | | Subnet mask | → 🖺 121 | | Default gateway | → 🗎 121 | # Parameter overview with brief description | Parameter | Description | User interface | Factory setting | |------------------|---|---|-----------------| | Device tag | Shows name of measuring point. | Max. 32 characters, such as letters, numbers or special characters (e.g. @, %, /). | Promag 400 MB | | Serial number | Shows the serial number of the measuring device. | A maximum of 11-digit character string comprising letters and numbers. | - | | Firmware version | Shows the device firmware version installed. | Character string in the format xx.yy.zz | - | | Device name | Shows the name of the transmitter. The name can be found on the nameplate of the transmitter. | Max. 32 characters such as letters or numbers. | Promag 400 MB | | Order code | Shows the device order code. The order code can be found on the nameplate of the sensor and transmitter in the "Order code" field. | Character string composed of letters, numbers and certain punctuation marks (e.g. /). | - | 120 | Parameter | Description | User interface | Factory setting | |-----------------------|--|---|-----------------| | Extended order code 1 | Shows the 1st part of the extended order code. | Character string | - | | | The extended order code can also be found on the nameplate of the sensor and transmitter in the "Ext. ord. cd." field. | | | | Extended order code 2 | Shows the 2nd part of the extended order code. | Character string | - | | | The extended order code can also be found on the nameplate of the sensor and transmitter in the "Ext. ord. cd." field. | | | | Extended order code 3 | Shows the 3rd part of the extended order code. | Character string | - | | | The extended order code can also be found on the nameplate of the sensor and transmitter in the "Ext. ord. cd." field. | | | | ENP version | Shows the version of the electronic nameplate (ENP). | Character string | 2.02.00 | | IP address | Displays the IP address of the Web server of the measuring device. | 4 octet: 0 to 255 (in the particular octet) | 192.168.1.212 | | Subnet mask | Displays the subnet mask. | 4 octet: 0 to 255 (in the particular octet) | 255.255.255.0 | | Default gateway | Displays the default gateway. | 4 octet: 0 to 255 (in the particular octet) | 0.0.0.0 | # 12.14 Firmware history | Release
date | Firmware
version | Order code
for
"Firmware
version" | Firmware
Changes | Documentation
type | Documentation | |-----------------|---------------------|--|---------------------|---------------------------|----------------------| | 07.2014 | 01.00.00 | Option ?? | Original firmware | Operating
Instructions | BA01230D/06/EN/01.14 | - It is possible to flash the firmware to the current version or the previous version using the service interface. - For the compatibility of the firmware version with the previous version, the installed device description files and operating tools, observe the information about the device in the "Manufacturer's information" document. - The manufacturer's information is available: - \bullet In the Download Area of the Endress+Hauser web site: www.endress.com \rightarrow Downloads - Specify the following details: - Text search: Manufacturer's information - Media type: Documentation Technical Documentation # 13 Maintenance ## 13.1 Maintenance tasks No special maintenance work is required. ## 13.1.1 Exterior cleaning When cleaning the exterior of measuring devices, always use cleaning agents that do not attack the surface of the housing or the seals. ## **WARNING** ### Cleaning agents can damage the plastic transmitter housing! - ▶ Do not use high-pressure steam. - ▶ Only use the permitted cleaning agents specified. #### Permitted cleaning agents for the plastic transmitter housing - Commercially available household cleaners - Methyl alcohol or isopropyl alcohol - Mild soap solutions # 13.1.2 Interior cleaning No interior cleaning is planned for the device. ## 13.1.3 Replacing seals The sensor's seals (particularly aseptic molded seals) must be replaced periodically. The interval between changes depends on the frequency of the cleaning cycles, the cleaning temperature and the medium temperature. Replacement seals (accessory part) $\rightarrow \triangleq 155$ # 13.2 Measuring and test equipment Endress+Hauser offers a wide variety of measuring and test equipment, such as W@M or device tests. Your Endress+Hauser Sales Center can provide detailed information on the services. List of some of the measuring and testing equipment: $\rightarrow \implies 125$ ## 13.3 Endress+Hauser services Endress+Hauser offers a wide variety of services for maintenance such as recalibration, maintenance service or device tests. Your Endress+Hauser Sales Center can provide detailed information on the services. # 14 Repairs #### 14.1 General notes ## 14.1.1 Repair and conversion concept The Endress+Hauser repair and conversion concept provides for the following: - The measuring devices have a modular design. - Spare parts are grouped into logical kits with the associated Installation Instructions. - Repairs are carried out by Endress+Hauser Service or by appropriately trained customers. - Certified devices can only be converted to other certified devices by Endress+Hauser Service or at the factory. ## 14.1.2 Notes for repair and conversion For repair and modification of a measuring device, observe the following notes: - ▶ Use only original Endress+Hauser spare parts. - ► Carry out the repair according to the Installation Instructions. - ▶ Observe the applicable standards, federal/national regulations, Ex documentation (XA) and certificates. - ▶ Document every repair and each conversion and enter them into the *W*@*M* life cycle management database. # 14.2 Spare parts *W@M Device Viewer* (www.endress.com/deviceviewer): All the spare parts for the measuring device, along with the order code, are listed here and can be ordered. If available, users can also download the associated Installation Instructions. - Measuring device serial number: - Is located on the nameplate of the device. - Can be read out via the Serial number parameter (→ 120) in the Device information submenu. ### 14.3 Endress+Hauser services Endress+Hauser offers a wide range of services. ## 14.4 Return The measuring device must be returned if it is need of repair or a factory calibration, or if the wrong measuring device has been delivered or ordered. Legal specifications require Endress+Hauser, as an ISO-certified company, to follow certain procedures when handling products that are in contact with the medium. To ensure safe, swift and professional device returns, please refer to the procedure and conditions for returning devices provided on the Endress+Hauser website at http://www.endress.com/support/return-material # 14.5 Disposal ## 14.5.1 Removing the measuring device 1. Switch off the device. ### **WARNING** #### Danger to persons from process conditions. - ► Beware of hazardous process conditions such as pressure in the measuring device, high temperatures or aggressive fluids. - 2. Carry out the mounting and connection steps from the "Mounting the measuring device" and "Connecting the measuring device" sections in reverse order. Observe the safety instructions. # 14.5.2 Disposing of the measuring device ### **MARNING** #### Danger to personnel and environment from fluids that are hazardous to health. ► Ensure that the measuring device and all cavities are free of fluid residues that are hazardous to health or the environment, e.g. substances that have permeated into crevices or diffused through plastic. Observe the following notes during disposal: - ▶ Observe valid federal/national regulations. - ► Ensure proper separation and reuse
of the device components. # 15 Accessories Various accessories, which can be ordered with the device or subsequently from Endress +Hauser, are available for the device. Detailed information on the order code in question is available from your local Endress+Hauser sales center or on the product page of the Endress+Hauser website: www.endress.com. # 15.1 Device-specific accessories ### 15.1.1 For the transmitter | Accessories | Description | |---|--| | Display protection | Is used to protect the display against impact or scoring from sand in desert areas. For details, see Special Documentation SD00333F | | Connecting cable for remote version | Coil current and electrode cables, various lengths, reinforced cables available on request. | | Ground cable | Set, consisting of two ground cables for potential equalization. | | Post mounting kit | Post mounting kit for transmitter. | | Compact → Remote conversion kit | For converting a compact device version to a remote device version. | | Conversion kit Promag
50/53 → Promag 400 | For converting a Promag with transmitter 50/53 to a Promag 400. | ### 15.1.2 For the sensor | Accessories | Description | |--------------|--| | Ground disks | Are used to ground the medium in lined measuring tubes to ensure proper measurement. | | | For details, see Installation Instructions EA00070D | # 15.2 Communication-specific accessories | Accessories | Description | |-----------------|--| | Commubox FXA291 | Connects Endress+Hauser field devices with a CDI interface (= Endress+Hauser Common Data Interface) and the USB port of a computer or laptop. For details, see the "Technical Information" document TI405C/07 | # 15.3 Service-specific accessories | Accessories | Description | |-----------------|---| | Applicator | Software for selecting and sizing Endress+Hauser measuring devices: Choice of measuring devices for industrial requirements Calculation of all the necessary data for identifying the optimum flowmeter: e.g. nominal diameter, pressure loss, flow velocity and accuracy. Graphic illustration of the calculation results Determination of the partial order code, administration, documentation and access to all project-related data and parameters over the entire life cycle of a project. | | | Applicator is available: Via the Internet: https://wapps.endress.com/applicator As a downloadable DVD for local PC installation. | | W@M | W@M Life Cycle Management Improved productivity with information at your fingertips. Data relevant to a plant and its components is generated from the first stages of planning and during the asset's complete life cycle. W@M Life Cycle Management is an open and flexible information platform with online and on-site tools. Instant access for your staff to current, in-depth data shortens your plant's engineering time, speeds up procurement processes and increases plant uptime. Combined with the right services, W@M Life Cycle Management boosts productivity in every phase. For more information, visit www.endress.com/lifecyclemanagement | | FieldCare | FDT-based plant asset management tool from Endress+Hauser. It can configure all smart field units in your system and helps you manage them. By using the status information, it is also a simple but effective way of checking their status and condition. For details, see Operating Instructions BA00027S and BA00059S | | DeviceCare | Tool for connecting and configuring Endress+Hauser field devices. | | | For details, see Innovation brochure INO1047S | | Commubox FXA291 | Connects Endress+Hauser field devices with a CDI interface (= Endress+Hauser Common Data Interface) and the USB port of a computer or laptop. For details, see "Technical Information" TI00405C | # 15.4 System components | Accessories | Description | |-------------------------------------|--| | Memograph M graphic
data manager | The Memograph M graphic data manager provides information on all the relevant measured variables. Measured values are recorded correctly, limit values are monitored and measuring points analyzed. The data are stored in the 256 MB internal memory and also on a SD card or USB stick. For details, see "Technical Information" TI00133R and Operating Instructions BA00247R | # 16 Technical data # 16.1 Application The measuring device is only suitable for flow measurement of liquids with a minimum conductivity of 5 μ S/cm. Depending on the version ordered, the measuring device can also measure potentially explosive, flammable, poisonous and oxidizing media. To ensure that the device remains in proper operating condition for its service life, use the measuring device only for media against which the process-wetted materials are sufficiently resistant. # 16.2 Function and system design Measuring principle Electromagnetic flow measurement on the basis of Faraday's law of magnetic induction. Measuring system The device consists of a transmitter and a sensor. Two device versions are available: - Compact version transmitter and sensor form a mechanical unit. - Remote version transmitter and sensor are mounted in separate locations. For information on the structure of the device # **16.3** Input Measured variable #### Direct measured variables - Volume flow (proportional to induced voltage) - Electrical conductivity ### Calculated measured variables Mass flow Measuring range Typically v = 0.01 to 10 m/s (0.03 to 33 ft/s) with the specified accuracy Electrical conductivity: $\geq 5 \mu S/cm$ for liquids in general Flow characteristic values in SI units | Nominal
diameter | | Recommended
flow | Factory settings | | | |---------------------|------|--|---|------------------------------|---------------------------------| | | | min./max. full scale value
(v ~ 0.3/10 m/s) | Full scale value current output (v ~ 2.5 m/s) | Pulse value
(~ 2 pulse/s) | Low flow cut off (v ~ 0.04 m/s) | | [mm] | [in] | [m ³ /h] | [m ³ /h] | [m³] | [m ³ /h] | | 25 | 1 | 9 to 300 dm ³ /min | 75 dm ³ /min | 0.5 dm ³ | 1 dm³/min | | 32 | - | 15 to 500 dm ³ /min | 125 dm³/min | $1.0~\mathrm{dm^3}$ | 2 dm³/min | | 40 | 1 ½ | 25 to 700 dm ³ /min | 200 dm ³ /min | 1.5 dm ³ | 3 dm³/min | | 50 | 2 | 35 to 1100 dm ³ /min | 300 dm ³ /min | 2.5 dm ³ | 5 dm ³ /min | | 65 | - | 60 to 2 000 dm ³ /min | 500 dm ³ /min | 5 dm ³ | 8 dm³/min | | Nominal
diameter | | Recommended flow | Factory settings | | | |---------------------|------|--|---|---------------------------|---------------------------------| | | | min./max. full scale value
(v ~ 0.3/10 m/s) | Full scale value current
output
(v ~ 2.5 m/s) | Pulse value (~ 2 pulse/s) | Low flow cut off (v ~ 0.04 m/s) | | [mm] | [in] | [m³/h] | [m³/h] | [m ³] | [m ³ /h] | | 80 | 3 | 90 to 3 000 dm ³ /min | 750 dm³/min | 5 dm ³ | 12 dm³/min | | 100 | 4 | 145 to 4700 dm ³ /min | 1200 dm ³ /min | 10 dm ³ | 20 dm ³ /min | | 125 | - | 220 to 7500 dm ³ /min | $1850 \mathrm{dm^3/min}$ | 15 dm ³ | 30 dm ³ /min | | 150 | 6 | 20 to 600 | 150 | 0.025 | 2.5 | | 200 | 8 | 35 to 1100 | 300 | 0.05 | 5 | | 250 | 10 | 55 to 1700 | 500 | 0.05 | 7.5 | | 300 | 12 | 80 to 2 400 | 750 | 0.1 | 10 | | 350 | 14 | 110 to 3300 | 1000 | 0.1 | 15 | | 375 | 15 | 140 to 4200 | 1200 | 0.15 | 20 | | 400 | 16 | 140 to 4200 | 1200 | 0.15 | 20 | | 450 | 18 | 180 to 5 400 | 1500 | 0.25 | 25 | | 500 | 20 | 220 to 6600 | 2 000 | 0.25 | 30 | | 600 | 24 | 310 to 9600 | 2 500 | 0.3 | 40 | | 700 | 28 | 420 to 13 500 | 3500 | 0.5 | 50 | | 750 | 30 | 480 to 15 000 | 4000 | 0.5 | 60 | | 800 | 32 | 550 to 18000 | 4500 | 0.75 | 75 | | 900 | 36 | 690 to 22 500 | 6000 | 0.75 | 100 | | 1000 | 40 | 850 to 28000 | 7000 | 1 | 125 | | - | 42 | 950 to 30 000 | 8000 | 1 | 125 | | 1200 | 48 | 1250 to 40000 | 10000 | 1.5 | 150 | | - | 54 | 1550 to 50000 | 13 000 | 1.5 | 200 | | 1400 | - | 1700 to 55000 | 14000 | 2 | 225 | | - | 60 | 1950 to 60 000 | 16000 | 2 | 250 | | 1600 | - | 2 200 to 70 000 | 18000 | 2.5 | 300 | | - | 66 | 2 500 to 80 000 | 20500 | 2.5 | 325 | | 1800 | 72 | 2 850 to 90 000 | 23 000 | 3 | 350 | | - | 78 | 3 300 to 100 000 | 28500 | 3.5 | 450 | | 2 000 | - | 3 400 to 110 000 | 28500 | 3.5 | 450 | | - | 84 | 3 700 to 125 000 | 31000 | 4.5 | 500 | | 2 200 | - | 4 100 to 136 000 | 34000 | 4.5 | 540 | | - | 90 | 4300 to 143000 | 36000 | 5 | 570 | | 2 400 | - | 4800 to 162 000 | 40000 | 5.5 | 650 | Flow characteristic values in US units |
Nominal
diameter | | Recommended flow | Factory settings | | | |---------------------|---------|--|---|------------------------------|---------------------------------| | | | min./max. full scale value
(v ~ 0.3/10 m/s) | Full scale value current output (v ~ 2.5 m/s) | Pulse value
(~ 2 pulse/s) | Low flow cut off (v ~ 0.04 m/s) | | [in] | [mm] | [gal/min] | [gal/min] | [gal] | [gal/min] | | 1 | 25 | 2.5 to 80 | 18 | 0.2 | 0.25 | | 1 ½ | 40 | 7 to 190 | 50 | 0.5 | 0.75 | | 2 | 50 | 10 to 300 | 75 | 0.5 | 1.25 | | - | 65 | 16 to 500 | 130 | 1 | 2 | | 3 | 80 | 24 to 800 | 200 | 2 | 2.5 | | 4 | 100 | 40 to 1250 | 300 | 2 | 4 | | 8 | 200 | 155 to 4850 | 1200 | 10 | 15 | | 10 | 250 | 250 to 7500 | 1500 | 15 | 30 | | 12 | 300 | 350 to 10600 | 2 400 | 25 | 45 | | 14 | 350 | 500 to 15 000 | 3 600 | 30 | 60 | | 15 | 375 | 600 to 19000 | 4800 | 50 | 60 | | 16 | 400 | 600 to 19000 | 4800 | 50 | 60 | | 18 | 450 | 800 to 24000 | 6000 | 50 | 90 | | 20 | 500 | 1000 to 30000 | 7 500 | 75 | 120 | | 24 | 600 | 1400 to 44 000 | 10500 | 100 | 180 | | 28 | 700 | 1900 to 60 000 | 13500 | 125 | 210 | | 30 | 750 | 2 150 to 67 000 | 16500 | 150 | 270 | | 32 | 800 | 2 450 to 80 000 | 19500 | 200 | 300 | | 36 | 900 | 3 100 to 100 000 | 24000 | 225 | 360 | | 40 | 1000 | 3 800 to 125 000 | 30000 | 250 | 480 | | 42 | - | 4200 to 135000 | 33 000 | 250 | 600 | | 48 | 1200 | 5 500 to 175 000 | 42 000 | 400 | 600 | | 54 | - | 9 to 300 Mgal/d | 75 Mgal/d | 0.0005 Mgal/d | 1.3 Mgal/d | | - | 1400 | 10 to 340 Mgal/d | 85 Mgal/d | 0.0005 Mgal/d | 1.3 Mgal/d | | 60 | _ | 12 to 380 Mgal/d | 95 Mgal/d | 0.0005 Mgal/d | 1.3 Mgal/d | | - | 1600 | 13 to 450 Mgal/d | 110 Mgal/d | 0.0008 Mgal/d | 1.7 Mgal/d | | 66 | - | 14 to 500 Mgal/d | 120 Mgal/d | 0.0008 Mgal/d | 2.2 Mgal/d | | 72 | 1800 | 16 to 570 Mgal/d | 140 Mgal/d | 0.0008 Mgal/d | 2.6 Mgal/d | | 78 | - | 18 to 650 Mgal/d | 175 Mgal/d | 0.0010 Mgal/d | 3.0 Mgal/d | | - | 2 000 | 20 to 700 Mgal/d | 175 Mgal/d | 0.0010 Mgal/d | 2.9 Mgal/d | | 84 | - | 24 to 800 Mgal/d | 190 Mgal/d | 0.0011 Mgal/d | 3.2 Mgal/d | | - | 2 2 0 0 | 26 to 870 Mgal/d | 210 Mgal/d | 0.0012 Mgal/d | 3.4 Mgal/d | | 90 | _ | 27 to 910 Mgal/d | 220 Mgal/d | 0.0013 Mgal/d | 3.6 Mgal/d | | - | 2 400 | 31 to 1030 Mgal/d | 245 Mgal/d | 0.0014 Mgal/d | 4.1 Mgal/d | # Recommended measuring range ## Operable flow range Over 1000:1 ## Input signal #### External measured values Various pressure transmitters and temperature measuring devices can be ordered from Endress+Hauser: see "Accessories" section → 🗎 126 It is recommended to read in external measured values to calculate the following measured variables: Corrected volume flow #### Digital communication The measured values are written from the automation system to the measuring device via Modbus RS485. #### 16.4 Output ### Output signal #### Modbus RS485 | Physical interface | In accordance with EIA/TIA-485-A standard | |----------------------|---| | Terminating resistor | Integrated, can be activated via DIP switch on the transmitter electronics module | ### Signal on alarm Depending on the interface, failure information is displayed as follows: #### Modbus RS485 | Failure mode | Choose from: | | |--------------|--------------------------------------|--| | | ■ NaN value instead of current value | | | | ■ Last valid value | | # Local display | Plain text display | With information on cause and remedial measures | |--------------------|---| | Backlight | Red backlighting indicates a device error. | Status signal as per NAMUR recommendation NE 107 ### Interface/protocol - Via digital communication: Modbus RS485 - Via service interface - CDI-RJ45 service interface - WLAN interface | Plain text display With information on cause and remedial measures | |--| |--| #### Web server | Plain text display | With information on cause and remedial measures | |--------------------|---| |--------------------|---| 130 ## Light emitting diodes (LED) | Status information | Status indicated by various light emitting diodes | | |--------------------|---|--| | | The following information is displayed depending on the device version: Supply voltage active Data transmission active Device alarm/error has occurred Diagnostic information via light emitting diodes | | Low flow cut off The switch points for low flow cut off are user-selectable. Galvanic isolation The following connections are galvanically isolated from each other: - Outputs - Power supply ## Protocol-specific data ### Modbus RS485 | Protocol | Modbus Applications Protocol Specification V1.1 | |-------------------------|--| | Device type | Slave | | Slave address range | 1 to 247 | | Broadcast address range | 0 | | Function codes | 03: Read holding register 04: Read input register 06: Write single registers 08: Diagnostics 16: Write multiple registers 23: Read/write multiple registers | | Broadcast messages | Supported by the following function codes: O6: Write single registers 16: Write multiple registers 23: Read/write multiple registers | | Supported baud rate | 1200 BAUD 2400 BAUD 4800 BAUD 9600 BAUD 19200 BAUD 38400 BAUD 57600 BAUD 115200 BAUD | | Data transfer mode | • ASCII
• RTU | | Data access | Each device parameter can be accessed via Modbus RS485. For Modbus register information | # 16.5 Power supply Terminal assignment → 🖺 40 ## Supply voltage ## Transmitter | Order code for "Power supply" | terminal voltage | | Frequency range | |-------------------------------|------------------|-------------|-----------------| | | DC 24 V | ±25% | _ | | Option L | AC 24 V | ±25% | 50/60 Hz, ±4 Hz | | | AC 100 to 240 V | -15 to +10% | 50/60 Hz, ±4 Hz | ## Power consumption | Order code for "Output" | Maximum power consumption | | |--------------------------------|---------------------------|--| | Option M : Modbus RS485 | 30 VA/8 W | | #### Current consumption #### Transmitter | Order code for "Power supply" | Maximum
Current consumption | Maximum
switch-on current | |-----------------------------------|--------------------------------|------------------------------| | Option L : AC 100 to 240 V | 145 mA | 25 A (< 5 ms) | | Option L: AC/DC 24 V | 350 mA | 27 A (< 5 ms) | #### Power supply failure - Totalizers stop at the last value measured. - Configuration is retained in the plug-in memory (HistoROM DAT). - Error messages (incl. total operated hours) are stored. #### Electrical connection → 🖺 44 #### Potential equalization → 🖺 47 #### terminals #### Transmitter - Supply voltage cable: plug-in spring terminals for wire cross-sections 0.5 to 2.5 mm² (20 to 14 AWG) - Signal cable: plug-in spring terminals for wire cross-sections 0.5 to 2.5 mm² (20 to 14 AWG) - Electrode cable: spring terminals for wire cross-sections 0.5 to 2.5 mm² (20 to 14 AWG) - Coil current cable: spring terminals for wire cross-sections 0.5 to 2.5 mm² (20 to 14 AWG) # Sensor connection housing Spring terminals for wire cross-sections 0.5 to 2.5 mm² (20 to 14 AWG) #### Cable entries #### Cable entry thread - M20 x 1.5 - Via adapter: - NPT ½" - G ⅓" #### Cable gland - For standard cable: M20 \times 1.5 with cable ϕ 6 to 12 mm (0.24 to 0.47 in) - For reinforced cable: M20 \times 1.5 with cable ϕ 9.5 to 16 mm (0.37 to 0.63 in) - If metal cable entries are used, use a grounding plate. Cable specification → 🖺 38 # 16.6 Performance characteristics # Reference operating conditions - Error limits following DIN EN 29104, in future ISO 20456 - Water, typically +15 to +45 °C (+59 to +113 °F); 0.5 to 7 bar (73 to 101 psi) - Data as indicated in the calibration protocol - Accuracy based on accredited calibration rigs according to ISO 17025 #### Maximum measured error ### Error limits under reference operating conditions o.r. = of reading #### Volume flow - \bullet ±0.5 % o.r. ± 1 mm/s (0.04 in/s) - Optional: ± 0.2 % o.r. ± 2 mm/s (0.08 in/s) ■ 34 Maximum measured error in % o.r. #### **Electrical conductivity** Max. measured error not specified. ## Accuracy of outputs The outputs have the following base accuracy specifications. #### Repeatability o.r. = of reading #### Volume flow max. ± 0.1 % o.r. ± 0.5 mm/s (0.02 in/s) #### **Electrical conductivity** Max. ±5 % o.r. # Influence of ambient temperature ## **Current output** o.r. = of reading | Temperature coefficient | Max. ±0.005 % o.r./°C | |-------------------------|-----------------------| #### Pulse/frequency output Temperature coefficient No additional effect. Included in accuracy. ## 16.7 Installation "Mounting requirements" ## 16.8 Environment # Ambient temperature range → 🖺 23 #### Storage temperature The storage temperature corresponds to the operating temperature range of the measuring transmitter and the appropriate measuring sensors. $\rightarrow \stackrel{\triangle}{=} 23$ - Protect the measuring device against direct sunlight during storage in order to avoid unacceptably high surface temperatures. - Select a storage location where moisture cannot collect in the
measuring device as fungus or bacteria infestation can damage the liner. - If protection caps or protective covers are mounted these should never be removed before installing the measuring device. #### Atmosphere If a plastic transmitter housing is permanently exposed to certain steam and air mixtures, this can damage the housing. If you are unsure, please contact your Endress+Hauser Sales Center for clarification. #### Degree of protection #### **Transmitter** - As standard: IP66/67, type 4X enclosure - When housing is open: IP20, type 1 enclosure #### Sensor - As standard: IP66/67, type 4X enclosure - Optionally available for remote version: - IP67, type 4X enclosure. Suitable for temporary immersion in water for up to 168 hours at depths \leq 3 m (10 ft) or up to 48 hours at depths \leq 10 m (30 ft). - IP68, type 6P enclosure (for DN \leq 300 (12") only possible in conjunction with stainless steel flanges) Not suitable for use in corrosive atmospheres/liquids or in buried applications if special precautions are not taken. #### Vibration resistance #### **Compact version** - Vibration, sinusoidal according to IEC 60068-2-6 - 2 to 8.4 Hz, 3.5 mm peak - 8.4 to 2000 Hz, 1 g peak - Vibration broad-band random, according to IEC 60068-2-64 - $-10 \text{ to } 200 \text{ Hz}, 0.003 \text{ g}^2/\text{Hz}$ - -200 to 2000 Hz, 0.001 q^2/Hz - Total: 1.54 g rms #### Remote version - Vibration, sinusoidal according to IEC 60068-2-6 - 2 to 8.4 Hz, 7.5 mm peak - 8.4 to 2000 Hz, 2 g peak - Vibration broad-band random, according to IEC 60068-2-64 - $-10 \text{ to } 200 \text{ Hz}, 0.01 \text{ q}^2/\text{Hz}$ - $-200 \text{ to } 2000 \text{ Hz}, 0.003 \text{ g}^2/\text{Hz}$ - Total: 2.70 g rms #### Shock resistance Shock, half-sine according to IEC 60068-2-27 6 ms 50 g #### Impact resistance Rough handling shocks according to IEC 60068-2-31 #### Mechanical load - Protect the transmitter housing against mechanical effects, such as shock or impact; the use of the remote version is sometimes preferable. - Never use the transmitter housing as a ladder or climbing aid. # Electromagnetic compatibility (EMC) - As per IEC/EN 61326 and NAMUR Recommendation 21 (NE 21) - Complies with emission limits for industry as per EN 55011 (Class A) Details are provided in the Declaration of Conformity. ## 16.9 Process #### Medium temperature range - 0 to +80 °C (+32 to +176 °F) for hard rubber, DN 350 to 2400 (14 to 90") - -20 to +50 °C (-4 to +122 °F) for polyurethane, DN 25 to 1200 (1 to 48") - -20 to +90 °C (-4 to +194 °F) for PTFE, DN 25 to 300 (1 to 12") #### Conductivity $\geq 5~\mu S/cm$ for liquids in general. Stronger filter damping is required for very low conductivity values. # Pressure-temperature ratings An overview of the pressure-temperature ratings for the process connections is provided in the "Technical Information" document #### Pressure tightness Liner: hard rubber, polyurethane | Nominal diameter | | Liner | Limit values for absolute pressure in [mbar] ([psi]) for fluid temperatures: | | | |------------------|------|--------------|--|------------------|------------------| | [mm] | [in] | | +25 °C (+77 °F) | +50 °C (+122 °F) | +80 °C (+176 °F) | | 3502400 | 1490 | Hard rubber | 0 (0) | 0 (0) | 0 (0) | | 251200 | 148 | Polyurethane | 0 (0) | 0 (0) | _ | | 1 | 1 | iı | 1 | 0 | r· | P' | Т | F | F | |---|---|----|---|---|----|----|---|---|---| | | | | | | | | | | | | Nominal diameter | | Limit values for absolute pressure in [mbar] ([psi]) for fluid temperatures: | | | | | |------------------|-------|--|------------------|--|--|--| | [mm] [in] | | +25 °C (+77 °F) | +90 °C (+194 °F) | | | | | 25 | 1 | 0 (0) | 0 (0) | | | | | 40 | 2 | 0 (0) | 0 (0) | | | | | 50 | 2 | 0 (0) | 0 (0) | | | | | 65 | 2 1/2 | 0 (0) | 40 (0.58) | | | | | 80 | 3 | 0 (0) | 40 (0.58) | | | | | 100 | 4 | 0 (0) | 135 (2.0) | | | | | 125 | 5 | 135 (2.0) | 240 (3.5) | | | | | 150 | 6 | 135 (2.0) | 240 (3.5) | | | | | 200 | 8 | 200 (2.9) | 290 (4.2) | | | | | 250 | 10 | 330 (4.8) | 400 (5.8) | | | | | 300 | 12 | 400 (5.8) | 500 (7.3) | | | | Flow limit The diameter of the pipe and the flow rate determine the nominal diameter of the sensor. The optimum velocity of flow is between 2 to 3 m/s (6.56 to 9.84 ft/s). Also match the velocity of flow (v) to the physical properties of the fluid: - v < 2 m/s (6.56 ft/s): for abrasive fluids (e.g. potter's clay, lime milk, ore slurry) - v > 2 m/s (6.56 ft/s): for fluids producing buildup (e.g. wastewater sludge) - A necessary increase in the flow velocity can be achieved by reducing the sensor nominal diameter. Pressure loss - No pressure loss occurs if the sensor is installed in a pipe with the same nominal diameter. - Pressure losses for configurations incorporating adapters according to DIN EN 545 → △ 25 35 Pressure loss DN 50 to 80 (2 to 3") in the case of order code for "Design", option C "Insertion length short ISO/DVGW to DN300, without inlet/outlet runs, constricted meas.tube" 136 ■ 36 Pressure loss DN 100 to 300 (4 to 12") in the case of order code for "Design", option C "Insertion length short ISO/DVGW to DN300, without inlet/outlet runs, constricted meas.tube" System pressure → 🖺 24 Vibrations → 🗎 24 # 16.10 Mechanical construction Design, dimensions For the dimensions and installation lengths of the device, see the "Technical Information" document, "Mechanical construction" section. ### Weight ### **Compact version** Weight data: - Including the transmitter - Order code for "Housing", option M, Q: 1.3 kg (2.9 lb) - Order code for "Housing", option A, R: 2.0 kg (4.4 lb) - Excluding packaging material Weight in SI units *Lap joint flange; fixed flange DN* ≥ 350 | EN 1092-1 (DIN 2501) | | | | | | |----------------------|--|-------------|-------|--|--| | DN
[mm] | Order code for "Housing", option M, Q
Polycarbonate plastic ¹⁾ | | | | | | | | Weight [kg] | | | | | | PN 6 | PN 10 | PN 16 | | | | 25 | _ | - | 6.8 | | | | 32 | _ | _ | 7.5 | | | | 40 | - | - | 8.5 | | | | 50 | - | - | 9 | | | | EN 1092-1 (DIN 2501) | | | | | | | |----------------------|--|-------|-------|--|--|--| | DN
[mm] | Order code for "Housing", option M, Q
Polycarbonate plastic ¹⁾ | | | | | | | | Weight [kg] | | | | | | | | PN 6 | PN 10 | PN 16 | | | | | 65 | - | - | 10 | | | | | 80 | - | - | 12 | | | | | 100 | - | - | 14 | | | | | 125 | - | - | 20 | | | | | 150 | - | - | 24 | | | | | 200 | - | 43 | 44.4 | | | | | 250 | - | 63 | 70.2 | | | | | 300 | - | 68 | 85.3 | | | | | 350 | 77 | 88 | 103 | | | | | 400 | 89 | 104 | 121 | | | | | 450 | 102 | 117 | 148 | | | | | 500 | 114 | 132 | 189 | | | | | 600 | 155 | 180 | 299 | | | | | 700 | 213 | 272 | 333 | | | | | 800 | 287 | 372 | 460 | | | | | 900 | 382 | 474 | 580 | | | | | 1000 | 491 | 613 | 793 | | | | | 1200 | 705 | 914 | 1312 | | | | | 1400 | 1124 | 1480 | 1904 | | | | | 1600 | 1519 | 2 195 | 2 696 | | | | | 1800 | 1999 | 2836 | 3 685 | | | | | 2 000 | 2775 | 3506 | 4644 | | | | | 2 2 0 0 | 3 0 6 3 | 4170 | - | | | | | 2 400 | 3938 | 5033 | - | | | | 1) Values for aluminum transmitter, AlSi10Mg, coated: \pm 0.7 kg | AS 2129, Table E | AS 2129, Table E | | | |------------------|--|--|--| | DN | Weight [kg] | | | | [mm] | Order code for "Housing", option M, Q
Polycarbonate plastic ¹⁾ | | | | 350 | 99 | | | | 400 | 120 | | | | 450 | 150 | | | | 500 | 182 | | | | 600 | 279 | | | | 700 | 348 | | | | 750 | 456 | | | | 800 | 516 | | | | 900 | 737 | | | | AS 2129, Table E | | | | |------------------|--|--|--| | DN | Weight [kg] | | | | [mm] | Order code for "Housing", option M, Q
Polycarbonate plastic ¹⁾ | | | | 1000 | 854 | | | | 1200 | 1366 | | | 1) Values for aluminum transmitter, AlSi10Mg, coated: + 0.7 kg | AS 4087, PN 16 | AS 4087, PN 16 | | | |----------------|--|--|--| | DN | Weight [kg] | | | | [mm] | Order code for "Housing", option M, Q
Polycarbonate plastic ¹⁾ | | | | 350 | 99 | | | | 375 | 105 | | | | 400 | 122 | | | | 450 | 140 | | | | 500 | 189 | | | | 600 | 281 | | | | 700 | 384 | | | | 750 | 468 | | | | 800 | 567 | | | | 900 | 737 | | | | 1000 | 852 | | | | 1200 | 1366 | | | 1) Values for aluminum transmitter, AlSi10Mg, coated: + 0.7 kg $\,$ # Lap joint flange, stamped plate | EN 1092-1 (DIN 2501), PN 10 | EN 1092-1 (DIN 2501), PN 10 | | | |-----------------------------|--|--|--| | DN | Weight [kg] | | | | [mm] | Order code for "Housing", option M, Q
Polycarbonate plastic ¹⁾ | | | | 25 | 5.3 | | | | 32 | 5.1 | | | | 40 | 5.8 | | | | 50 | 5 | | | | 65 | 6 | | | | 80 | 7 | | | | 100 | 9 | | | | 125 | 13 | | | | 150 | 17 | | | | 200 | 35 | | | | EN 1092-1 (DIN 2501), PN 10 | | | |-----------------------------|--|--| | DN | Weight [kg] | | | [mm] | Order code for "Housing", option M, Q
Polycarbonate plastic ¹⁾ | | | 250 | 54 | | | 300 | 55 | | 1) Values for aluminum transmitter, AlSi10Mg, coated: + 0.7 kg # Weight in US units Lap joint flange; fixed flange $DN \ge 14$ " | ASME B16.5, Class 150 | | | |-----------------------|--|--| | DN
[in] | Weight [lbs] | | | Imi | Order code for "Housing", option M, Q
Polycarbonate plastic ¹⁾ | | | 1 | 11.6 | | | 1 1/2 | 12.8 | | | 2 | 20 | | | 3 | 26 | | | 4 | 31 | | | 6 | 53 | | | 8 | 95 | | | 10 | 139 | | | 12 | 150 | | | 14 | 302 | | | 16 | 370 | | | 18 | 421 | | |
20 | 503 | | | 24 | 721 | | 1) Values for aluminum transmitter, AlSi10Mg, coated: + 0.7 kg | AWWA C207, Class D | AWWA C207, Class D | | | |--------------------|--|--|--| | DN
[in] | Weight [lbs] | | | | | Order code for "Housing", option M, Q
Polycarbonate plastic ¹⁾ | | | | 28 | 608 | | | | 30 | 740 | | | | 32 | 881 | | | | 36 | 1093 | | | | 40 | 1463 | | | | 42 | 1696 | | | | 48 | 2278 | | | | 54 | 3 166 | | | | 60 | 3930 | | | | AWWA C207, Class D | | |--------------------|--| | DN
[in] | Weight [lbs]
Order code for "Housing", option M, Q
Polycarbonate plastic ¹⁾ | | 66 | 5 4 2 5 | | 72 | 6295 | | 78 | 7 782 | | 84 | 8556 | | 90 | 10681 | 1) Values for aluminum transmitter, AlSi10Mg, coated: + 0.7 kg #### Transmitter remote version Wall-mount housing Depends on the material of the wall-mount housing: - Polycarbonate plastic: 1.3 kg (2.9 lb) - Aluminum, AlSi10Mg, coated: 2.0 kg (4.4 lb) #### Sensor remote version Weight data: - Including sensor connection housing - Excluding the connecting cable - Excluding packaging material Weight in SI units *Lap joint flange; fixed flange DN* ≥ 350 | EN 1092-1 (DIN 2501) | | | | | | | |----------------------|-------------|-------|-------|--|--|--| | DN | Weight [kg] | | | | | | | [mm] | PN 6 | PN 10 | PN 16 | | | | | 25 | - | - | 6.8 | | | | | 32 | - | - | 7.5 | | | | | 40 | - | - | 8.5 | | | | | 50 | - | - | 6 | | | | | 65 | - | - | 7 | | | | | 80 | - | - | 9 | | | | | 100 | - | - | 11 | | | | | 125 | - | - | 16 | | | | | 150 | - | - | 20 | | | | | 200 | - | 40 | 44.4 | | | | | 250 | - | 60 | 70.2 | | | | | 300 | - | 65 | 85.3 | | | | | 350 | 73 | 84 | 101 | | | | | 400 | 85 | 100 | 119 | | | | | 450 | 98 | 113 | 144 | | | | | 500 | 110 | 128 | 185 | | | | | 600 | 151 | 176 | 295 | | | | | EN 1092-1 (DIN 2501) | | | | | | | |----------------------|-------------|---------|-------|--|--|--| | DN | Weight [kg] | | | | | | | [mm] | PN 6 | PN 10 | PN 16 | | | | | 700 | 209 | 268 | 329 | | | | | 800 | 283 | 368 | 456 | | | | | 900 | 378 | 470 | 576 | | | | | 1000 | 487 | 609 | 789 | | | | | 1200 | 701 | 910 | 1308 | | | | | 1400 | 1120 | 1376 | 1900 | | | | | 1600 | 1515 | 2 191 | 2 692 | | | | | 1800 | 1995 | 2 832 | 3 681 | | | | | 2 000 | 2771 | 3 502 | 4640 | | | | | 2 200 | 3 0 5 9 | 4166 | - | | | | | 2 400 | 3934 | 5 0 2 9 | - | | | | | AS 2129, Table E | | | | | |------------------|----------------|--|--|--| | DN
[mm] | Weight
[kg] | | | | | 350 | 95 | | | | | 400 | 116 | | | | | 450 | 146 | | | | | 500 | 178 | | | | | 600 | 275 | | | | | 700 | 344 | | | | | 750 | 452 | | | | | 800 | 512 | | | | | 900 | 733 | | | | | 1000 | 850 | | | | | 1200 | 1362 | | | | | AS 4087, PN 16 | | | | | |----------------|----------------|--|--|--| | DN
[mm] | Weight
[kg] | | | | | 350 | 95 | | | | | 375 | 101 | | | | | 400 | 118 | | | | | 450 | 136 | | | | | 500 | 185 | | | | | 600 | 277 | | | | | 700 | 380 | | | | | 750 | 464 | | | | | 800 | 563 | | | | | 900 | 733 | | | | | AS 4087, PN 16 | | | | | |----------------|----------------|--|--|--| | DN
[mm] | Weight
[kg] | | | | | 1000 | 848 | | | | | 1200 | 1362 | | | | # Lap joint flange, stamped plate | EN 1092-1 (DIN 2501), PN 10 | | | | | | |-----------------------------|------|--|--|--|--| | DN
[mm] | [kg] | | | | | | 25 | 6.0 | | | | | | 32 | 5.8 | | | | | | 40 | 6.5 | | | | | | 50 | 3 | | | | | | 65 | 4 | | | | | | 80 | 5 | | | | | | 100 | 7 | | | | | | 125 | 11 | | | | | | 150 | 15 | | | | | | 200 | 33 | | | | | | 250 | 52 | | | | | | 300 | 53 | | | | | # Weight in US units $\textit{Lap joint flange; fixed flange DN} \geq 14"$ | ASME B16.5, Class 150 | | | | | | |-----------------------|-----------------|--|--|--|--| | DN
[in] | Weight
[lbs] | | | | | | 1 | 13.2 | | | | | | 1 1/2 | 14.3 | | | | | | 2 | 13 | | | | | | 3 | 20 | | | | | | 4 | 24 | | | | | | 6 | 44 | | | | | | 8 | 88 | | | | | | 10 | 132 | | | | | | 12 | 143 | | | | | | 14 | 296 | | | | | | 15 | - | | | | | | 16 | 364 | | | | | | 18 | 415 | | | | | | 20 | 497 | | | | | | 24 | 715 | | | | | | AWWA C207, Class D | | | | | |--------------------|-----------------|--|--|--| | DN
[in] | Weight
[lbs] | | | | | 28 | 602 | | | | | 30 | 736 | | | | | 32 | 875 | | | | | 36 | 1087 | | | | | 40 | 1457 | | | | | 42 | 1690 | | | | | 48 | 2 272 | | | | | 54 | 3 160 | | | | | 60 | 3 924 | | | | | 66 | 5 4 1 9 | | | | | 72 | 6 289 | | | | | 78 | 7776 | | | | | 84 | 8550 | | | | | 90 | 10675 | | | | Measuring tube specification | Nominal diameter Pressure rating | | Measuring tube internal diameter | | | | | | | | | |----------------------------------|-------|----------------------------------|-----------|----------------|----------------------------|------|-------|------|-------|------| | | | EN (DIN) | ASME | AS 2129 | Hard rubber Polyurethane | | PTFE | | | | | | | | AWWA | AS 4087 | | | | | | | | [mm] | [in] | | | | [mm] | [in] | [mm] | [in] | [mm] | [in] | | 25 | 1 | PN 10/16 | Class 150 | - | - | - | 23.7 | 0.9 | 25.3 | 1.0 | | 32 | 1 1/4 | PN 10/16 | Class 150 | - | - | - | 32.4 | 1.3 | 34.0 | 1.3 | | 40 | 1 ½ | PN 10/16 | Class 150 | - | - | - | 38.3 | 1.5 | 39.9 | 1.6 | | 50 | 2 | PN 10/16 | Class 150 | - | - | - | 50.3 | 2.0 | 51.7 | 2.0 | | 65 ¹⁾ | 2 ½ | PN 10/16 | Class 150 | - | - | - | 66.1 | 2.6 | 67.7 | 2.7 | | 80 | 3 | PN 10/16 | Class 150 | - | - | - | 78.9 | 3.1 | 79.9 | 3.1 | | 100 | 4 | PN 10/16 | Class 150 | - | - | - | 104.3 | 4.1 | 103.8 | 4.1 | | 125 | 5 | PN 10/16 | Class 150 | - | - | - | 129.7 | 5.1 | 129.1 | 5.1 | | 150 | 6 | PN 10/16 | Class 150 | - | - | - | 158.3 | 6.2 | 156.3 | 6.2 | | 200 | 8 | PN 10/16 | Class 150 | - | - | - | 206.7 | 8.1 | 202.1 | 8.0 | | 250 | 10 | PN 10/16 | Class 150 | - | - | - | 260.6 | 10.3 | 256.2 | 10.1 | | 300 | 12 | PN 10/16 | - | - | - | - | 311.5 | 12.3 | 305.5 | 12.0 | | 300 | 12 | - | Class 150 | - | - | - | 309.9 | 12.2 | 303.9 | 12.0 | | 350 | 14 | PN 6 | - | - | 341 | 13.4 | 344 | 13.5 | - | - | | 350 | 14 | PN 10 | - | - | 341 | 13.4 | 344 | 13.5 | - | - | | 350 | 14 | - | - | Table E, PN 16 | 337 | 13.2 | 340 | 13.3 | - | - | | 350 | 14 | - | Class 150 | - | 339 | 13.3 | 342 | 13.4 | - | - | | 375 | 15 | PN 10 | - | - | 391 | 15.4 | - | - | - | - | | 375 | 15 | - | - | PN 16 | 389 | 15.3 | 392 | 15.4 | - | - | | 400 | 16 | PN 6 | - | - | 391 | 15.4 | 394 | 13.5 | - | - | | 400 | 16 | PN 10 | - | - | 391 | 15.4 | 394 | 13.5 | - | - | | 400 | 16 | - | - | Table E, PN 16 | 389 | 15.3 | 392 | 13.4 | - | - | | Nominal diameter | | | Pressure ra | iting | M | easurin | g tube in | iternal (| diamete | r | |------------------|------|----------|-------------|----------------|--------|---------|-----------|-----------|---------|------| | | | EN (DIN) | ASME | AS 2129 | Hard r | ubber | Polyure | thane | PTI | FΕ | | | | | AWWA | AS 4087 | | | | | | | | [mm] | [in] | | | | [mm] | [in] | [mm] | [in] | [mm] | [in] | | 400 | 16 | _ | Class 150 | _ | 387 | 15.2 | 390 | 13.3 | - | - | | 450 | 18 | PN 6 | - | _ | 442 | 17.4 | 445 | 17.5 | - | - | | 450 | 18 | PN 10 | - | _ | 442 | 17.4 | 445 | 17.5 | _ | - | | 450 | 18 | - | - | Table E, PN 16 | 440 | 17.3 | 443 | 17.4 | - | _ | | 450 | 18 | - | Class 150 | _ | 436 | 17.1 | 439 | 17.2 | - | - | | 500 | 20 | PN 6 | - | _ | 493 | 19.4 | 496 | 19.5 | - | - | | 500 | 20 | PN 10 | - | _ | 493 | 19.4 | 496 | 19.5 | - | - | | 500 | 20 | - | - | Table E, PN 16 | 489 | 19.2 | 492 | 19.3 | - | - | | 500 | 20 | - | Class 150 | _ | 487 | 19.1 | 490 | 19.3 | - | - | | 600 | 24 | PN 6 | - | _ | 595 | 23.4 | 598 | 23.5 | - | _ | | 600 | 24 | PN 10 | - | _ | 590 | 23.2 | 596 | 23.4 | - | - | | 600 | 24 | - | - | Table E, PN 16 | 591 | 23.2 | 594 | 23.4 | - | - | | 600 | 24 | - | Class 150 | _ | 585 | 23.0 | 588 | 23.1 | - | - | | 700 | 28 | PN 6 | - | _ | 696 | 27.4 | 699 | 27.5 | - | - | | 700 | 28 | PN 10 | - | _ | 694 | 27.3 | 697 | 27.4 | - | - | | 700 | 28 | - | - | Table E, PN 16 | 690 | 27.2 | 693 | 27.3 | - | - | | 700 | 28 | - | Class D | _ | 694 | 27.3 | 697 | 27.4 | - | - | | 750 | 30 | _ | - | Table E, PN 16 | 741 | 29.2 | 744 | 29.3 | _ | - | | 750 | 30 | - | Class D | _ | 743 | 29.3 | 746 | 29.4 | - | _ | | 800 | 32 | PN 6 | - | _ | 796 | 31.3 | 799 | 31.5 | - | - | | 800 | 32 | PN 10 | - | _ | 794 | 31.2 | 797 | 31.4 | _ | - | | 800 | 32 | - | - | Table E, PN 16 | 788 | 31.0 | 791 | 31.1 | _ | - | | 800 | 32 | - | Class D | _ | 794 | 31.3 | 797 | 31.4 | - | - | | 900 | 36 | PN 6 | - | _ | 895 | 35.2 | 898 | 35.4 | - | - | | 900 | 36 | PN 10 | - | _ | 893 | 35.1 | 896 | 35.2 | - | - | | 900 | 36 | - | - | Table E, PN 16 | 889 | 35.0 | 892 | 35.1 | - | - | | 900 | 36 | - | Class D | _ | 895 | 35.2 | 898 | 35.4 | - | - | | 1000 | 40 | PN 6 | - | _ | 997 | 39.2 | 1000 | 39.3 | - | - | | 1000 | 40 | PN 10 | - | _ | 995 | 39.1 | 998 | 39.3 | - | - | | 1000 | 40 | - | - | Table E, PN 16 | 991 | 39.0 | 994 | 39.1 | - | - | | 1000 | 40 | - | Class D | _ | 995 | 39.1 | 998 | 39.3 | - | - | | 1050 | 42 | PN 6 | - | _ | - | - | - | - | - | - | | 1050 | 42 | PN 10 | - | - | - | - | - | - | - | - | | 1050 | 42 | _ | - | Table E, PN 16 | - | - | - | - | - | - | | 1050 | 42 | _ | Class D | _ | 1046 | 41.2 | 1049 | 41.3 | - | - | | 1200 | 48 | PN 6 | - | - | 1201 | 47.3 | 1204 | 47.4 | - | - | | 1200 | 48 | PN 10 | - | _ | 1199 | 47.2 | 1202 | 47.3 | - | - | | 1200 | 48 | - | - | Table E, PN 16 | 1191 | 46.9 | 1194 | 47.0 | - | - | | 1200 | 48 | _ | Class D | _ | 1195 | 47.0 | 1198 | 47.2 | _ | - | | - | 54 | - | Class D | _ | 1345 | 53.8 | - | - | - | - | | Nominal diameter | | | Pressure ra | ting | M | leasurin | g tube in | ternal o | liamete | r | |------------------|------|----------|-------------|---------|--------|----------|-----------|----------|---------|------| | | | EN (DIN) | ASME | AS 2129 | Hard 1 | rubber | Polyure | thane | PTI | FΕ | | | | | AWWA | AS 4087 | | | |
 | | | [mm] | [in] | | | | [mm] | [in] | [mm] | [in] | [mm] | [in] | | 1400 | - | PN 6 | _ | - | 1401 | 55.1 | - | _ | - | - | | 1400 | - | PN 10 | _ | - | 1394 | 5 5 7 8 | - | _ | - | _ | | _ | 60 | _ | Class D | _ | 1498 | 59.9 | - | - | - | - | | 1600 | - | PN 6 | - | - | 1599 | 62.9 | - | - | - | - | | 1600 | - | PN 10 | - | - | 1590 | 63.6 | - | - | - | - | | - | 66 | - | Class D | - | 1646 | 65.8 | 1650 | 64.9 | - | - | | 1800 | 72 | PN 6 | - | - | 1799 | 70.8 | 1802 | 70.9 | - | - | | 1800 | 72 | PN 10 | - | - | 1790 | 71.6 | 1794 | 70.6 | - | - | | 1800 | 72 | - | Class D | - | 1790 | 71.6 | 1794 | 70.6 | - | - | | 2 000 | 78 | PN 6 | - | - | 1995 | 78.5 | - | - | - | - | | 2 000 | 78 | PN 10 | - | - | 1990 | 79.6 | - | - | - | - | | 2 000 | 78 | - | Class D | - | 1986 | 79.4 | - | - | - | - | | - | 84 | - | Class D | - | 2099 | 84.0 | - | - | - | - | | 2 200 | - | PN 6 | - | - | 2 194 | 87.8 | - | - | - | - | | 2 200 | - | PN 10 | - | - | 2 186 | 87.4 | - | - | - | - | | - | 90 | - | Class D | - | 2246 | 89.8 | - | - | - | - | | 2 400 | - | PN 6 | - | - | 2391 | 94.1 | - | - | - | - | | 2 400 | - | PN 10 | - | ı | 2386 | 95.4 | - | - | - | - | 1) Designed acc. to EN 1092-1 (not to DIN 2501) ### Materials # Transmitter housing Compact version, standard - Order code for "Housing", option A "Compact, aluminum coated": Aluminum, AlSi10Mg, coated - Order code for "Housing", option **M**: polycarbonate plastic - Window material: - For order code for "Housing", option **A**: glass - For order code for "Housing", option **M**: plastic # Compact version, inclined - Order code for "Housing", option R "Compact, aluminum coated": Aluminum, AlSi10Mg, coated - Order code for "Housing", option **Q**: polycarbonate plastic - Window material: - For order code for "Housing", option **R**: glass - For order code for "Housing", option **Q**: plastic # Remote version (wall-mount housing) - Order code for "Housing", option P "Compact, aluminum coated": Aluminum, AlSi10Mg, coated - Order code for "Housing", option **N**: polycarbonate plastic - Window material: - For order code for "Housing", option **P**: glass - For order code for "Housing", option ${\bf N}$: plastic # Cable entries/cable glands A002064 - 37 Possible cable entries/cable glands - 1 Female thread M20 × 1.5 - 2 Cable gland $M20 \times 1.5$ - 3 Adapter for cable entry with internal thread G $\frac{1}{2}$ " or NPT $\frac{1}{2}$ " #### Compact and remote versions and sensor connection housing | Cable entry/cable gland | Material | |--|---| | Cable gland M20 × 1.5 | Plastic | | Remote version: cable gland M20 × 1.5 Option CK "IP68, Type 6P, waterproof" Option of reinforced connecting cable | Sensor connection housing: Nickel-plated brass Transmitter wall-mount housing: Plastic | | Adapter for cable entry with internal thread G ½" or NPT ½" | Nickel-plated brass | #### Connecting cable for remote version Electrode and coil current cable - Standard cable: PVC cable with copper shield - Reinforced cable: PVC cable with copper shield and additional steel wire braided jacket #### Sensor housing - DN 25 to 300 (1 to 12"): aluminum, AlSi10Mq, coated - DN 350 to 2400 (14 to 90"): carbon steel with protective varnish # Sensor connection housing - Aluminum, AlSi10Mg, coated - Option for order code for "Sensor option", option CK: Polycarbonate for DN 350 to 2 400 mm (13.8 to 94.5 in) for option IP68 # Measuring tubes - DN 25 to 300 (1 to 12"): stainless steel, 1.4301/1.4306/304L - DN 350 to 1200 (14 to 48"): stainless steel, 1.4301/1.4307/304 - DN 1350 to 2400 (54 to 90"): stainless steel, 1.4301/1.4307 # Liner - DN 25 to 300 (1 to 12"): PTFE - DN 25 to 1200 (1 to 48"): polyurethane - DN 350 to 2400 (14 to 90"): hard rubber #### **Electrodes** - Stainless steel, 1.4435 (316L) - Alloy C22, 2.4602 (UNS N06022) #### **Process connections** EN 1092-1 (DIN 2501) DN 25 to 300: - Fixed flange: - Stainless steel, 1.4306/1.4404/1.4571/F316L - Carbon steel, A105/E250C/S235JRG2 - Lap joint flange, stamped plate: - Stainless steel, 1.4301 similar to 304 - Carbon steel, S235JRG2 similar to 1.0038 (S235JR+AR) - DN 350 to 2400: Carbon steel, P245GH ■ DN 350 to 600: Stainless steel ,1.4571 DN 700 to 1000: Stainless steel ,1.4404 #### **ASME B16.5** DN 25 to 300 (1 to 12"): Fixed flange: - Stainless steel, F316L similar to 1.4404 - Carbon steel, A105 similar to 1.0432 DN 350 to 600 (14 to 24"): Carbon steel, A105 Stainless steel, F316/F316L #### AWWA C207 ■ DN 48": Carbon steel, A105/A181/P265GH/A181 Class 70/IS 2062/E250C/P265GH/S275JR ■ DN 54 to 90": Carbon steel, A105/A181/P265GH/A181 Class 70/IS 2062/E250C/S275JR #### AS 2129 Carbon steel, A105/E250C/P235GH/P265GH/S235JRG2 AS 4087 Carbon steel, A105/P265GH/S275JRG2 #### Seals As per DIN EN 1514-1, form IBC #### Accessories Display protection Stainless steel, 1.4301 (304L) ### Ground disks - Stainless steel, 1.4435 (316L) - Alloy C22, 2.4602 (UNS N06022) #### Fitted electrodes Measurement, reference and empty pipe detection electrodes available as standard with: - 1.4435 (316L) - Alloy C22, 2.4602 (UNS N06022) #### Process connections - EN 1092-1 - DN ≤ 300: lap joint flange (PN 10/16), lap joint flange, stamped plate (PN 10) = form A - DN ≥ 350: fixed flange (PN 6/10/16) = flat face - ASME B16.5 - DN ≤ 300 (12"): lap joint flange (Class 150) - DN \geq 350 (14"): fixed flange (Class 150) - AWWA C207 DN 48 to 90": fixed flange (Class D) AS 2129 DN 350 to 1200: fixed flange (Table E) ■ AS 4087 DN 350 to 1200: fixed flange (PN 16) - All carbon steel lap joint flanges are supplied with a hot-dip galvanized finish. - For information on the different materials used in the process connections ightarrow 🖺 148 #### Surface roughness Electrodes with 1.4435 (316L); Alloy C22, 2.4602 (UNS N06022): \leq 0.3 to 0.5 μm (11.8 to 19.7 $\mu in)$ (All data relate to parts in contact with fluid) # 16.11 Operability # Languages Can be operated in the following languages: ■ Via local operation: English, German, French, Spanish, Italian, Dutch, Portuguese, Polish, Russian, Turkish, Chinese, Japanese, Bahasa (Indonesian), Vietnamese, Czech, Swedish Via "FieldCare", "DeviceCare" operating tool: English, German, French, Spanish, Italian, Chinese, Japanese # Local display # Via display module Two display modules are available: - Standard: - 4-line, illuminated, graphic display; touch control - Optionally via order code for "Display", option W1 "WLAN display": 4-line, illuminated, graphic display; touch control + WLAN - 🚹 Information about WLAN interface → 🖺 72 ■ 38 Operation with touch control # Display elements - 4-line, illuminated, graphic display - White background lighting; switches to red in event of device errors - Format for displaying measured variables and status variables can be individually configured - Permitted ambient temperature for the display: -20 to +60 °C (-4 to +140 °F) The readability of the display may be impaired at temperatures outside the temperature range. #### Operating elements via a variety of interfaces. - External operation via touch control (3 optical keys) without opening the housing: ±, □. [□] - Operating elements also accessible in the various zones of the hazardous area | Remote operation | → | |---------------------------|--| | Service interface | → 🗎 72 | | Supported operating tools | Different operating tools can be used for local or remote access to the measuring device. Depending on the operating tool used, access is possible with different operating units and | | Supported operating tools | Operating unit | Interface | Additional information | |---------------------------|--|---|----------------------------------| | Web browser | Notebook, PC or tablet with Web browser | CDI-RJ45 service interfaceWLAN interface | Special Documentation for device | | DeviceCare SFE100 | Notebook, PC or tablet
with Microsoft Windows
system | CDI-RJ45 service interfaceWLAN interfaceFieldbus protocol | → 🖺 126 | | FieldCare SFE500 | Notebook, PC or tablet
with Microsoft Windows
system | CDI-RJ45 service interfaceWLAN interfaceFieldbus protocol | → 🖺 126 | Other operating tools based on FDT technology with a device driver such as DTM/iDTM or DD/EDD can be used for device operation. These operating tools are available from the individual manufacturers. Integration into the following operating tools, among others, is supported: - Field Device Manager (FDM) by Honeywell → www.honeywellprocess.com - FieldMate by Yokogawa → www.yokogawa.com - PACTWare → www.pactware.com The associated device description files are available at: www.endress.com \rightarrow Downloads #### Web server Thanks to the integrated Web server, the device can be operated and configured via a Web browser and via a service interface (CDI-RJ45). The structure of the operating menu is the same as for the local display. In addition to the measured values, status information on the device is also displayed and allows the user to monitor the status of the device. Furthermore the device data can be managed and the network parameters can be configured. #### Supported functions Data exchange between the operating unit (such as a notebook for example) and the measuring device: - Upload the configuration from the measuring device (XML format, configuration backup) - Save
the configuration to the measuring device (XML format, restore configuration) - Export event list (.csv file) - Export parameter settings (.csv file or PDF file, document the measuring point configuration) - Export the Heartbeat verification log (PDF file, only available with the "Heartbeat Verification" application package) - Flash firmware version for device firmware upgrade, for instance - Download driver for system integration Webserver special documentation HistoROM data management The measuring device features HistoROM data management. HistoROM data management comprises both the storage and import/export of key device and process data, making operation and servicing far more reliable, secure and efficient. When the device is delivered, the factory settings of the configuration data are stored as a backup in the device memory. This memory can be overwritten with an updated data record, for example after commissioning. ### Additional information on the data storage concept *There are different types of data storage units in which device data are stored and used by the device:* | | Device memory | T-DAT | S-DAT | |------------------|---|---|---| | Available data | Device firmware package | Event history, such as diagnostic events Measured value memory ("Extended HistoROM" order option) Current parameter data record (used by firmware at run time) Maximum indicators (min/max values) Totalizer values | Sensor data: diameter etc. Serial number User-specific access code (to use the "Maintenance" user role) Calibration data Device configuration (e.g. SW options, fixed I/O or multi I/O) | | Storage location | Fixed on the user interface board in the connection compartment | Can be plugged into the user interface board in the connection compartment | In the sensor plug in the transmitter neck part | # Data backup #### **Automatic** - The most important device data (sensor and transmitter) are automatically saved in the DAT modules - If the transmitter or measuring device is replaced: once the T-DAT containing the previous device data has been exchanged, the new measuring device is ready for operation again immediately without any errors - If the sensor is replaced: once the sensor has been replaced, new sensor data are transferred from the S-DAT in the measuring device and the measuring device is ready for operation again immediately without any errors ### Data transfer #### Manual Transfer of a device configuration to another device using the export function of the specific operating tool, e.g. with FieldCare, DeviceCare or Web server: to duplicate the configuration or to store in an archive (e.g. for backup purposes) # **Event list** #### **Automatic** - Chronological display of up to 20 event messages in the events list - If the **Extended HistoROM** application package (order option) is enabled: up to 100 event messages are displayed in the events list along with a time stamp, plain text description and remedial measures - The events list can be exported and displayed via a variety of interfaces and operating tools e.g. DeviceCare, FieldCare or Web server # Data logging #### Manual If the **Extended HistoROM** application package (order option) is enabled: - Record up to 1000 measured values via 1 to 4 channels - User configurable recording interval - Record up to 250 measured values via each of the 4 memory channels - Export the measured value log via a variety of interfaces and operating tools e.g. FieldCare, DeviceCare or web server # 16.12 Certificates and approvals # CE mark The measuring system is in conformity with the statutory requirements of the applicable EU Directives. These are listed in the corresponding EU Declaration of Conformity along with the standards applied. Endress+Hauser confirms successful testing of the device by affixing to it the CE mark. C-Tick symbol The measuring system meets the EMC requirements of the "Australian Communications and Media Authority (ACMA)". Ex approval The devices are certified for use in hazardous areas and the relevant safety instructions are provided in the separate "Control Drawing" document. Reference is made to this document on the nameplate. Drinking water approval ACS ■ KTW/W270 ■ NSF 61 WRAS BS 6920 Radio approval The measuring device has radio approval. For detailed information on the radio approval, see the Special Documentation → 🖺 155 Other standards and ■ EN 60529 # quidelines - Degrees of protection provided by enclosures (IP code) - EN 61010-1 Safety requirements for electrical equipment for measurement, control and laboratory use - general requirements ■ IEC/EN 61326 Emission in accordance with Class A requirements. Electromagnetic compatibility (EMC requirements). - ANSI/ISA-61010-1 (82.02.01): 2004 - Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use - Part 1 General Requirements - CAN/CSA-C22.2 No. 61010-1-04 - Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use - Part 1 General Requirements - NAMUR NE 21 - Electromagnetic compatibility (EMC) of industrial process and laboratory control equipment - NAMUR NE 32 - Data retention in the event of a power failure in field and control instruments with microprocessors - NAMUR NE 43 - Standardization of the signal level for the breakdown information of digital transmitters with analog output signal. - NAMUR NE 53 - Software of field devices and signal-processing devices with digital electronics ■ NAMUR NE 105 Specifications for integrating fieldbus devices in engineering tools for field devices ■ NAMUR NE 107 Self-monitoring and diagnosis of field devices ■ NAMUR NE 131 Requirements for field devices for standard applications # 16.13 Application packages Many different application packages are available to enhance the functionality of the device. Such packages might be needed to address safety aspects or specific application requirements. The application packages can be ordered with the device or subsequently from Endress+Hauser. Detailed information on the order code in question is available from your local Endress+Hauser sales center or on the product page of the Endress+Hauser website: www.endress.com. | 01 | | | |-----|--------|---------------------| | 1 1 | annin | $\boldsymbol{\tau}$ | | ١.١ | eaning | . 1 | | ٠. | | 7 | | Package | Description | |----------------------------------|---| | Electrode cleaning circuit (ECC) | The electrode cleaning circuit (ECC) function has been developed to have a solution for applications where magnetite (Fe $_3$ O $_4$) deposits frequently occur (e.g. hot water). Since magnetite is highly conductive this build up leads to measuring errors and ultimately to the loss of signal. The application package is designed to AVOID build up of highly conductive matter and thin layers (typical of magnetite). | #### Diagnostics functions | Package | Description | |-------------------|--| | Extended HistoROM | Comprises extended functions concerning the event log and the activation of the measured value memory. | | | Event log: Memory volume is extended from 20 message entries (standard version) to up to 100 entries. | | | Data logging (line recorder): Memory capacity for up to 1000 measured values is activated. 250 measured values can be output via each of the 4 memory channels. The recording interval can be defined and configured by the user. Measured value logs can be accessed via the local display or operating tool e.g. FieldCare, DeviceCare or Web server. | # Heartbeat Technology | Package | Description | |---------------------------------------|--| | Heartbeat Verification
+Monitoring | Heartbeat Verification Meets the requirement for traceable verification to DIN ISO 9001:2008 Chapter 7.6 a) "Control of monitoring and measuring equipment". Functional testing in the installed state without interrupting the process. Traceable
verification results on request, including a report. Simple testing process via local operation or other operating interfaces. Clear measuring point assessment (pass/fail) with high test coverage within the framework of manufacturer specifications. Extension of calibration intervals according to operator's risk assessment. | | | Heartbeat Monitoring Continuously supplies data, which are characteristic of the measuring principle, to an external condition monitoring system for the purpose of preventive maintenance or process analysis. These data enable the operator to: Draw conclusions - using these data and other information - about the impact process influences (such as corrosion, abrasion, buildup etc.) have on the measuring performance over time. Schedule servicing in time. Monitor the process or product quality, e.g. gas pockets. | # 16.14 Accessories Overview of accessories available for order $\rightarrow \implies 125$ # 16.15 Supplementary documentation - For an overview of the scope of the associated Technical Documentation, refer to the following: - The *W@M Device Viewer*: Enter the serial number from the nameplate (www.endress.com/deviceviewer) - The *Endress+Hauser Operations App*: Enter the serial number from the nameplate or scan the 2-D matrix code (QR code) on the nameplate. #### Standard documentation #### **Technical Information** | Measuring device | Documentation code | |------------------|--------------------| | Promag L 400 | TI01045D | #### **Brief Operating Instructions** Brief Operating Instructions for the sensor | Measuring device | Documentation code | |------------------|--------------------| | Proline Promag L | KA01265D | | Measuring device | Documentation code | |------------------|--------------------| | Promag 400 | KA?????D | # Description of device parameters | Measuring device | Documentation code | |------------------|--------------------| | Promag 400 | GP01045D | ### Supplementary devicedependent documentation ### **Special Documentation** | Content | Documentation code | |---------------------------|--------------------| | Heartbeat Technology | SD01847D | | Display modules A309/A310 | SD01793D | #### **Installation Instructions** | Contents | Comment | |---|--| | Installation instructions for spare part sets and accessories | Access the overview of all the available spare part sets via W@M Device Viewer → 123 Accessories available for order with Installation Instructions → 125 | # Index | A | Device components | |---|--| | Access authorization to parameters | Device description files | | Read access | Device documentation | | Write access | Supplementary documentation 8 | | Access code | Device locking, status | | Incorrect input | Device name | | Adapters | Sensor | | Adapting the diagnostic behavior | Transmitter | | Ambient temperature | Device repair | | Influence | Device revision | | Ambient temperature range 23 | Device type ID | | Application | DeviceCare | | Applicator | Diagnostic behavior | | Approvals | Explanation | | Auto scan buffer | Symbols | | see Modbus RS485 Modbus data map | Diagnostic information | | С | Communication interface | | | Design, description | | C-Tick symbol | DeviceCare | | Cable entries | FieldCare | | Technical data | Onsite display | | Cable entry Degree of protection | Overview | | CE mark | Remedial measures | | Certificates | Web browser | | Checklist | Diagnostic list | | Post-connection check 50 | Diagnostic message | | Post-installation check | Diagnostics | | Cleaning | Symbols | | Exterior cleaning | DIP switch | | Interior cleaning | see Write protection switch | | Commissioning | Direct access 61 | | Advanced settings | Direct access code | | Configuring the measuring device 80 | Disabling write protection | | Conductivity | Display | | Configuring error response mode, Modbus RS485 113 | see Local display | | Connecting cable | Display area | | Connecting the measuring device 44 | For operational display 54 | | Connection | In the navigation view | | see Electrical connection | Display values | | Connection examples, potential equalization 47 | For locking status | | Connection preparations 42 | Disposal | | Connection tools | Document | | Context menu | Function | | Calling up | Symbols used | | Closing | Document function | | Explanation | Down pipe | | Current consumption | Drinking water approval | | D | E | | Declaration of Conformity | ECC | | Define access code | Electrical connection | | Degree of protection 50, 134 | Computer with Web browser (e.g. Internet | | Design | Explorer) | | Measuring device | Degree of protection 50 | | Designated use | Measuring device | | | | | Operating tool (e.g. FieldCare, DeviceCare, AMS | Help text | |---|----------------------------------| | Device Manager, SIMATIC PDM) 72 | Calling up 62 | | Operating tools | Closing | | Via Modbus RS485 protocol 72 | Explanation 62 | | Via service interface (CDI-RJ45) 72 | • | | Via WLAN interface | I | | Web server | I/O electronics module | | WLAN interface | Identifying the measuring device | | Electromagnetic compatibility | Immersion in water | | Enabling write protection | Impact resistance | | Enabling/disabling the keypad lock 65 | Incoming acceptance | | Endress+Hauser services | Influence | | Maintenance | Ambient temperature | | Repair | Information on the document 6 | | Environment | Inlet runs | | Ambient temperature 23 | Input | | Impact resistance | Input mask | | Mechanical load | Inspection | | Shock resistance | Installation | | Storage temperature | Received goods | | Vibration resistance | Inspection check | | Error messages | Connection | | see Diagnostic messages | Installation | | Event list | Installation conditions | | Event logbook | Adapters | | Ex approval | Down pipe | | Extended order code | Heavy sensors | | Sensor | Immersion in water | | Transmitter | Inlet and outlet runs | | Exterior cleaning | Installation dimensions | | Exterior cleaning | Length of connecting cable | | F | Mounting location | | Field of application | Orientation | | Residual risks | Partially filled pipe | | FieldCare | System pressure | | Device description file | Vibrations | | Establishing a connection | Installation dimensions | | Function | Interior cleaning | | User interface | interior cleaning | | Filtering the event logbook | L | | Firmware | Languages, operation options | | Release date | Length of connecting cable | | Version | Line recorder | | Firmware history | Local display | | Fitted electrodes | Editing view | | Flow direction | Navigation view | | | see Operational display | | Flow limit | Low flow cut off | | Function check | Low now cut on | | Function codes | M | | Functions | Main electronics module | | see Parameter | Maintenance tasks | | G | Replacing seals | | | Manufacturer ID | | Galvanic isolation | Manufacturing date | | Н | Materials | | Hardware write protection | Maximum measured error | | Heavy sensors | Measured variables | | 11eavy 5e115015 | | | | Calculated | | Measured | 0 | |---|--------------------------------------| | see Process variables | Onsite display | | Measuring and test equipment | see Diagnostic message | | Measuring device | see In alarm condition | | Configuration | Operable flow range | | Conversion | Operating elements | | Design | Operating keys | | Disposal | see Operating elements | | Integrating via communication protocol 76 | Operating menu | | Mounting the sensor | Menus, submenus | | Mounting the ground cable/ground disks 28 | Structure | | Mounting the seals | Submenus and user roles | | Screw tightening torques | Operating philosophy | | Preparing for electrical connection 42 | Operation | | Preparing for mounting | | | Removing | Operation options | | Repairs | Operational display | | Switch-on | Operational safety | | Measuring principle | Order code | | Measuring range | Orientation (vertical, horizontal) | | Measuring system | Outlet runs | | Measuring tube specification | Output | | Mechanical load | Output signal | | | P | | Medium temperature range | - | | Diagnostics | Packaging disposal | | Setup | Changing | | Menus | Entering a value | | For measuring device configuration 80 | Parameter settings | | For specific settings | Administration (Submenu) | | Modbus RS485 | Communication (Submenu) | | Configuring error response mode | Data logging (Submenu) | | Diagnostic information | Device information (Submenu) | | Function codes | Diagnostics (Menu) | | Modbus data map | Display (Submenu) | | Read access | Display (Wizard) | | Reading out data | Electrode cleaning circuit (Submenu) | | Register addresses | Empty pipe detection (Wizard) | | Register information | Low flow cut off (Wizard) | | Response time | Process variables (Submenu) | | Scan list | Sensor adjustment (Submenu) | | Write access | Setup (Menu) | | Mounting dimensions | Simulation (Submenu) | | see Installation dimensions | System units (Submenu) | | Mounting location | Totalizer (Submenu) | | Mounting preparations | Totalizer 1 to n (Submenu) | | Mounting tools | Totalizer handling (Submenu) | | wioditing tools | Web server (Submenu) | | N | Partially filled pipe | | Nameplate | Performance characteristics | | Sensor | Post-connection check (checklist) 50 | | Transmitter | Post-installation check | | Navigation path (navigation view) 55 | Post-installation check (checklist) | | Navigation view | Potential equalization | | In the submenu | Power consumption | | In the wizard | Power supply failure | | Numeric editor | Pressure loss | | | Pressure
tightness | | | Pressure-temperature ratings | | | | | Process conditions Conductivity | Totalizer reset | |--|---| | Flow limit | Showing data logging | | Medium temperature | Signal on alarm | | Pressure loss | Software release | | Pressure tightness | Spare part | | Process connections | Spare parts | | Product safety | Special connection instructions 49 | | Protecting parameter settings 96 | Standards and guidelines | | _ | Status area | | R | For operational display 54 | | Radio approval | In the navigation view | | Read access | Status signals | | Reading measured values | Storage conditions | | Reading out diagnostic information, Modbus RS485 113 | Storage temperature | | Recalibration | Storage temperature range | | Reference operating conditions | Structure | | Registered trademarks | Operating menu | | Remedial measures | Submenu | | Calling up | Administration | | Closing | Advanced setup | | Remote operation | Communication | | Remote version | Data logging | | Connecting the signal cables 44 | Device information | | Repair of a device | Display | | Repairs | Electrode cleaning circuit | | Notes | Event list | | Repeatability | Output values | | Replacement | Overview | | Device components | Process variables | | Replacing seals | Sensor adjustment | | Requirements for personnel | Simulation | | Return | System units | | Tecum | Totalizer | | S | Totalizer 1 to n | | Safety | Totalizer handling | | Screw tightening torques | Web server | | Sensor | Supplementary documentation | | Mounting | Supply unit | | Serial number | Requirements | | Setting the operating language 80 | Supply voltage | | Settings | Surface roughness | | Adapting the measuring device to the process | Symbols | | conditions | For communication | | Administration | For correction | | Advanced display configurations | | | Communication interface | For diagnostic behavior | | Device reset | For measured variable | | Electrode cleaning circuit (ECC) | For measurement channel number | | Empty pipe detection (EPD) 87 | For menus | | Low flow cut off | | | Onsite display | For parameters | | Operating language 80 | For submenu | | Resetting the totalizer | For wizard | | Sensor adjustment | In the status area of the local display | | Simulation | In the text and numeric editor | | System units | System design | | Tag name | Measuring system | | Totalizer | see Measuring device design | | | see incasaring acrice aesign | | System integration | 76
24 | |---|----------| | Т | | | Technical data, overview | 2.7 | | Temperature range | _, | | Ambient temperature range for display 1 | 49 | | Storage temperature | | | Terminal assignment | | | terminals | | | Text editor | 57 | | Tool tip | | | see Help text | | | Tools | | | Electrical connection | | | For mounting | | | Transport | 19 | | Transmitter | 1. (| | Connecting the signal cables | | | Turning the display module | | | Turning the housing | | | Troubleshooting | 1) | | General | 05 | | Turning the display module | | | Turning the electronics housing | | | see Turning the transmitter housing | | | Turning the transmitter housing | 34 | | g | | | U | | | Use of the measuring device | | | Borderline cases | 10 | | | 10 | | see Designated use | | | User interface | | | Current diagnostic event | | | Previous diagnostic event | | | User roles | 53 | | V | | | Version data for the device | 76 | | Vibration resistance | | | Vibrations | | | | | | W | | | W@M 122, 1 | | | W@M Device Viewer 15, 1 | 23 | | Weight | | | Compact version | | | Sensor remote version | | | Transport (notes) | 19 | | Wizard | | | Display | | | Zimpey pipe deceedary | 87 | | | 86 | | 1 3 | 11 | | | 64 | | Write protection | 06 | | Via access code | | | via witte protection Switch | ノノ |