Description of Device Parameters

Proline Prosonic Flow 100

HART

Ultrasonic time-of-flight flowmeter
Table of contents

1 About this document 4
 1.1 Document function 4
 1.2 Target group 4
 1.3 Using this document 4
 1.3.1 Information on the document
 structure 4
 1.3.2 Structure of a parameter
 description 6
 1.4 Symbols used 6
 1.4.1 Symbols for certain types of
 information 6
 1.4.2 Symbols in graphics 7
 1.5 Documentation 7
 1.5.1 Standard documentation 7
 1.5.2 Supplementary device-dependent
 documentation 7

2 Overview of the Expert operating
 menu 8

3 Description of device parameters ... 10
 3.1 "System" submenu 13
 3.1.1 "Display" submenu 13
 3.1.2 "Administration" submenu 26
 3.1.3 "Diagn. handling" submenu 31
 3.2 "Sensor" submenu 38
 3.2.1 "Measured val." submenu 38
 3.2.2 "System units" submenu 47
 3.2.3 "Process param." submenu 53
 3.2.4 "External comp." submenu 57
 3.2.5 "Sensor adjustm." submenu 58
 3.2.6 "Calibration" submenu 60
 3.3 "Output" submenu 64
 3.3.1 "Current output 1" submenu 64
 3.3.2 "PFS output" submenu 78
 3.4 "Communication" submenu 98
 3.4.1 "HART output" submenu 98
 3.4.2 "Web server" submenu 115
 3.4.3 "Diag. config." submenu 118
 3.5 "Application" submenu 123
 3.5.1 "Totalizer 1 to n" submenu 124
 3.5.2 "Inventory count." submenu ... 128
 3.6 "Diagnostics" submenu 129
 3.6.1 "Diagnostic list" submenu 132
 3.6.2 "Event logbook" submenu 135
 3.6.3 "Device info" submenu 137
 3.6.4 "Mainboard module" submenu 141
 3.6.5 "Sens. electronic" submenu 142
 3.6.6 "Display module" submenu 143
 3.6.7 "Min/max val." submenu 144
 3.6.8 "Heartbeat" submenu 148
 3.6.9 "Simulation" submenu 149

4 Country-specific factory settings ... 156
 4.1 SI units 156
 4.1.1 System units 156
 4.1.2 Full scale values 156
 4.1.3 Output current span 156
 4.1.4 Pulse value 156
 4.1.5 On value low flow cut off 156
 4.2 US units 157
 4.2.1 System units 157
 4.2.2 Full scale values 157
 4.2.3 Output current span 157
 4.2.4 Pulse value 157
 4.2.5 On value low flow cut off 158

5 Explanation of abbreviated units ... 159
 5.1 SI units 159
 5.2 US units 159
 5.3 Imperial units 159

Index 160
1 About this document

1.1 Document function
The document is part of the Operating Instructions and serves as a reference for parameters, providing a detailed explanation of each individual parameter of the Expert operating menu.

It is used to perform tasks that require detailed knowledge of the function of the device:

- Commissioning measurements under difficult conditions
- Optimal adaptation of the measurement to difficult conditions
- Detailed configuration of the communication interface
- Error diagnostics in difficult cases

1.2 Target group
The document is aimed at specialists who work with the device over the entire life cycle and perform specific configurations.

1.3 Using this document

1.3.1 Information on the document structure
The document lists the submenus and their parameters according to the structure from the Expert menu (→ 8), which is displayed when the "Maintenance" user role is enabled.
Additional information regarding:
- The arrangement of the parameters according to the menu structure of the Operation menu, Setup menu, Diagnostics menu with a brief description: Operating Instructions → 7
- Operating concept of the operating menus: Operating Instructions

1 Sample graphic for the schematic layout of the operating menu.
1.3.2 Structure of a parameter description

The individual parts of a parameter description are described in the following section:

<table>
<thead>
<tr>
<th>Complete parameter name</th>
<th>Write-protected parameter</th>
</tr>
</thead>
</table>

Navigation
- Navigation path to the parameter via the local display (direct access code) or web browser
- Navigation path to the parameter via the operating tool
 The names of the menus, submenus and parameters are abbreviated to the form in which they appear on the display and in the operating tool.

Prerequisite
The parameter is only available under these specific conditions

Description
Description of the parameter function

Selection
List of the individual options for the parameter
- Option 1
- Option 2

User entry
Input range for the parameter

User interface
Display value/data for the parameter

Factory setting
Default setting ex works

Additional information
Additional explanations (e.g. in examples):
- On individual options
- On display values/data
- On the input range
- On the factory setting
- On the parameter function

1.4 Symbols used

1.4.1 Symbols for certain types of information

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tip</td>
<td>Indicates additional information.</td>
</tr>
<tr>
<td></td>
<td>Reference to documentation</td>
</tr>
<tr>
<td></td>
<td>Reference to page</td>
</tr>
<tr>
<td></td>
<td>Reference to graphic</td>
</tr>
<tr>
<td></td>
<td>Operation via local display</td>
</tr>
<tr>
<td></td>
<td>Operation via operating tool</td>
</tr>
<tr>
<td></td>
<td>Write-protected parameter</td>
</tr>
</tbody>
</table>
1.4.2 Symbols in graphics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3 ...</td>
<td>Item numbers</td>
<td>A, B, C, ...</td>
<td>Views</td>
</tr>
<tr>
<td>A-A, B-B, C-C</td>
<td>Sections</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.5 Documentation

1.5.1 Standard documentation

Operating Instructions

<table>
<thead>
<tr>
<th>Measuring device</th>
<th>Documentation code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prosonic Flow E 100</td>
<td>BA01769D</td>
</tr>
</tbody>
</table>

1.5.2 Supplementary device-dependent documentation

Special documentation

<table>
<thead>
<tr>
<th>Contents</th>
<th>Documentation code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information on the Pressure Equipment Directive</td>
<td>SD01614D</td>
</tr>
<tr>
<td>RFID TAG</td>
<td>SD01565D</td>
</tr>
<tr>
<td>Heartbeat Technology</td>
<td>SD02079D</td>
</tr>
</tbody>
</table>

Overview of the Expert operating menu

The following table provides an overview of the menu structure of the expert operating menu and its parameters. The page reference indicates where the associated description of the submenu or parameter can be found.

<table>
<thead>
<tr>
<th>Expert</th>
<th>→</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct access (0106)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locking status (0004)</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Access status (0005)</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Ent. access code (0003)</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>System</td>
<td>→</td>
<td>13</td>
</tr>
<tr>
<td>Display</td>
<td>→</td>
<td>13</td>
</tr>
<tr>
<td>Diagn. handling</td>
<td>→</td>
<td>31</td>
</tr>
<tr>
<td>Administration</td>
<td>→</td>
<td>26</td>
</tr>
<tr>
<td>Sensor</td>
<td>→</td>
<td>38</td>
</tr>
<tr>
<td>Measured val.</td>
<td>→</td>
<td>38</td>
</tr>
<tr>
<td>System units</td>
<td>→</td>
<td>47</td>
</tr>
<tr>
<td>Process param.</td>
<td>→</td>
<td>53</td>
</tr>
<tr>
<td>External comp.</td>
<td>→</td>
<td>57</td>
</tr>
<tr>
<td>Sensor adjustm.</td>
<td>→</td>
<td>58</td>
</tr>
<tr>
<td>Calibration</td>
<td>→</td>
<td>60</td>
</tr>
<tr>
<td>Output</td>
<td>→</td>
<td>64</td>
</tr>
<tr>
<td>Curr. output 1</td>
<td>→</td>
<td>64</td>
</tr>
<tr>
<td>PFS output 1</td>
<td>→</td>
<td>78</td>
</tr>
<tr>
<td>Communication</td>
<td>→</td>
<td>98</td>
</tr>
<tr>
<td>HART output</td>
<td>→</td>
<td>98</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Web server</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>Diag. config.</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>Application</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td>Reset all tot. (2806)</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td>Totalizer 1 to n</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>Diagnostics</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>Actual diagnos. (0691)</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>Prev.diagnostics (0690)</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>Time fr. restart (0653)</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>Operating time (0652)</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>Diagnostic list</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>Event logbook</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>Device info</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>Mainboard module</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td>Sens. electronic</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>Display module</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>Heartbeat</td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>Simulation</td>
<td>149</td>
<td></td>
</tr>
</tbody>
</table>
3 Description of device parameters

In the following section, the parameters are listed according to the menu structure of the local display. Specific parameters for the operating tools are included at the appropriate points in the menu structure.

| Expert |
| Direct access (0106) | → § 10
| Locking status (0004) | → § 11
| Access status (0005) | → § 12
| Ent. access code (0003) | → § 13
| System | → § 13
| Sensor | → § 38
| Output | → § 64
| Communication | → § 98
| Application | → § 123
| Diagnostics | → § 129

Direct access

Navigation

Expert → Direct access (0106)

Prerequisite

There is a local display with operating elements.

Description

Use this function to enter the access code to enable direct access to the desired parameter via the local display. A parameter number is assigned to each parameter for this purpose.

User entry

0 to 65535

Additional information

User entry

The direct access code consists of a 5-digit number (at maximum) and the channel number, which identifies the channel of a process variable: e.g. 00914-2. In the navigation view, this appears on the right-hand side in the header of the selected parameter.
1 Direct access code

Note the following when entering the direct access code:
- The leading zeros in the direct access code do not have to be entered.
 Example: Enter “914” instead of “00914”
- If no channel number is entered, channel 1 is accessed automatically.
 Example: Enter 00914 → Assign variable parameter
- If a different channel is accessed: Enter the direct access code with the corresponding channel number.
 Example: Enter 00914-2 → Assign variable parameter

Locking status

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Locking status (0004)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the active write protection.</td>
</tr>
<tr>
<td>User interface</td>
<td>Hardware locked</td>
</tr>
<tr>
<td></td>
<td>Temp. locked</td>
</tr>
<tr>
<td>Additional information</td>
<td>Display</td>
</tr>
<tr>
<td></td>
<td>If two or more types of write protection are active, the write protection with the highest priority is shown on the local display. In the operating tool all active types of write protection are displayed.</td>
</tr>
<tr>
<td></td>
<td>Detailed information on access authorization is provided in the 'User roles and associated access authorization' and 'Operating concept' sections of the Operations Instructions for the device → 7</td>
</tr>
</tbody>
</table>

Selection

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware locked (priority 1)</td>
<td>The write protection switch (DIP switch) for locking the hardware is activated on the main electronic module. This locks write access to the parameters.</td>
</tr>
<tr>
<td>Temp. locked (priority 2)</td>
<td>Write access to the parameters is temporarily locked on account of internal processes running in the device (e.g. data upload/download, reset etc.). Once the internal processing has been completed, the parameters can be changed once again.</td>
</tr>
</tbody>
</table>
Access stat.disp

Navigation
Expert → Access stat.disp (0091)

Prerequisite
A local display is provided.

Description
Displays the access authorization to the parameters via the local display.

User interface
- Operator
- Maintenance

Factory setting
Operator

Additional information
Description
If the 📜-symbol appears in front of a parameter, it cannot be modified via the local display with the current access authorization.

ℹ️ Access authorization can be modified via the Ent. access code parameter (→ 📜 13).

ℹ️ For information about the Ent. access code parameter: see the 'Disabling write protection via the access code' section of the Operating Instructions for the device.

ℹ️ If additional write protection is active, this restricts the current access authorization even further.

Display
Detailed information on access authorization is provided in the "User roles and associated access authorization" and "Operating concept" sections of the Operations Instructions for the device → 📜 7

Access status

Navigation
Expert → Access status (0005)

Description
Displays the access authorization to the parameters via the operating tool or Web browser.

User interface
- Operator
- Maintenance

Factory setting
Maintenance

Additional information
Description
Access authorization can be modified via the Ent. access code parameter (→ 📜 13).

ℹ️ If additional write protection is active, this restricts the current access authorization even further.

Display
Detailed information on access authorization is provided in the "User roles and associated access authorization" and "Operating concept" sections of the Operations Instructions for the device → 📜 7
Ent. access code

Navigation
Expert → Ent. access code (0003)

Description
Use this function to enter the user-specific release code to remove parameter write protection.

User entry
0 to 9999

3.1 "System" submenu

Navigation
Expert → System

3.1.1 "Display" submenu

Navigation
Expert → System → Display

<table>
<thead>
<tr>
<th>Display language (0104)</th>
<th>→ 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format display (0098)</td>
<td>→ 15</td>
</tr>
<tr>
<td>Value 1 display (0107)</td>
<td>→ 17</td>
</tr>
<tr>
<td>0% bargraph 1 (0123)</td>
<td>→ 17</td>
</tr>
<tr>
<td>100% bargraph 1 (0125)</td>
<td>→ 18</td>
</tr>
<tr>
<td>Decimal places 1 (0095)</td>
<td>→ 18</td>
</tr>
<tr>
<td>Value 2 display (0108)</td>
<td>→ 19</td>
</tr>
<tr>
<td>Decimal places 2 (0117)</td>
<td>→ 19</td>
</tr>
<tr>
<td>Value 3 display (0110)</td>
<td>→ 20</td>
</tr>
</tbody>
</table>
Display language

Navigation

Expert → System → Display → Display language (0104)

Prerequisite

A local display is provided.

Description

Use this function to select the configured language on the local display.

Selection

- English
- Deutsch *
- Français *
- Español *
- Italiano *
- Nederlands *
- Portuguesa *
- Polski *
- русский язык (Ru) *
- Svenska *
- Türkçe *
- 中文 (Chinese) *
- 日本語 (Japanese) *
- 한국어 (Korean) *
- العربية (Ara) *

* Visibility depends on order options or device settings
Factory setting

Format display

Navigation

Expert → System → Display → Format display (0098)

Prerequisite

A local display is provided.

Description

Use this function to select how the measured value is shown on the local display.

Selection

- 1 value, max.
- Bargr. + 1 value
- 2 values
- Val. large+2val.
- 4 values

Factory setting

1 value, max.

Additional information

Description

The display format (size, bar graph etc.) and number of measured values displayed simultaneously (1 to 4) can be configured. This setting only applies to normal operation.

- The Value 1 display parameter (→ 17) to Value 4 display parameter (→ 21) are used to specify which measured values are shown on the local display and in what order.
- If more measured values are specified than the display mode selected permits, then the values alternate on the device display. The display time until the next change is configured via the Display interval parameter (→ 22).

* Visibility depends on order options or device settings
Possible measured values shown on the local display:

"1 value, max." option

![Image of the local display showing a single value]

"Bargr. + 1 value" option

![Image of the local display showing a bar graph and a single value]

"2 values' option

![Image of the local display showing two values]

"Val. large+2val." option

![Image of the local display showing a large value and two additional values]

"4 values' option

![Image of the local display showing four values]
Value 1 display

Navigation

Expert → System → Display → Value 1 display (0107)

Prerequisite

A local display is provided.

Description

Use this function to select one of the measured values to be shown on the local display.

Selection

- Mass flow
- Sound velocity
- Flow velocity
- Temperature
- Volume flow
- Curr.output 1
- Acceptance rate
- Signal asymmetry
- Turbulence
- Signal strength
- Curr.output 1
- SNR
- Totalizer 1
- Totalizer 2
- Totalizer 3

Factory setting

Volume flow

Additional information

If several measured values are displayed at once, the measured value selected here will be the first value to be displayed. The value is only displayed during normal operation.

The **Format display** parameter (→ 15) is used to specify how many measured values are displayed simultaneously and how.

Dependency

The unit of the displayed measured value is taken from the **System units** submenu (→ 47).

0% bargraph 1

Navigation

Expert → System → Display → 0% bargraph 1 (0123)

Prerequisite

A local display is provided.

Description

Use this function to enter the 0% bar graph value to be shown on the display for the measured value 1.

User entry

Signed floating-point number

Visibility depends on order options or device settings
Description of device parameters

100% bargraph 1

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → System → Display → 100% bargraph 1 (0125)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>A local display is provided.</td>
</tr>
<tr>
<td>Description</td>
<td>Use this function to enter the 100% bar graph value to be shown on the display for the measured value 1.</td>
</tr>
<tr>
<td>User entry</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Factory setting</td>
<td>Depends on country and nominal diameter → 156</td>
</tr>
<tr>
<td>Additional information</td>
<td>Description</td>
</tr>
<tr>
<td></td>
<td>The Format display parameter (→ 15) is used to specify that the measured value is to be displayed as a bar graph.</td>
</tr>
<tr>
<td></td>
<td>User entry</td>
</tr>
<tr>
<td></td>
<td>The unit of the displayed measured value is taken from the System units submenu (→ 47).</td>
</tr>
</tbody>
</table>

Decimal places 1

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → System → Display → Decimal places 1 (0095)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>A measured value is specified in the Value 1 display parameter (→ 17).</td>
</tr>
<tr>
<td>Description</td>
<td>Use this function to select the number of decimal places for measured value 1.</td>
</tr>
</tbody>
</table>
| Selection | • x
• x.x
• x.xx
• x.xxx
• x.xxxx |
| Factory setting | x.xx |
Additional information

Description

This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.

Value 2 display

Navigation

Expert → System → Display → Value 2 display (0108)

Prerequisite

A local display is provided.

Description

Use this function to select one of the measured values to be shown on the local display.

Selection

For the picklist, see the Value 1 display parameter (→ 17)

Factory setting

None

Additional information

Description

If several measured values are displayed at once, the measured value selected here will be the second value to be displayed. The value is only displayed during normal operation.

The Format display parameter (→ 15) is used to specify how many measured values are displayed simultaneously and how.

Dependency

The unit of the displayed measured value is taken from the System units submenu (→ 47).

Decimal places 2

Navigation

Expert → System → Display → Decimal places 2 (0117)

Prerequisite

A measured value is specified in the Value 2 display parameter (→ 19).

Description

Use this function to select the number of decimal places for measured value 2.

Selection

- x
- x.x
- x.xx
- x.xxx
- x.xxxx

Factory setting

x.xx

Additional information

Description

This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.
Value 3 display

Navigation
Expert → System → Display → Value 3 display (0110)

Prerequisite
A local display is provided.

Description
Use this function to select one of the measured values to be shown on the local display.

Selection
For the picklist, see the **Value 1 display** parameter (→ 17)

Factory setting
None

Additional information

Description
If several measured values are displayed at once, the measured value selected here will be the third value to be displayed. The value is only displayed during normal operation.

The **Format display** parameter (→ 15) is used to specify how many measured values are displayed simultaneously and how.

Selection

The unit of the displayed measured value is taken from the **System units** submenu (→ 47).

0% bargraph 3

Navigation
Expert → System → Display → 0% bargraph 3 (0124)

Prerequisite
A selection was made in the **Value 3 display** parameter (→ 20).

Description
Use this function to enter the 0% bar graph value to be shown on the display for the measured value 3.

User entry
Signed floating-point number

Factory setting
Country-specific:
- 0 m³/h
- 0 ft³/h

Additional information

Description

The **Format display** parameter (→ 15) is used to specify that the measured value is to be displayed as a bar graph.

User entry

The unit of the displayed measured value is taken from the **System units** submenu (→ 47).
100% bargraph 3

Navigation

- Expert → System → Display → 100% bargraph 3 (0126)

Prerequisite

A selection was made in the **Value 3 display** parameter (→ 20).

Description

Use this function to enter the 100% bar graph value to be shown on the display for the measured value 3.

User entry

Signed floating-point number

Factory setting

0

Additional information

Description

The **Format display** parameter (→ 15) is used to specify that the measured value is to be displayed as a bar graph.

User entry

The unit of the displayed measured value is taken from the **System units** submenu (→ 47).

Decimal places 3

Navigation

- Expert → System → Display → Decimal places 3 (0118)

Prerequisite

A measured value is specified in the **Value 3 display** parameter (→ 20).

Description

Use this function to select the number of decimal places for measured value 3.

Selection

- x
- x.x
- x.xx
- x.xxx
- x.xxxx

Factory setting

x.xx

Additional information

Description

This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.

Value 4 display

Navigation

- Expert → System → Display → Value 4 display (0109)

Prerequisite

A local display is provided.
Description

Use this function to select one of the measured values to be shown on the local display.

Selection

For the picklist, see the Value 1 display parameter (→ 17)

Factory setting

None

Additional information

Description

If several measured values are displayed at once, the measured value selected here will be the fourth value to be displayed. The value is only displayed during normal operation.

The Format display parameter (→ 15) is used to specify how many measured values are displayed simultaneously and how.

Selection

The unit of the displayed measured value is taken from the System units submenu (→ 47).

Decimal places 4

Navigation

Expert → System → Display → Decimal places 4 (0119)

Prerequisite

A measured value is specified in the Value 4 display parameter (→ 21).

Description

Use this function to select the number of decimal places for measured value 4.

Selection

- x
- x.x
- x.xx
- x.xxx
- x.xxxx

Factory setting

x.xx

Additional information

Description

This setting does not affect the measuring or computational accuracy of the device.

The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.

Display interval

Navigation

Expert → System → Display → Display interval (0096)

Prerequisite

A local display is provided.

Description

Use this function to enter the length of time the measured values are displayed if the values alternate on the display.

User entry

1 to 10 s
Display damping

Navigation

Expert → System → Display → Display damping (0094)

Prerequisite

A local display is provided.

Description

Use this function to enter a time constant for the reaction time of the local display to fluctuations in the measured value caused by process conditions.

User entry

0.0 to 999.9 s

Factory setting

0.0 s

Additional information

Use this function to enter a time constant (PT1 element ¹) for display damping:
- If a low time constant is entered, the display reacts particularly quickly to fluctuating measured variables.
- On the other hand, the display reacts more slowly if a high time constant is entered.

Damping is switched off if 0 is entered (factory setting).

Header

Navigation

Expert → System → Display → Header (0097)

Prerequisite

A local display is provided.

Description

Use this function to select the contents of the header of the local display.

Selection

- Device tag
- Free text

Factory setting

Device tag

¹ proportional transmission behavior with first order delay
Additional information

Description
The header text only appears during normal operation.

| 1 | Position of the header text on the display |

Selection

- Device tag
 Is defined in the Device tag parameter (→ 138).
- Free text
 Is defined in the Header text parameter (→ 24).

Header text

Navigation

Expert → System → Display → Header text (0112)

Prerequisite
In the Header parameter (→ 23), the Free text option is selected.

Description
Use this function to enter a customer-specific text for the header of the local display.

User entry
Max. 12 characters such as letters, numbers or special characters (e.g. @, %, /)

Factory setting

Additional information

Description
The header text only appears during normal operation.

User entry
The number of characters displayed depends on the characters used.
Separator

Navigation

Prerequisite A local display is provided.

Description Use this function to select the decimal separator.

Selection

Factory setting . (point)

Contrast display

Navigation

Prerequisite A local display is provided.

Description Use this function to enter a value to adapt the display contrast to the ambient conditions (e.g. the lighting or viewing angle).

User entry 20 to 80 %

Factory setting Depends on the display

Backlight

Navigation

Description Use this function to switch the backlight of the local display on and off.

Selection

Factory setting Enable

Access stat.disp

Navigation

Prerequisite A local display is provided.

Description Displays the access authorization to the parameters via the local display.
Description of device parameters

User interface
- Operator
- Maintenance

Factory setting
Operator

Additional information

Description
If the ☐-symbol appears in front of a parameter, it cannot be modified via the local display with the current access authorization.

Access authorization can be modified via the Ent. access code parameter (→ ☐ 13).

For information about the Ent. access code parameter: see the "Disabling write protection via the access code" section of the Operating Instructions for the device.

If additional write protection is active, this restricts the current access authorization even further.

Display
Detailed information on access authorization is provided in the "User roles and associated access authorization" and "Operating concept" sections of the Operating Instructions for the device (→ ☐ 7)

3.1.2 "Administration" submenu

Navigation

Expert → System → Administration

<table>
<thead>
<tr>
<th>➤ Administration</th>
<th>➤ Def. access code</th>
<th>➤ Reset acc. code</th>
</tr>
</thead>
</table>

- Device reset (0000) ➤ ☐ 29
- Activate SW opt. (0029) ➤ ☐ 30
- SW option overv. (0015) ➤ ☐ 31

"Def. access code" wizard

The Def. access code wizard (→ ☐ 26) is only available when operating via the local display or Web browser.

If operating via the operating tool, the Def. access code parameter (→ ☐ 29) can be found directly in the Administration submenu. There is no Confirm code parameter if the device is operated via the operating tool.
Description of device parameters

Navigation

Expert → System → Administration → Def. access code

Def. access code

Description

Use this function to enter a user-specific release code to restrict write-access to the parameters. This protects the configuration of the device against any inadvertent changes via the local display or Web browser.

User entry

0 to 9999

Factory setting

0

Additional information

Description

The write protection affects all parameters in the document marked with the symbol. On the local display, the symbol in front of a parameter indicates that the parameter is write-protected.

The parameters that cannot be write-accessed are grayed out in the Web browser.

Once the access code has been defined, write-protected parameters can only be modified if the access code is entered in the Ent. access code parameter (→ 13).

If you lose the access code, please contact your Endress+Hauser sales organization.

User entry

A message is displayed if the access code is not in the input range.

Factory setting

If the factory setting is not changed or 0 is defined as the access code, the parameters are not write-protected and the device configuration data can be modified. The user is logged on in the "Maintenance" role.

Confirm code

Navigation

Expert → System → Administration → Def. access code → Confirm code

Description

Enter the defined release code a second time to confirm the release code.

User entry

0 to 9999
Description of device parameters

Proline Prosonic Flow 100 HART

Factory setting

0

"Reset access code" submenu

Navigation

Expert → System → Administration → Reset acc. code

Reset acc. code

Operating time (0652)

Reset acc. code (0024)

Description

Use this function to display the length of time the device has been in operation.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

User interface

The maximum number of days is 9999, which is equivalent to 27 years.

Reset acc. code

Navigation

Expert → System → Administration → Reset acc. code → Reset acc. code (0024)

Description

Use this function to enter a reset code to reset the user-specific release code to the factory setting.

User entry

Character string comprising numbers, letters and special characters

Factory setting

0x00
Additional information

Description

For a reset code, contact your Endress+Hauser service organization.

User entry

The reset code can only be entered via:
- Web browser
- DeviceCare, FieldCare (via interface CDI RJ45)
- Fieldbus

Additional parameters in the "Administration" submenu

<table>
<thead>
<tr>
<th>Def. access code</th>
</tr>
</thead>
</table>

Navigation

Expert → System → Administration → Def. access code

Description

Use this function to enter a user-specific release code to restrict write-access to the parameters. This protects the configuration of the device against any inadvertent changes via the operating tool.

User entry

0 to 9999

Factory setting

0

Additional information

Description

The write protection affects all parameters in the document marked with the symbol.

User entry

A message is displayed if the access code is not in the input range.

Factory setting

If the factory setting is not changed or 0 is defined as the access code, the parameters are not write-protected and the device configuration data can be modified. The user is logged on in the "Maintenance" role.

Device reset

Navigation

Expert → System → Administration → Device reset (0000)

Description

Use this function to choose whether to reset the device configuration - either entirely or in part - to a defined state.
Selection
- Cancel
- To delivery set.
- Restart device
- Rest.S-DATBackup

Factory setting
Cancel

Additional information
Selection

| Options | Description |
|--------------------|---|---|
| Cancel | No action is executed and the user exits the parameter. |
| To delivery set. | Every parameter for which a customer-specific default setting was ordered is reset to this customer-specific value. All other parameters are reset to the factory setting. |
| | This option is not visible if no customer-specific settings have been ordered. |
| Restart device | The restart resets every parameter whose data are in the volatile memory (RAM) to the factory setting (e.g. measured value data). The device configuration remains unchanged. |

Activate SW opt.

Navigation

Expert → System → Administration → Activate SW opt. (0029)

Description
Use this function to enter an activation code to enable an additional, ordered software option.

User entry
Max. 10-digit string consisting of numbers.

Factory setting
Depends on the software option ordered

Additional information
Description
If a measuring device was ordered with an additional software option, the activation code is programmed in the device at the factory.

User entry
To activate a software option subsequently, please contact your Endress+Hauser sales organization.

NOTE!
The activation code is linked to the serial number of the measuring device and varies according to the device and software option.

If an incorrect or invalid code is entered, this results in the loss of software options that have already been activated.

- Before you enter a new activation code, make a note of the current activation code.
- Enter the new activation code provided by Endress+Hauser when the new software option was ordered.
- Once the activation code has been entered, check if the new software option is displayed in the **SW option overv.** parameter (→ 31).

⇒ The new software option is active if it is displayed.
If the new software option is not displayed or all software options have been deleted, the code entered was either incorrect or invalid.

- If the code entered is incorrect or invalid, enter the old activation code.
- Have your Endress+Hauser sales organization check the new activation code remembering to specify the serial number or ask for the code again.

Example for a software option

Order code for "Application package", option **EB 'Heartbeat Verification + Monitoring'**

The software options currently enabled are displayed in the SW option overv. parameter (→ 31).

Web browser

Once a software option has been activated, the page must be loaded again in the Web browser.

SW option overv.

Navigation

[Expert → System → Administration → SW option overv. (0015)]

Description

Displays all the software options that are enabled in the device.

User interface

- HBT Monitoring
- HBT Verification

Additional information

Description

Displays all the options that are available if ordered by the customer.

'HBT Verification' option and 'HBT Monitoring' option

Order code for "Application package", option **EB 'Heartbeat Verification + Monitoring'**

3.1.3 "Diagn. handling" submenu

Navigation

[Expert → System → Diagn. handling]

- [Diagn. handling](#)

 - Alarm delay (0651) → 32

- [Diagn. behavior](#) → 32
Alarm delay

Navigation

Expert → System → Diagn. handling → Alarm delay (0651)

Description

Use this function to enter the time interval until the device generates a diagnostic message.

The diagnostic message is reset without a time delay.

User entry

0 to 60 s

Factory setting

0 s

Additional information

This setting affects the following diagnostic messages:

- 832 Electronic temp.
- 833 Electronic temp.
- 834 Process temp.
- 835 Process temp.

"Diagn. behavior" submenu

Each item of diagnostic information is assigned a specific diagnostic behavior at the factory. The user can change this assignment for specific diagnostic information in the Diagn. behavior submenu (→ 32).

The following options are available in the Assign behavior of diagnostic no. xxx parameters:

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm</td>
<td>The device stops measurement. The signal outputs and totalizers assume the defined alarm condition. A diagnostic message is generated.</td>
</tr>
<tr>
<td>Warning</td>
<td>The device continues to measure. The signal outputs and totalizers are not affected. A diagnostic message is generated.</td>
</tr>
<tr>
<td>Logbook only</td>
<td>The device continues to measure. The diagnostic message is entered only in the Event logbook submenu (→ 135) (Event list submenu (→ 136)) and is not displayed in alternation with the measured value display.</td>
</tr>
<tr>
<td>Off</td>
<td>The diagnostic event is ignored, and no diagnostic message is generated or entered.</td>
</tr>
</tbody>
</table>

For a list of all the diagnostic events, see the Operating Instructions for the device → 7 → 7

Navigation

Expert → System → Diagn. handling → Diagn. behavior

Diagnostic no. 441 (0657) → 33
Diagnostic no. 442 (0658) → 33
Diagnostic no. 441 (Curr.output 1)

Navigation
[Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 441 (0657)]

Description
Option for changing the diagnostic behavior of the diagnostic message 441 Curr.output 1.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
Detailed description of the options available for selection: [→ 32]

Diagnostic no. 442 (Freq. output)

Navigation
[Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 442 (0658)]

Prerequisite
The measuring device has a pulse/frequency/switch output.

Description
Option for changing the diagnostic behavior of the diagnostic message 442 Freq. output.
Description of device parameters

Proline Prosonic Flow 100 HART

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
Selection
Detailed description of the options available for selection: → 32

Diagnostic no. 443 (Pulse output)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 443 (0659)

Prerequisite
The measuring device has a pulse/frequency/switch output.

Description
Option for changing the diagnostic behavior of the diagnostic message 443 Pulse output.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
Selection
Detailed description of the options available for selection: → 32

Diagnostic no. 841 (Sensor range)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 840 (0680)

Description
Option for changing the diagnostic behavior of the diagnostic message 841 Sensor range.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
Detailed description of the options available for selection: → 32
Diagnostic no. 881 (Sen.sig. path 1 to n)

Navigation
- Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 881 (0724)

Description
Option for changing the diagnostic behavior of the diagnostic message **881 Sen.sig. path 1 to n**.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
Detailed description of the options available for selection: → 32

Diagnostic no. 835 (Process temp.)

Navigation
- Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 835 (0678)

Description
Option for changing the diagnostic behavior of the diagnostic message **835 Process temp.**.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
Selection
Detailed description of the options available for selection: → 32

Diagnostic no. 834 (Process temp.)

Navigation
- Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 834 (0677)

Description
Option for changing the diagnostic behavior of the diagnostic message **834 Process temp.**.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning
Diagnostic no. 833 (Electronic temp.)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 833 (0676)

Description

Option for changing the diagnostic behavior of the diagnostic message **833 Electronic temp.**.

Selection

- Off
- Alarm
- Warning
- Logbook only

Factory setting

Warning

Additional information

Detailed description of the options available for selection: → 32

Diagnostic no. 832 (Electronic temp.)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 832 (0675)

Description

Option for changing the diagnostic behavior of the diagnostic message **832 Electronic temp.**.

Selection

- Off
- Alarm
- Warning
- Logbook only

Factory setting

Warning

Additional information

Detailed description of the options available for selection: → 32

Diagnostic no. 302 (Verific. active)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 302 (0742)

Description

Option for changing the diagnostic behavior of the diagnostic message **302 Verific. active.**
Selection

- Off
- Alarm
- Warning
- Logbook only

Factory setting

Warning

Additional information

Detailed description of the options available for selection: → 32

Diagnostic no. 125 (Rel. sound vel.)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 125 (0775)

Description

Option for changing the diagnostic behavior of the diagnostic message 125 Rel. sound vel.

Selection

- Off
- Alarm
- Warning
- Logbook only

Factory setting

Warning

Additional information

Detailed description of the options available for selection: → 32

Diagnostic no. 124 (Rel. sig. strength)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 124 (0774)

Description

Option for changing the diagnostic behavior of the diagnostic message 124 Rel. sig. strength.

Selection

- Off
- Alarm
- Warning
- Logbook only

Factory setting

Warning

Additional information

Detailed description of the options available for selection: → 32
Diagnostic no. 160 (Signal path off)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 160 (0776)

Description
Option for changing the diagnostic behavior of the diagnostic message **160 Signal path off**.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
Detailed description of the options available for selection: → 32

3.2 "Sensor" submenu

Navigation
Expert → Sensor

- Sensor
 - Measured val. → 38
 - System units → 47
 - Process param. → 53
 - External comp. → 57
 - Sensor adjustm. → 58
 - Calibration → 60

3.2.1 "Measured val." submenu

Navigation
Expert → Sensor → Measured val.

- Measured val.
 - Process variab. → 39
 - System values → 40
"Process variab." submenu

Navigation

Volume flow

Navigation

Description

Displays the volume flow that is currently measured.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the **Volume flow unit** parameter (→ 47)

Mass flow

Navigation

Description

Displays the mass flow currently calculated.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the **Mass flow unit** parameter (→ 49)
Sound velocity

Navigation

Description

Displays the sound velocity currently measured.

User interface

Signed floating-point number

Flow velocity

Navigation

Description

Displays the flow velocity currently measured.

User interface

Signed floating-point number

Temperature

Navigation

Description

Displays the medium temperature currently measured.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the **Temperature unit** parameter (→ 50)

“System values” submenu

Navigation

Expert → Sensor → Measured val. → System values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal strength (2914)</td>
<td>→ 41</td>
</tr>
<tr>
<td>Asymmetry (2913)</td>
<td>→ 41</td>
</tr>
<tr>
<td>SNR (2917)</td>
<td>→ 42</td>
</tr>
<tr>
<td>Turbulence (2907)</td>
<td>→ 42</td>
</tr>
</tbody>
</table>
Signal strength

Navigation

Expert → Sensor → Measured val. → System values → Signal strength (2914)

Description

Use this function to display the current signal strength.

User interface

Signed floating-point number

Additional information

Description

A drop in the signal strength over time can be an indicator of deposit buildup on the converter or high ultrasonic damping in the gas. A very fast drop is an indication of a high concentration of CO$_2$.

Acceptance rate

Navigation

Expert → Sensor → Measured val. → System values → Acceptance rate (2912)

Description

Displays the ratio of the number of ultrasonic signals accepted for flow calculation and the total number of ultrasonic signals emitted.

Multipath measuring devices only: Displays the minimum of all acceptance rates measured.

User interface

0 to 100 %

Asymmetry

Navigation

Expert → Sensor → Measured val. → System values → Asymmetry (2913)

Prerequisite

The Dual path sensor option is selected in the Path conf. parameter parameter.

Description

Use this function to display the asymmetry of the measured values between signal path 1 and signal path 2.

User interface

Signed floating-point number

Factory setting

0 %

Additional information

Limit values

If the value 0 is displayed, both measured values are the same. The higher the displayed value, the greater the difference between the two measured values of the signal paths.
SNR

Navigation

[Expert → Sensor → Measured val. → System values → SNR (2917)]

Description

Use this function to display the current signal-to-noise ratio.

User interface

Signed floating-point number

Additional information

Description

A low value or a drop in the signal to noise ratio over time is an indicator of poor signal quality. A very fast drop is an indication of a high concentration of CO₂.

Turbulence

Navigation

[Expert → Sensor → Measured val. → System values → Turbulence (2907)]

Description

Use this function to display the current turbulence.

User interface

Signed floating-point number

Reynolds number

Navigation

[Expert → Sensor → Measured val. → System values → Reynolds number (2908)]

Description

Displays the Reynolds number.

User interface

Signed floating-point number

Profile factor

Navigation

[Expert → Sensor → Measured val. → System values → Profile factor (2909)]

Description

Displays the profile factor.

The profile factor describes the correction factor applied based on the flow profile present. The more the profile deviates from even distribution, the smaller the factor. The profile factor is used to calculate the flow rate.

User interface

Signed floating-point number
"Output values" submenu

Navigation

![Expert → Sensor → Measured val. → Output values](#)

<table>
<thead>
<tr>
<th>Output values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output curr. 1 (0361–1) → 43</td>
</tr>
<tr>
<td>Measur. curr. 1 (0366–1) → 43</td>
</tr>
<tr>
<td>Pulse output 1 (0456–1) → 43</td>
</tr>
<tr>
<td>Output freq. 1 (0471–1) → 44</td>
</tr>
<tr>
<td>Switch status 1 (0461–1) → 44</td>
</tr>
</tbody>
</table>

Output curr. 1

Navigation

![Expert → Sensor → Measured val. → Output values → Output curr. 1 (0361–1)](#)

Description

Displays the current value currently calculated for the current output.

User interface

0 to 22.5 mA

Measur. curr. 1

Navigation

![Expert → Sensor → Measured val. → Output values → Measur. curr. 1 (0366–1)](#)

Description

Use this function to display the actual measured value of the output current.

User interface

0 to 30 mA

Pulse output 1

Navigation

![Expert → Sensor → Measured val. → Output values → Pulse output 1 (0456–1)](#)

Prerequisite

The Pulse option is selected in the Operating mode parameter (→ 80) parameter.

Description

Displays the pulse frequency currently output.

User interface

Positive floating-point number
Description of device parameters

Proline Prosonic Flow 100 HART

Additional information

Description

- The pulse output is an open collector output.
- This is configured at the factory in such a way that the transistor is conductive for the duration of the pulse (NO contact) and is safety-oriented.
- The Value per pulse parameter (→ 82) and Pulse width parameter (→ 82) can be used to define the value (i.e. the measured value amount that corresponds to a pulse) and the duration of the pulse.

![Diagram of NC and NO contacts](image)

0 Non-conductive
1 Conductive
NC NC contact (normally closed)
NO NO contact (normally open)

The output behavior can be reversed via the Invert outp.sig. parameter (→ 97) i.e. the transistor does not conduct for the duration of the pulse.

In addition, the behavior of the output in the event of a device alarm (Failure mode parameter (→ 84)) can be configured.

Output freq. 1

Navigation
Expert → Sensor → Measured val. → Output values → Output freq. 1 (0471–1)

Prerequisite
In the Operating mode parameter (→ 80), the Frequency option is selected.

Description
Displays the actual value of the output frequency which is currently measured.

User interface
0.0 to 12 500.0 Hz

Switch status 1

Navigation
Expert → Sensor → Measured val. → Output values → Switch status 1 (0461–1)

Prerequisite
The Switch option is selected in the Operating mode parameter (→ 80).

Description
Displays the current switch status of the status output.

User interface
- Open
- Closed
Additional information

User interface

- Open
 The switch output is not conductive.
- Closed
 The switch output is conductive.

"Totalizer" submenu

Navigation Expert → Sensor → Measured val. → Totalizer

| Totalizer val. 1 to n (0911–1 to n) | ➔ 45 |
| Tot. overflow 1 to n (0910–1 to n) | ➔ 46 |

Totalizer val. 1 to n

Navigation Expert → Sensor → Measured val. → Totalizer → Totalizer val. 1 to n (0911–1 to n)

Prerequisite

One of the following options is selected in the Assign variable parameter (➔ 124) of the Totalizer 1 to n submenu:

- Volume flow
- Mass flow

Description

Displays the current totalizer reading.

User interface

Signed floating-point number
Description of device parameters

Proline Prosonic Flow 100 HART

Additional information

Description

As it is only possible to display a maximum of 7 digits in the operating tool, the current counter value is the sum of the totalizer value and the overflow value from the **Tot. overflow 1 to n** parameter if the display range is exceeded.

In the event of an error, the totalizer adopts the mode defined in the **Failure mode** parameter (→ 127).

User interface

The value of the process variable totalized since measuring began can be positive or negative. This depends on the settings in the **Operation mode** parameter (→ 125).

The unit of the selected process variable is specified for the totalizer in the **Unit totalizer** parameter (→ 125).

Example

Calculation of the current totalizer reading when the value exceeds the 7-digit display range of the operating tool:

- Value in the **Totalizer val. 1** parameter: 1968457 m³
- Value in the **Tot. overflow 1** parameter: 1 \cdot 10^7 (1 overflow) = 10000000 [m³]
- Current totalizer reading: 11968457 m³

Tots. overflow 1 to n

Navigation

Expert → Sensor → Measured val. → Totalizer → Tot. overflow 1 to n (0910–1 to n)

Prerequisite

One of the following options is selected in the **Assign variable** parameter (→ 124) of the **Totalizer 1 to n** submenu:

- Volume flow
- Mass flow

Description

Displays the current totalizer overflow.

User interface

Integer with sign

Additional information

Description

If the current totalizer reading exceeds 7 digits, which is the maximum value range that can be displayed by the operating tool, the value above this range is output as an overflow. The current totalizer value is therefore the sum of the overflow value and the totalizer value from the **Totalizer val. 1 to n** parameter.

User interface

The unit of the selected process variable is specified for the totalizer in the **Unit totalizer** parameter (→ 125).

Example

Calculation of the current totalizer reading when the value exceeds the 7-digit display range of the operating tool:

- Value in the **Totalizer val. 1** parameter: 1968457 m³
- Value in the **Tot. overflow 1** parameter: 2 \cdot 10^7 (2 overflows) = 20000000 [m³]
- Current totalizer reading: 21968457 m³
3.2.2 "System units" submenu

Navigation

Expert → Sensor → System units

<table>
<thead>
<tr>
<th>System units</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume flow unit (0553)</td>
<td>→ 47</td>
</tr>
<tr>
<td>Volume unit (0563)</td>
<td>→ 49</td>
</tr>
<tr>
<td>Mass flow unit (0554)</td>
<td>→ 49</td>
</tr>
<tr>
<td>Mass unit (0574)</td>
<td>→ 50</td>
</tr>
<tr>
<td>Temperature unit (0557)</td>
<td>→ 50</td>
</tr>
<tr>
<td>Length unit (0551)</td>
<td>→ 51</td>
</tr>
<tr>
<td>Velocity unit (0566)</td>
<td>→ 51</td>
</tr>
<tr>
<td>Density unit (0555)</td>
<td>→ 52</td>
</tr>
<tr>
<td>Kin. visc. unit (0578)</td>
<td>→ 53</td>
</tr>
<tr>
<td>Date/time format (2812)</td>
<td>→ 53</td>
</tr>
</tbody>
</table>

Volume flow unit

Navigation

Expert → Sensor → System units → Volume flow unit (0553)

Description

Use this function to select the unit for the volume flow.
Selection

SI units
- cm³/s
- cm³/min
- cm³/h
- cm³/d
- dm³/s
- dm³/min
- dm³/h
- dm³/d
- m³/s
- m³/min
- m³/h
- m³/d
- l/s
- l/min
- l/h
- l/d
- hl/s
- hl/min
- hl/h
- hl/d
- Ml/s
- Ml/min
- Ml/h
- Ml/d

US units
- af/s
- af/min
- af/h
- af/d
- ft³/s
- ft³/min
- ft³/h
- ft³/d
- fl oz/s (us)
- fl oz/min (us)
- fl oz/h (us)
- fl oz/d (us)
- gal/s (us)
- gal/min (us)
- gal/h (us)
- gal/d (us)
- kgal/s (us)
- kgal/min (us)
- kgal/h (us)
- kgal/d (us)
- bbl/s (us; liq.)
- bbl/min (us; liq.)
- bbl/h (us; liq.)
- bbl/d (us; liq.)
- bbl/s (us; beer)
- bbl/min (us; beer)
- bbl/h (us; beer)
- bbl/d (us; beer)
- bbl/s (us; oil)
- bbl/min (us; oil)
- bbl/h (us; oil)
- bbl/d (us; oil)
- bbl/s (us; tank)
- bbl/min (us; tank)
- bbl/h (us; tank)
- bbl/d (us; tank)

Imperial units
- gal/s (imp)
- gal/min (imp)
- gal/h (imp)
- gal/d (imp)
- Mgal/s (imp)
- Mgal/min (imp)
- Mgal/h (imp)
- Mgal/d (imp)
- bbl/s (imp; beer)
- bbl/min (imp; beer)
- bbl/h (imp; beer)
- bbl/d (imp; beer)
- bbl/s (imp; oil)
- bbl/min (imp; oil)
- bbl/h (imp; oil)
- bbl/d (imp; oil)

Factory setting

Country-specific:
- m³/h
- ft³/min

Additional information

Result

The selected unit applies for:
Volume flow parameter (→ 39)

Selection

For an explanation of the abbreviated units: → 159

Customer-specific units

The unit for the customer-specific volume is specified in the Volume text parameter.
Volume unit

Navigation

Expert → Sensor → System units → Volume unit (0563)

Description

Use this function to select the unit for the volume.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
<th>Imperial units</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm³</td>
<td>af</td>
<td>gal (imp)</td>
</tr>
<tr>
<td>dm³</td>
<td>ft³</td>
<td>Mgal (imp)</td>
</tr>
<tr>
<td>m³</td>
<td>fl oz (us)</td>
<td>bbl (imp;beer)</td>
</tr>
<tr>
<td>ml</td>
<td>gal (us)</td>
<td>bbl (imp;oil)</td>
</tr>
<tr>
<td>l</td>
<td>kgal (us)</td>
<td></td>
</tr>
<tr>
<td>hl</td>
<td>Mgal (us)</td>
<td></td>
</tr>
<tr>
<td>Ml Mega</td>
<td>bbl (us;oil)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bbl (us;liq.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bbl (us;beer)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bbl (us;tank)</td>
<td></td>
</tr>
</tbody>
</table>

Factory setting

Country-specific:

- dm³
- ft³

Additional information

Selection

For an explanation of the abbreviated units: → 159

Customer-specific units

The unit for the customer-specific volume is specified in the Volume text parameter.

Mass flow unit

Navigation

Expert → Sensor → System units → Mass flow unit (0554)

Description

Use this function to select the unit for the mass flow.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
<th>Imperial units</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/s</td>
<td>oz/s</td>
<td></td>
</tr>
<tr>
<td>g/min</td>
<td>oz/min</td>
<td></td>
</tr>
<tr>
<td>kg/s</td>
<td>lb/s</td>
<td></td>
</tr>
<tr>
<td>kg/min</td>
<td>lb/min</td>
<td></td>
</tr>
<tr>
<td>kg/h</td>
<td>lb/h</td>
<td></td>
</tr>
<tr>
<td>kg/d</td>
<td>lb/d</td>
<td></td>
</tr>
<tr>
<td>t/h</td>
<td>STon/h</td>
<td></td>
</tr>
<tr>
<td>t/d</td>
<td>STon/d</td>
<td></td>
</tr>
</tbody>
</table>

Factory setting

Country-specific:

- kg/h
- lb/min
Additional information

Result

The selected unit applies for:

Mass flow parameter

Selection

For an explanation of the abbreviated units: → 159

Customer-specific units

The unit for the customer-specific mass is specified in the **Mass text** parameter.

Mass unit

Navigation

Expert → Sensor → System units → Mass unit (0574)

Description

Use this function to select the unit for the mass.

Selection

SI units

- g
- kg
- t

US units

- oz
- lb
- STon

Factory setting

Country-specific:

- kg
- lb

Additional information

Selection

For an explanation of the abbreviated units: → 159

Customer-specific units

The unit for the customer-specific mass is specified in the **Mass text** parameter.

Temperature unit

Navigation

Expert → Sensor → System units → Temperature unit (0557)

Description

Use this function to select the unit for the temperature.

Selection

SI units

- °C
- K

US units

- °F
- °R

Factory setting

Country-specific:

- °C
- °F
Additional information
Result
The selected unit applies for:
- Temperature (→ 40)
- Maximum value (→ 148)
- Minimum value (→ 148)
- Maximum value (→ 146)
- Minimum value (→ 146)

Selection
For an explanation of the abbreviated units: → 159

Length unit

Navigation
Expert → Sensor → System units → Length unit (0551)

Description
Use this function to select the unit of length for the nominal diameter.

Selection
SI units
- m
- mm
- µm

US units
- ft
- in

Factory setting
Country-specific:
- mm
- in

Additional information
Selection
For an explanation of the abbreviated units: → 159

Velocity unit

Navigation
Expert → Sensor → System units → Velocity unit (0566)

Description
Use this function to select the unit for the flow velocity.

Selection
SI units
- m/s

US units
- ft/s

Factory setting
Country-specific:
- m/s
- ft/s

For an explanation of the abbreviated units: → 159
Additional information

Result

The selected unit applies for:

- Flow velocity (→ 40)
- Sound velocity (→ 40)
- Maximum value (→ 147)
- Minimum value (→ 147)
- Maximum value (→ 145)
- Minimum value (→ 145)

Selection

For an explanation of the abbreviated units: → 159

Density unit

Navigation

Expert → Sensor → System units → Density unit (0555)

Description

Use this function to select the unit for the density.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
<th>Imperial units</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/cm³</td>
<td>lb/ft³</td>
<td>lb/gal (imp)</td>
</tr>
<tr>
<td>g/m³</td>
<td>lb/gal (us)</td>
<td>lb/bbl (imp;beer)</td>
</tr>
<tr>
<td>kg/l</td>
<td>lb/bbl (us,liq.)</td>
<td>lb/bbl (imp;oil)</td>
</tr>
<tr>
<td>kg/dm³</td>
<td>lb/bbl (us,beer)</td>
<td></td>
</tr>
<tr>
<td>kg/m³</td>
<td>lb/bbl (us,oil)</td>
<td></td>
</tr>
<tr>
<td>SD4°C</td>
<td>lb/bbl (us,tank)</td>
<td></td>
</tr>
<tr>
<td>SD15°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD20°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SG4°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SG15°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SG20°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Factory setting

Country-specific:

- kg/l
- lb/ft³

Additional information

Selection

- SD = specific density
 The specific density is the ratio of the medium density to the water density at a water temperature of +4 °C (+39 °F), +15 °C (+59 °F), +20 °C (+68 °F).
- SG = specific gravity
 The specific gravity is the ratio of the medium density to the water density at a water temperature of +4 °C (+39 °F), +15 °C (+59 °F), +20 °C (+68 °F).

For an explanation of the abbreviated units: → 159

Customer-specific units

The unit for the customer-specific density is specified in the Density text parameter.
Kin. visc. unit

Navigation

Expert → Sensor → System units → Kin. visc. unit (0578)

Description

Use this function to select the unit for the kinematic viscosity.

Selection

SI units

- cSt
- m²/s
- St

Factory setting

Country-specific:

- m²/s
- cSt

Date/time format

Navigation

Expert → Sensor → System units → Date/time format (2812)

Description

Use this function to select the desired time format for calibration history.

Selection

- dd.mm.yy hh:mm
- dd.mm.yy am/pm
- mm/dd/yy hh:mm
- mm/dd/yy am/pm

Factory setting

dd.mm.yy hh:mm

Additional information

Selection

For an explanation of the abbreviated units: → 159

3.2.3 "Process param." submenu

Navigation

<table>
<thead>
<tr>
<th>Process param.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow override (1839) → 54</td>
</tr>
<tr>
<td>Flow damping (1802) → 54</td>
</tr>
<tr>
<td>Temp. damping (1886) → 55</td>
</tr>
<tr>
<td>Low flow cut off → 55</td>
</tr>
</tbody>
</table>
Flow override

Navigation

Description

Use this function to select whether to interrupt the evaluation of measured values. This is useful for the cleaning processes of a pipeline, for example.

Selection

- Off
- On

Factory setting

Off

Additional information

Result

This setting affects all the functions and outputs of the measuring device.

Description

Flow override is active

- The diagnostic message diagnostic message △C453 Flow override is displayed.
- Output values
 - Output: Value at zero flow
 - Temperature: proceeding output
 - Totalizers 1-3: Stop being totalized

Positive zero return can also be enabled via the Status input: Assign stat.inp. parameter.

Flow damping

Navigation

Expert → Sensor → Process param. → Flow damping (1802)

Description

Use this function to enter a time constant for flow damping (PT1 element). Reduction of the variability of the flow measured value (in relation to interference). For this purpose, the depth of the flow filter is adjusted: when the filter setting increases, the reaction time of the device also increases.

User entry

0 to 999.9 s

Factory setting

0 s
Additional information

Description

The damping is performed by a PT1 element 2).

User entry

- Value = 0: no damping
- Value > 0: damping is increased

Damping is switched off if 0 is entered (factory setting).

Result

The damping affects the following variables of the device:

- Outputs → 64
- Low flow cut off → 55
- Totalizers → 124

Temp. damping

Navigation

Description

Use this function to enter the time constant for temperature damping.

User entry

0 to 999.9 s

Factory setting

10 s

"Low flow cut off" submenu

Navigation

Expert → Sensor → Process param. → Low flow cut off

Assign variable (1837) → 56
On value (1805) → 56
Off value (1804) → 56

2) Proportional behavior with first-order lag
Assign variable

Navigation
Expert → Sensor → Process param. → Low flow cut off → Assign variable (1837)

Description
Use this function to select the process variable for low flow cutoff detection.

Selection
- Off
- Volume flow
- Mass flow

Factory setting
Off

On value

Navigation
Expert → Sensor → Process param. → Low flow cut off → On value (1805)

Prerequisite
In the Assign variable parameter (→ 56), one of the following options is selected:
- Volume flow
- Mass flow

Description
Use this function to enter a switch-on value for low flow cut off. Low flow cut off is activated if the value entered is not equal to 0 (→ 56).

User entry
Positive floating-point number

Factory setting
Depends on country and nominal diameter (→ 156)

Additional information
Dependency
- The unit depends on the process variable selected in the Assign variable parameter (→ 56).

Off value

Navigation
Expert → Sensor → Process param. → Low flow cut off → Off value (1804)

Prerequisite
In the Assign variable parameter (→ 56), one of the following options is selected:
- Volume flow
- Mass flow

Description
Use this function to enter a switch-off value for low flow cut off. The off value is entered as a positive hysteresis from the on value (→ 56).

User entry
0 to 100.0 %

Factory setting
50 %
Additional information

Example

\[
\begin{align*}
Q & \quad \text{Flow} \\
t & \quad \text{Time} \\
H & \quad \text{Hysteresis} \\
A & \quad \text{Low flow cut off active} \\
1 & \quad \text{Low flow cut off is activated} \\
2 & \quad \text{Low flow cut off is deactivated} \\
3 & \quad \text{On value entered} \\
4 & \quad \text{Off value entered}
\end{align*}
\]

3.2.4 "External comp." submenu

Navigation

Fixed density

Navigation
Expert → Sensor → External comp. → Fixed density (1862)

Prerequisite
The Mass flow option is selected in the Assign curr. parameter (→ 65).

Description
Use this function to enter a fixed value for the density. The density is used to calculate the mass flow.

User entry
Positive floating-point number

Factory setting
1000 kg/l

Additional information
User entry
The unit is taken from the Density unit parameter (→ 52).
3.2.5 "Sensor adjustm." submenu

- Sensor adjustm.
 - Variable adjust
 → 58

"Process variable adjustment" submenu

- Variable adjust
 - Vol. flow offset (1831) → 58
 - Vol. flow factor (1832) → 59
 - Mass flow offset (1841) → 59
 - Mass flow factor (1846) → 59
 - S. veloc. offset (1848) → 60
 - S. veloc. factor (1849) → 60

Vol. flow offset

Description
Use this function to enter the zero point shift for the volume flow trim. The volume flow unit on which the shift is based is m³/s.

User entry
Signed floating-point number

Factory setting
0 l/h

Additional information ☐ Description
Corrected value = (factor × value) + offset
Vol. flow factor

Navigation

Description
Use this function to enter a quantity factor (without time) for the volume flow. This multiplication factor is applied over the volume flow range.

User entry
Positive floating-point number

Factory setting
1

Additional information
Description
Corrected value = (factor × value) + offset

Mass flow offset

Navigation

Description
Use this function to enter the zero point shift for the mass flow trim. The mass flow unit on which the shift is based is kg/h.

User entry
Signed floating-point number

Factory setting
0 kg/h

Additional information
Description
Corrected value = (factor × value) + offset

Mass flow factor

Navigation
Expert → Sensor → Sensor adjustm. → Variable adjust → Mass flow factor (1846)

Description
Use this function to enter a quantity factor (without time) for the mass flow. This multiplication factor is applied over the mass flow range.

User entry
Positive floating-point number

Factory setting
1

Additional information
Description
Corrected value = (factor × value) + offset
Description of device parameters

S. veloc. offset

Navigation

Expert → Sensor → Sensor adjustm. → Variable adjust → S. veloc. offset (1848)

Description

Use this function to enter the zero point shift for the sound velocity trim. The sound velocity unit on which the shift is based is m/s.

User entry

Signed floating-point number

Factory setting

0 m/s

Additional information

Description

Corrected value = (factor × value) + offset

S. veloc. factor

Navigation

Expert → Sensor → Sensor adjustm. → Variable adjust → S. veloc. factor (1849)

Description

Use this function to enter a quantity factor (without time) for the sound velocity. This multiplication factor is applied over the sound velocity range.

User entry

Positive floating-point number

Factory setting

1

Additional information

Description

Corrected value = (factor × value) + offset

3.2.6 "Calibration" submenu

Navigation

Expert → Sensor → Calibration

- **Cal. factor (2920)** → 61
- **Zero point (2921)** → 61
- **Nominal diameter (2807)** → 61
Cal. factor

Navigation

Expert → Sensor → Calibration → Cal. factor (2920)

Description
Displays the current calibration factor for the sensor.

User interface
Signed floating-point number

Factory setting
1

Zero point

Navigation

Expert → Sensor → Calibration → Zero point (2921)

Description
Displays the current zero point correction value for the sensor.

User interface
Signed floating-point number

Factory setting
0

Nominal diameter

Navigation

Expert → Sensor → Calibration → Nominal diameter (2807)

Description
Displays the nominal diameter of the sensor.

User interface
DNxx / x"

Factory setting
Depends on the size of the sensor

Additional information
Description

The value is also specified on the sensor nameplate.

"Recalibration" submenu

Navigation

Expert → Sensor → Calibration → Recalibration

<table>
<thead>
<tr>
<th>Recalibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year (2846)</td>
</tr>
<tr>
<td>Month (2845)</td>
</tr>
</tbody>
</table>
Description of device parameters

Year

Navigation

Expert → Sensor → Calibration → Recalibration → Year (2846)

Prerequisite

Can be edited if Heartbeat Verification is not active.

Description

Use this function to enter the year of recalibration.

User entry

9 to 99

Factory setting

10

Month

Navigation

Expert → Sensor → Calibration → Recalibration → Month (2845)

Prerequisite

Can be edited if Heartbeat Verification is not active.

Description

Use this function to select the month of recalibration.

Selection

- January
- February
- March
- April
- May
- June
- July
- August
- September
- October
- November
- December

Factory setting

January
<table>
<thead>
<tr>
<th>Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Prerequisite</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>User entry</td>
</tr>
<tr>
<td>Factory setting</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Prerequisite</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>User entry</td>
</tr>
<tr>
<td>Factory setting</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AM/PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Prerequisite</td>
</tr>
<tr>
<td>Description</td>
</tr>
</tbody>
</table>
| **Selection** | - AM
- PM |
| **Factory setting** | AM |
Description of device parameters

Proline Prosonic Flow 100 HART

Minute

Navigation

Expert → Sensor → Calibration → Recalibration → Minute (2844)

Prerequisite

Can be edited if Heartbeat Verification is not active.

Description

Use this function to enter the minutes of recalibration.

User entry

0 to 59 min

Factory setting

0 min

3.3 "Output" submenu

Navigation

Expert → Output

3.3.1 "Current output 1" submenu

Navigation

Expert → Output → Curr.output 1
Assign curr. 1

Navigation

Expert → Output → Curr.output 1 → Assign curr. 1 (0359–1)

Description

Use this function to select a process variable for the current output.

Selection

- Off
- Volume flow
- Mass flow
- Sound velocity
- Flow velocity
- Temperature *
- Acceptance rate *
- Signal strength *
- SNR *
- Turbulence *
- Signal asymmetry *

Factory setting

Volume flow

Current span

Navigation

Expert → Output → Curr.output 1 → Current span (0353–1)

Description

Use this function to select the current range for the process value output and the upper and lower level for signal on alarm.

Selection

- 4...20 mA NAMUR
- 4...20 mA US
- 4...20 mA
- 0...20 mA
- Fixed current

Factory setting

Country-specific:

- 4...20 mA NAMUR
- 4...20 mA US

* Visibility depends on order options or device settings
Additional information

Description

- In the event of a device alarm, the current output adopts the value specified in the Failure mode parameter (→ 75).
- The measuring range is specified via the 0/4 mA value parameter (→ 67) and 20 mA value parameter (→ 68).

"Fixed current" option

- This option is used for a HART Multidrop network.
- It can only be used for the 4…20 mA HART current output (current output 1).
- The current value is set via the Fixed current parameter (→ 66).

Example

Shows the relationship between the current span for the output of the process variable and the lower and upper alarm levels:

![Diagram showing current span and alarm levels](image.png)

1. Current span for process value
2. Lower level for signal on alarm
3. Upper level for signal on alarm

Selection

<table>
<thead>
<tr>
<th>Options</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4…20 mA NAMUR</td>
<td>3.8 to 20.5 mA</td>
<td>< 3.6 mA</td>
<td>> 21.95 mA</td>
</tr>
<tr>
<td>4…20 mA US</td>
<td>3.9 to 20.8 mA US</td>
<td>< 3.6 mA</td>
<td>> 21.95 mA</td>
</tr>
<tr>
<td>4…20 mA</td>
<td>4 to 20.5 mA</td>
<td>< 3.6 mA</td>
<td>> 21.95 mA</td>
</tr>
<tr>
<td>0…20 mA</td>
<td>0 to 20.5 mA</td>
<td>< 0 mA</td>
<td>> 21.95 mA</td>
</tr>
</tbody>
</table>

Fixed current

Navigation

Expert → Output → Curr.output 1 → Fixed current (0365–1)

Prerequisite

The Fixed current option is selected in the Current span parameter (→ 65).

Description

Use this function to enter a constant current value for the current output.

User entry

0 to 22.5 mA

Factory setting

22.5 mA
0/4 mA value

Navigation

Expert → Output → Curr.output 1 → 0/4 mA value (0367–1)

Prerequisite

One of the following options is selected in the Current span parameter (→ 65):

- 4...20 mA NAMUR
- 4...20 mA US
- 4...20 mA
- 0...20 mA

Description

Use this function to enter a value for the 0/4 mA current.

User entry

Signed floating-point number

Factory setting

0 l/h

Additional information

Description

Positive and negative values are permitted depending on the process variable assigned in the Assign curr. parameter (→ 65). In addition, the value can be greater than or smaller than the value assigned for the 20 mA current in the 20 mA value parameter (→ 68).

Dependency

The unit depends on the process variable selected in the Assign curr. parameter (→ 65).

Current output behavior

The current output behaves differently depending on the settings configured in the following parameters:

- Current span (→ 65)
- Measuring mode (→ 69)
- Failure mode (→ 75)

Configuration examples

Some examples of parameter settings and their effect on the current output are given in the following section.

Configuration example A

Measuring mode with Forward flow option

- 0/4 mA value parameter (→ 67) = not equal to zero flow (e.g. −250 m³/h)
- 20 mA value parameter (→ 68) = not equal to zero flow (e.g. +750 m³/h)
- Calculated current value = 8 mA at zero flow

Q Flow
I Current
I Measuring range is exceeded or undershot
Configuration example B
Measuring mode with Forward/Reverse option

![Diagram showing flow measurement with Forward/Reverse option](image)

1 Current
Q Flow
1 Value assigned to the 0/4 mA current
2 Forward flow
3 Reverse flow

Configuration example C
Measuring mode with Rev. flow comp. option
If flow is characterized by severe fluctuations (e.g. when using reciprocating pumps), flow components outside the measuring range are buffered, balanced and output after a maximum delay of 60 s → 69.

20 mA value

| Navigation |
|------------------|------------------|
| Prerequisite | One of the following options is selected in the Current span parameter (→ 65):
| | • 4...20 mA NAMUR
| | • 4...20 mA US
| Description | Use this function to enter a value for the 20 mA current.
| User entry | Signed floating-point number
| Factory setting | Depends on country and nominal diameter
| Additional info. | Positive and negative values are permitted depending on the process variable assigned in the Assign curr. parameter (→ 65). In addition, the value can be greater than or
smaller than the value assigned for the 0/4 mA current in the 0/4 mA value parameter (→ 67).

Dependency

The unit depends on the process variable selected in the Assign curr. parameter (→ 65).

Example

• Value assigned to 0/4 mA = –250 m³/h
• Value assigned to 20 mA = +750 m³/h
• Calculated current value = 8 mA (at zero flow)

If the Forward/Reverse option is selected in the Measuring mode parameter (→ 69), different signs cannot be entered for the values of the 0/4 mA value parameter (→ 67) and 20 mA value parameter (→ 68). The diagnostic message S441 Curr.output 1 is displayed.

Configuration examples

Observe the configuration examples for the 0/4 mA value parameter (→ 67).

<table>
<thead>
<tr>
<th>Measuring mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Prerequisite</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Selection</td>
</tr>
<tr>
<td>Factory setting</td>
</tr>
</tbody>
</table>

* Visibility depends on order options or device settings
Additional information

Description

The process variable that is assigned to the current output via the Assign curr. parameter (→ 65) is displayed below the parameter.

"Forward flow" option

The current output signal is proportional to the process variable assigned. The measuring range is defined by the values that are assigned to the 0/4 mA and 20 mA current value.

The flow components outside the scaled measuring range are taken into account for signal output as follows:

Both values are defined such that they are not equal to zero flow e.g.:
- 0/4 mA current value = −5 m³/h
- 20 mA current value = 10 m³/h

"Forward/Reverse" option

- The current output signal is independent of the direction of flow (absolute amount of the measured variable). The values for the 0/4 mA value parameter (→ 67) and 20 mA value parameter (→ 68) must have the same sign.
- The value for the 20 mA value parameter (→ 68) (e.g. reverse flow) corresponds to the mirrored value for the 20 mA value parameter (→ 68) (e.g. forward flow).

"Rev. flow comp." option

The Rev. flow comp. option is primarily used to compensate for abrupt reverse flow which can occur in connection with positive displacement pumps as a result of wear or high viscosity. The reverse flows are recorded in a buffer and balanced against forward flow the next time flow is in the forward direction.

Flow values can aggregate in the buffer in the event of prolonged and unwanted fluid reverse flow. However, these flows are not taken into consideration by the current output configuration, i.e. the reverse flow is not compensated.

If this option is set, the measuring device does not attenuate the flow signal. The flow signal is not attenuated.

Examples of how the current output behaves

Example 1

Defined measuring range: lower range value and upper range value with the same sign.
3 Measuring range

1 Current
Q Flow
1 Lower range value (value assigned to 0/4 mA current)
2 Upper range value (value assigned to 20 mA current)

With the following flow response:

![Flow response diagram]

4 Flow response

Q Flow
t Time

With **Forward flow** option

The current output signal is proportional to the process variable assigned. The flow components outside the scaled measuring range are not taken into account for signal output:

![Flow response diagram with Forward flow option]

1 Current
t Time

With **Forward/Reverse** option

The current output signal is independent of the direction of flow.

![Flow response diagram with Forward/Reverse option]

1 Current
t Time

With **Rev. flow comp.** option

![Flow response diagram with Rev. flow comp. option]
Flow components outside the span are buffered, balanced and output after a maximum delay of 60 s.

I = A = S = t

Example 2

Defined measuring range: lower range value and upper range value with different signs

With flow a (—) outside, b (- -) inside the measuring range

With **Forward flow** option
- a (—): The flow components outside the scaled measuring range cannot be taken into account for signal output.
- b (- -): The current output signal is proportional to the process variable assigned.
With **Forward/Reverse** option

This option is not possible in this case as the values for the **0/4 mA value** parameter (→ 67) and **20 mA value** parameter (→ 68) have different signs.

With **Rev. flow comp.** option

Flow components outside the span are buffered, balanced and output after a maximum delay of 60 s.

Damping out. 1

Navigation

Expert → Output → Curr.output 1 → Damping out. 1 (0363–1)

Prerequisite

One of the following options is selected in the **Assign curr.** parameter (→ 65):

- Volume flow
- Mass flow
- Sound velocity
- Flow velocity *
- Temperature *
- Acceptance rate *
- Signal strength *
- SNR *
- Turbulence *
- Signal asymmetry *

One of the following options is selected in the **Current span** parameter (→ 65):

- 4...20 mA NAMUR
- 4...20 mA US
- 4...20 mA
- 0...20 mA

* Visibility depends on order options or device settings
Description

Use this function to enter a time constant for the reaction time of the current output signal to fluctuations in the measured value caused by process conditions.

User entry

0.0 to 999.9 s

Factory setting

1.0 s

Additional information

Entry

Use this function to enter a time constant (PT1 element \(^3\)) for current output damping:
- If a low time constant is entered, the current output reacts particularly quickly to fluctuating measured variables.
- On the other hand, the current output reacts more slowly if a high time constant is entered.

Damping is switched off if 0 is entered (factory setting).

Response time

Navigation

Expert → Output → Curr.output 1 → Response time (0378–1)

Prerequisite

One of the following options is selected in the Assign curr. parameter (→ 65):
- Volume flow
- Mass flow
- Sound velocity
- Flow velocity
- Temperature *
- Acceptance rate *
- Signal strength *
- SNR *
- Turbulence *
- Signal asymmetry *

One of the following options is selected in the Current span parameter (→ 65):
- 4...20 mA NAMUR
- 4...20 mA US
- 4...20 mA
- 0...20 mA

Description

Displays the response time. This specifies how quickly the current output reaches the measured value change of 63 % of 100 % of the measured value change.

User interface

Positive floating-point number

Additional information

Description

The response time is made up of the time specified for the following dampings:
- Current output damping → 73
- Depending on the measured variable assigned to the output.

Flow damping

3) proportional transmission behavior with first order delay
*
Visibility depends on order options or device settings
Navigation

Expert → Output → Curr.output 1 → Failure mode (0364–1)

Prerequisite

One of the following options is selected in the Assign curr. parameter (→ 65):
- Volume flow
- Mass flow
- Sound velocity
- Flow velocity
- Temperature
- Acceptance rate
- Signal strength
- SNR
- Turbulence
- Signal asymmetry

One of the following options is selected in the Current span parameter (→ 65):
- 4...20 mA NAMUR
- 4...20 mA US
- 4...20 mA
- 0...20 mA

Description

Use this function to select the value of the current output in the event of a device alarm.

Selection

- Min.
- Max.
- Last valid value
- Actual value
- Defined value

Factory setting

Max.

* Visibility depends on order options or device settings
Additional information

Description

This setting does not affect the failsafe mode of other outputs and totalizers. This is specified in separate parameters.

“Min.” option
The current output adopts the value of the lower level for signal on alarm.

![Tip icon](image)
The signal on alarm level is defined via the **Current span** parameter (→ 65).

“Max.” option
The current output adopts the value of the upper level for signal on alarm.

![Tip icon](image)
The signal on alarm level is defined via the **Current span** parameter (→ 65).

“Last valid value” option
The current output adopts the last measured value that was valid before the device alarm occurred.

“Actual value” option
The current output adopts the measured value on the basis of the current flow measurement; the device alarm is ignored.

“Defined value” option
The current output adopts a defined measured value.

![Tip icon](image)
The measured value is defined via the **Failure current** parameter (→ 76).

Failure current

Navigation

![Expert icon](image) Expert → Output → Curr.output 1 → Failure current (0352–1)

Prerequisite
The **Defined value** option is selected in the **Failure mode** parameter (→ 75).

Description
Use this function to enter a fixed value that the current output adopts in the event of a device alarm.

User entry

0 to 22.5 mA

Factory setting

22.5 mA

Output curr. 1

Navigation

![Expert icon](image) Expert → Output → Curr.output 1 → Output curr. 1 (0361–1)

Description
Displays the current value currently calculated for the current output.

User interface

0 to 22.5 mA
Measur. curr. 1

Navigation

Expert → Output → Curr.output 1 → Measur. curr. 1 (0366–1)

Description

Use this function to display the actual measured value of the output current.

User interface

0 to 30 mA

Trim

Navigation

Expert → Output → Curr.output 1 → Trim (0362–1)

Description

Use this function to select the calibration mode for process-specific recalibration.

Selection

- Off
- 4 mA
- 20 mA
- Calculate
- Reset

Factory setting

Off

Additional information

For a detailed description of current output trimming, see

Trim value high

Navigation

Expert → Output → Curr.output 1 → Trim value high (0356–1)

Prerequisite

If the sensor output adjustment is 20 mA.

Description

Use this function to enter the upper value for the trim (approx. 20 mA).

User entry

18 to 22 mA

Factory setting

20 mA

Additional information

For a detailed description of current output trimming, see
Trim value low

Navigation

Expert → Output → Curr.output 1 → Trim value low (0357–1)

Prerequisite

If the sensor output adjustment is 4 mA.

Description

Use this function to enter the lower value for the trim (approx. 4 mA).

User entry

3 to 5 mA

Factory setting

4 mA

Additional information

Description

For a detailed description of current output trimming, see

Status

Navigation

Expert → Output → Curr.output 1 → Status (0360–1)

Description

Displays the status of the last output current (OutValue).

User interface

0 to 255

Factory setting

0

Additional information

Description

A combination of bits in one byte: 76543210

- The first two bits 7 and 6 describe the overall status.
- The middle bits 5 to 2 describe a substatus which, in turn, depends on the overall status.
- The last two bits 1 and 0 describe whether a limit has been reached.

User interface

For detailed information on interpreting display values, see the 'Status of output current' section

3.3.2 "PFS output" submenu

Navigation

Expert → Output → PFS output

<table>
<thead>
<tr>
<th>PFS output 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating mode (0469–1) → 80</td>
</tr>
<tr>
<td>Assign pulse 1 (0460–1) → 81</td>
</tr>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Value per pulse (0455–1)</td>
</tr>
<tr>
<td>Pulse width (0452–1)</td>
</tr>
<tr>
<td>Measuring mode (0457–1)</td>
</tr>
<tr>
<td>Failure mode (0480–1)</td>
</tr>
<tr>
<td>Pulse output 1 (0456–1)</td>
</tr>
<tr>
<td>Assign freq. (0478–1)</td>
</tr>
<tr>
<td>Min. freq. value (0453–1)</td>
</tr>
<tr>
<td>Max. freq. value (0454–1)</td>
</tr>
<tr>
<td>Val. at min.freq (0476–1)</td>
</tr>
<tr>
<td>Val. at max.freq (0475–1)</td>
</tr>
<tr>
<td>Measuring mode (0479–1)</td>
</tr>
<tr>
<td>Damping out. 1 (0477–1)</td>
</tr>
<tr>
<td>Response time (0491–1)</td>
</tr>
<tr>
<td>Failure mode (0451–1)</td>
</tr>
<tr>
<td>Failure freq. (0474–1)</td>
</tr>
<tr>
<td>Output freq. 1 (0471–1)</td>
</tr>
<tr>
<td>Switch out funct (0481–1)</td>
</tr>
<tr>
<td>Assign diag. beh (0482–1)</td>
</tr>
<tr>
<td>Assign limit (0483–1)</td>
</tr>
<tr>
<td>Switch-on value (0466–1)</td>
</tr>
<tr>
<td>Switch-off value (0464–1)</td>
</tr>
<tr>
<td>Assign dir.check (0484–1)</td>
</tr>
<tr>
<td>Assign status (0485–1)</td>
</tr>
<tr>
<td>Switch-on delay (0467–1)</td>
</tr>
<tr>
<td>Switch-off delay (0465–1)</td>
</tr>
</tbody>
</table>
Operating mode

Navigation
Expert → Output → PFS output 1 → Operating mode (0469–1)

Description
Use this function to select the operating mode of the output as a pulse, frequency or switch output.

Selection
- Pulse
- Frequency
- Switch

Factory setting
Pulse

Additional information

“Pulse” option
Quantity-dependent pulse with configurable pulse width
- Whenever a specific volume or mass is reached (pulse value), a pulse is output, the duration of which was set previously (pulse width).
- The pulses are never shorter than the set duration.

Example
- Flow rate approx. 100 g/s
- Pulse value 0.1 g
- Pulse width 0.05 ms
- Pulse rate 1000 Impuls/s

“Frequency” option
Flow-proportional frequency output with 1:1 on/off ratio
An output frequency is output that is proportional to the value of a process variable, such as volume flow, mass flow, temperature, sound velocity, flow velocity, acceptance rate, signal asymmetry, turbulence, signal strength or signal-to-noise ratio.
Example
- Flow rate approx. 100 g/s
- Max. frequency 10 kHz
- Flow rate at max. frequency 1000 g/s
- Output frequency approx. 1000 Hz

Flow-proportional frequency output

"Switch" option
Contact for displaying a condition (e.g. alarm or warning if a limit value is reached)

Example
Alarm response without alarm

No alarm, high level

Example
Alarm response in case of alarm

Alarm, low level

Assign pulse 1

Navigation

Expert → Output → PFS output 1 → Assign pulse 1 (0460–1)

Prerequisite

The Pulse option is selected in the Operating mode parameter (→ 80) parameter.

Description

Use this function to select the process variable for the pulse output.

Selection

- Off
- Volume flow
- Mass flow
Factory setting

Off

Value per pulse

Navigation

Expert → Output → PFS output 1 → Value per pulse (0455–1)

Prerequisite

In the Operating mode parameter (→ 80), the Pulse option is selected, and one of the following options is selected in the Assign pulse parameter (→ 81):

- Volume flow
- Mass flow

Description

Use this function to enter the value for the measured value that a pulse is equivalent to.

User entry

Signed floating-point number

Factory setting

Depends on country and nominal diameter→ 156

Additional information

User entry

Weighting of the pulse output with a quantity.

The lower the pulse value, the
- better the resolution.
- the higher the frequency of the pulse response.

Pulse width

Navigation

Expert → Output → PFS output 1 → Pulse width (0452–1)

Prerequisite

In the Operating mode parameter (→ 80), the Pulse option is selected, and one of the following options is selected in the Assign pulse parameter (→ 81):

- Volume flow
- Mass flow

Description

Use this function to enter the duration of the output pulse.

User entry

0.05 to 2 000 ms

Factory setting

100 ms

Additional information

Define how long a pulse is (duration).

- The maximum pulse rate is defined by \(f_{\text{max}} = 1 / (2 \times \text{pulse width}) \).
- The interval between two pulses lasts at least as long as the set pulse width.
- The maximum flow is defined by \(Q_{\text{max}} = f_{\text{max}} \times \text{pulse value} \).
- If the flow exceeds these limit values, the measuring device displays the diagnostic message ΔS443 Pulse output 1.
Measuring mode

Navigation
Expert → Output → PFS output 1 → Measuring mode (0457–1)

Prerequisite
In the Operating mode parameter (→ 80), the Pulse option is selected, and one of the following options is selected in the Assign pulse parameter (→ 81):
- Volume flow
- Mass flow

Description
Use this function to select the measuring mode for the pulse output.

Selection
- Forward flow
- Forward/Reverse
- Reverse flow
- Rev. flow comp.

Factory setting
Forward flow

Additional information

Selection
- Forward flow
 Positive flow is output, negative flow is not output.
- Forward/Reverse
 Positive and negative flow are output (absolute value), but a distinction is not made between positive and negative flow.
- Reverse flow
 Negative flow is output, positive flow is not output.
- Rev. flow comp.
 The flow components outside the span are buffered, balanced and output after a maximum delay of 60 s.

For a detailed description of the options available, see the Measuring mode parameter (→ 69)

Examples
For a detailed description of the configuration examples, see the Measuring mode parameter (→ 69)
Failure mode

Navigation
Expert → Output → PFS output 1 → Failure mode (0480–1)

Prerequisite
In the Operating mode parameter (→ 80), the Pulse option is selected, and one of the following options is selected in the Assign pulse parameter (→ 81):

• Volume flow
• Mass flow

Description
Use this function to select the failure mode of the pulse output in the event of a device alarm.

Selection

• Actual value
• No pulses

Factory setting
No pulses

Additional information

Description
The dictates of safety render it advisable to ensure that the pulse output shows a predefined behavior in the event of a device alarm.

Selection

• Actual value
In the event of a device alarm, the pulse output continues on the basis of the current flow measurement. The fault is ignored.

• No pulses
In the event of a device alarm, the pulse output is "switched off".

NOTICE! A device alarm is a measuring device error that must be taken seriously. It can affect the measurement quality such that the quality can no longer be guaranteed. The Actual value option is only recommended if it can be guaranteed that all possible alarm conditions will not affect the measurement quality.

Pulse output 1

Navigation
Expert → Output → PFS output 1 → Pulse output 1 (0456–1)

Prerequisite
The Pulse option is selected in the Operating mode parameter (→ 80) parameter.

Description
Displays the pulse frequency currently output.

User interface
Positive floating-point number

Additional information

Description

• The pulse output is an open collector output.
• This is configured at the factory in such a way that the transistor is conductive for the duration of the pulse (NO contact) and is safety-oriented.
• The Value per pulse parameter (→ 82) and Pulse width parameter (→ 82) can be used to define the value (i.e. the measured value amount that corresponds to a pulse) and the duration of the pulse.
The output behavior can be reversed via the `Invert outp.sig` parameter (→ 97) i.e. the transistor does not conduct for the duration of the pulse.

In addition, the behavior of the output in the event of a device alarm (Failure mode parameter (→ 84)) can be configured.

Assign freq.

Navigation

Expert → Output → PFS output 1 → Assign freq. (0478–1)

Prerequisite

The Frequency option is selected in the Operating mode parameter (→ 80) parameter.

Description

Use this function to select the process variable for the frequency output.

Selection

- Off
- Volume flow
- Mass flow
- Sound velocity
- Flow velocity
- Temperature
- Acceptance rate
- Signal strength
- SNR
- Turbulence
- Signal asymmetry

Factory setting

Off

Min. freq. value

Navigation

Expert → Output → PFS output 1 → Min. freq. value (0453–1)

Prerequisite

In the Operating mode parameter (→ 80), the Frequency option is selected, and one of the following options is selected in the Assign freq. parameter (→ 85):

- Volume flow
- Mass flow
- Sound velocity
- Flow velocity
- Temperature
Description of device parameters

Proline Prosonic Flow 100 HART

- Acceptance rate
- Signal strength
- SNR
- Turbulence
- Signal asymmetry

Description
Use this function to enter the start value frequency.

User entry
0.0 to 10000.0 Hz

Factory setting
0.0 Hz

Max. freq. value

Navigation
Expert → Output → PFS output 1 → Max. freq. value (0454–1)

Prerequisite
In the Operating mode parameter (→ 80), the Frequency option is selected, and one of the following options is selected in the Assign freq. parameter (→ 85):
- Volume flow
- Mass flow
- Sound velocity
- Flow velocity
- Temperature
- Acceptance rate
- Signal strength
- SNR
- Turbulence
- Signal asymmetry

Description
Use this function to enter the end value frequency.

User entry
0.0 to 10000.0 Hz

Factory setting
10000.0 Hz

Val. at min.freq

Navigation
Expert → Output → PFS output 1 → Val. at min.freq (0476–1)

Prerequisite
In the Operating mode parameter (→ 80), the Frequency option is selected, and one of the following options is selected in the Assign freq. parameter (→ 85):
- Volume flow
- Mass flow
- Sound velocity
- Flow velocity
- Temperature
- Acceptance rate
- Signal strength
- SNR
- Turbulence
- Signal asymmetry
Description
Use this function to enter the measured value for the start value frequency.

User entry
Signed floating-point number

Factory setting
Depends on country and nominal diameter

Additional information
Dependency

The entry depends on the process variable selected in the *Assign freq.* parameter (→ 85).

Val. at max.freq

Navigation
Expert → Output → PFS output 1 → Val. at max.freq (0475–1)

Prerequisite
In the *Operating mode* parameter (→ 80), the *Frequency* option is selected, and one of the following options is selected in the *Assign freq.* parameter (→ 85):
- Volume flow
- Mass flow
- Sound velocity
- Flow velocity
- Temperature
- Acceptance rate
- Signal strength
- SNR
- Turbulence
- Signal asymmetry

Description
Use this function to enter the measured value for the end value frequency.

User entry
Signed floating-point number

Factory setting
Depends on country and nominal diameter

Additional information
Description
Use this function to enter the maximum measured value at the maximum frequency. The selected process variable is output as a proportional frequency.

Dependency

The entry depends on the process variable selected in the *Assign freq.* parameter (→ 85).
Measuring mode

Navigation
Expert → Output → PFS output 1 → Measuring mode (0479–1)

Prerequisite
In the Operating mode parameter (→ 80), the Frequency option is selected, and one of the following options is selected in the Assign freq. parameter (→ 85):
- Volume flow
- Mass flow
- Sound velocity
- Flow velocity
- Temperature
- Acceptance rate
- Signal strength
- SNR
- Turbulence
- Signal asymmetry

Description
Use this function to select the measuring mode for the frequency output.

Selection
- Forward flow
- Forward/Reverse
- Rev. flow comp.

Factory setting
Forward flow

Additional information
* Selection
For a detailed description of the options available, see the Measuring mode parameter (→ 69)

* Examples
For a detailed description of the configuration examples, see the Measuring mode parameter (→ 69)

Damping out. 1

Navigation
Expert → Output → PFS output 1 → Damping out. 1 (0477–1)

Prerequisite
In the Operating mode parameter (→ 80), the Frequency option is selected, and one of the following options is selected in the Assign freq. parameter (→ 85):
- Volume flow
- Mass flow
- Sound velocity
- Flow velocity
- Temperature
- Acceptance rate
- Signal strength
- SNR
- Turbulence
- Signal asymmetry

* Visibility depends on order options or device settings
Description
Use this function to enter a time constant for the reaction time of the output signal to fluctuations in the measured value.

User entry
0 to 999.9 s

Factory setting
0.0 s

Additional information
User entry
Use this function to enter a time constant (PT1 element 4) for frequency output damping:
- If a low time constant is entered, the current output reacts particularly quickly to fluctuating measured variables.
- On the other hand, the current output reacts more slowly if a high time constant is entered.

Damping is switched off if 0 is entered (factory setting).

The frequency output is subject to separate damping that is independent of all preceding time constants.

Response time

<table>
<thead>
<tr>
<th>Navigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>☯ ☯ Expert → Output → PFS output 1 → Response time (0491–1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the Operating mode parameter (→ ☯ 80), the Frequency option is selected, and one of the following options is selected in the Assign freq. parameter (→ ☯ 85):</td>
</tr>
<tr>
<td>• Volume flow</td>
</tr>
<tr>
<td>• Mass flow</td>
</tr>
<tr>
<td>• Sound velocity</td>
</tr>
<tr>
<td>• Flow velocity</td>
</tr>
<tr>
<td>• Temperature *</td>
</tr>
<tr>
<td>• Acceptance rate *</td>
</tr>
<tr>
<td>• Signal strength *</td>
</tr>
<tr>
<td>• SNR *</td>
</tr>
<tr>
<td>• Turbulence *</td>
</tr>
<tr>
<td>• Signal asymmetry *</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays the response time. This specifies how quickly the pulse/frequency/switch output reaches the measured value change of 63 % of 100 % of the measured value change.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive floating-point number</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
</tr>
<tr>
<td>The response time is made up of the time specified for the following dampings:</td>
</tr>
<tr>
<td>- Damping of pulse/frequency/switch output (73)</td>
</tr>
<tr>
<td>- Depending on the measured variable assigned to the output.</td>
</tr>
<tr>
<td>- Flow damping</td>
</tr>
<tr>
<td>or</td>
</tr>
<tr>
<td>- Temperature damping</td>
</tr>
</tbody>
</table>

4) proportional transmission behavior with first order delay

* Visibility depends on order options or device settings
Failure mode

Navigation

Expert → Output → PFS output 1 → Failure mode (0451–1)

Prerequisite

In the Operating mode parameter (→ 80), the Frequency option is selected, and one of the following options is selected in the Assign freq. parameter (→ 85):

- Volume flow
- Mass flow
- Sound velocity
- Flow velocity
- Temperature
- Acceptance rate
- Signal strength
- SNR
- Turbulence
- Signal asymmetry

Description

Use this function to select the failure mode of the frequency output in the event of a device alarm.

Selection

- Actual value
- Defined value
- 0 Hz

Factory setting

0 Hz

Additional information

Selection

- Actual value
 In the event of a device alarm, the frequency output continues on the basis of the current flow measurement. The device alarm is ignored.
- Defined value
 In the event of a device alarm, the frequency output continues on the basis of a predefined value. The Failure freq. (→ 90) replaces the current measured value, making it possible to bypass the device alarm. The actual measurement is switched off for the duration of the device alarm.
- 0 Hz
 In the event of a device alarm, the frequency output is "switched off".

NOTICE! A device alarm is a measuring device error that must be taken seriously. It can affect the measurement quality such that the quality can no longer be guaranteed. The Actual value option is only recommended if it can be guaranteed that all possible alarm conditions will not affect the measurement quality.

Failure freq.

Navigation

Expert → Output → PFS output 1 → Failure freq. (0474–1)

Prerequisite

In the Operating mode parameter (→ 80), the Frequency option is selected, and one of the following options is selected in the Assign freq. parameter (→ 85):

- Volume flow
- Mass flow
- Sound velocity
- Flow velocity
• Temperature
• Acceptance rate
• Signal strength
• SNR
• Turbulence
• Signal asymmetry

Description

Use this function to enter the value for the frequency output in the event of a device alarm in order to bypass the alarm.

User entry

0.0 to 12 500.0 Hz

Factory setting

0.0 Hz

Output freq. 1

Navigation

Expert → Output → PFS output 1 → Output freq. 1 (0471–1)

Prerequisite

In the **Operating mode** parameter (→ 80), the **Frequency** option is selected.

Description

Displays the actual value of the output frequency which is currently measured.

User interface

0.0 to 12 500.0 Hz

Switch out funct

Navigation

Expert → Output → PFS output 1 → Switch out funct (0481–1)

Prerequisite

The **Switch** option is selected in the **Operating mode** parameter (→ 80).

Description

Use this function to select a function for the switch output.

Selection

- Off
- On
- Diag. behavior
- Limit
- Fl. direct.check
- Status

Factory setting

Off
Additional information

Selection
• Off
 The switch output is permanently switched off (open, non-conductive).
• On
 The switch output is permanently switched on (closed, conductive).
• Diag. behavior
 Indicates if the diagnostic event is present or not. Is used to output diagnostic information and to react to it appropriately at the system level.
• Limit
 Indicates if a specified limit value has been reached for the process variable. Is used to output diagnostic information relating to the process and to react to it appropriately at the system level.
• Status
 Indicates the device status depending on whether empty pipe detection or low flow cut off is selected.

Assign diag. beh

Navigation
Expert → Output → PFS output 1 → Assign diag. beh (0482–1)

Prerequisite
- In the Operating mode parameter (→ 80), the Switch option is selected.
- In the Switch out funct parameter (→ 91), the Diag. behavior option is selected.

Description
Use this function to select the diagnostic event category that is displayed for the switch output.

Selection
- Alarm
- Alarm or warning
- Warning

Factory setting
Alarm

Additional information

If no diagnostic event is pending, the switch output is closed and conductive.

Selection
- Alarm
 The switch output signals only diagnostic events in the alarm category.
- Alarm or warning
 The switch output signals diagnostic events in the alarm and warning category.
- Warning
 The switch output signals only diagnostic events in the warning category.

Assign limit

Navigation
Expert → Output → PFS output 1 → Assign limit (0483–1)

Prerequisite
- The Switch option is selected in the Operating mode parameter (→ 80) parameter.
- The Limit option is selected in the Switch out funct parameter (→ 91) parameter.
Description

Use this function to select a process variable for the limit function.

Selection

- Off
- Volume flow
- Mass flow
- Sound velocity
- Flow velocity
- Temperature
- Signal strength
- SNR
- Turbulence
- Signal asymmetry
- Acceptance rate
- Totalizer 1
- Totalizer 2
- Totalizer 3

Factory setting

Volume flow

Additional information

Description

Behavior of status output when Switch-on value > Switch-off value:

- Process variable > Switch-on value: transistor is conductive
- Process variable < Switch-off value: transistor is non-conductive

Behavior of status output when Switch-on value < Switch-off value:

- Process variable < Switch-on value: transistor is conductive
- Process variable > Switch-off value: transistor is non-conductive
Behavior of status output when Switch-on value = Switch-off value:
- Process variable > Switch-on value: transistor is conductive
- Process variable < Switch-off value: transistor is non-conductive
Description

Use this function to enter the limit value for the switch-on value (process variable > switch-on value = closed, conductive).

When using a hysteresis: Switch-on value > Switch-off value.

Dependency

The unit depends on the process variable selected in the Assign limit parameter (→ 92).

Switch-off value

Navigation

Expert → Output → PFS output 1 → Switch-off value (0464–1)

Prerequisite

- In the Operating mode parameter (→ 80), the Switch option is selected.
- In the Switch out funct parameter (→ 91), the Limit option is selected.

Description

Use this function to enter the measured value for the switch-off point.

User entry

Signed floating-point number

Factory setting

Country-specific:
- 0 m³/h
- 0 ft³/h

Additional information

Use this function to enter the limit value for the switch-off value (process variable < switch-off value = open, non-conductive).

When using a hysteresis: Switch-on value > Switch-off value.

Dependency

The unit depends on the process variable selected in the Assign limit parameter (→ 92).

Assign dir.check

Navigation

Expert → Output → PFS output 1 → Assign dir.check (0484–1)

Prerequisite

- The Switch option is selected in the Operating mode parameter (→ 80).
- The Fl. direct.check option is selected in the Switch out funct parameter (→ 91).

Description

Use this function to select a process variable for monitoring the flow direction.

Selection

- Off
- Volume flow
- Mass flow
- Flow velocity
Assign status

Navigation

Expert → Output → PFS output 1 → Assign status (0485–1)

Prerequisite

- The **Switch** option is selected in the **Operating mode** parameter (→ 80).
- The **Status** option is selected in the **Switch out funct** parameter (→ 91).

Description

Use this function to select a device status for the switch output.

Selection

- Off
- Low flow cut off

Factory setting

Low flow cut off

Additional information

Options

If empty pipe detection or low flow cut off are enabled, the output is conductive. Otherwise, the switch output is non-conductive.

Switch-on delay

Navigation

Expert → Output → PFS output 1 → Switch-on delay (0467–1)

Prerequisite

- The **Switch** option is selected in the **Operating mode** parameter (→ 80).
- The **Limit** option is selected in the **Switch out funct** parameter (→ 91).

Description

Use this function to enter a delay time for switching on the switch output.

User entry

0.0 to 100.0 s

Factory setting

0.0 s

Switch-off delay

Navigation

Expert → Output → PFS output 1 → Switch-off delay (0465–1)

Prerequisite

- The **Switch** option is selected in the **Operating mode** parameter (→ 80).
- The **Limit** option is selected in the **Switch out funct** parameter (→ 91).

Description

Use this function to enter a delay time for switching off the switch output.

User entry

0.0 to 100.0 s

Factory setting

0.0 s
Failure mode

Navigation

Expert → Output → PFS output 1 → Failure mode (0486–1)

Description

Use this function to select a failsafe mode for the switch output in the event of a device alarm.

Selection

- Actual status
- Open
- Closed

Factory setting

Open

Additional information

Options

- **Actual status**
 - In the event of a device alarm, faults are ignored and the current behavior of the input value is output by the switch output. The **Actual status** option behaves in the same way as the current input value.
- **Open**
 - In the event of a device alarm, the switch output's transistor is set to **non-conductive**.
- **Closed**
 - In the event of a device alarm, the switch output's transistor is set to **conductive**.

Switch status 1

Navigation

Expert → Output → PFS output 1 → Switch status 1 (0461–1)

Prerequisite

The **Switch** option is selected in the **Operating mode** parameter (→ 80).

Description

Displays the current switch status of the status output.

User interface

- Open
- Closed

Additional information

User interface

- **Open**
 - The switch output is not conductive.
- **Closed**
 - The switch output is conductive.

Invert outp.sig.

Navigation

Expert → Output → PFS output 1 → Invert outp.sig. (0470–1)

Description

Use this function to select whether to invert the output signal.

Selection

- No
- Yes
Description of device parameters

Proline Prosonic Flow 100 HART

Factory setting

No

Additional information

Selection

No option (passive - negative)

![Diagram](image1)

Yes option (passive - positive)

![Diagram](image2)

3.4 "Communication" submenu

Navigation

Expert → Communication

- Communication
 - HART output → 98
 - Web server → 115
 - Diag. config. → 118

3.4.1 "HART output" submenu

Navigation

Expert → Communication → HART output

- HART output
 - Configuration → 99
 - Burst config. → 101
 - Information → 107
 - Output → 111
"Configuration" submenu

Navigation

Expert → Communication → HART output → Configuration

<table>
<thead>
<tr>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>HART short tag (0220)</td>
</tr>
<tr>
<td>Device tag (0215)</td>
</tr>
<tr>
<td>HART address (0219)</td>
</tr>
<tr>
<td>No. of preambles (0217)</td>
</tr>
<tr>
<td>Fieldwrit.acc. (0273)</td>
</tr>
</tbody>
</table>

HART short tag

Navigation

Expert → Communication → HART output → Configuration → HART short tag (0220)

Description

Use this function to enter a brief description for the measuring point. This can be edited and displayed via HART protocol or using the local display.

User entry

Max. 8 characters: A to Z, 0 to 9 and certain special characters (e.g. punctuation marks, @, %).

Factory setting

PROSOnIC

Device tag

Navigation

Expert → Communication → HART output → Configuration → Device tag (0215)

Description

Use this function to enter the name for the measuring point.

User entry

Max. 32 characters, such as letters, numbers or special characters (e.g. @, %, /).

Factory setting

Prosonic Flow E 100
HART address

Navigation

[Expert → Communication → HART output → Configuration → HART address (0219)]

Description

Use this function to enter the address via which the data exchange takes place via HART protocol.

User entry

0 to 63

Factory setting

0

Additional information

Description

For addressing in a HART Multidrop network, the **Fixed current** option must be set in the **Current span** parameter (→ 65) (current output 1).

No. of preambles

Navigation

[Expert → Communication → HART output → Configuration → No. of preambles (0217)]

Description

Use this function to enter the number of preambles in the HART protocol.

User entry

2 to 20

Factory setting

5

Additional information

User entry

As every modem component can 'swallow' a byte, 2-byte preambles at least must be defined.

Fieldb.writ.acc.

Navigation

[Expert → Communication → HART output → Configuration → Fieldb.writ.acc. (0273)]

Description

Use this function to restrict access to the measuring device via fieldbus (HART interface).

Selection

- Read + write
- Read only

Factory setting

Read + write
Additional information

Description
If read and/or write protection is enabled, the parameter can only be controlled and reset via local operation. Access is no longer possible via operating tools.

Selection
- Read + write
 The parameters are readable and writable.
- Read only
 The parameters are only readable.

"Burst configuration 1 to n" submenu

Navigation

Expert → Communication → HART output → Burst config. → Burst config. 1 to n

<table>
<thead>
<tr>
<th>Burst config. 1 to n</th>
<th>102</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burst mode 1 to n (2032–1 to n)</td>
<td></td>
</tr>
<tr>
<td>Burst command 1 to n (2031–1 to n)</td>
<td></td>
</tr>
<tr>
<td>Burst variable 0 (2033)</td>
<td></td>
</tr>
<tr>
<td>Burst variable 1 (2034)</td>
<td></td>
</tr>
<tr>
<td>Burst variable 2 (2035)</td>
<td></td>
</tr>
<tr>
<td>Burst variable 3 (2036)</td>
<td></td>
</tr>
<tr>
<td>Burst variable 4 (2037)</td>
<td></td>
</tr>
<tr>
<td>Burst variable 5 (2038)</td>
<td></td>
</tr>
<tr>
<td>Burst variable 6 (2039)</td>
<td></td>
</tr>
<tr>
<td>Burst variable 7 (2040)</td>
<td></td>
</tr>
<tr>
<td>Trigger mode (2044–1 to n)</td>
<td></td>
</tr>
<tr>
<td>Trigger level (2043–1 to n)</td>
<td></td>
</tr>
<tr>
<td>Min. upd. per. (2042–1 to n)</td>
<td></td>
</tr>
<tr>
<td>Max. upd. per. (2041–1 to n)</td>
<td></td>
</tr>
</tbody>
</table>
Burst mode 1 to n

Navigation

Expert → Communication → HART output → Burst config. → Burst config. 1 to n
→ Burst mode 1 to n (2032–1 to n)

Description

Use this function to select whether to activate the HART burst mode for burst message X.

Selection

- Off
- On

Factory setting

Off

Additional information

Options

- Off
 The measuring device transmits data only when requested by the HART master.
- On
 The measuring device transmits data regularly without being requested.

Burst command 1 to n

Navigation

Expert → Communication → HART output → Burst config. → Burst config. 1 to n
→ Burst command 1 to n (2031–1 to n)

Description

Use this function to select the HART command that is sent to the HART master.

Selection

- Command 1
- Command 2
- Command 3
- Command 9
- Command 33
- Command 48

Factory setting

Command 2

Additional information

Selection

- Command 1
 Read out the primary variable.
- Command 2
 Read out the current and the main measured value as a percentage.
- Command 3
 Read out the dynamic HART variables and the current.
- Command 9
 Read out the dynamic HART variables including the related status.
- Command 33
 Read out the dynamic HART variables including the related unit.
- Command 48
 Read out the complete device diagnostics.

Command 33 option

The HART device variables are defined via Command 107.
The following measured variables (HART device variables) can be read out:

- Volume flow
- Mass flow
- Temperature
- Totalizer 1...3
- Sound velocity
- Flow velocity
- Signal asymmetry *
- Acceptance rate *
- Turbulence *
- Signal strength *
- SNR *
- Percent of range
- Measur. curr.
- Primary var (PV)
- Second.var(SV)
- Tertiary var(TV)
- Quaterna.var(QV)

Commands

- Information about the defined details of the command: HART specifications
- The measured variables (HART device variables) are assigned to the dynamic variables in the Output submenu (→ 64).

Burst variable 0

Navigation

Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Burst variable 0 (2033)

Description

For HART command 9 and 33: select the HART device variable or the process variable.

Selection

- Volume flow
- Mass flow
- Flow velocity
- Temperature
- Sound velocity
- Signal asymmetry *
- Acceptance rate *
- Turbulence *
- Signal strength *
- SNR *
- Totalizer 1
- Totalizer 2
- Totalizer 3
- Percent of range
- Measur. curr.
- Primary var (PV)
- Second.var(SV)
- Tertiary var(TV)
- Quaterna.var(QV)
- Not used

* Visibility depends on order options or device settings
Factory setting: Volume flow

Additional information:

Selection

The **Not used** option is set if a burst message is not configured.

Burst variable 1

Navigation

[Diagram]

Description

For HART command 9 and 33: select the HART device variable or the process variable.

Selection

See the **Burst variable 0** parameter (→ 103).

Factory setting

Not used

Burst variable 2

Navigation

[Diagram]

Description

For HART command 9 and 33: select the HART device variable or the process variable.

Selection

See the **Burst variable 0** parameter (→ 103).

Factory setting

Not used

Burst variable 3

Navigation

[Diagram]

Description

For HART command 9 and 33: select the HART device variable or the process variable.

Selection

See the **Burst variable 0** parameter (→ 103).

Factory setting

Not used
Burst variable 4

Navigation
Expert ➔ Communication ➔ HART output ➔ Burst config. ➔ Burst config. 1 to n ➔ Burst variable 4 (2037)

Description
For HART command 9: select the HART device variable or the process variable.

Selection
See the Burst variable 0 parameter (➔ 103).

Factory setting
Not used

Burst variable 5

Navigation
Expert ➔ Communication ➔ HART output ➔ Burst config. ➔ Burst config. 1 to n ➔ Burst variable 5 (2038)

Description
For HART command 9: select the HART device variable or the process variable.

Selection
See the Burst variable 0 parameter (➔ 103).

Factory setting
Not used

Burst variable 6

Navigation
Expert ➔ Communication ➔ HART output ➔ Burst config. ➔ Burst config. 1 to n ➔ Burst variable 6 (2039)

Description
For HART command 9: select the HART device variable or the process variable.

Selection
See the Burst variable 0 parameter (➔ 103).

Factory setting
Not used

Burst variable 7

Navigation
Expert ➔ Communication ➔ HART output ➔ Burst config. ➔ Burst config. 1 to n ➔ Burst variable 7 (2040)

Description
For HART command 9: select the HART device variable or the process variable.

Selection
See the Burst variable 0 parameter (➔ 103).

Factory setting
Not used
Trigger mode

Navigation

- Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Trigger mode (2044–1 to n)

Description

Use this function to select the event that triggers burst message X.

Selection

- Continuous
- Window
- Rising
- Falling
- On change

Factory setting

Continuous

Additional information

Options

- Continuous

 The message is sent continuously, at least at intervals corresponding to the time frame specified in the Burst min per parameter (→ 107).

- Window

 The message is sent if the specified measured value has changed by the value in the Trigger level parameter (→ 106).

- Rising

 The message is sent if the specified measured value exceeds the value in the Trigger level parameter (→ 106).

- Falling

 The message is sent if the specified measured value drops below the value in the Trigger level parameter (→ 106).

- On change

 The message is sent if a measured value changes in the burst message.

Trigger level

Navigation

- Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Trigger level (2043–1 to n)

Description

For entering the burst trigger value.

User entry

Signed floating-point number

Additional information

Description

Together with the option selected in the Trigger mode parameter (→ 106) the burst trigger value determines the time of burst message X.
Min. upd. per.

Navigation

Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Min. upd. per. (2042–1 to n)

Description

Use this function to enter the minimum time span between two burst commands of burst message X.

User entry

Positive integer

Factory setting

1 000 ms

Max. upd. per.

Navigation

Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Max. upd. per. (2041–1 to n)

Description

Use this function to enter the maximum time span between two burst commands of burst message X.

User entry

Positive integer

Factory setting

2 000 ms

"Information" submenu

Navigation

Expert → Communication → HART output → Information

<table>
<thead>
<tr>
<th>Information</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device revision (0204)</td>
<td>108</td>
</tr>
<tr>
<td>Device ID (0221)</td>
<td>108</td>
</tr>
<tr>
<td>Device type (0209)</td>
<td>108</td>
</tr>
<tr>
<td>Manufacturer ID (0259)</td>
<td>109</td>
</tr>
<tr>
<td>HART revision (0205)</td>
<td>109</td>
</tr>
<tr>
<td>HART descriptor (0212)</td>
<td>109</td>
</tr>
<tr>
<td>HART message (0216)</td>
<td>109</td>
</tr>
<tr>
<td>Hardware rev. (0206)</td>
<td>110</td>
</tr>
</tbody>
</table>
Device revision

Navigation

Expert → Communication → HART output → Information → Device revision (0204)

Description

Displays the device revision with which the device is registered with the HART Communication Foundation.

User interface

2-digit hexadecimal number

Factory setting

0x01

Additional information

Description

The device revision is needed to assign the appropriate device description file (DD) to the device.

Device ID

Navigation

Expert → Communication → HART output → Information → Device ID (0221)

Description

Use this function to view the device ID for identifying the measuring device in a HART network.

User interface

6-digit hexadecimal number

Additional information

Description

In addition to the device type and manufacturer ID, the device ID is part of the unique ID. Each HART device is uniquely identified by the unique device ID.

Device type

Navigation

Expert → Communication → HART output → Information → Device type (0209)

Description

Displays the device type with which the measuring device is registered with the HART Communication Foundation.

User interface

2-digit hexadecimal number

Factory setting

0x5c (for Prosonic Flow E 100)
Additional information

Description

The device type is specified by the manufacturer. It is needed to assign the appropriate device description file (DD) to the device.

<table>
<thead>
<tr>
<th>Manufacturer ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>User interface</td>
</tr>
<tr>
<td>Factory setting</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HART revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>User interface</td>
</tr>
<tr>
<td>Factory setting</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HART descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>User entry</td>
</tr>
<tr>
<td>Factory setting</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HART message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Description</td>
</tr>
</tbody>
</table>
User entry
Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /)

Factory setting
Pros.Flow E 100

Hardware rev.

<table>
<thead>
<tr>
<th>Navigation</th>
<th>⚙ Expert → Communication → HART output → Information → Hardware rev. (0206)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the hardware revision of the measuring device.</td>
</tr>
<tr>
<td>User interface</td>
<td>0 to 30</td>
</tr>
<tr>
<td>Factory setting</td>
<td>1</td>
</tr>
</tbody>
</table>

Software rev.

<table>
<thead>
<tr>
<th>Navigation</th>
<th>⚙ Expert → Communication → HART output → Information → Software rev. (0224)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the software revision of the measuring device.</td>
</tr>
<tr>
<td>User interface</td>
<td>0 to 255</td>
</tr>
<tr>
<td>Factory setting</td>
<td>1</td>
</tr>
</tbody>
</table>

HART date code

<table>
<thead>
<tr>
<th>Navigation</th>
<th>⚙ Expert → Communication → HART output → Information → HART date code (0202)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the date information for individual use.</td>
</tr>
<tr>
<td>User entry</td>
<td>Date entry format: yyyy-mm-dd</td>
</tr>
<tr>
<td>Factory setting</td>
<td>2009-07-20</td>
</tr>
<tr>
<td>Additional information</td>
<td>Example</td>
</tr>
<tr>
<td></td>
<td>Device installation date</td>
</tr>
</tbody>
</table>
"Output" submenu

Navigation

![Expert → Communication → HART output → Output](#)

Description

Use this function to select a measured variable (HART device variable) for the primary dynamic variable (PV).

Selection

- Off
- Volume flow
- Mass flow
- Sound velocity
- Flow velocity
- Temperature
- Acceptance rate
- Signal asymmetry
- Turbulence
- Signal strength
- SNR

Factory setting

Volume flow

* Visibility depends on order options or device settings
Primary var (PV)

Navigation

Expert → Communication → HART output → Output → Primary var (PV) (0201)

Description

Displays the current measured value of the primary dynamic variable (PV).

User interface

Signed floating-point number

Additional information

User interface

The measured value displayed depends on the process variable selected in the Assign PV parameter (→ 111).

Dependency

The unit of the displayed measured value is taken from the System units submenu (→ 47).

Assign SV

Navigation

Expert → Communication → HART output → Output → Assign SV (0235)

Description

Use this function to select a measured variable (HART device variable) for the secondary dynamic variable (SV).

Selection

- Volume flow
- Mass flow
- Flow velocity
- Sound velocity
- Temperature
- Acceptance rate *
- Signal asymmetry *
- Turbulence *
- Signal strength *
- SNR *
- Totalizer 1
- Totalizer 2
- Totalizer 3

Factory setting

Totalizer 1

Second.var(SV)

Navigation

Expert → Communication → HART output → Output → Second.var(SV) (0226)

Description

Displays the current measured value of the secondary dynamic variable (SV).

User interface

Signed floating-point number

* Visibility depends on order options or device settings
Assign TV

Navigation
Expert → Communication → HART output → Output → Assign TV (0236)

Description
Use this function to select a measured variable (HART device variable) for the tertiary (third) dynamic variable (TV).

Selection
- Volume flow
- Mass flow
- Flow velocity
- Sound velocity*
- Temperature*
- Acceptance rate*
- Signal asymmetry*
- Turbulence*
- Signal strength*
- SNR*
- Totalizer 1
- Totalizer 2
- Totalizer 3

Factory setting
Totalizer 2

Tertiary var(TV)

Navigation
Expert → Communication → HART output → Output → Tertiary var(TV) (0228)

Description
Displays the current measured value of the tertiary dynamic variable (TV).

User interface
Signed floating-point number

Additional information

* Visibility depends on order options or device settings

User interface
The measured value displayed depends on the process variable selected in the **Assign SV** parameter (→ 112).

Dependency
The unit of the displayed measured value is taken from the **System units** submenu (→ 47).
Assign QV

Navigation

Expert → Communication → HART output → Output → Assign QV (0237)

Description

Use this function to select a measured variable (HART device variable) for the quaternary (fourth) dynamic variable (QV).

Selection

- Volume flow
- Mass flow
- Flow velocity
- Sound velocity
- Temperature
- Acceptance rate *
- Signal asymmetry *
- Turbulence *
- Signal strength *
- SNR *
- Totalizer 1
- Totalizer 2
- Totalizer 3

Factory setting

Totalizer 3

Quaterna.var(QV)

Navigation

Expert → Communication → HART output → Output → Quaterna.var(QV) (0203)

Description

Displays the current measured value of the quaternary dynamic variable (QV).

User interface

Signed floating-point number

Additional information

User interface

The measured value displayed depends on the process variable selected in the Assign QV parameter (→ 114).

Dependency

The unit of the displayed measured value is taken from the System units submenu (→ 47).

* Visibility depends on order options or device settings
3.4.2 "Web server" submenu

Navigation

Expert → Communication → Web server

Webserv.language

Description
Use this function to select the Web server language setting.

Selection
- English
- Deutsch *
- Français *
- Español *
- Italiano *
- Nederlands *
- Portuguesa *
- Polski *
- русский язык (Ru) *
- Svenska *
- Türkçe *
- 中文 (Chinese) *
- 日本語 (Japanese) *
- 한국어 (Korean) *
- العربية (Ara) *
- Bahasa Indonesia *
- ภาษาไทย (Thai) *
- tiếng Việt (Vit) *
- čeština (Czech) *

* Visibility depends on order options or device settings
MAC Address

Navigation

Expert → Communication → Web server → MAC Address (7214)

Description

Displays the MAC address of the measuring device.

User interface

Unique 12-digit character string comprising letters and numbers

Factory setting

Each measuring device is given an individual address.

Additional information

Example

For the display format

00:07:05:10:01:5F

DHCP client

Navigation

Expert → Communication → Web server → DHCP client (7212)

Description

Use this function to activate and deactivate the DHCP client functionality.

Selection

- Off
- On

Factory setting

Off

Additional information

Result

If the DHCP client functionality of the Web server is activated, the IP address (→ 116), Subnet mask (→ 117) and Default gateway (→ 117) are set automatically.

Identification is via the MAC address of the measuring device.

IP address

Navigation

Expert → Communication → Web server → IP address (7209)

Description

Displays the IP address of the device's web server.

User entry

4 octet: 0 to 255 (in the particular octet)

Factory setting

192.168.1.212

5) Media Access Control
Subnet mask

Navigation
Expert → Communication → Web server → Subnet mask (7211)

Description
Displays the subnet mask.

User entry
4 octet: 0 to 255 (in the particular octet)

Factory setting
255.255.255.0

Default gateway

Navigation
Expert → Communication → Web server → Default gateway (7210)

Description
Displays the default gateway.

User entry
4 octet: 0 to 255 (in the particular octet)

Factory setting
0.0.0.0

Webserver funct.

Navigation
Expert → Communication → Web server → Webserver funct. (7222)

Description
Use this function to switch the Web server on and off.

Selection
- **Off**
- **HTML Off**
- **On**

Factory setting
On

Additional information

Description
Once disabled, the Webserver funct. can only be re-enabled via the local display or the operating tool FieldCare.

Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>- The web server is completely disabled.</td>
</tr>
<tr>
<td></td>
<td>- Port 80 is locked.</td>
</tr>
<tr>
<td>HTML Off</td>
<td>The HTML version of the web server is not available.</td>
</tr>
<tr>
<td>On</td>
<td>- The complete functionality of the web server is available.</td>
</tr>
<tr>
<td></td>
<td>- JavaScript is used.</td>
</tr>
<tr>
<td></td>
<td>- The password is transferred in an encrypted state.</td>
</tr>
<tr>
<td></td>
<td>- Any change to the password is also transferred in an encrypted state.</td>
</tr>
</tbody>
</table>
Login page

Navigation

Expert → Communication → Web server → Login page (7273)

Description

Use this function to select the format of the login page.

Selection

- Without header
- With header

Factory setting

With header

3.4.3 "Diag. config." submenu

For a list of all the diagnostic events, see the Operating Instructions for the device.

Assign a category to the particular diagnostic event:

- **Failure (F) option**
 A device error has occurred. The measured value is no longer valid.

- **Funct. check (C) option**
 The device is in service mode (e.g. during a simulation).

- **Out of spec. (S) option**
 The device is being operated:
 - Outside its technical specification limits (e.g. outside the process temperature range)
 - Outside of the configuration carried out by the user (e.g. maximum flow in parameter 20 mA value)

- **Mainten. req. (M) option**
 Maintenance is required. The measured value is still valid.

- **No effect (N) option**
 Has no effect on the condensed status.

Navigation

Expert → Communication → Diag. config.

Event category 124 (0270)	➔ 119
Event category 125 (0271)	➔ 119
Event category 160 (0272)	➔ 120
Event category 441 (0210)	➔ 120
Event category 442 (0230)	➔ 120
Event category 443 (0231)	➔ 121
Event category 832 (0218)	➔ 121
Event category 124 (Rel.sig.strength)

Navigation

Expert → Communication → Diag. config. → Event category 124 (0270)

Description

Use this function to select a category for the diagnostic message 124 Rel.sig.strength.

Selection

- Failure (F)
- Funct. check (C)
- Out of spec. (S)
- Mainten. req. (M)
- No effect (N)

Factory setting

Out of spec. (S)

Additional information

For a detailed description of the event categories available for selection:

Event category 125 (Rel. sound vel.)

Navigation

Expert → Communication → Diag. config. → Event category 125 (0271)

Description

Use this function to select a category for the diagnostic message 125 Rel. sound vel..

Selection

- Failure (F)
- Funct. check (C)
- Out of spec. (S)
- Mainten. req. (M)
- No effect (N)

Factory setting

Out of spec. (S)

Additional information

For a detailed description of the event categories available for selection:
Event category 160 (Signal path off)

Navigation

Expert → Communication → Diag. config. → Event category 160 (0272)

Description

Use this function to select a category for the diagnostic message **160 Signal path off**.

Selection

- Failure (F)
- Funct. check (C)
- Out of spec. (S)
- Mainten. req. (M)
- No effect (N)

Factory setting

Mainten. req. (M)

Additional information

For a detailed description of the event categories available for selection:

Event category 441 (Curr.output 1 to n)

Navigation

Expert → Communication → Diag. config. → Event category 441 (0210)

Description

Use this function to select a category for the diagnostic message **441 Curr.output 1 to n**.

Selection

- Failure (F)
- Funct. check (C)
- Out of spec. (S)
- Mainten. req. (M)
- No effect (N)

Factory setting

Out of spec. (S)

Additional information

For a detailed description of the event categories available for selection:

Event category 442 (Freq. output)

Navigation

Expert → Communication → Diag. config. → Event category 442 (0230)

Prerequisite

The pulse/frequency/switch output is available.

Description

Use this function to select the category assigned to diagnostic message **442 Freq. output**.

Selection

- Failure (F)
- Funct. check (C)
- Out of spec. (S)
- Mainten. req. (M)
- No effect (N)
Event category 443 (Pulse output)

Navigation
Expert → Communication → Diag. config. → Event category 443 (0231)

Prerequisite
The pulse/frequency/switch output is available.

Description
Use this function to select the category assigned to diagnostic message **443 Pulse output**.

Selection
- Failure (F)
- Funct. check (C)
- Out of spec. (S)
- Mainten. req.(M)
- No effect (N)

Factory setting
Out of spec. (S)

Additional information
Selection
For a detailed description of the event categories available for selection:

Event category 832 (Electronic temp.)

Navigation
Expert → Communication → Diag. config. → Event category 832 (0218)

Description
Use this function to select a category for the diagnostic message **832 Electronic temp.**

Selection
- Failure (F)
- Funct. check (C)
- Out of spec. (S)
- Mainten. req.(M)
- No effect (N)

Factory setting
Out of spec. (S)

Additional information
Selection
For a detailed description of the event categories available for selection:
Description of device parameters

Proline Prosonic Flow 100 HART

Event category 833 (Electronic temp.)

Navigation

Expert → Communication → Diag. config. → Event category 833 (0225)

Description

Use this option to select a category for the diagnostic message 833 Electronic temp..

Selection

- Failure (F)
- Funct. check (C)
- Out of spec. (S)
- Mainten. req. (M)
- No effect (N)

Factory setting

Out of spec. (S)

Additional information

Selection

For a detailed description of the event categories available for selection:

Event category 834 (Process temp.)

Navigation

Expert → Communication → Diag. config. → Event category 834 (0227)

Description

Use this option to select a category for the diagnostic message 834 Process temp..

Selection

- Failure (F)
- Funct. check (C)
- Out of spec. (S)
- Mainten. req. (M)
- No effect (N)

Factory setting

Out of spec. (S)

Additional information

Selection

For a detailed description of the event categories available for selection:

Event category 835 (Process temp.)

Navigation

Expert → Communication → Diag. config. → Event category 835 (0229)

Description

Use this option to select a category for the diagnostic message 835 Process temp..

Selection

- Failure (F)
- Funct. check (C)
- Out of spec. (S)
- Mainten. req. (M)
- No effect (N)

Factory setting

Out of spec. (S)
Additional information
For a detailed description of the event categories available for selection:

Event category 841 (Sensor range)

Navigation
Expert → Communication → Diag. config. → Event category 840 (0267)

Description
Use this function to select a category for the diagnostic message 841 Sensor range.

Selection
- Failure (F)
- Funct. check (C)
- Out of spec. (S)
- Mainten. req.(M)
- No effect (N)

Factory setting
Out of spec. (S)

Additional information
For a detailed description of the event categories available for selection:

3.5 "Application" submenu

Navigation
Expert → Application

Reset all tot.

Navigation
Expert → Application → Reset all tot. (2806)

Description
Use this function to reset all totalizers to the value 0 and restart the totaling process. This deletes all the flow values previously totalized.

Selection
- Cancel
- Reset + totalize

Factory setting
Cancel
Additional information

Selection

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancel</td>
<td>No action is executed and the user exits the parameter.</td>
</tr>
<tr>
<td>Reset + totalize</td>
<td>Resets all totalizers to 0 and restarts the totaling process. This deletes all the flow values previously totalized.</td>
</tr>
</tbody>
</table>

3.5.1 "Totalizer 1 to n" submenu

Navigation

Expert → Application → Totalizer 1 to n

Assign variable

Description

Use this function to select a process variable for the Totalizer 1 to n.

Selection

- **Off**
- **Volume flow**
- **Mass flow**

Factory setting

Volume flow

Additional information

- If the option selected is changed, the device resets the totalizer to 0.

Selection

If the **Off** option is selected, only **Assign variable** parameter (→ 124) is still displayed in the **Totalizer 1 to n** submenu. All other parameters in the submenu are hidden.
Unit totalizer 1 to n

Navigation
Expert → Application → Totalizer 1 to n → Unit totalizer 1 to n (0915–1 to n)

Prerequisite
One of the following options is selected in the Assign variable parameter (→ 124) of the Totalizer 1 to n submenu:
• Volume flow
• Mass flow

Description
Use this function to select the process variable unit for the Totalizer 1 to n (→ 124).

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
<th>Imperial units</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>oz</td>
<td>gal (imp)</td>
</tr>
<tr>
<td>kg</td>
<td>lb</td>
<td>Mgal (imp)</td>
</tr>
<tr>
<td>t</td>
<td>STon</td>
<td>bbl (imp;beer)</td>
</tr>
</tbody>
</table>

or

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
<th>Imperial units</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm³</td>
<td>af</td>
<td>gal (imp)</td>
</tr>
<tr>
<td>dm³</td>
<td>ft³</td>
<td>Mgal (imp)</td>
</tr>
<tr>
<td>m³</td>
<td>fl oz (us)</td>
<td>bbl (imp;beer)</td>
</tr>
<tr>
<td>ml</td>
<td>gal (us)</td>
<td>bbl (us;beer)</td>
</tr>
<tr>
<td>l</td>
<td>kgal (us)</td>
<td>bbl (us;oil)</td>
</tr>
<tr>
<td>hl</td>
<td>Mgal (us)</td>
<td>bbl (us;tank)</td>
</tr>
<tr>
<td>Mi Mega</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Factory setting
Country-specific:
• m³
• ft³

Additional information
Description
The unit is selected separately for each totalizer. It is independent of the selection made in the System units submenu (→ 47).

Selection
The selection is dependent on the process variable selected in the Assign variable parameter (→ 124).

Operation mode

Navigation
Expert → Application → Totalizer 1 to n → Operation mode (0908–1 to n)

Prerequisite
One of the following options is selected in the Assign variable parameter (→ 124) of the Totalizer 1 to n submenu:
• Volume flow
• Mass flow
Description of device parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>Use this function to select how the totalizer summates the flow.</th>
</tr>
</thead>
</table>
| Selection | • Net flow total
 | • Forward total
 | • Reverse total |
| Factory setting | Net flow total |
| Additional information | Selection
 | • Net flow total
 | Flow values in the forward and reverse flow direction are totalized and balanced against one another. Net flow is registered in the flow direction.
 | • Forward total
 | Only the flow in the forward flow direction is totalized.
 | • Reverse total
 | Only the flow in the reverse flow direction is totalized (= reverse flow quantity). |

Control Tot. 1 to n

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Application → Totalizer 1 to n → Control Tot. 1 to n (0912–1 to n)</th>
</tr>
</thead>
</table>
| Prerequisite | One of the following options is selected in the Assign variable parameter (→ 124) of the Totalizer 1 to n submenu:
 | • Volume flow
 | • Mass flow |
| Description | Use this function to select the control of totalizer value 1-3. |
| Selection | • Totalize
 | • Reset + hold
 | • Preset + hold
 | • Reset + totalize
 | • Preset+totalize
 | • Hold |
| Factory setting | Totalize |
| Additional information | Selection |

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totalize</td>
<td>The totalizer is started or continues running.</td>
</tr>
<tr>
<td>Reset + hold</td>
<td>The totaling process is stopped and the totalizer is reset to 0.</td>
</tr>
<tr>
<td>Preset + hold</td>
<td>The totaling process is stopped and the totalizer is set to its defined start value from the Preset value parameter.</td>
</tr>
<tr>
<td>Reset + totalize</td>
<td>The totalizer is reset to 0 and the totaling process is restarted.</td>
</tr>
<tr>
<td>Preset+totalize</td>
<td>The totalizer is set to the defined start value from the Preset value parameter and the totaling process is restarted.</td>
</tr>
</tbody>
</table>
Preset value 1 to n

Navigation

Expert → Application → Totalizer 1 to n → Preset value 1 to n (0913-1 to n)

Prerequisite

One of the following options is selected in the Assign variable parameter (→ 124) of the Totalizer 1 to n submenu:
- Volume flow
- Mass flow

Description

Use this function to enter a start value for the Totalizer 1 to n.

User entry

Signed floating-point number

Factory setting

Country-specific:
- 0 m³
- 0 ft³

Additional information

User entry

The unit of the selected process variable is specified for the totalizer in the Unit totalizer parameter (→ 125).

Example

This configuration is suitable for applications such as iterative filling processes with a fixed batch quantity.

Failure mode

Navigation

Expert → Application → Totalizer 1 to n → Failure mode (0901-1 to n)

Prerequisite

One of the following options is selected in the Assign variable parameter (→ 124) of the Totalizer 1 to n submenu:
- Volume flow
- Mass flow

Description

Use this function to select how a totalizer behaves in the event of a device alarm.

Selection

- Stop
- Actual value
- Last valid value

Factory setting

Stop
Additional information

Description

This setting does not affect the failsafe mode of other totalizers and the outputs. This is specified in separate parameters.

Selection

• Stop
 The totalizer is stopped in the event of a device alarm.
• Actual value
 The totalizer continues to count based on the actual measured value; the device alarm is ignored.
• Last valid value
 The totalizer continues to count based on the last valid measured value before the device alarm occurred.

3.5.2 "Inventory count." submenu

Navigation

Expert → Application → Inventory count.

- Inventory count.
- Unit (0974)

Description

Displays the unit of the inventory counter.

User interface

SI units
- g
- kg
- t

US units
- oz
- lb
- STon

Imperial units
- gal (imp)
- Mgal (imp)
- bbl (imp;beer)
- bbl (imp;oil)

or

SI units
- cm³
- dm³
- m³
- ml
- l
- hl
- Mi Mega

US units
- af
- ft³
- fl oz (us)
- gal (us)
- kgal (us)
- Mgal (us)
- bbl (us;liq.)
- bbl (us;beer)
- bbl (us;oil)
- bbl (us;tank)
Additional information

Description

![The parameter cannot be configured or reset.]

3.6 "Diagnostics" submenu

Navigation
Expert → Diagnostics

<table>
<thead>
<tr>
<th>► Diagnostics</th>
<th>➡ 129</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual diagnos. (0691)</td>
<td>➡ 129</td>
</tr>
<tr>
<td>Timestamp (0667)</td>
<td>➡ 130</td>
</tr>
<tr>
<td>Prev.diagnostics (0690)</td>
<td>➡ 130</td>
</tr>
<tr>
<td>Timestamp (0672)</td>
<td>➡ 131</td>
</tr>
<tr>
<td>Time fr. restart (0653)</td>
<td>➡ 131</td>
</tr>
<tr>
<td>Operating time (0652)</td>
<td>➡ 131</td>
</tr>
<tr>
<td>► Diagnostic list</td>
<td>➡ 132</td>
</tr>
<tr>
<td>► Event logbook</td>
<td>➡ 135</td>
</tr>
<tr>
<td>► Device info</td>
<td>➡ 137</td>
</tr>
<tr>
<td>► Mainboard module</td>
<td>➡ 141</td>
</tr>
<tr>
<td>► Sens. electronic</td>
<td>➡ 142</td>
</tr>
<tr>
<td>► Display module</td>
<td>➡ 143</td>
</tr>
<tr>
<td>► Heartbeat</td>
<td>➡ 148</td>
</tr>
<tr>
<td>► Simulation</td>
<td>➡ 149</td>
</tr>
</tbody>
</table>

Actual diagnos.

Navigation
Expert → Diagnostics → Actual diagnos. (0691)

Prerequisite
A diagnostic event has occurred.
Description
Displays the current diagnostic message. If two or more messages occur simultaneously, the message with the highest priority is shown on the display.

User interface
Symbol for diagnostic behavior, diagnostic code and short message.

Additional information
Display
Additional pending diagnostic messages can be viewed in the Diagnostic list submenu (→ 132).

Example
For the display format:
F271 Main electronics

Timestamp

Navigation
Expert → Diagnostics → Timestamp

Description
Displays the operating time when the current diagnostic message occurred.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information
Display
The diagnostic message can be viewed via the Actual diagnos. parameter (→ 129).

Example
For the display format:
24d12h13m00s

Prev.diagnostics

Navigation
Expert → Diagnostics → Prev.diagnostics (0690)

Prerequisite
Two diagnostic events have already occurred.

Description
Displays the diagnostic message that occurred before the current message.

User interface
Symbol for diagnostic behavior, diagnostic code and short message.

Additional information
Example
For the display format:
F271 Main electronics
Timestamp

Navigation
Expert → Diagnostics → Timestamp

Description
Displays the operating time when the last diagnostic message before the current message occurred.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information
Display
The diagnostic message can be viewed via the **Prev.diagnostics** parameter (→ 130).

Example
For the display format:
24d12h13m00s

Time fr. restart

Navigation
Expert → Diagnostics → Time fr. restart (0653)

Description
Use this function to display the time the device has been in operation since the last device restart.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Operating time

Navigation
Expert → Diagnostics → Operating time (0652)

Description
Use this function to display the length of time the device has been in operation.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information
User interface
The maximum number of days is 9999, which is equivalent to 27 years.
3.6.1 "Diagnostic list" submenu

Navigation

Expert → Diagnostics → Diagnostic list

<table>
<thead>
<tr>
<th>Diagnostic list</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostics 1 (0692)</td>
<td>→</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>Diagnostics 2 (0693)</td>
<td>→</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>Diagnostics 3 (0694)</td>
<td>→</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>Diagnostics 4 (0695)</td>
<td>→</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>Diagnostics 5 (0696)</td>
<td>→</td>
<td>135</td>
<td></td>
</tr>
</tbody>
</table>

Diagnostics 1

Navigation

Expert → Diagnostics → Diagnostic list → Diagnostics 1 (0692)

Description

Displays the current diagnostics message with the highest priority.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

Examples

For the display format:
- F271 Main electronics
- F276 I/O module

Timestamp

Navigation

Expert → Diagnostics → Diagnostic list → Timestamp

Description

Displays the operating time when the diagnostic message with the highest priority occurred.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

Display

The diagnostic message can be viewed via the Diagnostics 1 parameter (→ 132).

Example

For the display format:
24d12h13m00s
Diagnostics 2

Navigation

Expert → Diagnostics → Diagnostic list → Diagnostics 2 (0693)

Description
Displays the current diagnostics message with the second-highest priority.

User interface
Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

Examples
For the display format:
- F271 Main electronics
- F276 I/O module

Timestamp

Navigation

Expert → Diagnostics → Diagnostic list → Timestamp

Description
Displays the operating time when the diagnostic message with the second-highest priority occurred.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information

Display
The diagnostic message can be viewed via the Diagnostics 2 parameter (→ 133).

Example
For the display format:
24d12h13m00s

Diagnostics 3

Navigation

Expert → Diagnostics → Diagnostic list → Diagnostics 3 (0694)

Description
Displays the current diagnostics message with the third-highest priority.

User interface
Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

Examples
For the display format:
- F271 Main electronics
- F276 I/O module
Description of device parameters

Proline Prosonic Flow 100 HART

Navigation
Expert → Diagnostics → Diagnostic list → Timestamp

Description
Displays the operating time when the diagnostic message with the third-highest priority occurred.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information
Display
The diagnostic message can be viewed via the **Diagnostics 3** parameter (→ 133).

Example
For the display format:
24d12h13m00s

Diagnostics 4

Navigation
Expert → Diagnostics → Diagnostic list → Diagnostics 4 (0695)

Description
Displays the current diagnostics message with the fourth-highest priority.

User interface
Symbol for diagnostic behavior, diagnostic code and short message.

Additional information
Examples
For the display format:
- ☝F271 Main electronics
- ☝F276 I/O module

Timestamp

Navigation
Expert → Diagnostics → Diagnostic list → Timestamp

Description
Displays the operating time when the diagnostic message with the fourth-highest priority occurred.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information
Display
The diagnostic message can be viewed via the **Diagnostics 4** parameter (→ 134).

Example
For the display format:
24d12h13m00s
Diagnostics 5

Navigation

Expert → Diagnostics → Diagnostic list → Diagnostics 5 (0696)

Description
Displays the current diagnostics message with the fifth-highest priority.

User interface
Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

Examples
For the display format:
- F271 Main electronics
- F276 I/O module

Timestamp

Navigation

Expert → Diagnostics → Diagnostic list → Timestamp

Description
Displays the operating time when the diagnostic message with the fifth-highest priority occurred.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information

Display
The diagnostic message can be viewed via the Diagnostics 5 parameter (→ 135).

Example
For the display format:
24d12h13m00s

3.6.2 "Event logbook" submenu

Navigation

Expert → Diagnostics → Event logbook

Event logbook

Filter options (0705)

Event list
Filter options

Navigation

Expert → Diagnostics → Event logbook → Filter options

Description

Use this function to select the category whose event messages are displayed in the event list of the operating tool.

Selection

- All
- Failure (F)
- Funct. check (C)
- Out of spec. (S)
- Mainten. req. (M)
- Information (I)

Factory setting

All

Additional information

Description

The status signals are categorized in accordance with VDI/VDE 2650 and NAMUR Recommendation NE 107:
- F = Failure
- C = Function Check
- S = Out of Specification
- M = Maintenance Required

"Event list" submenu

The Event list submenu is only displayed if operating via the local display.

If operating via the FieldCare operating tool, the event list can be read out with a separate FieldCare module.

If operating via the Web browser, the event messages can be found directly in the Event logbook submenu.

Navigation

Expert → Diagnostics → Event logbook → Event list

Event list

Navigation

Expert → Diagnostics → Event logbook → Event list

Description

Displays the history of event messages of the category selected in the Filter options parameter.
User interface

- For a "Category I" event message
 Information event, short message, symbol for event recording and operating time when error occurred
- For a "Category F, C, S, M" event message (status signal)
 Diagnostics code, short message, symbol for event recording and operating time when error occurred

Additional information

Description
A maximum of 20 event messages are displayed in chronological order.
The following symbols indicate whether an event has occurred or has ended:
- ☖: Occurrence of the event
- ☐: End of the event

Examples
For the display format:
- I1091 Configuration modified
 ☖ 24d12h13m00s
- ☒F271 Main electronics
 ☖ 01d04h12min30s

HistoROM
A HistoROM is a "non-volatile" device memory in the form of an EEPROM.

3.6.3 "Device info" submenu

Navigation

Expert → Diagnostics → Device info

<table>
<thead>
<tr>
<th>Device info</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device tag (0011)</td>
</tr>
<tr>
<td>Serial number (0009)</td>
</tr>
<tr>
<td>Firmware version (0010)</td>
</tr>
<tr>
<td>Device name (0013)</td>
</tr>
<tr>
<td>Order code (0008)</td>
</tr>
<tr>
<td>Ext. order cd. 1 (0023)</td>
</tr>
<tr>
<td>Ext. order cd. 2 (0021)</td>
</tr>
<tr>
<td>Ext. order cd. 3 (0022)</td>
</tr>
<tr>
<td>Config. counter (0233)</td>
</tr>
<tr>
<td>ENP version (0012)</td>
</tr>
</tbody>
</table>
Device tag

Navigation
Expert → Diagnostics → Device info → Device tag (0011)

Description
Displays a unique name for the measuring point so it can be identified quickly within the plant.

User interface
Max. 32 characters, such as letters, numbers or special characters (e.g. @, %, /).

Factory setting
Prosonic Flow E 100

Serial number

Navigation
Expert → Diagnostics → Device info → Serial number (0009)

Description
Displays the serial number of the measuring device.

The number can be found on the nameplate of the sensor and transmitter.

User interface
Max. 11-digit character string comprising letters and numbers.

Additional information
Uses of the serial number

- To identify the measuring device quickly, e.g. when contacting Endress+Hauser.
- To obtain specific information on the measuring device using the Device Viewer: www.endress.com/deviceviewer

Firmware version

Navigation
Expert → Diagnostics → Device info → Firmware version (0010)

Description
Displays the device firmware version installed.

User interface
Character string in the format xx.yy.zz

Additional information
Display

The Firmware version is also located:

- On the title page of the Operating instructions
- On the transmitter nameplate
Device name

Navigation

[Icon: Expert → Diagnostics → Device info → Device name (0013)]

Description

Displays the name of the transmitter. It can also be found on the nameplate of the transmitter.

User interface

Max. 32 characters such as letters or numbers.

Factory setting

Pros.Flow E 100

Order code

Navigation

[Icon: Expert → Diagnostics → Device info → Order code (0008)]

Description

Displays the device order code.

User interface

Character string composed of letters, numbers and certain punctuation marks (e.g. /).

Additional information

Description

The order code can be found on the nameplate of the sensor and transmitter in the "Order code" field.

The order code is generated from the extended order code through a process of reversible transformation. The extended order code indicates the attributes for all the device features in the product structure. The device features are not directly readable from the order code.

Uses of the order code

- To order an identical spare device.
- To identify the device quickly and easily, e.g. when contacting Endress+Hauser.

Ext. order cd. 1

Navigation

[Icon: Expert → Diagnostics → Device info → Ext. order cd. 1 (0023)]

Description

Displays the first part of the extended order code.

On account of length restrictions, the extended order code is split into a maximum of 3 parameters.

User interface

Character string

Additional information

Description

The extended order code indicates the version of all the features of the product structure for the measuring device and thus uniquely identifies the measuring device.

The extended order code can also be found on the nameplate of the sensor and transmitter in the "Ext. ord. cd." field.
Description of device parameters

Proline Prosonic Flow 100 HART

Ext. order cd. 2

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Diagnostics → Device info → Ext. order cd. 2 (0021)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the second part of the extended order code.</td>
</tr>
<tr>
<td>User interface</td>
<td>Character string</td>
</tr>
<tr>
<td>Additional information</td>
<td>For additional information, see Ext. order cd. 1 parameter (→ 139)</td>
</tr>
</tbody>
</table>

Ext. order cd. 3

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Diagnostics → Device info → Ext. order cd. 3 (0022)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the third part of the extended order code.</td>
</tr>
<tr>
<td>User interface</td>
<td>Character string</td>
</tr>
<tr>
<td>Additional information</td>
<td>For additional information, see Ext. order cd. 1 parameter (→ 139)</td>
</tr>
</tbody>
</table>

Config. counter

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Diagnostics → Device info → Config. counter (0233)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the number of parameter modifications for the device. When the user changes a parameter setting, this counter is incremented.</td>
</tr>
<tr>
<td>User interface</td>
<td>0 to 65 535</td>
</tr>
</tbody>
</table>

ENP version

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Diagnostics → Device info → ENP version (0012)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the version of the electronic nameplate.</td>
</tr>
<tr>
<td>User interface</td>
<td>Character string</td>
</tr>
<tr>
<td>Factory setting</td>
<td>2.02.00</td>
</tr>
<tr>
<td>Additional information</td>
<td>Description</td>
</tr>
</tbody>
</table>

This electronic nameplate stores a data record for device identification that includes more data than the nameplates attached to the outside of the device.
3.6.4 "Mainboard module" submenu

Navigation

Expert → Diagnostics → Mainboard module

Software rev.

Description

Use this function to display the software revision of the module.

User interface

Positive integer

Build no. softw.

Description

Displays the software build number of the module.

User interface

Positive integer

Bootloader rev.

Description

Displays the bootloader revision of the software.

User interface

Positive integer
"Sens. electronic" submenu

Software rev.

Navigation

Expert → Diagnostics → Sens. electronic → Software rev. (0072)

Description

Use this function to display the software revision of the module.

User interface

Positive integer

Build no. softw.

Navigation

Expert → Diagnostics → Sens. electronic → Build no. softw. (0079)

Description

Displays the software build number of the module.

User interface

Positive integer

Bootloader rev.

Navigation

Expert → Diagnostics → Sens. electronic → Bootloader rev. (0073)

Description

Displays the bootloader revision of the software.

User interface

Positive integer
3.6.6 "Display module" submenu

Navigation
Expert → Diagnostics → Display module

Software rev.

Navigation
Expert → Diagnostics → Display module → Software rev. (0072)

Description
Use this function to display the software revision of the module.

User interface
Positive integer

Build no. softw.

Navigation
Expert → Diagnostics → Display module → Build no. softw. (0079)

Description
Displays the software build number of the module.

User interface
Positive integer

Bootloader rev.

Navigation
Expert → Diagnostics → Display module → Bootloader rev. (0073)

Description
Displays the bootloader revision of the software.

User interface
Positive integer
3.6.7 "Min/max val." submenu

Navigation

Expert → Diagnostics → Min/max val.

Reset min/max

Description
Use this function to select measured variables whose minimum, maximum and average measured values are to be reset.

Selection
Cancel

Factory setting
Cancel

"Meas. point 1" submenu

Navigation

Expert → Diagnostics → Min/max val. → Meas. point 1

Reset min/max

Description
Use this function to select the peakhold indicators that are to be reset.

Selection

- Cancel
- Flow velocity
- Sound velocity
- Signal strength
- SNR
- Turbulence
- Acceptance rate
- Asymmetry

Factory setting
Cancel
“Sound velocity” submenu

Navigation

Expert → Diagnostics → Min/max val. → Meas. point 1 → Sound velocity

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum value (2968)</td>
<td>→ 145</td>
</tr>
<tr>
<td>Minimum value (2969)</td>
<td>→ 145</td>
</tr>
</tbody>
</table>

Maximum value

Navigation

Expert → Diagnostics → Min/max val. → Meas. point 1 → Sound velocity → Maximum value (2968)

Description

Maximum value of sound velocity since the last reset.

User interface

Signed floating-point number

Factory setting

0 m/s

Minimum value

Navigation

Expert → Diagnostics → Min/max val. → Meas. point 1 → Sound velocity → Minimum value (2969)

Description

Minimum value of sound velocity since the last reset.

User interface

Signed floating-point number

Factory setting

0 m/s

“Sensor elec.temp” submenu

Navigation

Expert → Diagnostics → Min/max val. → Meas. point 1 → Sensor elec.temp

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum value (3020)</td>
<td>→ 146</td>
</tr>
<tr>
<td>Minimum value (3021)</td>
<td>→ 146</td>
</tr>
</tbody>
</table>
Maximum value

Navigation

- Expert → Diagnostics → Min/max val. → Meas. point 1 → Sensor elec.temp → Maximum value (3020)

Description

Maximum value of sensor electronic temperature since the last reset.

User interface

Signed floating-point number

Factory setting

Positive floating-point number

Minimum value

Navigation

- Expert → Diagnostics → Min/max val. → Meas. point 1 → Sensor elec.temp → Minimum value (3021)

Description

Minimum value of sensor electronic temperature since the last reset.

User interface

Signed floating-point number

Factory setting

Negative floating-point number

"Signal strength" submenu

Navigation

- Expert → Diagnostics → Min/max val. → Meas. point 1 → Signal strength

<table>
<thead>
<tr>
<th>Signal strength</th>
<th>Maximum value (2972)</th>
<th>Minimum value (2973)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>→ 146</td>
<td>→ 147</td>
</tr>
</tbody>
</table>

Maximum value

Navigation

- Expert → Diagnostics → Min/max val. → Meas. point 1 → Signal strength → Maximum value (2972)

Description

Maximum value of signal strength since the last reset.

User interface

Signed floating-point number

Factory setting

0 dB
Minimum value

Navigation
Expert → Diagnostics → Min/max val. → Meas. point 1 → Signal strength → Minimum value (2973)

Description
Minimum value of signal strength since the last reset.

User interface
Signed floating-point number

Factory setting
0 dB

"Flow velocity" submenu

Navigation
Expert → Diagnostics → Min/max val. → Meas. point 1 → Flow velocity

<table>
<thead>
<tr>
<th>Flow velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum value (2911) → 147</td>
</tr>
<tr>
<td>Minimum value (2918) → 147</td>
</tr>
</tbody>
</table>

Maximum value

Navigation
Expert → Diagnostics → Min/max val. → Meas. point 1 → Flow velocity → Maximum value (2911)

Description
Maximum value of flow velocity since the last reset.

User interface
Signed floating-point number

Factory setting
0 m/s

Minimum value

Navigation
Expert → Diagnostics → Min/max val. → Meas. point 1 → Flow velocity → Minimum value (2918)

Description
Minimum value of flow velocity since the last reset.

User interface
Signed floating-point number
Description of device parameters

Proline Prosonic Flow 100 HART

Factory setting 0 m/s

"Medium temp." submenu

Navigation
Expert → Diagnostics → Min/max val. → Meas. point 1 → Medium temp.

<table>
<thead>
<tr>
<th>Submenu</th>
<th>Description</th>
<th>User interface</th>
<th>Factory setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum value</td>
<td>Maximum value of medium temperature since the last reset.</td>
<td>Signed floating-point number</td>
<td>Positive floating-point number</td>
</tr>
<tr>
<td>Minimum value</td>
<td>Minimum value of medium temperature since the last reset.</td>
<td>Signed floating-point number</td>
<td>Negative floating-point number</td>
</tr>
</tbody>
</table>

3.6.8 "Heartbeat" submenu

For detailed information on the parameter descriptions for the Heartbeat Verification+Monitoring application package, refer to the Special Documentation for the device.
Navigation
Expert → Diagnostics → Heartbeat

- Heartbeat
 - Base settings
 - Perform.verific.
 - Verific. results

3.6.9 "Simulation" submenu

Navigation
Expert → Diagnostics → Simulation

- Simulation
 - Assign proc.var. (1810) → 150
 - Proc. var. value (1811) → 150
 - Curr.out. 1 sim. (0354–1) → 151
 - Value curr.out 1 (0355–1) → 151
 - FreqOutputSim 1 (0472–1) → 151
 - Freq value 1 (0473–1) → 152
 - Puls.outp.sim. 1 (0458–1) → 152
 - Pulse value 1 (0459–1) → 153
 - Switch sim. 1 (0462–1) → 153
 - Switch status 1 (0463–1) → 154
 - Dev. alarm sim. (0654) → 154
 - Event category (0738) → 155
 - Diag. event sim. (0737) → 155
Assign proc.var.

Navigation

> Expert → Diagnostics → Simulation → Assign proc.var. (1810)

Description

Use this function to select a process variable for the simulation process that is activated. The display alternates between the measured value and a diagnostic message of the "Function check" category (C) while simulation is in progress.

Selection

- Off
- Volume flow
- Mass flow
- Sound velocity
- Flow velocity
- Temperature

Factory setting

Off

Additional information

Description

The simulation value of the process variable selected is defined in the **Proc. var. value** parameter (→ 150).

Proc. var. value

Navigation

> Expert → Diagnostics → Simulation → Proc. var. value (1811)

Prerequisite

In the **Assign proc.var.** parameter (→ 150), one of the following options is selected:

- Volume flow
- Mass flow
- Sound velocity
- Flow velocity
- Temperature

Description

Use this function to enter a simulation value for the selected process variable. Subsequent measured value processing and the signal output use this simulation value. In this way, users can verify whether the measuring device has been configured correctly.

User entry

Depends on the process variable selected

Factory setting

0

Additional information

User entry

The unit of the displayed measured value is taken from the **System units** submenu (→ 47).

* Visibility depends on order options or device settings
Curr.out. 1 sim.

Navigation
Expert → Diagnostics → Simulation → Curr.out. 1 sim. (0354–1)

Description
Use this function to switch simulation of the current output on and off. The display alternates between the measured value and a diagnostic message of the ‘Function check’ category (C) while simulation is in progress.

Selection
- Off
- On

Factory setting
Off

Additional information
Description

The desired simulation value is specified in the **Value curr.out 1** parameter (→ 151).

Selection

- Off
 Current simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- On
 Current simulation is active.

Value curr.out 1

Navigation
Expert → Diagnostics → Simulation → Value curr.out 1 (0355–1)

Prerequisite
In the Curr.out. 1 sim. parameter, the **On** option is selected.

Description
Use this function to enter a current value for the simulation. In this way, users can verify the correct adjustment of the current output and the correct function of downstream switching units.

User entry
0 to 22.5 mA

FreqOutputSim 1

Navigation
Expert → Diagnostics → Simulation → FreqOutputSim 1 (0472–1)

Prerequisite
In the Operating mode parameter (→ 80), the **Frequency** option is selected.

Description
Use this function to switch simulation of the frequency output on and off. The display alternates between the measured value and a diagnostic message of the ‘Function check’ category (C) while simulation is in progress.

Selection
- Off
- On
Description of device parameters

Proline Prosonic Flow 100 HART

Factory setting
- Off

Additional information

Description

- The desired simulation value is defined in the **Freq value** parameter (→ 152).

Selection

- **Off**
 - Frequency simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- **On**
 - Frequency simulation is active.

Freq value 1

Navigation

- Expert → Diagnostics → Simulation → Freq value 1 (0473–1)

Prerequisite

- In the **FreqOutputSim** parameter (→ 151), the **On** option is selected.

Description

- Use this function to enter a frequency value for the simulation. In this way, users can verify the correct adjustment of the frequency output and the correct function of downstream switching units.

User entry

- 0.0 to 12 500.0 Hz

Puls.outp.sim. 1

Navigation

- Expert → Diagnostics → Simulation → Puls.outp.sim. 1 (0458–1)

Prerequisite

- In the **Operating mode** parameter (→ 80), the **Pulse** option is selected.

Description

- Use this function to switch simulation of the pulse output on and off. The display alternates between the measured value and a diagnostic message of the "Function check" category (C) while simulation is in progress.

Selection

- **Off**
- **Fixed value**
- **Down-count. val.**

Factory setting

- Off
Additional information

Description

The desired simulation value is defined in the **Pulse value** parameter (→ 153).

Selection
- **Off**
 - Pulse simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- **Fixed value**
 - Pulses are continuously output with the pulse width specified in the **Pulse width** parameter (→ 82).
- **Down-count. val.**
 - The pulses specified in the **Pulse value** parameter (→ 153) are output.

Pulse value 1

Navigation

Expert → Diagnostics → Simulation → Pulse value 1 (0459–1)

Prerequisite

In the **Puls.outp.sim.** parameter (→ 152), the **Down-count. val.** option is selected.

Description

Use this function to enter a pulse value for the simulation. In this way, users can verify the correct adjustment of the pulse output and the correct function of downstream switching units.

User entry

0 to 65535

Switch sim. 1

Navigation

Expert → Diagnostics → Simulation → Switch sim. 1 (0462–1)

Prerequisite

In the **Operating mode** parameter (→ 80), the **Switch** option is selected.

Description

Use this function to switch simulation of the switch output on and off. The display alternates between the measured value and a diagnostic message of the 'Function check' category (C) while simulation is in progress.

Selection

- **Off**
- **On**

Factory setting

Off
Additional information

Description

The desired simulation value is defined in the Switch status parameter (→ 154).

Selection

- Off
 Switch simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- On
 Switch simulation is active.

Switch status 1

Navigation

Expert → Diagnostics → Simulation → Switch status 1 (0463–1)

Prerequisite

In the Switch sim. parameter (→ 153) Switch sim. 1 to n parameter Switch sim. 1 to n parameter, the On option is selected.

Description

Use this function to select a switch value for the simulation. In this way, users can verify the correct adjustment of the switch output and the correct function of downstream switching units.

Selection

- Open
- Closed

Additional information

Selection

- Open
 Switch simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- Closed
 Switch simulation is active.

Dev. alarm sim.

Navigation

Expert → Diagnostics → Simulation → Dev. alarm sim. (0654)

Description

Use this function to switch the device alarm on and off.

Selection

- Off
- On

Factory setting

Off

Additional information

Description

The display alternates between the measured value and a diagnostic message of the ‘Function check’ category (C) while simulation is in progress.
Event category

Navigation
Expert → Diagnostics → Simulation → Event category (0738)

Description
Use this function to select the category of the diagnostic events that are displayed for the simulation in the **Diag. event sim.** parameter (→ 155).

Selection
- Sensor
- Electronics
- Configuration
- Process

Factory setting
Process

Diag. event sim.

Navigation
Expert → Diagnostics → Simulation → Diag. event sim. (0737)

Description
Use this function to select a diagnostic event for the simulation process that is activated.

Selection
- Off
- Diagnostic event picklist (depends on the category selected)

Factory setting
Off

Additional information
Description
For the simulation, you can choose from the diagnostic events of the category selected in the **Event category** parameter (→ 155).
4 Country-specific factory settings

4.1 SI units

Not valid for USA and Canada.

4.1.1 System units

<table>
<thead>
<tr>
<th>Unit</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>Mass flow</td>
<td>kg/h</td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>m³</td>
<td></td>
</tr>
<tr>
<td>Volume flow</td>
<td>m³/h</td>
<td></td>
</tr>
<tr>
<td>Velocity</td>
<td>m/s</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>mm</td>
<td></td>
</tr>
</tbody>
</table>

4.1.2 Full scale values

The factory settings apply to the following parameters:
- 20 mA value (full scale value of the current output)
- 100% bar graph value 1

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>[dm³/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>720</td>
</tr>
<tr>
<td>65</td>
<td>1200</td>
</tr>
<tr>
<td>80</td>
<td>1680</td>
</tr>
<tr>
<td>100</td>
<td>2880</td>
</tr>
<tr>
<td>150</td>
<td>6360</td>
</tr>
</tbody>
</table>

4.1.3 Output current span

Current output 1 4 to 20 mA NAMUR

4.1.4 Pulse value

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>[dm³/pulse]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>65</td>
<td>4</td>
</tr>
<tr>
<td>80</td>
<td>6</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>150</td>
<td>25</td>
</tr>
</tbody>
</table>

4.1.5 On value low flow cut off

The switch-on point depends on the type of medium and the nominal diameter.
### Nominal diameter [mm]	Switch-on point \((v \sim 0.1 \text{ m/s}) \) [dm³/min]
50 | 14.4
65 | 24.0
80 | 33.6
100 | 57.6
150 | 127.2

4.2 US units

Only valid for USA and Canada.

4.2.1 System units

<table>
<thead>
<tr>
<th>Mass</th>
<th>lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass flow</td>
<td>lb/min</td>
</tr>
<tr>
<td>Volume</td>
<td>ft³</td>
</tr>
<tr>
<td>Volume flow</td>
<td>ft³/min</td>
</tr>
<tr>
<td>Velocity</td>
<td>ft/s</td>
</tr>
<tr>
<td>Temperature</td>
<td>°F</td>
</tr>
<tr>
<td>Length</td>
<td>in</td>
</tr>
</tbody>
</table>

4.2.2 Full scale values

The factory settings apply to the following parameters:
- 20 mA value (full scale value of the current output)
- 100% bar graph value 1

<table>
<thead>
<tr>
<th>Nominal diameter [in]</th>
<th>[gal/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>190</td>
</tr>
<tr>
<td>2 ½</td>
<td>317</td>
</tr>
<tr>
<td>3</td>
<td>444</td>
</tr>
<tr>
<td>4</td>
<td>761</td>
</tr>
<tr>
<td>6</td>
<td>1680</td>
</tr>
</tbody>
</table>

4.2.3 Output current span

Current output 1 4 to 20 mA US

4.2.4 Pulse value

<table>
<thead>
<tr>
<th>Nominal diameter [in]</th>
<th>[gal/pulse]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.8</td>
</tr>
<tr>
<td>2 ½</td>
<td>1.1</td>
</tr>
<tr>
<td>3</td>
<td>1.6</td>
</tr>
</tbody>
</table>
4.2.5 On value low flow cut off

The switch-on point depends on the type of medium and the nominal diameter.

<table>
<thead>
<tr>
<th>Nominal diameter [in]</th>
<th>Switch-on point (v ~ 0.1 m/s) [dm³/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3.8</td>
</tr>
<tr>
<td>2 ½</td>
<td>6.3</td>
</tr>
<tr>
<td>3</td>
<td>8.9</td>
</tr>
<tr>
<td>4</td>
<td>15.2</td>
</tr>
<tr>
<td>6</td>
<td>33.6</td>
</tr>
</tbody>
</table>
5 Explanation of abbreviated units

5.1 SI units

<table>
<thead>
<tr>
<th>Process variable</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity</td>
<td>m/s</td>
<td>Meter/time unit</td>
</tr>
<tr>
<td>Mass</td>
<td>g, kg, t</td>
<td>Gram, kilogram, metric ton</td>
</tr>
<tr>
<td>Mass flow</td>
<td>g/s, g/min</td>
<td>Kilogram/time unit</td>
</tr>
<tr>
<td></td>
<td>kg/s, kg/min, kg/h, kg/d</td>
<td>Metric ton/time unit</td>
</tr>
<tr>
<td></td>
<td>t/h, t/d</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>°C, K</td>
<td>Celsius, Kelvin</td>
</tr>
<tr>
<td>Volume</td>
<td>m³/₃, dm³, m³</td>
<td>Cubic centimeter, cubic decimeter, cubic meter</td>
</tr>
<tr>
<td></td>
<td>ml, l</td>
<td>Milliliter, liter</td>
</tr>
<tr>
<td>Volume flow</td>
<td>dm³/s, dm³/min, dm³/h, dm³/d</td>
<td>Cubic decimeter/time unit</td>
</tr>
<tr>
<td></td>
<td>m³/s, m³/min, m³/h, m³/d</td>
<td>Cubic meter/time unit</td>
</tr>
<tr>
<td></td>
<td>l/s, l/min, l/h, l/d</td>
<td>Liter/time unit</td>
</tr>
<tr>
<td>Time</td>
<td>m, h, d, y</td>
<td>Minute, hour, day, year</td>
</tr>
</tbody>
</table>

5.2 US units

<table>
<thead>
<tr>
<th>Process variable</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity</td>
<td>ft/s</td>
<td>Foot/time unit</td>
</tr>
<tr>
<td>Mass</td>
<td>oz, lb, STon</td>
<td>Ounce, pound, standard ton</td>
</tr>
<tr>
<td>Mass flow</td>
<td>oz/s, oz/min</td>
<td>Ounce/time unit</td>
</tr>
<tr>
<td></td>
<td>lb/s, lb/min, lb/h, lb/d</td>
<td>Pound/time unit</td>
</tr>
<tr>
<td></td>
<td>STon/h, STon/d</td>
<td>Standard ton/time unit</td>
</tr>
<tr>
<td>Temperature</td>
<td>°F, °R</td>
<td>Fahrenheit, Rankine</td>
</tr>
<tr>
<td>Volume</td>
<td>ft³</td>
<td>Cubic foot</td>
</tr>
<tr>
<td>Volume flow</td>
<td>ft³/s, ft³/min, ft³/h, ft³/d</td>
<td>Cubic foot/time unit</td>
</tr>
<tr>
<td>Time</td>
<td>m, h, d, y</td>
<td>Minute, hour, day, year</td>
</tr>
<tr>
<td></td>
<td>am, pm</td>
<td>Ante meridiem (before midday), post meridiem (after midday)</td>
</tr>
</tbody>
</table>

5.3 Imperial units

<table>
<thead>
<tr>
<th>Process variable</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>bbl (imp.beer)</td>
<td>Barrel (beer)</td>
</tr>
<tr>
<td>Volume flow</td>
<td>bbl/s (imp;beer), bbl/min (imp;beer), bbl/h (imp;beer), bbl/d (imp;beer)</td>
<td>Barrel /time unit (beer)</td>
</tr>
<tr>
<td></td>
<td>Beer: 36.0 gal/bbl</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>m, h, d, y</td>
<td>Minute, hour, day, year</td>
</tr>
<tr>
<td></td>
<td>am, pm</td>
<td>Ante meridiem (before midday), post meridiem (after midday)</td>
</tr>
</tbody>
</table>
Index

0 ... 9
0/4 mA value (Parameter) 67
0% bargraph value 1 (Parameter) 17
0% bargraph value 3 (Parameter) 20
20 mA value (Parameter) 68
100% bargraph value 1 (Parameter) 18
100% bargraph value 3 (Parameter) 21

A
Acceptance rate (Parameter) 41
Access status (Parameter) 12
Access status display (Parameter) 12, 25
Activate SW option (Parameter) 30
Actual diagnostics (Parameter) 129
Administration (Submenu) 26
Alarm delay (Parameter) 32
AM/PM (Parameter) 63
Application (Submenu) 123
Assign behavior of diagnostic no. 124 (Parameter) ... 37
Assign behavior of diagnostic no. 125 (Parameter) ... 37
Assign behavior of diagnostic no. 160 (Parameter) ... 38
Assign behavior of diagnostic no. 302 (Parameter) ... 36
Assign behavior of diagnostic no. 441 (Parameter) ... 33
Assign behavior of diagnostic no. 442 (Parameter) ... 33
Assign behavior of diagnostic no. 443 (Parameter) ... 34
Assign behavior of diagnostic no. 832 (Parameter) ... 36
Assign behavior of diagnostic no. 833 (Parameter) ... 36
Assign behavior of diagnostic no. 834 (Parameter) ... 35
Assign behavior of diagnostic no. 835 (Parameter) ... 35
Assign behavior of diagnostic no. 840 (Parameter) ... 34
Assign behavior of diagnostic no. 881 (Parameter) ... 35
Assign current output 1 (Parameter) 65
Assign diagnostic behavior (Parameter) 92
Assign flow direction check (Parameter) 95
Assign frequency output (Parameter) 85
Assign limit (Parameter) 92
Assign process variable (Parameter) 56, 124
Assign pulse output 1 (Parameter) 81
Assign PV (Parameter) 111
Assign QV (Parameter) 114
Assign simulation process variable (Parameter) ... 150
Assign status (Parameter) 96
Assign SV (Parameter) 112
Assign TV (Parameter) 113
Asymmetry (Parameter) 41

B
Backlight (Parameter) 25
Bootloader revision (Parameter) 141, 142, 143
Build no. software (Parameter) 141, 142, 143
Burst command 1 to n (Parameter) 102
Burst configuration 1 to n (Submenu) 101
Burst mode 1 to n (Parameter) 102
Burst trigger level (Parameter) 106
Burst trigger mode (Parameter) 106
Burst variable 0 (Parameter) 103
Burst variable 1 (Parameter) 104
Burst variable 2 (Parameter) 104
Burst variable 3 (Parameter) 104
Burst variable 4 (Parameter) 105
Burst variable 5 (Parameter) 105
Burst variable 6 (Parameter) 105
Burst variable 7 (Parameter) 105

C
Calibration (Submenu) 60
Calibration factor (Parameter) 61
Communication (Submenu) 98
Configuration (Submenu) 99
Configuration counter (Parameter) 140
Confirm access code (Parameter) 27
Contrast display (Parameter) 25
Control Totalizer 1 to n (Parameter) 126
Current output 1 (Submenu) 64
Current output 1 simulation (Parameter) 151
Current span (Parameter) 65

D
Damping output 1 (Parameter) 73, 88
Date/time format (Parameter) 53
Day (Parameter) 63
Decimal places 1 (Parameter) 18
Decimal places 2 (Parameter) 19
Decimal places 3 (Parameter) 21
Decimal places 4 (Parameter) 22
Default gateway (Parameter) 117
Define access code (Parameter) 27, 29
Define access code (Wizard) 26
Density unit (Parameter) 52
Device alarm simulation (Parameter) 154
Device ID (Parameter) 108
Device information (Submenu) 137
Device name (Parameter) 139
Device reset (Parameter) 29
Device revision (Parameter) 108
Device tag (Parameter) 99, 138
Device type (Parameter) 108
DHCP client (Parameter) 116
Diagnostic behavior (Submenu) 32
Diagnostic configuration (Submenu) 118
Diagnostic event category (Parameter) 155
Diagnostic event simulation (Parameter) 155
Diagnostic handling (Submenu) 31
Diagnostic list (Submenu) 132
Diagnoses (Submenu) 129
Diagnoses 1 (Parameter) 132
Diagnoses 2 (Parameter) 133
Diagnoses 3 (Parameter) 133
Diagnoses 4 (Parameter) 134
Diagnoses 5 (Parameter) 135
Direct access
0/4 mA value
 Current output 1 (0367–1) 67
 0% bargraph value 1 (0123) 17
 0% bargraph value 3 (0124) 20
 20 mA value
 Current output 1 (0372–1) 68
 100% bargraph value 1 (0125) 18
 100% bargraph value 3 (0126) 21
 Acceptance rate (2912) 41
 Assign behavior of diagnostic no. 881 (0724) 35
 Assign behavior of diagnostic no. 835 (0678) 35
 Assign behavior of diagnostic no. 833 (0676) 36
 Alarm delay (0651) 32
 Assign behavior of diagnostic no. 441 (0657) 33
 Assign behavior of diagnostic no. 160 (0776) 38
 Assign behavior of diagnostic no. 124 (0774) 37
 Assign behavior of diagnostic no. 125 (0775) 37
 Assign behavior of diagnostic no. 160 (0776) 38
 Assign behavior of diagnostic no. 302 (0742) 36
 Assign behavior of diagnostic no. 441 (0657) 33
 Assign behavior of diagnostic no. 442 (0658) 33
 Assign behavior of diagnostic no. 443 (0659) 34
 Assign behavior of diagnostic no. 832 (0675) 36
 Assign behavior of diagnostic no. 833 (0676) 36
 Assign behavior of diagnostic no. 834 (0677) 35
 Assign behavior of diagnostic no. 835 (0678) 35
 Assign behavior of diagnostic no. 840 (0680) 36
 Assign behavior of diagnostic no. 881 (0724) 35
 Assign current output 1 (0359–1) 65
 Assign diagnostic behavior
 Pulse/frequency/switch output 1 (0482–1) 92
 Assign flow direction check
 Pulse/frequency/switch output 1 (0484–1) 95
 Assign frequency output
 Pulse/frequency/switch output 1 (0478–1) 85
 Assign limit
 Pulse/frequency/switch output 1 (0483–1) 92
 Assign process variable
 Totalizer 1 to n (0914–1 to n) 124
 Assign process variable (1837) 56
 Assign pulse output 1 (0460–1) 81
 Assign PV (0234) 111
 Assign QV (0237) 114
 Assign simulation process variable (1810) 150
 Assign status
 Pulse/frequency/switch output 1 (0485–1) 96
 Assign SV (0235) 112
 Assign TV (0236) 113
 Asymmetry (2913) 41
 Backlight (0111) 25
 Bootloader revision (0073) 141, 142, 143
 Build no. software (0079) 141, 142, 143
 Burst command 1 to n (2031–1 to n) 102
 Burst mode 1 to n (2032–1 to n) 102
 Burst trigger level
 Burst configuration 1 to n (2033–1 to n) 106
 Burst trigger mode
 Burst configuration 1 to n (2043–1 to n) 106
 Burst configuration 1 to n (2044–1 to n) 106

Burst variable 0
 Burst configuration 1 to n (2033) 103
Burst variable 1
 Burst configuration 1 to n (2034) 104
Burst variable 2
 Burst configuration 1 to n (2035) 104
Burst variable 3
 Burst configuration 1 to n (2036) 104
Burst variable 4
 Burst configuration 1 to n (2037) 105
Burst variable 5
 Burst configuration 1 to n (2038) 105
Burst variable 6
 Burst configuration 1 to n (2039) 105
Burst variable 7
 Burst configuration 1 to n (2040) 105
 Calibration factor (2920) 61
 Configuration counter (0233) 140
 Contrast display (0105) 25
 Control Totalizer 1 to n (0912–1 to n) 126
 Current output 1 simulation (0354–1) 151
Current span
 Current output 1 (0353–1) 65
 Damping output 1 (0363–1) 73
 Damping output 1 (0477–1) 88
 Date/time format (2812) 53
 Day (2842) 63
 Decimal places 1 (0095) 18
 Decimal places 2 (0117) 19
 Decimal places 3 (0118) 21
 Decimal places 4 (0119) 22
 Default gateway (7210) 117
 Define access code 29
 Density unit (0555) 52
 Device alarm simulation (0654) 154
 Device ID (0221) 108
 Device name (0013) 139
 Device reset (0000) 29
 Device revision (0204) 108
 Device tag (0011) 138
 Device tag (0215) 99
 Device type (0209) 108
 DHCP client (7212) 116
 Diagnostic event category (0738) 155
 Diagnostic event simulation (0737) 155
 Diagnostics 1 (0692) 132
 Diagnostics 2 (0693) 133
 Diagnostics 3 (0694) 133
 Diagnostics 4 (0695) 134
 Diagnostics 5 (0696) 135
Direct access (0106) 10
 Display damping (0094) 23
 Display interval (0096) 22
 Display language (0104) 14
 ENP version (0012) 140
 Enter access code (0003) 13
 Event category 124 (0270) 119
 Event category 125 (0271) 119
 Event category 160 (0272) 120

Endress+Hauser 161
Event category 441 (0210)	120
Event category 442 (0230)	120
Event category 443 (0231)	121
Event category 832 (0218)	121
Event category 833 (0225)	122
Event category 834 (0227)	122
Event category 835 (0229)	122
Event category 840 (0267)	123
Fixed current	
Current output 1 (0352–1)	76
Failure frequency	
Pulse/frequency/switch output 1 (0474–1)	90
Failure mode	
Current output 1 (0364–1)	75
Pulse/frequency/switch output 1 (0451–1)	90
Pulse/frequency/switch output 1 (0480–1)	84
Pulse/frequency/switch output 1 (0486–1)	97
Totalizer 1 to n (0901–1 to n)	127
Fieldbus writing access (0273)	100
Filter options	136
Firmware version (0010)	138
Fixed density (1862)	57
Flow damping (1802)	54
Flow override (1839)	54
Flow velocity (1852)	40
Format display (0098)	15
Frequency output simulation 1 (0472–1)	151
Frequency value 1 (0473–1)	152
Hardware revision (0206)	110
HART address (0219)	100
HART date code (0202)	110
HART descriptor (0212)	109
HART message (0216)	109
HART revision (0205)	99
HART short tag (0220)	23
Header (0097)	24
Header text (0112)	63
Hour (2843)	
Invert output signal	
Pulse/frequency/switch output 1 (0470–1)	97
IP address (7209)	116
Kinematic viscosity unit (0578)	53
Length unit (0551)	51
Locking status (0004)	11
Login page (7273)	118
MAC address (7214)	116
Manufacturer ID (0259)	109
Mass flow (1847)	39
Mass flow factor (1846)	59
Mass flow offset (1841)	59
Mass flow unit (0554)	49
Mass unit (0574)	50
Max. update period	
Burst configuration 1 to n (2041–1 to n)	107
Maximum frequency value	
Pulse/frequency/switch output 1 (0454–1)	86
Maximum value (2911)	147
Maximum value (2963)	148
Maximum value (2968)	145
Maximum value (2972)	146
Maximum value (3020)	146
Measured current 1 (0366–1)	43, 77
Measuring mode	
Current output 1 (0351–1)	69
Pulse/frequency/switch output 1 (0457–1)	83
Pulse/frequency/switch output 1 (0479–1)	88
Measuring value at maximum frequency	
Pulse/frequency/switch output 1 (0475–1)	87
Measuring value at minimum frequency	
Pulse/frequency/switch output 1 (0476–1)	86
Min. update period	
Burst configuration 1 to n (2042–1 to n)	107
Minimum frequency value	
Pulse/frequency/switch output 1 (0453–1)	85
Minimum value (2918)	147
Minimum value (2950)	148
Minimum value (2969)	145
Minimum value (2973)	147
Minimum value (3021)	146
Minute (2844)	64
Month (2845)	62
No. of preambles (0217)	100
Nominal diameter (2807)	61
Off value low flow cutoff (1804)	56
On value low flow cutoff (1805)	56
Operating mode	
Pulse/frequency/switch output 1 (0469–1)	80
Operating time (0652)	28, 131
Operating time from restart (0653)	131
Order code (0008)	139
Output current 1 (0361–1)	43, 76
Output frequency 1 (0471–1)	44, 91
Preset value 1 to n (0913–1 to n)	127
Previous diagnostics (0690)	130
Primary variable (PV) (0201)	112
Process variable value (1811)	150
Profile factor (2909)	42
Pulse output 1 (0456–1)	43, 84
Pulse output simulation 1 (0458–1)	152
Pulse value 1 (0459–1)	153
Pulse width	
Pulse/frequency/switch output 1 (0452–1)	82
Quaternary variable (QV) (0203)	114
Reset access code (0024)	28
Reset all totalizers (2806)	123
Reset min/max values	
Measuring point 1 (2922–1)	144
Reset min/max values	
Pulse/frequency/switch output 1 (0452–1)	82
Quaternary variable (QV) (0203)	114
Reset access code (0024)	28
Reset all totalizers (2806)	123
Reset min/max values	
Measuring point 1 (2922–1)	144
Reset min/max values	
Pulse/frequency/switch output 1 (0452–1)	82
Quaternary variable (QV) (0203)	114
Reset access code (0024)	28
Reset all totalizers (2806)	123
Reset min/max values	
Measuring point 1 (2922–1)	144
Pulse/frequency/switch output 1 (0452–1)	82
Quaternary variable (QV) (0203)	114
Reset access code (0024)	28
Reset all totalizers (2806)	123
Reset min/max values	
Measuring point 1 (2922–1)	144
Pulse/frequency/switch output 1 (0452–1)	82
Quaternary variable (QV) (0203)	114
Reset access code (0024)	28
Reset all totalizers (2806)	123
Reset min/max values	
Measuring point 1 (2922–1)	144

Endress+Hauser
Separator (0101) .. 25
Serial number (0009) 138
Signal strength (2914) 41
Signal to noise ratio (2917) 42
Software option overview (0015) 31
Software revision (0072) 141, 142, 143
Software revision (0224) 110
Sound velocity (1850) 40
Sound velocity factor (1849) 60
Sound velocity offset (1848) 60
Status
 Current output 1 (0360–1) 78
 Subnet mask (7211) 117
Switch output function
 Pulse/frequency/switch output 1 (0481–1) 91
 Switch output simulation 1 (0462–1) 153
 Switch status 1 (0461–1) 44, 97
 Switch status 1 (0463–1) 154
Switch-off delay
 Pulse/frequency/switch output 1 (0465–1) 96
Switch-off value
 Pulse/frequency/switch output 1 (0464–1) 95
Switch-on delay
 Pulse/frequency/switch output 1 (0467–1) 96
Switch-on value
 Pulse/frequency/switch output 1 (0466–1) 94
Temperature (1853) 40
Temperature damping (1886) 55
Temperature unit (0557) 50
Tertiary variable (TV) (0228) 113
Timestamp 130, 131, 132, 133, 134, 135
Totalizer operation mode
 Totalizer 1 to n (0908–1 to n) 125
 Totalizer overflow 1 to n (0910–1 to n) 46
 Totalizer value 1 to n (0911–1 to n) 45
Trim
 Current output 1 (0362–1) 77
 Trim value high
 Current output 1 (0365–1) 77
 Trim value low
 Current output 1 (0357–1) 78
Turbulence (2907) 42
Unit (0974) 128
Unit totalizer 1 to n (0915–1 to n) 125
Value 1 display (0107) 17
Value 2 display (0108) 19
Value 3 display (0110) 20
Value 4 display (0109) 21
Value current output 1 (0355–1) 151
Value per pulse
 Pulse/frequency/switch output 1 (0455–1) 82
Velocity unit (0566) 51
Volume flow (1838) 39
Volume flow factor (1832) 59
Volume flow offset (1831) 58
Volume flow unit (0553) 47
Volume unit (0563) 49
Web server functionality (7222) 117
Web server language (7221) 115

Year (2846) 62
Zero point (2921) 61
Direct access (Parameter) 10
Display (Submenu) 13
Display damping (Parameter) 23
Display interval (Parameter) 22
Display language (Parameter) 14
Display module (Submenu) 143
Document
 Explanation of the structure of a parameter
description .. 6
 Function .. 4
 Structure .. 4
 Symbols used 6
 Target group 4
 Using the document 4
 Document function 4

E
ENP version (Parameter) 140
Enter access code (Parameter) 13
Event category 124 (Parameter) 119
Event category 125 (Parameter) 119
Event category 160 (Parameter) 120
Event category 441 (Parameter) 120
Event category 442 (Parameter) 120
Event category 443 (Parameter) 121
Event category 832 (Parameter) 121
Event category 833 (Parameter) 122
Event category 834 (Parameter) 122
Event category 835 (Parameter) 122
Event category 840 (Parameter) 123
Event list (Submenu) 136
Event logbook (Submenu) 135
Extended order code 1 (Parameter) 139
Extended order code 2 (Parameter) 140
Extended order code 3 (Parameter) 140
External compensation (Submenu) 157

F
Factory settings 156
 SI units 156
 US units 157
Failure current (Parameter) 76
Failure frequency (Parameter) 90
Failure mode (Parameter) 75, 84, 90, 97, 127
Fieldbus writing access (Parameter) 100
Filter options (Parameter) 136
Firmware version (Parameter) 138
Fixed current (Parameter) 66
Fixed density (Parameter) 57
Flow damping (Parameter) 54
Flow override (Parameter) 54
Flow velocity (Parameter) 40
Flow velocity (Submenu) 147
Format display (Parameter) 15
Frequency output simulation 1 (Parameter) 151
Frequency value 1 (Parameter) 152
Index

Function
see Parameter

H
Hardware revision (Parameter) 110
HART address (Parameter) 100
HART date code (Parameter) 110
HART descriptor (Parameter) 109
HART message (Parameter) 109
HART output (Submenu) 98
HART revision (Parameter) 109
HART short tag (Parameter) 99
Header (Parameter) 23
Header text (Parameter) 24
Heartbeat (Submenu) 148
Hour (Parameter) 63

I
Information (Submenu) 107
Inventory counter (Submenu) 128
Invert output signal (Parameter) 97
IP address (Parameter) 116

K
Kinematic viscosity unit (Parameter) 53

L
Length unit (Parameter) 51
Locking status (Parameter) 11
Login page (Parameter) 118
Low flow cut off (Submenu) 55

M
MAC address (Parameter) 116
Mainboard module (Submenu) 141
Manufacturer ID (Parameter) 109
Mass flow (Parameter) 39
Mass flow factor (Parameter) 59
Mass flow offset (Parameter) 59
Mass flow unit (Parameter) 49
Mass unit (Parameter) 50
Max. update period (Parameter) 107
Maximum frequency value (Parameter) 86
Maximum value (Parameter) 145, 146, 147, 148
Measured current 1 (Parameter) 43, 77
Measured values (Submenu) 38
Measuring mode (Parameter) 69, 83, 88
Measuring point 1 (Submenu) 144
Measuring value at maximum frequency (Parameter) 87
Measuring value at minimum frequency (Parameter) 86
Medium temperature (Submenu) 148
Min. update period (Parameter) 107
Min/max values (Submenu) 144
Minimum frequency value (Parameter) 85
Minimum value (Parameter) 145, 146, 147, 148
Minute (Parameter) 64
Month (Parameter) 62

N
No. of preambles (Parameter) 100

Nominal diameter (Parameter) 61

O
Off value low flow cutoff (Parameter) 56
On value low flow cutoff (Parameter) 56
Operating mode (Parameter) 80
Operating time (Parameter) 28, 131
Operating time from restart (Parameter) .. 131
Order code (Parameter) 139
Output (Submenu) 64, 111
Output current 1 (Parameter) 43, 76
Output frequency 1 (Parameter) 44, 91
Output values (Submenu) 43

P
Parameter
Structure of a parameter description 6
Preset value 1 to n (Parameter) 127
Previous diagnostics (Parameter) 130
Primary variable (PV) (Parameter) 112
Process parameters (Submenu) 53
Process variable adjustment (Submenu) 58
Process variable value (Parameter) 150
Process variables (Submenu) 39
Profile factor (Parameter) 42
Pulse output 1 (Parameter) 43, 84
Pulse output simulation 1 (Parameter) 152
Pulse value 1 (Parameter) 153
Pulse width (Parameter) 82
Pulse/frequency/switch output (Submenu) ... 78

Q
Quaternary variable (QV) (Parameter) 114

R
Recalibration (Submenu) 61
Reset access code (Parameter) 28
Reset access code (Submenu) 28
Reset all totalizers (Parameter) 123
Reset min/max values (Parameter) 144
Response time (Parameter) 74, 89
Reynolds number (Parameter) 42

S
Secondary variable (SV) (Parameter) 112
Sensor (Submenu) 38
Sensor adjustment (Submenu) 58
Sensor electronic module (ISEM) (Submenu) 142
Sensor electronic temperature (ISEM) (Submenu) 145
Separator (Parameter) 25
Serial number (Parameter) 138
Signal strength (Parameter) 41
Signal strength (Submenu) 146
Signal to noise ratio (Parameter) 42
Simulation (Submenu) 149
Software option overview (Parameter) 31
Software revision (Parameter) 110, 141, 142, 143
Sound velocity (Parameter) 40
Sound velocity (Submenu) 145
Sound velocity factor (Parameter) 60
<table>
<thead>
<tr>
<th>Parameter/Option</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sound velocity offset</td>
<td>60</td>
</tr>
<tr>
<td>Status</td>
<td>78</td>
</tr>
<tr>
<td>Submenu</td>
<td></td>
</tr>
<tr>
<td>Administration</td>
<td>26</td>
</tr>
<tr>
<td>Application</td>
<td>123</td>
</tr>
<tr>
<td>Burst configuration 1 to n</td>
<td>101</td>
</tr>
<tr>
<td>Calibration</td>
<td>60</td>
</tr>
<tr>
<td>Communication</td>
<td>98</td>
</tr>
<tr>
<td>Configuration</td>
<td>99</td>
</tr>
<tr>
<td>Current output 1</td>
<td>64</td>
</tr>
<tr>
<td>Device information</td>
<td>137</td>
</tr>
<tr>
<td>Diagnostic behavior</td>
<td>32</td>
</tr>
<tr>
<td>Diagnostic configuration</td>
<td>118</td>
</tr>
<tr>
<td>Diagnostic handling</td>
<td>31</td>
</tr>
<tr>
<td>Diagnostic list</td>
<td>132</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>129</td>
</tr>
<tr>
<td>Display</td>
<td>13</td>
</tr>
<tr>
<td>Display module</td>
<td>143</td>
</tr>
<tr>
<td>Event list</td>
<td>136</td>
</tr>
<tr>
<td>Event logbook</td>
<td>135</td>
</tr>
<tr>
<td>External compensation</td>
<td>57</td>
</tr>
<tr>
<td>Flow velocity</td>
<td>147</td>
</tr>
<tr>
<td>HART output</td>
<td>98</td>
</tr>
<tr>
<td>Heartbeat</td>
<td>148</td>
</tr>
<tr>
<td>Information</td>
<td>107</td>
</tr>
<tr>
<td>Inventory counter</td>
<td>128</td>
</tr>
<tr>
<td>Low flow cut off</td>
<td>55</td>
</tr>
<tr>
<td>Mainboard module</td>
<td>141</td>
</tr>
<tr>
<td>Measured values</td>
<td>38</td>
</tr>
<tr>
<td>Measuring point 1</td>
<td>144</td>
</tr>
<tr>
<td>Medium temperature</td>
<td>148</td>
</tr>
<tr>
<td>Min/max values</td>
<td>144</td>
</tr>
<tr>
<td>Output</td>
<td>64, 111</td>
</tr>
<tr>
<td>Output values</td>
<td>43</td>
</tr>
<tr>
<td>Process parameters</td>
<td>53</td>
</tr>
<tr>
<td>Process variable adjustment</td>
<td>58</td>
</tr>
<tr>
<td>Process variables</td>
<td>39</td>
</tr>
<tr>
<td>Pulse/frequency/switch output</td>
<td>78</td>
</tr>
<tr>
<td>Recalibration</td>
<td>61</td>
</tr>
<tr>
<td>Reset access code</td>
<td>28</td>
</tr>
<tr>
<td>Sensor</td>
<td>38</td>
</tr>
<tr>
<td>Sensor adjustment</td>
<td>58</td>
</tr>
<tr>
<td>Sensor electronic module (ISEM)</td>
<td>142</td>
</tr>
<tr>
<td>Sensor electronic temperature (ISEM)</td>
<td>145</td>
</tr>
<tr>
<td>Signal strength</td>
<td>146</td>
</tr>
<tr>
<td>Simulation</td>
<td>149</td>
</tr>
<tr>
<td>Sound velocity</td>
<td>145</td>
</tr>
<tr>
<td>System</td>
<td>13</td>
</tr>
<tr>
<td>System units</td>
<td>47</td>
</tr>
<tr>
<td>System values</td>
<td>40</td>
</tr>
<tr>
<td>Totalizer</td>
<td>45</td>
</tr>
<tr>
<td>Totalizer 1 to n</td>
<td>124</td>
</tr>
<tr>
<td>Web server</td>
<td>115</td>
</tr>
<tr>
<td>Subnet mask (Parameter)</td>
<td>117</td>
</tr>
<tr>
<td>Switch output function (Parameter)</td>
<td>91</td>
</tr>
<tr>
<td>Switch output simulation 1 (Parameter)</td>
<td>153</td>
</tr>
<tr>
<td>Switch status 1 (Parameter)</td>
<td>44, 97, 154</td>
</tr>
<tr>
<td>Switch-off delay (Parameter)</td>
<td>96</td>
</tr>
<tr>
<td>Switch-off value (Parameter)</td>
<td>95</td>
</tr>
<tr>
<td>Switch-on delay (Parameter)</td>
<td>96</td>
</tr>
<tr>
<td>Switch-on value (Parameter)</td>
<td>94</td>
</tr>
<tr>
<td>System (Submenu)</td>
<td>13</td>
</tr>
<tr>
<td>System units (Submenu)</td>
<td>47</td>
</tr>
<tr>
<td>System values (Submenu)</td>
<td>40</td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Target group</td>
<td>4</td>
</tr>
<tr>
<td>Temperature</td>
<td>40</td>
</tr>
<tr>
<td>Temperature damping (Parameter)</td>
<td>55</td>
</tr>
<tr>
<td>Temperature unit (Parameter)</td>
<td>50</td>
</tr>
<tr>
<td>Tertiary variable (TV) (Parameter)</td>
<td>113</td>
</tr>
<tr>
<td>Timestamp (Parameter)</td>
<td>130, 131, 132, 133, 134, 135</td>
</tr>
<tr>
<td>Totalizer (Submenu)</td>
<td>45</td>
</tr>
<tr>
<td>Totalizer 1 to n (Submenu)</td>
<td>124</td>
</tr>
<tr>
<td>Totalizer operation mode (Parameter)</td>
<td>125</td>
</tr>
<tr>
<td>Totalizer overflow 1 to n (Parameter)</td>
<td>46</td>
</tr>
<tr>
<td>Totalizer value 1 to n (Parameter)</td>
<td>45</td>
</tr>
<tr>
<td>Trim (Parameter)</td>
<td>77</td>
</tr>
<tr>
<td>Trim value high (Parameter)</td>
<td>77</td>
</tr>
<tr>
<td>Trim value low (Parameter)</td>
<td>78</td>
</tr>
<tr>
<td>Turbulence (Parameter)</td>
<td>42</td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Unit (Parameter)</td>
<td>128</td>
</tr>
<tr>
<td>Unit totalizer 1 to n (Parameter)</td>
<td>125</td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Value 1 display (Parameter)</td>
<td>17</td>
</tr>
<tr>
<td>Value 2 display (Parameter)</td>
<td>19</td>
</tr>
<tr>
<td>Value 3 display (Parameter)</td>
<td>20</td>
</tr>
<tr>
<td>Value 4 display (Parameter)</td>
<td>21</td>
</tr>
<tr>
<td>Value current output 1 (Parameter)</td>
<td>151</td>
</tr>
<tr>
<td>Value per pulse (Parameter)</td>
<td>82</td>
</tr>
<tr>
<td>Velocity unit (Parameter)</td>
<td>51</td>
</tr>
<tr>
<td>Volume flow (Parameter)</td>
<td>39</td>
</tr>
<tr>
<td>Volume flow factor (Parameter)</td>
<td>59</td>
</tr>
<tr>
<td>Volume flow offset (Parameter)</td>
<td>58</td>
</tr>
<tr>
<td>Volume flow unit (Parameter)</td>
<td>47</td>
</tr>
<tr>
<td>Volume unit (Parameter)</td>
<td>49</td>
</tr>
<tr>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Web server (Submenu)</td>
<td>115</td>
</tr>
<tr>
<td>Web server functionality (Parameter)</td>
<td>117</td>
</tr>
<tr>
<td>Web server language (Parameter)</td>
<td>115</td>
</tr>
<tr>
<td>Wizard</td>
<td></td>
</tr>
<tr>
<td>Define access code</td>
<td>26</td>
</tr>
<tr>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Year (Parameter)</td>
<td>62</td>
</tr>
<tr>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>Zero point (Parameter)</td>
<td>61</td>
</tr>
</tbody>
</table>