Description of Device Parameters

Proline Promass 200

FOUNDATION Fieldbus

Coriolis flowmeter
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Document information</td>
<td>4</td>
</tr>
<tr>
<td>1.1</td>
<td>Document function</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Target group</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Using this document</td>
<td>4</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Information on the document structure</td>
<td>4</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Structure of a parameter description</td>
<td>6</td>
</tr>
<tr>
<td>1.4</td>
<td>Symbols used</td>
<td>6</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Symbols for certain types of information</td>
<td>6</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Symbols in graphics</td>
<td>7</td>
</tr>
<tr>
<td>1.5</td>
<td>Documentation</td>
<td>7</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Standard documentation</td>
<td>7</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Supplementary device-dependent documentation</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Overview of the Expert operating menu</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Description of device parameters</td>
<td>11</td>
</tr>
<tr>
<td>3.1</td>
<td>"System" submenu</td>
<td>14</td>
</tr>
<tr>
<td>3.1.1</td>
<td>"Display" submenu</td>
<td>15</td>
</tr>
<tr>
<td>3.1.2</td>
<td>"Conf. backup disp" submenu</td>
<td>28</td>
</tr>
<tr>
<td>3.1.3</td>
<td>"Diagn. handling" submenu</td>
<td>32</td>
</tr>
<tr>
<td>3.1.4</td>
<td>"Administration" submenu</td>
<td>45</td>
</tr>
<tr>
<td>3.2</td>
<td>"Sensor" submenu</td>
<td>50</td>
</tr>
<tr>
<td>3.2.1</td>
<td>"Measured val." submenu</td>
<td>51</td>
</tr>
<tr>
<td>3.2.2</td>
<td>"System units" submenu</td>
<td>57</td>
</tr>
<tr>
<td>3.2.3</td>
<td>"Process param." submenu</td>
<td>65</td>
</tr>
<tr>
<td>3.2.4</td>
<td>"Measurement mode" submenu</td>
<td>73</td>
</tr>
<tr>
<td>3.2.5</td>
<td>"Calculated value" submenu</td>
<td>75</td>
</tr>
<tr>
<td>3.2.6</td>
<td>"Sensor adjustm." submenu</td>
<td>78</td>
</tr>
<tr>
<td>3.2.7</td>
<td>"Calibration" submenu</td>
<td>84</td>
</tr>
<tr>
<td>3.3</td>
<td>"Output" submenu</td>
<td>87</td>
</tr>
<tr>
<td>3.3.1</td>
<td>"Pulse/frequency/switch output" submenu</td>
<td>87</td>
</tr>
<tr>
<td>3.4</td>
<td>"Communication" submenu</td>
<td>108</td>
</tr>
<tr>
<td>3.4.1</td>
<td>"Resource block" submenu</td>
<td>109</td>
</tr>
<tr>
<td>3.5</td>
<td>"Analog inputs" submenu</td>
<td>130</td>
</tr>
<tr>
<td>3.5.1</td>
<td>"Analog input 1 to n" submenu</td>
<td>130</td>
</tr>
<tr>
<td>3.6</td>
<td>"Discrete inputs" submenu</td>
<td>177</td>
</tr>
<tr>
<td>3.6.1</td>
<td>"Discrete input 1 to n" submenu</td>
<td>178</td>
</tr>
<tr>
<td>3.7</td>
<td>"Analog outputs" submenu</td>
<td>206</td>
</tr>
<tr>
<td>3.7.1</td>
<td>"Multiple AO" submenu</td>
<td>206</td>
</tr>
<tr>
<td>3.8</td>
<td>"Discrete outputs" submenu</td>
<td>214</td>
</tr>
<tr>
<td>3.8.1</td>
<td>"Multiple DO" submenu</td>
<td>215</td>
</tr>
<tr>
<td>3.9</td>
<td>"Application" submenu</td>
<td>223</td>
</tr>
<tr>
<td>3.9.1</td>
<td>"Totalizer 1 to n" submenu</td>
<td>224</td>
</tr>
<tr>
<td>3.10</td>
<td>"Diagnostics" submenu</td>
<td>228</td>
</tr>
<tr>
<td>3.10.1</td>
<td>"Diagnostic list" submenu</td>
<td>231</td>
</tr>
<tr>
<td>3.10.2</td>
<td>"Event logbook" submenu</td>
<td>235</td>
</tr>
<tr>
<td>3.10.3</td>
<td>"Device information" submenu</td>
<td>238</td>
</tr>
<tr>
<td>3.10.4</td>
<td>"Data logging" submenu</td>
<td>242</td>
</tr>
<tr>
<td>3.10.5</td>
<td>"Min/max val." submenu</td>
<td>248</td>
</tr>
<tr>
<td>3.10.6</td>
<td>"Heartbeat" submenu</td>
<td>257</td>
</tr>
<tr>
<td>3.10.7</td>
<td>"Simulation" submenu</td>
<td>257</td>
</tr>
<tr>
<td>4</td>
<td>Country-specific factory settings</td>
<td>263</td>
</tr>
<tr>
<td>4.1</td>
<td>SI units</td>
<td>263</td>
</tr>
<tr>
<td>4.1.1</td>
<td>System units</td>
<td>263</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Full scale values</td>
<td>263</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Pulse value</td>
<td>263</td>
</tr>
<tr>
<td>4.1.4</td>
<td>On value low flow cut off</td>
<td>264</td>
</tr>
<tr>
<td>4.2</td>
<td>US units</td>
<td>264</td>
</tr>
<tr>
<td>4.2.1</td>
<td>System units</td>
<td>264</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Full scale values</td>
<td>265</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Pulse value</td>
<td>265</td>
</tr>
<tr>
<td>4.2.4</td>
<td>On value low flow cut off</td>
<td>265</td>
</tr>
<tr>
<td>5</td>
<td>Explanation of abbreviated units</td>
<td>267</td>
</tr>
<tr>
<td>5.1</td>
<td>SI units</td>
<td>267</td>
</tr>
<tr>
<td>5.2</td>
<td>US units</td>
<td>267</td>
</tr>
<tr>
<td>5.3</td>
<td>Imperial units</td>
<td>269</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>270</td>
</tr>
</tbody>
</table>
1 Document information

1.1 Document function

The document is part of the Operating Instructions and serves as a reference for parameters, providing a detailed explanation of each individual parameter of the Expert operating menu.

It is used to perform tasks that require detailed knowledge of the function of the device:

- Commissioning measurements under difficult conditions
- Optimal adaptation of the measurement to difficult conditions
- Detailed configuration of the communication interface
- Error diagnostics in difficult cases

1.2 Target group

The document is aimed at specialists who work with the device over the entire life cycle and perform specific configurations.

1.3 Using this document

1.3.1 Information on the document structure

The document lists the submenus and their parameters according to the structure from the Expert menu (→ 8), which is displayed when the "Maintenance" user role is enabled.
Expert
Wizard 1 / Parameter 1
Wizard n / Parameter n
Advanced setup

Parameter 1
Parameter n
Submenu 1
Submenu n

Diagnostics

Parameter 1
Parameter n
Submenu 1
Submenu n

Setup

Device tag
Wizard 1 / Parameter 1
Wizard n / Parameter n
Advanced setup
Enter access code

Parameter 1
Parameter n
Submenu 1
Submenu n

Operator

Language
Parameter 1
Parameter n
Submenu 1
Submenu n

Parameter 1
Parameter n
Submenu 1
Submenu n

Sample graphic for the schematic layout of the operating menu

Additional information regarding:
- The arrangement of the parameters according to the menu structure of the Operation menu, Setup menu, Diagnostics menu with a brief description:
 Operating Instructions → 7
- Operating concept of the operating menus: Operating Instructions → 7
1.3.2 Structure of a parameter description

The individual parts of a parameter description are described in the following section:

<table>
<thead>
<tr>
<th>Complete parameter name</th>
<th>Write-protected parameter</th>
</tr>
</thead>
</table>

Navigation
- Navigation path to the parameter via the local display (direct access code)
- Navigation path to the parameter via the operating tool
 - The names of the menus, submenus and parameters are abbreviated to the form in which they appear on the display and in the operating tool.

Prerequisite
- The parameter is only available under these specific conditions

Description
- Description of the parameter function

Selection
- List of the individual options for the parameter
 - Option 1
 - Option 2

User entry
- Input range for the parameter

User interface
- Display value/data for the parameter

Factory setting
- Default setting ex works

Additional information
- Additional explanations (e.g. in examples):
 - On individual options
 - On display values/data
 - On the input range
 - On the factory setting
 - On the parameter function

1.4 Symbols used

1.4.1 Symbols for certain types of information

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Indicates additional information.</td>
</tr>
<tr>
<td></td>
<td>Reference to documentation</td>
</tr>
<tr>
<td></td>
<td>Reference to page</td>
</tr>
<tr>
<td></td>
<td>Reference to graphic</td>
</tr>
<tr>
<td></td>
<td>Operation via local display</td>
</tr>
<tr>
<td></td>
<td>Operation via operating tool</td>
</tr>
<tr>
<td></td>
<td>Write-protected parameter</td>
</tr>
</tbody>
</table>
1.4.2 Symbols in graphics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3 ...</td>
<td>Item numbers</td>
<td>A, B, C, ...</td>
<td>Views</td>
</tr>
<tr>
<td>A-A, B-B, C-C, ...</td>
<td>Sections</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.5 Documentation

1.5.1 Standard documentation

Operating Instructions

<table>
<thead>
<tr>
<th>Measuring device</th>
<th>Documentation code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promass 8A2B**----</td>
<td>BA01827D</td>
</tr>
<tr>
<td>Promass 8E2B**----</td>
<td>BA01314D</td>
</tr>
<tr>
<td>Promass 8E2C**----</td>
<td>BA01639D</td>
</tr>
<tr>
<td>Promass 8F2B**----</td>
<td>BA01315D</td>
</tr>
</tbody>
</table>

1.5.2 Supplementary device-dependent documentation

Special Documentation

<table>
<thead>
<tr>
<th>Content</th>
<th>Documentation code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information on the Pressure Equipment Directive</td>
<td>SD01614D</td>
</tr>
<tr>
<td>Display and operating module FHX50</td>
<td>SD01007F</td>
</tr>
<tr>
<td>Heartbeat Technology</td>
<td>SD01848D</td>
</tr>
</tbody>
</table>
2 Overview of the Expert operating menu

The following table provides an overview of the menu structure of the expert operating menu and its parameters. The page reference indicates where the associated description of the submenu or parameter can be found.

Expert	Direct access (0106)	→ 11
	Locking status (0004)	→ 12
	Access stat.disp (0091)	→ 13
	Ent. access code (0092)	→ 14
	System	→ 14
	Display	→ 15
	Conf.backup disp	→ 28
	Diagn. handling	→ 32
	Administration	→ 45
	Sensor	→ 50
	Measured val.	→ 51
	System units	→ 57
	Process param.	→ 65
	Measurement mode	→ 73
	Calculated value	→ 75
	Sensor adjustm.	→ 78
	Calibration	→ 84
	Output	→ 87
	PFS output	→ 87
Overview of the Expert operating menu

Proline Promass 200 FOUNDATION Fieldbus

- Heartbeat
 → 257
- Simulation
 → 257
3 Description of device parameters

In the following section, the parameters are listed according to the menu structure of the local display. Specific parameters for the operating tools are included at the appropriate points in the menu structure.

<table>
<thead>
<tr>
<th>Expert</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct access (0106)</td>
<td>→ 11</td>
</tr>
<tr>
<td>Locking status (0004)</td>
<td>→ 12</td>
</tr>
<tr>
<td>Access stat.disp (0091)</td>
<td>→ 13</td>
</tr>
<tr>
<td>Ent. access code (0092)</td>
<td>→ 14</td>
</tr>
<tr>
<td>System</td>
<td>→ 14</td>
</tr>
<tr>
<td>Sensor</td>
<td>→ 50</td>
</tr>
<tr>
<td>Output</td>
<td>→ 87</td>
</tr>
<tr>
<td>Communication</td>
<td>→ 108</td>
</tr>
<tr>
<td>Analog inputs</td>
<td>→ 130</td>
</tr>
<tr>
<td>Discrete inputs</td>
<td>→ 177</td>
</tr>
<tr>
<td>Analog outputs</td>
<td>→ 206</td>
</tr>
<tr>
<td>Discrete outputs</td>
<td>→ 214</td>
</tr>
<tr>
<td>Application</td>
<td>→ 223</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>→ 228</td>
</tr>
</tbody>
</table>

Direct access

Navigation

Expert → Direct access (0106)

Description

Use this function to enter the access code to enable direct access to the desired parameter via the local display. A parameter number is assigned to each parameter for this purpose.

User entry

0 to 65535
Description of device parameters

Proline Promass 200 FOUNDATION Fieldbus

Additional information

User entry

The direct access code consists of a 5-digit number (at maximum) and the channel number, which identifies the channel of a process variable: e.g. 00914-2. In the navigation view, this appears on the right-hand side in the header of the selected parameter.

1 **Direct access code**

Note the following when entering the direct access code:

- The leading zeros in the direct access code do not have to be entered.
 Example: Enter "914" instead of "00914"
- If no channel number is entered, channel 1 is accessed automatically.
 Example: Enter 00914 → Assign variable parameter
- If a different channel is accessed: Enter the direct access code with the corresponding channel number.
 Example: Enter 00914-2 → Assign variable parameter

Locking status

Navigation

Expert → Locking status (0004)

Description

Displays the active write protection.

User interface

- Hardware locked
- Temp. locked

Additional information

Display

If two or more types of write protection are active, the write protection with the highest priority is shown on the local display. In the operating tool all active types of write protection are displayed.

Detailed information on access authorization is provided in the "User roles and associated access authorization" and "Operating concept" sections of the Operations Instructions for the device → 7

Selection

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>The access status displayed in the Access stat.disp parameter (→ 13) applies. Only appears on local display.</td>
</tr>
<tr>
<td>Hardware locked (priority 1)</td>
<td>The DIP switch for hardware locking is activated on the main electronics module. This locks write access to the parameters (e.g. via local display or operating tool).</td>
</tr>
<tr>
<td>Temp. locked (priority 2) (priority 2)</td>
<td>Write access to the parameters is temporarily locked on account of internal processes running in the device (e.g. data upload/download, reset etc.). Once the internal processing has been completed, the parameters can be changed once again.</td>
</tr>
</tbody>
</table>
Access stat.disp

Navigation

Expert → Access stat.disp (0091)

Prerequisite

A local display is provided.

Description

Displays the access authorization to the parameters via the local display.

User interface

- Operator
- Maintenance

Factory setting

Operator

Additional information

Description

If the ☐-symbol appears in front of a parameter, it cannot be modified via the local display with the current access authorization.

The access authorization can be modified via the Ent. access code parameter (→ ☐ 14).

For information about the Ent. access code parameter (→ ☐ 14): see the "Disabling write protection via the access code" section of the Operating Instructions for the device → ☐ 7

If additional write protection is active, this restricts the current access authorization even further.

Display

Detailed information on access authorization is provided in the "User roles and associated access authorization" and "Operating concept" sections of the Operations Instructions for the device → ☐ 7

Access stat.tool

Navigation

Expert → Access stat.tool (0005)

Description

Displays the access authorization to the parameters via the operating tool.

User interface

- Operator
- Maintenance

Factory setting

Maintenance
Additional information

Description

The access authorization can be modified via the **Ent. access code** parameter (→ 14).

If additional write protection is active, this restricts the current access authorization even further.

Display

Detailed information on access authorization is provided in the "User roles and associated access authorization" and "Operating concept" sections of the Operations Instructions for the device → 7

Ent. access code

Navigation

Expert → Ent. access code (0092)

Description

Use this function to enter the user-specific release code to remove parameter write protection on the local display.

User entry

0 to 9999

Ent. access code

Navigation

Expert → Ent. access code (0003)

Description

Use this function to enter the user-specific release code to remove parameter write protection in the operating tool.

User entry

0 to 9999

3.1 "System" submenu

Navigation

Expert → System

- **Display** → 15
- **Conf.backup disp** → 28
- **Diagn. handling** → 32
- **Administration** → 45
3.1.1 "Display" submenu

Navigation: Expert → System → Display

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language (0104)</td>
<td>→ 16</td>
</tr>
<tr>
<td>Format display (0098)</td>
<td>→ 16</td>
</tr>
<tr>
<td>Value 1 display (0107)</td>
<td>→ 19</td>
</tr>
<tr>
<td>0% bargraph 1 (0123)</td>
<td>→ 19</td>
</tr>
<tr>
<td>100% bargraph 1 (0125)</td>
<td>→ 20</td>
</tr>
<tr>
<td>Decimal places 1 (0095)</td>
<td>→ 20</td>
</tr>
<tr>
<td>Value 2 display (0108)</td>
<td>→ 21</td>
</tr>
<tr>
<td>Decimal places 2 (0117)</td>
<td>→ 21</td>
</tr>
<tr>
<td>Value 3 display (0110)</td>
<td>→ 22</td>
</tr>
<tr>
<td>0% bargraph 3 (0124)</td>
<td>→ 22</td>
</tr>
<tr>
<td>100% bargraph 3 (0126)</td>
<td>→ 23</td>
</tr>
<tr>
<td>Decimal places 3 (0118)</td>
<td>→ 23</td>
</tr>
<tr>
<td>Value 4 display (0109)</td>
<td>→ 23</td>
</tr>
<tr>
<td>Decimal places 4 (0119)</td>
<td>→ 24</td>
</tr>
<tr>
<td>Display interval (0096)</td>
<td>→ 24</td>
</tr>
<tr>
<td>Display damping (0094)</td>
<td>→ 25</td>
</tr>
<tr>
<td>Header (0097)</td>
<td>→ 25</td>
</tr>
<tr>
<td>Header text (0112)</td>
<td>→ 26</td>
</tr>
<tr>
<td>Separator (0101)</td>
<td>→ 27</td>
</tr>
<tr>
<td>Contrast display (0105)</td>
<td>→ 27</td>
</tr>
<tr>
<td>Backlight (0111)</td>
<td>→ 27</td>
</tr>
<tr>
<td>Access stat.disp (0091)</td>
<td>→ 28</td>
</tr>
</tbody>
</table>
Language

Navigation

[Endress+Hauser Expert → System → Display → Language (0104)]

Prerequisite

A local display is provided.

Description

Use this function to select the configured language on the local display.

Selection

- English
- Deutsch *
- Français *
- Español *
- Italiano *
- Nederlands *
- Portuguesa *
- Polski *
- русский язык(Ru) *
- Svenska *
- Türkçe
- 中文 (Chinese) *
- 日本語 (Japanese) *
- 한국어 (Korean) *
- Bahasa Indonesia *
- tiếng Việt (Viet) *
- čeština (Czech) *

Factory setting

English (alternatively, the ordered language is preset in the device)

Format display

Navigation

[Endress+Hauser Expert → System → Display → Format display (0098)]

Prerequisite

A local display is provided.

Description

Use this function to select how the measured value is shown on the local display.

Selection

- 1 value, max.
- Bargr. + 1 value
- 2 values
- Val. large+2val.
- 4 values

Factory setting

1 value, max.

* Visibility depends on order options or device settings
Additional information

Description

The display format (size, bar graph etc.) and number of measured values displayed simultaneously (1 to 4) can be configured. This setting only applies to normal operation.

- The **Value 1 display** parameter (→ 19) to **Value 4 display** parameter (→ 23) are used to specify which measured values are shown on the local display and in what order.
- If more measured values are specified than the display mode selected permits, then the values alternate on the device display. The display time until the next change is configured via the **Display interval** parameter (→ 24).
Possible measured values shown on the local display:

"1 value, max." option

```
XXXXX
m1  900.00 kg/h
```

"Bargr. + 1 value" option

```
XXXXX
m1  900.00 kg/h
u  900.00 l/h
```

"2 values" option

```
XXXXX
m1  900.00 kg/h
u  900.00 l/h
```

"Val. large+2val." option

```
XXXXX
m1  900.00 kg/h
u  900.00 l/h
p  1.00 kg/l
```

"4 values" option

```
XXXXX
m1  900.00 kg/h
u  900.00 l/h
p  1.00 kg/l
s  213.94 kg
```
Value 1 display

Navigation

Expert → System → Display → Value 1 display (0107)

Prerequisite

A local display is provided.

Description

Use this function to select one of the measured values to be shown on the local display.

Selection

- Mass flow
- Volume flow
- Correct.vol.flow
- Density
- Ref.density
- Temperature
- Totalizer 1
- Totalizer 2
- Totalizer 3

Factory setting

Mass flow

Additional information

Description

If several measured values are displayed at once, the measured value selected here will be the first value to be displayed. The value is only displayed during normal operation.

The Format display parameter (→ 16) is used to specify how many measured values are displayed simultaneously and how.

Dependency

The unit of the displayed measured value is taken from the System units submenu (→ 57).

0% bargraph 1

Navigation

Expert → System → Display → 0% bargraph 1 (0123)

Prerequisite

A local display is provided.

Description

Use this function to enter the 0% bar graph value to be shown on the display for the measured value 1.

User entry

Signed floating-point number

Factory setting

Country-specific:
- 0 kg/h
- 0 lb/min
Additional information

Description

The Format display parameter (→ 16) is used to specify that the measured value is to be displayed as a bar graph.

User entry

The unit of the displayed measured value is taken from the System units submenu (→ 57).

100% bargraph 1

Navigation

Expert → System → Display → 100% bargraph 1 (0125)

Prerequisite

A local display is provided.

Description

Use this function to enter the 100% bar graph value to be shown on the display for the measured value 1.

User entry

Signed floating-point number

Factory setting

Depends on country and nominal diameter → 263

Additional information

Description

The Format display parameter (→ 16) is used to specify that the measured value is to be displayed as a bar graph.

User entry

The unit of the displayed measured value is taken from the System units submenu (→ 57).

Decimal places 1

Navigation

Expert → System → Display → Decimal places 1 (0095)

Prerequisite

A measured value is specified in the Value 1 display parameter (→ 19).

Description

Use this function to select the number of decimal places for measured value 1.

Selection

- x
- x.x
- x.xx
- x.xxx
- x.xxxx

Factory setting

x.xx
Value 2 display

Navigation

Expert → System → Display → Value 2 display (0108)

Prerequisite

A local display is provided.

Description

Use this function to select one of the measured values to be shown on the local display.

Selection

For the picklist, see the Value 1 display parameter (→ 19)

Factory setting

None

Additional information

If several measured values are displayed at once, the measured value selected here will be the second value to be displayed. The value is only displayed during normal operation.

The Format display parameter (→ 16) is used to specify how many measured values are displayed simultaneously and how.

Dependency

The unit of the displayed measured value is taken from the System units submenu (→ 57).

Decimal places 2

Navigation

Expert → System → Display → Decimal places 2 (0117)

Prerequisite

A measured value is specified in the Value 2 display parameter (→ 21).

Description

Use this function to select the number of decimal places for measured value 2.

Selection

- x
- x.x
- x.xx
- x.xxx
- x.xxxx

Factory setting

x.xx

Additional information

This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.
Value 3 display

Navigation
- Expert → System → Display → Value 3 display (0110)

Prerequisite
A local display is provided.

Description
Use this function to select one of the measured values to be shown on the local display.

Selection
For the picklist, see the **Value 1 display** parameter (→ 19).

Factory setting
None

Additional information

Description
If several measured values are displayed at once, the measured value selected here will be the third value to be displayed. The value is only displayed during normal operation.

The **Format display** parameter (→ 16) is used to specify how many measured values are displayed simultaneously and how.

Selection

The unit of the displayed measured value is taken from the **System units** submenu (→ 57).

0% bargraph 3

Navigation
- Expert → System → Display → 0% bargraph 3 (0124)

Prerequisite
A selection was made in the **Value 3 display** parameter (→ 22).

Description
Use this function to enter the 0% bar graph value to be shown on the display for the measured value 3.

User entry
Signed floating-point number

Factory setting
Country-specific:
- 0 kg/h
- 0 lb/min

Additional information

Description

The **Format display** parameter (→ 16) is used to specify that the measured value is to be displayed as a bar graph.

User entry

The unit of the displayed measured value is taken from the **System units** submenu (→ 57).
100% bargraph 3

Navigation
Expert → System → Display → 100% bargraph 3 (0126)

Prerequisite
A selection was made in the Value 3 display parameter (→ 22).

Description
Use this function to enter the 100% bar graph value to be shown on the display for the measured value 3.

User entry
Signed floating-point number

Factory setting
0

Additional information

Description
The Format display parameter (→ 16) is used to specify that the measured value is to be displayed as a bar graph.

User entry
The unit of the displayed measured value is taken from the System units submenu (→ 57).

Decimal places 3

Navigation
Expert → System → Display → Decimal places 3 (0118)

Prerequisite
A measured value is specified in the Value 3 display parameter (→ 22).

Description
Use this function to select the number of decimal places for measured value 3.

Selection
- x
- x.x
- x.xx
- x.xxx
- x.xxxx

Factory setting
x.xx

Additional information

Description
This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.

Value 4 display

Navigation
Expert → System → Display → Value 4 display (0109)

Prerequisite
A local display is provided.
Description of device parameters

Proline Promass 200 FOUNDATION Fieldbus

Description
Use this function to select one of the measured values to be shown on the local display.

Selection
For the picklist, see the Value 1 display parameter (→ 19).

Factory setting
None

Additional information

Description
If several measured values are displayed at once, the measured value selected here will be the fourth value to be displayed. The value is only displayed during normal operation.

Selection
The unit of the displayed measured value is taken from the System units submenu (→ 57).

Decimal places 4

Navigation
Expert → System → Display → Decimal places 4 (0119)

Prerequisite
A measured value is specified in the Value 4 display parameter (→ 23).

Description
Use this function to select the number of decimal places for measured value 4.

Selection
• x
• x.x
• x.xx
• x.xxx
• x.xxxx

Factory setting
x.xx

Additional information

Description
This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.

Display interval

Navigation
Expert → System → Display → Display interval (0096)

Prerequisite
A local display is provided.

Description
Use this function to enter the length of time the measured values are displayed if the values alternate on the display.

User entry
1 to 10 s
Display damping

Navigation
Expert → System → Display → Display damping (0094)

Prerequisite
A local display is provided.

Description
Use this function to enter a time constant for the reaction time of the local display to fluctuations in the measured value caused by process conditions.

User entry
0.0 to 999.9 s

Factory setting
0.0 s

Additional information
User entry
Use this function to enter a time constant (PT1 element 1) for display damping:
- If a low time constant is entered, the display reacts particularly quickly to fluctuating measured variables.
- On the other hand, the display reacts more slowly if a high time constant is entered.
Damping is switched off if 0 is entered (factory setting).

Header

Navigation
Expert → System → Display → Header (0097)

Prerequisite
A local display is provided.

Description
Use this function to select the contents of the header of the local display.

Selection
- Device tag
- Free text

Factory setting
Device tag

1) proportional transmission behavior with first order delay
Additional information

Description
The header text only appears during normal operation.

Selection
- Device tag
 Is defined in the Device tag parameter (→ 238).
- Free text
 Is defined in the Header text parameter (→ 26).

Navigation
Expert → System → Display → Header text (0112)

Prerequisite
In the Header parameter (→ 25), the Free text option is selected.

Description
Use this function to enter a customer-specific text for the header of the local display.

User entry
Max. 12 characters such as letters, numbers or special characters (e.g. @, %, /)

Factory setting

Additional information

Description
The header text only appears during normal operation.

User entry
The number of characters displayed depends on the characters used.
Separator

Navigation

Expert → System → Display → Separator (0101)

Prerequisite

A local display is provided.

Description

Use this function to select the decimal separator.

Selection

- . (point)
- , (comma)

Factory setting

. (point)

Contrast display

Navigation

Expert → System → Display → Contrast display (0105)

Prerequisite

A local display is provided.

Description

Use this function to enter a value to adapt the display contrast to the ambient conditions (e.g. the lighting or viewing angle).

User entry

20 to 80 %

Factory setting

Depends on the display

Additional information

Set the contrast via the push-buttons:

- Brighter: Press and hold down the keys simultaneously.
- Darker: Press and hold down the keys simultaneously.

Backlight

Navigation

Expert → System → Display → Backlight (0111)

Prerequisite

Order code for "Display; operation", option E 'SD03 4-line, illum.; touch control + data backup function"

Description

Use this function to switch the backlight of the local display on and off.

Selection

- Disable
- Enable

Factory setting

Disable
Access stat.disp

Navigation
Expert → System → Display → Access stat.disp (0091)

Prerequisite
A local display is provided.

Description
Displays the access authorization to the parameters via the local display.

User interface
- Operator
- Maintenance

Factory setting
Operator

Additional information

Description

If the symbol appears in front of a parameter, it cannot be modified via the local display with the current access authorization.

- The access authorization can be modified via the Ent. access code parameter (→ 14).
- For information about the Ent. access code parameter (→ 14): see the "Disabling write protection via the access code" section of the Operating Instructions for the device → 7
- If additional write protection is active, this restricts the current access authorization even further.

Display

Detailed information on access authorization is provided in the "User roles and associated access authorization" and "Operating concept" sections of the Operations Instructions for the device → 7

3.1.2 "Conf.backup disp" submenu

Navigation
Expert → System → Conf.backup disp

<table>
<thead>
<tr>
<th>Conf.backup disp</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating time (0652)</td>
<td>→ 29</td>
</tr>
<tr>
<td>Last backup (0102)</td>
<td>→ 29</td>
</tr>
<tr>
<td>Config. managem. (0100)</td>
<td>→ 29</td>
</tr>
<tr>
<td>Compar. result (0103)</td>
<td>→ 31</td>
</tr>
</tbody>
</table>
Operating time

Navigation

Expert → System → Conf.backup disp → Operating time (0652)

Description

Use this function to display the length of time the device has been in operation.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

User interface

The maximum number of days is 9999, which is equivalent to 27 years.

Last backup

Navigation

Expert → System → Conf.backup disp → Last backup (0102)

Prerequisite

A local display is provided.

Description

Use this function to display the time since a backup copy of the data was last saved to the display module.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Config. managem.

Navigation

Expert → System → Conf.backup disp → Config. managem. (0100)

Prerequisite

A local display is provided.

Description

Use this function to select an action to save the data to the display module.

Selection

- Cancel
- Execute backup
- Restore
- Duplicate
- Compare
- Clear backup
- Display incomp.

Factory setting

Cancel
Description

Configuration via the local display is disabled while the action is performed.

For information on the status message in the operating tool, see: **Backup state** parameter (→ 30)

Selection

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancel</td>
<td>No action is executed and the user exits the parameter.</td>
</tr>
<tr>
<td>Execute backup</td>
<td>A backup copy of the current device configuration is saved from the HistoROM backup to the display module of the device. The backup copy includes the transmitter data of the device. The following message appears on local display: Backup active, please wait!</td>
</tr>
<tr>
<td>Restore</td>
<td>The last backup copy of the device configuration is restored from the display module to the device's HistoROM backup. The backup copy includes the transmitter data of the device. The following message appears on local display: Restore active! Do not interrupt power supply!</td>
</tr>
<tr>
<td>Compare</td>
<td>The device configuration saved in the display module is compared with the current device configuration of the HistoROM backup. The following message appears on local display: Comparing files. The result can be viewed in Compar. result parameter (→ 31).</td>
</tr>
<tr>
<td>Duplicate</td>
<td>The transmitter configuration from another device is duplicated to the device using the display module. The following message appears on local display: Copy active! Do not interrupt power supply!</td>
</tr>
<tr>
<td>Clear backup</td>
<td>The backup copy of the device configuration is deleted from the display module of the device. The following message appears on local display: Deleting file</td>
</tr>
<tr>
<td>Display incomp.</td>
<td>This option is displayed if the display module is incompatible. All of the other options are not available. Selection is therefore not possible. This option is displayed if it is not possible to save the device and fieldbus data. The display module should be updated to the latest software version so that the data can be saved.</td>
</tr>
</tbody>
</table>

For information on updating the display module to the latest software version, please contact your Endress+Hauser service organization.

HistoROM

A HistoROM is a "non-volatile" device memory in the form of an EEPROM.

Backup state

Navigation

- Expert → System → Conf.backup disp → Backup state (0121)

Prerequisite

A local display is provided.

Description

Use this function to view the status of the data backup process.

User interface

- None
- Store in progr.
- Restore in progr
• Import in progr.
• Delete in progr.
• Comp. in progr.

Factory setting
None

Compar. result

Navigation
Expert → System → Conf.backup disp → Compar. result (0103)

Prerequisite
A local display is provided.

Description
Use this function to view the last result of comparing the current device configuration to the backup copy in the display module.

User interface
• Set. identical
• Set. not ident.
• No backup
• Backup corrupt
• Check not done
• Dataset incomp.

Factory setting
Check not done

Additional information
Description
The comparison is started via the Compare option in the Config. managem.
parameter (→ 29).

Selection
• Set. identical
 – The current device configuration of the HistoROM is identical to the backup copy in the display module.
 – If the transmitter configuration of another device has been copied to the device via the display module and the Duplicate option in the Config. managem. parameter (→ 29), the current device configuration of the HistoROM only partly matches the backup copy in the display module: The settings for the transmitter are not identical.
• Set. not ident.
The current device configuration of the HistoROM is not identical to the backup copy in the display module.
• No backup
There is no backup copy of the device configuration of the HistoROM in the display module.
• Backup corrupt
 The current device configuration of the HistoROM is corrupt or not compatible with the backup copy in the display module.
• Check not done
 The device configuration of the HistoROM has not yet been compared to the backup copy in the display module.
• Dataset incomp.
 The backup copy in the display module is not compatible with the device.

HistoROM
A HistoROM is a ‘non-volatile’ device memory in the form of an EEPROM.

3.1.3 "Diagn. handling" submenu

Navigation

Expert → System → Diagn. handling

Alarm delay

Description
Use this function to enter the time interval until the device generates a diagnostic message.

The diagnostic message is reset without a time delay.

User entry
0 to 60 s

Factory setting
0 s

Additional information

This setting affects the following diagnostic messages:
• 046 Sensor limit
• 140 Sensor signal
• 830 Sensor temp.
• 831 Sensor temp.
• 832 Electronic temp.
• 833 Electronic temp.
• 834 Process temp.
• 835 Process temp.
• 910 Tube not oscill.
• 912 Medium inhomog.
• 913 Medium unsuitab.

"Diagn. behavior" submenu

Each item of diagnostic information is assigned a specific diagnostic behavior at the factory. The user can change this assignment for specific diagnostic information in the Diagn. behavior submenu (→ 33).

The following options are available in the Assign behavior of diagnostic no. xxx parameters:

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm</td>
<td>The device stops measurement. The signal outputs and totalizers assume the defined alarm condition. A diagnostic message is generated. For local display with touch control: the background lighting changes to red.</td>
</tr>
<tr>
<td>Warning</td>
<td>The device continues to measure. The signal outputs and totalizers are not affected. A diagnostic message is generated.</td>
</tr>
<tr>
<td>Logbook only</td>
<td>The device continues to measure. The diagnostic message is displayed only in the Event logbook submenu (→ 235) (Event list submenu (→ 236)) and is not displayed in alternation with the operational display.</td>
</tr>
<tr>
<td>Off</td>
<td>The diagnostic event is ignored, and no diagnostic message is generated or entered.</td>
</tr>
</tbody>
</table>

Assignment of the status of a diagnostic event.

The following options are available in the Assign status of diagnostic no. xxx parameters:

• Bad
 The status of the input value (PV) is Bad.
• Uncertain
 The status of the input value (PV) is Uncertain.
• Good
 The status of the input value (PV) is Good.

For a list of all the diagnostic events, see the Operating Instructions for the device → 7

Navigation

Expert → System → Diagn. handling → Diagn. behavior

<table>
<thead>
<tr>
<th>Diagnostic no.</th>
<th>→</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic no. 046 (0655)</td>
<td>35</td>
</tr>
<tr>
<td>Diagnostic no. 140 (0723)</td>
<td>35</td>
</tr>
<tr>
<td>Diagnostic no. 274 (0725)</td>
<td>35</td>
</tr>
<tr>
<td>Diagnostic no. 442 (0658)</td>
<td>36</td>
</tr>
<tr>
<td>Diagnostic no. 443 (0659)</td>
<td>36</td>
</tr>
<tr>
<td>Description of device parameters</td>
<td>Proline Promass 200 FOUNDATION Fieldbus</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnostic no. 801 (0660)</td>
<td>→ 36</td>
</tr>
<tr>
<td>Diagnostic no. 830 (0715)</td>
<td>→ 37</td>
</tr>
<tr>
<td>Diagnostic no. 831 (0716)</td>
<td>→ 37</td>
</tr>
<tr>
<td>Diagnostic no. 832 (0675)</td>
<td>→ 38</td>
</tr>
<tr>
<td>Diagnostic no. 833 (0676)</td>
<td>→ 38</td>
</tr>
<tr>
<td>Diagnostic no. 834 (0677)</td>
<td>→ 38</td>
</tr>
<tr>
<td>Diagnostic no. 835 (0678)</td>
<td>→ 39</td>
</tr>
<tr>
<td>Diagnostic no. 862 (0679)</td>
<td>→ 39</td>
</tr>
<tr>
<td>Diagnostic no. 912 (0720)</td>
<td>→ 39</td>
</tr>
<tr>
<td>Diagnostic no. 913 (0717)</td>
<td>→ 40</td>
</tr>
<tr>
<td>Status diag. 044 (11041)</td>
<td>→ 40</td>
</tr>
<tr>
<td>Status diag. 046 (11042)</td>
<td>→ 40</td>
</tr>
<tr>
<td>Status diag. 274 (11000)</td>
<td>→ 41</td>
</tr>
<tr>
<td>Status diag. 801 (11001)</td>
<td>→ 41</td>
</tr>
<tr>
<td>Status diag. 830 (11006)</td>
<td>→ 41</td>
</tr>
<tr>
<td>Status diag. 831 (11007)</td>
<td>→ 42</td>
</tr>
<tr>
<td>Status diag. 832 (11002)</td>
<td>→ 42</td>
</tr>
<tr>
<td>Status diag. 833 (11003)</td>
<td>→ 42</td>
</tr>
<tr>
<td>Status diag. 834 (11004)</td>
<td>→ 43</td>
</tr>
<tr>
<td>Status diag. 835 (11005)</td>
<td>→ 43</td>
</tr>
<tr>
<td>Status diag. 862 (11008)</td>
<td>→ 43</td>
</tr>
<tr>
<td>Status diag. 912 (11009)</td>
<td>→ 44</td>
</tr>
<tr>
<td>Status diag. 913 (11010)</td>
<td>→ 44</td>
</tr>
</tbody>
</table>
Diagnostic no. 046 (Sensor limit)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 046 (0655)

Description
Option for changing the diagnostic behavior of the diagnostic message **046 Sensor limit**.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
Detailed description of the options available for selection: → 33 → 33

Diagnostic no. 140 (Sensor signal)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 140 (0723)

Description
Option for changing the diagnostic behavior of the diagnostic message **140 Sensor signal**.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
Detailed description of the options available for selection: → 33 → 33

Diagnostic no. 274 (Main electronic)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 274 (0725)

Description
Option for changing the diagnostic behavior of the diagnostic message **274 Main electronic**.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
Detailed description of the options available for selection: → 33 → 33
Description of device parameters

Diagnostic no. 442 (Freq. output)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 442 (0658)

Prerequisite

The measuring device has a pulse/frequency/switch output.

Description

Option for changing the diagnostic behavior of the diagnostic message **442 Freq. output**.

Selection

- Off
- Alarm
- Warning
- Logbook only

Factory setting

Warning

Additional information

Selection

Detailed description of the options available for selection: → 33

Diagnostic no. 443 (Pulse output)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 443 (0659)

Prerequisite

The measuring device has a pulse/frequency/switch output.

Description

Option for changing the diagnostic behavior of the diagnostic message **443 Pulse output**.

Selection

- Off
- Alarm
- Warning
- Logbook only

Factory setting

Warning

Additional information

Selection

Detailed description of the options available for selection: → 33

Diagnostic no. 801 (Supply voltage)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 801 (0660)

Description

Option for changing the diagnostic behavior of the diagnostic message **801 Supply voltage**.

Selection

- Off
- Alarm
- Warning
- Logbook only
Diagnostic no. 830 (Sensor temp.)

Navigation
- Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 830 (0715)

Prerequisite
If the carrier tube temperature is available (applies only to Promass F).

Description
Option for changing the diagnostic behavior of the diagnostic message **830 Sensor temp.**.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
Detailed description of the options available for selection: → 33 → 33

Diagnostic no. 831 (Sensor temp.)

Navigation
- Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 831 (0716)

Prerequisite
If the carrier tube temperature is available (applies only to Promass F).

Description
Option for changing the diagnostic behavior of the diagnostic message **831 Sensor temp.**.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
Detailed description of the options available for selection: → 33 → 33
Diagnostic no. 832 (Electronic temp.)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 832 (0675)

Description
Option for changing the diagnostic behavior of the diagnostic message **832 Electronic temp.**.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
Selection
Detailed description of the options available for selection:

Diagnostic no. 833 (Electronic temp.)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 833 (0676)

Description
Option for changing the diagnostic behavior of the diagnostic message **833 Electronic temp.**.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
Selection
Detailed description of the options available for selection:

Diagnostic no. 834 (Process temp.)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 834 (0677)

Description
Option for changing the diagnostic behavior of the diagnostic message **834 Process temp.**.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning
Additional information

Selection

- Off
- Alarm
- Warning
- Logbook only

Factory setting Warning

Additional information

Detailed description of the options available for selection: → 33 → 33

Diagnostic no. 835 (Process temp.)

Navigation Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 835 (0678)

Description Option for changing the diagnostic behavior of the diagnostic message 835 Process temp.

Selection

- Off
- Alarm
- Warning
- Logbook only

Factory setting Warning

Additional information

Detailed description of the options available for selection: → 33 → 33

Diagnostic no. 862 (Empty pipe)

Navigation Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 862 (0679)

Description Option for changing the diagnostic behavior of the diagnostic message 862 Empty pipe.

Selection

- Off
- Alarm
- Warning
- Logbook only

Factory setting Warning

Additional information

Detailed description of the options available for selection: → 33 → 33

Diagnostic no. 912 (Medium inhomog.)

Navigation Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 912 (0720)

Description Option for changing the diagnostic behavior of the diagnostic message 912 Medium inhomog..
Diagnostic no. 913 (Medium unsuitab.)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 913 (0717)

Description
Option for changing the diagnostic behavior of the diagnostic message **913 Medium unsuitab.**

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
Detailed description of the options available for selection: → 33 → 33

Status diag. 140 (Sensor sig.asym.)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Status diag. 044 (11041)

Description
Use this function to change the status of diagnostic message **140 Sensor sig.asym.**

Selection
- Bad
- Uncertain
- Good

Factory setting
Bad

Additional information
Detailed description of the options available for selection: → 33

Status diag. 046 (Sensor limit)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Status diag. 046 (11042)

Description
Use this function to change the status of diagnostic message **046 Sensor limit.**
Status diag. 274 (Main electronic)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Status diag. 274 (11000)

Description

Use this function to change the status of diagnostic message 274 Main electronic.

Selection

- Bad
- Uncertain
- Good

Factory setting

Uncertain

Additional information

Detailed description of the options available for selection: → 33

Status diag. 801 (Supply voltage)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Status diag. 801 (11001)

Description

Option for changing the status of the diagnostic message 801 Supply voltage.

Selection

- Bad
- Uncertain
- Good

Factory setting

Uncertain

Additional information

Detailed description of the options available for selection: → 33

Status diag. 830 (Sensor temp.)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Status diag. 830 (11006)

Description

Use this function to change the status of diagnostic message 830 Sensor temp.
Description of device parameters

Proline Promass 200 FOUNDATION Fieldbus

Selection
- Bad
- Uncertain
- Good

Factory setting
Uncertain

Additional information
Detailed description of the options available for selection: → 33

Status diag. 831 (Sensor temp.)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Status diag. 831 (11007)

Description
Use this function to change the status of diagnostic message 831 Sensor temp..

Selection
- Bad
- Uncertain
- Good

Factory setting
Uncertain

Additional information
Detailed description of the options available for selection: → 33

Status diag. 832 (Electronic temp.)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Status diag. 832 (11002)

Description
Option for changing the status of the diagnostic message 832 Electronic temp..

Selection
- Bad
- Uncertain
- Good

Factory setting
Uncertain

Additional information
Detailed description of the options available for selection: → 33

Status diag. 833 (Electronic temp.)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Status diag. 833 (11003)

Description
Option for changing the status of the diagnostic message 833 Electronic temp..
Selection

- Bad
- Uncertain
- Good

Factory setting
Uncertain

Additional information
Detailed description of the options available for selection: → 33

Status diag. 834 (Process temp.)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Status diag. 834 (11004)

Description
Use this function to change the status of diagnostic message 834 Process temp..

Selection
- Bad
- Uncertain
- Good

Factory setting
Uncertain

Additional information
Detailed description of the options available for selection: → 33

Status diag. 835 (Process temp.)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Status diag. 835 (11005)

Description
Use this function to change the status of diagnostic message 835 Process temp..

Selection
- Bad
- Uncertain
- Good

Factory setting
Uncertain

Additional information
Detailed description of the options available for selection: → 33

Status diag. 862 (Partly filled)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Status diag. 862 (11008)

Description
Use this function to change the status of diagnostic message 862 Partly filled.
Status diag. 912 (Medium inhomog.)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Status diag. 912 (11009)

Description

Use this function to change the status of diagnostic message 912 Medium inhomog..

Selection
- Bad
- Uncertain
- Good

Factory setting
Uncertain

Additional information

Detailed description of the options available for selection: → 33

Status diag. 913 (Medium unsuitab.)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Status diag. 913 (11010)

Description

Use this function to change the status of diagnostic message 913 Medium unsuitab..

Selection
- Bad
- Uncertain
- Good

Factory setting
Uncertain

Additional information

Detailed description of the options available for selection: → 33
3.1.4 "Administration" submenu

Navigation
expert → System → Administration

"Def. access code" wizard

The Def. access code wizard (→ 45) is only available when operating via the local display.

If operating via the operating tool, the Def. access code parameter (→ 46) can be found directly in the Administration submenu. There is no Confirm code parameter if the device is operated via the operating tool.

Navigation
expert → System → Administration → Def. access code

Def. access code

Navigation
expert → System → Administration → Def. access code

Description
Use this function to enter a user-specific release code to restrict write-access to the parameters. This protects the configuration of the device against any inadvertent changes via the local display.

User entry
0 to 9 999

Factory setting
0

Additional information
Description
The write protection affects all parameters in the document marked with the symbol.
On the local display, the 🗝️ symbol in front of a parameter indicates that the parameter is write-protected.

💡 Once the access code has been defined, write-protected parameters can only be modified if the access code is entered in the **Ent. access code** parameter (→ 14).

💡 If you lose the access code, please contact your Endress+Hauser sales organization.

User entry

A message is displayed if the access code is not in the input range.

Factory setting

If the factory setting is not changed or 0 is defined as the access code, the parameters are not write-protected and the device configuration data can be modified. The user is logged on in the "Maintenance" role.

Confirm code

Navigation	Expert → System → Administration → Def. access code → Confirm code
Description	Enter the defined release code a second time to confirm the release code.
User entry	0 to 9999
Factory setting	0

Additional parameters in the "Administration" submenu

Def. access code

Navigation	Expert → System → Administration → Def. access code
Description	Use this function to enter a user-specific release code to restrict write-access to the parameters. This protects the configuration of the device against any inadvertent changes via the operating tool.
User entry	0 to 9999
Factory setting	0
Additional information

Description

The write protection affects all parameters in the document marked with the

Once the access code has been defined, write-protected parameters can only be modified if the access code is entered in the **Ent. access code** parameter (→ 14).

If you lose the access code, please contact your Endress+Hauser sales organization.

User entry

A message is displayed if the access code is not in the input range.

Factory setting

If the factory setting is not changed or 0 is defined as the access code, the parameters are not write-protected and the device configuration data can be modified. The user is logged on in the "Maintenance" role.

Restart

Navigation

Expert → System → Administration → Restart (10800)

Description

Use this function to select a manual restart or a manual device reset.

Selection

- Uninitialized
- Run
- Resource
- Defaults
- Processor
- To fact.defaults
- To delivery set.
- ENP restart
- To transd.def.
- Fact.DefaultBlks

Factory setting

Uninitialized

Additional information

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uninitialized</td>
<td>The selection has no effect on the device.</td>
</tr>
<tr>
<td>Run</td>
<td>The selection has no effect on the device.</td>
</tr>
<tr>
<td>Resource</td>
<td>The selection has no effect on the device.</td>
</tr>
<tr>
<td>Defaults</td>
<td>All FOUNDATION Fieldbus blocks are reset to their factory settings.</td>
</tr>
<tr>
<td></td>
<td>Example: Analog Input Channel to the Uninitialized option.</td>
</tr>
<tr>
<td>Processor</td>
<td>The device is restarted.</td>
</tr>
<tr>
<td>To fact.defaults</td>
<td>The FOUNDATION Fieldbus parameters (FOUNDATION Fieldbus blocks) and the</td>
</tr>
<tr>
<td></td>
<td>device parameters are reset to their factory setting.</td>
</tr>
<tr>
<td>To delivery set.</td>
<td>Advanced FOUNDATION Fieldbus parameters (FOUNDATION Fieldbus blocks,</td>
</tr>
<tr>
<td></td>
<td>schedule information) and device parameters for which a customer-specific</td>
</tr>
<tr>
<td></td>
<td>default setting was ordered are reset to this customer-specific value.</td>
</tr>
<tr>
<td>ENP restart</td>
<td>The parameters of the electronic name plate are reset.</td>
</tr>
<tr>
<td></td>
<td>The device is restarted.</td>
</tr>
</tbody>
</table>
Service reset

Navigation

Expert → System → Administration → Service reset (10749)

Description

Extended selection for a manual restart or a manual device reset.

Selection

- Uninitialized
- DeliverySett+MIB
- ENP restart

Factory setting

Uninitialized

Additional information

Selection

- Uninitialized
 - Factory setting
- DeliverySett+MIB
 - Reset the device to the as-delivered state. Important communication settings are reset to the factory default settings here.
- ENP restart
 - Reset the parameters for the electronic name plate (ENP).

Activate SW opt.

Navigation

Expert → System → Administration → Activate SW opt. (0029)

Description

Use this function to enter an activation code to enable an additional, ordered software option.

User entry

Max. 10-digit string consisting of numbers.

Factory setting

Depends on the software option ordered

Additional information

Description

If a measuring device was ordered with an additional software option, the activation code is programmed in the device at the factory.

User entry

To activate a software option subsequently, please contact your Endress+Hauser sales organization.

NOTE!

The activation code is linked to the serial number of the measuring device and varies according to the device and software option.
If an incorrect or invalid code is entered, this results in the loss of software options that have already been activated.

▸ Before you enter a new activation code, make a note of the current activation code.
▸ Enter the new activation code provided by Endress+Hauser when the new software option was ordered.
▸ Once the activation code has been entered, check if the new software option is displayed in the **SW option overv.** parameter (→ 49).

← The new software option is active if it is displayed.
← If the new software option is not displayed or all software options have been deleted, the code entered was either incorrect or invalid.
▸ If the code entered is incorrect or invalid, enter the old activation code.
▸ Have your Endress+Hauser sales organization check the new activation code remembering to specify the serial number or ask for the code again.

Example for a software option

Order code for "Application package", option **EA "Extended HistoROM"**

![The software options currently enabled are displayed in the SW option overv. parameter (→ 49).](image)

SW option overv.

Navigation

![Expert → System → Administration → SW option overv. (0015)]

Description

Displays all the software options that are enabled in the device.

User interface

- Extend. HistoROM
- HBT Monitoring
- HBT Verification

Additional information

Description

Displays all the options that are available if ordered by the customer.

"Extend. HistoROM" option

Order code for "Application package", option **EA "Extended HistoROM"**

"HBT Verification" option and "HBT Monitoring" option

Order code for "Application package", option **EB "Heartbeat Verification + Monitoring"**

Sens. emerg.mode

Navigation

![Expert → System → Administration → Sens. emerg.mode (2566)]

Prerequisite

The device has identified an error during verification of the characteristics in the sensor data storage or electronics module. A diagnostic message of status type **F** is output.
Description
Use this function to switch on the emergency mode of the sensor to use the backup of the sensor characteristics or main electronics characteristics stored in the HistoROM.

Selection
- Cancel
- Ok

Factory setting
Cancel

Additional information
Description
This parameter becomes visible if the data in the S-DAT or on-board memory cannot be read on account of a defect or error. There is a copy of the data on the HistoROM (FT10). If the emergency mode is activated, this copy is used and the device measure correctly again at least up until the next device switch-off/switch-on. After switch-off/switch-off, the emergency mode would have to be reactivated again. This ensures that the client can operate the device until a new spare part arrives.

The status signal of the output diagnostic message changes from F (failure) to M (maintenance required), the diagnostic behavior changes from Alarm to Warning: ΔM. The diagnostic message is output until the characteristics in the sensor data storage are again correct.

Information on what is causing the diagnostic message, and remedy measures, can be viewed by pressing the INFO-button.

Information on status signals and diagnostic behavior: Operating Instructions about the device, "Diagnostic message" chapter

3.2 "Sensor" submenu

Navigation
Expert → Sensor

- Measured val. → 51
- System units → 57
- Process param. → 65
- Measurement mode → 73
- Calculated value → 75
- Sensor adjustm. → 78
- Calibration → 84
3.2.1 "Measured val." submenu

Navigation

Expert → Sensor → Measured val.

<table>
<thead>
<tr>
<th>▶ Measured val.</th>
<th>→ 51</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Process variab.</td>
<td>→ 51</td>
</tr>
<tr>
<td>▶ Totalizer</td>
<td>→ 53</td>
</tr>
<tr>
<td>▶ Output values</td>
<td>→ 55</td>
</tr>
</tbody>
</table>

"Process variab." submenu

Navigation

<table>
<thead>
<tr>
<th>▶ Process variab.</th>
<th>→ 51</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass flow (1840)</td>
<td>→ 51</td>
</tr>
<tr>
<td>Volume flow (1813)</td>
<td>→ 52</td>
</tr>
<tr>
<td>Correct.vol.flow (1842)</td>
<td>→ 52</td>
</tr>
<tr>
<td>Density (1843)</td>
<td>→ 52</td>
</tr>
<tr>
<td>Ref.density (1844)</td>
<td>→ 53</td>
</tr>
<tr>
<td>Temperature (1845)</td>
<td>→ 53</td>
</tr>
</tbody>
</table>

Mass flow

Navigation

Description

Use this function to view the mass flow currently calculated.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the **Mass flow unit** parameter (→ 58)
Volume flow

Navigation

Description Use this function to view the volume flow currently measured.

User interface Signed floating-point number

Additional information

Description The volume flow is calculated from the measured mass flow and the measured density.

Dependency

The unit is taken from the **Volume flow unit** parameter (→ 59)

Correct.vol.flow

Navigation

Description Use this function to view the corrected volume flow currently calculated.

User interface Signed floating-point number

Additional information

Description The corrected volume flow is derived from the measured mass flow and the reference density of the fluid (density at reference temperature, measured or fixed entry).

Dependency

The unit is taken from the **Cor.volflow unit** parameter (→ 60)

Density

Navigation

Description Use this function to view the currently measured density or its specific gravity.

User interface Positive floating-point number

Additional information

Dependency

The unit is taken from the **Density unit** parameter (→ 62)
Ref. density

Navigation

Description
Displays the density at the reference temperature.

User interface
Positive floating-point number

Additional information

Description
The reference density displayed is calculated using the measured density.

Dependency
The unit is taken from the **Ref. dens. unit** parameter (→ 62)

Temperature

Navigation

Description
Use this function to view the temperature currently measured.

User interface
Positive floating-point number

Additional information

Dependency
The unit is taken from the **Temperature unit** parameter (→ 63)

"Totalizer" submenu

Navigation
Expert → Sensor → Measured val. → Totalizer

Totalizer

<table>
<thead>
<tr>
<th>Totalizer val. 1 to n (0911–1 to n)</th>
<th>→ 54</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tot. overflow 1 to n (0910–1 to n)</td>
<td>→ 54</td>
</tr>
</tbody>
</table>
Totalizer val. 1 to n

Navigation
Expert → Sensor → Measured val. → Totalizer → Totalizer val. 1 to n (0911–1 to n)

Prerequisite
One of the following options is selected in the Assign variable parameter (→ 224) of the Totalizer 1 to n submenu:
• Volume flow
• Mass flow
• Correct.vol.flow

Description
Displays the current totalizer reading.

User interface
Signed floating-point number

Additional information

Description
As it is only possible to display a maximum of 7 digits in the operating tool, the current counter value is the sum of the totalizer value and the overflow value from the Tot. overflow 1 to n parameter if the display range is exceeded.

In the event of an error, the totalizer adopts the mode defined in the Failure mode parameter (→ 227).

User interface
The value of the process variable totalized since measuring began can be positive or negative. This depends on the settings in the Operation mode parameter (→ 226).

The unit of the selected process variable is specified for the totalizer in the Unit totalizer parameter (→ 225).

Example
Calculation of the current totalizer reading when the value exceeds the 7-digit display range of the operating tool:
• Value in the Totalizer val. 1 parameter: 1968457 m³
• Value in the Tot. overflow 1 parameter: \(1 \cdot 10^7 \) (1 overflow) = 10000000 [m³]
• Current totalizer reading: 11968457 m³

Tot. overflow 1 to n

Navigation
Expert → Sensor → Measured val. → Totalizer → Tot. overflow 1 to n (0910–1 to n)

Prerequisite
One of the following options is selected in the Assign variable parameter (→ 224) of the Totalizer 1 to n submenu:
• Volume flow
• Mass flow
• Correct.vol.flow

Description
Displays the current totalizer overflow.

User interface
Integer with sign
Additional information

Description

If the current totalizer reading exceeds 7 digits, which is the maximum value range that can be displayed by the operating tool, the value above this range is output as an overflow. The current totalizer value is therefore the sum of the overflow value and the totalizer value from the Totalizer val. 1 to n parameter.

User interface

The unit of the selected process variable is specified for the totalizer in the Unit totalizer parameter (→ 225).

Example

Calculation of the current totalizer reading when the value exceeds the 7-digit display range of the operating tool:

- Value in the Totalizer val. 1 parameter: 1 968 457 m³
- Value in the Tot. overflow 1 parameter: 2 \cdot 10^7 (2 overflows) = 20 000 000 [m³]
- Current totalizer reading: 21 968 457 m³

"Output values" submenu

Navigation

Expert → Sensor → Measured val. → Output values

<table>
<thead>
<tr>
<th>Output values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal volt. 1 (0662) → 55</td>
</tr>
<tr>
<td>Pulse output (0456) → 56</td>
</tr>
<tr>
<td>Output freq. (0471) → 56</td>
</tr>
<tr>
<td>Switch status (0461) → 57</td>
</tr>
</tbody>
</table>

Terminal volt. 1

Navigation

Expert → Sensor → Measured val. → Output values → Terminal volt. 1 (0662)

Description

Displays the current terminal voltage that is applied at the output.

User interface

0.0 to 50.0 V
Pulse output

Navigation
Expert → Sensor → Measured val. → Output values → Pulse output (0456)

Prerequisite
The Pulse option is selected in the Operating mode parameter (→ 89) parameter.

Description
Displays the pulse frequency currently output.

User interface
Positive floating-point number

Additional information
Description
- The pulse output is an open collector output.
- This is configured at the factory in such a way that the transistor is conductive for the duration of the pulse (NO contact) and is safety-oriented.
- The Value per pulse parameter (→ 91) and Pulse width parameter (→ 91) can be used to define the value (i.e. the measured value amount that corresponds to a pulse) and the duration of the pulse.

![Diagram of pulse output types](image)

0 Non-conductive
1 Conductive
NC NC contact (normally closed)
NO NO contact (normally open)

The output behavior can be reversed via the Invert outp.sig. parameter (→ 108) i.e. the transistor does not conduct for the duration of the pulse.

In addition, the behavior of the output in the event of a device alarm (Failure mode parameter (→ 93)) can be configured.

Output freq.

Navigation
Expert → Sensor → Measured val. → Output values → Output freq. (0471)

Prerequisite
In the Operating mode parameter (→ 89), the Frequency option is selected.

Description
Displays the actual value of the output frequency which is currently measured.

User interface
0 to 1250 Hz
Switch status

Navigation
Expert → Sensor → Measured val. → Output values → Switch status (0461)

Prerequisite
The Switch option is selected in the Operating mode parameter (→ 89).

Description
Displays the current switch status of the status output.

User interface
- Open
- Closed

Additional information
User interface
- Open
 The switch output is not conductive.
- Closed
 The switch output is conductive.

3.2.2 "System units" submenu

Navigation
Expert → Sensor → System units

<table>
<thead>
<tr>
<th>System units</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass flow unit (0554)</td>
<td>58</td>
</tr>
<tr>
<td>Mass unit (0574)</td>
<td>58</td>
</tr>
<tr>
<td>Volume flow unit (0553)</td>
<td>59</td>
</tr>
<tr>
<td>Volume unit (0563)</td>
<td>60</td>
</tr>
<tr>
<td>Corr. volflow unit (0558)</td>
<td>60</td>
</tr>
<tr>
<td>Corr. vol. unit (0575)</td>
<td>61</td>
</tr>
<tr>
<td>Density unit (0555)</td>
<td>62</td>
</tr>
<tr>
<td>Ref. dens. unit (0556)</td>
<td>62</td>
</tr>
<tr>
<td>Temperature unit (0557)</td>
<td>63</td>
</tr>
<tr>
<td>Length unit (0551)</td>
<td>63</td>
</tr>
<tr>
<td>Pressure unit (0564)</td>
<td>64</td>
</tr>
<tr>
<td>Date/time format (2812)</td>
<td>64</td>
</tr>
</tbody>
</table>
Mass flow unit

Navigation
Expert → Sensor → System units → Mass flow unit (0554)

Description
Use this function to select the unit for the mass flow.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
</tr>
</thead>
<tbody>
<tr>
<td>• g/s</td>
<td>• oz/s</td>
</tr>
<tr>
<td>• g/min</td>
<td>• oz/min</td>
</tr>
<tr>
<td>• g/h</td>
<td>• oz/h</td>
</tr>
<tr>
<td>• g/d</td>
<td>• oz/d</td>
</tr>
<tr>
<td>• kg/s</td>
<td>• lb/s</td>
</tr>
<tr>
<td>• kg/min</td>
<td>• lb/min</td>
</tr>
<tr>
<td>• kg/h</td>
<td>• lb/h</td>
</tr>
<tr>
<td>• kg/d</td>
<td>• lb/d</td>
</tr>
<tr>
<td>• t/s</td>
<td>• STon/s</td>
</tr>
<tr>
<td>• t/min</td>
<td>• STon/min</td>
</tr>
<tr>
<td>• t/h</td>
<td>• STon/h</td>
</tr>
<tr>
<td>• t/d</td>
<td>• STon/d</td>
</tr>
</tbody>
</table>

Factory setting
Country-specific:
- • kg/h
- • lb/min

Additional information
Result

The selected unit applies for:
- Mass flow parameter (→ 51)

Selection

For an explanation of the abbreviated units: 267

Mass unit

Navigation
Expert → Sensor → System units → Mass unit (0574)

Description
Use this function to select the unit for the mass.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
</tr>
</thead>
<tbody>
<tr>
<td>• g</td>
<td>• oz</td>
</tr>
<tr>
<td>• kg</td>
<td>• lb</td>
</tr>
<tr>
<td>• t</td>
<td>• STon</td>
</tr>
</tbody>
</table>

Factory setting
Country-specific:
- • kg
- • lb

Additional information
Selection

For an explanation of the abbreviated units: 267
Volume flow unit

Navigation
Expert → Sensor → System units → Volume flow unit (0553)

Description
Use this function to select the unit for the volume flow.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
<th>Imperial units</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm³/s</td>
<td>af/s</td>
<td>gal/s (imp)</td>
</tr>
<tr>
<td>cm³/min</td>
<td>af/min</td>
<td>gal/min (imp)</td>
</tr>
<tr>
<td>cm³/h</td>
<td>af/h</td>
<td>gal/h (imp)</td>
</tr>
<tr>
<td>cm³/d</td>
<td>af/d</td>
<td>gal/d (imp)</td>
</tr>
<tr>
<td>dm³/s</td>
<td>ft³/s</td>
<td>Mgal/s (imp)</td>
</tr>
<tr>
<td>dm³/min</td>
<td>ft³/min</td>
<td>Mgal/min (imp)</td>
</tr>
<tr>
<td>dm³/h</td>
<td>ft³/h</td>
<td>Mgal/h (imp)</td>
</tr>
<tr>
<td>dm³/d</td>
<td>ft³/d</td>
<td>Mgal/d (imp)</td>
</tr>
<tr>
<td>m³/s</td>
<td>fl oz/s (us)</td>
<td>bbl/s (imp;oil)</td>
</tr>
<tr>
<td>m³/min</td>
<td>fl oz/min (us)</td>
<td>bbl/min (imp;oil)</td>
</tr>
<tr>
<td>m³/h</td>
<td>fl oz/h (us)</td>
<td>bbl/h (imp;oil)</td>
</tr>
<tr>
<td>m³/d</td>
<td>fl oz/d (us)</td>
<td>bbl/d (imp;oil)</td>
</tr>
<tr>
<td>l/s</td>
<td>gal/s (us)</td>
<td>Mgal/s (us)</td>
</tr>
<tr>
<td>l/min</td>
<td>gal/min (us)</td>
<td>Mgal/min (us)</td>
</tr>
<tr>
<td>l/h</td>
<td>gal/h (us)</td>
<td>Mgal/h (us)</td>
</tr>
<tr>
<td>l/d</td>
<td>gal/d (us)</td>
<td>Mgal/d (us)</td>
</tr>
<tr>
<td>ml/s</td>
<td>kgal/s (us)</td>
<td>bbl/s (us;liq.)</td>
</tr>
<tr>
<td>ml/min</td>
<td>kgal/min (us)</td>
<td>bbl/min (us;liq.)</td>
</tr>
<tr>
<td>ml/h</td>
<td>kgal/h (us)</td>
<td>bbl/h (us;liq.)</td>
</tr>
<tr>
<td>ml/d</td>
<td>kgal/d (us)</td>
<td>bbl/d (us;liq.)</td>
</tr>
<tr>
<td>l/s</td>
<td>Mgal/s (us)</td>
<td>bbl/s (us;beer)</td>
</tr>
<tr>
<td>l/min</td>
<td>Mgal/min (us)</td>
<td>bbl/min (us;beer)</td>
</tr>
<tr>
<td>l/h</td>
<td>Mgal/h (us)</td>
<td>bbl/h (us;beer)</td>
</tr>
<tr>
<td>l/d</td>
<td>Mgal/d (us)</td>
<td>bbl/d (us;beer)</td>
</tr>
<tr>
<td>ml/s</td>
<td>bbl/s (us;oil)</td>
<td>bbl/s (us;oil)</td>
</tr>
<tr>
<td>ml/min</td>
<td>bbl/min (us;oil)</td>
<td>bbl/min (us;oil)</td>
</tr>
<tr>
<td>ml/h</td>
<td>bbl/h (us;oil)</td>
<td>bbl/h (us;oil)</td>
</tr>
<tr>
<td>ml/d</td>
<td>bbl/d (us;oil)</td>
<td>bbl/d (us;oil)</td>
</tr>
<tr>
<td>l/s</td>
<td>bbl/s (us;tank)</td>
<td>bbl/s (us;tank)</td>
</tr>
<tr>
<td>l/min</td>
<td>bbl/min (us;tank)</td>
<td>bbl/min (us;tank)</td>
</tr>
<tr>
<td>l/h</td>
<td>bbl/h (us;tank)</td>
<td>bbl/h (us;tank)</td>
</tr>
<tr>
<td>l/d</td>
<td>bbl/d (us;tank)</td>
<td>bbl/d (us;tank)</td>
</tr>
</tbody>
</table>

Other units

- bbl/s (imp;beer)
- bbl/min (imp;beer)
- bbl/h (imp;beer)
- bbl/d (imp;beer)

Factory setting
Country-specific:
- l/h
- gal/min (us)
Additional information

Result

The selected unit applies for:
Volume flow parameter (→ 52)

Selection

For an explanation of the abbreviated units: → 267

Volume unit

Navigation

Expert → Sensor → System units → Volume unit (0563)

Description

Use this function to select the unit for the volume.

Selection

SI units
- cm³
- dm³
- m³
- ml
- l

US units
- af
- ft³
- fl oz (us)
- gal (us)
- kgal (us)
- Mgal (us)
- bbl (us;oil)
- bbl (us;liq.)
- bbl (us;beer)
- bbl (us;tank)

Imperial units
- gal (imp)
- Mgal (imp)
- bbl (imp;oil)

Other units
- bbl (imp;beer)

Factory setting

Country-specific:
- l (DN > 150 (6\(^{\circ}\)): m³)
- gal (us)

Additional information

Selection

For an explanation of the abbreviated units: → 267

Cor.volflow unit

Navigation

Expert → Sensor → System units → Cor.volflow unit (0558)

Description

Use this function to select the unit for the corrected volume flow.
Selection

SI units
- m³/s
- m³/min
- m³/h
- m³/d
- Nm³/s
- Nm³/min
- Nm³/h
- Nm³/d
- Sm³/s
- Sm³/min
- Sm³/h
- Sm³/d

US units
- ft³/s
- ft³/min
- ft³/h
- ft³/d
- Sg³/s
- Sg³/min
- Sg³/h
- Sg³/d

Factory setting

Country-specific:
- m³/h
- ft³/min

Additional information

Result

The selected unit applies for:

- **Correct. vol. flow** parameter (→ 52)

Selection

For an explanation of the abbreviated units: → 267

Corr. vol. unit

Navigation

Expert → Sensor → System units → Corr. vol. unit (0575)

Description

Use this function to select the unit for the corrected volume.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
<th>Imperial units</th>
</tr>
</thead>
<tbody>
<tr>
<td>m³/s</td>
<td>ft³/s</td>
<td>Sg³/s</td>
</tr>
<tr>
<td>m³/min</td>
<td>ft³/min</td>
<td>Sg³/min</td>
</tr>
<tr>
<td>m³/h</td>
<td>ft³/h</td>
<td>Sg³/h</td>
</tr>
<tr>
<td>m³/d</td>
<td>ft³/d</td>
<td>Sg³/d</td>
</tr>
</tbody>
</table>

Factory setting

Country-specific:
- m³
- ft³

Additional information

Selection

For an explanation of the abbreviated units: → 267
Density unit

Navigation

Expert → Sensor → System units → Density unit (0555)

Description

Use this function to select the unit for the density.

Selection

SI units
- g/cm³
- g/m³
- kg/dm³
- kg/l
- kg/m³
- SD4°C
- SD15°C
- SD20°C
- SG4°C
- SG15°C
- SG20°C

US units
- lb/ft³
- lb/gal (us)
- lb/bbl (us;liq.)
- lb/bbl (us;beer)
- lb/bbl (us;oil)
- lb/bbl (us;tank)

Imperial units
- lb/gal (imp)
- lb/bbl (imp;beer)
- lb/bbl (imp;oil)

Factory setting

Country-specific:
- kg/l
- lb/ft³

Additional information

Result

The selected unit applies for:
Density parameter (→ 52)

Selection

- **SD** = specific density
 The specific density is the ratio of the medium density to the water density at a water temperature of +4 °C (+39 °F), +15 °C (+59 °F), +20 °C (+68 °F).
- **SG** = specific gravity
 The specific gravity is the ratio of the medium density to the water density at a water temperature of +4 °C (+39 °F), +15 °C (+59 °F), +20 °C (+68 °F).

For an explanation of the abbreviated units: (→ 267)

Ref. dens. unit

Navigation

Expert → Sensor → System units → Ref. dens. unit (0556)

Description

Use this function to select the unit for the reference density.

Selection

SI units
- kg/Nm³
- kg/Nl
- g/Scm³
- kg/Sm³

US units
- lb/Sft³
Factory setting
Country-dependent
- kg/Nl
- lb/ft³

Additional information

Result
The selected unit applies for:
- **Fix ref. density** parameter (→ 76)
- **Ref. density** parameter (→ 53)

Selection
For an explanation of the abbreviated units: → 267

Temperature unit

Navigation
Expert → Sensor → System units → Temperature unit (0557)

Description
Use this function to select the unit for the temperature.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>°F</td>
</tr>
<tr>
<td>K</td>
<td>°R</td>
</tr>
</tbody>
</table>

Factory setting
Country-specific:
- °C
- °F

Additional information

Result
The selected unit applies for:
- **Minimum value** parameter (→ 250)
- **Maximum value** parameter (→ 251)
- **Average value** parameter (→ 252)
- **Minimum value** parameter (→ 252)
- **Maximum value** parameter (→ 253)
- **Minimum value** parameter (→ 253)
- **Maximum value** parameter (→ 253)
- **Ref. temperature** parameter (→ 76)

Selection
For an explanation of the abbreviated units: → 267

Length unit

Navigation
Expert → Sensor → System units → Length unit (0551)

Description
Use this function to select the unit of length for the nominal diameter.
Description of device parameters

Proline Promass 200 FOUNDATION Fieldbus

Selection

SI units
- m
- mm
- µm

US units
- ft

Factory setting
Country-specific:
- mm
- in

Additional information

For an explanation of the abbreviated units: → 267

Pressure unit

Navigation

Expert → Sensor → System units → Pressure unit (0564)

Description
Use this function to select the unit for the pipe pressure.

Selection

SI units
- Pa a
- kPa a
- MPa a
- bar
- Pa g
- kPa g
- MPa g
- bar g

US units
- psi a
- psi g

Factory setting
Country-specific:
- bar a
- psi a

Additional information

For an explanation of the abbreviated units: → 267

Date/time format

Navigation

Expert → Sensor → System units → Date/time format (2812)

Description
Use this function to select the desired time format for calibration history.

Selection
- dd.mm.yy hh:mm
- dd.mm.yy am/pm
- mm/dd/yy hh:mm
- mm/dd/yy am/pm

Factory setting
dd.mm.yy hh:mm

Endress+Hauser
3.2.3 "Process param." submenu

Navigation

Flow damping

Navigation
Expert → Sensor → Process param. → Flow damping (1801)

Description
Use this function to enter a value for flow damping. Reduction of the variability of the flow measured value (in relation to interference). For this purpose, the depth of the flow filter is adjusted: when the filter setting increases, the reaction time of the device also increases.

User entry
0 to 999.9 s

Factory setting
0 s

Additional information

- **User entry**
 - Value = 0: no damping
 - Value > 0: damping is increased

Result

The damping affects the following variables of the device:
- Outputs → 87
- Low flow cut off → 67
- Totalizers → 224
Density damping

Navigation

Description

Use this function to enter a value for density damping. Use this parameter to reduce the sensitivity of the measuring signal to fluctuations in the density of the medium. For this purpose, the depth of the density filter is adjusted. The damping is suitable for non-homogeneous liquids, for example.

User entry

0 to 999.9 s

Factory setting

0 s

Additional information

Result

The damping has an effect on the following process variables:
- Density (→ 52)
- Ref.density (→ 53)
- Volume flow (→ 52)
- Correct.vol.flow (→ 52)

Flow override

Navigation

Description

Use this function to select whether to interrupt the evaluation of measured values. This is useful for the cleaning processes of a pipeline, for example.

Selection

- Off
- On

Factory setting

Off

Additional information

Result

This setting affects all the functions and outputs of the measuring device.

Description

Flow override is active

- The diagnostic message diagnostic message **C453 Flow override** is displayed.
- Output values
 - Output: value at zero flow
 - Temperature: continues to be output
 - Totalizers 1-3: stop being totalized

The **Flow override** option can also be activated in the **Status input** submenu: **Assign stat.inp.** parameter.
Proline Promass 200 FOUNDATION Fieldbus

Temp. damping

Navigation

Description

Use this function to enter a value for temperature damping. Use this parameter to reduce the sensitivity of the temperature measuring signal to interference peaks. For this purpose, the temperature filter is adjusted.

User entry

0 to 999.9 s

Factory setting

0 s

Additional information

Result

In addition to the temperature, the damping has an effect on the following temperature-dependent process variables:

- Ref. density (→ 53)
- Correct. vol. flow (→ 52)

"Low flow cut off" submenu

Navigation

- Expert → Sensor → Process param. → Low flow cut off

Assign variable

Navigation

- Expert → Sensor → Process param. → Low flow cut off → Assign variable (1837)

Description

Use this function to select the process variable for low flow cutoff detection.

Selection

- Off
- Mass flow
- Volume flow
- Correct. vol. flow

Factory setting

Mass flow
Description of device parameters

Proline Promass 200 FOUNDATION Fieldbus

On value

Navigation

Expert → Sensor → Process param. → Low flow cut off → On value (1805)

Prerequisite

A process variable is selected in the **Assign variable** parameter (→ 67).

Description

Use this function to enter a switch-on value for low flow cut off. Low flow cut off is activated if the value entered is not equal to 0 (68).

User entry

Positive floating-point number

Factory setting

Depends on country and nominal diameter → 264

Additional information

Dependency

The unit depends on the process variable selected in the **Assign variable** parameter (→ 67).

Off value

Navigation

Expert → Sensor → Process param. → Low flow cut off → Off value (1804)

Prerequisite

A process variable is selected in the **Assign variable** parameter (→ 67).

Description

Use this function to enter a switch-off value for low flow cut off. The off value is entered as a positive hysteresis from the on value (68).

User entry

0 to 100.0 %

Factory setting

50 %

Additional information

Example

![Diagram](A0012887)

- **Q** Flow
- **t** Time
- **H** Hysteresis
- **A** Low flow cut off active
- 1 Low flow cut off is activated
- 2 Low flow cut off is deactivated
- 3 On value entered
- 4 Off value entered
Pres. shock sup.

Navigation

Prerequisite
A process variable is selected in the **Assign variable** parameter (→ 67).

Description
Use this function to enter the time interval for signal suppression (= active pressure shock suppression).

User entry
0 to 100 s

Factory setting
0 s

Additional information
Description

Pressure shock suppression is enabled
- **Prerequisite:**
 - Flow rate < on-value of low flow cut off
 - Changing the flow direction
- **Output values**
 - Flow displayed: 0
 - Totalizer: the totalizers are pegged at the last correct value

Pressure shock suppression is disabled
- **Prerequisite:** the time interval set in this function has elapsed.
- If the flow also exceeds the switch-off value for low flow cut off, the device starts processing the current flow value again and displays it.

Example

When closing a valve, momentarily strong fluid movements may occur in the pipeline, which are registered by the measuring system. These totalized flow values lead to a false totalizer status, particularly during batching processes.
Description of device parameters

Proline Promass 200 FOUNDATION Fieldbus

Q Flow
 t Time
 A Drip
 B Pressure shock
 C Pressure shock suppression active as specified by the time entered
 D Pressure shock suppression inactive
 1 Valve closes
 2 Flow falls below the on-value of the low flow cut off: pressure shock suppression is activated
 3 The time entered has elapsed: pressure shock suppression is deactivated
 4 The actual flow value is now displayed and output
 5 On-value for low flow cut off
 6 Off-value for low flow cut off

"Partial pipe det" submenu

| Partial pipe det |
|-----------------|----------------|
| Assign variable (1833) | ➡ 71 |
| Low value (1834) | ➡ 71 |
| High value (1835) | ➡ 71 |
| Response time (1836) | ➡ 72 |
| Max. damping (2492) | ➡ 72 |
Assign variable

Navigation

Description
Use this function to select a process variable to detect empty or partially filled measuring tubes. For gas measurement: Deactivate monitoring due to low gas density.

Selection
- Off
- Density
- Ref.density

Factory setting
Off

Low value

Navigation
Expert → Sensor → Process param. → Partial pipe det → Low value (1834)

Prerequisite
One of the following options is selected in the Assign variable parameter (→ 71):
- Density
- Ref.density

Description
Use this function to enter a lower limit value to enable detection of empty or partially filled measuring tubes. If the measured density falls below this value, monitoring is enabled.

User entry
Positive floating-point number

Factory setting
200

Additional information
User entry
The lower limit value must be less than the upper limit value that is specified in the High value parameter (→ 71).

Note
The unit depends on the process variable selected in the Assign variable parameter (→ 71).

High value

Navigation
Expert → Sensor → Process param. → Partial pipe det → High value (1835)

Prerequisite
One of the following options is selected in the Assign variable parameter (→ 71):
- Density
- Ref.density

Description
Use this function to enter an upper limit value to enable detection of empty or partially filled measuring tubes. If the measured density exceeds this value, detection is enabled.

User entry
Signed floating-point number

Factory setting
6 000
Additional information

User entry
The upper limit value must be greater than the lower limit value, that is specified in the Low value parameter (→ 71).

* The unit depends on the process variable selected in the Assign variable parameter (→ 71).

Response time

Navigation
Expert → Sensor → Process param. → Partial pipe det → Response time (1836)

Prerequisite
One of the following options is selected in the Assign variable parameter (→ 71):
• Density
• Ref.density

Description
Use this parameter to enter the time period until the diagnostic message ΔS862 Partly filled appears in the case of a partially filled or empty measuring tube.

User entry
0 to 100 s

Factory setting
1 s

Max. damping

Navigation

Prerequisite
One of the following options is selected in the Assign variable parameter (→ 71):
• Density
• Ref.density

Description
Use this function to enter a damping value to enable detection of empty or partially filled measuring tubes.

User entry
Positive floating-point number

Factory setting
0

Additional information
Description
In the case of non-homogeneous media or air pockets, the damping of the measuring tubes increases. If the set value is exceeded, the diagnostic message ΔS862 Partly filled is displayed.

User entry
The parameter is enabled only if the input value is greater than 0.
3.2.4 "Measurement mode" submenu

Navigation: Expert → Sensor → Measurement mode → Measurement mode

Select medium

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select medium (2513)</td>
<td>Use this function to select the type of medium.</td>
</tr>
<tr>
<td>Factory setting</td>
<td>Liquid</td>
</tr>
</tbody>
</table>

Select gas type

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select gas type (2488)</td>
<td>Use this function to select the type of gas for the measuring application.</td>
</tr>
<tr>
<td>Prerequisite</td>
<td>In the Select medium parameter (→ 73) the Gas option is selected.</td>
</tr>
<tr>
<td>Selection</td>
<td>Air, Ammonia NH3, Neon Ne, Argon Ar, Sulf. hex.fl.SF6, Oxygen O2, Ozone O3, Nitrog. ox. NOx, Nitrogen N2, Nitrous ox. N2O, Methane CH4, Hydrogen H2, Helium He, Hydrog.chlor.HCl, Hydrog.sulf. H2S</td>
</tr>
<tr>
<td>Factory setting</td>
<td>Liquid</td>
</tr>
</tbody>
</table>
- Ethylene C2H4
- Carbon diox. CO2
- Carbon monox. CO
- Chlorine Cl2
- Butane C4H10
- Propane C3H8
- Propylene C3H6
- Ethane C2H6
- Others
- Krypton Kr
- Xenon Xe
- Vinyl Chloride
- Sulfur diox. SO2

Factory setting Air

Sound velocity

Navigation

Expert → Sensor → Measurement mode → Sound velocity (2489)

Prerequisite

In the Select gas type parameter (→ 73) the Others option is selected.

Description

Use this function to enter the sound velocity of the desired gas at 0 °C (+32 °F).

User entry

1 to 99999.9999 m/s

Factory setting

331.5 m/s

Additional information

For conversion: 1 m/s = 3.281 ft/s

Temp. coeff. SV

Navigation

Expert → Sensor → Measurement mode → Temp. coeff. SV (2490)

Prerequisite

In the Select gas type parameter (→ 73) the Others option is selected.

Description

Use this function to enter the temperature coefficient of the sound velocity of the desired gas.

User entry

Positive floating-point number

Factory setting

0.61 (m/s)/K

Additional information

For conversion: T [K] = 0.555 × T [°F]
3.2.5 "Calculated value" submenu

Navigation ➡ Expert → Sensor → Calculated value

- Calculated value
 - Corr. vol.flow. ➡ 75
 - Reference values ➡ 76

"Corr. vol.flow." submenu

 - Corr. vol.flow. (1812) ➡ 75

Description
Use this function to select the reference density for calculating the corrected volume flow.

Selection
- Fix ref.density
- Calc ref density

Factory setting
Calc ref density

Additional information
Selection
The Ref. dens API 53 option is suitable only for applications involving LPG\(^2\), where the flow rate is measured on the basis of the corrected volume flow.

Selecting this option means that the reference density is used, taking into account the values in table 53 E of API MPMS section 11.2. Temperature measurement (measured internally or read into the device from an external source) and density measurement take place during operation while the medium is flowing. The mass flow is divided by the reference density to give the corrected volume flow and is issued as an output signal.

2) liquefied petroleum gas

Endress+Hauser
"Reference values" submenu

Navigation
Expert → Sensor → Calculated value → Reference values

Fix ref. density (1814)
→ 76

Ref. temperature (1816)
→ 76

Linear exp coeff (1817)
→ 77

Square exp coeff (1818)
→ 77

Fix ref. density

Navigation
Expert → Sensor → Calculated value → Reference values → Fix ref. density (1814)

Prerequisite
The **Fix ref. density** option is selected in the **Corr. vol. flow** parameter (→ 75) parameter.

Description
Use this function to enter a fixed value for the reference density.

User entry
Positive floating-point number

Factory setting
1 kg/Nl

Additional information
Dependency

The unit is taken from the **Ref. dens. unit** parameter (→ 62)

Ref. temperature

Navigation
Expert → Sensor → Calculated value → Reference values → Ref. temperature (1816)

Prerequisite
The **Calc ref density** option is selected in the **Corr. vol. flow** parameter (→ 75) parameter.

Description
Use this function to enter a reference temperature for calculating the reference density.

User entry
−273.15 to 99999 °C

Factory setting
Country-specific:
• +20 °C
• +68 °F
Additional information

Dependency

The unit is taken from the Temperature unit parameter (→ 63)

Reference density calculation

\[
\rho_n = \rho \cdot (1 + \alpha \cdot \Delta t + \beta \cdot \Delta t^2)
\]

- \(\rho_n\): reference density
- \(\rho\): fluid density currently measured
- \(t\): fluid temperature currently measured
- \(t_N\): reference temperature at which the reference density is calculated (e.g. 20 °C)
- \(\Delta t\): \(t - t_N\)
- \(\alpha\): linear expansion coefficient of the fluid, unit = [1/K]; K = Kelvin
- \(\beta\): square expansion coefficient of the fluid, unit = [1/K^2]

Linear exp coeff

Navigation

Expert → Sensor → Calculated value → Reference values → Linear exp coeff (1817)

Prerequisite

The Calc ref density option is selected in the Corr. vol.flow. parameter (→ 75) parameter.

Description

Use this function to enter a linear, fluid-specific expansion coefficient for calculating the reference density.

User entry

Signed floating-point number

Factory setting

0.0

Square exp coeff

Navigation

Expert → Sensor → Calculated value → Reference values → Square exp coeff (1818)

Prerequisite

The Calc ref density option is selected in the Corr. vol.flow. parameter (→ 75) parameter.

Description

For fluid with a non-linear expansion pattern: use this function to enter a quadratic, fluid-specific expansion coefficient for calculating the reference density.

User entry

Signed floating-point number

Factory setting

0.0
3.2.6 "Sensor adjustm." submenu

Navigation

Sensor adjustm.

Install. direct. (1809) → 78

Zero point adj. → 78

Variable adjust → 80

Install. direct.

Description

Use this function to change the sign of the medium flow direction.

Selection

- In arrow direct.
- Against arrow

Factory setting

In arrow direct.

Additional information

Description

Before changing the sign: ascertain the actual direction of fluid flow with reference to the direction indicated by the arrow on the sensor nameplate.

"Zero point adj." submenu

- It is generally not necessary to perform zero point adjustment.
- However, this function may be needed in some applications with low flow and strict accuracy requirements.
- A zero point adjustment cannot increase repeatability.
- The following conditions should be met to perform a zero point adjustment successfully without the adjustment finishing in an error:
 - The real flow must be 0.
 - The pressure must be at least 15 psi g.
- The adjustment takes a maximum of 60 s. The more stable the conditions, the faster the adjustment is completed.
- This function can also be used to check the health of the measuring device. A healthy measuring device has a maximum zero point deviation of ±100 compared to the factory setting of the measuring device (calibration report).
Zero point adj.

Navigation

Description
Use this parameter to start automatic zero point adjustment.

Selection
- Cancel
- Busy
- Zero adjust fail
- Start

Factory setting
Cancel

Additional information
Description
During calibration, the **Busy** option and the **Adj. in progress** parameter (→ 79) appear beneath the parameter. If the sensor is defective or flow is present, the **Zero adjust fail** option appears on the display. At the same time, this event is entered in the event logbook (event list) → 237.

The new zero point value determined by the measuring device is displayed in the **Zero point** parameter (→ 85).

Information on the procedure for performing zero point adjustment is provided in the Operating Instructions for the device.

Description
- Cancel
 If zero point adjustment has failed, select this option to cancel zero point adjustment.
- Busy
 Is displayed during zero point adjustment.
- Zero adjust fail
 Is displayed if zero point adjustment has failed.
- Start
 Select this option to start zero point adjustment.

Adj. in progress

Navigation

Prerequisite
The **Start** option is selected in the **Zero point adj.** parameter (→ 79).
Description
Displays the current status of the zero point adjustment via a progress bar.

User interface
0 to 100%

"**Variable adjust**" submenu

Navigation

Expert → Sensor → Sensor adjustm. → Variable adjust

<table>
<thead>
<tr>
<th>Variable adjust</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass flow offset (1820)</td>
<td>→ 80</td>
</tr>
<tr>
<td>Mass flow factor (1819)</td>
<td>→ 81</td>
</tr>
<tr>
<td>Vol. flow offset (1815)</td>
<td>→ 81</td>
</tr>
<tr>
<td>Vol. flow factor (1821)</td>
<td>→ 81</td>
</tr>
<tr>
<td>Corr. vol offset (1824)</td>
<td>→ 82</td>
</tr>
<tr>
<td>Corr. vol factor (1823)</td>
<td>→ 82</td>
</tr>
<tr>
<td>Density offset (1826)</td>
<td>→ 82</td>
</tr>
<tr>
<td>Density factor (1825)</td>
<td>→ 83</td>
</tr>
<tr>
<td>Ref.dens. offset (1828)</td>
<td>→ 83</td>
</tr>
<tr>
<td>Ref.dens. factor (1827)</td>
<td>→ 83</td>
</tr>
<tr>
<td>Temp. offset (1830)</td>
<td>→ 83</td>
</tr>
<tr>
<td>Temp. factor (1829)</td>
<td>→ 84</td>
</tr>
</tbody>
</table>

Mass flow offset

Navigation

Description
Use this function to enter the zero point shift for the mass flow trim. The mass flow unit on which the shift is based is 1 kg/s.

User entry
Signed floating-point number

Factory setting
0 kg/s
Additional information

Description

\[\text{Corrected value} = (\text{factor} \times \text{value}) + \text{offset} \]

Mass flow factor

Navigation

Description

Use this function to enter a quantity factor (without time) for the mass flow. This factor refers in each case to the mass flow of 1 kg/s.

User entry

Positive floating-point number

Factory setting

1

Vol. flow offset

Navigation

Description

Use this function to enter the zero point shift for the volume flow trim. The volume flow unit on which the shift is based is 1 m³/s.

User entry

Signed floating-point number

Factory setting

0 m³/s

Additional information

Description

\[\text{Corrected value} = (\text{factor} \times \text{value}) + \text{offset} \]

Vol. flow factor

Navigation

Description

Use this function to enter a quantity factor (without time) for the volume flow. This factor refers in each case to the volume of 1 m³/s.

User entry

Positive floating-point number

Factory setting

1
Corr. vol offset

Navigation

Description
Use this function to enter the zero point shift for the corrected volume flow trim. The corrected volume flow unit on which the shift is based is 1 Nm³/s.

User entry
Signed floating-point number

Factory setting
0 Nm³/s

Additional information

\[\text{Corrected value} = (\text{factor} \times \text{value}) + \text{offset} \]

Corr. vol factor

Navigation

Description
Use this function to enter a quantity factor (without time) for the corrected volume flow. This factor refers in each case to the standard volume of 1 Nm³/s.

User entry
Positive floating-point number

Factory setting
1

Density offset

Navigation
Expert → Sensor → Sensor adjustm. → Variable adjust → Density offset (1826)

Description
Use this parameter to enter the zero point shift for the density trim. The density unit on which the shift is based is 1 kg/m³.

User entry
Signed floating-point number

Factory setting
0 kg/m³

Additional information

\[\text{Corrected value} = (\text{factor} \times \text{value}) + \text{offset} \]
Density factor

Navigation
Expert → Sensor → Sensor adjustm. → Variable adjust → Density factor (1825)

Description
Use this function to enter a quantity factor for the density. This factor refers in each case to the density of 1 kg/m³.

User entry
Positive floating-point number

Factory setting
1

Ref.dens. offset

Navigation

Description
Use this parameter to enter the zero point shift for the reference density trim. The standard density unit on which the shift is based is 1 kg/Nm³.

User entry
Signed floating-point number

Factory setting
0 kg/Nm³

Additional information
Description

\[
\text{Corrected value} = (\text{factor} \times \text{value}) + \text{offset}
\]

Ref.dens. factor

Navigation
Expert → Sensor → Sensor adjustm. → Variable adjust → Ref.dens. factor (1827)

Description
Use this function to enter a quantity factor for the reference density. This factor refers in each case to the reference density of 1 kg/Nm³.

User entry
Positive floating-point number

Factory setting
1

Temp. offset

Navigation
Expert → Sensor → Sensor adjustm. → Variable adjust → Temp. offset (1830)

Description
Use this function to enter the zero point shift for the temperature trim. The temperature on which the shift is based is entered in Kelvin.

User entry
Signed floating-point number
Factory setting
0 K

Additional information

Description

Corrected value = (factor × value) + offset

Temp. factor

Navigation

Expert → Sensor → Sensor adjustm. → Variable adjust → Temp. factor (1829)

Description

Use this parameter to enter a factor by which the temperature in Kelvin is multiplied.

User entry

Positive floating-point number

Factory setting

1

3.2.7 "Calibration" submenu

Navigation

Expert → Sensor → Calibration

Calibration

Cal. factor (2431) → 85
Zero point (2437) → 85
Nominal diameter (2807) → 85
C 0 (2469) → 86
C 1 (2574) → 86
C 2 (2575) → 86
C 3 (2576) → 86
C 4 (2577) → 87
C 5 (2578) → 87
Cal. factor

Navigation
Expert → Sensor → Calibration → Cal. factor (2431)

Description
Displays the current calibration factor for the sensor.

User interface
Signed floating-point number

Factory setting
Depends on nominal diameter and calibration

Additional information
Description
- The value is also specified on the sensor nameplate.

Zero point

Navigation
Expert → Sensor → Calibration → Zero point (2437)

Description
Use this function to enter a zero point correction value for the sensor.

User entry
Signed floating-point number

Factory setting
0

Additional information
Description
- The value is also specified on the sensor nameplate.

Nominal diameter

Navigation
Expert → Sensor → Calibration → Nominal diameter (2807)

Description
Displays the nominal diameter of the sensor.

User interface
DNxx / x'

Factory setting
Depends on the size of the sensor

Additional information
Description
- The value is also specified on the sensor nameplate.
Description of device parameters

<table>
<thead>
<tr>
<th>Device Parameter</th>
<th>Navigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 0</td>
<td>Expert → Sensor → Calibration → C 0 (2469)</td>
</tr>
<tr>
<td>C 1</td>
<td>Expert → Sensor → Calibration → C 1 (2574)</td>
</tr>
<tr>
<td>C 2</td>
<td>Expert → Sensor → Calibration → C 2 (2575)</td>
</tr>
<tr>
<td>C 3</td>
<td>Expert → Sensor → Calibration → C 3 (2576)</td>
</tr>
</tbody>
</table>

Description

- **C 0**: Displays the current density coefficient C_0 of the sensor.
- **C 1**: Displays the current density coefficient C_1 of the sensor.
- **C 2**: Displays the current density coefficient C_2 of the sensor.
- **C 3**: Displays the current density coefficient C_3 of the sensor.

Additional Information

- A density trim can alter the calibration value of the density coefficient.
C 4

Navigation
Expert → Sensor → Calibration → C 4 (2577)

Description
Displays the current density coefficient C4 of the sensor.

Additional information
- A density trim can alter the calibration value of the density coefficient.

C 5

Navigation
Expert → Sensor → Calibration → C 5 (2578)

Description
Displays the current density coefficient C5 of the sensor.

Additional information
- A density trim can alter the calibration value of the density coefficient.

3.3 "Output" submenu

Navigation
Expert → Output

3.3.1 "Pulse/frequency/switch output" submenu

Navigation
Expert → Output → PFS output

- Operating mode (0469) → 89
- Assign pulse (0460) → 90
- Value per pulse (0455) → 91
- Pulse width (0452) → 91
- Measuring mode (0457) → 92
Description of device parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure mode (0480)</td>
<td>93</td>
</tr>
<tr>
<td>Pulse output (0456)</td>
<td>93</td>
</tr>
<tr>
<td>Assign freq. (0478)</td>
<td>94</td>
</tr>
<tr>
<td>Min. freq. value (0453)</td>
<td>95</td>
</tr>
<tr>
<td>Max. freq. value (0454)</td>
<td>95</td>
</tr>
<tr>
<td>Val. at min.freq (0476)</td>
<td>96</td>
</tr>
<tr>
<td>Val. at max.freq (0475)</td>
<td>96</td>
</tr>
<tr>
<td>Measuring mode (0479)</td>
<td>96</td>
</tr>
<tr>
<td>Damping out. (0477)</td>
<td>99</td>
</tr>
<tr>
<td>Response time (0491)</td>
<td>99</td>
</tr>
<tr>
<td>Failure mode (0451)</td>
<td>100</td>
</tr>
<tr>
<td>Failure freq. (0474)</td>
<td>101</td>
</tr>
<tr>
<td>Output freq. (0471)</td>
<td>101</td>
</tr>
<tr>
<td>Switch out funct (0481)</td>
<td>101</td>
</tr>
<tr>
<td>Assign diag. beh (0482)</td>
<td>102</td>
</tr>
<tr>
<td>Assign limit (0483)</td>
<td>103</td>
</tr>
<tr>
<td>Switch-on value (0466)</td>
<td>104</td>
</tr>
<tr>
<td>Switch-off value (0464)</td>
<td>105</td>
</tr>
<tr>
<td>Assign dir.check (0484)</td>
<td>105</td>
</tr>
<tr>
<td>Assign status (0485)</td>
<td>106</td>
</tr>
<tr>
<td>Switch-on delay (0467)</td>
<td>106</td>
</tr>
<tr>
<td>Switch-off delay (0465)</td>
<td>106</td>
</tr>
<tr>
<td>Failure mode (0486)</td>
<td>107</td>
</tr>
<tr>
<td>Switch status (0461)</td>
<td>107</td>
</tr>
<tr>
<td>Invert outp.sig. (0470)</td>
<td>108</td>
</tr>
</tbody>
</table>
Operating mode

Navigation
Expert → Output → PFS output → Operating mode (0469)

Description
Use this function to select the operating mode of the output as a pulse, frequency or switch output.

Selection
- Pulse
- Frequency
- Switch

Factory setting
Pulse

Additional information
"Pulse" option

Quantity-dependent pulse with configurable pulse width
- Whenever a specific mass, volume or corrected volume is reached (pulse value), a pulse is output, the duration of which was set previously (pulse width).
- The pulses are never shorter than the set duration.

Example
- Flow rate approx. 100 g/s
- Pulse value 0.1 g
- Pulse width 0.05 ms
- Pulse rate 1000 Impuls/s

![Diagram](image)

2 Quantity-proportional pulse (pulse value) with pulse width to be configured

B Pulse width entered
P Pauses between the individual pulses

"Frequency" option

Flow-proportional frequency output with 1:1 on/off ratio
An output frequency is output that is proportional to the value of a process variable, such as mass flow, volume flow, corrected volume flow, density, reference density, temperature, carrier tube temperature, electronic temperature, vibration frequency, oscillation amplitude, oscillation damping or signal asymmetry.

Example
- Flow rate approx. 100 g/s
- Max. frequency 10 kHz
- Flow rate at max. frequency 1000 g/s
- Output frequency approx. 1000 Hz
Description of device parameters

Proline Promass 200 FOUNDATION Fieldbus

3. Flow-proportional frequency output

“Switch” option
Contact for displaying a condition (e.g. alarm or warning if a limit value is reached)
Example
Alarm response without alarm

4. No alarm, high level
Example
Alarm response in case of alarm

5. Alarm, low level

Assign pulse

Navigation
Expert → Output → PFS output → Assign pulse (0460)

Prerequisite
The Pulse option is selected in the Operating mode parameter (→ 89) parameter.

Description
Use this function to select the process variable for the pulse output.

Selection
- Off
- Mass flow
- Volume flow
- Correct.vol.flow

Factory setting
Off
Value per pulse

Navigation
Expert → Output → PFS output → Value per pulse (0455)

Prerequisite
The Pulse option is selected in the Operating mode parameter (→ 89) and a process variable is selected in the Assign pulse parameter (→ 90).

Description
Use this function to enter the value for the measured value that a pulse is equivalent to.

User entry
Signed floating-point number

Factory setting
Depends on country and nominal diameter → 263

Additional information
User entry
Weighting of the pulse output with a quantity.
The lower the pulse value, the
- better the resolution.
- the higher the frequency of the pulse response.

Pulse width

Navigation
Expert → Output → PFS output → Pulse width (0452)

Prerequisite
The Pulse option is selected in the Operating mode parameter (→ 89) and a process variable is selected in the Assign pulse parameter (→ 90).

Description
Use this function to enter the duration of the output pulse.

User entry
5 to 2000 ms

Factory setting
100 ms

Additional information
Define how long a pulse is (duration).
- The maximum pulse rate is defined by $f_{\text{max}} = 1 / (2 \times \text{pulse width})$.
- The interval between two pulses lasts at least as long as the set pulse width.
- The maximum flow is defined by $Q_{\text{max}} = f_{\text{max}} \times \text{pulse value}$.
- If the flow exceeds these limit values, the measuring device displays the diagnostic message $\Delta S443$ Pulse output 1.
Description of device parameters

Proline Promass 200 FOUNDATION Fieldbus

Navigation

Expert → Output → PFS output → Measuring mode (0457)

Prerequisite

In the Operating mode parameter (→ 89), the Pulse option is selected, and one of the following options is selected in the Assign pulse parameter (→ 90):

- Mass flow
- Volume flow
- Correct.vol.flow

Description

Use this function to select the measuring mode for the pulse output.

Selection

- Forward flow
- Forward/Reverse
- Reverse flow
- Rev. flow comp.

Factory setting

Forward flow

Additional information

- **Selection**

 - Forward flow

 Positive flow is output, negative flow is not output.

 - Forward/Reverse

 Positive and negative flow are output (absolute value), but a distinction is not made between positive and negative flow.

 - Reverse flow

 Negative flow is output, positive flow is not output.

 - Rev. flow comp.

 The flow components outside the span are buffered, balanced and output after a maximum delay of 60 s.

 For a detailed description of the options available, see the Measuring mode parameter (→ 96)

Example

- Pulse value: 0.1 g
- Pulse width: 0.1 ms
- f_{max}: $1 / (2 \times 0.1 \text{ ms}) = 5 \text{ kHz}$
- Q_{max}: $5 \text{ kHz} \times 0.1 \text{ g} = 0.5 \text{ kg/s}$

Diagram

<table>
<thead>
<tr>
<th>U[V]</th>
<th>B < P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>U[V]</th>
<th>B = P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B Pulse width entered

P Pauses between the individual pulses

Endress+Hauser
Failure mode

Navigation
Expert → Output → PFS output → Failure mode (0480)

Prerequisite
The Pulse option is selected in the Operating mode parameter (→ 89) and a process variable is selected in the Assign pulse parameter (→ 90).

Description
Use this function to select the failure mode of the pulse output in the event of a device alarm.

Selection
- Actual value
- No pulses

Factory setting
No pulses

Additional information

Description
The dictates of safety render it advisable to ensure that the pulse output shows a predefined behavior in the event of a device alarm.

Selection
- Actual value
 In the event of a device alarm, the pulse output continues on the basis of the current flow measurement. The fault is ignored.
- No pulses
 In the event of a device alarm, the pulse output is "switched off".

NOTICE! A device alarm is a measuring device error that must be taken seriously. It can affect the measurement quality such that the quality can no longer be guaranteed. The Actual value option is only recommended if it can be guaranteed that all possible alarm conditions will not affect the measurement quality.

Pulse output

Navigation
Expert → Output → PFS output → Pulse output (0456)

Prerequisite
The Pulse option is selected in the Operating mode parameter (→ 89) parameter.

Description
Displays the pulse frequency currently output.

User interface
Positive floating-point number

Additional information

Description
The pulse output is an open collector output.
- This is configured at the factory in such a way that the transistor is conductive for the duration of the pulse (NO contact) and is safety-oriented.
- The Value per pulse parameter (→ 91) and Pulse width parameter (→ 91) can be used to define the value (i.e. the measured value amount that corresponds to a pulse) and the duration of the pulse.
Description of device parameters

The output behavior can be reversed via the Invert outp.sig. parameter (→ 108) i.e. the transistor does not conduct for the duration of the pulse.

In addition, the behavior of the output in the event of a device alarm (Failure mode parameter (→ 93)) can be configured.

Assign freq.

Navigation

Expert → Output → PFS output → Assign freq. (0478)

Prerequisite

The Frequency option is selected in the Operating mode parameter (→ 89) parameter.

Description

Use this function to select the process variable for the frequency output.

Selection

- Off
- Mass flow
- Volume flow
- Correct.vol.flow
- Density
- Ref.density
- Temperature
- Carr. pipe temp. *
- Electronic temp.
- Oscil. frequency
- Oscil. amplitude
- Oscil. damping
- Signal asymmetry

Factory setting

Off

* Visibility depends on order options or device settings
Additional information

Selection

- Oscil. frequency
 Displays the current oscillation frequency of the measuring tubes. This frequency depends on the density of the medium.

- Oscil. amplitude
 Displays the relative oscillation amplitude of the measuring tubes in relation to the preset value. This value is 100% under optimum conditions. The value can decrease in the event of low 4 to 20 mA loop currents and/or difficult media (two-phase, high viscosity or high gas velocity).

- Oscil. damping
 Displays the current oscillation damping. Oscillation damping is an indicator of the sensor's current need for excitation power.

- Signal asymmetry
 Displays the relative difference between the oscillation amplitude at the inlet and outlet of the sensor. The measured value is the result of production tolerances of the sensor coils and should remain constant over the life time of a sensor.

Min. freq. value

Navigation

Expert → Output → PFS output → Min. freq. value (0453)

Prerequisite

The Frequency option is selected in the Operating mode parameter (→ 89) and a process variable is selected in the Assign freq. parameter (→ 94).

Description

Use this function to enter the start value frequency.

User entry

0 to 1 000 Hz

Factory setting

0 Hz

Max. freq. value

Navigation

Expert → Output → PFS output → Max. freq. value (0454)

Prerequisite

The Frequency option is selected in the Operating mode parameter (→ 89) and a process variable is selected in the Assign freq. parameter (→ 94).

Description

Use this function to enter the end value frequency.

User entry

0 to 1 000 Hz

Factory setting

1 000 Hz
Val. at min.freq

Navigation

Expert → Output → PFS output → Val. at min.freq (0476)

Prerequisite

The **Frequency** option is selected in the **Operating mode** parameter (→ 89) and a process variable is selected in the **Assign freq.** parameter (→ 94).

Description

Use this function to enter the measured value for the start value frequency.

User entry

Signed floating-point number

Factory setting

Depends on country and nominal diameter

Additional information

Dependency

The entry depends on the process variable selected in the **Assign freq.** parameter (→ 94).

Val. at max.freq

Navigation

Expert → Output → PFS output → Val. at max.freq (0475)

Prerequisite

The **Frequency** option is selected in the **Operating mode** parameter (→ 89) and a process variable is selected in the **Assign freq.** parameter (→ 94).

Description

Use this function to enter the measured value for the end value frequency.

User entry

Signed floating-point number

Factory setting

Depends on country and nominal diameter

Additional information

Description

Use this function to enter the maximum measured value at the maximum frequency. The selected process variable is output as a proportional frequency.

Dependency

The entry depends on the process variable selected in the **Assign freq.** parameter (→ 94).

Measuring mode

Navigation

Expert → Output → PFS output → Measuring mode (0479)

Prerequisite

In the **Operating mode** parameter (→ 89), the **Frequency** option is selected, and one of the following options is selected in the **Assign freq.** parameter (→ 94):

- Mass flow
- Volume flow
- Correct.vol.flow
- Density
Description of device parameters

- Ref. density
- Temperature
- Carr. pipe temp.
- Electronic temp.
- Oscil. frequency
- Oscil. amplitude
- Oscil. damping
- Signal asymmetry

Detailed description of the options Oscil. frequency, Oscil. amplitude, Oscil. damping and Signal asymmetry: Assign freq. parameter (→ 94)

Description
Use this function to select the measuring mode for the frequency output.

Selection
- Forward flow
- Forward/Reverse
- Rev. flow comp.

Factory setting
Forward flow

Additional information
"Forward flow" option

The frequency output signal is proportional to the measured variable assigned. The measuring range is defined by the values that are assigned to the Val. at min.freq (A) and the Val. at max.freq (B).

The flow components outside the scaled measuring range are taken into account for signal output as follows:

One of the values is defined as equal to zero flow e.g.:
- Val. at min.freq = 0 kg/h
- Val. at max.freq = 10 kg/h
 - If the effective flow exceeds or falls below this measured value, no diagnostic message is output and the frequency output retains its value (0 Hz in the example).
 - If the effective flow exceeds or falls below the other measured value, the diagnostic message S442 Freq. output is displayed and the frequency output behaves as configured in the Failure mode parameter (→ 100).

Both values are defined such that they are not equal to zero flow e.g.:
- Val. at min.freq = -5 kg/h
- Val. at max.freq = 10 kg/h

If the effective flow exceeds or falls below this measuring range, the diagnostic message S442 Freq. output 1 to n is displayed and the frequency output behaves as configured in the Failure mode parameter (→ 100).

* Visibility depends on order options or device settings
"Forward/Reverse" option

The frequency output signal is independent of the direction of flow (absolute amount of the measured variable). The Val. at min.freq (A) and Val. at max.freq (B) must have the same sign (+ or -). The Val. at max.freq (C) (e.g. reverse flow) corresponds to the mirrored Val. at min.freq (e.g. forward flow).

• The flow direction can be output via the configurable relay or status outputs.
• The Forward/Reverse option can only be selected if the values in the Val. at min.freq parameter (→ 96) and Val. at max.freq parameter (→ 96) have the same sign or one of the values is zero.
• The Forward/Reverse option cannot be selected if the values have different signs.

"Rev. flow comp." option

If flow is characterized by severe fluctuations (e.g. when using reciprocating pumps), flow components outside the measuring range are buffered, balanced and output after a maximum delay of 60 s.

If buffering cannot be processed within approx. 60 s, the diagnostic message S442 Freq. output 1 to n is displayed.

If buffering cannot be processed within approx. 60 s, the diagnostic message S442 Freq. output is displayed.

Under certain plant conditions, flow values can aggregate in the buffer, for example in the case of prolonged and unwanted fluid reverse flow. However, this buffer is reset in all relevant programming adjustments which affect the frequency output.
Damping out.

Navigation

Expert → Output → PFS output → Damping out. (0477)

Prerequisite

In the Operating mode parameter (→ 89), the Frequency option is selected, and one of the following options is selected in the Assign freq. parameter (→ 94):
- Mass flow
- Volume flow
- Correct.vol.flow
- Density
- Ref.density
- Temperature
- Carr. pipe temp.*
- Electronic temp.
- Oscil. frequency
- Oscil. amplitude
- Oscil. damping
- Signal asymmetry

Detailed description of the options Oscil. frequency, Oscil. amplitude, Oscil. damping and Signal asymmetry: Assign freq. parameter (→ 94)

Description

Use this function to enter a time constant for the reaction time of the output signal to fluctuations in the measured value.

User entry

0 to 999.9 s

Factory setting

0.0 s

Additional information

User entry

Use this function to enter a time constant (PT1 element 3) for frequency output damping:
- If a low time constant is entered, the current output reacts particularly quickly to fluctuating measured variables.
- On the other hand, the current output reacts more slowly if a high time constant is entered.

Damping is switched off if 0 is entered (factory setting).

The frequency output is subject to separate damping that is independent of all preceding time constants.

Response time

Navigation

Expert → Output → PFS output → Response time (0491)

Prerequisite

In the Operating mode parameter (→ 89), the Frequency option is selected, and one of the following options is selected in the Assign freq. parameter (→ 94):
- Mass flow
- Volume flow
- Correct.vol.flow

* Visibility depends on order options or device settings
3) Proportional transmission behavior with first order delay
- Density
- Ref. density
- Temperature
- Carr. pipe temp. *
- Electronic temp.
- Oscil. frequency
- Oscil. amplitude
- Oscil. damping
- Signal asymmetry

Detailed description of the options Oscil. frequency, Oscil. amplitude, Oscil. damping and Signal asymmetry: Assign freq. parameter (→ 94)

Description
Displays the response time. This specifies how quickly the pulse/frequency/switch output reaches the measured value change of 63% of 100% of the measured value change.

User interface
Positive floating-point number

Additional information
Description
The response time is made up of the time specified for the following dampings:
- Damping of pulse/frequency/switch output
- Depending on the measured variable assigned to the output.
 - Flow damping
 - Density damping
 - Temperature damping

Failure mode

Navigation
Expert → Output → PFS output → Failure mode (0451)

Prerequisite
The Frequency option is selected in the Operating mode parameter (→ 89) and a process variable is selected in the Assign freq. parameter (→ 94).

Description
Use this function to select the failure mode of the frequency output in the event of a device alarm.

Selection
- Actual value
- Defined value
- 0 Hz

Factory setting
0 Hz

* Visibility depends on order options or device settings
Additional information

Selection

- **Actual value**
 In the event of a device alarm, the frequency output continues on the basis of the current flow measurement. The device alarm is ignored.

- **Defined value**
 In the event of a device alarm, the frequency output continues on the basis of a predefined value. The Failure freq. (→ 101) replaces the current measured value, making it possible to bypass the device alarm. The actual measurement is switched off for the duration of the device alarm.

- **0 Hz**
 In the event of a device alarm, the frequency output is "switched off".

NOTICE! A device alarm is a measuring device error that must be taken seriously. It can affect the measurement quality such that the quality can no longer be guaranteed. The **Actual value** option is only recommended if it can be guaranteed that all possible alarm conditions will not affect the measurement quality.

Failure freq.

Navigation

Expert → Output → PFS output → Failure freq. (0474)

Prerequisite

The **Frequency** option is selected in the Operating mode parameter (→ 89) and a process variable is selected in the Assign freq. parameter (→ 94).

Description

Use this function to enter the value for the frequency output in the event of a device alarm in order to bypass the alarm.

User entry

0.0 to 1250.0 Hz

Factory setting

0.0 Hz

Output freq.

Navigation

Expert → Output → PFS output → Output freq. (0471)

Prerequisite

In the Operating mode parameter (→ 89), the **Frequency** option is selected.

Description

Displays the actual value of the output frequency which is currently measured.

User interface

0 to 1250 Hz

Switch out funct

Navigation

Expert → Output → PFS output → Switch out funct (0481)

Prerequisite

The **Switch** option is selected in the Operating mode parameter (→ 89).
Description of device parameters

Proline Promass 200 FOUNDATION Fieldbus

Description
Use this function to select a function for the switch output.

Selection
- Off
- On
- Diag. behavior
- Limit
- Fl. direct.check
- Status

Factory setting
Off

Additional information

Selection
- Off
 The switch output is permanently switched off (open, non-conductive).
- On
 The switch output is permanently switched on (closed, conductive).
- Diag. behavior
 Indicates if the diagnostic event is present or not. Is used to output diagnostic information and to react to it appropriately at the system level.
- Limit
 Indicates if a specified limit value has been reached for the process variable. Is used to output diagnostic information relating to the process and to react to it appropriately at the system level.
- Fl. direct.check
 Indicates the flow direction (forward or reverse flow).
- Status
 Indicates the device status depending on whether empty pipe detection or low flow cut off is selected.

Assign diag. beh

Navigation
Expert → Output → PFS output → Assign diag. beh (0482)

Prerequisite
- In the Operating mode parameter (→ 89), the Switch option is selected.
- In the Switch out funct parameter (→ 101), the Diag. behavior option is selected.

Description
Use this function to select the diagnostic event category that is displayed for the switch output.

Selection
- Alarm
- Alarm or warning
- Warning

Factory setting
Alarm
Additional information

Description

If no diagnostic event is pending, the switch output is closed and conductive.

Selection

- Alarm
 The switch output signals only diagnostic events in the alarm category.
- Alarm or warning
 The switch output signals diagnostic events in the alarm and warning category.
- Warning
 The switch output signals only diagnostic events in the warning category.

Assign limit

Navigation

Expert → Output → PFS output → Assign limit (0483)

Prerequisite

- The Switch option is selected in the Operating mode parameter (→ 89) parameter.
- The Limit option is selected in the Switch out funct parameter (→ 101) parameter.

Description

Use this function to select a process variable for the limit function.

Selection

- Mass flow
- Volume flow
- Correct.vol.flow
- Density
- Ref.density
- Temperature
- Totalizer 1
- Totalizer 2
- Totalizer 3

Factory setting

Mass flow

Additional information

Description

Behavior of status output when Switch-on value > Switch-off value:

- Process variable > Switch-on value: transistor is conductive
- Process variable < Switch-off value: transistor is non-conductive

![Diagram]

1 Switch-on value
2 Switch-off value
3 Conductive
4 Non-conductive
A Process variable
B Status output
Behavior of status output when Switch-on value < Switch-off value:
- Process variable < Switch-on value: transistor is conductive
- Process variable > Switch-off value: transistor is non-conductive

Behavior of status output when Switch-on value = Switch-off value:
- Process variable > Switch-on value: transistor is conductive
- Process variable < Switch-off value: transistor is non-conductive

Switch-on value

Navigation
Expert → Output → PFS output → Switch-on value (0466)

Prerequisite
- In the Operating mode parameter (→ 89), the Switch option is selected.
- In the Switch out funct parameter (→ 101), the Limit option is selected.

Description
Use this function to enter the measured value for the switch-on point.

User entry
Signed floating-point number
Factory setting
Country-specific:
- 0 kg/h
- 0 lb/min

Additional information
Description
Use this function to enter the limit value for the switch-on value (process variable > switch-on value = closed, conductive).

When using a hysteresis: Switch-on value > Switch-off value.

Dependency
The unit depends on the process variable selected in the Assign limit parameter (→ 103).

Switch-off value

Navigation
Expert → Output → PFS output → Switch-off value (0464)

Prerequisite
- In the Operating mode parameter (→ 89), the Switch option is selected.
- In the Switch out funct parameter (→ 101), the Limit option is selected.

Description
Use this function to enter the measured value for the switch-off point.

User entry
Signed floating-point number

Factory setting
Country-specific:
- 0 kg/h
- 0 lb/min

Additional information
Description
Use this function to enter the limit value for the switch-off value (process variable < switch-off value = open, non-conductive).

When using a hysteresis: Switch-on value > Switch-off value.

Dependency
The unit depends on the process variable selected in the Assign limit parameter (→ 103).

Assign dir.check

Navigation
Expert → Output → PFS output → Assign dir.check (0484)

Prerequisite
- The Switch option is selected in the Operating mode parameter (→ 89).
- The Fl. direct.check option is selected in the Switch out funct parameter (→ 101).

Description
Use this function to select a process variable for monitoring the flow direction.
Selection
- Mass flow
- Volume flow
- Correct.vol.flow

Factory setting
Mass flow

Assign status

Navigation
Expert → Output → PFS output → Assign status (0485)

Prerequisite
- The Switch option is selected in the Operating mode parameter (→ 89).
- The Status option is selected in the Switch out funct parameter (→ 101).

Description
Use this function to select a device status for the switch output.

Selection
- Partial pipe det
- Low flow cut off
- Digital outp. 6

Factory setting
Partial pipe det

Additional information
Options
If empty pipe detection or low flow cut off are enabled, the output is conductive. Otherwise, the switch output is non-conductive.

Switch-on delay

Navigation
Expert → Output → PFS output → Switch-on delay (0467)

Prerequisite
- The Switch option is selected in the Operating mode parameter (→ 89).
- The Limit option is selected in the Switch out funct parameter (→ 101).

Description
Use this function to enter a delay time for switching on the switch output.

User entry
0.0 to 100.0 s

Factory setting
0.0 s

Switch-off delay

Navigation
Expert → Output → PFS output → Switch-off delay (0465)

Prerequisite
- The Switch option is selected in the Operating mode parameter (→ 89).
- The Limit option is selected in the Switch out funct parameter (→ 101).

Description
Use this function to enter a delay time for switching off the switch output.
User entry: 0.0 to 100.0 s
Factory setting: 0.0 s

Failure mode

Navigation
Expert → Output → PFS output → Failure mode (0486)

Description
Use this function to select a failsafe mode for the switch output in the event of a device alarm.

Selection
- Actual status
- Open
- Closed

Factory setting
Open

Additional information
Options
- Actual status
 In the event of a device alarm, faults are ignored and the current behavior of the input value is output by the switch output. The **Actual status** option behaves in the same way as the current input value.
- Open
 In the event of a device alarm, the switch output's transistor is set to **non-conductive**.
- Closed
 In the event of a device alarm, the switch output's transistor is set to **conductive**.

Switch status

Navigation
Expert → Output → PFS output → Switch status (0461)

Prerequisite
The **Switch** option is selected in the **Operating mode** parameter (→ 89).

Description
Displays the current switch status of the status output.

User interface
- Open
- Closed

Additional information
User interface
- Open
 The switch output is not conductive.
- Closed
 The switch output is conductive.
Description of device parameters

Invert outp.sig.

Navigation

Expert → Output → PFS output → Invert outp.sig. (0470)

Description

Use this function to select whether to invert the output signal.

Selection

- No
- Yes

Factory setting

No

Additional information

Selection

No option (passive - negative)

![Graph showing signal with inversion]

Yes option (passive - positive)

![Graph showing signal without inversion]

3.4 "Communication" submenu

Navigation

Expert → Communication

Device address

Navigation

Expert → Communication → Device address (11061)

Description

Displays the device address.
User interface

1 to 255

3.4.1 "Resource block" submenu

Navigation

[Expert → Communication → Resource block](#)

<table>
<thead>
<tr>
<th>Resource block</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block tag (10702)</td>
<td>109</td>
</tr>
<tr>
<td>Target mode (10728)</td>
<td>111</td>
</tr>
<tr>
<td>Actual mode (10725)</td>
<td>112</td>
</tr>
<tr>
<td>Manufacturer Id (10721)</td>
<td>115</td>
</tr>
<tr>
<td>Device Type (10711)</td>
<td>115</td>
</tr>
<tr>
<td>Device Revision (10710)</td>
<td>116</td>
</tr>
<tr>
<td>DD Revision (10709)</td>
<td>116</td>
</tr>
<tr>
<td>Restart (10800)</td>
<td>117</td>
</tr>
<tr>
<td>Write Lock (10747)</td>
<td>124</td>
</tr>
<tr>
<td>ITK Version (10794)</td>
<td>130</td>
</tr>
</tbody>
</table>

Block tag

Navigation

[Expert → Communication → Resource block → Block tag (10702)](#)

Description

Use this function to enter the Block tag: Used for specifying a "label" for identifying the function block.

User entry

Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /).
Static Revision

Navigation
- Expert → Communication → Resource block → Static Revision (10735)

Description
Displays the Static Revision: Each instance of a static block parameter being accessed with write access is counted (event counter).

User interface
0 to FFFF

Additional information
Description
Static parameters are parameters that are not changed by the process.

Tag Description

Navigation
- Expert → Communication → Resource block → Tag Description (10736)

Description
Use this function to enter the Tag Description: Used for defining a user-specific text for detailed description of the function block.

User entry
Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /).

Strategy

Navigation
- Expert → Communication → Resource block → Strategy (10734)

Description
Use this function to enter the Strategy: Enables blocks to be grouped by entering identical numbers.

User entry
0 to FFFF

Factory setting
0

Alert Key

Navigation
- Expert → Communication → Resource block → Alert Key (10696)

Description
Use this function to enter the Alert Key: Identifies the plant unit where the transmitter is located. This helps in pinpointing events.

User entry
0 to 0xFF

Factory setting
1
Target mode

Description
Use this function to select the Target mode: The selection indicates which operating mode is used for this function block. This mode is generally set by a control application.

Selection
- ROut
- RCas
- Cas
- Auto
- Man
- LO
- lMan
- OOS

Factory setting
OOS

Additional information

Options
- ROut
In the ROut operating mode, the set point (SP) for the function block is controlled by the field bus host system, which runs over an interface, via the RIn parameter. The set point (SP) is used as an output signal after internal calculations. The output value and the status of the function block is communicated to the field bus host system as feedback via the ROut parameter. The set point can be initiated or retained for the value of the process variables.

- RCas
In the RCas (external cascade mode) operating mode, the set point (SP) for the function block is controlled by the field bus host system, which runs over an interface, via the RCas-In parameter. The set point (SP) is used as an output signal after internal calculations. The output value and status of the function block is communicated to the field bus host system as feedback via the RCas-Out parameter.

- Cas
In the Cas (cascade mode) operating mode, the function block receives a discrete signal via the function block input, which is provided by the Cas-In parameter of an upstream function block. This signal controls the set point (SP) of the function block and is used as an output signal after internal calculations. The output is used to communicate the output value and status to the upstream function block.

- Auto
The Auto operating mode is the normal operating mode of the function block. The set point (SP) is specified locally in the function block and is used as an output signal after internal calculations. This set point can be specified by the user via an interface.

- Man
In the Man operating mode, the output value can be specified directly in the function block. This is specified by the user via an interface. There is no internal calculation. The algorithm is initiated in such a way that there is no interruption when the operating mode is changed. The set point can be retained or initiated for the value of the process variables or for the set point of the previous operating mode if the system is switched back to it.
LO

The **LO** operating mode is used in control and output blocks that support a track input parameter. The manufacturer can also provide a local lock switch on the device to enable the **LO** operating mode. Tracking must be supported in the group of control parameters and is initiated by a discrete track-in parameter. In local bridge mode, the output value of the function block is set in order to track the value of the track-input parameter. The algorithm is initiated in such a way that there is no interruption when the operating mode switches from **LO** back to the previous operating mode. The set point can be initiated or retained for the value of the process variables.

IMan

In the **IMan** operating mode, the output value of the function block is performed as a reaction to the status of the back-calculation-input parameter. When this status indicates that there is no signal for the final output element, the control blocks ensure that there is a smooth transition. The back-calculation-input parameter is supported by all control and output blocks. The set point can be initiated or retained for the value of the process variables.

OOS

In the **OOS** operating mode, implementation of the function block is blocked. Either the last valid value or, in the case of an output block, the last valid set point is retained as the output value. This operating mode is used during configuration of the device.

Actual mode

Navigation

Expert → Communication → Resource block → Actual mode (10725)

Description

Displays the Actual mode: Under certain conditions, a function block may not work in the operating mode to be used. In this case, the Actual mode shows the actual operating mode that the function block is currently operating in. By comparing the Actual mode with the Target mode, users can see whether it was possible to reach the Target mode (→ 111).

User interface

- ROut
- RCas
- Cas
- Auto
- Man
- LO
- IMan
- OOS

Additional information

User interface

Detailed description of the options displayed: **Target mode** parameter (→ 111)

Permitted mode

Navigation

Expert → Communication → Resource block → Permitted mode (10727)

Description

Use this function to select the Permitted mode: The selection defines which operating modes are available in Target mode (→ 111) for the function block. The operating modes that are supported vary depending on the type and function of the block.
Proline Promass 200 FOUNDATION Fieldbus

Selection
- ROut
- RCas
- Cas
- Auto
- Man
- LO
- IMan
- OOS

Factory setting
- Auto
- OOS

Additional information

Options

Detailed description of the options available for selection: **Target mode** parameter (→

Normal mode

Navigation

Expert → Communication → Resource block → Normal mode (10726)

Description

Use this function to select the Normal mode: This is available to enable the user to select the Normal mode from the available operating modes. This can be set using an operating tool in order to help the user configure the operating mode of a function block.

Selection
- ROut
- RCas
- Cas
- Auto
- Man
- LO
- IMan
- OOS

Additional information

Options

Detailed description of the options available for selection: **Target mode** parameter (→

Block Error

Navigation

Expert → Communication → Resource block → Block Error (10703)

Description

Displays the short text for the Block Error that has occurred in the function block.

User interface
- Other
- BlockConfigurat
- LinkConfigurat
- SimulationActive
- LocalOverride
- DeviceFaultState
- DeviceMainten
Description of device parameters

Proline Promass 200 FOUNDATION Fieldbus

- SensorFailure
- OutputFailure
- MemoryFailure
- LostStaticData
- LostNVData
- ReadbackCheck
- MaintenanceNeed
- PowerUp
- OutOfService

Resource State

Navigation

- Expert → Communication → Resource block → Resource State (10730)

Description

Displays the Resource State: Displays the current operating mode of the resource block.

User interface

- Uninitialized
- StartRestart
- Initialization
- Online Linking
- Online
- Standby
- Failure

Additional information

User interface

- Uninitialized
 The resource block is in an invalid operating mode.

- StartRestart
 The resource block is in the start-up or restore phase. The necessary memory and hardware tests are carried out for the current operation. If these tests are successful, the resource block switches to the Initialization operating mode. If these tests are not successful, the resource block switches to the Failure operating mode.

- Initialization
 The resource block is in this operating mode if the block successfully passes the hardware tests from the StartRestart or Failure status. In this operating mode, all alarms of the function block that are not displayed are automatically confirmed and acknowledged. When system management is operational, the implementation of the block can be planned and the resource block switches to the Online Linking operating mode.

- Online Linking
 The resource block is in this operating mode when the block switches from the Initialization or Online operating mode. The configured connections between the function blocks are not yet established. When all configured connections have been established, the resource block switches to the Online operating mode.
- **Online**
 Normal operating mode, the resource block is in the Auto operating mode. The configured connections between the function blocks have been established. If one of the connections could not be established, the resource block switches back to the Online Linking operating mode.

- **Standby**
 The Resource Block is in the OOS option operating mode. It is not possible to implement the remaining blocks. The operating mode of the transducer block is not necessarily affected by this. Switching the resource block to the Auto mode causes the resource block to switch back to the StartRestart operating mode.

- **Failure**
 The resource block is in the fault state. It switches to this operating mode if a memory or hardware fault that would hinder current operation has been detected in the block. The fault can affect the block or the entire device. When this operating mode is active, blocks with an output function are also in the fault state. The hardware test is carried out again. If the error does not reoccur, the resource block switches back to the Initialization operating mode.

DD Resource

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Communication → Resource block → DD Resource (10708)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the DD Resource: Indicates the reference source for the device description (DD).</td>
</tr>
<tr>
<td>User interface</td>
<td>Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /).</td>
</tr>
</tbody>
</table>
| Additional information | *User interface*
| | Zero: No device description is stored on the device. |

Manufacturer Id

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Communication → Resource block → Manufacturer Id (10721)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Manufacturer Id display: is used by the interface to assign the right DD file for the resource.</td>
</tr>
<tr>
<td>User interface</td>
<td>Endress+Hauser</td>
</tr>
</tbody>
</table>

Device Type

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Communication → Resource block → Device Type (10711)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the device type with which the measuring device is registered with Fieldbus Foundation.</td>
</tr>
<tr>
<td>User interface</td>
<td>Promass 200</td>
</tr>
</tbody>
</table>
Device Revision

Navigation
Expert → Communication → Resource block → Device Revision (10710)

Description
Use this function to view the device revision with which the measuring device is registered with Fieldbus Foundation.

User interface
1

DD Revision

Navigation
Expert → Communication → Resource block → DD Revision (10709)

Description
Displays the revision number of the device description (DD).

User interface
1

Additional information
Description
This display can be used to ensure that the right system files (DD = device description) are used for integration into the host system. The system files can be downloaded free of charge online at: www.endress.com.

Grant

Navigation
Expert → Communication → Resource block → Grant (10718)

Description
Option for releasing certain access authorizations of the field bus host system on the device.

Selection
- Program
- Tune
- Alarm
- Local
- Operate
- Service
- Diagnostic

Deny

Navigation
Expert → Communication → Resource block → Deny (10717)

Description
Option for restricting certain access authorizations of the field bus host system on the device.
Selection

- Program Denied
- Tune Denied
- Alarm Denied
- Local
- Operate Denied

Hard Types

Navigation

- Expert → Communication → Resource block → Hard Types (10719)

Description
Displays the input signal type for the Analog input block.

User interface

- Scalar Input
- Scalar Output
- Discrete Input
- Discrete Output

Restart

Navigation

- Expert → Communication → Resource block → Restart (10800)

Description
Use this function to select a manual restart or a manual device reset.

Selection

- Uninitialized
- Run
- Resource
- Defaults
- Processor
- To fact.defaults
- To delivery set.
- ENP restart
- To transd.def.
- Fact.DefaultBlks

Factory setting
Uninitialized

Service reset

Navigation

- Expert → Communication → Resource block → Service reset (10749)

Description
Extended selection for a manual restart or a manual device reset.

Selection

- Uninitialized
- DeliverySett+MIB
- ENP restart

Factory setting
Uninitialized
Additional information

Selection

- Uninitialized
- Factory setting
- Delivery Set + MIB

 Reset the device to the as-delivered state. Important communication settings are reset to the factory default settings here.
- ENP restart

 Reset the parameters for the electronic name plate (ENP).

Features

Navigation

- Expert → Communication → Resource block → Features (10713)

Description

Displays the additional options that are supported by the measuring device.

User interface

- Reports
- Faultstate
- Soft W Lock
- Hard W Lock
- Chng Bypass Auto
- MVCReporDistrsup
- Multibit Alm Supp
- InterParamWrChk

Feature Select

Navigation

- Expert → Communication → Resource block → Feature Select (10714)

Description

Use this function to select additional options that are supported by the measuring device.

Selection

- Reports
- Faultstate
- Soft W Lock
- Hard W Lock
- Chng Bypass Auto
- MVCReporDistrsup
- Multibit Alm Supp
- InterParamWrChk

Cycle Type

Navigation

- Expert → Communication → Resource block → Cycle Type (10707)

Description

Displays the implementation methods for the block that are supported by the measuring device.
User interface
- Scheduled
- Block Execution

Cycle Selection

Navigation
- Expert → Communication → Resource block → Cycle Selection (10706)

Description
Use this function to select the implementation method for the block that is used by the field bus host system. This implementation method is selected by the field bus host system.

Selection
- Scheduled
- Block Execution

Minumum Cyc.Time

Navigation
- Expert → Communication → Resource block → Minumum Cyc.Time (10724)

Description
Displays the implementation time of all function blocks that are available in the measuring device.

User interface
Positive integer

Memory Size

Navigation
- Expert → Communication → Resource block → Memory Size (10723)

Description
Displays the available configuration memory in kilobytes.

User interface
0 to 65 535 Kbytes

Nonvolat CycTime

Navigation
- Expert → Communication → Resource block → Nonvolat CycTime (10729)

Description
Displays the time interval during which the dynamic device parameters are stored in the non-volatile memory.

User interface
Positive integer
<table>
<thead>
<tr>
<th>Free Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>User interface</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Free Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>User interface</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clear Fault Stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Description</td>
</tr>
</tbody>
</table>
| **Selection** | - Uninitialized
- Off
- Clear |
| **Factory setting** | Uninitialized |
| **Additional information** | Options
The fault state can be disabled with **Clear** option. |

<table>
<thead>
<tr>
<th>Confirm Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>User entry</td>
</tr>
<tr>
<td>Factory setting</td>
</tr>
</tbody>
</table>
Fault State

Navigation
Expert → Communication → Resource block → Fault State (10712)

Description
Displays the current status of the fault state for the Discrete outputs (→ 214) block.

User interface
- Uninitialized
- Clear
- Active

Additional information
User interface
- Uninitialized
- Clear
 The fault state is disabled.
- Active
 The fault state is enabled.

Limit Notify

Navigation
Expert → Communication → Resource block → Limit Notify (10720)

Description
Use this function to enter the maximum number of event reports that may be pending at the same time without confirmation.

User entry
0 to 255

Factory setting
0

Max Notify

Navigation
Expert → Communication → Resource block → Max Notify (10722)

Description
Displays the maximum number of event reports that are supported by the measuring device and may be pending at the same time without confirmation.

User interface
0 to 255

Set Fault State

Navigation
Expert → Communication → Resource block → Set Fault State (10731)

Description
Option for manually enabling or disabling the fault state for the Discrete outputs (→ 214) function block.
Description of device parameters

Proline Promass 200 FOUNDATION Fieldbus

| Selection | • OFF
| | • SET |

| Factory setting | OFF |

<table>
<thead>
<tr>
<th>Additional information</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>• OFF</td>
<td>The fault state is disabled.</td>
</tr>
<tr>
<td>• SET</td>
<td>The fault state is enabled.</td>
</tr>
</tbody>
</table>

Shed Remote Casc

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Communication → Resource block → Shed Remote Casc (10732)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the time interval after which the computer stops writing to function blocks with RCas points.</td>
</tr>
<tr>
<td>User entry</td>
<td>Positive integer</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0 1/32 ms</td>
</tr>
</tbody>
</table>

Shed Remote Out

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Communication → Resource block → Shed Remote Out (10733)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the time interval after which the computer stops writing to function blocks with ROut points.</td>
</tr>
<tr>
<td>User entry</td>
<td>Positive integer</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0 1/32 ms</td>
</tr>
</tbody>
</table>

Unacknowledged

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Communication → Resource block → Unacknowledged (10740)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Option for manually acknowledging an update of the static block parameter.</td>
</tr>
</tbody>
</table>
| Selection | • Uninitialized
| | • Acknowledged
| | • Unacknowledged |
| Factory setting | Uninitialized |
Additional information

Description

- If a new diagnostic event occurs, the measuring device sets **Unacknowledged** option.
- If the diagnostic event has been acknowledged, the user can set **Acknowledged** option.

Update State

Navigation

- Expert → Communication → Resource block → Update State (10741)

Description

Displays the status of an update of the static block parameter. The status indicates whether the update was communicated or not.

User interface

- Uninitialized
- Reported
- Not Reported

Time Stamp

Navigation

- Expert → Communication → Resource block → Time Stamp (10739)

Description

Displays the time stamp indicating when the analysis of the block was started and when a status change of an update to the static block parameter that has not yet been communicated was identified. The time stamp is retained until the update confirmation is received.

User interface

Days (d), hours (h), minutes (m), seconds (s)

Static revision

Navigation

- Expert → Communication → Resource block → Static revision (10738)

Description

Displays the Static revision: Each instance of a static block parameter being accessed with write and report access due to an update is counted (event counter).

User interface

0 to 65535

Relative Index

Navigation

- Expert → Communication → Resource block → Relative Index (10737)

Description

Displays the relative index of the static block parameter that triggered the alarm (OD index minus field bus start index).
User interface

0 to 65,535

Write Lock

Navigation
Expert → Communication → Resource block → Write Lock (10747)

Description
Option for enabling and disabling the hardware write protection.

Selection
- Not Locked
- Locked

Factory setting
Not Locked

Additional information
Description

Option for enabling and disabling write access to the measuring device via the FOUNDATION Fieldbus (acyclic data transmission, e.g. via the "FieldCare" operating program).

Options

- Not Locked
 Device data can be changed via the FOUNDATION Fieldbus interface.
- Locked
 Device data cannot be changed via the FOUNDATION Fieldbus interface.

Unacknowledged

Navigation
Expert → Communication → Resource block → Unacknowledged (10700)

Description
Option for manually acknowledging a block alarm.

Selection
- Uninitialized
- Acknowledged
- Unacknowledged

Factory setting
Uninitialized

Additional information
Description

- If a new alarm occurs, the measuring device sets **Unacknowledged** option.
- If the alarm has been acknowledged, the user can set **Acknowledged** option.
Alarm State

Navigation

Expert → Communication → Resource block → Alarm State (10697)

Description
Displays the status of the block alarm. The status indicates whether the block alarm is active and whether it has already been communicated to the field bus host system.

User interface
- Uninitialized
- Clear-Reported
- ClearNotReported
- Active-Reported
- ActiveNotRep

Time Stamp

Navigation

Expert → Communication → Resource block → Time Stamp (10699)

Description
Displays the time stamp indicating when the analysis of the block was started and when a status change of the block alarm that has not yet been communicated to the field bus host system was detected. The time stamp is retained until the alarm confirmation is received.

User interface
Days (d), hours (h), minutes (m), seconds (s)

Subcode

Navigation

Expert → Communication → Resource block → Subcode (10698)

Description
Displays the specific cause of the block alarm.

User interface
- Other
- BlockConfigurat
- LinkConfigurat
- SimulationActive
- LocalOverride
- DeviceFaultState
- DeviceMainten
- SensorFailure
- OutputFailure
- MemoryFailure
- LostStaticData
- LostNVData
- ReadbackCheck
- MaintenanceNeed
- PowerUp
- OutOfService
Value

Navigation

[Expert ➔ Communication ➔ Resource block ➔ Value (10701)]

Description

Displays the value of the affected parameter at the time at which the block alarm was detected.

User interface

0 to 255

Current

Navigation

[Expert ➔ Communication ➔ Resource block ➔ Current (10692)]

Description

Use this function to view the current status of the process alarms.

User interface

- Discrete Alarm
- Block Alarm
- Fail Alarm
- Off Spec Alarm
- Maint. Alarm
- Check Alarm

Unacknowledged

Navigation

[Expert ➔ Communication ➔ Resource block ➔ Unacknowledged (10694)]

Description

Displays an unacknowledged process alarm.

User interface

- Disc Alm Unack
- Block Alm Unack
- Fail Alm Unack
- Off Spec Alm Unack
- Maint Alm Unack
- Check Alm Unack

Unreported

Navigation

[Expert ➔ Communication ➔ Resource block ➔ Unreported (10695)]

Description

Displays a process alarm that has not been communicated.

User interface

- Disc Alm Unrep
- Block Alm Unrep
- Fail Alm Unrep
Description of device parameters

- Off SpecAlmUnrep
- Maint Alm Unrep
- Check Alm Unrep

Disabled

Navigation

Expert → Communication → Resource block → Disabled (10693)

Description

Option for disabling a process alarm category.

Selection

- Disc Alm Disabl
- Block Alm Disabl
- Fail Alm Disabl
- OffSpecAlmDisabl
- Maint Alm Disabl
- Check Alm Disab.

Ack. Option

Navigation

Expert → Communication → Resource block → Ack. Option (10691)

Description

Option for automatic acknowledgment of process alarms in a specific category.

Selection

- Disc Alm Aut Ack
- Blk Alm Auto Ack
- Fail Alm Aut Ack
- OffSpecAlmAutAck
- Maint Alm AutAck
- Check Alm AutAck

Additional information

Description

Use this function to determine whether an alarm must be acknowledged via the field bus host system.

If the process alarm option has not been enabled in this parameter, this process alarm must only be acknowledged in Unacknowledged parameter (→ 124). Current parameter (→ 126) indicates the current status of all process alarms.

Write Priority

Navigation

Expert → Communication → Resource block → Write Priority (10748)

Description

Use this function to enter the priority for the write protection alarm.

User entry

0 to 15

Factory setting

0
Additional information

Description

If write protection is disabled on the FOUNDATION Fieldbus I/O board, the alarm priority entered here is checked before the status change is transferred to the field bus host system. The alarm priority determines the behavior in the event of an active write protection alarm.

- The alarm is triggered when the write protection is disabled.

Unacknowledged

Navigation

Expert → Communication → Resource block → Unacknowledged (10745)

Description

Option for manually acknowledging a write protection alarm.

Selection

- Uninitialized
- Acknowledged
- Unacknowledged

Factory setting

Uninitialized

Additional information

Description

- If a new alarm occurs, the measuring device sets **Unacknowledged** option.
- If the alarm has been acknowledged, the user can set **Acknowledged** option.

Alarm State

Navigation

Expert → Communication → Resource block → Alarm State (10742)

Description

Displays the status of the write protection alarm. The status indicates whether the write protection alarm is active and whether it has already been communicated to the field bus host system.

User interface

- Uninitialized
- Clear-Reported
- ClearNotReported
- Active-Reported
- ActiveNotRep

Time Stamp

Navigation

Expert → Communication → Resource block → Time Stamp (10744)

Description

Displays the time stamp indicating when the analysis of the block was started and when the status change of a write protection alarm that has not yet been communicated was identified. The time stamp is retained until the alarm confirmation is received.
Description of device parameters

User interface

Days (d), hours (h), minutes (m), seconds (s)

Subcode

Navigation

Expert → Communication → Resource block → Subcode (10743)

Description

Displays the specific cause of the write protection alarm, which is to be communicated to the field bus host system.

User interface

- Other
- BlockConfigurat
- LinkConfigurat
- SimulationActive
- LocalOverride
- DeviceFaultState
- DeviceMainten
- SensorFailure
- OutputFailure
- MemoryFailure
- LostStaticData
- LostNVData
- ReadbackCheck
- MaintenanceNeed
- PowerUp
- OutOfService

Discrete Value

Navigation

Expert → Communication → Resource block → Discrete Value (10746)

Description

Displays the discrete value of the affected parameter at the time at which the write protection alarm was detected.

User interface

- State 0
- State 1
- State 2
- State 3
- State 4
- State 5
- State 6
- State 7
- State 8
- State 9
- State 10
- State 11
- State 12
- State 13
- State 14
- State 15
- State 16
ITK Version

Navigation

Expert → Communication → Resource block → ITK Version (10794)

Description

Displays the revision status of the Interoperability Test Kits (ITK).

User interface

6

3.5 "Analog inputs" submenu

In the analog input function block (AI function block), the process variables from the transducer block are prepared in terms of control for the subsequent automation functions (e.g. scaling, limit value processing). The automation function is defined by interconnecting the outputs.

Navigation

Expert → Analog inputs

![Analog inputs](image)

3.5.1 "Analog input 1 to n" submenu

Navigation

Expert → Analog inputs → Analog input 1 to n

![Analog input 1 to n](image)

- **Block tag**

Navigation

Expert → Analog inputs → Analog input 1 to n → Block tag (6901–1 to n)

Description

Use this function to enter the Block tag: specify a 'label' for identifying the function block.
User entry

Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /).

Static Revision

Navigation

Expert → Analog inputs → Analog input 1 to n → Static Revision (6973–1 to n)

Description

Displays the Static Revision: Each instance of a static block parameter being accessed with write access is counted (event counter).

User interface

0 to FFFF

Additional information

Description

Static parameters are parameters that are not changed by the process.

Tag Description

Navigation

Expert → Analog inputs → Analog input 1 to n → Tag Description (6974–1 to n)

Description

Use this function to enter the Tag Description: Used for defining a user-specific text for detailed description of the function block.

User entry

Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /).

Strategy

Navigation

Expert → Analog inputs → Analog input 1 to n → Strategy (6972–1 to n)

Description

Use this function to enter the Strategy: Enables blocks to be grouped by entering identical numbers.

User entry

0 to FFFF

Factory setting

0

Alert Key

Navigation

Expert → Analog inputs → Analog input 1 to n → Alert Key (6916–1 to n)

Description

Use this function to enter the Alert Key: Identifies the plant unit where the transmitter is located. This helps in pinpointing events.

User entry

0 to 0xFFF
Factory setting

<table>
<thead>
<tr>
<th>Target mode</th>
<th>1</th>
</tr>
</thead>
</table>

Target mode

Navigation

- Expert → Analog inputs → Analog input 1 to n → Target mode (6960–1 to n)

Description

Use this function to select the Target mode: The selection indicates which operating mode is used for this function block. This mode is generally set by a control application.

Selection

- ROut
- RCas
- Cas
- Auto
- Man
- LO
- IMan
- OOS

Factory setting

- OOS

Additional information

- Options

 Detailed description of the options available for selection: Target mode parameter (→ 111)

Actual mode

Navigation

- Expert → Analog inputs → Analog input 1 to n → Actual mode (6957–1 to n)

Description

Displays the Actual mode: Under certain conditions, a function block may not work in the operating mode to be used. In this case, the Actual mode shows the actual operating mode in which the function block is currently operating. By comparing the Actual mode with the Target mode, users can see whether it was possible to reach the Target mode (→ 132).

User interface

- ROut
- RCas
- Cas
- Auto
- Man
- LO
- IMan
- OOS

Additional information

- User interface

 Detailed description of the options displayed: Target mode parameter (→ 111)
Permitted mode

Navigation

Expert → Analog inputs → Analog input 1 to n → Permitted mode (6959–1 to n)

Description

Use this function to select the Permitted mode: The selection defines which operating modes are available in Target mode (→ 132) for the function block. The operating modes that are supported vary depending on the type and function of the block.

Selection

- ROut
- RCas
- Cas
- Auto
- Man
- LO
- IMan
- OOS

Factory setting

- Auto
- OOS

Additional information

Options

Detailed description of the options available for selection: Target mode parameter (→ 111)

Normal mode

Navigation

Expert → Analog inputs → Analog input 1 to n → Normal mode (6958–1 to n)

Description

Use this function to select the Normal mode: This is available to enable the user to select the Normal mode from the available operating modes. This can be set using an operating tool in order to help the user configure the operating mode of a function block.

Selection

- ROut
- RCas
- Cas
- Auto
- Man
- LO
- IMan
- OOS

Factory setting

Auto

Additional information

Options

Detailed description of the options available for selection: Target mode parameter (→ 111)
Description of device parameters

Proline Promass 200 FOUNDATION Fieldbus

Block Error

Navigation
Expert → Analog inputs → Analog input 1 to n → Block Error (6922–1 to n)

Description
Displays the short text for the Block Error that has occurred in the function block.

User interface
- Other
- BlockConfigurat
- LinkConfigurat
- SimulationActive
- LocalOverride
- DeviceFaultState
- DeviceMainten
- SensorFailure
- OutputFailure
- MemoryFailure
- LostStaticData
- LostNVData
- ReadbackCheck
- MaintenanceNeed
- PowerUp
- OutOfService

Status

Navigation
Expert → Analog inputs → Analog input 1 to n → Status (6964–1 to n)

Description
Displays the status of the input value (PV).

User interface
- Bad (0x00)
- Bad (0x01)
- Bad (0x02)
- Bad (0x03)
- Bad (0x04)
- Bad (0x05)
- Bad (0x06)
- Bad (0x07)
- Bad (0x08)
- Bad (0x09)
- Bad (0x0A)
- Bad (0x0B)
- Bad (0x0C)
- Bad (0x0D)
- Bad (0x0E)
- Bad (0x0F)
- Bad (0x10)
- Bad (0x11)
- Bad (0x12)
- Bad (0x13)
- Bad (0x14)
- Bad (0x15)
- Bad (0x16)
- Bad (0x17)
- Bad (0x18)
- Bad (0x19)
- Bad (0x1A)
- Bad (0x1B)
- Bad (0x1C)
- Bad (0x1D)
- Bad (0x1E)
- Bad (0x1F)
- Uncertain (0x40)
- Uncertain (0x41)
- Uncertain (0x42)
- Uncertain (0x43)
- Uncertain (0x44)
- Uncertain (0x45)
- Uncertain (0x46)
- Uncertain (0x47)
- Uncertain (0x48)
- Uncertain (0x49)
- Uncertain (0x4A)
- Uncertain (0x4B)
- Uncertain (0x4C)
- Uncertain (0x4D)
- Uncertain (0x4E)
- Uncertain (0x4F)
- Uncertain (0x50)
- Uncertain (0x51)
- Uncertain (0x52)
- Uncertain (0x53)
- Uncertain (0x54)
- Uncertain (0x55)
- Uncertain (0x56)
- Uncertain (0x57)
- Uncertain (0x58)
- Uncertain (0x59)
- Uncertain (0x5A)
- Uncertain (0x5B)
- Good (0x80)
- Good (0x81)
- Good (0x82)
- Good (0x83)
- Good (0x84)
- Good (0x85)
- Good (0x86)
- Good (0x87)
- Good (0x88)
- Good (0x89)
- Good (0x8A)
- Good (0x8B)
- Good (0x8C)
- Good (0x8D)
- Good (0x8E)
- Good (0x8F)
- Good (0x90)
- Good (0x91)
- Good (0x92)
- Good (0x93)
- Good (0x94)
- Good (0x95)
- Good (0x96)
- Good (0x97)
Description of device parameters

Proline Promass 200 FOUNDATION Fieldbus

- Good (0x98)
- Good (0x99)
- Good (0x9A)
- Good (0x9B)
- Good (0xC0)
- Good (0xC1)
- Good (0xC2)
- Good (0xC3)
- Good (0xC4)
- Good (0xC5)
- Good (0xC6)
- Good (0xC7)
- Good (0xC8)
- Good (0xC9)
- Good (0xCA)
- Good (0xCB)
- Good (0xCC)
- Good (0xCD)
- Good (0xCE)
- Good (0xCF)
- Good (0xD0)
- Good (0xD1)
- Good (0xD2)
- Good (0xD3)
- Good (0xD4)
- Good (0xD5)
- Good (0xD6)
- Good (0xD7)
- Good (0xD8)
- Good (0xD9)
- Good (0xDA)
- Good (0xDB)
- Good (0xDC)
- Good (0xDD)
- Good (0xDE)
- Good (0xDF)
- Good (0xE0)
- Good (0xE1)
- Good (0xE2)
- Good (0xE3)

Value

<table>
<thead>
<tr>
<th>Navigation</th>
<th></th>
<th>Expert → Analog inputs → Analog input 1 to n → Value (6965–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td></td>
<td>Displays the input value (PV).</td>
</tr>
<tr>
<td>User interface</td>
<td></td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Additional information</td>
<td></td>
<td>Dependency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The unit is taken from the: Units index parameter (→ 148)</td>
</tr>
</tbody>
</table>
Status

Navigation

Expert → Analog inputs → Analog input 1 to n → Status (6906–1 to n)

Description

Displays the status of the output value (OUT).

User interface

- Bad (0x00)
- Bad (0x01)
- Bad (0x02)
- Bad (0x03)
- Bad (0x04)
- Bad (0x05)
- Bad (0x06)
- Bad (0x07)
- Bad (0x08)
- Bad (0x09)
- Bad (0x0A)
- Bad (0x0B)
- Bad (0x0C)
- Bad (0x0D)
- Bad (0x0E)
- Bad (0x0F)
- Bad (0x10)
- Bad (0x11)
- Bad (0x12)
- Bad (0x13)
- Bad (0x14)
- Bad (0x15)
- Bad (0x16)
- Bad (0x17)
- Bad (0x18)
- Bad (0x19)
- Bad (0x1A)
- Bad (0x1B)
- Bad (0x1C)
- Bad (0x1D)
- Bad (0x1E)
- Bad (0x1F)
- Uncertain (0x40)
- Uncertain (0x41)
- Uncertain (0x42)
- Uncertain (0x43)
- Uncertain (0x44)
- Uncertain (0x45)
- Uncertain (0x46)
- Uncertain (0x47)
- Uncertain (0x48)
- Uncertain (0x49)
- Uncertain (0x4A)
- Uncertain (0x4B)
- Uncertain (0x4C)
- Uncertain (0x4D)
- Uncertain (0x4E)
- Uncertain (0x4F)
- Uncertain (0x50)
- Uncertain (0x51)
- Uncertain (0x52)
- Uncertain (0x53)
Description of device parameters

- Uncertain (0x54)
- Uncertain (0x55)
- Uncertain (0x56)
- Uncertain (0x57)
- Uncertain (0x58)
- Uncertain (0x59)
- Uncertain (0x5A)
- Uncertain (0x5B)
- Good (0x80)
- Good (0x81)
- Good (0x82)
- Good (0x83)
- Good (0x84)
- Good (0x85)
- Good (0x86)
- Good (0x87)
- Good (0x88)
- Good (0x89)
- Good (0x8A)
- Good (0x8B)
- Good (0x8C)
- Good (0x8D)
- Good (0x8E)
- Good (0x8F)
- Good (0x90)
- Good (0x91)
- Good (0x92)
- Good (0x93)
- Good (0x94)
- Good (0x95)
- Good (0x96)
- Good (0x97)
- Good (0x98)
- Good (0x99)
- Good (0x9A)
- Good (0x9B)
- Good (0xC0)
- Good (0xC1)
- Good (0xC2)
- Good (0xC3)
- Good (0xC4)
- Good (0xC5)
- Good (0xC6)
- Good (0xC7)
- Good (0xC8)
- Good (0xC9)
- Good (0xCA)
- Good (0xCB)
- Good (0xCC)
- Good (0xCD)
- Good (0xCE)
- Good (0xCF)
- Good (0xD0)
- Good (0xD1)
- Good (0xD2)
- Good (0xD3)
- Good (0xD4)
- Good (0xD5)
- Good (0xD6)
Value

Navigation
- Expert → Analog inputs → Analog input 1 to n → Value (6907–1 to n)

Description
Input for the output value (OUT).

User entry
Signed floating-point number

Factory setting
0

Additional information

Dependency
- The unit is taken from the: **Units index** parameter (→ 148)

Simulate Status

Navigation
- Expert → Analog inputs → Analog input 1 to n → Simulate Status (6967–1 to n)

Description
Use this function to select the status that is used for the transducer block simulation.

Selection
- Bad (0x00)
- Bad (0x01)
- Bad (0x02)
- Bad (0x03)
- Bad (0x04)
- Bad (0x05)
- Bad (0x06)
- Bad (0x07)
- Bad (0x08)
- Bad (0x09)
- Bad (0x0A)
- Bad (0x0B)
- Bad (0x0C)
- Bad (0x0D)
- Bad (0x0E)
- Bad (0x0F)
- Bad (0x10)
Proline Promass 200 FOUNDATION Fieldbus

- Bad (0x11)
- Bad (0x12)
- Bad (0x13)
- Bad (0x14)
- Bad (0x15)
- Bad (0x16)
- Bad (0x17)
- Bad (0x18)
- Bad (0x19)
- Bad (0x1A)
- Bad (0x1B)
- Bad (0x1C)
- Bad (0x1D)
- Bad (0x1E)
- Bad (0x1F)
- Uncertain (0x40)
- Uncertain (0x41)
- Uncertain (0x42)
- Uncertain (0x43)
- Uncertain (0x44)
- Uncertain (0x45)
- Uncertain (0x46)
- Uncertain (0x47)
- Uncertain (0x48)
- Uncertain (0x49)
- Uncertain (0x4A)
- Uncertain (0x4B)
- Uncertain (0x4C)
- Uncertain (0x4D)
- Uncertain (0x4E)
- Uncertain (0x4F)
- Uncertain (0x50)
- Uncertain (0x51)
- Uncertain (0x52)
- Uncertain (0x53)
- Uncertain (0x54)
- Uncertain (0x55)
- Uncertain (0x56)
- Uncertain (0x57)
- Uncertain (0x58)
- Uncertain (0x59)
- Uncertain (0x5A)
- Uncertain (0x5B)
- Good (0x80)
- Good (0x81)
- Good (0x82)
- Good (0x83)
- Good (0x84)
- Good (0x85)
- Good (0x86)
- Good (0x87)
- Good (0x88)
- Good (0x89)
- Good (0x8A)
- Good (0x8B)
- Good (0x8C)
- Good (0x8D)
- Good (0x8E)
- Good (0x8F)
• Good (0x90)
• Good (0x91)
• Good (0x92)
• Good (0x93)
• Good (0x94)
• Good (0x95)
• Good (0x96)
• Good (0x97)
• Good (0x98)
• Good (0x99)
• Good (0x9A)
• Good (0x9B)
• Good (0xC0)
• Good (0xC1)
• Good (0xC2)
• Good (0xC3)
• Good (0xC4)
• Good (0xC5)
• Good (0xC6)
• Good (0xC7)
• Good (0xC8)
• Good (0xC9)
• Good (0xCA)
• Good (0xCB)
• Good (0xCC)
• Good (0xCD)
• Good (0xCE)
• Good (0xCF)
• Good (0xD0)
• Good (0xD1)
• Good (0xD2)
• Good (0xD3)
• Good (0xD4)
• Good (0xD5)
• Good (0xD6)
• Good (0xD7)
• Good (0xD8)
• Good (0xD9)
• Good (0xDA)
• Good (0xDB)
• Good (0xDC)
• Good (0xDD)
• Good (0xDE)
• Good (0xDF)
• Good (0xE0)
• Good (0xE1)
• Good (0xE2)
• Good (0xE3)

Factory setting

Bad (0x00)
Simulate Value

Navigation

Expert → Analog inputs → Analog input 1 to n → Simulate Value (6968–1 to n)

Description

Use this function to enter the value that is used for the transducer block simulation.

User entry

Signed floating-point number

Factory setting

0 %

Additional information

Dependency

The unit is taken from the: Units index parameter (↔ 145)

Transducer Stat

Navigation

Expert → Analog inputs → Analog input 1 to n → Transducer Stat (6969–1 to n)

Description

Displays the current status of the transducer block.

User interface

- Bad (0x00)
- Bad (0x01)
- Bad (0x02)
- Bad (0x03)
- Bad (0x04)
- Bad (0x05)
- Bad (0x06)
- Bad (0x07)
- Bad (0x08)
- Bad (0x09)
- Bad (0x0A)
- Bad (0x0B)
- Bad (0x0C)
- Bad (0x0D)
- Bad (0x0E)
- Bad (0x0F)
- Bad (0x10)
- Bad (0x11)
- Bad (0x12)
- Bad (0x13)
- Bad (0x14)
- Bad (0x15)
- Bad (0x16)
- Bad (0x17)
- Bad (0x18)
- Bad (0x19)
- Bad (0x1A)
- Bad (0x1B)
- Bad (0x1C)
- Bad (0x1D)
- Bad (0x1E)
- Bad (0x1F)
- Uncertain (0x40)
- Uncertain (0x41)
- Uncertain (0x42)
- Uncertain (0x43)
- Uncertain (0x44)
- Uncertain (0x45)
- Uncertain (0x46)
- Uncertain (0x47)
- Uncertain (0x48)
- Uncertain (0x49)
- Uncertain (0x4A)
- Uncertain (0x4B)
- Uncertain (0x4C)
- Uncertain (0x4D)
- Uncertain (0x4E)
- Uncertain (0x4F)
- Uncertain (0x50)
- Uncertain (0x51)
- Uncertain (0x52)
- Uncertain (0x53)
- Uncertain (0x54)
- Uncertain (0x55)
- Uncertain (0x56)
- Uncertain (0x57)
- Uncertain (0x58)
- Uncertain (0x59)
- Uncertain (0x5A)
- Uncertain (0x5B)
- Good (0x80)
- Good (0x81)
- Good (0x82)
- Good (0x83)
- Good (0x84)
- Good (0x85)
- Good (0x86)
- Good (0x87)
- Good (0x88)
- Good (0x89)
- Good (0x8A)
- Good (0x8B)
- Good (0x8C)
- Good (0x8D)
- Good (0x8E)
- Good (0x8F)
- Good (0x90)
- Good (0x91)
- Good (0x92)
- Good (0x93)
- Good (0x94)
- Good (0x95)
- Good (0x96)
- Good (0x97)
- Good (0x98)
- Good (0x99)
- Good (0x9A)
- Good (0x9B)
- Good (0xC0)
- Good (0xC1)
- Good (0xC2)
- Good (0xC3)
Transducer Value

Navigation
Expert → Analog inputs → Analog input 1 to n → Transducer Value (6970–1 to n)

Description
Displays the current value of the transducer block.

User interface
Signed floating-point number

Factory setting
0 %

Additional information
Dependency
The unit is taken from the: Units index parameter (→ 145)
Sim. En/Disable

Navigation: Expert → Analog inputs → Analog input 1 to n → Sim. En/Disable (6966–1 to n)

Description: Use this function to enable or disable the function block simulation.

Selection:
- Uninitialized
- Disabled
- Active

Factory setting: Uninitialized

EU at 100%

Navigation: Expert → Analog inputs → Analog input 1 to n → EU at 100% (6982–1 to n)

Description: Use this function to enter the upper limit value of the output value measuring range.

User entry: Signed floating-point number

Factory setting: 0 %

Additional information: Dependency

The unit is taken from the: Units index parameter (→ 145)

EU at 0%

Navigation: Expert → Analog inputs → Analog input 1 to n → EU at 0% (6981–1 to n)

Description: Use this function to enter the lower limit value of the output value measuring range.

User entry: Signed floating-point number

Factory setting: 0 %

Additional information: Dependency

The unit is taken from the: Units index parameter (→ 145)

Units index

Navigation: Expert → Analog inputs → Analog input 1 to n → Units index (6983–1 to n)

Description: Use this function to select the unit for the output value.
Selection

SI units
- g/s
- g/min
- g/h
- g/d
- kg/s
- kg/min
- kg/h
- kg/d
- t/s
- t/min
- t/h
- t/d
- l/s
- l/min
- l/d
- l/h
- m³/s
- m³/min
- m³/h
- m³/d
- cm³/s
- cm³/min
- cm³/h
- cm³/d
- dm³/s
- dm³/min
- dm³/h
- dm³/d
- ml/s
- ml/min
- ml/h
- ml/d
- NL/s
- NL/min
- NL/h
- NL/d
- Nm³/s
- Nm³/min
- Nm³/h
- Nm³/d
- Sm³/s
- Sm³/min
- Sm³/h
- Sm³/d
- MSft³/d
- kg/l
- kg/m³
- kg/dm³
- g/cm³
- g/m³
- SD4°C
- SD15°C
- SD20°C
- SG4°C
- SG20°C
- SG15°C
- kg/Nl
- g/Scm³

US units
- oz/s
- oz/min
- oz/h
- oz/d
- lb/s
- lb/min
- lb/h
- lb/d
- STon/s
- STon/min
- STon/h
- STon/d
- af/s
- af/min
- af/h
- af/d
- ft³/s
- ft³/min
- ft³/h
- ft³/d
- fl oz/s (us)
- fl oz/min (us)
- fl oz/h (us)
- fl oz/d (us)
- gal/s (us)
- gal/min (us)
- gal/h (us)
- gal/d (us)
- Mgal/s (us)
- Mgal/min (us)
- Mgal/h (us)
- Mgal/d (us)
- bbl/s (us;oil)
- bbl/min (us;oil)
- bbl/h (us;oil)
- bbl/d (us;oil)
- lb/gal (us)
- lb/bbl (us;oil)
- Mgal (us)
- Sgal (us)
- bbl (us;oil)
- gal (us)

Imperial units
- gal/s (imp)
- gal/min (imp)
- gal/h (imp)
- gal/d (imp)
- Mgal/s (imp)
- Mgal/min (imp)
- Mgal/h (imp)
- Mgal/d (imp)
- bbl/d (imp;oil)
- bbl/h (imp;oil)
- bbl/min (imp;oil)
- bbl/s (imp;oil)
- lb/gal (imp)
- lb/bbl (imp;oil)
- Mgal (imp)
- Sgal (imp)
- bbl (imp;oil)
- gal (imp)
• kg/Sm³
• kg/Nm³
• K
• °C
• %
• g
• Nl
• Nm³
• °C
• %
• ml
• kg
• l
• t
• m³
• dm³
• cm³
• Sgal/d (us)
• Sgal/h (us)
• Sbbl/s (us; liq.)
• Sbbl/min (us; liq.)
• Sbbl/h (us; liq.)
• Sbbl/d (us; liq.)
• Sgal/s (imp)
• Sgal/min (imp)
• Sgal/h (imp)
• Sgal/d (imp)
• MSft³/D
• lb/ft³
• lb/gal (us)
• lb/bbl (us; tank)
• lb/bbl (us; liq.)
• lb/bbl (us; beer)
• lb/bbl (us; oil)
• lb/Sft³
• °F
• °R
• oz
• af
• fl oz (us)
• Mgal (us)
• bbl (us; oil)
• bbl (us; liq.)
• bbl (us; tank)
• Sgal (us)
• Sbbl (us; liq.)
• Sft³
• kgal (us)
• lb
• ft³
• gal (us)
• bbl (us; beer)
• STon

Other units
bbl (imp; beer)

Factory setting
%

Additional information
Result
The selected unit applies for:
• Simulate Value parameter (→ 142)
• Transducer Value parameter (→ 144)
• EU at 0% parameter (→ 145)
• EU at 100% parameter (→ 145)

Decimal

Navigation
Expert → Analog inputs → Analog input 1 to n → Decimal (6980–1 to n)

Description
Use this function to enter the number of decimal places for the output value.
Description of device parameters

Proline Promass 200 FOUNDATION Fieldbus

EU at 100%

Navigation

- Expert → Analog inputs → Analog input 1 to n → EU at 100% (6963–1 to n)

Description

Use this function to enter the upper limit value of the input value measuring range from the transducer block (input value).

User entry

- Signed floating-point number

Factory setting

- 0

Additional information

- *Dependency*
 - The unit is taken from the: Units index parameter (→ 148)

EU at 0%

Navigation

- Expert → Analog inputs → Analog input 1 to n → EU at 0% (6962–1 to n)

Description

Function for entering the lower limit value of the input value measuring range from the transducer block (input value).

User entry

- Signed floating-point number

Factory setting

- 0

Additional information

- *Dependency*
 - The unit is taken from the: Units index parameter (→ 148)

Units index

Navigation

- Expert → Analog inputs → Analog input 1 to n → Units index (6908–1 to n)

Description

Use this function to select the unit for the input value from the transducer block (input value).
Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
<th>Imperial units</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>mls</td>
<td>gal (imp)</td>
</tr>
<tr>
<td>m</td>
<td>°F</td>
<td>Btu</td>
</tr>
<tr>
<td>m³</td>
<td>°R</td>
<td>L'Ton</td>
</tr>
<tr>
<td>Pa s</td>
<td>ft</td>
<td>datherm</td>
</tr>
<tr>
<td>m²/s</td>
<td>in</td>
<td>Btu/h</td>
</tr>
<tr>
<td>P</td>
<td>bbl (us;liq.)</td>
<td>Btu/day</td>
</tr>
<tr>
<td>cP</td>
<td>in/min</td>
<td>Btu/min</td>
</tr>
<tr>
<td>St</td>
<td>oz</td>
<td>Btu/s</td>
</tr>
<tr>
<td>cSt</td>
<td>STon</td>
<td>L'Ton/d</td>
</tr>
<tr>
<td>Wbkm</td>
<td>STon/h</td>
<td>L'Ton/h</td>
</tr>
<tr>
<td>Ns/m</td>
<td>STon/min</td>
<td>L'Ton/min</td>
</tr>
<tr>
<td>1/Jm³</td>
<td>STon/s</td>
<td>L'Ton/s</td>
</tr>
<tr>
<td>e/Vm³</td>
<td>mile</td>
<td>gal/d (imp)</td>
</tr>
<tr>
<td>m³/C</td>
<td>yd</td>
<td>gal/h (imp)</td>
</tr>
<tr>
<td>(1/32 millisec)/min</td>
<td>ft²</td>
<td>gal/min (imp)</td>
</tr>
<tr>
<td>°C</td>
<td>in²</td>
<td>gal/s (imp)</td>
</tr>
<tr>
<td>'</td>
<td>mile²</td>
<td>lb/gal (imp)</td>
</tr>
<tr>
<td>rad</td>
<td>yd²</td>
<td>Mgal/min (imp)</td>
</tr>
<tr>
<td>'</td>
<td>ft³</td>
<td>Mgal/h (imp)</td>
</tr>
<tr>
<td>µm</td>
<td>mile³</td>
<td>Mgal/d (imp)</td>
</tr>
<tr>
<td>mm</td>
<td>in³</td>
<td>kgal/h (imp)</td>
</tr>
<tr>
<td>cm³</td>
<td>bushel</td>
<td>kgal/d (imp)</td>
</tr>
<tr>
<td>dm³</td>
<td>lb/gal (us)</td>
<td>kgal/min (imp)</td>
</tr>
<tr>
<td>hl</td>
<td>quart</td>
<td>kgal/s (imp)</td>
</tr>
<tr>
<td>l</td>
<td>pint</td>
<td>µgal/d (imp)</td>
</tr>
<tr>
<td>ml</td>
<td>gal (us)</td>
<td>µgal/h (imp)</td>
</tr>
<tr>
<td>s</td>
<td>quart</td>
<td>µgal/min (imp)</td>
</tr>
<tr>
<td>min</td>
<td>pint</td>
<td>µgal/s (imp)</td>
</tr>
<tr>
<td>ks</td>
<td>gal/h (imp)</td>
<td>Mgal/d (imp)</td>
</tr>
<tr>
<td>µs</td>
<td>gal/min</td>
<td>Mgal/s (imp)</td>
</tr>
<tr>
<td>ms</td>
<td>gal/s</td>
<td>Mgal/min (imp)</td>
</tr>
<tr>
<td>m/h</td>
<td>gal/s</td>
<td>kImpGal</td>
</tr>
<tr>
<td>m/s</td>
<td>lb/gal (us)</td>
<td>Btu/lb</td>
</tr>
<tr>
<td>mm/s</td>
<td>Mgal/h</td>
<td></td>
</tr>
<tr>
<td>Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GWh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kWh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MWh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kcal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mcal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MJ/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ohm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ml Mega</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mbar a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kPa a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kPa g</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device Parameters</td>
<td>Proline Promass 200 FOUNDATION Fieldbus</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>• MPa a</td>
<td>• gal/h (us)</td>
<td></td>
</tr>
<tr>
<td>• MPa g</td>
<td>• gal/min (us)</td>
<td></td>
</tr>
<tr>
<td>• Pa a</td>
<td>• gal/s (us)</td>
<td></td>
</tr>
<tr>
<td>• Pa g</td>
<td>• Mgal/d (us)</td>
<td></td>
</tr>
<tr>
<td>• g/d</td>
<td>• bbl/d (us; oil)</td>
<td></td>
</tr>
<tr>
<td>• g/h</td>
<td>• bbl/h (us; oil)</td>
<td></td>
</tr>
<tr>
<td>• g/min</td>
<td>• bbl/min (us; oil)</td>
<td></td>
</tr>
<tr>
<td>• g/s</td>
<td>• bbl/s (us; oil)</td>
<td></td>
</tr>
<tr>
<td>• kg/d</td>
<td>• Mgal/h (us)</td>
<td></td>
</tr>
<tr>
<td>• kg/h</td>
<td>• Mgal/min (us)</td>
<td></td>
</tr>
<tr>
<td>• kg/min</td>
<td>• Mgal/s (us)</td>
<td></td>
</tr>
<tr>
<td>• kg/s</td>
<td>• Mgal (us)</td>
<td></td>
</tr>
<tr>
<td>• cm</td>
<td>• af</td>
<td></td>
</tr>
<tr>
<td>• km</td>
<td>• af/d</td>
<td></td>
</tr>
<tr>
<td>• nm</td>
<td>• af/h</td>
<td></td>
</tr>
<tr>
<td>• pm</td>
<td>• af/min</td>
<td></td>
</tr>
<tr>
<td>• cm²</td>
<td>• af/s</td>
<td></td>
</tr>
<tr>
<td>• dm²</td>
<td>• bbl/d (us; beer)</td>
<td></td>
</tr>
<tr>
<td>• km²</td>
<td>• bbl/h (us; beer)</td>
<td></td>
</tr>
<tr>
<td>• m³</td>
<td>• bbl/min (us; beer)</td>
<td></td>
</tr>
<tr>
<td>• mm²</td>
<td>• bbl/s (us; beer)</td>
<td></td>
</tr>
<tr>
<td>• mm³</td>
<td>• kgal/d (us)</td>
<td></td>
</tr>
<tr>
<td>• cl</td>
<td>• kgal/h (us)</td>
<td></td>
</tr>
<tr>
<td>• t</td>
<td>• kgal/min (us)</td>
<td></td>
</tr>
<tr>
<td>• kg/m³</td>
<td>• kgal/s (us)</td>
<td></td>
</tr>
<tr>
<td>• kg/dm³</td>
<td>• µgal/d (us)</td>
<td></td>
</tr>
<tr>
<td>• g/cm³</td>
<td>• µgal/h (us)</td>
<td></td>
</tr>
<tr>
<td>• g/m³</td>
<td>• µgal/min (us)</td>
<td></td>
</tr>
<tr>
<td>• kg/l</td>
<td>• µgal/s (us)</td>
<td></td>
</tr>
<tr>
<td>• kgf/cm²</td>
<td>• mgal/d (us)</td>
<td></td>
</tr>
<tr>
<td>• GJ</td>
<td>• mgal/h (us)</td>
<td></td>
</tr>
<tr>
<td>• kj</td>
<td>• mgal/min (us)</td>
<td></td>
</tr>
<tr>
<td>• MJ</td>
<td>• mgal/s (us)</td>
<td></td>
</tr>
<tr>
<td>• km/h</td>
<td>• kft³/d</td>
<td></td>
</tr>
<tr>
<td>• kt</td>
<td>• kft³/h</td>
<td></td>
</tr>
<tr>
<td>• m/s²</td>
<td>• kft³/min</td>
<td></td>
</tr>
<tr>
<td>• GHz</td>
<td>• kft³/s</td>
<td></td>
</tr>
<tr>
<td>• kHz</td>
<td>• mft³/d</td>
<td></td>
</tr>
<tr>
<td>• MHz</td>
<td>• mft³/h</td>
<td></td>
</tr>
<tr>
<td>• 1/min</td>
<td>• mft³/min</td>
<td></td>
</tr>
<tr>
<td>• 1/s</td>
<td>• mft³/s</td>
<td></td>
</tr>
<tr>
<td>• THz</td>
<td>• ubbl(US Beer)/min</td>
<td></td>
</tr>
<tr>
<td>• rad/s</td>
<td>• ubbl(US Beer)/s</td>
<td></td>
</tr>
<tr>
<td>• 1/s²</td>
<td>• mbbl(US Beer)/d</td>
<td></td>
</tr>
<tr>
<td>• Mg</td>
<td>• mbbl(US Beer)/h</td>
<td></td>
</tr>
<tr>
<td>• mg</td>
<td>• mbbl(US Beer)/min</td>
<td></td>
</tr>
<tr>
<td>• g/l</td>
<td>• mbbl(US Beer)/s</td>
<td></td>
</tr>
<tr>
<td>• g/ml</td>
<td>• kgal (us)</td>
<td></td>
</tr>
<tr>
<td>• Mg/m³</td>
<td>• ac-in/d</td>
<td></td>
</tr>
<tr>
<td>• t/m³</td>
<td>• ac-in/h</td>
<td></td>
</tr>
<tr>
<td>• kgm/s</td>
<td>• ac-in/m</td>
<td></td>
</tr>
<tr>
<td>• kgm³</td>
<td>• ac-in/s</td>
<td></td>
</tr>
<tr>
<td>• kgm³/s</td>
<td>• Mft³/d</td>
<td></td>
</tr>
<tr>
<td>• kNm</td>
<td>• ac-in</td>
<td></td>
</tr>
<tr>
<td>• MNm</td>
<td>• Mft³</td>
<td></td>
</tr>
<tr>
<td>• mNm</td>
<td>• inH2Oa</td>
<td></td>
</tr>
<tr>
<td>• Nm</td>
<td>• inH2Og</td>
<td></td>
</tr>
<tr>
<td>• kN</td>
<td>• inH2O a(4°C)</td>
<td></td>
</tr>
<tr>
<td>• MN</td>
<td>• inH2Og(4°C)</td>
<td></td>
</tr>
<tr>
<td>Unit</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------------</td>
<td></td>
</tr>
<tr>
<td>µN</td>
<td>inH2O a(68°F)</td>
<td></td>
</tr>
<tr>
<td>mN</td>
<td>inH2O g(68°F)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>ftH2Oa</td>
<td></td>
</tr>
<tr>
<td>mN/m</td>
<td>ftH2Og</td>
<td></td>
</tr>
<tr>
<td>N/m</td>
<td>ftH2O a(4°C)</td>
<td></td>
</tr>
<tr>
<td>atm</td>
<td>ftH2O g(4°C)</td>
<td></td>
</tr>
<tr>
<td>GPa</td>
<td>ftH2O a(68°F)</td>
<td></td>
</tr>
<tr>
<td>hPa</td>
<td>ftH2O g(68°F)</td>
<td></td>
</tr>
<tr>
<td>kPa</td>
<td>inHga</td>
<td></td>
</tr>
<tr>
<td>MPa</td>
<td>inHgg</td>
<td></td>
</tr>
<tr>
<td>µPa</td>
<td>inHg a(0°C)</td>
<td></td>
</tr>
<tr>
<td>mPa</td>
<td>inHgg(0°C)</td>
<td></td>
</tr>
<tr>
<td>Pa</td>
<td>klb(US)/d</td>
<td></td>
</tr>
<tr>
<td>torr</td>
<td>klb(US)/h</td>
<td></td>
</tr>
<tr>
<td>gf/cm²</td>
<td>klb(US)/min</td>
<td></td>
</tr>
<tr>
<td>cal</td>
<td>klb(US)/s</td>
<td></td>
</tr>
<tr>
<td>Ej</td>
<td>MSft³/D</td>
<td></td>
</tr>
<tr>
<td>mj</td>
<td>mils/yr</td>
<td></td>
</tr>
<tr>
<td>PJ</td>
<td>ft/s²</td>
<td></td>
</tr>
<tr>
<td>TJ</td>
<td>MLB/H</td>
<td></td>
</tr>
<tr>
<td>TWh</td>
<td>lbf-in/deg</td>
<td></td>
</tr>
<tr>
<td>Wh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>µW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mcal/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kcal/d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kcal/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kcal/min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kcal/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mcal/d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mcal/min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mcal/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kJ/d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kJ/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kJ/min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kJ/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>µA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>µC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ah</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W/mK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m2K/W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W/m²K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J/K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kj/K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J/(kgK)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• kJ/(kgK)
• J/kg
• kJ/kg
• MJ/kg
• C/cm³
• C/m³
• C/mm³
• kC/m³
• µC/m³
• mC/m³
• C/cm²
• C/m²
• C/mm²
• kC/m²
• µC/m²
• mC/m²
• kV/m
• MV/m
• µV/m
• mV/m
• V/cm
• V/m
• kV
• MV
• µV
• F
• µF
• mF
• nF
• F/m
• A/cm²
• kA/m²
• MA/m²
• A/cm
• A/m
• kA/m
• µT
• mT
• nT
• T
• mWb
• Wb
• H
• µH
• mH
• nH
• pH
• H/m
• µH/m
• nH/m
• Am²
• GOhm
• kOhm
• MOhm
• µOhm
• mOhm
• kS
• µS
• µS/cm
- mS
- S
- t/d
- t/h
- t/min
- t/s
- %
- m³/d
- m³/h
- m³/min
- m³/s
- GOhmm
- kOhmm
- MOhmm
- µOhmm
- nOhmm
- Ohmcm
- Ohmm
- kS/m
- MS/m
- µS/mm
- mS/cm
- S/m
- sr
- l/d
- l/h
- l/min
- l/s
- MJ/d
- kW/m²
- W/(sr·m²)
- cd
- cd/m²
- lm
- lm/m²
- lm/W
- lx
- µW/m²
- mW/m²
- pW/m²
- Pas/m³
- Pas/m
- ppm
- MJ/d
- MJ/min
- MJ/s
- cm³/d
- cm³/h
- cm³/min
- cm³/s
- Nm²
- Nm²/d
- Nm²/h
- Nm²/min
- Nm²/s
- Sm³
- Sm³/d
- Sm³/h
Description of device parameters

- Sm³/min
- Sm³/s
- Nl
- Nl/d
- Nl/h
- Nl/min
- Nl/s
- Sl
- ml/min
- B
- ppb
- ppt
- "Balling"
- km³/d
- km³/h
- km³/min
- km³/s
- Mm³/d
- Mm³/h
- Mm³/min
- Mm³/s
- µm³/d
- µm³/h
- µm³/min
- µm³/s
- mm³/d
- mm³/h
- mm³/min
- mm³/s
- kl/d
- kl/h
- kl/min
- kl
- Sl/d
- Sl/h
- Sl/min
- Sl/s
- kL/s
- Ml/h
- Ml/min
- Mm³/d
- Mm³
- GPa a
- GPa g
- hPa a
- hPa g
- gf/cm² a
- gf/cm² g
- kgf/cm² a
- kgf/cm² g
- mBarg
- µbar
- Gy
- mGy
- mSv
- rem
- Sv
- Bq
- kBq
- MBq
- cnt/s
- MSft³/d
- SCCM
- dm
- mm/yr
- g/m
- µg/m³
- µg/l
- mg/m³
- kmol
- µmol
- mmol
- mol
- mol/dm³
- mol/m³
- mol/l
- cm³/mol
- m³/mol
- g/mol
- kg/mol
- l/mol
- mg/l
- µS/m
- mS/m
- nS/cm
- S/cm
- kOhmcm
- MOhmcm
- 1/m³
- µL/L
- ml/m³
- ml/l
- J/mol
- kJ/mol
- J/(molK)
- Bq/kg
- kBq/kg
- MBq/kg
- J/g
- %/s
- %/V
- nA/ppm
- 1/32 ms
- 1/H
- /cm
- 1/K
- 1/m
- 1/mm
- Nm²/A
- Pa/A
- pA/hPa
- C/kg
- mC/kg
- dyne-cm/deg
- newton-m/deg
- bar a
- bar g
Description of device parameters Proline Promass 200 FOUNDATION Fieldbus

Custom-specific units
PV/Sec

Factory setting
K

Additional information
Result

The selected unit applies for:
- Value parameter (→ 136)
- Value parameter (→ 139)
- EU at 100% parameter (→ 145)
- EU at 0% parameter (→ 145)
- Low Cutoff parameter (→ 160)
- High High Limit parameter (→ 168)
- Float Value parameter (→ 172)
- High Limit parameter (→ 169)
- Float Value parameter (→ 174)
- Low Limit parameter (→ 170)
- Float Value parameter (→ 175)
- Low Low Limit parameter (→ 170)
- Float Value parameter (→ 177)

Decimal

Navigation
Expert → Analog inputs → Analog input 1 to n → Decimal (6961–1 to n)

Description
Use this function to select the number of decimal places for the input value from the transducer block (input value).

User entry
-128 to 127

Factory setting
0

Grant

Navigation
Expert → Analog inputs → Analog input 1 to n → Grant (6926–1 to n)

Description
Option for releasing certain access authorizations of the field bus host system on the device.

Selection
- Program
- Tune
- Alarm
- Local
- Operate
- Service
- Diagnostic
Deny

Navigation

Expert → Analog inputs → Analog input 1 to n → Deny (6925–1 to n)

Description

Option for restricting certain access authorizations of the field bus host system on the device.

Selection

- Program Denied
- Tune Denied
- Alarm Denied
- Local
- Operate Denied

I/O Options

Navigation

Expert → Analog inputs → Analog input 1 to n → I/O Options (6941–1 to n)

Description

Option for activating the low flow cut off.

Selection

Low Cutoff

Additional information

The limit value for the low flow cut off is defined in **Low Cutoff** parameter (→ 160).

Channel

Navigation

Expert → Analog inputs → Analog input 1 to n → Channel (6902–1 to n)

Description

Use this function to select the input value that should be processed in the Analog Input function block.

Selection

- Uninitialized
- Mass flow
- Volume flow
- Correct:vol.flow
- Density
- Ref.density
- Temperature
- Totalizer 1
- Totalizer 2
- Totalizer 3

Factory setting

Uninitialized
Status Options

Navigation
- Expert → Analog inputs → Analog input 1 to n → Status Options (6971–1 to n)

Prerequisite
The measuring device must be in the OOS operating mode so that the parameter can be edited.

Description
Use this function to select an option for the status of the output value that is supported by the analog input block.

Selection
- Propag Fault Fwd
- Uncertain if Lim
- Bad if Limited
- Uncertain if Man

Additional information

- **Options**
 - **Propag Fault Fwd**
 If the measuring device has the status Bad Device Failure or Bad Sensor Failure, the device continues to measure and no alarm is triggered. The use of this substatus in the output value (OUT) is defined by Propag Fault Fwd option. With the aid of this option, the user/operator can specify whether the alarm generation (sending an alarm) is triggered by the block or is forwarded downstream.
 - **Uncertain if Lim**
 If the measured or calculated value reaches a limit value, Uncertain if Lim option is used for the output status.
 - **Bad if Limited**
 If the measured value exceeds or falls below an upper or lower limit value, Bad if Limited option is used as the output status.
 - **Uncertain if Man**
 If the Actual mode of the function block is in the Man option operating mode, Uncertain if Man option is used as the output status.

Lin Type

Navigation
- Expert → Analog inputs → Analog input 1 to n → Lin Type (6905–1 to n)

Description
Use this function to select the type of linearization of the input value or simulation value.

Selection
- Uninitialized
- Direct
- Indirect
- Indirect Sq Root

Factory setting
Uninitialized

Additional information

- **Uninitialized** option
 The function block does not switch to Auto operating mode.

- **Direct** option
 The measured value from the transducer block (input value) bypasses the linearization function and is routed unchanged through the analog input function block (Xd_Scale = Out_Scale). This is selected if the input value already has the required physical units.
PV = Input value

The units in Units index (→ 145) (Xd_Scale) and Units index (→ 148) (Out_Scale) must be the same. Otherwise, the function block will remain in the OOS operating mode and the BlockConfigurat block error is displayed in Block Error (→ 134).

"Indirect" option

The measured value from the transducer block (input value) is linearly rescaled via the Xd_Scale input scaling to the required Out_Scale output range.

\[
PV = \frac{X}{100} \cdot (Y - Z) - Z
\]

PV Primary value
X Value (→ 163) (Field_Val)
Y EU at 100% (→ 148) (Out_Scale)
Z EU at 0% (→ 148) (Out_Scale)

"Indirect Sq Root" option

The measured value from the transducer block (input value) is rescaled via the Xd_Scale parameter group and recalculated using a root function. It is then rescaled again to the required output range via the Out_Scale parameter group.

\[
PV = \sqrt{\frac{X}{100} \cdot (Y - Z) - Z}
\]

PV Primary value
X Value (→ 163) (Field_Val)
Y EU at 100% (→ 148) (Out_Scale)
Z EU at 0% (→ 148) (Out_Scale)

Example

- System unit in transducer block: kg/h
- Sensor measuring range: 0 to 30 kg/h
- Output range for the automation system: 0 to 100 %

The analog input function block must be configured as follows:

1. In the Channel parameter (→ 157), select the Mass flow option.
2. In the Lin Type parameter (→ 158), select the Indirect option.
 - The "Volume Flow" process variable of the transducer block "Flow" is linearly rescaled in the AI block to the required Out_Scale output range via the Xd_Scale input scaling.
3. In the Xd_Scale parameter group:
 - EU at 0% parameter (→ 145), enter the value 0.
 - EU at 100% parameter (→ 145), enter the value 30.
 - In the Units index parameter (→ 145), select the kg/h option.
4. In the Out_Scale parameter group:
 - EU at 0% parameter (→ 148), enter the value 0.
 - EU at 100% parameter (→ 148), enter the value 100.
 - In the Units index parameter (→ 148), select the % option.

The result is that an input value of 15 kg/h, for example, outputs a value of 50 % via the Value parameter (→ 139).
Description of device parameters

Proline Promass 200 FOUNDATION Fieldbus

![Diagram]

Low Cutoff

Navigation

- Expert → Analog inputs → Analog input 1 to n → Low Cutoff (6956–1 to n)

Description

Use this function to enter a limit value for low flow cut off.

User entry

Positive floating-point number

Factory setting

0

Additional information

Description

If the converted input value (PV) falls below this limit value, then it is set to zero.

- The low flow cut off is enabled via I/O Options parameter (→ 157).

Dependency

- The unit is taken from the: Units index parameter (→ 148)

Status

Navigation

- Expert → Analog inputs → Analog input 1 to n → Status (6923–1 to n)

Description

Displays the status of the unprocessed measured value from the device, which reflects the status of the transducer before signal transmission.

User interface

- Bad (0x00)
- Bad (0x01)
- Bad (0x02)
- Bad (0x03)
- Bad (0x04)
- Bad (0x05)
- Bad (0x06)
- Bad (0x07)
- Bad (0x08)
- Bad (0x09)
- Bad (0x0A)

6 Engineering unit in kg/h
- Bad (0x0B)
- Bad (0x0C)
- Bad (0x0D)
- Bad (0x0E)
- Bad (0x0F)
- Bad (0x10)
- Bad (0x11)
- Bad (0x12)
- Bad (0x13)
- Bad (0x14)
- Bad (0x15)
- Bad (0x16)
- Bad (0x17)
- Bad (0x18)
- Bad (0x19)
- Bad (0x1A)
- Bad (0x1B)
- Bad (0x1C)
- Bad (0x1D)
- Bad (0x1E)
- Bad (0x1F)
- Uncertain (0x40)
- Uncertain (0x41)
- Uncertain (0x42)
- Uncertain (0x43)
- Uncertain (0x44)
- Uncertain (0x45)
- Uncertain (0x46)
- Uncertain (0x47)
- Uncertain (0x48)
- Uncertain (0x49)
- Uncertain (0x4A)
- Uncertain (0x4B)
- Uncertain (0x4C)
- Uncertain (0x4D)
- Uncertain (0x4E)
- Uncertain (0x4F)
- Uncertain (0x50)
- Uncertain (0x51)
- Uncertain (0x52)
- Uncertain (0x53)
- Uncertain (0x54)
- Uncertain (0x55)
- Uncertain (0x56)
- Uncertain (0x57)
- Uncertain (0x58)
- Uncertain (0x59)
- Uncertain (0x5A)
- Uncertain (0x5B)
- Good (0x80)
- Good (0x81)
- Good (0x82)
- Good (0x83)
- Good (0x84)
- Good (0x85)
- Good (0x86)
- Good (0x87)
- Good (0x88)
- Good (0x89)
• Good (0x8A)
• Good (0x8B)
• Good (0x8C)
• Good (0x8D)
• Good (0x8E)
• Good (0x8F)
• Good (0x90)
• Good (0x91)
• Good (0x92)
• Good (0x93)
• Good (0x94)
• Good (0x95)
• Good (0x96)
• Good (0x97)
• Good (0x98)
• Good (0x99)
• Good (0x9A)
• Good (0x9B)
• Good (0xC0)
• Good (0xC1)
• Good (0xC2)
• Good (0xC3)
• Good (0xC4)
• Good (0xC5)
• Good (0xC6)
• Good (0xC7)
• Good (0xC8)
• Good (0xC9)
• Good (0xCA)
• Good (0xCB)
• Good (0xCC)
• Good (0xCD)
• Good (0xCE)
• Good (0xCF)
• Good (0xD0)
• Good (0xD1)
• Good (0xD2)
• Good (0xD3)
• Good (0xD4)
• Good (0xD5)
• Good (0xD6)
• Good (0xD7)
• Good (0xD8)
• Good (0xD9)
• Good (0xDA)
• Good (0xDB)
• Good (0xDC)
• Good (0xDD)
• Good (0xDE)
• Good (0xDF)
• Good (0xE0)
• Good (0xE1)
• Good (0xE2)
• Good (0xE3)
Value

Navigation
Expert → Analog inputs → Analog input 1 to n → Value (6924–1 to n)

Description
Displays the unprocessed measured value from the device as a % of the primary value (PV).

User interface
Signed floating-point number

PV Filter Time

Navigation
Expert → Analog inputs → Analog input 1 to n → PV Filter Time (6909–1 to n)

Description
Use this function to enter the filter time specification for the filtering of the unconverted input value (PV).

User entry
Positive floating-point number

Factory setting
0 s

Additional information
Factory setting
- If the value 0 s is entered, filtering will not be performed.

Unacknowledged

Navigation
Expert → Analog inputs → Analog input 1 to n → Unacknowledged (6978–1 to n)

Description
Option for manually acknowledging an update of the static block parameter.

Selection
- Uninitialized
- Acknowledged
- Unacknowledged

Factory setting
Uninitialized

Additional information
Description
- If a new diagnostic event occurs, the measuring device sets **Unacknowledged** option.
- If the diagnostic event has been acknowledged, the user can set **Acknowledged** option.
Update State

Navigation

- Expert → Analog inputs → Analog input 1 to n → Update State (6979–1 to n)

Description

Displays the status of an update of the static block parameter. The status indicates whether the update was communicated or not.

User interface

- Uninitialized
- Reported
- Not Reported

Time Stamp

Navigation

- Expert → Analog inputs → Analog input 1 to n → Time Stamp (6977–1 to n)

Description

Displays the time stamp indicating when the analysis of the block was started and when a status change of an update to the static block parameter that has not yet been communicated was identified. The time stamp is retained until the update confirmation is received.

User interface

Days (d), hours (h), minutes (m), seconds (s)

Static revision

Navigation

- Expert → Analog inputs → Analog input 1 to n → Static revision (6976–1 to n)

Description

Displays the Static revision: Each instance of a static block parameter being accessed with write and communicate access due to an update is counted (event counter).

User interface

0 to 65535

Relative Index

Navigation

- Expert → Analog inputs → Analog input 1 to n → Relative Index (6975–1 to n)

Description

Displays the relative index of the static block parameter that triggered the alarm (OD index minus field bus start index).

User interface

0 to 65535
Unacknowledged

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Analog inputs → Analog input 1 to n → Unacknowledged (6920–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Option for manually acknowledging a block alarm.</td>
</tr>
<tr>
<td>Selection</td>
<td>- Uninitialized</td>
</tr>
<tr>
<td></td>
<td>- Acknowledged</td>
</tr>
<tr>
<td></td>
<td>- Unacknowledged</td>
</tr>
<tr>
<td>Factory setting</td>
<td>Uninitialized</td>
</tr>
<tr>
<td>Additional information</td>
<td>Description</td>
</tr>
<tr>
<td></td>
<td>If Blk Alm Auto Ack option is not enabled in Ack. Option parameter (→ 167), the process alarm must be manually acknowledged in this parameter.</td>
</tr>
<tr>
<td></td>
<td>- If a new alarm occurs, the measuring device sets Unacknowledged option.</td>
</tr>
<tr>
<td></td>
<td>- If the alarm has been acknowledged, the user can set Acknowledged option.</td>
</tr>
</tbody>
</table>

Alarm State

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Analog inputs → Analog input 1 to n → Alarm State (6917–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the status of the block alarm. The status indicates whether the block alarm is active and whether it has already been communicated to the field bus host system.</td>
</tr>
<tr>
<td>User interface</td>
<td>- Uninitialized</td>
</tr>
<tr>
<td></td>
<td>- Clear-Reported</td>
</tr>
<tr>
<td></td>
<td>- ClearNotReported</td>
</tr>
<tr>
<td></td>
<td>- Active-Reported</td>
</tr>
<tr>
<td></td>
<td>- ActiveNotRep</td>
</tr>
</tbody>
</table>

Time Stamp

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Analog inputs → Analog input 1 to n → Time Stamp (6919–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the time stamp indicating when the analysis of the block was started and when a status change of the block alarm that has not yet been communicated to the field bus host system was detected. The time stamp is retained until the alarm confirmation is received.</td>
</tr>
<tr>
<td>User interface</td>
<td>Days (d), hours (h), minutes (m), seconds (s)</td>
</tr>
</tbody>
</table>
Subcode

Navigation
- Expert → Analog inputs → Analog input 1 to n → Subcode (6918–1 to n)

Description
Displays the specific cause of the block alarm.

User interface
- Other
- BlockConfigurat
- LinkConfigurat
- SimulationActive
- LocalOverride
- DeviceFaultState
- DeviceMainten
- SensorFailure
- OutputFailure
- MemoryFailure
- LostStaticData
- LostNVData
- ReadbackCheck
- MaintenanceNeed
- PowerUp
- OutOfService

Value

Navigation
- Expert → Analog inputs → Analog input 1 to n → Value (6921–1 to n)

Description
Displays the value of the affected parameter at the time at which the block alarm was detected.

User interface
0 to 255

Current

Navigation
- Expert → Analog inputs → Analog input 1 to n → Current (6912–1 to n)

Description
Use this function to view the current status of the process alarms.

User interface
- HiHi Alarm
- Hi Alarm
- LoLo Alarm
- Lo Alarm
- Block Alarm
Unacknowledged

Navigation

Expert → Analog inputs → Analog input 1 to n → Unacknowledged (6914–1 to n)

Description

Displays an unacknowledged process alarm.

User interface

- HiHi Alarm Unack
- Hi Alm Unack
- LoLo Alm Unack
- Lo Alm Unack
- Block Alm Unack

Unreported

Navigation

Expert → Analog inputs → Analog input 1 to n → Unreported (6915–1 to n)

Description

Displays a process alarm that has not been communicated.

User interface

- HiHi Alm Unrep
- Hi Alm Unrep
- LoLo Alm Unrep
- Lo Alm Unrep
- Block Alm Unrep

Disabled

Navigation

Expert → Analog inputs → Analog input 1 to n → Disabled (6913–1 to n)

Description

Option for disabling a process alarm category.

Selection

- HiHi Alm Disabl
- Hi Alm Disabled
- LoLo Alm Disabl
- Lo Alm Disabled
- Block Alm Disabl

Ack. Option

Navigation

Expert → Analog inputs → Analog input 1 to n → Ack. Option (6910–1 to n)

Description

Option for automatic acknowledgment of process alarms in a specific category.

Selection

- HiHi Alm Aut Ack
- Hi Alm Auto Ack
- LoLo Alm Aut Ack
- Lo Alm Auto Ack
Blk Alm Auto Ack
Fail Alm Auto Ack
OffSpecAlmAutoAck
Maint Alm Auto Ack
Check Alm Auto Ack

Additional information

Description
Use this function to determine whether an alarm must be acknowledged via the field bus host system.

If the process alarm option has not been enabled in this parameter, this process alarm must only be acknowledged in Unacknowledged parameter (→ 167). Current parameter (→ 166) indicates the current status of all process alarms.

Alarm Hysteresis

Navigation
Emerald Expert → Analog inputs → Analog input 1 to n → Alarm Hysteresis (6911–1 to n)

Description
Use this function to enter the hysteresis value for the upper and lower warning or alarm limit values.

User entry
0.000000 to 50.0000 %

Factory setting
0 %

Hi Hi Priority

Navigation
Emerald Expert → Analog inputs → Analog input 1 to n → Hi Hi Priority (6938–1 to n)

Description
Use this function to enter the priority for the upper alarm limit, which determines the behavior in the event of an active limit value violation.

User entry
0 to 15

Factory setting
0

High High Limit

Navigation
Emerald Expert → Analog inputs → Analog input 1 to n → High High Limit (6937–1 to n)

Description
Use this function to enter the value for the upper alarm limit.

User entry
Signed floating-point number

Factory setting
0
High Priority

Navigation
- Expert → Analog inputs → Analog input 1 to n → High Priority (6940–1 to n)

Description
Use this function to enter the priority for the upper early warning limit, which determines the behavior in the event of an active limit value violation.

User entry
0 to 15

Factory setting
0

High Limit

Navigation
- Expert → Analog inputs → Analog input 1 to n → High Limit (6939–1 to n)

Description
Use this function to enter the value for the upper early warning limit.

User entry
Signed floating-point number

Factory setting
0

Additional information
- *Dependency*
 - The unit is taken from the: Units index parameter (→ 148)

Low Priority

Navigation
- Expert → Analog inputs → Analog input 1 to n → Low Priority (6955–1 to n)

Description
Use this function to enter the priority for the lower early warning limit, which determines the behavior in the event of an active limit value violation.

User entry
0 to 15

Factory setting
0
Low Limit

Navigation
- Expert → Analog inputs → Analog input 1 to n → Low Limit (6947–1 to n)

Description
Use this function to enter the value for the lower early warning limit.

User entry
Signed floating-point number

Factory setting
0

Additional information

Dependency
- The unit is taken from the: Units index parameter (→ 148)

Low Low Priority

Navigation
- Expert → Analog inputs → Analog input 1 to n → Low Low Priority (6954–1 to n)

Description
Use this function to enter the priority for the lower alarm limit, which determines the behavior in the event of an active limit value violation.

User entry
0 to 15

Factory setting
0

Low Low Limit

Navigation
- Expert → Analog inputs → Analog input 1 to n → Low Low Limit (6953–1 to n)

Description
Use this function to enter the value for the lower alarm limit.

User entry
Signed floating-point number

Factory setting
0

Additional information

Dependency
- The unit is taken from the: Units index parameter (→ 148)

Unacknowledged

Navigation
- Expert → Analog inputs → Analog input 1 to n → Unacknowledged (6935–1 to n)

Description
Option for manually acknowledging a process alarm that has exceeded the upper alarm limit (High High Limit (→ 168)).
Selection

- Uninitialized
- Acknowledged
- Unacknowledged

Factory setting

Uninitialized

Additional information

Description

If HiHi Alm Aut Ack option is not enabled in Ack. Option parameter (→ ... 167), the process alarm must be manually acknowledged in this parameter.

- If a new alarm occurs, the measuring device sets Unacknowledged option.
- If the alarm has been acknowledged, the user can set Acknowledged option.

Alarm State

Navigation

Expert → Analog inputs → Analog input 1 to n → Alarm State (6932–1 to n)

Description

Displays the status of the process alarm for the upper alarm limit. The status indicates whether the process alarm is active and whether it has already been communicated to the field bus host system.

User interface

- Uninitialized
- Clear-Reported
- ClearNotReported
- Active-Reported
- ActiveNotRep

Time Stamp

Navigation

Expert → Analog inputs → Analog input 1 to n → Time Stamp (6934–1 to n)

Description

Displays the time stamp of the process alarm for the upper alarm limit. This records the time at which analysis of the block was started and at which a status change of the process alarm that has not yet been communicated to the field bus host system was detected. The time stamp is retained until the alarm confirmation is received.

User interface

Days (d), hours (h), minutes (m), seconds (s)

Subcode

Navigation

Expert → Analog inputs → Analog input 1 to n → Subcode (6933–1 to n)

Description

Displays the specific cause of the process alarm for the upper alarm limit.

User interface

- Other
- BlockConfigurat
- LinkConfigurat
- SimulationActive
- LocalOverride
- DeviceFaultState
- DeviceMainten
- SensorFailure
- OutputFailure
- MemoryFailure
- LostStaticData
- LostNVData
- ReadbackCheck
- MaintenanceNeed
- PowerUp
- OutOfService

Float Value

Navigation

Expert → Analog inputs → Analog input 1 to n → Float Value (6936–1 to n)

Description

Displays the value of the affected parameter at the time at which the process alarm for the upper alarm limit was triggered.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the: Units index parameter (→ 148)

Unacknowledged

Navigation

Expert → Analog inputs → Analog input 1 to n → Unacknowledged (6930–1 to n)

Description

Option for manually acknowledging a process alarm that has exceeded the upper early warning limit (High Limit (→ 169)).

Selection

- Uninitialized
- Acknowledged
- Unacknowledged

Factory setting

Uninitialized

Additional information

Description

If **Hi Alm Auto Ack** option is not enabled in Ack. Option parameter (→ 167), the process alarm must be manually acknowledged in this parameter.

- If a new alarm occurs, the measuring device sets Unacknowledged option.
- If the alarm has been acknowledged, the user can set Acknowledged option.
Alarm State

Navigation
- Expert → Analog inputs → Analog input 1 to n → Alarm State (6927–1 to n)

Description
Displays the status of the process alarm for the upper early warning limit. The status indicates whether the process alarm is active and whether it has already been communicated to the field bus host system.

User interface
- uninitialized
- Clear-Reported
- ClearNotReported
- Active-Reported
- ActiveNotRep

Time Stamp

Navigation
- Expert → Analog inputs → Analog input 1 to n → Time Stamp (6929–1 to n)

Description
Displays the time stamp of the process alarm for the upper early warning limit. This records the time at which analysis of the block was started and at which a status change of the process alarm that has not yet been communicated to the field bus host system was detected. The time stamp is retained until the alarm confirmation is received.

User interface
- Days (d), hours (h), minutes (m), seconds (s)

Subcode

Navigation
- Expert → Analog inputs → Analog input 1 to n → Subcode (6928–1 to n)

Description
Displays the specific cause of the process alarm for the upper early warning limit.

User interface
- Other
- BlockConfigurat
- LinkConfigurat
- SimulationActive
- LocalOverride
- DeviceFaultState
- DeviceMainten
- SensorFailure
- OutputFailure
- MemoryFailure
- LostStaticData
- LostNVData
- ReadbackCheck
- MaintenanceNeed
- PowerUp
- OutOfService
Float Value

Navigation

Expert → Analog inputs → Analog input 1 to n → Float Value (6931–1 to n)

Description

Displays the value of the affected parameter at the time at which the process alarm for the upper early warning limit was triggered.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the: **Units index** parameter (→ 148)

Unacknowledged

Navigation

Expert → Analog inputs → Analog input 1 to n → Unacknowledged (6945–1 to n)

Description

Option for manually acknowledging a process alarm that has exceeded the lower early warning limit (Low Limit (→ 170)).

Selection

- Uninitialized
- Acknowledged
- Unacknowledged

Factory setting

Uninitialized

Additional information

Description

If **Lo Alm Auto Ack** option is not enabled in **Ack. Option** parameter (→ 167), the process alarm must be manually acknowledged in this parameter.

- If a new alarm occurs, the measuring device sets **Unacknowledged** option.
- If the alarm has been acknowledged, the user can set **Acknowledged** option.

Alarm State

Navigation

Expert → Analog inputs → Analog input 1 to n → Alarm State (6942–1 to n)

Description

Displays the status of the process alarm for the lower early warning limit. The status indicates whether the process alarm is active and whether it has already been communicated to the field bus host system.

User interface

- Uninitialized
- Clear-Reported
- ClearNotReported
- Active-Reported
- ActiveNotRep
Time Stamp

Navigation

Expert → Analog inputs → Analog input 1 to n → Time Stamp (6944–1 to n)

Description
Displays the time stamp of the process alarm for the lower early warning limit. This records the time at which analysis of the block was started and at which a status change of the process alarm that has not yet been communicated to the field bus host system was detected. The time stamp is retained until the alarm confirmation is received.

User interface
Days (d), hours (h), minutes (m), seconds (s)

Subcode

Navigation

Expert → Analog inputs → Analog input 1 to n → Subcode (6943–1 to n)

Description
Displays the specific cause of the process alarm for the lower early warning limit.

User interface
- Other
- BlockConfigurat
- LinkConfigurat
- SimulationActive
- LocalOverride
- DeviceFaultState
- DeviceMainten
- SensorFailure
- OutputFailure
- MemoryFailure
- LostStaticData
- LostNVData
- ReadbackCheck
- MaintenanceNeed
- PowerUp
- OutOfService

Float Value

Navigation

Expert → Analog inputs → Analog input 1 to n → Float Value (6946–1 to n)

Description
Displays the value of the affected parameter at the time at which the process alarm for the lower early warning limit was triggered.

User interface
Signed floating-point number

Additional information

Dependency

The unit is taken from the: Units index parameter (→ 148)
Unacknowledged

Navigation

啬 Expert → Analog inputs → Analog input 1 to n → Unacknowledged (6951–1 to n)

Description

Option for manually acknowledging a process alarm that has exceeded the lower alarm limit (Low Low Limit → 170).

Selection

- Uninitialized
- Acknowledged
- Unacknowledged

Factory setting

Uninitialized

Additional information

Description

If LoLo Alm Aut Ack option is not enabled in Ack. Option parameter (→ 167), the process alarm must be manually acknowledged in this parameter.

- If a new alarm occurs, the measuring device sets Unacknowledged option.
- If the alarm has been acknowledged, the user can set Acknowledged option.

Alarm State

Navigation

啬 Expert → Analog inputs → Analog input 1 to n → Alarm State (6948–1 to n)

Description

Displays the status of the process alarm for the lower alarm limit. The status indicates whether the process alarm is active and whether it has already been communicated to the field bus host system.

User interface

- Uninitialized
- Clear-Reported
- ClearNotReported
- Active-Reported
- ActiveNotRep

Time Stamp

Navigation

啬 Expert → Analog inputs → Analog input 1 to n → Time Stamp (6950–1 to n)

Description

Displays the time stamp of the process alarm for the lower alarm limit. This records the time at which analysis of the block was started and at which a status change of the process alarm that has not yet been communicated to the field bus host system was detected. The time stamp is retained until the alarm confirmation is received.

User interface

Days (d), hours (h), minutes (m), seconds (s)
Subcode

Navigation

Expert → Analog inputs → Analog input 1 to n → Subcode (6949–1 to n)

Description
Displays the specific cause of the process alarm for the lower alarm limit.

User interface
• Other
• BlockConfigurat
• LinkConfigurat
• SimulationActive
• LocalOverride
• DeviceFaultState
• DeviceMainten
• SensorFailure
• OutputFailure
• MemoryFailure
• LostStaticData
• LostNVData
• ReadbackCheck
• MaintenanceNeed
• PowerUp
• OutOfService

Float Value

Navigation

Expert → Analog inputs → Analog input 1 to n → Float Value (6952–1 to n)

Description
Displays the value of the affected parameter at the time at which the process alarm for the lower alarm limit was triggered.

User interface
Signed floating-point number

Additional information
Dependency
The unit is taken from the: Units index parameter (→ 148)

3.6 "Discrete inputs" submenu

Navigation
Expert → Discrete inputs

Discrete inputs
Discrete input 1 to n
3.6.1 "Discrete input 1 to n" submenu

Navigation

Expert → Discrete inputs → Discrete input 1 to n

Block tag

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Block tag (6851–1 to n)

Description

Use this function to enter the Block tag: Used for specifying a "label" for identifying the function block.

User entry

Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /).

Static Revision

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Static Revision (6884–1 to n)

Description

Displays the Static Revision: Each instance of a static block parameter being accessed with write access is counted (event counter).

User interface

0 to FFFF

Additional information

Description

Static parameters are parameters that are not changed by the process.

Tag Description

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Tag Description (6885–1 to n)

Description

Use this function to enter the Tag Description: Used for defining a user-specific text for detailed description of the function block.
User entry

Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /).

Strategy

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Strategy (6883–1 to n)

Description

Use this function to enter the Strategy: Enables blocks to be grouped by entering identical numbers.

User entry

0 to FFFF

Factory setting

0

Alert Key

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Alert Key (6846–1 to n)

Description

Use this function to enter the Alert Key: Identifies the plant unit where the transmitter is located. This helps in pinpointing events.

User entry

0 to 0xFF

Factory setting

1

Target mode

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Target mode (6873–1 to n)

Description

Use this function to select the Target mode: The selection indicates which operating mode is used for this function block. This mode is generally set by a control application.

Selection

- ROut
- RCas
- Cas
- Auto
- Man
- LO
- IMan
- OOS

Factory setting

OOS

Additional information

Options

Detailed description of the options available for selection: Target mode parameter (→ 111)
Actual mode

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Actual mode (6870–1 to n)

Description

Displays the Actual mode: Under certain conditions, a function block may not work in the operating mode to be used. In this case, the Actual mode shows the actual operating mode in which the function block is currently operating. By comparing the Actual mode with the Target mode, users can see whether it was possible to reach the Target mode (→ 179).

User interface

• ROut
• RCas
• Cas
• Auto
• Man
• LO
• IMan
• OOS

Additional information

User interface

Detailed description of the options available for selection: Target mode parameter (→ 111)

Permitted mode

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Permitted mode (6872–1 to n)

Description

Use this function to select the Permitted mode: The selection defines which operating modes are available in Target mode (→ 179) for the function block. The operating modes that are supported vary depending on the type and function of the block.

Selection

• ROut
• RCas
• Cas
• Auto
• Man
• LO
• IMan
• OOS

Factory setting

• Auto
• OOS

Additional information

Options

Detailed description of the options available for selection: Target mode parameter (→ 111)
Normal mode

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Normal mode (6871–1 to n)

Description

Use this function to select the Normal mode: This is available to enable the user to select the Normal mode from the available operating modes. This can be set using an operating tool in order to help the user configure the operating mode of a function block.

Selection

- ROut
- RCas
- Cas
- Auto
- Man
- LO
- IMan
- OOS

Additional information

Options

Detailed description of the options available for selection: Target mode parameter

(→ 111)

Block Error

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Block Error (6857–1 to n)

Description

Displays the short text for the Block Error that has occurred in the function block.

User interface

- Other
- BlockConfigurat
- LinkConfigurat
- SimulationActive
- LocalOverride
- DeviceFaultState
- DeviceMainten
- SensorFailure
- OutputFailure
- MemoryFailure
- LostStaticData
- LostNVData
- ReadbackCheck
- MaintenanceNeed
- PowerUp
- OutOfService

Status

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Status (6875–1 to n)

Description

Displays the status of the discrete input value (PV).
User interface

- Bad (0x00)
- Bad (0x01)
- Bad (0x02)
- Bad (0x03)
- Bad (0x04)
- Bad (0x05)
- Bad (0x06)
- Bad (0x07)
- Bad (0x08)
- Bad (0x09)
- Bad (0x0A)
- Bad (0x0B)
- Bad (0x0C)
- Bad (0x0D)
- Bad (0x0E)
- Bad (0x0F)
- Bad (0x10)
- Bad (0x11)
- Bad (0x12)
- Bad (0x13)
- Bad (0x14)
- Bad (0x15)
- Bad (0x16)
- Bad (0x17)
- Bad (0x18)
- Bad (0x19)
- Bad (0x1A)
- Bad (0x1B)
- Bad (0x1C)
- Bad (0x1D)
- Bad (0x1E)
- Bad (0x1F)
- Uncertain (0x40)
- Uncertain (0x41)
- Uncertain (0x42)
- Uncertain (0x43)
- Uncertain (0x44)
- Uncertain (0x45)
- Uncertain (0x46)
- Uncertain (0x47)
- Uncertain (0x48)
- Uncertain (0x49)
- Uncertain (0x4A)
- Uncertain (0x4B)
- Uncertain (0x4C)
- Uncertain (0x4D)
- Uncertain (0x4E)
- Uncertain (0x4F)
- Uncertain (0x50)
- Uncertain (0x51)
- Uncertain (0x52)
- Uncertain (0x53)
- Uncertain (0x54)
- Uncertain (0x55)
- Uncertain (0x56)
- Uncertain (0x57)
- Uncertain (0x58)
- Uncertain (0x59)
- Uncertain (0x5A)
- Uncertain (0x5B)
- Good (0x80)
- Good (0x81)
- Good (0x82)
- Good (0x83)
- Good (0x84)
- Good (0x85)
- Good (0x86)
- Good (0x87)
- Good (0x88)
- Good (0x89)
- Good (0x8A)
- Good (0x8B)
- Good (0x8C)
- Good (0x8D)
- Good (0x8E)
- Good (0x8F)
- Good (0x90)
- Good (0x91)
- Good (0x92)
- Good (0x93)
- Good (0x94)
- Good (0x95)
- Good (0x96)
- Good (0x97)
- Good (0x98)
- Good (0x99)
- Good (0x9A)
- Good (0x9B)
- Good (0xC0)
- Good (0xC1)
- Good (0xC2)
- Good (0xC3)
- Good (0xC4)
- Good (0xC5)
- Good (0xC6)
- Good (0xC7)
- Good (0xC8)
- Good (0xC9)
- Good (0xCA)
- Good (0xCB)
- Good (0xCC)
- Good (0xCD)
- Good (0xCE)
- Good (0xCF)
- Good (0xD0)
- Good (0xD1)
- Good (0xD2)
- Good (0xD3)
- Good (0xD4)
- Good (0xD5)
- Good (0xD6)
- Good (0xD7)
- Good (0xD8)
- Good (0xD9)
- Good (0xDA)
- Good (0xDB)
- Good (0xDC)
- Good (0xDD)
Description of device parameters

Proline Promass 200 FOUNDATION Fieldbus

- Good (0xDE)
- Good (0xDF)
- Good (0xE0)
- Good (0xE1)
- Good (0xE2)
- Good (0xE3)

Value

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Value (6876–1 to n)

Description

Displays the discrete process variable that is used for the block implementation.

User interface

- State 0
- State 1
- State 2
- State 3
- State 4
- State 5
- State 6
- State 7
- State 8
- State 9
- State 10
- State 11
- State 12
- State 13
- State 14
- State 15
- State 16

Status

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Status (6853–1 to n)

Description

Displays the status of the discrete output value.

User interface

- Bad (0x00)
- Bad (0x01)
- Bad (0x02)
- Bad (0x03)
- Bad (0x04)
- Bad (0x05)
- Bad (0x06)
- Bad (0x07)
- Bad (0x08)
- Bad (0x09)
- Bad (0x0A)
- Bad (0x0B)
- Bad (0x0C)
- Bad (0x0D)
- Bad (0x0E)
- Bad (0x0F)
- Bad (0x10)
- Bad (0x11)
- Bad (0x12)
- Bad (0x13)
- Bad (0x14)
- Bad (0x15)
- Bad (0x16)
- Bad (0x17)
- Bad (0x18)
- Bad (0x19)
- Bad (0x1A)
- Bad (0x1B)
- Bad (0x1C)
- Bad (0x1D)
- Bad (0x1E)
- Bad (0x1F)
- Uncertain (0x40)
- Uncertain (0x41)
- Uncertain (0x42)
- Uncertain (0x43)
- Uncertain (0x44)
- Uncertain (0x45)
- Uncertain (0x46)
- Uncertain (0x47)
- Uncertain (0x48)
- Uncertain (0x49)
- Uncertain (0x4A)
- Uncertain (0x4B)
- Uncertain (0x4C)
- Uncertain (0x4D)
- Uncertain (0x4E)
- Uncertain (0x4F)
- Uncertain (0x50)
- Uncertain (0x51)
- Uncertain (0x52)
- Uncertain (0x53)
- Uncertain (0x54)
- Uncertain (0x55)
- Uncertain (0x56)
- Uncertain (0x57)
- Uncertain (0x58)
- Uncertain (0x59)
- Uncertain (0x5A)
- Uncertain (0x5B)
- Good (0x80)
- Good (0x81)
- Good (0x82)
- Good (0x83)
- Good (0x84)
- Good (0x85)
- Good (0x86)
- Good (0x87)
- Good (0x88)
- Good (0x89)
- Good (0x8A)
- Good (0x8B)
- Good (0x8C)
Proline Promass 200 FOUNDATION Fieldbus

- Good (0x8D)
- Good (0x8E)
- Good (0x8F)
- Good (0x90)
- Good (0x91)
- Good (0x92)
- Good (0x93)
- Good (0x94)
- Good (0x95)
- Good (0x96)
- Good (0x97)
- Good (0x98)
- Good (0x99)
- Good (0x9A)
- Good (0x9B)
- Good (0xC0)
- Good (0xC1)
- Good (0xC2)
- Good (0xC3)
- Good (0xC4)
- Good (0xC5)
- Good (0xC6)
- Good (0xC7)
- Good (0xC8)
- Good (0xC9)
- Good (0xCA)
- Good (0xCB)
- Good (0xCC)
- Good (0xCD)
- Good (0xCE)
- Good (0xCF)
- Good (0xD0)
- Good (0xD1)
- Good (0xD2)
- Good (0xD3)
- Good (0xD4)
- Good (0xD5)
- Good (0xD6)
- Good (0xD7)
- Good (0xD8)
- Good (0xD9)
- Good (0xDA)
- Good (0xDB)
- Good (0xDC)
- Good (0xDD)
- Good (0xDE)
- Good (0xDF)
- Good (0xE0)
- Good (0xE1)
- Good (0xE2)
- Good (0xE3)
Value

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Value (6854–1 to n)

Description

Use this function to select the discrete output value.

Selection

- State 0
- State 1
- State 2
- State 3
- State 4
- State 5
- State 6
- State 7
- State 8
- State 9
- State 10
- State 11
- State 12
- State 13
- State 14
- State 15
- State 16

Factory setting

State 0

Simulate Status

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Simulate Status (6878–1 to n)

Description

Use this function to select the status that is used for the transducer block simulation.

Selection

- Bad (0x00)
- Bad (0x01)
- Bad (0x02)
- Bad (0x03)
- Bad (0x04)
- Bad (0x05)
- Bad (0x06)
- Bad (0x07)
- Bad (0x08)
- Bad (0x09)
- Bad (0x0A)
- Bad (0x0B)
- Bad (0x0C)
- Bad (0x0D)
- Bad (0x0E)
- Bad (0x0F)
- Bad (0x10)
- Bad (0x11)
- Bad (0x12)
- Bad (0x13)
- Bad (0x14)
Description of device parameters

- Bad (0x15)
- Bad (0x16)
- Bad (0x17)
- Bad (0x18)
- Bad (0x19)
- Bad (0x1A)
- Bad (0x1B)
- Bad (0x1C)
- Bad (0x1D)
- Bad (0x1E)
- Bad (0x1F)
- Uncertain (0x40)
- Uncertain (0x41)
- Uncertain (0x42)
- Uncertain (0x43)
- Uncertain (0x44)
- Uncertain (0x45)
- Uncertain (0x46)
- Uncertain (0x47)
- Uncertain (0x48)
- Uncertain (0x49)
- Uncertain (0x4A)
- Uncertain (0x4B)
- Uncertain (0x4C)
- Uncertain (0x4D)
- Uncertain (0x4E)
- Uncertain (0x4F)
- Uncertain (0x50)
- Uncertain (0x51)
- Uncertain (0x52)
- Uncertain (0x53)
- Uncertain (0x54)
- Uncertain (0x55)
- Uncertain (0x56)
- Uncertain (0x57)
- Uncertain (0x58)
- Uncertain (0x59)
- Uncertain (0x5A)
- Uncertain (0x5B)
- Good (0x80)
- Good (0x81)
- Good (0x82)
- Good (0x83)
- Good (0x84)
- Good (0x85)
- Good (0x86)
- Good (0x87)
- Good (0x88)
- Good (0x89)
- Good (0x8A)
- Good (0x8B)
- Good (0x8C)
- Good (0x8D)
- Good (0x8E)
- Good (0x8F)
- Good (0x90)
- Good (0x91)
- Good (0x92)
- Good (0x93)
• Good (0x94)
• Good (0x95)
• Good (0x96)
• Good (0x97)
• Good (0x98)
• Good (0x99)
• Good (0xA0)
• Good (0xA1)
• Good (0xA2)
• Good (0xA3)
• Good (0xA4)
• Good (0xA5)
• Good (0xA6)
• Good (0xA7)
• Good (0xA8)
• Good (0xA9)
• Good (0xAA)
• Good (0xAB)
• Good (0xAC)
• Good (0xAD)
• Good (0xAE)
• Good (0xAF)
• Good (0xB0)
• Good (0xB1)
• Good (0xB2)
• Good (0xB3)
• Good (0xB4)
• Good (0xB5)
• Good (0xB6)
• Good (0xB7)
• Good (0xB8)
• Good (0xB9)
• Good (0xBA)
• Good (0xBB)
• Good (0xBC)
• Good (0xBD)
• Good (0xBE)
• Good (0xBF)
• Good (0xC0)
• Good (0xC1)
• Good (0xC2)
• Good (0xC3)
• Good (0xC4)
• Good (0xC5)
• Good (0xC6)
• Good (0xC7)
• Good (0xC8)
• Good (0xC9)
• Good (0xCA)
• Good (0xCB)
• Good (0xCC)
• Good (0xCD)
• Good (0xCE)
• Good (0xCF)
• Good (0xD0)
• Good (0xD1)
• Good (0xD2)
• Good (0xD3)
• Good (0xD4)
• Good (0xD5)
• Good (0xD6)
• Good (0xD7)
• Good (0xD8)
• Good (0xD9)
• Good (0xDA)
• Good (0xDB)
• Good (0xDC)
• Good (0xDD)
• Good (0xDE)
• Good (0xDF)
• Good (0xE0)
• Good (0xE1)
• Good (0xE2)
• Good (0xE3)

Factory setting

Bad (0x00)

Simulate Value

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Simulate Value (6879–1 to n)

Description

Use this function to select the simulation value that is used for the transducer block simulation.
Description of device parameters

Proline Promass 200 FOUNDATION Fieldbus

Selection
- State 0
- State 1
- State 2
- State 3
- State 4
- State 5
- State 6
- State 7
- State 8
- State 9
- State 10
- State 11
- State 12
- State 13
- State 14
- State 15
- State 16

Factory setting
State 0

Transducer Stat

Navigation
- Expert → Discrete inputs → Discrete input 1 to n → Transducer Stat (6880–1 to n)

Description
Displays the current status of the transducer block.

User interface
- Bad (0x00)
- Bad (0x01)
- Bad (0x02)
- Bad (0x03)
- Bad (0x04)
- Bad (0x05)
- Bad (0x06)
- Bad (0x07)
- Bad (0x08)
- Bad (0x09)
- Bad (0x0A)
- Bad (0x0B)
- Bad (0x0C)
- Bad (0x0D)
- Bad (0x0E)
- Bad (0x0F)
- Bad (0x10)
- Bad (0x11)
- Bad (0x12)
- Bad (0x13)
- Bad (0x14)
- Bad (0x15)
- Bad (0x16)
- Bad (0x17)
- Bad (0x18)
- Bad (0x19)
- Bad (0x1A)
- Bad (0x1B)
- Bad (0x1C)
- Bad (0x1D)
- Bad (0x1E)
- Bad (0x1F)
- Uncertain (0x40)
- Uncertain (0x41)
- Uncertain (0x42)
- Uncertain (0x43)
- Uncertain (0x44)
- Uncertain (0x45)
- Uncertain (0x46)
- Uncertain (0x47)
- Uncertain (0x48)
- Uncertain (0x49)
- Uncertain (0x4A)
- Uncertain (0x4B)
- Uncertain (0x4C)
- Uncertain (0x4D)
- Uncertain (0x4E)
- Uncertain (0x4F)
- Uncertain (0x50)
- Uncertain (0x51)
- Uncertain (0x52)
- Uncertain (0x53)
- Uncertain (0x54)
- Uncertain (0x55)
- Uncertain (0x56)
- Uncertain (0x57)
- Uncertain (0x58)
- Uncertain (0x59)
- Uncertain (0x5A)
- Uncertain (0x5B)
- Good (0x80)
- Good (0x81)
- Good (0x82)
- Good (0x83)
- Good (0x84)
- Good (0x85)
- Good (0x86)
- Good (0x87)
- Good (0x88)
- Good (0x89)
- Good (0x8A)
- Good (0x8B)
- Good (0x8C)
- Good (0x8D)
- Good (0x8E)
- Good (0x8F)
- Good (0x90)
- Good (0x91)
- Good (0x92)
- Good (0x93)
- Good (0x94)
- Good (0x95)
- Good (0x96)
- Good (0x97)
- Good (0x98)
- Good (0x99)
- Good (0x9A)
- Good (0x9B)
Description of device parameters

Proline Promass 200 FOUNDATION Fieldbus

- Good (0xC0)
- Good (0xC1)
- Good (0xC2)
- Good (0xC3)
- Good (0xC4)
- Good (0xC5)
- Good (0xC6)
- Good (0xC7)
- Good (0xCB)
- Good (0xC8)
- Good (0xC9)
- Good (0xCA)
- Good (0xCB)
- Good (0xCC)
- Good (0xCD)
- Good (0xCE)
- Good (0xCF)
- Good (0xD0)
- Good (0xD1)
- Good (0xD2)
- Good (0xD3)
- Good (0xD4)
- Good (0xD5)
- Good (0xD6)
- Good (0xD7)
- Good (0xD8)
- Good (0xD9)
- Good (0xDA)
- Good (0xDB)
- Good (0xDC)
- Good (0xDD)
- Good (0xDE)
- Good (0xDF)
- Good (0xE0)
- Good (0xE1)
- Good (0xE2)
- Good (0xE3)

Transducer Value

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Transducer Value (6881–1 to n)

Description

Displays the current value of the transducer block.

User interface

- State 0
- State 1
- State 2
- State 3
- State 4
- State 5
- State 6
- State 7
- State 8
- State 9
- State 10
- State 11
Proline Promass 200 FOUNDATION Fieldbus

Description of device parameters

- State 12
- State 13
- State 14
- State 15
- State 16

Factory setting: State 0

Sim. En/Disable

Navigation
- Expert → Discrete inputs → Discrete input 1 to n → Sim. En/Disable (6877–1 to n)

Description
Use this function to enable or disable the function block simulation.

Selection
- Uninitialized
- Disabled
- Active

Factory setting: Uninitialized

Transducer State

Navigation
- Expert → Discrete inputs → Discrete input 1 to n → Transducer State (6891–1 to n)

Description
Use this function to enter the transducer state: this is required by FieldValD (Status parameter (→ 196), Value parameter (→ 198)) to display the actual on/off status of the hardware.

User entry: 0 to 65535

Factory setting: 0

Output State

Navigation
- Expert → Discrete inputs → Discrete input 1 to n → Output State (6874–1 to n)

Description
Use this function to enter the output state: This is required for scaling the discrete input value (PV).

User entry: 0 to 65535

Factory setting: 0
Deny

Navigation
Expert → Discrete inputs → Discrete input 1 to n → Deny (6867–1 to n)

Description
Option for restricting certain access authorizations of the field bus host system on the device.

Selection
- Program Denied
- Tune Denied
- Alarm Denied
- Local
- Operate Denied

Grant

Navigation
Expert → Discrete inputs → Discrete input 1 to n → Grant (6868–1 to n)

Description
Option for releasing certain access authorizations of the field bus host system on the device.

Selection
- Program
- Tune
- Alarm
- Local
- Operate
- Service
- Diagnostic

I/O Options

Navigation
Expert → Discrete inputs → Discrete input 1 to n → I/O Options (6869–1 to n)

Description
Option for activating the inversion of the signal.

Selection
Invert

Additional information
Description
This selection determines whether the discrete input is inverted before it is stored as a process variable. Normally a discrete value of 0 is regarded as a logical value of 0 and a discrete value that is not equal to 0 is regarded as a logical value of 1. If inversion is enabled, this correlation is reversed. A field device input value that is not equal to 0 results in a discrete output value of 0 and an input value of 0 results in a discrete output value of 1.
Status Options

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Status Options (6882–1 to n)

Prerequisite

The measuring device must be in the OOS operating mode so that the parameter can be edited.

Description

For selecting an option for the status of the output value that is supported by the Discrete input block.

Selection

- Propag Fault Fwd
- Uncertain if Man

Additional information

- **Options**
 - Propag Fault Fwd
 If the measuring device indicates the status Bad Device Failure or Bad Sensor Failure, the device continues to measure and no alarm is triggered. The use of this substatus in the output value (OUT) is defined by Propag Fault Fwd option. With the aid of this option, the user/operator can specify whether the alarm generation (sending an alarm) is triggered by the block or is forwarded downstream.
 - Uncertain if Man
 If the Actual mode of the function block is in the Man option operating mode, Uncertain if Man option is used as the output status.

Channel

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Channel (6852–1 to n)

Description

Use this function to select the input value that should be processed in the discrete input function block.

Selection

- Uninitialized
- Empty pipe det.
- Low flow cut off
- Switch out.stat.
- Verific. status

Factory setting

Empty pipe det.

PV Filter Time

Navigation

Expert → Discrete inputs → Discrete input 1 to n → PV Filter Time (6855–1 to n)

Description

Use this function to enter the filter time specification for the filtering of the unconverted input value (PV).

User entry

Positive floating-point number

Factory setting

0 s
Additional information

Factory setting

If the value 0 s is entered, filtering will not be performed.

Status

Description

Displays the status of the discrete input value from a measuring device in the field.

User interface

- Bad (0x00)
- Bad (0x01)
- Bad (0x02)
- Bad (0x03)
- Bad (0x04)
- Bad (0x05)
- Bad (0x06)
- Bad (0x07)
- Bad (0x08)
- Bad (0x09)
- Bad (0x0A)
- Bad (0x0B)
- Bad (0x0C)
- Bad (0x0D)
- Bad (0x0E)
- Bad (0x0F)
- Bad (0x10)
- Bad (0x11)
- Bad (0x12)
- Bad (0x13)
- Bad (0x14)
- Bad (0x15)
- Bad (0x16)
- Bad (0x17)
- Bad (0x18)
- Bad (0x19)
- Bad (0x1A)
- Bad (0x1B)
- Bad (0x1C)
- Bad (0x1D)
- Bad (0x1E)
- Bad (0x1F)
- Uncertain (0x40)
- Uncertain (0x41)
- Uncertain (0x42)
- Uncertain (0x43)
- Uncertain (0x44)
- Uncertain (0x45)
- Uncertain (0x46)
- Uncertain (0x47)
- Uncertain (0x48)
- Uncertain (0x49)
- Uncertain (0x4A)
- Uncertain (0x4B)
- Uncertain (0x4C)
• Uncertain (0x4D)
• Uncertain (0x4E)
• Uncertain (0x4F)
• Uncertain (0x50)
• Uncertain (0x51)
• Uncertain (0x52)
• Uncertain (0x53)
• Uncertain (0x54)
• Uncertain (0x55)
• Uncertain (0x56)
• Uncertain (0x57)
• Uncertain (0x58)
• Uncertain (0x59)
• Uncertain (0x5A)
• Uncertain (0x5B)
• Good (0x80)
• Good (0x81)
• Good (0x82)
• Good (0x83)
• Good (0x84)
• Good (0x85)
• Good (0x86)
• Good (0x87)
• Good (0x88)
• Good (0x89)
• Good (0x8A)
• Good (0x8B)
• Good (0x8C)
• Good (0x8D)
• Good (0x8E)
• Good (0x8F)
• Good (0x90)
• Good (0x91)
• Good (0x92)
• Good (0x93)
• Good (0x94)
• Good (0x95)
• Good (0x96)
• Good (0x97)
• Good (0x98)
• Good (0x99)
• Good (0x9A)
• Good (0x9B)
• Good (0xC0)
• Good (0xC1)
• Good (0xC2)
• Good (0xC3)
• Good (0xC4)
• Good (0xC5)
• Good (0xC6)
• Good (0xC7)
• Good (0xC8)
• Good (0xC9)
• Good (0xCA)
• Good (0xCB)
• Good (0xCC)
• Good (0xCD)
• Good (0xCE)
• Good (0xCF)
Description of device parameters

Proline Promass 200 FOUNDATION Fieldbus

- Good (0xD0)
- Good (0xD1)
- Good (0xD2)
- Good (0xD3)
- Good (0xD4)
- Good (0xD5)
- Good (0xD6)
- Good (0xD7)
- Good (0xD8)
- Good (0xD9)
- Good (0xDA)
- Good (0xDB)
- Good (0xDC)
- Good (0xDD)
- Good (0xDE)
- Good (0xDF)
- Good (0xE0)
- Good (0xE1)
- Good (0xE2)
- Good (0xE3)

Factory setting

Bad (0x00)

Additional information

Description

An output parameter can be linked to an input parameter from another function block. Both the input parameter and the output parameter have a field value and status. The status of the input parameter is taken from the linked output parameter.

Value

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Value (6866–1 to n)

Description

Displays the discrete input value from a measuring device in the field.

User interface

- State 0
- State 1
- State 2
- State 3
- State 4
- State 5
- State 6
- State 7
- State 8
- State 9
- State 10
- State 11
- State 12
- State 13
- State 14
- State 15
- State 16

Factory setting

State 0
Unacknowledged

Navigation
Expert → Discrete inputs → Discrete input 1 to n → Unacknowledged (6889–1 to n)

Description
Option for manually acknowledging an update of the static block parameter.

Selection
- Uninitialized
- Acknowledged
- Unacknowledged

Factory setting
Uninitialized

Additional information
Description
- If a new diagnostic event occurs, the measuring device sets Unacknowledged option.
- If the diagnostic event has been acknowledged, the user can set Acknowledged option.

Update State

Navigation
Expert → Discrete inputs → Discrete input 1 to n → Update State (6890–1 to n)

Description
Displays the status of an update of the static block parameter. The status indicates whether the update was communicated or not.

User interface
- Uninitialized
- Reported
- Not Reported

Time Stamp

Navigation
Expert → Discrete inputs → Discrete input 1 to n → Time Stamp (6888–1 to n)

Description
Displays the time stamp indicating when the analysis of the block was started and when a status change of an update to the static block parameter that has not yet been communicated was identified. The time stamp is retained until the update confirmation is received.

User interface
Days (d), hours (h), minutes (m), seconds (s)
Static revision

Navigation

- Expert → Discrete inputs → Discrete input 1 to n → Static revision (6887–1 to n)

Description

Displays the Static revision: Each instance of a static block parameter being accessed with write and communicate access due to an update is counted (event counter).

User interface

0 to 65535

Relative Index

Navigation

- Expert → Discrete inputs → Discrete input 1 to n → Relative Index (6886–1 to n)

Description

Displays the relative index of the static block parameter that triggered the alarm (OD index minus field bus start index).

User interface

0 to 65535

Ack. Option

Navigation

- Expert → Discrete inputs → Discrete input 1 to n → Ack. Option (6841–1 to n)

Description

Option for automatic acknowledgment of process alarms in a specific category.

Selection

- Disc Alm Aut Ack
- Blk Alm Auto Ack
- Fail Alm Aut Ack
- OffSpecAlmAutAck
- Maint Alm AutAck
- Check Alm AutAck

Additional information

Description

Use this function to determine whether an alarm must be acknowledged via the field bus host system.

> If the process alarm option has not been enabled in this parameter, this process alarm must only be acknowledged in Unacknowledged parameter (→ 167). Current parameter (→ 166) indicates the current status of all process alarms.

Current

Navigation

- Expert → Discrete inputs → Discrete input 1 to n → Current (6842–1 to n)

Description

Use this function to view the current status of the process alarms.
User interface

- Discrete Alarm
- Block Alarm
- Fail Alarm
- Off Spec Alarm
- Maint. Alarm
- Check Alarm

Disabled

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Disabled (6843–1 to n)

Description
Option for disabling a process alarm category.

Selection

- Disc Alm Disabl
- Block Alm Disabl
- Fail Alm Disabl
- Off Spec Alm Disabl
- Maint Alm Disabl
- Check Alm Disab.

Unacknowledged

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Unacknowledged (6844–1 to n)

Description
Displays an unacknowledged process alarm.

User interface

- Disc Alm Unack
- Block Alm Unack
- Fail Alm Unack
- Off Spec Alm Unack
- Maint Alm Unack
- Check Alm Unack

Unreported

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Unreported (6845–1 to n)

Description
Displays a process alarm that has not been communicated.

User interface

- Disc Alm Unrep
- Block Alm Unrep
- Fail Alm Unrep
- Off Spec Alm Unrep
- Maint Alm Unrep
- Check Alm Unrep
Alarm State

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Alarm State (6847–1 to n)

Description
Displays the status of the block alarm. The status indicates whether the block alarm is active and whether it has already been communicated to the field bus host system.

User interface
- Uninitialized
- Clear-Reported
- ClearNotReported
- Active-Reported
- ActiveNotRep

Subcode

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Subcode (6848–1 to n)

Description
Displays the specific cause of the block alarm.

User interface
- Other
- BlockConfigurat
- LinkConfigurat
- SimulationActive
- LocalOverride
- DeviceFaultState
- DeviceMainten
- SensorFailure
- OutputFailure
- MemoryFailure
- LostStaticData
- LostNVData
- ReadbackCheck
- MaintenanceNeed
- PowerUp
- OutOfService

Time Stamp

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Time Stamp (6849–1 to n)

Description
Displays the time stamp indicating when the analysis of the block was started and when a status change of the block alarm that has not yet been communicated to the field bus host system was detected. The time stamp is retained until the alarm confirmation is received.

User interface
- Days (d), hours (h), minutes (m), seconds (s)
Unacknowledged

Navigation
- Expert → Discrete inputs → Discrete input 1 to n → Unacknowledged (6850–1 to n)

Description
Option for manually acknowledging a block alarm.

Selection
- Uninitialized
- Acknowledged
- Unacknowledged

Factory setting
Uninitialized

Additional information
Description
If Blk Alm Auto Ack option is not enabled in Ack. Option parameter (→ 200), the process alarm must be manually acknowledged in this parameter.
- If a new alarm occurs, the measuring device sets Unacknowledged option.
- If the alarm has been acknowledged, the user can set Acknowledged option.

Value

Navigation
- Expert → Discrete inputs → Discrete input 1 to n → Value (6856–1 to n)

Description
Displays the value of the affected parameter at the time at which the block alarm was detected.

User interface
0 to 255

Alarm State

Navigation
- Expert → Discrete inputs → Discrete input 1 to n → Alarm State (6858–1 to n)

Description
Displays the status of the block alarm. The status indicates whether the block alarm is active and whether it has already been communicated to the field bus host system.

User interface
- Uninitialized
- Clear-Reported
- ClearNotReported
- Active-Reported
- ActiveNotRep

Subcode

Navigation
- Expert → Discrete inputs → Discrete input 1 to n → Subcode (6859–1 to n)

Description
Displays the specific cause of the discrete alarm.
User interface

- Other
- BlockConfigurat
- LinkConfigurat
- SimulationActive
- LocalOverride
- DeviceFaultState
- DeviceMainten
- SensorFailure
- OutputFailure
- MemoryFailure
- LostStaticData
- LostNVData
- ReadbackCheck
- MaintenanceNeed
- PowerUp
- OutOfService

Time Stamp

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Time Stamp (6860–1 to n)

Description

Displays the time stamp indicating when the analysis of the function block was started and when a status change of the discrete alarm that has not yet been communicated to the field bus host system was detected. The time stamp is retained until the alarm confirmation is received.

User interface

Days (d), hours (h), minutes (m), seconds (s)

Unacknowledged

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Unacknowledged (6861–1 to n)

Description

Option for manually acknowledging a discrete alarm.

Selection

- Uninitialized
- Acknowledged
- Unacknowledged

Factory setting

Uninitialized

Additional information

Description

If **Disc Alm Aut Ack** option is not enabled in **Ack. Option** parameter (→ 200), the process alarm must be manually acknowledged in this parameter.

- If a new alarm occurs, the measuring device sets **Unacknowledged** option.
- If the alarm has been acknowledged, the user can set **Acknowledged** option.
Discrete Value

Navigation
Expert → Discrete inputs → Discrete input 1 to n → Discrete Value (6862–1 to n)

Description
Displays the value of the associated parameter at the time at which the alarm was detected.

User interface
- State 0
- State 1
- State 2
- State 3
- State 4
- State 5
- State 6
- State 7
- State 8
- State 9
- State 10
- State 11
- State 12
- State 13
- State 14
- State 15
- State 16

Discrete Limit

Navigation
Expert → Discrete inputs → Discrete input 1 to n → Discrete Limit (6863–1 to n)

Description
Use this to enter the status of the discrete input value that triggers an alarm.

User entry
0 to 255

Factory setting
0

Discrete Prio

Navigation
Expert → Discrete inputs → Discrete input 1 to n → Discrete Prio (6864–1 to n)

Description
Use this to enter the priority of a discrete alarm.

User entry
0 to 15

Factory setting
0
3.7 "Analog outputs" submenu

Navigation

Expert → Analog outputs

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog outputs</td>
<td></td>
</tr>
</tbody>
</table>

3.7.1 "Multiple AO" submenu

Navigation

Expert → Analog outputs → Multiple AO

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple AO</td>
<td></td>
</tr>
</tbody>
</table>

- Block tag (11351)
- Status Options (11363)
- Fault State Time (11354)
- FaultState Val 1 (11355)
- FaultState Val 2 (11356)
- FaultState Val 3 (11357)
- FaultState Val 4 (11358)
- FaultState Val 5 (11359)
- FaultState Val 6 (11360)
- FaultState Val 7 (11361)
- FaultState Val 8 (11362)
- FaultStateStatus (11353)

Block tag

Navigation

Expert → Analog outputs → Multiple AO → Block tag (11351)

Description

Use this function to enter the Block tag: specify a 'label' for identifying the function block.

User entry

Max. 32 characters, such as letters, numbers or special characters (e.g. @, %, /).
Static Revision

Navigation
Expert → Analog outputs → Multiple AO → Static Revision (11371)

Description
Displays the Static Revision: every write access to a static block parameter is counted (event counter).

User interface
0 to FFFF

Additional information
Description

Static parameters are parameters that are not changed by the process.

Tag Description

Navigation
Expert → Analog outputs → Multiple AO → Tag Description (11372)

Description
Use this function to enter the Tag Description: define a user-specific text for the detailed description of the function block.

User entry
Max. 32 characters, such as letters, numbers or special characters (e.g. @, %, /).

Strategy

Navigation
Expert → Analog outputs → Multiple AO → Strategy (11370)

Description
Use this function to enter the Strategy: makes it possible to group blocks by entering identical numbers.

User entry
0 to FFFF

Factory setting
0

Alert Key

Navigation
Expert → Analog outputs → Multiple AO → Alert Key (11365)

Description
Use this function to enter the Alert Key: identifies the section of the plant where the transmitter is located. This helps in pinpointing events.

User entry
0 to 0xFF

Factory setting
1
Description of device parameters

Proline Promass 200 FOUNDATION Fieldbus

Target mode

Navigation

Expert → Analog outputs → Multiple AO → Target mode (11369)

Description

Use this function to select the Target mode: the selection specifies which operating mode is used for this block. This mode is generally set by a control application.

Selection

- ROut
- RCas
- Cas
- Auto
- Man
- LO
- IMan
- OOS

Factory setting

OOS

Additional information

Selection

Detailed description of the options available for selection: Target mode parameter (→ 111)

Actual mode

Navigation

Expert → Analog outputs → Multiple AO → Actual mode (11366)

Description

Displays the Actual mode: under certain conditions a block may not work in the operating mode to be used. In this case, the Actual mode represents the valid mode in which the block is currently operating. A comparison of the Actual mode with the Target mode indicates whether the Target mode (→ 208) could be reached.

User interface

- ROut
- RCas
- Cas
- Auto
- Man
- LO
- IMan
- OOS

Additional information

Selection

Detailed description of the options available for selection: Target mode parameter (→ 111)
Permitted mode

Navigation
Expert → Analog outputs → Multiple AO → Permitted mode (11368)

Description
Use this function to select the Permitted mode: the selection defines which operating modes are available for the function block in the Target mode (→ 208). The operating modes that are supported vary depending on the type and function of the block.

Selection
- ROut
- RCas
- Cas
- Auto
- Man
- LO
- IMan
- OOS

Factory setting
- Auto
- OOS

Additional information
Detailed description of the options available for selection: Target mode parameter (→ 111)

Normal mode

Navigation
Expert → Analog outputs → Multiple AO → Normal mode (11367)

Description
Use this function to select the Normal mode: this mode is provided to enable the user to select the Normal mode among the operating modes available. This can be set using an operating tool in order to help the user configure the operating mode of a block.

Selection
- ROut
- RCas
- Cas
- Auto
- Man
- LO
- IMan
- OOS

Factory setting
Auto

Additional information
Detailed description of the options available for selection: Target mode parameter (→ 111)
Block Error

Navigation

Expert → Analog outputs → Multiple AO → Block Error (11364)

Description
Displays the short text for the Block Error that occurred in the function block.

User interface
- Other
- BlockConfigurat
- LinkConfigurat
- SimulationActive
- LocalOverride
- DeviceFaultState
- DeviceMainten
- SensorFailure
- OutputFailure
- MemoryFailure
- LostStaticData
- LostNVData
- ReadbackCheck
- MaintenanceNeed
- PowerUp
- OutOfService

Channel

Navigation

Expert → Analog outputs → Multiple AO → Channel (11352)

Description
Use this function to select the assignment or connection between the Analog Output function block and the Transducer Block.

Selection
- Uninitialized
- Channel_0

Factory setting
Channel_0

Status Options

Navigation

Expert → Analog outputs → Multiple AO → Status Options (11363)

Description
Option for determining the fault state of the function block.

Selection
- Fstate to val 1
- Fstate to val 2
- Fstate to val 3
- Fstate to val 4
- Fstate to val 5
- Fstate to val 6
- Fstate to val 7
- Fstate to val 8
- Fstate restart 1
Fstate restart 1…8

The value predefined in the **FaultState Val 1 to n** parameter is used if the device is restarted. The non-volatile value is used otherwise. The fault state is not enabled and only the predefined value is used.

Fault State Time

Navigation

Expert → Analog outputs → Multiple AO → Fault State Time (11354)

Description

Use this function to enter a time range during which an error condition (of the currently valid set point) must be met without interruption before an error message is generated.

User entry

Positive floating-point number

Factory setting

0 s

FaultState Val 1

Navigation

Expert → Analog outputs → Multiple AO → FaultState Val 1 (11355)

Description

Use this function to enter a predefined analog value to be used if an error condition of the analog set point 1 is present.

User entry

Signed floating-point number

Factory setting

0

Additional information

Description

This behavior is activated if an error condition of the set point that applies is present for longer than defined in the **Fault State Time** parameter (→ 211) or if the **Set Fault State** parameter (→ 121) is activated in the Resource block.

The fault state is defined via the following parameters:

- **Fault State Time** (→ 211)
- **FaultState Val 1 to n**

Selection

- **Fstate to val 1...8**

The value predefined in the **FaultState Val 1 to n** parameter is used instead of the analog set point. The fault state is enabled if there is an error condition.

- **Fstate restart 1...8**

The value predefined in the **FaultState Val 1 to n** parameter is used if the device is restarted. The non-volatile value is used otherwise. The fault state is not enabled and only the predefined value is used.
Additional information	Description
This value is ignored if the **Fstate to val 1** option is not selected in the **Status Options** parameter (→ 210).

FaultState Val 2

Navigation | Expert → Analog outputs → Multiple AO → FaultState Val 2 (11356)
Description | Use this function to enter a predefined analog value to be used if an error condition of the analog set point 2 is present.
User entry | Signed floating-point number
Factory setting | 0
Additional information | Description
This value is ignored if the **Fstate to val 2** option is not selected in the **Status Options** parameter (→ 210).

FaultState Val 3

Navigation | Expert → Analog outputs → Multiple AO → FaultState Val 3 (11357)
Description | Use this function to enter a predefined analog value to be used if an error condition of the analog set point 3 is present.
User entry | Signed floating-point number
Factory setting | 0
Additional information | Description
This value is ignored if the **Fstate to val 3** option is not selected in the **Status Options** parameter (→ 210).

FaultState Val 4

Navigation | Expert → Analog outputs → Multiple AO → FaultState Val 4 (11358)
Description | Use this function to enter a predefined analog value to be used if an error condition of the analog set point 4 is present.
User entry | Signed floating-point number
Factory setting | 0
Additional information

Description

![Info icon] This value is ignored if the **Status Options** parameter (→ 210).

FaultState Val 5

Navigation

Expert → Analog outputs → Multiple AO → FaultState Val 5 (11359)

Description

Use this function to enter a predefined analog value to be used if an error condition of the analog set point 5 is present.

User entry

Signed floating-point number

Factory setting

0

Additional information

![Info icon] This value is ignored if the **Status Options** parameter (→ 210).

FaultState Val 6

Navigation

Expert → Analog outputs → Multiple AO → FaultState Val 6 (11360)

Description

Use this function to enter a predefined analog value to be used if an error condition of the analog set point 6 is present.

User entry

Signed floating-point number

Factory setting

0

Additional information

![Info icon] This value is ignored if the **Status Options** parameter (→ 210).

FaultState Val 7

Navigation

Expert → Analog outputs → Multiple AO → FaultState Val 7 (11361)

Description

Use this function to enter a predefined analog value to be used if an error condition of the analog set point 7 is present.

User entry

Signed floating-point number

Factory setting

0
Additional information

Description

This value is ignored if the Fstate to val 7 option is not selected in the Status Options parameter (→ 210).

FaultState Val 8

Navigation

Expert → Analog outputs → Multiple AO → FaultState Val 8 (11362)

Description

Use this function to enter a predefined analog value to be used if an error condition of the analog set point 8 is present.

User entry

Signed floating-point number

Factory setting

0

Additional information

Description

This value is ignored if the Fstate to val 8 option is not selected in the Status Options parameter (→ 210).

FaultStateStatus

Navigation

Expert → Analog outputs → Multiple AO → FaultStateStatus (11353)

Description

Displays the values for which the fault state is enabled.

User interface

- Val 1 in FState
- Val 2 in FState
- Val 3 in FState
- Val 4 in FState
- Val 5 in FState
- Val 6 in FState
- Val 7 in FState
- Val 8 in FState

3.8 "Discrete outputs" submenu

The Discrete outputs function block (DO, discrete output) processes a discrete set point received from an upstream function block or a higher-level process control system that enables various device functions (e.g. zero point adjustment or reset of the totalizer) to be triggered in the downstream transducer block.
Navigation

Expert → Discrete outputs

Discrete outputs

Multiple DO

3.8.1 "Multiple DO" submenu

Navigation

Expert → Discrete outputs → Multiple DO

Multiple DO

Block tag (11252)

Status Options (11268)

Fault State Time (11255)

FStateValue DO 1 (11256)

FStateValue DO 2 (11257)

FStateValue DO 3 (11258)

FStateValue DO 4 (11259)

FStateValue DO 5 (11260)

FStateValue DO 6 (11261)

FStateValue DO 7 (11262)

FStateValue DO 8 (11263)

FaultStateStatus (11254)

Block tag

Navigation

Expert → Discrete outputs → Multiple DO → Block tag (11252)

Description

Use this function to enter the Block tag: Used for specifying a "label" for identifying the function block.

User entry

Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /).
Static Revision

Description
Displays the Static Revision: Each instance of a static block parameter being accessed with write access is counted (event counter).

User interface
0 to FFFF

Additional information

Static parameters are parameters that are not changed by the process.

Tag Description

Description
Use this function to enter the Tag Description: Used for defining a user-specific text for detailed description of the function block.

User entry
Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /).

Strategy

Description
Use this function to enter the Strategy: Enables blocks to be grouped by entering identical numbers.

User entry
0 to FFFF

Factory setting
0

Alert Key

Description
Use this function to enter the Alert Key: Identifies the plant unit where the transmitter is located. This helps in pinpointing events.

User entry
0 to 0xFF

Factory setting
1
Target mode

Navigation

Expert → Discrete outputs → Multiple DO → Target mode (11267)

Description

Use this function to select the Target mode: The selection indicates which operating mode is used for this function block. This mode is generally set by a control application.

Selection

- ROut
- RCas
- Cas
- Auto
- Man
- LO
- IMan
- OOS

Factory setting

OOS

Additional information

Options

Detailed description of the options available for selection: Target mode parameter (→ 111)

Actual mode

Navigation

Expert → Discrete outputs → Multiple DO → Actual mode (11264)

Description

Displays the Actual mode: Under certain conditions, a function block may not work in the operating mode to be used. In this case, the Actual mode shows the actual operating mode that the function block is currently operating in. By comparing the Actual mode with the Target mode, users can see whether it was possible to reach the Target mode (→ 217).

User interface

- ROut
- RCas
- Cas
- Auto
- Man
- LO
- IMan
- OOS

Additional information

User interface

Detailed description of the options available for selection: Target mode parameter (→ 111)
Permitted mode

Navigation

Expert → Discrete outputs → Multiple DO → Permitted mode (11266)

Description

Use this function to select the Permitted mode: The selection defines which operating modes are available in Target mode (→ 217) for the function block. The operating modes that are supported vary depending on the type and function of the block.

Selection

- ROut
- RCas
- Cas
- Auto
- Man
- LO
- IMan
- OOS

Factory setting

- Auto
- OOS

Additional information

Options

Detailed description of the options available for selection: **Target mode** parameter (→ 111)

Normal mode

Navigation

Expert → Discrete outputs → Multiple DO → Normal mode (11265)

Description

Use this function to select the Normal mode: This is available to enable the user to select the Normal mode from the available operating modes. This can be set using an operating tool in order to help the user configure the operating mode of a function block.

Selection

- ROut
- RCas
- Cas
- Auto
- Man
- LO
- IMan
- OOS

Factory setting

Auto

Additional information

Options

Detailed description of the options available for selection: **Target mode** parameter (→ 111)
Block Error

Navigation

- Expert → Discrete outputs → Multiple DO → Block Error (11272)

Description

Displays the short text for the Block Error that has occurred in the function block.

User interface

- Other
- BlockConfigurat
- LinkConfigurat
- SimulationActive
- LocalOverride
- DeviceFaultState
- DeviceMainten
- SensorFailure
- OutputFailure
- MemoryFailure
- LostStaticData
- LostNVData
- ReadbackCheck
- MaintenanceNeed
- PowerUp
- OutOfService

Channel

Navigation

- Expert → Discrete outputs → Multiple DO → Channel (11253)

Description

Option for the assignment or connection between the discrete output function block and the transducer block.

Selection

- Uninitialized
- Channel_D0

Factory setting

Channel_D0

Status Options

Navigation

- Expert → Discrete outputs → Multiple DO → Status Options (11268)

Description

Option for determining the fault state of the function block.

Selection

- Fstate to val 1
- Fstate to val 2
- Fstate to val 3
- Fstate to val 4
- Fstate to val 5
- Fstate to val 6
- Fstate to val 7
- Fstate to val 8
- Fstate restart 1
Description of device parameters

- Fstate restart 2
- Fstate restart 3
- Fstate restart 4
- Fstate restart 5
- Fstate restart 6
- Fstate restart 7
- Fstate restart 8

Additional information

Description

This behavior is enabled if an error condition of the valid set point persists for longer than the time specified in **Fault State Time** parameter (→ 220) or if **Set Fault State** parameter (→ 121) is enabled in Resource block.

The fault state is defined via the following parameters:
- **Fault State Time** (→ 220)
- **FStateValue DO 1 to n**

Options

- Fstate to val 1...8
 The value predefined in **FStateValue DO 1 to n** parameter is used in place of the discrete set point. The fault state is enabled if there is an error condition.
- Fstate restart 1...8
 The value predefined in **FStateValue DO 1 to n** parameter is used if the device is restarted. The non-volatile value is used otherwise. The fault state is not enabled and only the predefined value is used.

Fault State Time

Navigation

[Expert → Discrete outputs → Multiple DO → Fault State Time (11255)]

Description

Use this function to enter a time range during which an error condition (of the currently valid set point) must be met without interruption before an error message is generated.

User entry

Positive floating-point number

Factory setting

0 s

FStateValue DO 1

Navigation

[Expert → Discrete outputs → Multiple DO → FStateValue DO 1 (11256)]

Description

Use this function to enter a predefined discrete value to be used if an error condition of the discrete set point 1 is present.

User entry

0 to 255

Factory setting

0
Proline Promass 200 FOUNDATION Fieldbus

Description of device parameters

Additional information

If **Fstate to val 1** option is not selected in **Status Options** parameter (→ 219), this value is ignored.

FStateValue DO 2

Navigation

Expert → Discrete outputs → Multiple DO → FStateValue DO 2 (11257)

Description

Use this function to enter a predefined discrete value to be used if an error condition of the discrete set point 2 is present.

User entry

0 to 255

Factory setting

0

Additional information

If **Fstate to val 2** option is not selected in **Status Options** parameter (→ 219), this value is ignored.

FStateValue DO 3

Navigation

Expert → Discrete outputs → Multiple DO → FStateValue DO 3 (11258)

Description

Use this function to enter a predefined discrete value to be used if an error condition of the discrete set point 3 is present.

User entry

0 to 255

Factory setting

0

Additional information

If **Fstate to val 3** option is not selected in **Status Options** parameter (→ 219), this value is ignored.

FStateValue DO 4

Navigation

Expert → Discrete outputs → Multiple DO → FStateValue DO 4 (11259)

Description

Use this function to enter a predefined discrete value to be used if an error condition of the discrete set point 4 is present.

User entry

0 to 255

Factory setting

0
Additional information

Description

If **Fstate to val 4** option is not selected in **Status Options** parameter (→ 219), this value is ignored.

FStateValue DO 5

Navigation

Expert → Discrete outputs → Multiple DO → FStateValue DO 5 (11260)

Description

Use this function to enter a predefined discrete value to be used if an error condition of the discrete set point 5 is present.

User entry

0 to 255

Factory setting

0

Additional information

Description

If **Fstate to val 5** option is not selected in **Status Options** parameter (→ 219), this value is ignored.

FStateValue DO 6

Navigation

Expert → Discrete outputs → Multiple DO → FStateValue DO 6 (11261)

Description

Use this function to enter a predefined discrete value to be used if an error condition of the discrete set point 6 is present.

User entry

0 to 255

Factory setting

0

Additional information

Description

If **Fstate to val 6** option is not selected in **Status Options** parameter (→ 219), this value is ignored.

FStateValue DO 7

Navigation

Expert → Discrete outputs → Multiple DO → FStateValue DO 7 (11262)

Description

Use this function to enter a predefined discrete value to be used if an error condition of the discrete set point 7 is present.

User entry

0 to 255

Factory setting

0
Additional information

Description

If Fstate to val 7 option is not selected in Status Options parameter (→ 219), this value is ignored.

FStateValue DO 8

Navigation

Expert → Discrete outputs → Multiple DO → FStateValue DO 8 (11263)

Description

Use this function to enter a predefined discrete value to be used if an error condition of the discrete set point 8 is present.

User entry

0 to 255

Factory setting

0

Additional information

Description

If Fstate to val 8 option is not selected in Status Options parameter (→ 219), this value is ignored.

FaultStateStatus

Navigation

Expert → Discrete outputs → Multiple DO → FaultStateStatus (11254)

Description

Displays the values for which the fault state is enabled.

User interface

- Val 1 in FState
- Val 2 in FState
- Val 3 in FState
- Val 4 in FState
- Val 5 in FState
- Val 6 in FState
- Val 7 in FState
- Val 8 in FState

3.9 "Application" submenu

Navigation

Expert → Application

- Application

- Reset all tot. (2806) → 224

- Totalizer 1 to n → 224
Reset all tot.

Navigation
Expert → Application → Reset all tot. (2806)

Description
Use this function to reset all totalizers to the value 0 and restart the totaling process. This deletes all the flow values previously totalized.

Selection
- Cancel
- Reset + totalize

Factory setting
Cancel

Additional information
Selection

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancel</td>
<td>No action is executed and the user exits the parameter.</td>
</tr>
<tr>
<td>Reset + totalize</td>
<td>Resets all totalizers to 0 and restarts the totaling process. This deletes all the flow values previously totalized.</td>
</tr>
</tbody>
</table>

3.9.1 "Totalizer 1 to n" submenu

Navigation
Expert → Application → Totalizer 1 to n

Assign variable (0914–1 to n)
→ 224

Unit totalizer (0915–1 to n)
→ 225

Operation mode (0908–1 to n)
→ 226

Control Tot. 1 to n (0912–1 to n)
→ 226

Preset value 1 to n (0913–1 to n)
→ 227

Failure mode (0901–1 to n)
→ 227

Assign variable

Navigation
Expert → Application → Totalizer 1 to n → Assign variable (0914–1 to n)

Description
Use this function to select a process variable for the Totalizer 1 to n.
Selection
- Off
- Volume flow
- Mass flow
- Correct.vol.flow

Factory setting
Mass flow

Additional information
Description

If the option selected is changed, the device resets the totalizer to 0.

Selection

If the Off option is selected, only Assign variable parameter (→ 224) is still displayed in the Totalizer 1 to n submenu. All other parameters in the submenu are hidden.

Unit totalizer

Navigation
Expert → Application → Totalizer 1 to n → Unit totalizer (0915–1 to n)

Prerequisite
A process variable is selected in the Assign variable parameter (→ 224) of the Totalizer 1 to n submenu.

Description
Use this function to select the process variable unit for the Totalizer 1 to n (→ 224).

Selection

SI units	US units	Imperial units
- g | oz | gal (imp)
- kg | lb | Mgal (imp)
- t | STon | bbl (imp;oil)

or

SI units	US units	Imperial units
- cm³ | af | Sft³
- dm³ | ft³ | Sgal (us)
- m³ | fl oz (us) | Sbbl (us;liq.)
- ml | gal (us) | Sbl (us;liq.)
- l | kcal (us) | Sbl (us;beer)
- hl | Mgal (us) | Sbl (us;oil)
- Ml Mega | bbl (us;oil) | Sbl (us;tank)

or

SI units	US units	Imperial units
- Nl | Sft³ | Sgal (imp)
- Nm³ | Sgal (us) | Sbl (us;liq.)
- Sl | Sl | Sl
- Sm³ | Sm³ | Sm³
Factory setting

Country-specific:
- l
- gal (us)

Additional information

Description

The unit is selected separately for each totalizer. It is independent of the selection made in the **System units** submenu (→ 57).

Selection

The selection is dependent on the process variable selected in the **Assign variable** parameter (→ 224).

Operation mode

Navigation

Expert → Application → Totalizer 1 to n → Operation mode (0908–1 to n)

Prerequisite

A process variable is selected in the **Assign variable** parameter (→ 224) of the **Totalizer 1 to n** submenu.

Description

Use this function to select how the totalizer summates the flow.

Selection

- Net flow total
- Forward total
- Reverse total

Factory setting

Net flow total

Additional information

Selection

- Net flow total

 Flow values in the forward and reverse flow direction are totalized and balanced against one another. Net flow is registered in the flow direction.
- Forward total

 Only the flow in the forward flow direction is totalized.
- Reverse total

 Only the flow in the reverse flow direction is totalized (= reverse flow quantity).

Control Tot. 1 to n

Navigation

Expert → Application → Totalizer 1 to n → Control Tot. 1 to n (0912–1 to n)

Prerequisite

A process variable is selected in the **Assign variable** parameter (→ 224) of the **Totalizer 1 to n** submenu.

Description

Use this function to select the control of totalizer value 1-3.
Selection
- Totalize
- Reset + hold
- Preset + hold
- Reset + totalize
- Preset+totalize

Factory setting Totalize

Additional information Selection

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totalize</td>
<td>The totalizer is started or continues running.</td>
</tr>
<tr>
<td>Reset + hold</td>
<td>The totaling process is stopped and the totalizer is reset to 0.</td>
</tr>
<tr>
<td>Preset + hold</td>
<td>The totaling process is stopped and the totalizer is set to its defined start value from the Preset value parameter.</td>
</tr>
<tr>
<td>Reset + totalize</td>
<td>The totalizer is reset to 0 and the totaling process is restarted.</td>
</tr>
<tr>
<td>Preset+totalize</td>
<td>The totalizer is set to the defined start value from the Preset value parameter and the totaling process is restarted.</td>
</tr>
</tbody>
</table>

Preset value 1 to n

Navigation

Prerequisite A process variable is selected in the Assign variable parameter (→ 224) of the Totalizer 1 to n submenu.

Description Use this function to enter a start value for the Totalizer 1 to n.

User entry Signed floating-point number

Factory setting Country-specific:
- 0 l
- 0 gal (us)

Additional information User entry

The unit of the selected process variable is specified for the totalizer in the Unit totalizer parameter (→ 225).

Example This configuration is suitable for applications such as iterative filling processes with a fixed batch quantity.

Failure mode

Navigation

Prerequisite A process variable is selected in the Assign variable parameter (→ 224) of the Totalizer 1 to n submenu.
Description

Use this function to select how a totalizer behaves in the event of a device alarm.

Selection

- Stop
- Actual value
- Last valid value

Factory setting

Stop

Additional information

Description

This setting does not affect the failsafe mode of other totalizers and the outputs. This is specified in separate parameters.

Selection

- Stop
 The totalizer is stopped in the event of a device alarm.
- Actual value
 The totalizer continues to count based on the actual measured value; the device alarm is ignored.
- Last valid value
 The totalizer continues to count based on the last valid measured value before the device alarm occurred.

3.10 "Diagnostics" submenu

Navigation

Expert → Diagnostics

<table>
<thead>
<tr>
<th>➤ Diagnostics</th>
<th></th>
<th>➤ 229</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual diagnos. (0691)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prev.diagnostics (0690)</td>
<td></td>
<td>➤ 230</td>
</tr>
<tr>
<td>Time fr. restart (0653)</td>
<td></td>
<td>➤ 230</td>
</tr>
<tr>
<td>Operating time (0652)</td>
<td></td>
<td>➤ 231</td>
</tr>
<tr>
<td>➤ Diagnostic list</td>
<td></td>
<td>➤ 231</td>
</tr>
<tr>
<td>➤ Event logbook</td>
<td></td>
<td>➤ 235</td>
</tr>
<tr>
<td>➤ Device info</td>
<td></td>
<td>➤ 238</td>
</tr>
<tr>
<td>➤ Data logging</td>
<td></td>
<td>➤ 242</td>
</tr>
<tr>
<td>➤ Min/max val.</td>
<td></td>
<td>➤ 248</td>
</tr>
</tbody>
</table>
Actual diagnos.

Navigation
Expert → Diagnostics → Actual diagnos. (0691)

Prerequisite
A diagnostic event has occurred.

Description
Displays the current diagnostic message. If two or more messages occur simultaneously, the message with the highest priority is shown on the display.

User interface
Symbol for diagnostic behavior, diagnostic code and short message.

Additional information
Display
Additional pending diagnostic messages can be viewed in the Diagnostic list submenu (→ 231).

Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the key.

Example
For the display format:
F271 Main electronic

Timestamp

Navigation
Expert → Diagnostics → Timestamp

Description
Displays the operating time when the current diagnostic message occurred.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information
Display
The diagnostic message can be viewed via the Actual diagnos. parameter (→ 229).

Example
For the display format:
24d12h13m00s
Prev.diagnostics

Navigation

Expert → Diagnostics → Prev.diagnostics (0690)

Prerequisite
Two diagnostic events have already occurred.

Description
Displays the diagnostic message that occurred before the current message.

User interface
Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

Display
Via the local display: the time stamp and corrective measures referring to the cause of
the diagnostic message can be accessed via the key.

Example
For the display format:
F271 Main electronic

Timestamp

Navigation

Expert → Diagnostics → Timestamp

Description
Displays the operating time when the last diagnostic message before the current message
occurred.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information

Display
The diagnostic message can be viewed via the Prev.diagnostics parameter
(→ 230).

Example
For the display format:
24d12h13m00s

Time fr. restart

Navigation

Expert → Diagnostics → Time fr. restart (0653)

Description
Use this function to display the time the device has been in operation since the last device
restart.

User interface
Days (d), hours (h), minutes (m) and seconds (s)
Operating time

Navigation

Expert → Diagnostics → Operating time (0652)

Description
Use this function to display the length of time the device has been in operation.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information

User interface
The maximum number of days is 9999, which is equivalent to 27 years.

3.10.1 "Diagnostic list” submenu

Navigation
Expert → Diagnostics → Diagnostic list

Diagnostics 1 (0692) → 231
Diagnostics 2 (0693) → 232
Diagnostics 3 (0694) → 233
Diagnostics 4 (0695) → 234
Diagnostics 5 (0696) → 234

Diagnostics 1

Navigation
Expert → Diagnostics → Diagnostic list → Diagnostics 1 (0692)

Description
Displays the current diagnostics message with the highest priority.

User interface
Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

Display
Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the key.

Examples
For the display format:
• ΔS442 Freq. output
• ✖F276 I/O module
Timestamp

Navigation

Expert → Diagnostics → Diagnostic list → Timestamp

Description

Displays the operating time when the diagnostic message with the highest priority occurred.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

Display

The diagnostic message can be viewed via the Diagnostics 1 parameter (→ 231).

Example

For the display format:
24d12h13m00s

Diagnostics 2

Navigation

Expert → Diagnostics → Diagnostic list → Diagnostics 2 (0693)

Description

Displays the current diagnostics message with the second-highest priority.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

Display

Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the key.

Examples

For the display format:
- △S442 Freq. output
- ❌F276 I/O module

Timestamp

Navigation

Expert → Diagnostics → Diagnostic list → Timestamp

Description

Displays the operating time when the diagnostic message with the second-highest priority occurred.

User interface

Days (d), hours (h), minutes (m) and seconds (s)
Additional information

Display

The diagnostic message can be viewed via the Diagnostics 2 parameter (→ 232).

Example

For the display format:
24d12h13m00s

Diagnostics 3

Navigation

Expert → Diagnostics → Diagnostic list → Diagnostics 3 (0694)

Description

Displays the current diagnostics message with the third-highest priority.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

Display

Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the key.

Examples

For the display format:
- [S442 Freq. output]
- [F276 I/O module]

Timestamp

Navigation

Expert → Diagnostics → Diagnostic list → Timestamp

Description

Displays the operating time when the diagnostic message with the third-highest priority occurred.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

Display

The diagnostic message can be viewed via the Diagnostics 3 parameter (→ 233).

Example

For the display format:
24d12h13m00s
Description of device parameters

Proline Promass 200 FOUNDATION Fieldbus

Diagnostics 4

Navigation

Expert → Diagnostics → Diagnostic list → Diagnostics 4 (0695)

Description
Displays the current diagnostics message with the fourth-highest priority.

User interface
Symbol for diagnostic behavior, diagnostic code and short message.

Additional information
Display
Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the key.

Examples
For the display format:
- ΔS442 Freq. output
- F276 I/O module

Timestamp

Navigation

Expert → Diagnostics → Diagnostic list → Timestamp

Description
Displays the operating time when the diagnostic message with the fourth-highest priority occurred.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information
Display
The diagnostic message can be viewed via the Diagnostics 4 parameter (→ 234).

Example
For the display format:
24d12h13m00s

Diagnostics 5

Navigation

Expert → Diagnostics → Diagnostic list → Diagnostics 5 (0696)

Description
Displays the current diagnostics message with the fifth-highest priority.

User interface
Symbol for diagnostic behavior, diagnostic code and short message.
Additional information

Display
Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the \[\text{key}\] key.

Examples
For the display format:
- \[\Delta\text{S442 Freq. output}\]
- \[\text{F276 I/O module}\]

Timestamp

Navigation
\[\text{Expert} \rightarrow \text{Diagnostics} \rightarrow \text{Diagnostic list} \rightarrow \text{Timestamp}\]

Description
Displays the operating time when the diagnostic message with the fifth-highest priority occurred.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information

Display
\[\text{The diagnostic message can be viewed via the Diagnostics 5 parameter (→ 234).}\]

Example
For the display format:
24d12h13m00s

3.10.2 "Event logbook" submenu

Navigation
\[\text{Expert} \rightarrow \text{Diagnostics} \rightarrow \text{Event logbook}\]

Filter options

Navigation
\[\text{Expert} \rightarrow \text{Diagnostics} \rightarrow \text{Event logbook} \rightarrow \text{Filter options (0705)}\]

Description
Use this function to select the category whose event messages are displayed in the event list of the local display.
Description of device parameters

Proline Promass 200 FOUNDATION Fieldbus

Selection

- All
- Failure (F)
- Funct. check (C)
- Out of spec. (S)
- Mainten. req. (M)
- Information (I)

Factory setting

All

Additional information

Description

The status signals are categorized in accordance with VDI/VDE 2650 and NAMUR Recommendation NE 107:

- F = Failure
- C = Function Check
- S = Out of Specification
- M = Maintenance Required

Filter options

Navigation

Expert → Diagnostics → Event logbook → Filter options

Description

Use this function to select the category whose event messages are displayed in the event list of the operating tool.

Selection

- All
- Failure (F)
- Funct. check (C)
- Out of spec. (S)
- Mainten. req. (M)
- Information (I)

Factory setting

All

Additional information

Description

The status signals are categorized in accordance with VDI/VDE 2650 and NAMUR Recommendation NE 107:

- F = Failure
- C = Function Check
- S = Out of Specification
- M = Maintenance Required

"Event list" submenu

The Event list submenu is only displayed if operating via the local display.

If operating via the FieldCare operating tool, the event list can be read out with a separate FieldCare module.
Navigation

Expert → Diagnostics → Event logbook → Event list

Event list

Description
Displays the history of event messages of the category selected in the Filter options parameter (→ 235).

User interface
- For a "Category I" event message
 Information event, short message, symbol for event recording and operating time when error occurred
- For a "Category F, C, S, M" event message (status signal)
 Diagnostics code, short message, symbol for event recording and operating time when error occurred

Additional information

Description
A maximum of 20 event messages are displayed in chronological order.
If the Extended HistoROM application package (order option) is enabled in the device, the event list can contain up to 100 entries.
The following symbols indicate whether an event has occurred or has ended:
- ⊂: Occurrence of the event
- ⊆: End of the event

Examples
For the display format:
- I1091 Configuration modified
 ⊂ 24d12h13m00s
- ΔS442 Freq. output
 ⊂ 01d04h12min30s

Additional information, such as remedial measures, can be retrieved via the ▼ key.

HistoROM
A HistoROM is a "non-volatile" device memory in the form of an EEPROM.

To order the Extended HistoROM application package, see the "Application packages" section of the "Technical Information" document.
3.10.3 "Device information" submenu

Navigation
Expert → Diagnostics → Device info

<table>
<thead>
<tr>
<th>Device info</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device tag (10799)</td>
</tr>
<tr>
<td>Serial number (10798)</td>
</tr>
<tr>
<td>Device Type (10711)</td>
</tr>
<tr>
<td>Device Revision (10710)</td>
</tr>
<tr>
<td>DD Revision (10709)</td>
</tr>
<tr>
<td>Firmware version (10792)</td>
</tr>
<tr>
<td>Hardware rev. (10793)</td>
</tr>
<tr>
<td>ITK Version (10794)</td>
</tr>
<tr>
<td>Order code (10795)</td>
</tr>
<tr>
<td>Ext. order cd. 1 (10796)</td>
</tr>
<tr>
<td>Ext. order cd. 2 (10797)</td>
</tr>
<tr>
<td>ENP version (10791)</td>
</tr>
</tbody>
</table>

Device tag

Navigation
Expert → Diagnostics → Device info → Device tag (10799)

Description
Use this function to enter a unique name for the measuring point so it can be identified quickly within the plant. The name is displayed in the header:

| 1 | XXXXXXXXXX |

User entry
Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /)

Factory setting
Promass 200
Additional information

Serial number

Navigation

Expert → Diagnostics → Device info → Serial number (10798)

Description
Displays the serial number of the measuring device. It can also be found on the nameplate of the sensor and transmitter.

Uses of the serial number
- To identify the measuring device quickly, e.g. when contacting Endress+Hauser.
- To obtain specific information on the measuring device using the Device Viewer: www.endress.com/deviceviewer

User interface
Max. 11-digit character string comprising letters and numbers.

Additional information

Factory setting

This information varies depending on the device. Only an example is given here.

Device Type

Navigation

Expert → Diagnostics → Device info → Device Type (10711)

Description
Use this function to view the device type with which the measuring device is registered with FOUNDATION Fieldbus.

User interface
Promass 200

Device Revision

Navigation

Expert → Diagnostics → Device info → Device Revision (10710)

Description
Use this function to view the device revision with which the measuring device is registered with FOUNDATION Fieldbus.

User interface
0 to 255

Factory setting
1
Description of device parameters

Proline Promass 200 FOUNDATION Fieldbus

DD Revision

Navigation

Expert → Diagnostics → Device info → DD Revision (10709)

Description

Displays the revision number of the device description (DD).

User interface

1

Additional information

This display can be used to ensure that the right system files (DD = device description) are used for integration into the host system. The system files can be downloaded free of charge online at: www.endress.com.

Firmware version

Navigation

Expert → Diagnostics → Device info → Firmware version (10792)

Description

Displays the device firmware version installed.

User interface

Character string with the following format:

xx.yy.zz

Hardware rev.

Navigation

Expert → Diagnostics → Device info → Hardware rev. (10793)

Description

Displays the Hardware rev..

User interface

Character string in the format xx.yy.zz

ITK Version

Navigation

Expert → Diagnostics → Device info → ITK Version (10794)

Description

Displays the revision status of the Interoperability Test Kits (ITK).

User interface

6
Order code

Navigation

Expert → Diagnostics → Device info → Order code (10795)

Description

Use this function to enter the device order code.

The order code can be found on the nameplate of the sensor and transmitter in the 'Order code' field.

User entry

Character string composed of letters, numbers and certain punctuation marks

Additional information

Description

The order code is generated from the extended order code, which defines all the device features of the product structure. In contrast, the device features cannot be read directly from the order code.

Uses of the order code

- To order an identical spare device.
- To identify the device quickly and easily, e.g. when contacting Endress+Hauser.

Ext. order cd. 1

Navigation

Expert → Diagnostics → Device info → Ext. order cd. 1 (10796)

Description

Use this function to enter the first part of the extended order code.

On account of length restrictions, the extended order code is split into a maximum of 2 parameters.

The extended order code can also be found on the nameplate of the sensor and transmitter in the "Ext. ord. cd." field.

User entry

Character string

Additional information

Description

The extended order code indicates the version of all the features of the product structure for the measuring device and thus uniquely identifies the measuring device.

The extended order code can also be found on the nameplate of the sensor and transmitter in the "Ext. ord. cd." field.

Ext. order cd. 2

Navigation

Expert → Diagnostics → Device info → Ext. order cd. 2 (10797)

Description

Use this function to enter the second part of the extended order code.

Deletion of the ordered customer-specific parameter set that was preconfigured before delivery. This parameter set cannot be reset. It can only be restored to the factory setting.

User entry

Character string
Additional information
For additional information, see Ext. order cd. 1 parameter

ENP version

Navigation
Expert → Diagnostics → Device info → ENP version (10791)

Description
Displays the version of the electronic nameplate. This electronic nameplate stores a data record for device identification that includes more data than the nameplates attached to the outside of the device.

User interface
Character string in the format xx.yy.zz

3.10.4 "Data logging" submenu

Navigation
Expert → Diagnostics → Data logging

<table>
<thead>
<tr>
<th>Data logging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign chan. 1 (0851) → 243</td>
</tr>
<tr>
<td>Assign chan. 2 (0852) → 243</td>
</tr>
<tr>
<td>Assign chan. 3 (0853) → 244</td>
</tr>
<tr>
<td>Assign chan. 4 (0854) → 244</td>
</tr>
<tr>
<td>Logging interval (0856) → 244</td>
</tr>
<tr>
<td>Clear logging (0855) → 245</td>
</tr>
<tr>
<td>Displ.channel 1 → 246</td>
</tr>
<tr>
<td>Displ.channel 2 → 247</td>
</tr>
<tr>
<td>Displ.channel 3 → 247</td>
</tr>
<tr>
<td>Displ.channel 4 → 248</td>
</tr>
</tbody>
</table>
Assign chan. 1

Navigation

Expert → Diagnostics → Data logging → Assign chan. 1 (0851)

Prerequisite

The **Extended HistO-ROM** application package is available.

The software options currently enabled are displayed in the **SW option overv.** parameter (→ 49).

Description

Use this function to select a process variable for the data logging channel.

Selection

- Off
- Mass flow
- Volume flow
- Correct.vol.flow
- Density
- Ref.density
- Temperature
- Carr. pipe temp. *
- Electronic temp.
- Oscil. frequency
- Oscil. amplitude
- Oscil. damping
- Signal asymmetry

Factory setting

Off

Additional information

Description

A total of 1000 measured values can be logged. This means:

- 1000 data points if 1 logging channel is used
- 500 data points if 2 logging channels are used
- 333 data points if 3 logging channels are used
- 250 data points if 4 logging channels are used

Once the maximum number of data points is reached, the oldest data points in the data log are cyclically overwritten in such a way that the last 1000, 500, 333 or 250 measured values are always in the log (ring memory principle).

The log contents are cleared if the option selected is changed.

Selection

Detailed description of the options **Oscil. frequency, Oscil. amplitude, Oscil. damping** and **Signal asymmetry**: Assign freq. parameter (→ 94)

Assign chan. 2

Navigation

Expert → Diagnostics → Data logging → Assign chan. 2 (0852)

Prerequisite

The **Extended HistO-ROM** application package is available.

The software options currently enabled are displayed in the **SW option overv.** parameter (→ 49).

* Visibility depends on order options or device settings
Description of device parameters

Proline Promass 200 FOUNDATION Fieldbus

Description
Options for the assignment of a process variable to the data logging channel.

Selection
Picklist, see **Assign channel 1** parameter (→ 243)

Factory setting
Off

Assign chan. 3

Navigation
Expert → Diagnostics → Data logging → Assign chan. 3 (0853)

Prerequisite
The **Extended HistoROM** application package is available.

The software options currently enabled are displayed in the **SW option overv.**
parameter (→ 49).

Description
Options for the assignment of a process variable to the data logging channel.

Selection
Picklist, see **Assign channel 1** parameter (→ 243)

Factory setting
Off

Assign chan. 4

Navigation
Expert → Diagnostics → Data logging → Assign chan. 4 (0854)

Prerequisite
The **Extended HistoROM** application package is available.

The software options currently enabled are displayed in the **SW option overv.**
parameter (→ 49).

Description
Options for the assignment of a process variable to the data logging channel.

Selection
Picklist, see **Assign channel 1** parameter (→ 243)

Factory setting
Off

Logging interval

Navigation
Expert → Diagnostics → Data logging → Logging interval (0856)

Prerequisite
The **Extended HistoROM** application package is available.

The software options currently enabled are displayed in the **SW option overv.**
parameter (→ 49).

Description
Use this function to enter the logging interval \(T_{\text{log}} \) for data logging.

User entry
1.0 to 3 600.0 s
Factory setting

10.0 s

Additional information

Description

This defines the interval between the individual data points in the data log, and thus the maximum loggable process time T_{log}:

- If 1 logging channel is used: $T_{\text{log}} = 1000 \times t_{\text{log}}$
- If 2 logging channels are used: $T_{\text{log}} = 500 \times t_{\text{log}}$
- If 3 logging channels are used: $T_{\text{log}} = 333 \times t_{\text{log}}$
- If 4 logging channels are used: $T_{\text{log}} = 250 \times t_{\text{log}}$

Once this time elapses, the oldest data points in the data log are cyclically overwritten such that a time of T_{log} always remains in the memory (ring memory principle).

> The log contents are cleared if the length of the logging interval is changed.

Example

If 1 logging channel is used:

- $T_{\text{log}} = 1000 \times 1 \text{ s} = 1000 \text{ s} \approx 15 \text{ min}$
- $T_{\text{log}} = 1000 \times 10 \text{ s} = 10000 \text{ s} \approx 3 \text{ h}$
- $T_{\text{log}} = 1000 \times 80 \text{ s} = 80000 \text{ s} \approx 1 \text{ d}$
- $T_{\text{log}} = 1000 \times 3600 \text{ s} = 3600000 \text{ s} \approx 41 \text{ d}$

Clear logging

Navigation

Expert → Diagnostics → Data logging → Clear logging (0855)

Prerequisite

The Extended HistoROM application package is available.

> The software options currently enabled are displayed in the SW option overview parameter (→ 49).

Description

Use this function to clear the entire logging data.

Selection

- Cancel
- Clear data

Factory setting

Cancel

Additional information

Selection

- Cancel
 - The data is not cleared. All the data is retained.
- Clear data
 - The logging data is cleared. The logging process starts from the beginning.
"Displ. channel 1" submenu

Navigation

Expert → Diagnostics → Data logging → Displ. channel 1

Display channel 1

Navigation

Expert → Diagnostics → Data logging → Displ. channel 1

Prerequisite

The Extended HistoROM application package is available.

The software options currently enabled are displayed in the **SW option overv.** parameter (→ 49).

One of the following options is selected in the **Assign chan. 1** parameter (→ 243):

- Mass flow
- Volume flow
- Correct. vol. flow
- Density
- Ref. density
- Temperature
- Carr. pipe temp. *
- Electronic temp.
- Oscil. frequency
- Oscil. amplitude
- Oscil. damping
- Signal asymmetry

Description

Displays the measured value trend for the logging channel in the form of a chart.

Additional information

Prerequisite

Detailed description of the options **Oscil. frequency, Oscil. amplitude, Oscil. damping** and **Signal asymmetry**: **Assign freq.** parameter (→ 94)

Description

![Chart of a measured value trend](image)

* Visibility depends on order options or device settings
- x-axis: depending on the number of channels selected displays 250 to 1000 measured values of a process variable.
- y-axis: displays the approximate measured value span and constantly adapts this to the ongoing measurement.

"Displ.channel 2" submenu

Navigation
Expert → Diagnostics → Data logging → Displ.channel 2

Display channel 2

Navigation
Expert → Diagnostics → Data logging → Displ.channel 2

Prerequisite
A process variable is defined in the *Assign chan. 2* parameter.

Description
See the *Display channel 1* parameter → 246

"Displ.channel 3" submenu

Navigation
Expert → Diagnostics → Data logging → Displ.channel 3

Display channel 3

Navigation
Expert → Diagnostics → Data logging → Displ.channel 3

Prerequisite
A process variable is defined in the *Assign chan. 3* parameter.

Description
See the *Display channel 1* parameter → 246
"Displ.channel 4" submenu

Navigation
Expert → Diagnostics → Data logging → Displ.channel 4

Display channel 4

Navigation
Expert → Diagnostics → Data logging → Displ.channel 4

Prerequisite
A process variable is defined in the Assign chan. 4 parameter.

Description
See the Display channel 1 parameter → 246

3.10.5 "Min/max val." submenu

Navigation
Expert → Diagnostics → Min/max val.

Reset min/max (2504) → 249
Terminal volt. → 249
Main elect.temp. → 250
IO module temp. → 251
Medium temp. → 252
Carr. pipe temp. → 253
Oscil. frequency → 254
Oscil. amplitude → 255
Oscil. damping → 255
Signal asymmetry → 256
Reset min/max

Navigation
Expert → Diagnostics → Min/max val. → Reset min/max (2504)

Description
Use this function to select measured variables whose minimum, maximum and average measured values are to be reset.

Selection
- Cancel
- Terminal volt. 1
- IO module temp.
- Oscil. amplitude
- Oscil. damping
- Oscil. frequency
- Signal asymmetry

Factory setting
Cancel

Additional information
Options
Detailed description of the options Oscil. frequency, Oscil. amplitude, Oscil. damping and Signal asymmetry: Assign freq. parameter (→ 94)

"Terminal volt." submenu

Navigation
Expert → Diagnostics → Min/max val. → Terminal volt.

Minimum value

Navigation
Expert → Diagnostics → Min/max val. → Terminal volt. → Minimum value (0689)

Description
Use this function to display the smallest previously measured terminal voltage value in Volts.

User interface
0.0 to 50.0 V
Maximum value

Navigation

> Expert → Diagnostics → Min/max val. → Terminal volt. → Maximum value (0663)

Description

Use this function to view the largest previously measured terminal voltage value in Volts.

User interface

0.0 to 50.0 V

Average value

Navigation

> Expert → Diagnostics → Min/max val. → Terminal volt. → Average value (0698)

Description

Use this function to view the average of all previously measured terminal voltage values in Volts.

User interface

Signed floating-point number

"Main elect.temp." submenu

Navigation

> Expert → Diagnostics → Min/max val. → Main elect.temp.

Main elect.temp.

Minimum value

Navigation

> Expert → Diagnostics → Min/max val. → Main elect.temp. → Minimum value (2457)

Description

Displays the lowest previously measured temperature value of the main electronics module.

User interface

Signed floating-point number

Additional information

- **Dependency**

 The unit is taken from the **Temperature unit** parameter (→ 63)

Maximum value

Navigation

> Expert → Diagnostics → Min/max val. → Main elect.temp. → Maximum value (2456)

Description

Displays the highest previously measured temperature value of the main electronics module.

User interface

Signed floating-point number

Additional information

- **Dependency**

 The unit is taken from the **Temperature unit** parameter (→ 63)
Maximum value

Navigation

Expert → Diagnostics → Min/max val. → Main elect.temp. → Maximum value (2456)

Description

Displays the highest previously measured temperature value of the main electronics module.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the Temperature unit parameter (→ 63)

"IO module temperature" submenu

Navigation

Expert → Diagnostics → Min/max val. → IO module temp.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value (0688)</td>
<td>251</td>
</tr>
<tr>
<td>Maximum value (0665)</td>
<td>251</td>
</tr>
<tr>
<td>Average value (0697)</td>
<td>252</td>
</tr>
</tbody>
</table>

Minimum value

Navigation

Expert → Diagnostics → Min/max val. → IO module temp. → Minimum value (0688)

Description

Displays the lowest previously measured temperature value of the I/O electronics module.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the Temperature unit parameter (→ 63)

Maximum value

Navigation

Expert → Diagnostics → Min/max val. → IO module temp. → Maximum value (0665)

Description

Displays the highest previously measured temperature value of the I/O electronics module.
User interface
Signed floating-point number

Additional information
Dependency
- The unit is taken from the **Temperature unit** parameter (→ 63)

Average value

Navigation
Expert → Diagnostics → Min/max val. → IO module temp. → Average value (0697)

Description
Displays the average value of all previously measured temperature values of the I/O electronics module.

User interface
-1273.15 to 726.85 °C

Additional information
Dependency
- The unit is taken from the **Temperature unit** parameter (→ 63)

"Medium temp." submenu

Navigation
Expert → Diagnostics → Min/max val. → Medium temp.

Minimum value

Navigation
Expert → Diagnostics → Min/max val. → Medium temp. → Minimum value (2502)

Description
Displays the lowest previously measured medium temperature value.

User interface
Signed floating-point number

Additional information
Dependency
- The unit is taken from the **Temperature unit** parameter (→ 63)
Maximum value

Navigation

[Expert → Diagnostics → Min/max val. → Medium temp. → Maximum value (2501)]

Description

Displays the highest previously measured medium temperature value.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the **Temperature unit** parameter (→ 63)

“Carr. pipe temp.” submenu

Navigation

[Expert → Diagnostics → Min/max val. → Carr. pipe temp.]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value (2461)</td>
<td>Displays the lowest previously measured temperature value of the carrier pipe.</td>
</tr>
<tr>
<td>Maximum value (2460)</td>
<td></td>
</tr>
</tbody>
</table>

Minimum value

Navigation

[Expert → Diagnostics → Min/max val. → Carr. pipe temp. → Minimum value (2461)]

Prerequisite

If the carrier tube temperature is available (applies only to Promass F).

Description

Displays the lowest previously measured temperature value of the carrier pipe.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the **Temperature unit** parameter (→ 63)

Maximum value

Navigation

[Expert → Diagnostics → Min/max val. → Carr. pipe temp. → Maximum value (2460)]

Prerequisite

If the carrier tube temperature is available (applies only to Promass F).

Description

Displays the highest previously measured temperature value of the carrier pipe.
User interface
Signed floating-point number

Additional information

Dependency

The unit is taken from the **Temperature unit** parameter (→ 63)

“Oscil. frequency” submenu

Navigation

Expert → Diagnostics → Min/max val. → Oscil. frequency

<table>
<thead>
<tr>
<th>Oscil. frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value (2583) → 254</td>
</tr>
<tr>
<td>Maximum value (2582) → 254</td>
</tr>
</tbody>
</table>

Minimum value

Navigation

Expert → Diagnostics → Min/max val. → Oscil. frequency → Minimum value (2583)

Description
Displays the lowest previously measured oscillation frequency.

User interface
Signed floating-point number

Maximum value

Navigation

Expert → Diagnostics → Min/max val. → Oscil. frequency → Maximum value (2582)

Description
Displays the highest previously measured oscillation frequency.

User interface
Signed floating-point number
"Oscil. amplitude" submenu

Navigation

Expert → Diagnostics → Min/max val. → Oscil. amplitude

<table>
<thead>
<tr>
<th>Minimum value (2472)</th>
<th>→ 255</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum value (2471)</td>
<td>→ 255</td>
</tr>
</tbody>
</table>

Minimum value

Navigation

Expert → Diagnostics → Min/max val. → Oscil. amplitude → Minimum value (2472)

Description
Displays the lowest previously measured oscillation amplitude.

User interface
Signed floating-point number

Maximum value

Navigation

Expert → Diagnostics → Min/max val. → Oscil. amplitude → Maximum value (2471)

Description
Displays the highest previously measured oscillation amplitude.

User interface
Signed floating-point number

"Oscil. damping" submenu

Navigation

Expert → Diagnostics → Min/max val. → Oscil. damping

<table>
<thead>
<tr>
<th>Minimum value (2586)</th>
<th>→ 256</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum value (2585)</td>
<td>→ 256</td>
</tr>
</tbody>
</table>
Minimum value

Navigation
Expert → Diagnostics → Min/max val. → Oscil. damping → Minimum value (2586)

Description
Displays the lowest previously measured oscillation damping.

User interface
Signed floating-point number

Maximum value

Navigation
Expert → Diagnostics → Min/max val. → Oscil. damping → Maximum value (2585)

Description
Displays the highest previously measured oscillation damping.

User interface
Signed floating-point number

"Signal asymmetry" submenu

Navigation
Expert → Diagnostics → Min/max val. → Signal asymmetry

Minimum value
Minimum value (2551) → 256

Maximum value
Maximum value (2476) → 257

Description
Displays the lowest previously measured signal asymmetry.

User interface
Signed floating-point number
Maximum value

Navigation

Expert → Diagnostics → Min/max val. → Signal asymmetry → Maximum value (2476)

Description

Displays the highest previously measured signal asymmetry.

User interface

Signed floating-point number

3.10.6 "Heartbeat" submenu

For detailed information on the parameter descriptions for the Heartbeat Verification+Monitoring application package, refer to the Special Documentation for the device → 7

Navigation

Expert → Diagnostics → Heartbeat

3.10.7 "Simulation" submenu

Navigation

Expert → Diagnostics → Simulation

<table>
<thead>
<tr>
<th>Submenu</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign proc. var. (1810)</td>
<td>258</td>
</tr>
<tr>
<td>Value proc. var. (1811)</td>
<td>258</td>
</tr>
<tr>
<td>Frequency sim. (0472)</td>
<td>259</td>
</tr>
<tr>
<td>Freq. value (0473)</td>
<td>259</td>
</tr>
<tr>
<td>Pulse sim. (0458)</td>
<td>259</td>
</tr>
<tr>
<td>Pulse value (0459)</td>
<td>260</td>
</tr>
<tr>
<td>Switch sim. (0462)</td>
<td>260</td>
</tr>
<tr>
<td>Switch status (0463)</td>
<td>261</td>
</tr>
<tr>
<td>Sim. alarm (0654)</td>
<td>261</td>
</tr>
</tbody>
</table>
Assign proc.var.

Navigation

Expert → Diagnostics → Simulation → Assign proc.var. (1810)

Description

Use this function to select a process variable for the simulation process that is activated. The display alternates between the measured value and a diagnostic message of the 'Function check' category (C) while simulation is in progress.

Selection

- Off
- Mass flow
- Volume flow
- Correct.vol.flow
- Density
- Ref.density
- Temperature

Factory setting

Off

Additional information

The simulation value of the process variable selected is defined in the **Value proc. var.** parameter (→ 258).

Value proc. var.

Navigation

Expert → Diagnostics → Simulation → Value proc. var. (1811)

Prerequisite

A process variable is selected in the **Assign proc.var.** parameter (→ 258).

Description

Use this function to enter a simulation value for the selected process variable. Subsequent measured value processing and the signal output use this simulation value. In this way, users can verify whether the measuring device has been configured correctly.

User entry

Depends on the process variable selected

Factory setting

0

Additional information

The unit of the displayed measured value is taken from the **System units** submenu (→ 57).
Frequency sim.

Navigation

Expert → Diagnostics → Simulation → Frequency sim. (0472)

Prerequisite

In the Operating mode parameter (→ 89), the Frequency option is selected.

Description

Use this function to switch simulation of the frequency output on and off. The display alternates between the measured value and a diagnostic message of the 'Function check' category (C) while simulation is in progress.

Selection

- Off
- On

Factory setting

Off

Additional information

Description

The desired simulation value is defined in the Freq. value parameter (→ 259).

Selection

- Off
 - Frequency simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- On
 - Frequency simulation is active.

Freq. value

Navigation

Expert → Diagnostics → Simulation → Freq. value (0473)

Prerequisite

In the Frequency sim. parameter (→ 259), the On option is selected.

Description

Use this function to enter a frequency value for the simulation. In this way, users can verify the correct adjustment of the frequency output and the correct function of downstream switching units.

User entry

0.0 to 1250.0 Hz

Pulse sim.

Navigation

Expert → Diagnostics → Simulation → Pulse sim. (0458)

Prerequisite

In the Operating mode parameter (→ 89), the Pulse option is selected.

Description

Use this function to switch simulation of the pulse output on and off. The display alternates between the measured value and a diagnostic message of the 'Function check' category (C) while simulation is in progress.
Description of device parameters

Selection

- Off
- Fixed value
- Down-count. val.

Factory setting

Off

Additional information

Description

The desired simulation value is defined in the Pulse value parameter (→ 260).

Selection

- Off
 Pulse simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- Fixed value
 Pulses are continuously output with the pulse width specified in the Pulse width parameter (→ 91).
- Down-count. val.
 The pulses specified in the Pulse value parameter (→ 260) are output.

Pulse value

Navigation

Expert → Diagnostics → Simulation → Pulse value (0459)

Prerequisite

In the Pulse sim. parameter (→ 259), the Down-count. val. option is selected.

Description

Use this function to enter a pulse value for the simulation. In this way, users can verify the correct adjustment of the pulse output and the correct function of downstream switching units.

User entry

0 to 65535

Switch sim.

Navigation

Expert → Diagnostics → Simulation → Switch sim. (0462)

Prerequisite

In the Operating mode parameter (→ 89), the Switch option is selected.

Description

Use this function to switch simulation of the switch output on and off. The display alternates between the measured value and a diagnostic message of the "Function check" category (C) while simulation is in progress.

Selection

- Off
- On

Factory setting

Off
Additional information

Description

The desired simulation value is defined in the Switch status parameter (→ 261).

Selection

- Off
 Switch simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- On
 Switch simulation is active.

Switch status

Navigation

Expert → Diagnostics → Simulation → Switch status (0463)

Prerequisite

In the Switch sim. parameter (→ 260) Switch sim. 1 to n parameter Switch sim. 1 to n parameter, the On option is selected.

Description

Use this function to select a switch value for the simulation. In this way, users can verify the correct adjustment of the switch output and the correct function of downstream switching units.

Selection

- Open
- Closed

Additional information

Selection

- Open
 Switch simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- Closed
 Switch simulation is active.

Sim. alarm

Navigation

Expert → Diagnostics → Simulation → Sim. alarm (0654)

Description

Use this function to switch the device alarm on and off.

Selection

- Off
- On

Factory setting

Off

Additional information

Description

The display alternates between the measured value and a diagnostic message of the "Function check" category (C) while simulation is in progress.
Event category

Navigation
Expert → Diagnostics → Simulation → Event category (0738)

Description
Use this function to select the category of the diagnostic events that are displayed for the simulation in the Sim. diag. event parameter (→ 262).

Selection
- Sensor
- Electronics
- Configuration
- Process

Factory setting
Process

Sim. diag. event

Navigation
Expert → Diagnostics → Simulation → Sim. diag. event (0737)

Description
Use this function to select a diagnostic event for the simulation process that is activated.

Selection
- Off
- Diagnostic event picklist (depends on the category selected)

Factory setting
Off

Additional information

Description

For the simulation, you can choose from the diagnostic events of the category selected in the Event category parameter (→ 262).
4 Country-specific factory settings

4.1 SI units

Not valid for USA and Canada.

4.1.1 System units

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>kg</td>
</tr>
<tr>
<td>Mass flow</td>
<td>kg/h</td>
</tr>
<tr>
<td>Volume</td>
<td>l</td>
</tr>
<tr>
<td>Volume flow</td>
<td>l/h</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>Nl</td>
</tr>
<tr>
<td>Corrected volume flow</td>
<td>Nl/h</td>
</tr>
<tr>
<td>Density</td>
<td>kg/l</td>
</tr>
<tr>
<td>Reference density</td>
<td>kg/Nl</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C</td>
</tr>
<tr>
<td>Length</td>
<td>mm</td>
</tr>
<tr>
<td>Pressure</td>
<td>bar a</td>
</tr>
</tbody>
</table>

4.1.2 Full scale values

The factory settings apply to the following parameters: 100% bar graph value 1

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>[kg/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
</tr>
<tr>
<td>8</td>
<td>400</td>
</tr>
<tr>
<td>15</td>
<td>1300</td>
</tr>
<tr>
<td>25</td>
<td>3600</td>
</tr>
<tr>
<td>40</td>
<td>9000</td>
</tr>
<tr>
<td>50</td>
<td>14000</td>
</tr>
<tr>
<td>80</td>
<td>36000</td>
</tr>
</tbody>
</table>

4.1.3 Pulse value

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>(~ 2 pulses/s at 2 m/s) [kg/p]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.001</td>
</tr>
<tr>
<td>2</td>
<td>0.01</td>
</tr>
<tr>
<td>4</td>
<td>0.01</td>
</tr>
<tr>
<td>8</td>
<td>0.1</td>
</tr>
<tr>
<td>15</td>
<td>0.1</td>
</tr>
</tbody>
</table>
4.1.4 On value low flow cut off

The switch-on point depends on the type of medium and the nominal diameter.

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>On-value for liquid [kg/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.08</td>
</tr>
<tr>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>4</td>
<td>1.8</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td>26</td>
</tr>
<tr>
<td>25</td>
<td>72</td>
</tr>
<tr>
<td>40</td>
<td>180</td>
</tr>
<tr>
<td>50</td>
<td>300</td>
</tr>
<tr>
<td>80</td>
<td>720</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>On-value for gas [kg/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.02</td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
</tr>
<tr>
<td>4</td>
<td>0.45</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>6.5</td>
</tr>
<tr>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>80</td>
<td>180</td>
</tr>
</tbody>
</table>

4.2 US units

Only valid for USA and Canada.

4.2.1 System units

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>lb</td>
</tr>
<tr>
<td>Mass flow</td>
<td>lb/min</td>
</tr>
<tr>
<td>Volume</td>
<td>gal (us)</td>
</tr>
<tr>
<td>Volume flow</td>
<td>gal/min (us)</td>
</tr>
</tbody>
</table>
The factory settings apply to the following parameters:

100% bar graph value 1

<table>
<thead>
<tr>
<th>Nominal diameter [in]</th>
<th>[lb/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/24</td>
<td>0.15</td>
</tr>
<tr>
<td>1/12</td>
<td>0.75</td>
</tr>
<tr>
<td>1/8</td>
<td>3.3</td>
</tr>
<tr>
<td>3/8</td>
<td>15</td>
</tr>
<tr>
<td>1/4</td>
<td>50</td>
</tr>
<tr>
<td>1</td>
<td>130</td>
</tr>
<tr>
<td>11/2</td>
<td>330</td>
</tr>
<tr>
<td>2</td>
<td>515</td>
</tr>
<tr>
<td>3</td>
<td>1320</td>
</tr>
</tbody>
</table>

4.2.3 Pulse value

<table>
<thead>
<tr>
<th>Nominal diameter [in]</th>
<th>(~ 2 pulses/s at 2.0 m/s) [lb/p]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/24</td>
<td>0.002</td>
</tr>
<tr>
<td>1/12</td>
<td>0.02</td>
</tr>
<tr>
<td>1/8</td>
<td>0.02</td>
</tr>
<tr>
<td>3/8</td>
<td>0.2</td>
</tr>
<tr>
<td>1/4</td>
<td>0.2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>11/2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
</tr>
</tbody>
</table>

4.2.4 On value low flow cut off

The switch-on point depends on the type of medium and the nominal diameter.

<table>
<thead>
<tr>
<th>Nominal diameter [in]</th>
<th>On-value for liquid [lb/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/24</td>
<td>0.003</td>
</tr>
<tr>
<td>1/12</td>
<td>0.015</td>
</tr>
<tr>
<td>Nominal diameter [in]</td>
<td>On-value for liquid [lb/min]</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>¹/₈</td>
<td>0.066</td>
</tr>
<tr>
<td>³/₈</td>
<td>0.3</td>
</tr>
<tr>
<td>½</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2.6</td>
</tr>
<tr>
<td>1½</td>
<td>6.6</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal diameter [in]</th>
<th>On-value for gas [lb/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>¹/₂₄</td>
<td>0.001</td>
</tr>
<tr>
<td>¹/₁₂</td>
<td>0.004</td>
</tr>
<tr>
<td>¹/₈</td>
<td>0.016</td>
</tr>
<tr>
<td>³/₈</td>
<td>0.075</td>
</tr>
<tr>
<td>½</td>
<td>0.25</td>
</tr>
<tr>
<td>1</td>
<td>0.65</td>
</tr>
<tr>
<td>1½</td>
<td>1.65</td>
</tr>
<tr>
<td>2</td>
<td>2.75</td>
</tr>
<tr>
<td>3</td>
<td>6.5</td>
</tr>
</tbody>
</table>
5 Explanation of abbreviated units

5.1 SI units

<table>
<thead>
<tr>
<th>Process variable</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>g/cm³, g/m³</td>
<td>Gram/volume unit</td>
</tr>
<tr>
<td></td>
<td>kg/dm³, kg/l, kg/m³</td>
<td>Kilogram/volume unit</td>
</tr>
<tr>
<td></td>
<td>SD4°C, SD15°C, SD20°C</td>
<td>Specific density: The specific density is the ratio of the density of the fluid to the density of water at a water temperature of 4 °C (39 °F), 15 °C (59 °F), 20 °C (68 °F).</td>
</tr>
<tr>
<td></td>
<td>SG4°C, SG15°C, SG20°C</td>
<td>Specific gravity: The specific gravity is the ratio of the density of the fluid to the density of water at a water temperature of 4 °C (39 °F), 15 °C (59 °F), 20 °C (68 °F).</td>
</tr>
<tr>
<td>Pressure</td>
<td>Pa a, kPa a, MPa a</td>
<td>Pascal, kilopascal, megapascal (absolute)</td>
</tr>
<tr>
<td></td>
<td>bar</td>
<td>Bar</td>
</tr>
<tr>
<td></td>
<td>Pa g, kPa g, MPa g</td>
<td>Pascal, kilopascal, megapascal (relative/gauge)</td>
</tr>
<tr>
<td></td>
<td>bar g</td>
<td>Bar (relative/gauge)</td>
</tr>
<tr>
<td>Length</td>
<td>µm, mm, m</td>
<td>Micrometer, millimeter, meter</td>
</tr>
<tr>
<td>Mass</td>
<td>g, kg, t</td>
<td>Gram, kilogram, metric ton</td>
</tr>
<tr>
<td>Mass flow</td>
<td>g/s, g/min, g/h, g/d</td>
<td>Gram/time unit</td>
</tr>
<tr>
<td></td>
<td>kg/s, kg/min, kg/h, kg/d</td>
<td>Kilogram/time unit</td>
</tr>
<tr>
<td></td>
<td>t/s, t/min, t/h, t/d</td>
<td>Metric ton/time unit</td>
</tr>
<tr>
<td>Ref. density</td>
<td>kg/Nm³, kg/Nl, g/Scm³, kg/Sm³</td>
<td>Kilogram, gram/standard volume unit</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>Nl,Nm³,Sm³</td>
<td>Normal liter, normal cubic meter, standard cubic meter</td>
</tr>
<tr>
<td>Corrected vol.</td>
<td>Nl/s, Nl/min, Nl/h, Nl/d</td>
<td>Normal liter/time unit</td>
</tr>
<tr>
<td></td>
<td>Nm³/s, Nm³/min, Nm³/h, Nm³/d</td>
<td>Normal cubic meter/time unit</td>
</tr>
<tr>
<td></td>
<td>Sm³/s, Sm³/min, Sm³/h, Sm³/d</td>
<td>Standard cubic meter/time unit</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C, K</td>
<td>Celsius, Kelvin</td>
</tr>
<tr>
<td>Volume</td>
<td>cm³, dm³, m³</td>
<td>Cubic centimeter, cubic decimeter, cubic meter</td>
</tr>
<tr>
<td></td>
<td>ml, l</td>
<td>Milliliter, liter</td>
</tr>
<tr>
<td>Volume flow</td>
<td>cm³/s, cm³/min, cm³/h, cm³/d</td>
<td>Cubic centimeter/time unit</td>
</tr>
<tr>
<td></td>
<td>dm³/s, dm³/min, dm³/h, dm³/d</td>
<td>Cubic decimeter/time unit</td>
</tr>
<tr>
<td></td>
<td>m³/s, m³/min, m³/h, m³/d</td>
<td>Cubic meter/time unit</td>
</tr>
<tr>
<td></td>
<td>ml/s, ml/min, ml/h, ml/d</td>
<td>Milliliter/time unit</td>
</tr>
<tr>
<td></td>
<td>l/s, l/min, l/h, l/d</td>
<td>Liter/time unit</td>
</tr>
<tr>
<td>Time</td>
<td>s, m, h, d, y</td>
<td>Second, minute, hour, day, year</td>
</tr>
</tbody>
</table>

5.2 US units

<table>
<thead>
<tr>
<th>Process variable</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>lb/ft³, lb/gal (us)</td>
<td>Pound/cubic foot, pound/gallon</td>
</tr>
<tr>
<td></td>
<td>lb/bbl (us;liq.), lb/bbl (us;beer), lb/bbl (us;oil), lb/bbl (us;tank)</td>
<td>Pound/volume unit</td>
</tr>
<tr>
<td>Pressure</td>
<td>psi a</td>
<td>Pounds per square inch (absolute)</td>
</tr>
<tr>
<td>Process variable</td>
<td>Units</td>
<td>Explanation</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>Length</td>
<td>in, ft</td>
<td>Inch, foot</td>
</tr>
<tr>
<td>Mass</td>
<td>oz, lb, STon</td>
<td>Ounce, pound, standard ton</td>
</tr>
<tr>
<td>Mass flow</td>
<td>oz/s, oz/min, oz/h, oz/d</td>
<td>Pound/time unit</td>
</tr>
<tr>
<td></td>
<td>lb/s, lb/min, lb/h, lb/d</td>
<td>Standard ton/time unit</td>
</tr>
<tr>
<td></td>
<td>STon/s, STon/min, STon/h, STon/d</td>
<td>Standard ton/time unit</td>
</tr>
<tr>
<td>Ref. density</td>
<td>lb/St³</td>
<td>Weight unit/standard volume unit</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>St³, Sgal (us), Sbbl (us;liq.)</td>
<td>Standard cubic foot, standard gallon, standard barrel</td>
</tr>
<tr>
<td>Correct:vol.flow</td>
<td>St³/s, St³/min, St³/h, St³/d</td>
<td>Standard cubic foot/time unit</td>
</tr>
<tr>
<td></td>
<td>Sgal/s (us), Sgal/min (us), Sgal/h (us), Sgal/d (us)</td>
<td>Standard gallon/time unit</td>
</tr>
<tr>
<td></td>
<td>Sbbl/s (us;liq.), Sbbl/min (us;liq.), Sbbl/h (us;liq.), Sbbl/d (us;liq.)</td>
<td>Barrel/time unit (normal liquids)</td>
</tr>
<tr>
<td>Temperature</td>
<td>°F, °R</td>
<td>Fahrenheit, Rankine</td>
</tr>
<tr>
<td>Volume</td>
<td>af</td>
<td>Acre foot</td>
</tr>
<tr>
<td></td>
<td>ft³</td>
<td>Cubic foot</td>
</tr>
<tr>
<td></td>
<td>fl oz (us), gal (us), kgal (us), Mgal (us)</td>
<td>Fluid ounce, gallon, kilogallon, million gallon</td>
</tr>
<tr>
<td></td>
<td>bbl (us;liq.), bbl (us;beer), bbl (us;oil), bbl (us;tank)</td>
<td>Barrel (normal liquids), barrel (beer), barrel (petrochemicals), barrel (filling tanks)</td>
</tr>
<tr>
<td>Volume flow</td>
<td>af/s, af/min, af/h, af/d</td>
<td>Acre foot/time unit</td>
</tr>
<tr>
<td></td>
<td>ft³/s, ft³/min, ft³/h, ft³/d</td>
<td>Cubic foot/time unit</td>
</tr>
<tr>
<td></td>
<td>fl oz (us), fl oz/min (us), fl oz/h (us), fl oz/d (us)</td>
<td>Fluid ounce/time unit</td>
</tr>
<tr>
<td></td>
<td>gal/s (us), gal/min (us), gal/h (us), gal/d (us)</td>
<td>Gallon/time unit</td>
</tr>
<tr>
<td></td>
<td>kgal/s (us), kgal/min (us), kgal/h (us), kgal/d (us)</td>
<td>Kilogallon/time unit</td>
</tr>
<tr>
<td></td>
<td>Mgal/s (us), Mgal/min (us), Mgal/h (us), Mgal/d (us)</td>
<td>Million gallon/time unit</td>
</tr>
<tr>
<td></td>
<td>bbl/s (us;liq.), bbl/min (us;liq.), bbl/h (us;liq.), bbl/d (us;liq.)</td>
<td>Barrel/time unit (normal liquids)</td>
</tr>
<tr>
<td></td>
<td>Normal liquids: 31.5 gal/bbl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bbl/s (us;beer), bbl/min (us;beer), bbl/h (us;beer), bbl/d (us;beer)</td>
<td>Barrel /time unit (beer)</td>
</tr>
<tr>
<td></td>
<td>Beer: 31.0 gal/bbl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bbl/s (us;oil), bbl/min (us;oil), bbl/h (us;oil), bbl/d (us;oil)</td>
<td>Barrel/time unit (petrochemicals)</td>
</tr>
<tr>
<td></td>
<td>Petrochemicals: 42.0 gal/bbl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bbl/s (us;tank), bbl/min (us;tank), bbl/h (us;tank), bbl/d (us;tank)</td>
<td>Barrel/time unit (filling tanks)</td>
</tr>
<tr>
<td></td>
<td>Filling tanks: 55.0 gal/bbl</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>s, m, h, d, y</td>
<td>Second, minute, hour, day, year</td>
</tr>
<tr>
<td></td>
<td>am, pm</td>
<td>Ante meridiem (before midday), post meridiem (after midday)</td>
</tr>
</tbody>
</table>
5.3 Imperial units

<table>
<thead>
<tr>
<th>Process variable</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>lb/gal (imp), lb/bbl (imp;beer), lb/bbl (imp;oil)</td>
<td>Pound/volume unit</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>Sgal (imp)</td>
<td>Standard gallon</td>
</tr>
<tr>
<td>Correct. vol. flow</td>
<td>Sgal/s (imp), Sgal/min (imp), Sgal/h (imp), Sgal/d (imp)</td>
<td>Standard gallon/time unit</td>
</tr>
<tr>
<td>Volume</td>
<td>gal (imp), Mgal (imp)</td>
<td>Gallon, mega gallon</td>
</tr>
<tr>
<td></td>
<td>bbl (imp;beer), bbl (imp;oil)</td>
<td>Barrel (beer), barrel (petrochemicals)</td>
</tr>
<tr>
<td>Volume flow</td>
<td>gal/s (imp), gal/min (imp), gal/h (imp), gal/d (imp)</td>
<td>Gallon/time unit</td>
</tr>
<tr>
<td></td>
<td>Mgal/s (imp), Mgal/min (imp), Mgal/h (imp), Mgal/d (imp)</td>
<td>Mega gallon/time unit</td>
</tr>
<tr>
<td></td>
<td>bbl/s (imp;beer), bbl/min (imp;beer), bbl/h (imp;beer), bbl/d (imp;beer)</td>
<td>Barrel/time unit (beer)</td>
</tr>
<tr>
<td></td>
<td>Beer: 36.0 gal/bbl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bbl/s (imp;oil), bbl/min (imp;oil), bbl/h (imp;oil), bbl/d (imp;oil)</td>
<td>Barrel/time unit (petrochemicals)</td>
</tr>
<tr>
<td></td>
<td>Petrochemicals: 34.97 gal/bbl</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>s, m, h, d, y</td>
<td>Second, minute, hour, day, year</td>
</tr>
<tr>
<td></td>
<td>am, pm</td>
<td>Ante meridiem (before midday), post meridiem (after midday)</td>
</tr>
</tbody>
</table>
Index

0 ... 9
0% bargraph value 1 (Parameter) 19
0% bargraph value 3 (Parameter) 22
100% bargraph value 1 (Parameter) 20
100% bargraph value 3 (Parameter) 23

A
Access status display (Parameter) 13, 28
Access status tooling (Parameter) 13
Acknowledge Option (Parameter) 127, 167, 200
Activate sensor emergency mode (Parameter) 49
Activate SW option (Parameter) 48
Actual diagnostics (Parameter) 229
Actual mode (Parameter) 112, 132, 180, 208, 217
Adjustment in progress (Parameter) 79
Administration (Submenu) 45
Alarm delay (Parameter) 32
Alarm Hysteresis (Parameter) 168
Alarm State (Parameter) 125, 128, 165, 171, 173, 174, 176, 202, 203
Alert Key (Parameter) 110, 131, 179, 207, 216
Analog input 1 to n (Submenu) 130
Analog inputs (Submenu) 130
Analog outputs (Submenu) 206
Application (Submenu) 223
Assign behavior of diagnostic no. 046 (Parameter) 35
Assign behavior of diagnostic no. 140 (Parameter) 35
Assign behavior of diagnostic no. 274 (Parameter) 35
Assign behavior of diagnostic no. 442 (Parameter) 36
Assign behavior of diagnostic no. 443 (Parameter) 36
Assign behavior of diagnostic no. 801 (Parameter) 36
Assign behavior of diagnostic no. 830 (Parameter) 37
Assign behavior of diagnostic no. 831 (Parameter) 37
Assign behavior of diagnostic no. 832 (Parameter) 38
Assign behavior of diagnostic no. 833 (Parameter) 38
Assign behavior of diagnostic no. 834 (Parameter) 38
Assign behavior of diagnostic no. 835 (Parameter) 39
Assign behavior of diagnostic no. 862 (Parameter) 39
Assign behavior of diagnostic no. 912 (Parameter) 39
Assign behavior of diagnostic no. 913 (Parameter) 40
Assign channel 1 (Parameter) 243
Assign channel 2 (Parameter) 243
Assign channel 3 (Parameter) 244
Assign channel 4 (Parameter) 244
Assign diagnostic behavior (Parameter) 102
Assign flow direction check (Parameter) 105
Assign frequency output (Parameter) 94
Assign limit (Parameter) 103
Assign process variable (Parameter) 67, 71, 224
Assign pulse output (Parameter) 90
Assign simulation process variable (Parameter) 258
Assign status (Parameter) 106
Assign status of diagnostic number 044 (Parameter) 40
Assign status of diagnostic number 046 (Parameter) 40
Assign status of diagnostic number 274 (Parameter) 41
Assign status of diagnostic number 801 (Parameter) 41
Assign status of diagnostic number 830 (Parameter) 41
Assign status of diagnostic number 831 (Parameter) 42
Assign status of diagnostic number 832 (Parameter) 42
Assign status of diagnostic number 833 (Parameter) 42
Assign status of diagnostic number 834 (Parameter) 43
Assign status of diagnostic number 835 (Parameter) 43
Assign status of diagnostic number 862 (Parameter) 43
Assign status of diagnostic number 912 (Parameter) 44
Assign status of diagnostic number 913 (Parameter) 44
Average value (Parameter) 250, 252

B
Backlight (Parameter) 27
Backup state (Parameter) 30
Block Error (Parameter) 113, 134, 181, 210, 219
Block tag (Parameter) 109, 130, 178, 206, 215

C
C 0 (Parameter) .. 86
C 1 (Parameter) .. 86
C 2 (Parameter) .. 86
C 3 (Parameter) .. 86
C 4 (Parameter) .. 87
C 5 (Parameter) .. 87
Calculated values (Submenu) 75
Calibration (Submenu) 84
Calibration factor (Parameter) 85
Carrier pipe temperature (Submenu) 253
Channel (Parameter) 157, 195, 210, 219
Clear Fault State (Parameter) 120
Clear logging data (Parameter) 245
Communication (Submenu) 108
Comparison result (Parameter) 31
Configuration backup display (Submenu) 28
Configuration management (Parameter) 29
Confirm access code (Parameter) 46
Confirm Time (Parameter) 120
Contrast display (Parameter) 27
Control Totalizer 1 to n (Parameter) 226
Corrected volume flow (Parameter) 52
Corrected volume flow calculation (Parameter) 75
Corrected volume flow calculation (Submenu) 75
Corrected volume flow factor (Parameter) 82
Corrected volume flow offset (Parameter) 82
Corrected volume flow unit (Parameter) 60
Corrected volume unit (Parameter) 61
Current (Parameter) 126, 166, 200
Cycle Selection (Parameter) 119
Cycle Type (Parameter) 118

D
Damping output (Parameter) 99
Data logging (Submenu) 242
Date/time format (Parameter) 64
DD Resource (Parameter) 115
DD Revision (Parameter) 116, 240
Decimal (Parameter) 147, 156
Decimal places 1 (Parameter) 20
Decimal places 2 (Parameter) 21
Decimal places 3 (Parameter) 23
Decimal places 4 (Parameter) 24
Define access code (Parameter) 45, 46
Define access code (Wizard) 45
Density (Parameter) ... 52
Density damping (Parameter) 66
Density factor (Parameter) 83
Density offset (Parameter) 82
Density unit (Parameter) .. 62
Deny (Parameter) .. 116, 157, 194
Device address (Parameter) 108
Device information (Submenu) 238
Device Revision (Parameter) 116, 239
Device tag (Parameter) .. 238
Device Type (Parameter) .. 115, 239
Diagnostic behavior (Submenu) 33
Diagnostic event category (Parameter) 262
Diagnostic handling (Submenu) 32
Diagnostic list (Submenu) .. 231
Diagnosics (Submenu) .. 228
Diagnosics 1 (Parameter) ... 231
Diagnosics 2 (Parameter) ... 232
Diagnosics 3 (Parameter) ... 233
Diagnosics 4 (Parameter) ... 234
Diagnosics 5 (Parameter) ... 234
Direct access
0% bargraph value 1 (0123) 19
0% bargraph value 3 (0124) 22
100% bargraph value 1 (0125) 20
100% bargraph value 3 (0126) 23
Access status display (0091) 13, 28
Access status tooling (0005) 13
Acknowled Option
Analog input 1 to n (6910–1 to n) 167
Discrete input 1 to n (6841–1 to n) 200
Acknowled Option (10691) 127
Activate sensor emergency mode (2566) 49
Activate SW option (0029) 48
Actual diagnostics (0691) .. 229
Actual mode
Analog input 1 to n (6957–1 to n) 132
Discrete input 1 to n (6870–1 to n) 180
Actual mode (10725) ... 112
Actual mode (11264) ... 217
Actual mode (11366) ... 208
Adjustment in progress (2588) 79
Alarm delay (0651) ... 32
Alarm Hysteresis
Analog input 1 to n (6911–1 to n) 168
Alarm State
Analog input 1 to n (6917–1 to n) 165
Analog input 1 to n (6927–1 to n) 173
Analog input 1 to n (6932–1 to n) 171
Analog input 1 to n (6942–1 to n) 174
Analog input 1 to n (6948–1 to n) 176
Discrete input 1 to n (6847–1 to n) 202
Discrete input 1 to n (6858–1 to n) 203
Alarm State (10697) .. 125
Alarm State (10742) .. 128
Alert Key
Analog input 1 to n (6916–1 to n) 131
Discrete input 1 to n (6846–1 to n) 179
Alert Key (10696) .. 110
Alert Key (11251) .. 216
Alert Key (11365) .. 207
Assign behavior of diagnostic no. 046 (0655) 35
Assign behavior of diagnostic no. 140 (0723) 35
Assign behavior of diagnostic no. 274 (0725) 35
Assign behavior of diagnostic no. 442 (0658) 36
Assign behavior of diagnostic no. 443 (0659) 36
Assign behavior of diagnostic no. 801 (0660) 36
Assign behavior of diagnostic no. 830 (0715) 37
Assign behavior of diagnostic no. 831 (0716) 37
Assign behavior of diagnostic no. 832 (0675) 38
Assign behavior of diagnostic no. 833 (0676) 38
Assign behavior of diagnostic no. 834 (0677) 38
Assign behavior of diagnostic no. 835 (0678) 39
Assign behavior of diagnostic no. 862 (0679) 39
Assign behavior of diagnostic no. 912 (0720) 39
Assign behavior of diagnostic no. 913 (0717) 40
Assign channel 1 (0851) .. 243
Assign channel 2 (0852) .. 243
Assign channel 3 (0853) .. 244
Assign channel 4 (0854) .. 244
Assign diagnostic behavior (0482) 102
Assign flow direction check (0484) 105
Assign frequency output (0478) 94
Assign limit (0483) .. 103
Assign process variable
Assign process variable (1833) 71
Assign process variable (1837) 67
Assign pulse output (0460) 90
Assign simulation process variable (1810) 258
Assign status (0485) ... 106
Assign status of diagnostic number 044 (11041) 40
Assign status of diagnostic number 046 (11042) 40
Assign status of diagnostic number 274 (11000) 41
Assign status of diagnostic number 801 (11001) 41
Assign status of diagnostic number 830 (11006) 41
Assign status of diagnostic number 831 (11007) 42
Assign status of diagnostic number 832 (11002) 42
Assign status of diagnostic number 833 (11003) 42
Assign status of diagnostic number 834 (11004) 43
Assign status of diagnostic number 835 (11005) 43
Assign status of diagnostic number 862 (11008) 43
Assign status of diagnostic number 912 (11009) 44
Assign status of diagnostic number 913 (11010) 44
Average value (0697) .. 252
Average value (0698) .. 250
Adjusted (0111) .. 27
Backlight (0111) .. 27
Backup state (0121) .. 30
Block Error
Analog input 1 to n (6922–1 to n) 134
Discrete input 1 to n (6846–1 to n) 181
Block Error (10703) .. 113
<table>
<thead>
<tr>
<th>Block Error (11272)</th>
<th>219</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block Error (11364)</td>
<td>210</td>
</tr>
<tr>
<td>Block tag</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (6901–1 to n)</td>
<td>130</td>
</tr>
<tr>
<td>Discrete input 1 to n (6851–1 to n)</td>
<td>178</td>
</tr>
<tr>
<td>Block tag (10702)</td>
<td>109</td>
</tr>
<tr>
<td>Block tag (11252)</td>
<td>215</td>
</tr>
<tr>
<td>Block tag (11351)</td>
<td>206</td>
</tr>
<tr>
<td>C 0 (2469)</td>
<td>86</td>
</tr>
<tr>
<td>C 1 (2574)</td>
<td>86</td>
</tr>
<tr>
<td>C 2 (2575)</td>
<td>86</td>
</tr>
<tr>
<td>C 3 (2576)</td>
<td>86</td>
</tr>
<tr>
<td>C 4 (2577)</td>
<td>87</td>
</tr>
<tr>
<td>C 5 (2578)</td>
<td>87</td>
</tr>
<tr>
<td>Calibration factor (2431)</td>
<td>85</td>
</tr>
<tr>
<td>Channel</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (6902–1 to n)</td>
<td>157</td>
</tr>
<tr>
<td>Discrete input 1 to n (6852–1 to n)</td>
<td>195</td>
</tr>
<tr>
<td>Channel (11253)</td>
<td>219</td>
</tr>
<tr>
<td>Channel (11352)</td>
<td>210</td>
</tr>
<tr>
<td>Clear Fault State (10704)</td>
<td>120</td>
</tr>
<tr>
<td>Clear logging data (0855)</td>
<td>245</td>
</tr>
<tr>
<td>Comparison result (0103)</td>
<td>31</td>
</tr>
<tr>
<td>Configuration management (0100)</td>
<td>29</td>
</tr>
<tr>
<td>Confirm Time (10705)</td>
<td>120</td>
</tr>
<tr>
<td>Contrast display (0105)</td>
<td>27</td>
</tr>
<tr>
<td>Control Totalizer 1 to n (0912–1 to n)</td>
<td>226</td>
</tr>
<tr>
<td>Corrected volume flow (1842)</td>
<td>52</td>
</tr>
<tr>
<td>Corrected volume flow calculation (1812)</td>
<td>75</td>
</tr>
<tr>
<td>Corrected volume flow factor (1823)</td>
<td>82</td>
</tr>
<tr>
<td>Corrected volume flow offset (1824)</td>
<td>82</td>
</tr>
<tr>
<td>Corrected volume flow unit (0558)</td>
<td>60</td>
</tr>
<tr>
<td>Corrected volume unit (0575)</td>
<td>61</td>
</tr>
<tr>
<td>Current</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (6912–1 to n)</td>
<td>166</td>
</tr>
<tr>
<td>Discrete input 1 to n (6842–1 to n)</td>
<td>200</td>
</tr>
<tr>
<td>Current (10692)</td>
<td>126</td>
</tr>
<tr>
<td>Cycle Selection (10706)</td>
<td>119</td>
</tr>
<tr>
<td>Cycle Type (10707)</td>
<td>118</td>
</tr>
<tr>
<td>Damping output (0477)</td>
<td>99</td>
</tr>
<tr>
<td>Date/time format (2812)</td>
<td>64</td>
</tr>
<tr>
<td>DD Resource (10708)</td>
<td>115</td>
</tr>
<tr>
<td>DD Revision (10709)</td>
<td>116, 240</td>
</tr>
<tr>
<td>Decimal</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (6961–1 to n)</td>
<td>156</td>
</tr>
<tr>
<td>Analog input 1 to n (6980–1 to n)</td>
<td>147</td>
</tr>
<tr>
<td>Decimal places 1 (0095)</td>
<td>20</td>
</tr>
<tr>
<td>Decimal places 2 (0117)</td>
<td>21</td>
</tr>
<tr>
<td>Decimal places 3 (0118)</td>
<td>23</td>
</tr>
<tr>
<td>Decimal places 4 (0119)</td>
<td>24</td>
</tr>
<tr>
<td>Define access code</td>
<td>46</td>
</tr>
<tr>
<td>Density (1843)</td>
<td>52</td>
</tr>
<tr>
<td>Density damping (1808)</td>
<td>66</td>
</tr>
<tr>
<td>Density factor (1825)</td>
<td>83</td>
</tr>
<tr>
<td>Density offset (1826)</td>
<td>82</td>
</tr>
<tr>
<td>Density unit (0555)</td>
<td>62</td>
</tr>
<tr>
<td>Deny</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (6925–1 to n)</td>
<td>157</td>
</tr>
<tr>
<td>Discrete input 1 to n (6867–1 to n)</td>
<td>194</td>
</tr>
<tr>
<td>Deny (10717)</td>
<td>116</td>
</tr>
<tr>
<td>Device address (11061)</td>
<td>108</td>
</tr>
<tr>
<td>Device Revision (10710)</td>
<td>116, 239</td>
</tr>
<tr>
<td>Device tag (10799)</td>
<td>238</td>
</tr>
<tr>
<td>Device Type (10711)</td>
<td>115, 239</td>
</tr>
<tr>
<td>Diagnostic event category (0738)</td>
<td>262</td>
</tr>
<tr>
<td>Diagnostics 1 (0692)</td>
<td>231</td>
</tr>
<tr>
<td>Diagnostics 2 (0693)</td>
<td>232</td>
</tr>
<tr>
<td>Diagnostics 3 (0694)</td>
<td>233</td>
</tr>
<tr>
<td>Diagnostics 4 (0695)</td>
<td>234</td>
</tr>
<tr>
<td>Diagnostics 5 (0696)</td>
<td>234</td>
</tr>
<tr>
<td>Direct access (0106)</td>
<td>11</td>
</tr>
<tr>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (6913–1 to n)</td>
<td>167</td>
</tr>
<tr>
<td>Discrete input 1 to n (6843–1 to n)</td>
<td>201</td>
</tr>
<tr>
<td>Disabled (10693)</td>
<td>127</td>
</tr>
<tr>
<td>Discrete Limit</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (6863–1 to n)</td>
<td>205</td>
</tr>
<tr>
<td>Discrete Priority</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (6864–1 to n)</td>
<td>205</td>
</tr>
<tr>
<td>Discrete Value</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (6862–1 to n)</td>
<td>205</td>
</tr>
<tr>
<td>Discrete Value (10746)</td>
<td>129</td>
</tr>
<tr>
<td>Display damping (0094)</td>
<td>25</td>
</tr>
<tr>
<td>Display interval (0096)</td>
<td>24</td>
</tr>
<tr>
<td>ENP version (10791)</td>
<td>242</td>
</tr>
<tr>
<td>Enter access code (0003)</td>
<td>14</td>
</tr>
<tr>
<td>Enter access code (0092)</td>
<td>14</td>
</tr>
<tr>
<td>EU at 0%</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (6962–1 to n)</td>
<td>148</td>
</tr>
<tr>
<td>Analog input 1 to n (6981–1 to n)</td>
<td>145</td>
</tr>
<tr>
<td>EU at 100%</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (6963–1 to n)</td>
<td>148</td>
</tr>
<tr>
<td>Analog input 1 to n (6982–1 to n)</td>
<td>145</td>
</tr>
<tr>
<td>Extended order code 1 (10796)</td>
<td>241</td>
</tr>
<tr>
<td>Extended order code 2 (10797)</td>
<td>241</td>
</tr>
<tr>
<td>Failure frequency (0474)</td>
<td>101</td>
</tr>
<tr>
<td>Failure mode</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (6901–1 to n)</td>
<td>227</td>
</tr>
<tr>
<td>Failure mode (0451)</td>
<td>100</td>
</tr>
<tr>
<td>Failure mode (0480)</td>
<td>93</td>
</tr>
<tr>
<td>Failure mode (0486)</td>
<td>107</td>
</tr>
<tr>
<td>Fault State (10712)</td>
<td>121</td>
</tr>
<tr>
<td>Fault State Status (11254)</td>
<td>223</td>
</tr>
<tr>
<td>Fault State Status (11353)</td>
<td>214</td>
</tr>
<tr>
<td>Fault State Time (11255)</td>
<td>220</td>
</tr>
<tr>
<td>Fault State Time (11354)</td>
<td>211</td>
</tr>
<tr>
<td>Fault State Val 1 (11355)</td>
<td>211</td>
</tr>
<tr>
<td>Fault State Val 2 (11356)</td>
<td>212</td>
</tr>
<tr>
<td>Fault State Val 3 (11357)</td>
<td>212</td>
</tr>
<tr>
<td>Fault State Val 4 (11358)</td>
<td>212</td>
</tr>
<tr>
<td>Fault State Val 5 (11359)</td>
<td>213</td>
</tr>
<tr>
<td>Fault State Val 6 (11360)</td>
<td>213</td>
</tr>
<tr>
<td>Fault State Val 7 (11361)</td>
<td>213</td>
</tr>
<tr>
<td>Fault State Val 8 (11362)</td>
<td>214</td>
</tr>
<tr>
<td>Fault State Value Discrete 1 (11256)</td>
<td>220</td>
</tr>
<tr>
<td>Fault State Value Discrete 2 (11257)</td>
<td>221</td>
</tr>
<tr>
<td>Fault State Value Discrete 3 (11258)</td>
<td>221</td>
</tr>
<tr>
<td>Fault State Value Discrete 4 (11259)</td>
<td>221</td>
</tr>
<tr>
<td>Index</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Fault State Value Discrete 5 (11260)</td>
<td>222</td>
</tr>
<tr>
<td>Fault State Value Discrete 6 (11261)</td>
<td>222</td>
</tr>
<tr>
<td>Fault State Value Discrete 7 (11262)</td>
<td>222</td>
</tr>
<tr>
<td>Fault State Value Discrete 8 (11263)</td>
<td>223</td>
</tr>
<tr>
<td>Feature Selection (10714)</td>
<td>118</td>
</tr>
<tr>
<td>Features (10713)</td>
<td>118</td>
</tr>
<tr>
<td>Filter options</td>
<td>236</td>
</tr>
<tr>
<td>Filter options (0705)</td>
<td>235</td>
</tr>
<tr>
<td>Firmware version (10792)</td>
<td>240</td>
</tr>
<tr>
<td>Flow damping (1801)</td>
<td>65</td>
</tr>
<tr>
<td>Flow override (1839)</td>
<td>66</td>
</tr>
<tr>
<td>Format display (0098)</td>
<td>16</td>
</tr>
<tr>
<td>Free Space (10715)</td>
<td>120</td>
</tr>
<tr>
<td>Free Time (10716)</td>
<td>120</td>
</tr>
<tr>
<td>Frequency simulation (0472)</td>
<td>259</td>
</tr>
<tr>
<td>Frequency value (0473)</td>
<td>259</td>
</tr>
<tr>
<td>Grant</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (6931–1 to n)</td>
<td>174</td>
</tr>
<tr>
<td>Discrete input 1 to n (6868–1 to n)</td>
<td>172</td>
</tr>
<tr>
<td>Analog input 1 to n (6946–1 to n)</td>
<td>175</td>
</tr>
<tr>
<td>Analog input 1 to n (6952–1 to n)</td>
<td>177</td>
</tr>
<tr>
<td>Flow damping (1801)</td>
<td>65</td>
</tr>
<tr>
<td>Flow override (1839)</td>
<td>66</td>
</tr>
<tr>
<td>Format display (0098)</td>
<td>16</td>
</tr>
<tr>
<td>Free Space (10715)</td>
<td>120</td>
</tr>
<tr>
<td>Free Time (10716)</td>
<td>120</td>
</tr>
<tr>
<td>Frequency simulation (0472)</td>
<td>259</td>
</tr>
<tr>
<td>Frequency value (0473)</td>
<td>259</td>
</tr>
<tr>
<td>Grant</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (6926–1 to n)</td>
<td>156</td>
</tr>
<tr>
<td>Discrete input 1 to n (6868–1 to n)</td>
<td>194</td>
</tr>
<tr>
<td>Grant (10718)</td>
<td>116</td>
</tr>
<tr>
<td>Hard Types (10719)</td>
<td>117</td>
</tr>
<tr>
<td>Hardware revision (10793)</td>
<td>240</td>
</tr>
<tr>
<td>Header (0097)</td>
<td>25</td>
</tr>
<tr>
<td>Header text (0112)</td>
<td>26</td>
</tr>
<tr>
<td>High High Limit</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (6937–1 to n)</td>
<td>168</td>
</tr>
<tr>
<td>High High Priority</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (6938–1 to n)</td>
<td>168</td>
</tr>
<tr>
<td>High Limit</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (6939–1 to n)</td>
<td>169</td>
</tr>
<tr>
<td>High Priority</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (6940–1 to n)</td>
<td>169</td>
</tr>
<tr>
<td>High value partial filled pipe detection (1835)</td>
<td>71</td>
</tr>
<tr>
<td>I/O Options</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (6941–1 to n)</td>
<td>157</td>
</tr>
<tr>
<td>Discrete input 1 to n (6869–1 to n)</td>
<td>194</td>
</tr>
<tr>
<td>Installation direction (1809)</td>
<td>78</td>
</tr>
<tr>
<td>Invert output signal (0470)</td>
<td>108</td>
</tr>
<tr>
<td>ITK Version (10794)</td>
<td>130</td>
</tr>
<tr>
<td>Language (0104)</td>
<td>16</td>
</tr>
<tr>
<td>Last backup (0102)</td>
<td>29</td>
</tr>
<tr>
<td>Length unit (0551)</td>
<td>63</td>
</tr>
<tr>
<td>Limit Notify (10722)</td>
<td>121</td>
</tr>
<tr>
<td>Linear expansion coefficient (1817)</td>
<td>77</td>
</tr>
<tr>
<td>Linearization Type</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (6905–1 to n)</td>
<td>158</td>
</tr>
<tr>
<td>Locking status (0004)</td>
<td>12</td>
</tr>
<tr>
<td>Logging interval (0856)</td>
<td>244</td>
</tr>
<tr>
<td>Low Cutoff</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (6956–1 to n)</td>
<td>160</td>
</tr>
<tr>
<td>Low Limit</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (6947–1 to n)</td>
<td>170</td>
</tr>
<tr>
<td>Low Low Limit</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (6953–1 to n)</td>
<td>170</td>
</tr>
<tr>
<td>Low Low Priority</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (6954–1 to n)</td>
<td>170</td>
</tr>
<tr>
<td>Low Priority</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (6955–1 to n)</td>
<td>169</td>
</tr>
<tr>
<td>Low value partial filled pipe detection (1834)</td>
<td>71</td>
</tr>
<tr>
<td>Manufacturer Id (10721)</td>
<td>115</td>
</tr>
<tr>
<td>Mass flow (1840)</td>
<td>51</td>
</tr>
<tr>
<td>Mass flow factor (1819)</td>
<td>81</td>
</tr>
<tr>
<td>Mass flow offset (1820)</td>
<td>80</td>
</tr>
<tr>
<td>Mass flow unit (0554)</td>
<td>58</td>
</tr>
<tr>
<td>Mass unit (0574)</td>
<td>58</td>
</tr>
<tr>
<td>Max Notify (10722)</td>
<td>121</td>
</tr>
<tr>
<td>Maximum damping partial filled pipe det. (2492)</td>
<td>95</td>
</tr>
<tr>
<td>Maximum frequency value (0454)</td>
<td></td>
</tr>
<tr>
<td>Maximum value (0663)</td>
<td>250</td>
</tr>
<tr>
<td>Maximum value (0665)</td>
<td>251</td>
</tr>
<tr>
<td>Maximum value (2456)</td>
<td>251</td>
</tr>
<tr>
<td>Maximum value (2460)</td>
<td>253</td>
</tr>
<tr>
<td>Maximum value (2471)</td>
<td>255</td>
</tr>
<tr>
<td>Maximum value (2476)</td>
<td>257</td>
</tr>
<tr>
<td>Maximum value (2501)</td>
<td>253</td>
</tr>
<tr>
<td>Maximum value (2582)</td>
<td>254</td>
</tr>
<tr>
<td>Maximum value (2585)</td>
<td>256</td>
</tr>
<tr>
<td>Measuring mode (0457)</td>
<td>92</td>
</tr>
<tr>
<td>Measuring mode (0479)</td>
<td>96</td>
</tr>
<tr>
<td>Measuring value at maximum frequency (0475)</td>
<td>96</td>
</tr>
<tr>
<td>Measuring value at minimum frequency (0476)</td>
<td>96</td>
</tr>
<tr>
<td>Memory Size (10723)</td>
<td>119</td>
</tr>
<tr>
<td>Minimum frequency value (0453)</td>
<td>95</td>
</tr>
<tr>
<td>Minimum value (0668)</td>
<td>251</td>
</tr>
<tr>
<td>Minimum value (0689)</td>
<td>249</td>
</tr>
<tr>
<td>Minimum value (2457)</td>
<td>250</td>
</tr>
<tr>
<td>Minimum value (2461)</td>
<td>253</td>
</tr>
<tr>
<td>Minimum value (2472)</td>
<td>255</td>
</tr>
<tr>
<td>Minimum value (2502)</td>
<td>252</td>
</tr>
<tr>
<td>Minimum value (2551)</td>
<td>256</td>
</tr>
<tr>
<td>Minimum value (2583)</td>
<td>254</td>
</tr>
<tr>
<td>Minimum value (2586)</td>
<td>256</td>
</tr>
<tr>
<td>Minimum value (2807)</td>
<td>85</td>
</tr>
<tr>
<td>Nominal diameter (2807)</td>
<td></td>
</tr>
<tr>
<td>Nonvolatible Cycle Time (10729)</td>
<td>119</td>
</tr>
<tr>
<td>Normal mode</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (6958–1 to n)</td>
<td>133</td>
</tr>
<tr>
<td>Discrete input 1 to n (6871–1 to n)</td>
<td>181</td>
</tr>
<tr>
<td>Normal mode (10726)</td>
<td>113</td>
</tr>
<tr>
<td>Normal mode (11265)</td>
<td>218</td>
</tr>
<tr>
<td>Normal mode (11367)</td>
<td>209</td>
</tr>
<tr>
<td>Off value low flow cutoff (1804)</td>
<td>68</td>
</tr>
<tr>
<td>On value low flow cutoff (1805)</td>
<td>68</td>
</tr>
<tr>
<td>Operating mode (0469)</td>
<td>89</td>
</tr>
<tr>
<td>Operating time (0652)</td>
<td>29, 231</td>
</tr>
<tr>
<td>Operating time from restart (0653)</td>
<td>230</td>
</tr>
<tr>
<td>Order code (10795)</td>
<td>241</td>
</tr>
<tr>
<td>Output frequency (0471)</td>
<td>56, 101</td>
</tr>
<tr>
<td>Output State</td>
<td></td>
</tr>
<tr>
<td>Discrete input 1 to n (6874–1 to n)</td>
<td>193</td>
</tr>
</tbody>
</table>
Permitted mode
 Analog input 1 to n (6959–1 to n) 133
 Discrete input 1 to n (6872–1 to n) 180
Permitted mode (10727) 112
Permitted mode (11266) 218
Permitted mode (11368) 209
Preset value 1 to n (0913–1 to n) 227
Pressure shock suppression (1806) 69
Pressure unit (0564) 64
Previous diagnostics (0690) 230
Process Value Filter Time
 Analog input 1 to n (6909–1 to n) 163
 Discrete input 1 to n (6855–1 to n) 195
Pulse output (0456) 56, 93
Pulse simulation (0458) 259
Pulse value (0459) 260
Pulse width (0452) 91
Reference density (1844) 53
Reference density factor (1827) 83
Reference density offset (1828) 83
Reference density unit (0556) 62
Reference sound velocity (2489) 74
Reference temperature (1816) 76
Relative Index
 Analog input 1 to n (6975–1 to n) 164
 Discrete input 1 to n (6886–1 to n) 200
Relative Index (10737) 123
Reset all totalizers (2806) 224
Reset min/max values (2504) 249
Resource State (10730) 114
Response time (0491) 99
Response time part. filled pipe detect. (1836) .. 72
Restart (10800) 47, 117
Select gas type (2488) 73
Select medium (2513) 73
Separator (0101) 27
Serial number (10798) 239
Service reset (10749) 48, 117
Set Fault State (10731) 121
Shed Remote Cascade (10732) 122
Shed Remote Out (10733) 122
Simulate En/Disable
 Analog input 1 to n (6966–1 to n) 145
 Discrete input 1 to n (6877–1 to n) 193
Simulate Status
 Analog input 1 to n (6967–1 to n) 139
 Discrete input 1 to n (6878–1 to n) 187
Simulate Value
 Analog input 1 to n (6968–1 to n) 142
 Discrete input 1 to n (6879–1 to n) 189
Simulation device alarm (0654) 261
Simulation diagnostic event (0737) 262
Software option overview (0015) 49
Square expansion coefficient (1818) 77
Static revision
 Analog input 1 to n (6976–1 to n) 164
 Discrete input 1 to n (6887–1 to n) 200
Static Revision
 Analog input 1 to n (6973–1 to n) 131
Discrete input 1 to n (6884–1 to n) 178
Static Revision (10735) 110
Static revision (10738) 123
Static Revision (11270) 216
Static Revision (11371) 207
Status
 Analog input 1 to n (6906–1 to n) 137
 Analog input 1 to n (6923–1 to n) 160
 Analog input 1 to n (6964–1 to n) 134
 Discrete input 1 to n (6853–1 to n) 184
 Discrete input 1 to n (6865–1 to n) 196
 Discrete input 1 to n (6875–1 to n) 181
Status Options
 Analog input 1 to n (6971–1 to n) 158
 Discrete input 1 to n (6882–1 to n) 195
Status Options (11268) 219
Status Options (11363) 210
Strategy
 Analog input 1 to n (6972–1 to n) 131
 Discrete input 1 to n (6883–1 to n) 179
Strategy (10734) 110
Strategy (11269) 216
Strategy (11370) 207
Subcode
 Analog input 1 to n (6918–1 to n) 166
 Analog input 1 to n (6928–1 to n) 173
 Analog input 1 to n (6933–1 to n) 171
 Analog input 1 to n (6943–1 to n) 175
 Analog input 1 to n (6949–1 to n) 177
 Discrete input 1 to n (6848–1 to n) 202
 Discrete input 1 to n (6859–1 to n) 203
Subcode (10698) 125
Subcode (10743) 129
Switch output function (0481) 101
Switch output simulation (0462) 260
Switch status (0461) 57, 107
Switch status (0463) 261
Switch-off delay (0465) 106
Switch-off value (0464) 105
Switch-on delay (0467) 106
Switch-on value (0466) 104
Tag Description
 Analog input 1 to n (6974–1 to n) 131
 Discrete input 1 to n (6885–1 to n) 178
Tag Description (10736) 110
Tag Description (11271) 216
Tag Description (11372) 207
Target mode
 Analog input 1 to n (6960–1 to n) 132
 Discrete input 1 to n (6873–1 to n) 179
Target mode (10728) 111
Target mode (11267) 217
Target mode (11369) 208
Temperature (1845) 53
Temperature coefficient sound velocity (2490) .. 74
Temperature damping (1807) 67
Temperature factor (1829) 84
Temperature offset (1830) 83
Temperature unit (0557) 63
Index

Terminal voltage (0662) 55

Time Stamp
- Analog input 1 to n (6919–1 to n) 165
- Analog input 1 to n (6929–1 to n) 173
- Analog input 1 to n (6934–1 to n) 171
- Analog input 1 to n (6944–1 to n) 175
- Analog input 1 to n (6950–1 to n) 176
- Analog input 1 to n (6977–1 to n) 164
- Discrete input 1 to n (6849–1 to n) 202
- Discrete input 1 to n (6860–1 to n) 204
- Discrete input 1 to n (6888–1 to n) 199

Time Stamp (10699) 125

Time Stamp (10739) 123

Time Stamp (10744) 128

Timestamp ... 229, 230, 232, 233, 234, 235

Totalizer operation mode
- Totalizer 1 to n (0908–1 to n) 226
- Totalizer overflow 1 to n (0910–1 to n) 54
- Totalizer value 1 to n (0911–1 to n) 54

Transducer State
- Discrete input 1 to n (6891–1 to n) 193

Transducer Status
- Analog input 1 to n (6969–1 to n) 142
- Discrete input 1 to n (6880–1 to n) 190

Unacknowledged
- Analog input 1 to n (6914–1 to n) 167
- Analog input 1 to n (6920–1 to n) 165
- Analog input 1 to n (6930–1 to n) 172
- Analog input 1 to n (6935–1 to n) 170
- Analog input 1 to n (6945–1 to n) 174
- Analog input 1 to n (6951–1 to n) 176
- Analog input 1 to n (6978–1 to n) 163
- Discrete input 1 to n (6844–1 to n) 201
- Discrete input 1 to n (6850–1 to n) 203
- Discrete input 1 to n (6861–1 to n) 204
- Discrete input 1 to n (6889–1 to n) 199

Unacknowledged (10694) 126

Unacknowledged (10700) 124

Unacknowledged (10740) 122

Unacknowledged (10745) 128

Unit totalizer
- Totalizer 1 to n (0915–1 to n) 225

Units index
- Analog input 1 to n (6908–1 to n) 148
- Analog input 1 to n (6983–1 to n) 145

Unreported
- Analog input 1 to n (6915–1 to n) 167
- Discrete input 1 to n (6845–1 to n) 201

Unreported (10695) 126

Update State
- Analog input 1 to n (6979–1 to n) 164
- Discrete input 1 to n (6890–1 to n) 199

Update State (10741) 123

Value
- Analog input 1 to n (6907–1 to n) 139
- Analog input 1 to n (6921–1 to n) 166

- Analog input 1 to n (6924–1 to n) 163
- Analog input 1 to n (6965–1 to n) 136
- Discrete input 1 to n (6854–1 to n) 187
- Discrete input 1 to n (6856–1 to n) 203
- Discrete input 1 to n (6866–1 to n) 198
- Discrete input 1 to n (6876–1 to n) 184

Value (10701) ... 126

Value 1 display (0107) 19

Value 2 display (0108) 21

Value 3 display (0110) 22

Value 4 display (0109) 23

Value per pulse (0455) 91

Value process variable (1811) 258

Volume flow (1813) 52

Volume flow factor (1821) 81

Volume flow offset (1815) 81

Volume flow unit (0553) 59

Volume unit (0563) 60

Write Lock (10747) 124

Write Priority (10748) 127

Zero point (2437) 85

Zero point adjustment control (2587) 79

Direct access (Parameter) 11

Disabled (Parameter) 127, 167, 201

Discrete input 1 to n (Submenu) 178

Discrete inputs (Submenu) 177

Discrete Limit (Parameter) 205

Discrete outputs (Submenu) 214

Discrete Priority (Parameter) 205

Discrete Value (Parameter) 129, 205

Display (Submenu) 15

Display channel 1 (Submenu) 246

Display channel 2 (Submenu) 247

Display channel 3 (Submenu) 247

Display channel 4 (Submenu) 248

Display damping (Parameter) 25

Display interval (Parameter) 24

Document
- Explanation of the structure of a parameter description ... 6
- Function .. 4
- Structure .. 4
- Symbols used .. 6
- Target group .. 4
- Using the document 4
- Document function 4

E

ENP version (Parameter) 242

Enter access code (Parameter) 14

EU at 0% (Parameter) 145, 148

EU at 100% (Parameter) 145, 148

Event list (Submenu) 236

Event logbook (Submenu) 235

Extended order code 1 (Parameter) 241

Extended order code 2 (Parameter) 241
Operating time from restart (Parameter) 230
Order code (Parameter) 241
Oscillation amplitude (Submenu) 255
Oscillation damping (Submenu) 255
Oscillation frequency (Submenu) 254
Output (Submenu) .. 87
Output frequency (Parameter) 56, 101
Output State (Parameter) 193
Output values (Submenu) 55

P
Parameter
Structure of a parameter description 6
Partially filled pipe detection (Submenu) 70
Permitted mode (Parameter) 112, 133, 180, 209, 218
Preset value 1 to n (Parameter) 227
Pressure shock suppression (Parameter) 69
Pressure unit (Parameter) 64
Previous diagnostics (Parameter) 230
Process parameters (Submenu) 65
Process Value Filter Time (Parameter) 163, 195
Process variable adjustment (Submenu) 80
Process variables (Submenu) 51
Pulse output (Parameter) 56, 93
Pulse simulation (Parameter) 259
Pulse value (Parameter) 260
Pulse width (Parameter) 91
Pulse/frequency/switch output (Submenu) 87

R
Reference density (Parameter) 53
Reference density factor (Parameter) 83
Reference density offset (Parameter) 83
Reference density unit (Parameter) 62
Reference sound velocity (Parameter) 74
Reference temperature (Parameter) 76
Reference values (Submenu) 76
Relative Index (Parameter) 123, 164, 200
Reset all totalizers (Parameter) 224
Reset min/max values (Parameter) 249
Resource block (Submenu) 109
Resource State (Parameter) 114
Response time (Parameter) 99
Response time part. filled pipe detect. (Parameter) .. 72
Restart (Parameter) .. 47, 117

S
Select gas type (Parameter) 73
Select medium (Parameter) 73
Sensor (Submenu) .. 50
Sensor adjustment (Submenu) 78
Separator (Parameter) 27
Serial number (Parameter) 239
Service reset (Parameter) 48, 117
Set Fault State (Parameter) 121
Shed Remote Cascade (Parameter) 122
Shed Remote Out (Parameter) 122
Signal asymmetry (Submenu) 256
Simulate En/Disable (Parameter) 145, 193
Simulate Status (Parameter) 139, 187
Simulate Value (Parameter) 142, 189
Simulation (Submenu) 257
Simulation device alarm (Parameter) 261
Simulation diagnostic event (Parameter) 262
Software option overview (Parameter) 49
Square expansion coefficient (Parameter) 77
Static revision (Parameter) 123, 164, 200
Static Revision (Parameter) 110, 131, 178, 207, 216
Status (Parameter) .. 134, 137, 160, 181, 184, 196
Status Options (Parameter) 158, 195, 210, 219
Strategy (Parameter) 110, 131, 179, 207, 216
Subcode (Parameter) 125, 129, 166, 171, 173, 175, 177, 202, 203

Submenu

Administration .. 45
Analog input 1 to n .. 130
Analog inputs .. 130
Analog outputs .. 206
Application .. 223
Calculated values .. 75
Calibration ... 84
Carrier pipe temperature 253
Communication .. 108
Configuration backup display 28
Corrected volume flow calculation 75
Data logging .. 242
Device information 238
Diagnostic behavior 33
Diagnostic handling 32
Diagnostic list .. 231
Diagnostics .. 228
Discrete input 1 to n 178
Discrete inputs ... 177
Discrete outputs .. 214
Display ... 15
Display channel 1 ... 246
Display channel 2 ... 247
Display channel 3 ... 247
Display channel 4 ... 248
Event list ... 236
Event logbook .. 235
Heartbeat .. 257
IO module temperature 251
Low flow cut off .. 67
Main electronic temperature 250
Measured values .. 51
Measurement mode .. 73
Medium temperature 252
Min/max values .. 248
Multiple analog output 206
Multiple discrete output 215
Oscillation amplitude 255
Oscillation damping 255
Oscillation frequency 254
Output ... 87
Output values .. 55
Partially filled pipe detection 70
Process parameters 65

Endress+Hauser

277