Description of Device Parameters

Proline Promass 300
PROFIBUS PA

Coriolis flowmeter
Table of contents

1. **About this document** .. 4
 1.1 Document function .. 4
 1.2 Target group ... 4
 1.3 Using this document .. 4
 1.3.1 Information on the document structure 4
 1.3.2 Structure of a parameter description 6
 1.4 Symbols used .. 6
 1.4.1 Symbols for certain types of information 6
 1.4.2 Symbols in graphics 7
 1.5 Documentation ... 7
 1.5.1 Standard documentation 7
 1.5.2 Supplementary device-dependent documentation 7

2. **Overview of the Expert operating menu** 8

3. **Description of device parameters** 11
 3.1 "System" submenu .. 13
 3.1.1 "Display" submenu 14
 3.1.2 "Configuration backup" submenu 28
 3.1.3 "Diagn. handling" submenu 31
 3.1.4 "Administration" submenu 40
 3.2 "Sensor" submenu .. 45
 3.2.1 "Measured val." submenu 46
 3.2.2 "System units" submenu 60
 3.2.3 "Process param." submenu 68
 3.2.4 "Measurement mode" submenu 76
 3.2.5 "External comp." submenu 78
 3.2.6 "Calculated value" submenu 81
 3.2.7 "Sensor adjustment" submenu 84
 3.2.8 "Calibration" submenu 91
 3.3 "I/O configuration" submenu 93
 3.4 "Input" submenu ... 95
 3.4.1 "Current input 1 to n" submenu 95
 3.4.2 "Status input 1 to n" submenu 98
 3.5 "Output" submenu ... 100
 3.5.1 "Current output 1 to n" submenu 101
 3.5.2 "Pulse/frequency/switch output 1 to n" submenu ... 115
 3.5.3 "Relay output 1 to n" submenu 137
 3.6 "Communication" submenu 143
 3.6.1 "PROFIBUS PA conf" submenu 144
 3.6.2 "PROFIBUS PA info" submenu 145
 3.6.3 "Physical block" submenu 147
 3.6.4 "Web server" submenu 156
 3.6.5 "WLAN settings" submenu 160
 3.7 "Analog inputs" submenu 166
 3.7.1 "Analog input 1 to n" submenu 167
 3.8 "Discrete inputs" submenu 181
 3.8.1 "Discrete input 1 to n" submenu 181
 3.8.2 "Discrete output 1 to n" submenu 200
 3.8.3 "Totalizer 1 to n" submenu 211
 3.8.4 "Viscosity" submenu 224
 3.8.5 "Concentration" submenu 224
 3.8.6 "Petroleum" submenu 224
 3.9 "Analog outputs" submenu 188
 3.9.1 "Analogue output 1 to n" submenu 188
 3.10 "Discrete outputs" submenu 200
 3.10.1 "Discrete output 1 to n" submenu 200
 3.11 "Application" submenu 210
 3.11.1 "Totalizer 1 to n" submenu 211
 3.11.2 "Discrete configuration" submenu 224
 3.11.3 "Concentration" submenu 224
 3.11.4 "Petroleum" submenu 224
 3.12 "Diagnostics" submenu 225
 3.12.1 "Diagnostic list" submenu 228
 3.12.2 "Event logbook" submenu 232
 3.12.3 "Device info" submenu 234
 3.12.4 "Main elec.+I/O1" submenu 238
 3.12.5 "Sens. electronic" submenu 239
 3.12.6 "I/O module 1" submenu 240
 3.12.7 "I/O module 2" submenu 240
 3.12.8 "Display module" submenu 242
 3.12.9 "Min/max val." submenu 243
 3.12.10 "Data logging" submenu 253
 3.12.11 "Heartbeat" submenu 262
 3.12.12 "Simulation" submenu 262

4. **Country-specific factory settings** 273
 4.1 SI units .. 273
 4.1.1 System units .. 273
 4.1.2 Full scale values 273
 4.1.3 Output current span 274
 4.1.4 Pulse value ... 274
 4.1.5 On value low flow cut off 274
 4.2 US units .. 275
 4.2.1 System units .. 275
 4.2.2 Full scale values 276
 4.2.3 Output current span 276
 4.2.4 Pulse value ... 276
 4.2.5 On value low flow cut off 277

5. **Explanation of abbreviated units** 279
 5.1 SI units .. 279
 5.2 US units .. 279
 5.3 Imperial units ... 281

Index .. 282
1 About this document

1.1 Document function
The document is part of the Operating Instructions and serves as a reference for parameters, providing a detailed explanation of each individual parameter of the Expert operating menu.

It is used to perform tasks that require detailed knowledge of the function of the device:
- Commissioning measurements under difficult conditions
- Optimal adaptation of the measurement to difficult conditions
- Detailed configuration of the communication interface
- Error diagnostics in difficult cases

1.2 Target group
The document is aimed at specialists who work with the device over the entire life cycle and perform specific configurations.

1.3 Using this document

1.3.1 Information on the document structure
The document lists the submenus and their parameters according to the structure from the Expert menu (→ 8), which is displayed when the "Maintenance" user role is enabled.
Operating menu for operators and maintenances

- **Language**
- **Operation**
 - Parameter 1
 - Parameter n
 - Submenu 1
 - Submenu n

Setup
- **Device tag**
- **Wizard 1 / Parameter 1**
- **Wizard n / Parameter n**
- **Advanced setup**
 - Enter access code
 - Parameter 1
 - Parameter n
 - Submenu 1
 - Submenu n

Diagnostics
- **Parameter 1**
- **Parameter n**
- **Submenu 1**
- **Submenu n**

Operating menu for experts

- **Expert**
 - Access status display
 - Parameter n
 - System
 - Sensor
 - Input
 - Output
 - Communication
 - Application
 - Diagnostics

Additional information regarding:
- The arrangement of the parameters according to the menu structure of the **Operation** menu, **Setup** menu, **Diagnostics** menu with a brief description: Operating Instructions → 7
- Operating concept of the operating menus: Operating Instructions → 7
1.3.2 Structure of a parameter description

The individual parts of a parameter description are described in the following section:

<table>
<thead>
<tr>
<th>Complete parameter name</th>
<th>Write-protected parameter</th>
</tr>
</thead>
</table>

Navigation
- Navigation path to the parameter via the local display (direct access code) or web browser
- Navigation path to the parameter via the operating tool

The names of the menus, submenus and parameters are abbreviated to the form in which they appear on the display and in the operating tool.

Prerequisite
The parameter is only available under these specific conditions

Description
Description of the parameter function

Selection
List of the individual options for the parameter
- Option 1
- Option 2

User entry
Input range for the parameter

User interface
Display value/data for the parameter

Factory setting
Default setting ex works

Additional information
Additional explanations (e.g. in examples):
- On individual options
- On display values/data
- On the input range
- On the factory setting
- On the parameter function

1.4 Symbols used

1.4.1 Symbols for certain types of information

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tip</td>
<td>Indicates additional information.</td>
</tr>
<tr>
<td></td>
<td>Reference to documentation</td>
</tr>
<tr>
<td></td>
<td>Reference to page</td>
</tr>
<tr>
<td></td>
<td>Reference to graphic</td>
</tr>
<tr>
<td></td>
<td>Operation via local display</td>
</tr>
<tr>
<td></td>
<td>Operation via operating tool</td>
</tr>
<tr>
<td></td>
<td>Write-protected parameter</td>
</tr>
</tbody>
</table>
1.4.2 Symbols in graphics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3 ...</td>
<td>Item numbers</td>
<td>A, B, C, ...</td>
<td>Views</td>
</tr>
<tr>
<td>A-A, B-B, C-C, ...</td>
<td>Sections</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.5 Documentation

1.5.1 Standard documentation

Operating Instructions

<table>
<thead>
<tr>
<th>Measuring device</th>
<th>Documentation code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promass A 300 (8A3B**-...))</td>
<td>BA01504D</td>
</tr>
<tr>
<td>Promass A 300 (8A3C**-...))</td>
<td>BA01841D</td>
</tr>
<tr>
<td>Promass E 300</td>
<td>BA01506D</td>
</tr>
<tr>
<td>Promass F 300</td>
<td>BA01507D</td>
</tr>
<tr>
<td>Promass H 300</td>
<td>BA01508D</td>
</tr>
<tr>
<td>Promass I 300</td>
<td>BA01509D</td>
</tr>
<tr>
<td>Promass O 300</td>
<td>BA01510D</td>
</tr>
<tr>
<td>Promass P 300</td>
<td>BA01511D</td>
</tr>
<tr>
<td>Promass Q 300</td>
<td>BA01512D</td>
</tr>
<tr>
<td>Promass S 300</td>
<td>BA01513D</td>
</tr>
<tr>
<td>Promass X 300</td>
<td>BA01514D</td>
</tr>
</tbody>
</table>

1.5.2 Supplementary device-dependent documentation

Special Documentation

<table>
<thead>
<tr>
<th>Contents</th>
<th>Documentation code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information on the Pressure Equipment Directive</td>
<td>SD01614D</td>
</tr>
<tr>
<td>Remote display and operating module DKX001</td>
<td>SD01763D</td>
</tr>
<tr>
<td>Radio approvals for WLAN interface for A309/A310 display module</td>
<td>SD01793D</td>
</tr>
<tr>
<td>Web server</td>
<td>SD01664D</td>
</tr>
<tr>
<td>Heartbeat Technology</td>
<td>SD01698D</td>
</tr>
<tr>
<td>Concentration measurement</td>
<td>SD01708D</td>
</tr>
<tr>
<td>Petroleum</td>
<td>SD02291D</td>
</tr>
<tr>
<td>Viscosity measurement Promass 1</td>
<td>SD01722D</td>
</tr>
</tbody>
</table>
Overview of the Expert operating menu

The following table provides an overview of the menu structure of the expert operating menu and its parameters. The page reference indicates where the associated description of the submenu or parameter can be found.

<table>
<thead>
<tr>
<th>Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct access (0106)</td>
</tr>
<tr>
<td>Locking status (0004)</td>
</tr>
<tr>
<td>Access status (0005)</td>
</tr>
<tr>
<td>Ent. access code (0003)</td>
</tr>
<tr>
<td>System</td>
</tr>
<tr>
<td>Display</td>
</tr>
<tr>
<td>Config. backup</td>
</tr>
<tr>
<td>Diagn. handling</td>
</tr>
<tr>
<td>Administration</td>
</tr>
<tr>
<td>Sensor</td>
</tr>
<tr>
<td>Measured val.</td>
</tr>
<tr>
<td>System units</td>
</tr>
<tr>
<td>Process param.</td>
</tr>
<tr>
<td>Measurement mode</td>
</tr>
<tr>
<td>External comp.</td>
</tr>
<tr>
<td>Calculated value</td>
</tr>
<tr>
<td>Sensor adjustm.</td>
</tr>
<tr>
<td>Calibration</td>
</tr>
<tr>
<td>I/O config.</td>
</tr>
<tr>
<td>I/O 1 to n terminals (3902–1 to n)</td>
</tr>
<tr>
<td>I/O 1 to n info (3906–1 to n)</td>
</tr>
</tbody>
</table>
Overview of the Expert operating menu

<table>
<thead>
<tr>
<th>Module</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O 1 to n type (3901–1 to n)</td>
<td>94</td>
</tr>
<tr>
<td>Apply I/O config (3907)</td>
<td>94</td>
</tr>
<tr>
<td>Alteration code (2762)</td>
<td>95</td>
</tr>
<tr>
<td>Input</td>
<td></td>
</tr>
<tr>
<td>Current input 1 to n</td>
<td>95</td>
</tr>
<tr>
<td>Status input 1 to n</td>
<td>98</td>
</tr>
<tr>
<td>Output</td>
<td></td>
</tr>
<tr>
<td>Curr.output 1 to n</td>
<td>101</td>
</tr>
<tr>
<td>PFS output 1 to n</td>
<td>115</td>
</tr>
<tr>
<td>Relay output 1 to n</td>
<td>137</td>
</tr>
<tr>
<td>Communication</td>
<td></td>
</tr>
<tr>
<td>PROFIBUS PA conf</td>
<td>144</td>
</tr>
<tr>
<td>PROFIBUS PA info</td>
<td>145</td>
</tr>
<tr>
<td>Physical block</td>
<td>147</td>
</tr>
<tr>
<td>Web server</td>
<td>156</td>
</tr>
<tr>
<td>WLAN settings</td>
<td>160</td>
</tr>
<tr>
<td>Analog inputs</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n</td>
<td>167</td>
</tr>
<tr>
<td>Discrete inputs</td>
<td></td>
</tr>
<tr>
<td>Discrete input 1 to n</td>
<td>181</td>
</tr>
<tr>
<td>Analog outputs</td>
<td></td>
</tr>
<tr>
<td>Analog output 1 to n</td>
<td>188</td>
</tr>
<tr>
<td>Discrete outputs</td>
<td></td>
</tr>
<tr>
<td>Discr. out. 1 to n</td>
<td>200</td>
</tr>
</tbody>
</table>
Overview of the Expert operating menu

Proline Promass 300 PROFIBUS PA

Application
- Totalizer 1 to n
- Viscosity
- Concentration

Diagnostics
- Actual diagnos. (0691)
- Prev.diagnostics (0690)
- Time fr. restart (0653)
- Operating time (0652)
- Diagnostic list
- Event logbook
- Device info
- Mainboard module
- Sens. electronic
- I/O module 1
- I/O module 2
- Display module
- Min/max val.
- Data logging
- Heartbeat
- Simulation
3 Description of device parameters

In the following section, the parameters are listed according to the menu structure of the local display. Specific parameters for the operating tools are included at the appropriate points in the menu structure.

<table>
<thead>
<tr>
<th>Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct access (0106) -> 11</td>
</tr>
<tr>
<td>Locking status (0004) -> 12</td>
</tr>
<tr>
<td>Access status (0005) -> 13</td>
</tr>
<tr>
<td>Ent. access code (0003) -> 13</td>
</tr>
<tr>
<td>System -> 13</td>
</tr>
<tr>
<td>Sensor -> 45</td>
</tr>
<tr>
<td>I/O config. -> 93</td>
</tr>
<tr>
<td>Input -> 95</td>
</tr>
<tr>
<td>Output -> 100</td>
</tr>
<tr>
<td>Communication -> 143</td>
</tr>
<tr>
<td>Analog inputs -> 166</td>
</tr>
<tr>
<td>Discrete inputs -> 181</td>
</tr>
<tr>
<td>Analog outputs -> 188</td>
</tr>
<tr>
<td>Discrete outputs -> 200</td>
</tr>
<tr>
<td>Application -> 210</td>
</tr>
<tr>
<td>Diagnostics -> 225</td>
</tr>
</tbody>
</table>

Direct access

Navigation

Expert -> Direct access (0106)

Description

Use this function to enter the access code to enable direct access to the desired parameter via the local display. A parameter number is assigned to each parameter for this purpose.

User entry

0 to 65535
Additional information

User entry

The direct access code consists of a 5-digit number (at maximum) and the channel number, which identifies the channel of a process variable: e.g. 00914-2. In the navigation view, this appears on the right-hand side in the header of the selected parameter.

![Direct access code](image)

1 Direct access code

Note the following when entering the direct access code:

- The leading zeros in the direct access code do not have to be entered.
 Example: Enter "914" instead of "00914"
- If no channel number is entered, channel 1 is accessed automatically.
 Example: Enter 00914 → Assign variable parameter
- If a different channel is accessed: Enter the direct access code with the corresponding channel number.
 Example: Enter 00914-2 → Assign variable parameter

Locking status

Navigation

Expert → Locking status (0004)

Description

Displays the active write protection.

User interface

- Hardware locked
- Temp. locked

Additional information

Display

If two or more types of write protection are active, the write protection with the highest priority is shown on the local display. In the operating tool all active types of write protection are displayed.

Detailed information on access authorization is provided in the "User roles and associated access authorization" and "Operating concept" sections of the Operations Instructions for the device → 7

Selection

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>The access status displayed in the Access status parameter (→ 13) applies. Only appears on local display.</td>
</tr>
<tr>
<td>Hardware locked (priority 1)</td>
<td>The DIP switch for hardware locking is activated on the PCB board. This locks write access to the parameters (e.g. via local display or operating tool).</td>
</tr>
<tr>
<td>Temp. locked (priority 2)</td>
<td>Write access to the parameters is temporarily locked on account of internal processes running in the device (e.g. data upload/download, reset etc.). Once the internal processing has been completed, the parameters can be changed once again.</td>
</tr>
</tbody>
</table>
Access status

Navigation
Expert → Access status (0005)

Description
Displays the access authorization to the parameters via the local display, Web browser or operating tool.

User interface
- Operator
- Maintenance

Factory setting
Maintenance

Additional information

Description
Access authorization can be modified via the Ent. access code parameter (→ 13).

If additional write protection is active, this restricts the current access authorization even further.

Display
Detailed information on access authorization is provided in the "User roles and associated access authorization" and "Operating concept" sections of the Operations Instructions for the device → 7

Ent. access code

Navigation
Expert → Ent. access code (0003)

Description
Use this function to enter the user-specific release code to remove parameter write protection.

User entry
0 to 9999

3.1 "System" submenu

Navigation
Expert → System

- System
 - Display → 14
 - Config. backup → 28
 - Diagn. handling → 31
 - Administration → 40
3.1.1 "Display" submenu

Navigation

![Expert → System → Display]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display language (0104)</td>
<td>→ 15</td>
</tr>
<tr>
<td>Format display (0098)</td>
<td>→ 15</td>
</tr>
<tr>
<td>Value 1 display (0107)</td>
<td>→ 18</td>
</tr>
<tr>
<td>0% bargraph 1 (0123)</td>
<td>→ 19</td>
</tr>
<tr>
<td>100% bargraph 1 (0125)</td>
<td>→ 20</td>
</tr>
<tr>
<td>Decimal places 1 (0095)</td>
<td>→ 20</td>
</tr>
<tr>
<td>Value 2 display (0108)</td>
<td>→ 21</td>
</tr>
<tr>
<td>Decimal places 2 (0117)</td>
<td>→ 21</td>
</tr>
<tr>
<td>Value 3 display (0110)</td>
<td>→ 22</td>
</tr>
<tr>
<td>0% bargraph 3 (0124)</td>
<td>→ 22</td>
</tr>
<tr>
<td>100% bargraph 3 (0126)</td>
<td>→ 23</td>
</tr>
<tr>
<td>Decimal places 3 (0118)</td>
<td>→ 23</td>
</tr>
<tr>
<td>Value 4 display (0109)</td>
<td>→ 23</td>
</tr>
<tr>
<td>Decimal places 4 (0119)</td>
<td>→ 24</td>
</tr>
<tr>
<td>Display interval (0096)</td>
<td>→ 24</td>
</tr>
<tr>
<td>Display damping (0094)</td>
<td>→ 25</td>
</tr>
<tr>
<td>Header (0097)</td>
<td>→ 25</td>
</tr>
<tr>
<td>Header text (0112)</td>
<td>→ 26</td>
</tr>
<tr>
<td>Separator (0101)</td>
<td>→ 27</td>
</tr>
<tr>
<td>Contrast display (0105)</td>
<td>→ 27</td>
</tr>
<tr>
<td>Backlight (0111)</td>
<td>→ 27</td>
</tr>
</tbody>
</table>
Display language

Navigation

Expert → System → Display → Display language (0104)

Prerequisite
A local display is provided.

Description
Use this function to select the configured language on the local display.

Selection
- English
- Deutsch
- Français
- Español
- Italiano
- Nederlands
- Portuguesa
- Polski
- русский язык (Ru)
- Svenska
- Türkçe
- 中文 (Chinese)
- 日本語 (Japanese)
- 한국어 (Korean)
- Bahasa Indonesia
- tiếng Việt (Viet)
- čeština (Czech)

Factory setting
English (alternatively, the ordered language is preset in the device)

Format display

Navigation

Expert → System → Display → Format display (0098)

Prerequisite
A local display is provided.

Description
Use this function to select how the measured value is shown on the local display.

Selection
- 1 value, max.
- Bargr. + 1 value
- 2 values
- Val. large+2val.
- 4 values

Factory setting
1 value, max.
Additional information

Description

The display format (size, bar graph etc.) and number of measured values displayed simultaneously (1 to 4) can be configured. This setting only applies to normal operation.

- The Value 1 display parameter (→ 18) to Value 4 display parameter (→ 23) are used to specify which measured values are shown on the local display and in what order.
- If more measured values are specified than the display mode selected permits, then the values alternate on the device display. The display time until the next change is configured via the Display interval parameter (→ 24).
Possible measured values shown on the local display:

"1 value, max." option

```
XXXXXXXXX
900.00 kg/h
```

"Bargr. + 1 value" option

```
XXXXXXXXX
\( \dot{m} \) 900.00 kg/h
0 900.00 l/h
```

"2 values" option

```
XXXXXXXXX
\( \dot{m} \) 900.00 kg/h
0 900.00 l/h
```

"Val. large+2val." option

```
XXXXXXXXX
\( \dot{m} \) 900.00 kg/h
0 900.00 l/h
\( \rho \) 1.00 kg/l
```

"4 values" option

```
XXXXXXXXX
\( \dot{m} \) 900.00 kg/h
0 900.00 l/h
\( \rho \) 1.00 kg/l
\( \Sigma \) 213.94 kg
```
Value 1 display

Navigation

Expert → System → Display → Value 1 display (0107)

Prerequisite

A local display is provided.

Description

Use this function to select one of the measured values to be shown on the local display.

Selection

- Mass flow
- Volume flow
- Correct.vol.flow *
- Target mass flow *
- Carrier mass fl. *
- Target vol. flow *
- Carrier vol. fl. *
- Targ.corr.vol.fl *
- Carr.corr.vol.fl *
- Density
- Ref.density *
- Ref.dens.altern. *
- GSV flow *
- GSVa *
- NSV flow *
- NSVa *
- S&W volume flow *
- Water cut *
- Oil density *
- Water density *
- Oil mass flow *
- Water mass flow *
- Oil volume flow *
- Water vol. flow *
- Oil corr.vol.fl. *
- Water corr.v.fl. *
- Density average *
- Temp. average *
- Concentration *
- Dynam. viscosity *
- Kinematic visc.
- TempCompDynVisc *
- TempCompKinVisc *
- Temperature
- Carr. pipe temp. *
- Electronic temp.
- Osc. freq. 0
- Osc. freq. 1 *
- Osc. ampl. 0 *
- Osc. ampl. 1 *
- Freq. fluct. 0 *
- Freq. fluct. 1 *
- Osc. damping 0 *
- Osc. damping 1 *
- Osc.damp.fluct 0 *
- Osc.damp.fluct 1 *
- Signal asymmetry *

* Visibility depends on order options or device settings
• Exc. current 0 *
• Exc. current 1 *
• HBSI *
• Totalizer 1
• Totalizer 2
• Totalizer 3
• Curr. output 1 *
• Pressure

Factory setting

Mass flow

Additional information

Description

If several measured values are displayed at once, the measured value selected here will be the first value to be displayed. The value is only displayed during normal operation.

The **Format display** parameter (→ 15) is used to specify how many measured values are displayed simultaneously and how.

Dependency

The unit of the displayed measured value is taken from the **System units** submenu (→ 60).

Selection

• Oscil. frequency option
 Displays the current oscillation frequency of the measuring tubes. This frequency depends on the density of the medium.

• Oscil. amplitude option
 Displays the relative oscillation amplitude of the measuring tubes in relation to the preset value. This value is 100 % under optimum conditions.

• Oscil. damping option
 Displays the current oscillation damping. Oscillation damping is an indicator of the sensor's current need for excitation power.

• Signal asymmetry option
 Displays the relative difference between the oscillation amplitude at the inlet and outlet of the sensor. The measured value is the result of production tolerances of the sensor coils and should remain constant over the life time of a sensor.

0% bargraph 1

Navigation

Expert → System → Display → 0% bargraph 1 (0123)

Prerequisite

A local display is provided.

Description

Use this function to enter the 0% bar graph value to be shown on the display for the measured value 1.

User entry

Signed floating-point number

Factory setting

Country-specific:

• 0 kg/h
• 0 lb/min

* Visibility depends on order options or device settings
100% bargraph 1

Navigation
Expert → System → Display → 100% bargraph 1 (0125)

Prerequisite
A local display is provided.

Description
Use this function to enter the 100% bar graph value to be shown on the display for the measured value 1.

User entry
Signed floating-point number

Factory setting
Depends on country and nominal diameter → 273

Additional information

Description
The **Format display** parameter (→ 15) is used to specify that the measured value is to be displayed as a bar graph.

User entry
The unit of the displayed measured value is taken from the **System units** submenu (→ 60).

Decimal places 1

Navigation
Expert → System → Display → Decimal places 1 (0095)

Prerequisite
A measured value is specified in the **Value 1 display** parameter (→ 18).

Description
Use this function to select the number of decimal places for measured value 1.

Selection
- x
- x.x
- x.xx
- x.xxx
- x.xxxx

Factory setting
x.xx
Additional information

Description

This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.

Value 2 display

Navigation

Expert → System → Display → Value 2 display (0108)

Prerequisite

A local display is provided.

Description

Use this function to select one of the measured values to be shown on the local display.

Selection

For the picklist, see the Value 1 display parameter (→ § 18)

Factory setting

None

Additional information

Description

If several measured values are displayed at once, the measured value selected here will be the second value to be displayed. The value is only displayed during normal operation.

The Format display parameter (→ § 15) is used to specify how many measured values are displayed simultaneously and how.

Dependency

The unit of the displayed measured value is taken from the System units submenu (→ § 60).

Decimal places 2

Navigation

Expert → System → Display → Decimal places 2 (0117)

Prerequisite

A measured value is specified in the Value 2 display parameter (→ § 21).

Description

Use this function to select the number of decimal places for measured value 2.

Selection

- x
- x.x
- x.xx
- x.xxx
- x.xxxx

Factory setting

x.xx

Additional information

Description

This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.
Value 3 display

Navigation
Expert → System → Display → Value 3 display (0110)

Prerequisite
A local display is provided.

Description
Use this function to select one of the measured values to be shown on the local display.

Selection
For the picklist, see the Value 1 display parameter (→ 18)

Factory setting
None

Additional information
Description
If several measured values are displayed at once, the measured value selected here will be the third value to be displayed. The value is only displayed during normal operation.

The Format display parameter (→ 15) is used to specify how many measured values are displayed simultaneously and how.

Selection
The unit of the displayed measured value is taken from the System units submenu (→ 60).

0% bargraph 3

Navigation
Expert → System → Display → 0% bargraph 3 (0124)

Prerequisite
A selection was made in the Value 3 display parameter (→ 22).

Description
Use this function to enter the 0% bar graph value to be shown on the display for the measured value 3.

User entry
Signed floating-point number

Factory setting
Country-specific:
- 0 kg/h
- 0 lb/min

Additional information
Description
The Format display parameter (→ 15) is used to specify that the measured value is to be displayed as a bar graph.

User entry
The unit of the displayed measured value is taken from the System units submenu (→ 60).
100% bargraph 3

Navigation
Expert → System → Display → 100% bargraph 3 (0126)

Prerequisite
A selection was made in the Value 3 display parameter (→ 22).

Description
Use this function to enter the 100% bar graph value to be shown on the display for the measured value 3.

User entry
Signed floating-point number

Factory setting
0

Additional information
Description
The Format display parameter (→ 15) is used to specify that the measured value is to be displayed as a bar graph.

User entry
The unit of the displayed measured value is taken from the System units submenu (→ 60).

Decimal places 3

Navigation
Expert → System → Display → Decimal places 3 (0118)

Prerequisite
A measured value is specified in the Value 3 display parameter (→ 22).

Description
Use this function to select the number of decimal places for measured value 3.

Selection
- x
- x.x
- x.xx
- x.xxx
- x.xxxx

Factory setting
x.xx

Additional information
Description
This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.

Value 4 display

Navigation
Expert → System → Display → Value 4 display (0109)

Prerequisite
A local display is provided.
Description
Use this function to select one of the measured values to be shown on the local display.

Selection
For the picklist, see the Value 1 display parameter (→ 18)

Factory setting
None

Additional information
Description
If several measured values are displayed at once, the measured value selected here will be the fourth value to be displayed. The value is only displayed during normal operation.

The Format display parameter (→ 15) is used to specify how many measured values are displayed simultaneously and how.

Selection
The unit of the displayed measured value is taken from the System units submenu (→ 60).

Decimal places 4

Navigation
Expert → System → Display → Decimal places 4 (0119)

Prerequisite
A measured value is specified in the Value 4 display parameter (→ 23).

Description
Use this function to select the number of decimal places for measured value 4.

Selection
• x
• x.x
• x.xx
• x.xxx
• x.xxxx

Factory setting
x.xx

Additional information
Description
This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.

Display interval

Navigation
Expert → System → Display → Display interval (0096)

Prerequisite
A local display is provided.

Description
Use this function to enter the length of time the measured values are displayed if the values alternate on the display.

User entry
1 to 10 s
Factory setting

5 s

Additional information

Description

This type of alternating display only occurs automatically if the number of measured values defined exceeds the number of values the selected display format can display simultaneously.

- The **Value 1 display** parameter (→ 18) to **Value 4 display** parameter (→ 23) are used to specify which measured values are shown on the local display.
- The display format of the displayed measured values is specified using the **Format display** parameter (→ 15).

Display damping

Navigation

Expert → System → Display → Display damping (0094)

Prerequisite

A local display is provided.

Description

Use this function to enter a time constant for the reaction time of the local display to fluctuations in the measured value caused by process conditions.

User entry

0.0 to 999.9 s

Factory setting

0.0 s

Additional information

User entry

Use this function to enter a time constant (PT1 element 1) for display damping:

- If a low time constant is entered, the display reacts particularly quickly to fluctuating measured variables.
- On the other hand, the display reacts more slowly if a high time constant is entered.

Damping is switched off if 0 is entered (factory setting).

Header

Navigation

Expert → System → Display → Header (0097)

Prerequisite

A local display is provided.

Description

Use this function to select the contents of the header of the local display.

Selection

- Device tag
- Free text

Factory setting

Device tag

1) Proportional transmission behavior with first order delay
Additional information

Description
The header text only appears during normal operation.

1 Position of the header text on the display

Selection

- Device tag
 Is defined in the Device tag parameter (→ 235).
- Free text
 Is defined in the Header text parameter (→ 26).

Header text

Navigation
Expert → System → Display → Header text (0112)

Prerequisite
In the Header parameter (→ 25), the Free text option is selected.

Description
Use this function to enter a customer-specific text for the header of the local display.

User entry
Max. 12 characters such as letters, numbers or special characters (e.g. @, %, /)

Factory setting

Additional information

Description
The header text only appears during normal operation.

1 Position of the header text on the display

User entry
The number of characters displayed depends on the characters used.
Separator

Navigation

Expert → System → Display → Separator (0101)

Prerequisite

A local display is provided.

Description

Use this function to select the decimal separator.

Selection

- . (point)
- , (comma)

Factory setting

. (point)

Contrast display

Navigation

Expert → System → Display → Contrast display (0105)

Prerequisite

A local display is provided.

Description

Use this function to enter a value to adapt the display contrast to the ambient conditions (e.g. the lighting or viewing angle).

User entry

20 to 80 %

Factory setting

Depends on the display

Backlight

Navigation

Expert → System → Display → Backlight (0111)

Prerequisite

One of the following conditions is met:
- Order code for 'Display; operation', option F '4-line, illum.; touch control'
- Order code for 'Display; operation', option G '4-line, illum.; touch control +WLAN'
- Order code for 'Display; operation', option O 'Separate 4-line display, illum.; 10m/30ft cable; touch control'

Description

Use this function to switch the backlight of the local display on and off.

Selection

- Disable
- Enable

Factory setting

Enable
3.1.2 "Configuration backup" submenu

Navigation
​

Operating time

Navigation
​

Last backup

Navigation
​

Config. managem.

Navigation

Operating time

- **Description**: Use this function to display the length of time the device has been in operation.
- **User interface**: Days (d), hours (h), minutes (m) and seconds (s)
- **Additional information**: *User interface*

The maximum number of days is 9999, which is equivalent to 27 years.

Last backup

- **Description**: Displays the time since a backup copy of the data was last saved to the device memory.
- **User interface**: Days (d), hours (h), minutes (m) and seconds (s)

Config. managem.

- **Description**: Use this function to select an action to save the data to the device memory.
Selection

- Cancel
- Execute backup
- Restore
- Compare
- Clear backup

Factory setting

Cancel

Additional information

Selection

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancel</td>
<td>No action is executed and the user exits the parameter.</td>
</tr>
<tr>
<td>Execute backup</td>
<td>A backup copy of the current device configuration is saved from the HistoROM backup to the memory of the device. The backup copy includes the transmitter data of the device. The following message appears on local display: Backup active, please wait!</td>
</tr>
<tr>
<td>Restore</td>
<td>The last backup copy of the device configuration is restored from the device memory to the device's HistoROM backup. The backup copy includes the transmitter data of the device. The following message appears on local display: Restore active! Do not interrupt power supply!</td>
</tr>
<tr>
<td>Compare</td>
<td>The device configuration saved in the device memory is compared with the current device configuration of the HistoROM backup. The following message appears on local display: Comparing files. The result can be viewed in Compar. result parameter.</td>
</tr>
<tr>
<td>Clear backup</td>
<td>The backup copy of the device configuration is deleted from the memory of the device. The following message appears on local display: Deleting file</td>
</tr>
</tbody>
</table>

HistoROM

A HistoROM is a "non-volatile" device memory in the form of an EEPROM.

Backup state

Navigation

Expert → System → Config. backup → Backup state (2759)

Description

Displays the status of the data backup process.

User interface

- None
- Backup in progr.
- Restore in progr
- Delete in progr.
- Comp. in progr.
- Restoring failed
- Backup failed

Factory setting

None
Compar. result

Navigation

Expert → System → Config. backup → Compar. result (2760)

Description
Displays the last result of the comparison of the data records in the device memory and in the HistoROM.

User interface
- Set. identical
- Set. not ident.
- No backup
- Backup corrupt
- Check not done
- Dataset incomp.

Factory setting
Check not done

Additional information

Description
The comparison is started via the Compare option in the Config. managem. parameter (→ 28).

Selection

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set. identical</td>
<td>The current device configuration of the HistoROM is identical to the backup copy in the device memory. If the transmitter configuration of another device has been transmitted to the device via HistoROM in the Config. managem. parameter, the current device configuration of the HistoROM is only partially identical to the backup copy in the device memory: The settings for the transmitter are not identical.</td>
</tr>
<tr>
<td>Set. not ident.</td>
<td>The current device configuration of the HistoROM is not identical to the backup copy in the device memory.</td>
</tr>
<tr>
<td>No backup</td>
<td>There is no backup copy of the device configuration of the HistoROM in the device memory.</td>
</tr>
<tr>
<td>Backup corrupt</td>
<td>The current device configuration of the HistoROM is corrupt or not compatible with the backup copy in the device memory.</td>
</tr>
<tr>
<td>Check not done</td>
<td>The device configuration of the HistoROM has not yet been compared to the backup copy in the device memory.</td>
</tr>
<tr>
<td>Dataset incomp.</td>
<td>The backup copy in the device memory is not compatible with the device.</td>
</tr>
</tbody>
</table>

HistoROM
A HistoROM is a "non-volatile" device memory in the form of an EEPROM.
3.1.3 "Diagn. handling" submenu

Navigation

Expert → System → Diagn. handling

Alarm delay (0651)

- **Description**

 Use this function to enter the time interval until the device generates a diagnostic message.

 The diagnostic message is reset without a time delay.

- **User entry**

 0 to 60 s

- **Factory setting**

 0 s

- **Additional information**

 This setting affects the following diagnostic messages:
 - 046 Sensor limit
 - 140 Sensor sig.asym.
 - 144 MeasErrorTooHigh
 - 830 Sensor temp.
 - 831 Sensor temp.
 - 832 Electronic temp.
 - 833 Electronic temp.
 - 834 Process temp.
 - 835 Process temp.
 - 843 Process limit
 - 862 Partly filled
 - 912 Medium inhomog.
 - 913 Medium unsuitab.
 - 944 MonitoringFailed

"Diagn. behavior" submenu

Each item of diagnostic information is assigned a specific diagnostic behavior at the factory. The user can change this assignment for specific diagnostic information in the **Diagn. behavior** submenu (→ 31).
The following options are available in the **Assign behavior of diagnostic no. xxx** parameters:

<table>
<thead>
<tr>
<th>Diagnostic behavior</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm</td>
<td>The device stops measurement. The totalizers assume the defined alarm condition. A diagnostic message is generated.</td>
</tr>
<tr>
<td>Warning</td>
<td>The device continues to measure. The measured value output via PROFIBUS and the totalizers are not affected. A diagnostic message is generated.</td>
</tr>
<tr>
<td>Logbook only</td>
<td>The device continues to measure. The diagnostic message is displayed only in the Event logbook submenu (→ 232) (Event list submenu (→ 233)) and not in alternation with the operational display.</td>
</tr>
<tr>
<td>Off</td>
<td>The diagnostic event is ignored, and no diagnostic message is generated or entered.</td>
</tr>
</tbody>
</table>

For a list of all the diagnostic events, see the Operating Instructions for the device
→ 7

Navigation

[Expert → System → Diagn. handling → Diagn. behavior]

Diagn. behavior

- Diagnostic no. 046 (0709) → 33
- Diagnostic no. 140 (0708) → 33
- Diagnostic no. 144 (0731) → 34
- Diagnostic no. 374 (0710) → 34
- Diagnostic no. 302 (0739) → 34
- Diagnostic no. 441 (0657) → 35
- Diagnostic no. 442 (0658) → 35
- Diagnostic no. 443 (0659) → 35
- Diagnostic no. 444 (0740) → 36
- Diagnostic no. 830 (0800) → 36
- Diagnostic no. 831 (0641) → 36
- Diagnostic no. 832 (0681) → 37
- Diagnostic no. 833 (0682) → 37
- Diagnostic no. 834 (0700) → 38
- Diagnostic no. 835 (0702) → 38
Diagnostic no. 046 (Sensor limit)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 046 (0709)

Description
Option for changing the diagnostic behavior of the diagnostic message **046 Sensor limit**.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Alarm

Additional information
Detailed description of the options available for selection:

Diagnostic no. 140 (Sensor sig.asym.)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 140 (0708)

Description
Option for changing the diagnostic behavior of the diagnostic message **140 Sensor sig.asym.**.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Alarm

Additional information
Detailed description of the options available for selection:
Diagnostic no. 144 (MeasErrorTooHigh)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 144 (0731)

Description
Option for changing the diagnostic behavior of the diagnostic message 144 MeasErrorTooHigh.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Alarm

Additional information
Detailed description of the options available for selection:

Diagnostic no. 374 (Sensor electron.)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 374 (0710)

Description
Option for changing the diagnostic behavior of the diagnostic message 374 Sensor electron.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
Detailed description of the options available for selection:

Diagnostic no. 302 (Verific. active)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 302 (0739)

Description
Option for changing the diagnostic behavior of the diagnostic message 302 Verific. active.

Selection
- Alarm
- Warning

Factory setting
Warning

Additional information
Detailed description of the options available for selection:
Diagnostic no. 441 (Curr. output 1 to n)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 441 (0657)

Description

Option for changing the diagnostic behavior of the diagnostic message 441 Curr. output 1 to n.

Selection

- Off
- Alarm
- Warning
- Logbook only

Factory setting

Warning

Additional information

Detailed description of the options available for selection:

Diagnostic no. 442 (Freq. output 1 to n)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 442 (0658)

Prerequisite

The measuring device has a pulse/frequency/switch output.

Description

Option for changing the diagnostic behavior of the diagnostic message 442 Freq. output 1 to n.

Selection

- Off
- Alarm
- Warning
- Logbook only

Factory setting

Warning

Additional information

Detailed description of the options available for selection:

Diagnostic no. 443 (Pulse output 1 to n)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 443 (0659)

Prerequisite

The measuring device has a pulse/frequency/switch output.

Description

Option for changing the diagnostic behavior of the diagnostic message 443 Pulse output 1 to n.

Selection

- Off
- Alarm
- Warning
- Logbook only
Description of device parameters

Proline Promass 300 PROFIBUS PA

Factory setting

Warning

Additional information

Detailed description of the options available for selection:

Diagnostic no. 444 (Current input 1 to n)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 444 (0740)

Prerequisite

The device has one current input.

Description

Option for changing the diagnostic behavior of the diagnostic message 444 Current input 1 to n.

Selection

- Off
- Alarm
- Warning
- Logbook only

Factory setting

Warning

Additional information

Detailed description of the options available for selection:

Diagnostic no. 830 (Sensor temp.)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 830 (0800)

Description

Option for changing the diagnostic behavior of the diagnostic message 830 Sensor temp.

Selection

- Off
- Alarm
- Warning
- Logbook only

Factory setting

Warning

Additional information

Detailed description of the options available for selection:

Diagnostic no. 831 (Sensor temp.)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 831 (0641)

Description

Option for changing the diagnostic behavior of the diagnostic message 831 Sensor temp.
Selection

- Off
- Alarm
- Warning
- Logbook only

Factory setting

Warning

Additional information

Detailed description of the options available for selection:

Diagnostic no. 832 (Electronic temp.)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 832 (0681)

Description

Option for changing the diagnostic behavior of the diagnostic message 832 Electronic temp..

Selection

- Off
- Alarm
- Warning
- Logbook only

Factory setting

Logbook only

Additional information

Detailed description of the options available for selection:

Diagnostic no. 833 (Electronic temp.)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 833 (0682)

Description

Option for changing the diagnostic behavior of the diagnostic message 833 Electronic temp..

Selection

- Off
- Alarm
- Warning
- Logbook only

Factory setting

Logbook only

Additional information

Detailed description of the options available for selection:
Diagnostic no. 834 (Process temp.)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 834 (0700)

Description

Option for changing the diagnostic behavior of the diagnostic message **834 Process temp.**.

Selection

- Off
- Alarm
- Warning
- Logbook only

Factory setting

Warning

Additional information

Detailed description of the options available for selection:

Diagnostic no. 835 (Process temp.)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 835 (0702)

Description

Option for changing the diagnostic behavior of the diagnostic message **835 Process temp.**.

Selection

- Off
- Alarm
- Warning
- Logbook only

Factory setting

Warning

Additional information

Detailed description of the options available for selection:

Diagnostic no. 842 (Process limit)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 842 (0638)

Description

Option for changing the diagnostic behavior of the diagnostic message **Process limit**.

Selection

- Off
- Alarm
- Warning
- Logbook only

Factory setting

Off
Diagnostic no. 862 (Empty pipe)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 862 (0679)

Description
Option for changing the diagnostic behavior of the diagnostic message 862 Empty pipe.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
Detailed description of the options available for selection:

Diagnostic no. 912 (Medium inhomog.)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 912 (0703)

Description
Option for changing the diagnostic behavior of the diagnostic message 912 Medium inhomog.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
Detailed description of the options available for selection:

Diagnostic no. 913 (Medium unsuitab.)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 913 (0712)

Description
Option for changing the diagnostic behavior of the diagnostic message 913 Medium unsuitab.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
Detailed description of the options available for selection:
Diagnosis no. 944 (MonitoringFailed)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 944 (0732)

Description
Option for changing the diagnostic behavior of the diagnostic message 944 MonitoringFailed.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
Detailed description of the options available for selection:

Diagnosis no. 948 (Oscill. damping)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 948 (0744)

Description
Option for changing the diagnostic behavior of the diagnostic message 948 Oscill. damping.

Selection
- Off
- Alarm
- Warning
- Logbook only

Factory setting
Warning

Additional information
Detailed description of the options available for selection:

3.1.4 "Administration" submenu

Navigation

Expert → System → Administration

► Administration

► Def. access code → 41

► Reset acc. code → 42

Device reset (0000) → 43
"Def. access code" wizard

The **Def. access code** wizard (→ 41) is only available when operating via the local display or Web browser.

If operating via the operating tool, the **Def. access code** parameter can be found directly in the **Administration** submenu. There is no **Confirm code** parameter if the device is operated via the operating tool.

Navigation

Expert → System → Administration → Def. access code

Description

Use this function to enter a user-specific release code to restrict write-access to the parameters. This protects the device configuration against any inadvertent modifications via the local display, Web browser, FieldCare or DeviceCare (via CDI-RJ45 service interface).

User entry

Max. 16-digit character string comprising numbers, letters and special characters

Additional information

The write protection affects all parameters in the document marked with the symbol. On the local display, the symbol in front of a parameter indicates that the parameter is write-protected.

The parameters that cannot be write-accessed are grayed out in the Web browser.

Once the access code has been defined, write-protected parameters can only be modified if the access code is entered in the **Ent. access code** parameter (→ 13).

If you lose the access code, please contact your Endress+Hauser sales organization.

User entry

A message is displayed if the access code is not in the input range.

Factory setting

If the factory setting is not changed or 0 is defined as the access code, the parameters are not write-protected and the device configuration data can be modified. The user is logged on in the "Maintenance" role.
Description of device parameters

Confirm code

Navigation
Expert → System → Administration → Def. access code → Confirm code

Description
Enter the defined release code a second time to confirm the release code.

User entry
Max. 16-digit character string comprising numbers, letters and special characters

"Reset access code" submenu

Navigation
Expert → System → Administration → Reset acc. code

Operating time

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → System → Administration → Reset acc. code → Operating time (0652)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to display the length of time the device has been in operation.</td>
</tr>
<tr>
<td>User interface</td>
<td>Days (d), hours (h), minutes (m) and seconds (s)</td>
</tr>
</tbody>
</table>
| **Additional information** | *User interface*
The maximum number of days is 9999, which is equivalent to 27 years. |

Reset acc. code

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → System → Administration → Reset acc. code → Reset acc. code (0024)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter a reset code to reset the user-specific release code to the factory setting.</td>
</tr>
<tr>
<td>User entry</td>
<td>Character string comprising numbers, letters and special characters</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0x00</td>
</tr>
</tbody>
</table>
Additional information

Description

For a reset code, contact your Endress+Hauser service organization.

User entry

The reset code can only be entered via:
- Web browser
- DeviceCare, FieldCare (via interface CDI RJ45)
- Fieldbus

Additional parameters in the "Administration" submenu

Device reset

Navigation

Expert → System → Administration → Device reset (0000)

Description

Use this function to choose whether to reset the device configuration - either entirely or in part - to a defined state.

Selection

- Cancel
- To delivery set.
- Restart device
- Rest.S-DATBackup *

Factory setting

Cancel

Additional information

Selection

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancel</td>
<td>No action is executed and the user exits the parameter.</td>
</tr>
<tr>
<td>To delivery set.</td>
<td>Every parameter for which a customer-specific default setting was ordered is reset to this customer-specific value. All other parameters are reset to the factory setting.</td>
</tr>
<tr>
<td>Restart device</td>
<td>The restart resets every parameter whose data are in the volatile memory (RAM) to the factory setting (e.g. measured value data). The device configuration remains unchanged.</td>
</tr>
<tr>
<td>Rest.S-DATBackup</td>
<td>Restore the data that are saved on the S-DAT. The data record is restored from the electronics memory to the S-DAT.</td>
</tr>
</tbody>
</table>

* Visibility depends on order options or device settings
Activate SW opt.

Navigation

- Expert → System → Administration → Activate SW opt. (0029)

Description

Use this function to enter an activation code to enable an additional, ordered software option.

User entry

Max. 10-digit string consisting of numbers.

Factory setting

Depends on the software option ordered

Additional information

Description

If a measuring device was ordered with an additional software option, the activation code is programmed in the device at the factory.

User entry

- To activate a software option subsequently, please contact your Endress+Hauser sales organization.

NOTE!

The activation code is linked to the serial number of the measuring device and varies according to the device and software option.

If an incorrect or invalid code is entered, this results in the loss of software options that have already been activated.

- Before you enter a new activation code, make a note of the current activation code.
- Enter the new activation code provided by Endress+Hauser when the new software option was ordered.
- Once the activation code has been entered, check if the new software option is displayed in the SW option overv. parameter (→ 45).
 - The new software option is active if it is displayed.
 - If the new software option is not displayed or all software options have been deleted, the code entered was either incorrect or invalid.
- If the code entered is incorrect or invalid, enter the old activation code.
- Have your Endress+Hauser sales organization check the new activation code remembering to specify the serial number or ask for the code again.

Example for a software option

Order code for "Application package", option EA "Extended HistoROM"

- The software options currently enabled are displayed in the SW option overv. parameter (→ 45).

Web browser

- Once a software option has been activated, the page must be loaded again in the Web browser.
SW option overv.

Navigation

Expert → System → Administration → SW option overv. (0015)

Description
Displays all the software options that are enabled in the device.

User interface
- Extend. HistoROM *
- HBT Monitoring *
- HBT Verification *
- Concentration
- Petroleum *
- Viscosity *

Additional information
Description
Displays all the options that are available if ordered by the customer.

'Extend. HistoROM' option
Order code for "Application package", option EA "Extended HistoROM"

'HBT Verification' option and 'HBT Monitoring' option
Order code for "Application package", option EB "Heartbeat Verification + Monitoring"

'Concentration' option
Order code for "Application package", option ED "Concentration" and option EE "Special density"

'Viscosity' option
Only available for Promass I.
Order code for "Application package", option EG "Viscosity"

'Petroleum' option
Only available for Promass E, F, O, Q and X.
Order code for "Application package", option EJ "Petroleum"

3.2 "Sensor" submenu

Navigation
Expert → Sensor

<table>
<thead>
<tr>
<th>Sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured val.</td>
</tr>
<tr>
<td>System units</td>
</tr>
</tbody>
</table>

* Visibility depends on order options or device settings
3.2.1 "Measured val." submenu

Navigation
Expert → Sensor → Measured val.

"Measured val." submenu

Navigation
Expert → Sensor → Measured val.

"Process variab." submenu

Navigation
Mass flow

Navigation

Description

Displays the mass flow that is currently measured.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the **Mass flow unit** parameter (→ 61)

Volume flow

Navigation

Description

Displays the volume flow currently calculated.

User interface

Signed floating-point number
Additional information
Description
The volume flow is calculated from the mass flow currently measured and the density currently measured.

Dependency
- The unit is taken from the **Volume flow unit** parameter (→ 62)

Correct.vol.flow

Navigation

Description
Displays the corrected volume flow currently measured.

User interface
Signed floating-point number

Additional information
Dependency
- The unit is taken from the **Cor.volflow unit** parameter (→ 64)

Density

Navigation

Description
Displays the density currently measured.

User interface
Signed floating-point number

Additional information
Dependency
- The unit is taken from the **Density unit** parameter (→ 65)

Ref.density

Navigation

Description
Displays the reference density currently calculated.

User interface
Signed floating-point number

Additional information
Dependency
- The unit is taken from the **Ref. dens. unit** parameter (→ 66)
Temperature

Navigation

Description Displays the medium temperature currently measured.

User interface Signed floating-point number

Additional information Dependency

Pressure value

Navigation

Description Displays the fixed or external pressure value.

User interface Signed floating-point number

Additional information Dependency

Dynam. viscosity

Navigation

Prerequisite For the following order code:
"Application package", option EG "Viscosity"

Description Displays the dynamic viscosity currently calculated.

User interface Signed floating-point number

Additional information Dependency

The unit is taken from the Temperature unit parameter (→ 66)

The unit is taken from the Pressure unit parameter (→ 67)

The unit is taken from the Dyn. visc. unit parameter.
Description of device parameters

Proline Promass 300 PROFIBUS PA

Kinematic visc.

Navigation

Prerequisite

For the following order code:
Application package, option **EG** "Viscosity"

The software options currently enabled are displayed in the **SW option overv.** parameter (→ 45).

Description

Displays the kinematic viscosity currently calculated.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the **Kin. visc. unit** parameter (0578).

TempCompDynVisc

Navigation

Prerequisite

For the following order code:
Application package, option **EG** "Viscosity"

The software options currently enabled are displayed in the **SW option overv.** parameter (→ 45).

Description

Displays the temperature compensation currently calculated for the viscosity.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the **Dyn. visc. unit** parameter.

TempCompKinVisc

Navigation

Prerequisite

For the following order code:
Application package, option **EG** "Viscosity"

The software options currently enabled are displayed in the **SW option overv.** parameter (→ 45).

Description

Displays the temperature compensation currently calculated for the kinetic viscosity.

User interface

Signed floating-point number
Additional information

Dependency

The unit is taken from the **Kin. visc. unit** parameter (0578).

Concentration

|---|---|

| Prerequisite | For the following order code: Order code for "Application package", option ED 'Concentration'

The software options currently enabled are displayed in the **SW option overv.** parameter (→ 45).

<table>
<thead>
<tr>
<th>Description</th>
<th>Displays the concentration currently calculated.</th>
</tr>
</thead>
</table>

| User interface | Signed floating-point number |

| Additional information | Dependency

The unit is taken from the **Concentr. unit** parameter (0613). |

Target mass flow

|---|---|

| Prerequisite | With the following conditions:

Order code for "Application package", option ED 'Concentration'

The software options currently enabled are displayed in the **SW option overv.**

<table>
<thead>
<tr>
<th>Description</th>
<th>Displays the mass flow currently measured for the target medium.</th>
</tr>
</thead>
</table>

| User interface | Signed floating-point number |

| Additional information | Dependency

The unit is taken from the **Mass flow unit** parameter (→ 61) |
Carrier mass fl.

Navigation

Prerequisite
With the following conditions:
Order code for "Application package", option ED "Concentration"

The software options currently enabled are displayed in the SW option overv. parameter (→ 45).

Description
Displays the mass flow currently measured for the carrier medium.

User interface
Signed floating-point number

Additional information
Dependency
The unit is taken from the Mass flow unit parameter (→ 61)

Targ.corr.vol.fl

Navigation

Prerequisite
With the following conditions:
- Order code for "Application package", option ED "Concentration"
- In the Liquid type parameter, the Ethanol in water option or %mass / %volume option is selected.

The software options currently enabled are displayed in the SW option overv. parameter (→ 45).

Description
Displays the corrected volume flow currently measured for the target fluid.

User interface
Signed floating-point number

Additional information
Dependency
The unit is taken from the Volume flow unit parameter (→ 62)

Carr.corr.vol.fl

Navigation

Prerequisite
With the following conditions:
- Order code for "Application package", option ED "Concentration"
- In the Liquid type parameter, the Ethanol in water option or %mass / %volume option is selected.

The software options currently enabled are displayed in the SW option overv. parameter (→ 45).

Description
Displays the corrected volume flow currently measured for the carrier fluid.
Target vol. flow

Navigation

Prerequisite

With the following conditions:
- Order code for "Application package", option ED "Concentration"
- The Ethanol in water option or %mass / %volume option is selected in the Liquid type parameter.
- The %vol option is selected in the Concentr. unit parameter.

Description

Displays the volume flow currently measured for the target medium.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the Volume flow unit parameter (→ 62)

Carrier vol. fl.

Navigation

Prerequisite

With the following conditions:
- Order code for "Application package", option ED "Concentration"
- The Ethanol in water option or %mass / %volume option is selected in the Liquid type parameter.
- The %vol option is selected in the Concentr. unit parameter.

Description

Use this function to display the volume flow currently measured for the carrier medium.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the Volume flow unit parameter (→ 62)
“Totalizer” submenu

Totalizer val. 1 to n

Navigation

Expert → Sensor → Measured val. → Totalizer → Totalizer val. 1 to n (3827–1 to n)

Prerequisite

In the **Target mode** parameter (→ 217), the **Auto** option is selected.

Description

Displays the current reading for totalizer 1-3.

User interface

Signed floating-point number

Additional information

Description

In the event of an error, the totalizer adopts the mode defined in the **Failure mode** parameter (→ 215).

User interface

The value of the process variable totalized since measuring began can be positive or negative. This depends on the settings in the **Operation mode** parameter (→ 214).

Dependency

The unit of the selected process variable is specified for the totalizer in the **Unit totalizer** parameter (→ 212).

Status (Hex) 1 to n

Navigation

Expert → Sensor → Measured val. → Totalizer → Status (Hex) 1 to n (3825–1 to n)

Prerequisite

In **Target mode** parameter (→ 217), the **Auto** option is selected.

Description

Displays the status value (hex) of the particular totalizer.

User interface

0 to 0xFF
Tot. status 1 to n

Navigation

Expert → Sensor → Measured val. → Totalizer → Tot. status 1 to n (3826–1 to n)

Description

Displays the status of the particular totalizer.

User interface

- Good
- Uncertain
- Bad

"Input values" submenu

Navigation

Expert → Sensor → Measured val. → Input values

- **Current input 1 to n** → 55
- **Val.stat.inp. 1 to n** → 56

‘Current input 1 to n’ submenu

Navigation

Expert → Sensor → Measured val. → Input values → Current input 1 to n

- **Current input 1 to n**
 - Measured val. 1 to n (1603–1 to n) → 55
 - Measur. curr. 1 to n (1604–1 to n) → 56

Measured val. 1 to n

Navigation

Expert → Sensor → Measured val. → Input values → Current input 1 to n

→ Measured val. 1 to n (1603–1 to n)

Description

Displays the current input value.

User interface

Signed floating-point number
Description of device parameters

Proline Promass 300 PROFIBUS PA

Measur. curr. 1 to n

Navigation

Expert → Sensor → Measured val. → Input values → Current input 1 to n → Measur. curr. 1 to n (1604–1 to n)

Description
Displays the current value of the current input.

User interface
0 to 22.5 mA

"Value status input 1 to n" submenu

Navigation

Expert → Sensor → Measured val. → Input values → Val.stat.inp. 1 to n

Val.stat.inp.

Navigation

Expert → Sensor → Measured val. → Input values → Val.stat.inp. 1 to n

Description
Displays the current input signal level.

User interface
- High
- Low

"Output values" submenu

Navigation

Expert → Sensor → Measured val. → Output values

56

Endress+Hauser
"Value current output 1 to n" submenu

Navigation

Expert → Sensor → Measured val. → Output values → Value curr.out 1 to n

<table>
<thead>
<tr>
<th>➤ Value curr.out 1 to n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output curr. 1 to n (0361–1 to n)</td>
</tr>
<tr>
<td>Measur. curr. 1 to n (0366–1 to n)</td>
</tr>
</tbody>
</table>

Output curr. 1 to n

Navigation

Expert → Sensor → Measured val. → Output values → Output curr. 1 to n (0361–1 to n)

Description

 Displays the current value currently calculated for the current output.

User interface

0 to 22.5 mA

Measur. curr. 1 to n

Navigation

Expert → Sensor → Measured val. → Output values → Measur. curr. 1 to n (0366–1 to n)

Description

Use this function to display the actual measured value of the output current.

User interface

0 to 30 mA

"Pulse/frequency/switch output 1 to n" submenu

Navigation

Expert → Sensor → Measured val. → Output values → PFS output 1 to n

<table>
<thead>
<tr>
<th>➤ PFS output 1 to n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output freq. 1 to n (0471–1 to n)</td>
</tr>
<tr>
<td>Pulse output 1 to n (0456–1 to n)</td>
</tr>
<tr>
<td>Switch status 1 to n (0461–1 to n)</td>
</tr>
</tbody>
</table>
Description of device parameters

Output freq. 1 to n

Navigation

Expert → Sensor → Measured val. → Output values → PFS output 1 to n → Output freq. 1 to n (0471–1 to n)

Prerequisite

In the **Operating mode** parameter (→ 117), the **Frequency** option is selected.

Description

Displays the actual value of the output frequency which is currently measured.

User interface

0.0 to 12 500.0 Hz

Pulse output 1 to n

Navigation

Expert → Sensor → Measured val. → Output values → PFS output 1 to n → Pulse output 1 to n (0456–1 to n)

Prerequisite

The **Pulse** option is selected in the **Operating mode** parameter (→ 117) parameter.

Description

Displays the pulse frequency currently output.

User interface

Positive floating-point number

Additional information

- The pulse output is an open collector output.
- It is configured at the factory in such a way that the transistor is conductive for the duration of the pulse (NO contact) and is safety-oriented.

![Diagram of NC and NO contacts](image)

- 0 Non-conductive
- 1 Conductive
- NC NC contact (normally closed)
- NO NO contact (normally open)

The output behavior can be reversed via the **Invert outp.sig.** parameter (→ 136) i.e. the transistor does not conduct for the duration of the pulse.

In addition, the behavior of the output in the event of a device alarm (**Failure mode** parameter (→ 121)) can be configured.
Switch status 1 to n

Navigation

Expert → Sensor → Measured val. → Output values → PFS output 1 to n → Switch status 1 to n (0461–1 to n)

Prerequisite

The **Switch** option is selected in the Operating mode parameter (→ 117).

Description

Displays the current switch status of the status output.

User interface

- Open
- Closed

Additional information

User interface

- Open
 The switch output is not conductive.
- Closed
 The switch output is conductive.

Relay output 1 to n submenu

Navigation

Expert → Sensor → Measured val. → Output values → Relay output 1 to n

Switch status

Navigation

Expert → Sensor → Measured val. → Output values → Relay output 1 to n → Switch status (0801–1 to n)

Description

Displays the current status of the relay output.

User interface

- Open
- Closed

Additional information

User interface

- Open
 The relay output is not conductive.
- Closed
 The relay output is conductive.
Switch cycles

Navigation

- Expert → Sensor → Measured val. → Output values → Relay output 1 to n → Switch cycles (0815–1 to n)

Description

Displays all the switch cycles performed.

User interface

Positive integer

Max. cycles no.

Navigation

- Expert → Sensor → Measured val. → Output values → Relay output 1 to n → Max. cycles no. (0817–1 to n)

Description

Displays the maximum number of guaranteed switch cycles.

User interface

Positive integer

3.2.2 "System units" submenu

Navigation

- Expert → Sensor → System units

<table>
<thead>
<tr>
<th>System units</th>
<th>→ 61</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass flow unit (0554)</td>
<td></td>
</tr>
<tr>
<td>Mass unit (0574)</td>
<td></td>
</tr>
<tr>
<td>Volume flow unit (0553)</td>
<td></td>
</tr>
<tr>
<td>Volume unit (0563)</td>
<td></td>
</tr>
<tr>
<td>Corr. volflow unit (0558)</td>
<td></td>
</tr>
<tr>
<td>Corr. vol. unit (0575)</td>
<td></td>
</tr>
<tr>
<td>Density unit (0555)</td>
<td></td>
</tr>
<tr>
<td>Ref. dens. unit (0556)</td>
<td></td>
</tr>
<tr>
<td>Temperature unit (0557)</td>
<td></td>
</tr>
</tbody>
</table>
Mass flow unit

Navigation
- Expert → Sensor → System units → Mass flow unit (0554)

Description
Use this function to select the unit for the mass flow.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/s</td>
<td>oz/s</td>
</tr>
<tr>
<td>g/min</td>
<td>oz/min</td>
</tr>
<tr>
<td>g/h</td>
<td>oz/h</td>
</tr>
<tr>
<td>g/d</td>
<td>oz/d</td>
</tr>
<tr>
<td>kg/s</td>
<td>lb/s</td>
</tr>
<tr>
<td>kg/min</td>
<td>lb/min</td>
</tr>
<tr>
<td>kg/h</td>
<td>lb/h</td>
</tr>
<tr>
<td>kg/d</td>
<td>lb/d</td>
</tr>
<tr>
<td>t/s</td>
<td>STon/s</td>
</tr>
<tr>
<td>t/min</td>
<td>STon/min</td>
</tr>
<tr>
<td>t/h</td>
<td>STon/h</td>
</tr>
<tr>
<td>t/d</td>
<td>STon/d</td>
</tr>
</tbody>
</table>

Factory setting
- Country-specific:
 - kg/h (DN > 150 (6”): t/h)
 - lb/min

Additional information

Result
The selected unit applies for:
- **Target mass flow** parameter (→ 61)
- **Carrier mass fl.** parameter (→ 62)
- **Mass flow** parameter (→ 47)

Selection
- For an explanation of the abbreviated units: → 279

Mass unit

Navigation
- Expert → Sensor → System units → Mass unit (0574)

Description
Use this function to select the unit for the mass.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>oz</td>
</tr>
<tr>
<td>kg</td>
<td>lb</td>
</tr>
<tr>
<td>t</td>
<td>STon</td>
</tr>
</tbody>
</table>
Factory setting

Country-specific:
- kg (DN > 150 (6’): t)
- lb

Additional information

Selection

For an explanation of the abbreviated units: → 279

Volume flow unit

Navigation

Expert → Sensor → System units → Volume flow unit (0553)

Description

Use this function to select the unit for the volume flow.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
<th>Imperial units</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm³/s</td>
<td>af/s</td>
<td>gal/s (imp)</td>
</tr>
<tr>
<td>cm³/min</td>
<td>af/min</td>
<td>gal/min (imp)</td>
</tr>
<tr>
<td>cm³/h</td>
<td>af/h</td>
<td>gal/h (imp)</td>
</tr>
<tr>
<td>cm³/d</td>
<td>af/d</td>
<td>gal/d (imp)</td>
</tr>
<tr>
<td>dm³/s</td>
<td>ft³/s</td>
<td>Mgal/s (imp)</td>
</tr>
<tr>
<td>dm³/min</td>
<td>ft³/min</td>
<td>Mgal/min (imp)</td>
</tr>
<tr>
<td>dm³/h</td>
<td>ft³/h</td>
<td>Mgal/h (imp)</td>
</tr>
<tr>
<td>dm³/d</td>
<td>ft³/d</td>
<td>Mgal/d (imp)</td>
</tr>
<tr>
<td>m³/s</td>
<td>fl oz/s (us)</td>
<td>bbl/s (imp;oil)</td>
</tr>
<tr>
<td>m³/min</td>
<td>fl oz/min (us)</td>
<td>bbl/min (imp;oil)</td>
</tr>
<tr>
<td>m³/h</td>
<td>fl oz/h (us)</td>
<td>bbl/h (imp;oil)</td>
</tr>
<tr>
<td>m³/d</td>
<td>fl oz/d (us)</td>
<td>bbl/d (imp;oil)</td>
</tr>
<tr>
<td>ml/s</td>
<td>gal/s (us)</td>
<td></td>
</tr>
<tr>
<td>ml/min</td>
<td>gal/min (us)</td>
<td></td>
</tr>
<tr>
<td>ml/h</td>
<td>gal/h (us)</td>
<td></td>
</tr>
<tr>
<td>ml/d</td>
<td>gal/d (us)</td>
<td></td>
</tr>
<tr>
<td>l/s</td>
<td>kgal/s (us)</td>
<td></td>
</tr>
<tr>
<td>l/min</td>
<td>kgal/min (us)</td>
<td></td>
</tr>
<tr>
<td>l/h</td>
<td>kgal/h (us)</td>
<td></td>
</tr>
<tr>
<td>l/d</td>
<td>kgal/d (us)</td>
<td></td>
</tr>
<tr>
<td>hl/s</td>
<td>Mgal/s (us)</td>
<td></td>
</tr>
<tr>
<td>hl/min</td>
<td>Mgal/min (us)</td>
<td></td>
</tr>
<tr>
<td>hl/h</td>
<td>Mgal/h (us)</td>
<td></td>
</tr>
<tr>
<td>hl/d</td>
<td>Mgal/d (us)</td>
<td></td>
</tr>
<tr>
<td>Ml/s</td>
<td>bbl/s (us;oil)</td>
<td></td>
</tr>
<tr>
<td>Ml/min</td>
<td>bbl/min (us;oil)</td>
<td></td>
</tr>
<tr>
<td>Ml/h</td>
<td>bbl/h (us;oil)</td>
<td></td>
</tr>
<tr>
<td>Ml/d</td>
<td>bbl/d (us;oil)</td>
<td></td>
</tr>
</tbody>
</table>

or
US units
- bbl/s (us;liq.)*
- bbl/min (us;liq.)*
- bbl/h (us;liq.)*
- bbl/d (us;liq.)*
- bbl/s (us;beer)*
- bbl/min (us;beer)*
- bbl/h (us;beer)*
- bbl/d (us;beer)*

Imperial units
- bbl/s (imp;beer)*
- bbl/min (imp;beer)*
- bbl/h (imp;beer)*
- bbl/d (imp;beer)*

* Visibility depends on order options or device settings

Factory setting

Country-specific:
- l/h (DN > 150 (6'): m³/h)
- gal/min (us)

Additional information

Result

The selected unit applies for:

Volume flow parameter (→ 47)

Selection

For an explanation of the abbreviated units: → 279

Volume unit

Navigation

Expert → Sensor → System units → Volume unit (0563)

Description

Use this function to select the unit for the volume.

Selection

SI units
- cm³
- dm³
- m³
- ml
- l
- hl
- Ml Mega

US units
- af
- ft³
- fl oz (us)
- gal (us)
- kgal (us)
- Mgal (us)
- bbl (us;oil)
- bbl (us;tank)

Imperial units
- gal (imp)
- Mgal (imp)
- bbl (imp;oil)

or

US units
- bbl (us;liq.)*
- bbl (us;beer)*

Imperial units
- bbl (imp;beer)*

* Visibility depends on order options or device settings

Factory setting

Country-specific:
- l (DN > 150 (6'): m³)
- gal (us)
Additional information

Selection

For an explanation of the abbreviated units: → 279

Corr. vol. unit

Navigation

Expert → Sensor → System units → Corr. vol. unit (0575)

Description

Use this function to select the unit for the corrected volume.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
<th>Imperial units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nl</td>
<td>Sft³</td>
<td>Sgal (imp)</td>
</tr>
<tr>
<td>Nl/min</td>
<td>Sft³/min</td>
<td>Sgal/min (imp)</td>
</tr>
<tr>
<td>Nl/h</td>
<td>Sft³/h</td>
<td>Sgal/h (imp)</td>
</tr>
<tr>
<td>Nl/d</td>
<td>Sft³/d</td>
<td>Sgal/d (imp)</td>
</tr>
<tr>
<td>Nm³/s</td>
<td>Sgal/s (us)</td>
<td></td>
</tr>
<tr>
<td>Nm³/min</td>
<td>Sgal/min (us)</td>
<td></td>
</tr>
<tr>
<td>Nm³/h</td>
<td>Sgal/h (us)</td>
<td></td>
</tr>
<tr>
<td>Nm³/d</td>
<td>Sgal/d (us)</td>
<td></td>
</tr>
<tr>
<td>Sm³/s</td>
<td>Sbbl/s (us;liq.)</td>
<td></td>
</tr>
<tr>
<td>Sm³/min</td>
<td>Sbbl/min (us;liq.)</td>
<td></td>
</tr>
<tr>
<td>Sm³/h</td>
<td>Sbbl/h (us;liq.)</td>
<td></td>
</tr>
<tr>
<td>Sm³/d</td>
<td>Sbbl/d (us;liq.)</td>
<td></td>
</tr>
</tbody>
</table>

Factory setting

Country-specific:
- Nl (DN > 150 (6’): Nm³)
- Sft³

Additional information

Result

The selected unit applies for:
Correct. vol. flow parameter (→ 48)

Selection

For an explanation of the abbreviated units: → 279

Corr. volflow unit

Navigation

Expert → Sensor → System units → Corr. volflow unit (0558)

Description

Use this function to select the unit for the corrected volume flow.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
<th>Imperial units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nl/s</td>
<td>Sft³/s</td>
<td>Sgal/s (imp)</td>
</tr>
<tr>
<td>Nl/min</td>
<td>Sft³/min</td>
<td>Sgal/min (imp)</td>
</tr>
<tr>
<td>Nl/h</td>
<td>Sft³/h</td>
<td>Sgal/h (imp)</td>
</tr>
<tr>
<td>Nl/d</td>
<td>Sft³/d</td>
<td>Sgal/d (imp)</td>
</tr>
<tr>
<td>Nm³/s</td>
<td>Sgal/s (us)</td>
<td></td>
</tr>
<tr>
<td>Nm³/min</td>
<td>Sgal/min (us)</td>
<td></td>
</tr>
<tr>
<td>Nm³/h</td>
<td>Sgal/h (us)</td>
<td></td>
</tr>
<tr>
<td>Nm³/d</td>
<td>Sgal/d (us)</td>
<td></td>
</tr>
<tr>
<td>Sm³/s</td>
<td>Sbbl/s (us;liq.)</td>
<td></td>
</tr>
<tr>
<td>Sm³/min</td>
<td>Sbbl/min (us;liq.)</td>
<td></td>
</tr>
<tr>
<td>Sm³/h</td>
<td>Sbbl/h (us;liq.)</td>
<td></td>
</tr>
<tr>
<td>Sm³/d</td>
<td>Sbbl/d (us;liq.)</td>
<td></td>
</tr>
</tbody>
</table>

Factory setting

Country-specific:
- Nl/h (DN > 150 (6’): Nm³/h)
- Sft³/min

Additional information

Result

The selected unit applies for:
Correct. vol. flow parameter (→ 48)
Additional information

Selection

For an explanation of the abbreviated units: → 279

Density unit

Navigation

Expert → Sensor → System units → Density unit (0555)

Description

Use this function to select the unit for the density.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
<th>Imperial units</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/cm³</td>
<td>lb/ft³</td>
<td>lb/gal (imp)</td>
</tr>
<tr>
<td>g/m³</td>
<td>lb/gal (us)</td>
<td>lb/bbl (imp;oil)</td>
</tr>
<tr>
<td>g/ml</td>
<td>lb/bbl (us;oil)</td>
<td>lb/bbl (us;tank)</td>
</tr>
<tr>
<td>kg/l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kg/dm³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kg/m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD4°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD15°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD20°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SG4°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SG15°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SG20°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

or

US units

<table>
<thead>
<tr>
<th>SG60°F *</th>
<th>Other units</th>
</tr>
</thead>
<tbody>
<tr>
<td>"API *</td>
<td></td>
</tr>
</tbody>
</table>

* Visibility depends on order options or device settings

or

US units

<table>
<thead>
<tr>
<th>lb/bbl (us;liq.) *</th>
<th>Imperial units</th>
</tr>
</thead>
<tbody>
<tr>
<td>lb/bbl (imp;beer) *</td>
<td></td>
</tr>
</tbody>
</table>

* Visibility depends on order options or device settings

Factory setting

Country-specific:

- kg/l
- lb/ft³
Additional information

Result

The selected unit applies for:
- **Density setpt 1** parameter
- **Density setpt 2** parameter
- **Density** parameter (→ 48)

Selection

- **SD** = specific density
 The specific density is the ratio of the medium density to the water density at a water temperature of +4 °C (+39 °F), +15 °C (+59 °F), +20 °C (+68 °F).
- **SG** = specific gravity
 The specific gravity is the ratio of the medium density to the water density at a water temperature of +4 °C (+39 °F), +15 °C (+59 °F), +20 °C (+68 °F).

For an explanation of the abbreviated units: → 279

Ref. dens. unit

Navigation

Expert → Sensor → System units → Ref. dens. unit (0556)

Description

Use this function to select the unit for the reference density.

Selection

SI units
- kg/Nm³
- kg/Nl
- g/Scm³
- kg/Sm³
- RD15°C
- RD20°C

US units
- lb/Sft³
- RD60°F

Other units
- °APIbase

Factory setting

Country-dependent
- kg/Nl
- lb/Sft³

Additional information

Result

The selected unit applies for:
- **Ext. ref. density** parameter (→ 82)
- **Fix ref. density** parameter (→ 82)
- **Ref. density** parameter (→ 48)

Selection

For an explanation of the abbreviated units: → 279

Temperature unit

Navigation

Expert → Sensor → System units → Temperature unit (0557)

Description

Use this function to select the unit for the temperature.
Selection

SI units US units
• °C • °F
• K • °R

Factory setting

Country-specific:
• °C
• °F

Additional information

Result

The selected unit applies for:
• Maximum value parameter (→ 244)
• Minimum value parameter (→ 244)
• Maximum value parameter (→ 245)
• Minimum value parameter (→ 245)
• Maximum value parameter (→ 246)
• Minimum value parameter (→ 246)
• External temp. parameter (→ 81)
• Ref. temperature parameter (6222)
• Temperature parameter (→ 49)
• Ref. temperature parameter (→ 83)

Selection

For an explanation of the abbreviated units: → 279

Pressure unit

Navigation

Expert → Sensor → System units → Pressure unit (0564)

Description

Use this function to select the unit for the pipe pressure.

Selection

SI units US units
• Pa a • psi a
• kPa a • psi g
• MPa a
• bar
• Pa g
• kPa g
• MPa g
• bar g

Factory setting

Country-specific:
• bar a
• psi a
Description of device parameters

Proline Promass 300 PROFIBUS PA

Additional information

Result

The unit is taken from:
- **Pressure value** parameter (→ 79)
- **External press.** parameter (→ 80)
- **Pressure value** parameter (→ 49)

Selection

For an explanation of the abbreviated units: → 279

Date/time format

Navigation

Expert → Sensor → System units → Date/time format (2812)

Description

Use this function to select the desired time format for calibration history.

Selection

- dd.mm.yy hh:mm
- dd.mm.yy am/pm
- mm/dd/yy hh:mm
- mm/dd/yy am/pm

Factory setting

dd.mm.yy hh:mm

Additional information

Selection

For an explanation of the abbreviated units: → 279

3.2.3 "Process param." submenu

Navigation

- Process param.

 - Flow damping (1802) → 69
 - Density damping (1803) → 69
 - Temp. damping (1822) → 70
 - Flow override (1839) → 70
 - Low flow cut off → 71
 - Partial pipe det → 74

Flow damping

Navigation

[Expert → Sensor → Process param. → Flow damping (1802)]

Description

Use this function to enter a time constant for flow damping (PT1 element). Reduction of the variability of the flow measured value (in relation to interference). For this purpose, the depth of the flow filter is adjusted: when the filter setting increases, the reaction time of the device also increases.

User entry

0 to 100.0 s

Factory setting

0 s

Additional information

Description

The damping is performed by a PT1 element.

User entry

- Value = 0: no damping
- Value > 0: damping is increased

Damping is switched off if 0 is entered (factory setting).

Result

The damping affects the following variables of the device:

- Outputs
- Low flow cut off → 71
- Totalizers → 211

Density damping

Navigation

[Expert → Sensor → Process param. → Density damping (1803)]

Description

Use this function to enter a time constant for the damping (PT1 element) of the density measured value.

User entry

0 to 999.9 s

Factory setting

0 s

2) Proportional behavior with first-order lag
Additional information

Description

1 The damping is performed by a PT1 element 3).

User entry

- Value = 0: no damping
- Value > 0: damping is increased

Damping is switched off if 0 is entered (factory setting).

Temp. damping

Navigation

Description

Use this function to enter a time constant for the damping (PT1 element) of the temperature measured value.

User entry

0 to 999.9 s

Factory setting

0 s

Additional information

Description

1 The damping is performed by a PT1 element 4).

User entry

- Value = 0: no damping
- Value > 0: damping is increased

Damping is switched off if 0 is entered (factory setting).

Flow override

Navigation

Description

Use this function to select whether to interrupt the evaluation of measured values. This is useful for the cleaning processes of a pipeline, for example.

Selection

- Off
- On

Factory setting

Off

3) Proportional behavior with first-order lag
4) Proportional behavior with first-order lag
Additional information

Description

Flow override is active
- The diagnostic message diagnostic message **C453 Flow override** is displayed.
- Output values
 - Temperature: continues to be output
 - Totalizers 1-3: stop being totalized

The **Flow override** option can also be activated in the **Status input** submenu: **Assign stat.inp.** parameter (→ 99).

"Low flow cut off" submenu

Navigation

eldom → Sensor → Process param. → Low flow cut off

Assign variable

Navigation

dlemn → Sensor → Process param. → Low flow cut off → Assign variable (1837)

Description

Use this function to select the process variable for low flow cutoff detection.

Selection

- Off
- Mass flow
- Volume flow
- Correct.vol.flow

Factory setting

Mass flow

On value

Navigation

eldom → Sensor → Process param. → Low flow cut off → On value (1805)

Prerequisite

A process variable is selected in the **Assign variable** parameter (→ 71).

* Visibility depends on order options or device settings
Description
Use this function to enter a switch-on value for low flow cut off. Low flow cut off is activated if the value entered is not equal to 0 → 72.

User entry
Positive floating-point number

Factory setting
Depends on country and nominal diameter → 274

Additional information
Dependency
The unit depends on the process variable selected in the Assign variable parameter (→ 71).

Off value

Navigation
Expert → Sensor → Process param. → Low flow cut off → Off value (1804)

Prerequisite
A process variable is selected in the Assign variable parameter (→ 71).

Description
Use this function to enter a switch-off value for low flow cut off. The off value is entered as a positive hysteresis from the on value → 71.

User entry
0 to 100.0 %

Factory setting
50 %

Additional information
Example

Pres. shock sup.

Navigation

Prerequisite
A process variable is selected in the Assign variable parameter (→ 71).
Use this function to enter the time interval for signal suppression (= active pressure shock suppression).

User entry

0 to 100 s

Factory setting

0 s

Additional information

Description

Pressure shock suppression is enabled

- Prerequisite:
 - Flow rate < on-value of low flow cut off
 or
 - Changing the flow direction

- Output values
 - Flow displayed: 0
 - Totalizer: the totalizers are pegged at the last correct value

Pressure shock suppression is disabled

- Prerequisite: the time interval set in this function has elapsed.
- If the flow also exceeds the switch-off value for low flow cut off, the device starts processing the current flow value again and displays it.

Example

When closing a valve, momentarily strong fluid movements may occur in the pipeline, which are registered by the measuring system. These totalized flow values lead to a false totalizer status, particularly during batching processes.

Legend

- A: Drip
- B: Pressure shock
- C: Pressure shock suppression active as specified by the time entered
- D: Pressure shock suppression inactive
- 1: Valve closes
- 2: Flow falls below the on-value of the low flow cut off: pressure shock suppression is activated
- 3: The time entered has elapsed: pressure shock suppression is deactivated
- 4: The actual flow value is now displayed and output
- 5: On-value for low flow cut off
- 6: Off-value for low flow cut off
"Partial pipe det" submenu

Navigation

Expert → Sensor → Process param. → Partial pipe det

Assign variable

Navigation

Description

Use this function to select a process variable to detect empty or partially filled measuring tubes.

For gas measurement: Deactivate monitoring due to low gas density.

Selection

- Off
- Density
- Ref.density

Factory setting

Off

Low value

Navigation

Expert → Sensor → Process param. → Partial pipe det → Low value (1861)

Prerequisite

A process variable is selected in the **Assign variable** parameter (→ 74).

Description

Use this function to enter a lower limit value to enable detection of empty or partially filled measuring tubes. If the measured density falls below this value, monitoring is enabled.

User entry

Signed floating-point number

Factory setting

200
Additional information

User entry

The lower limit value must be less than the upper limit value defined in the **High value** parameter (→ 75).

The unit depends on the process variable selected in the **Assign variable** parameter (→ 74).

Limit value

If the displayed value is outside the limit value, the measuring device displays the diagnostic message **S862 Partly filled**.

High value

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>A process variable is selected in the Assign variable parameter (→ 74).</td>
</tr>
<tr>
<td>Description</td>
<td>Use this function to enter an upper limit value to enable detection of empty or partially filled measuring tubes. If the measured density exceeds this value, detection is enabled.</td>
</tr>
<tr>
<td>User entry</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Factory setting</td>
<td>6 000</td>
</tr>
<tr>
<td>Additional information</td>
<td>User entry</td>
</tr>
<tr>
<td></td>
<td>The upper limit value must be greater than the lower limit value defined in the Low value parameter (→ 74).</td>
</tr>
<tr>
<td></td>
<td>The unit depends on the process variable selected in the Assign variable parameter (→ 74).</td>
</tr>
<tr>
<td></td>
<td>Limit value</td>
</tr>
<tr>
<td></td>
<td>If the displayed value is outside the limit value, the measuring device displays the diagnostic message S862 Partly filled.</td>
</tr>
</tbody>
</table>

Response time

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>A process variable is selected in the Assign variable parameter (→ 74).</td>
</tr>
<tr>
<td>Description</td>
<td>Use this function to enter the minimum length of time (debouncing time) the signal must be present for the diagnostic message S862 Partly filled to be triggered if the measuring pipe is empty or partially full.</td>
</tr>
<tr>
<td>User entry</td>
<td>0 to 100 s</td>
</tr>
<tr>
<td>Factory setting</td>
<td>1 s</td>
</tr>
</tbody>
</table>
Max. damping

Navigation
Expert → Sensor → Process param. → Partial pipe det → Max. damping (6040)

Description
Use this function to enter a damping value to enable detection of empty or partially filled measuring tubes.

User entry
Positive floating-point number

Factory setting
0

Additional information
Description
If oscillation damping exceeds the specified value, the measuring device presumes that the pipe is partially filled and the flow signal is set to 0. The measuring device displays the diagnostic message S862 Partly filled. In the case of non-homogeneous media or air pockets, the damping of the measuring tubes increases.

User entry
- Damping is disabled if 0 is entered (factory setting).
- Damping is enabled if the value entered is greater than 0.
- The value entered depends on application-specific influence variables, such as the medium, nominal diameter, sensor etc.

Example
- If the pipe is filled normally the value of the oscillation damping is 500.
- If the pipe is partially filled the value of the oscillation damping is > 5000.
- A practical damping value would then be 2000: enter 2000 as the value.

3.2.4 "Measurement mode" submenu

Navigation
Expert → Sensor → Measurement mode

Measurement mode

Select medium (6062) → 77
Select gas type (6074) → 77
Sound velocity (6147) → 78
Temp. coeff. SV (6181) → 78
Select medium

Navigation
Expert → Sensor → Measurement mode → Select medium (6062)

Description
Use this function to select the type of medium.

Selection
- Liquid
- Gas

Factory setting
Liquid

Select gas type

Navigation
Expert → Sensor → Measurement mode → Select gas type (6074)

Prerequisite
The Gas option is selected in the Select medium parameter (→ 77).

Description
Use this function to select the type of gas for the measuring application.

Selection
- Air
- Ammonia NH3
- Argon Ar
- Sulf. hex.fl.SF6
- Oxygen O2
- Ozone O3
- Nitro. ox. NOx
- Nitrogen N2
- Nitrous ox. N2O
- Methane CH4
- Hydrogen H2
- Helium He
- Hydrg.chlor.HCl
- Hydrog.sulf. H2S
- Ethylene C2H4
- Carbon diox. CO2
- Carbon monox. CO
- Chlorine Cl2
- Butane C4H10
- Propane C3H8
- Propylene C3H6
- Ethane C2H6
- Others

Factory setting
Methane CH4

Additional information
Description
The gas type needs to be selected so that it is possible to comply with accuracy specifications in gas applications.
Sound velocity

Navigation

Expert → Sensor → Measurement mode → Sound velocity (6147)

Prerequisite

In the Select gas type parameter (→ 77), the Others option is selected.

Description

Use this function to enter the sound velocity of the gas at 0 °C (+32 °F).

User entry

1 to 99999.9999 m/s

Factory setting

415.0 m/s

Temp. coeff. SV

Navigation

Expert → Sensor → Measurement mode → Temp. coeff. SV (6181)

Prerequisite

The Others option is selected in the Select gas type parameter (→ 77).

Description

Use this function to enter a temperature coefficient for the sound velocity of the gas.

User entry

Positive floating-point number

Factory setting

0 (m/s)/K

3.2.5 "External comp." submenu

Navigation

- Pressure compen. (6130) → 79
- Pressure value (6059) → 79
- External press. (6209) → 80
- Temp_corr.source (6184) → 80
- External temp. (6080) → 81
Pressure compen.

Navigation

Expert → Sensor → External comp. → Pressure compen. (6130)

Description

Use this function to select the type of pressure compensation.

Selection

- Off
- Fixed value
- External value
- Current input 1 *

Factory setting

Off

Additional information

* Selection
 - Fixed value
 A fixed pressure value is used for compensation: **Pressure value** parameter (→ 79)
 - External value
 The pressure value read in via PROFIBUS PA is used for compensation.
 - Current input 1
 The pressure value read in via the current input is used for compensation.

For more information, see the 'Cyclic data transmission' section of the Operating Instructions

Pressure value

Navigation

Expert → Sensor → External comp. → Pressure value (6059)

Prerequisite

The Fixed value option or the Current input 1...n option is selected in the Pressure compen. parameter (→ 79).

Description

Use this function to enter a value for the process pressure that is used for pressure correction.

User entry

Positive floating-point number

Factory setting

0 bar

Additional information

* User entry
 - The unit is taken from the Pressure unit parameter (→ 67)

* Visibility depends on order options or device settings
External press.

Navigation

Prerequisite
The **Fixed value** option or the **Current input 1…n** option is selected in the **Pressure compen**. parameter (→ 79).

Description
Use this function to enter an external pressure value.

User interface
Positive floating-point number

Factory setting
0 bar

Additional information
User entry

The unit is taken from the **Pressure unit** parameter (→ 67)

Temp.corr.source

Navigation
Expert → Sensor → External comp. → Temp.corr.source (6184)

Description
Use this function to select the temperature mode.

Selection

- **Internal value**
- **External value**
- **Current input 1** *

Factory setting
Internal value

Additional information
Description

Use this function to select the type of temperature compensation.

Selection

All the options available for selection are used for measured value compensation.

- **Internal value**
The temperature value measured internally (temperature sensor of the measuring sensor) is used for compensation.

- **External value**
The temperature value read in via PROFIBUS PA is used for compensation.

- **Current input 1**
Option Visibility depends on order options or device settings
The temperature value read in via the current input is used for compensation.

For more information, see the "Cyclic data transmission" section of the Operating Instructions

* Visibility depends on order options or device settings
External temp.

Navigation

Expert → Sensor → External comp. → External temp. (6080)

Prerequisite

The External value option or the Current input 1...n option is selected in the Temperature mode parameter (→ 80).

Description

Use this function to enter the external temperature.

User interface

-273.15 to 99 999 °C

Factory setting

Country-specific:
- 0 °C
- +32 °F

Additional information

Description

The unit is taken from the Temperature unit parameter (→ 66)

3.2.6 "Calculated value" submenu

Navigation

Expert → Sensor → Calculated value

"Corr. vol.flow." submenu

Navigation

Corr. vol.flow. (1812)	→ 82
Ext. ref. density (6198)	→ 82
Fix ref. density (1814)	→ 82
Ref. temperature (1816)	→ 83
Linear exp coeff (1817)	→ 83
Square exp coeff (1818)	→ 84
Corr. vol.flow.

Navigation

Description
Use this function to select the reference density for calculating the corrected volume flow.

Selection
- Fix ref. density
- Calc ref density
- Ext. ref. density
- Current input 1 *

Factory setting
Calc ref density

Additional information

The **Ref. dens API 53** option is suitable only for applications involving LPG 5), where the flow rate is measured on the basis of the corrected volume flow.

Selecting this option means that the reference density is used, taking into account the values in table 53 E of API MPMS section 11.2. Temperature measurement (measured internally or read into the device from an external source) and density measurement take place during operation while the medium is flowing. The mass flow is divided by the reference density to give the corrected volume flow and is issued as an output signal.

Ext. ref.density

Navigation
Expert → Sensor → Calculated value → Corr. vol.flow. → Ext. ref.density (6198)

Description
Displays the reference density which is read in externally, e.g. via the current input.

User interface
Floating point number with sign

Additional information

Dependency

The unit is taken from the **Ref. dens. unit** parameter (→ 66)

Fix ref. density

Navigation
Expert → Sensor → Calculated value → Corr. vol.flow. → Fix ref. density (1814)

Prerequisite
The **Fix ref. density** option is selected in the **Corr. vol.flow.** parameter (→ 82) parameter.

Description
Use this function to enter a fixed value for the reference density.

User entry
Positive floating-point number

* Visibility depends on order options or device settings
5) liquefied petroleum gas
Factory setting 1 kg/Nl

Additional information
- **Dependency**
 - The unit is taken from the **Ref. dens. unit** parameter (→ 66)

Ref. temperature

Navigation

Prerequisite
The **Calc ref density** option is selected in the **Corr. vol.flow.** parameter (→ 82) parameter.

Description
Use this function to enter a reference temperature for calculating the reference density.

User entry
-273.15 to 99 999 °C

Factory setting
Country-specific:
- +20 °C
- +68 °F

Additional information
- **Dependency**
 - The unit is taken from the **Temperature unit** parameter (→ 66)

Reference density calculation

\[\rho_n = \rho \cdot (1 + \alpha \cdot \Delta t + \beta \cdot \Delta t^2) \]

- \(\rho_n \): reference density
- \(\rho \): fluid density currently measured
- \(t \): fluid temperature currently measured
- \(t_N \): reference temperature at which the reference density is calculated (e.g. 20 °C)
- \(\Delta t \): \(t - t_N \)
- \(\alpha \): linear expansion coefficient of the fluid, unit = [1/K]; \(K = \) Kelvin
- \(\beta \): square expansion coefficient of the fluid, unit = [1/K^2]

Linear exp coeff

Navigation
Expert → Sensor → Calculated value → Corr. vol.flow. → Linear exp coeff (1817)

Prerequisite
The **Calc ref density** option is selected in the **Corr. vol.flow.** parameter (→ 82) parameter.

Description
Use this function to enter a linear, fluid-specific expansion coefficient for calculating the reference density.

User entry
Signed floating-point number
Square exp coeff

Navigation

Prerequisite

The **Calc ref density** option is selected in the **Corr. vol.flow.** parameter (→ 82) parameter.

Description

For fluid with a non-linear expansion pattern: use this function to enter a quadratic, fluid-specific expansion coefficient for calculating the reference density.

User entry

Signed floating-point number

Factory setting

0.0 1/K²

3.2.7 "Sensor adjustment" submenu

Navigation

- Install. direct. (1809) → 84
- Inst. angle roll (6282) → 85
- Inst. angle pitch (6236) → 85
- Zero point adj. → 86
- Variable adjust → 87

Install. direct.

Navigation

Expert → Sensor → Sensor adjustm. → Install. direct. (1809)

Description

Use this function to change the sign of the medium flow direction.

Selection

- In arrow direct.
- Against arrow

Factory setting

In arrow direct.
Additional information

Description

Before changing the sign: ascertain the actual direction of fluid flow with reference to the direction indicated by the arrow on the sensor nameplate.

Inst. angle roll

Navigation

Expert → Sensor → Sensor adjustm. → Inst. angle roll (6282)

Prerequisite

Available only with Promass Q.

Description

Use this function to enter the roll installation angle in degrees.

User entry

–180 to 180 °

Factory setting

0 °

Additional information

FIGURE: ROLL ANGLE

Roll angle

• The roll angle is the angle β from the vertical V to align the central axis Z of the transmitter.
• The roll angle can be between -180 to $+180$ °.

Inst. angle pitch

Navigation

Expert → Sensor → Sensor adjustm. → Inst. angle pitch (6236)

Prerequisite

Available only with Promass Q.

Description

Use this function to enter the installation angle pitch in degrees.

User entry

–180 to 180 °

Factory setting

0 °

Additional information

FIGURE: PITCH ANGLE

Pitch angle

• The pitch angle is the angle α from the horizontal H to align the central axis Z of the measuring device.
• The pitch angle can be between -90 to $+90$ °.
“Zero point adj.” submenu

- It is generally not necessary to perform zero point adjustment.
- However, this function may be needed in some applications with low flow and strict accuracy requirements.
- A zero point adjustment cannot increase repeatability.
- The following conditions should be met to perform a zero point adjustment successfully without the adjustment finishing in an error:
 - The real flow must be 0.
 - The pressure must be at least 15 psi g.
- The adjustment takes a maximum of 60 s. The more stable the conditions, the faster the adjustment is completed.
- This function can also be used to check the health of the measuring device.
 A healthy measuring device has a maximum zero point deviation of ±100 compared to the factory setting of the measuring device (calibration report).

Navigation

Description

Use this function to select the start of the zero point adjustment.

Observe conditions → 86.

Selection

- Cancel
- Busy *
- Zero adjust fail *
- Start *

Factory setting

Cancel

Additional information

Description

- Cancel
 If zero point adjustment has failed, select this option to cancel zero point adjustment.
- Busy
 Is displayed during zero point adjustment.
- Zero adjust fail
 Is displayed if zero point adjustment has failed.
- Start
 Select this option to start zero point adjustment.

* Visibility depends on order options or device settings
Progress

Navigation

Description
The progress of the process is indicated.

User interface
0 to 100 %

"Variable adjust" submenu

Navigation
Expert → Sensor → Sensor adjustm. → Variable adjust

Mass flow offset (1831) → 87
Mass flow factor (1832) → 88
Vol. flow offset (1841) → 88
Vol. flow factor (1846) → 88
Density offset (1848) → 89
Density factor (1849) → 89
Corr. vol offset (1866) → 89
Corr. vol factor (1867) → 90
Ref.dens. offset (1868) → 90
Ref.dens. factor (1869) → 90
Temp. offset (1870) → 91
Temp. factor (1871) → 91

Mass flow offset

Navigation

Description
Use this function to enter the zero point shift for the mass flow trim. The mass flow unit on which the shift is based is kg/s.
User entry
Signed floating-point number

Factory setting
0 kg/s

Additional information
Description
Corrected value = \((\text{factor} \times \text{value}) + \text{offset}\)

Mass flow factor

Navigation
Expert → Sensor → Sensor adjustm. → Variable adjust → Mass flow factor (1832)

Description
Use this function to enter a quantity factor (without time) for the mass flow. This multiplication factor is applied over the mass flow range.

User entry
Positive floating-point number

Factory setting
1

Additional information
Description
Corrected value = \((\text{factor} \times \text{value}) + \text{offset}\)

Vol. flow offset

Navigation

Description
Use this function to enter the zero point shift for the volume flow trim. The volume flow unit on which the shift is based is \(\text{m}^3/\text{s}\).

User entry
Signed floating-point number

Factory setting
0 m³/s

Additional information
Description
Corrected value = \((\text{factor} \times \text{value}) + \text{offset}\)

Vol. flow factor

Navigation

Description
Use this function to enter a quantity factor (without time) for the volume flow. This multiplication factor is applied over the volume flow range.

User entry
Positive floating-point number
Density offset

Navigation

Expert → Sensor → Sensor adjustm. → Variable adjust → Density offset (1848)

Description

Use this function to enter the zero point shift for the density trim. The density unit on which the shift is based is kg/m³.

User entry

Signed floating-point number

Factory setting

0 kg/m³

Additional information

Description

Corrected value = (factor × value) + offset

Density factor

Navigation

Expert → Sensor → Sensor adjustm. → Variable adjust → Density factor (1849)

Description

Use this function to enter a quantity factor for the density. This multiplication factor is applied over the density range.

User entry

Positive floating-point number

Factory setting

1

Additional information

Description

Corrected value = (factor × value) + offset

Corr. vol offset

Navigation

Description

Use this function to enter the zero point shift for the corrected volume flow trim. The corrected volume flow unit on which the shift is based is 1 Nm³/s.

User entry

Signed floating-point number

Factory setting

0 Nm³/s
Description of device parameters

Proline Promass 300 PROFIBUS PA

Corr. vol factor

Navigation

Description

Use this function to enter a quantity factor (without time) for the corrected volume flow. This multiplication factor is applied over the corrected volume flow range.

User entry

Positive floating-point number

Factory setting

1

Additional information

Corrected value = (factor × value) + offset

Ref.dens. offset

Navigation

Expert → Sensor → Sensor adjustm. → Variable adjust → Ref.dens. offset (1868)

Description

Use this parameter to enter the zero point shift for the reference density trim. The reference density unit on which the shift is based is 1 kg/Nm³.

User entry

Signed floating-point number

Factory setting

0 kg/Nm³

Additional information

Corrected value = (factor × value) + offset

Ref.dens. factor

Navigation

Expert → Sensor → Sensor adjustm. → Variable adjust → Ref.dens. factor (1869)

Description

Use this function to enter a quantity factor (without time) for the reference density. This multiplication factor is applied over the reference density range.

User entry

Positive floating-point number

Factory setting

1
Proline Promass 300 PROFIBUS PA

Additional information

Description

\[\text{Corrected value} = (\text{factor} \times \text{value}) + \text{offset} \]

Temp. offset

Navigation

Description

Use this function to enter the zero point shift for the temperature trim. The temperature unit on which the shift is based is K.

User entry

Signed floating-point number

Factory setting

0 K

Additional information

Description

\[\text{Corrected value} = (\text{factor} \times \text{value}) + \text{offset} \]

Temp. factor

Navigation

Description

Use this function to enter a quantity factor for the temperature. In each case, this factor refers to the temperature in K.

User entry

Positive floating-point number

Factory setting

1

Additional information

Description

\[\text{Corrected value} = (\text{factor} \times \text{value}) + \text{offset} \]

3.2.8 "Calibration" submenu

Navigation

Expert → Sensor → Calibration

Cal. factor (6025) → 92

Zero point (6195) → 92
Cal. factor

Navigation
Expert → Sensor → Calibration → Cal. factor (6025)

Description
Displays the current calibration factor for the sensor.

User interface
Signed floating-point number

Factory setting
Depends on nominal diameter and calibration.

Zero point

Navigation
Expert → Sensor → Calibration → Zero point (6195)

Description
Use this function to enter the zero point correction value for the sensor.

User entry
Signed floating-point number

Factory setting
Depends on nominal diameter and calibration.

Nominal diameter

Navigation
Expert → Sensor → Calibration → Nominal diameter (2807)

Description
Displays the nominal diameter of the sensor.

User interface
DNxx / x"

Factory setting
Depends on the size of the sensor

Additional information
Description
The value is also specified on the sensor nameplate.
C0 to 5

Navigation
Expert → Sensor → Calibration → C0 to 5 (6022)

Description
Displays the current density coefficients C0 to 5 of the sensor.

User interface
Signed floating-point number

Factory setting
0

3.3
"I/O configuration" submenu

Navigation
Expert → I/O config.

<table>
<thead>
<tr>
<th>I/O 1 to n terminals (3902–1 to n)</th>
<th>➔ 93</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O 1 to n info (3906–1 to n)</td>
<td>➔ 93</td>
</tr>
<tr>
<td>I/O 1 to n type (3901–1 to n)</td>
<td>➔ 94</td>
</tr>
<tr>
<td>Apply I/O config (3907)</td>
<td>➔ 94</td>
</tr>
<tr>
<td>Alteration code (2762)</td>
<td>➔ 95</td>
</tr>
</tbody>
</table>

I/O 1 to n terminals

Navigation
Expert → I/O config. → I/O 1 to n terminals (3902–1 to n)

Description
Displays the terminal numbers used by the I/O module.

User interface
- Not used
- 26-27 (I/O 1)
- 24-25 (I/O 2)

I/O 1 to n info

Navigation
Expert → I/O config. → I/O 1 to n info (3906–1 to n)

Description
Displays information about the plugged in I/O module.
User interface

- Not plugged
- Invalid
- Not configurable
- Configurable
- Profibus PA

Additional information

Not plugged option
The I/O module is not plugged in.

Invalid option
The I/O module is not plugged correctly.

Not configurable option
The I/O module is not configurable.

Configurable option
The I/O module is configurable.

Profibus PA option
The I/O module is configured for PROFIBUS PA.

I/O 1 to n type

Navigation

Expert → I/O config. → I/O 1 to n type (3901–1 to n)

Prerequisite
For the following order code:
"Output; input 2", option D "Configurable I/O initial setting off"

Description
Use this function to select the I/O module type for the configuration of the I/O module.

Selection
- Off
- Curr.output *
- Current input *
- Status input *
- PFS output *

Factory setting
Off

Apply I/O config

Navigation

Expert → I/O config. → Apply I/O config (3907)

Description
Use this function to activate the newly configured I/O module type.

Selection
- No
- Yes

* Visibility depends on order options or device settings
Factory setting No

Alteration code

Navigation ★★★ Expert → I/O config. → Alteration code (2762)

Description Use this function to enter the ordered activation code to activate the I/O configuration change.

User entry Positive integer

Factory setting 0

Additional information Description
The I/O configuration is changed in the I/O type parameter (→ 94).

3.4 "Input" submenu

Navigation ★★★ Expert → Input

3.4.1 "Current input 1 to n" submenu

Navigation ★★★ Expert → Input → Current input 1 to n

Current input 1 to n (1611–1 to n) → 95

Status input 1 to n (1610–1 to n) → 98

Terminal no. (1611–1 to n) → 96

Signal mode (1610–1 to n) → 96

Current span (1605–1 to n) → 96

0/4 mA value (1606–1 to n) → 97

20 mA value (1607–1 to n) → 97
Terminal no.

Navigation

Expert → Input → Current input 1 to n → Terminal no. (1611–1 to n)

Description

Displays the terminal numbers used by the current input module.

User interface

- Not used
- 24-25 (I/O 2)

Additional information

Not used option

The current input module does not use any terminal numbers.

Signal mode

Navigation

Expert → Input → Current input 1 to n → Signal mode (1610–1 to n)

Prerequisite

The measuring device is **not** approved for use in the hazardous area with type of protection Ex-i.

Description

Use this function to select the signal mode for the current input.

Selection

- Passive
- Active*

Factory setting

Active

Current span

Navigation

Expert → Input → Current input 1 to n → Current span (1605–1 to n)

Description

Use this function to select the current range for the process value output and the upper and lower level for signal on alarm.

Selection

- 4...20 mA
- 4...20 mA NAMUR
- 4...20 mA US
- 0...20 mA

* Visibility depends on order options or device settings
Description of device parameters

Factory setting
Country-specific:
- 4...20 mA NAMUR
- 4...20 mA US

Additional information
Examples

Sample values for the current range: **Current span parameter** (→ 103)

0/4 mA value

Navigation
Expert → Input → Current input 1 to n → 0/4 mA value (1606–1 to n)

Description
Use this function to enter a value for the 4 mA current.

User entry
Signed floating-point number

Factory setting
0

Additional information
Current input behavior

The current input behaves differently depending on the settings configured in the following parameters:
- Current span (→ 96)
- Failure mode (→ 98)

Configuration examples

Pay attention to the configuration examples for **4 mA value** parameter (→ 105).

20 mA value

Navigation
Expert → Input → Current input 1 to n → 20 mA value (1607–1 to n)

Description
Use this function to enter a value for the 20 mA current.

User entry
Signed floating-point number

Factory setting
Depends on country and nominal diameter

Additional information
Configuration examples

Pay attention to the configuration examples for **4 mA value** parameter (→ 105).
Failure mode

Navigation

Expert → Input → Current input 1 to n → Failure mode (1601–1 to n)

Description

Use this function to select the input behavior when measuring a current outside the configured **Current span** parameter (→ 96).

Selection

- Alarm
- Last valid value
- Defined value

Factory setting

Alarm

Additional information

Options

- Alarm

 An error message is set.
- Last valid value

 The last valid measured value is used.
- Defined value

 A user-defined measured value is used (**Failure value** parameter (→ 98)).

Failure value

Navigation

Expert → Input → Current input 1 to n → Failure value (1602–1 to n)

Prerequisite

In the **Failure mode** parameter (→ 98), the **Defined value** option is selected.

Description

Use this function to enter the value that the device uses if it does not receive an input signal from the external device, or if the input signal is invalid.

User entry

Signed floating-point number

Factory setting

0

3.4.2 "Status input 1 to n" submenu

Navigation

Expert → Input → Status input 1 to n
Terminal no.

Navigation

Expert → Input → Status input 1 to n → Terminal no. (1358–1 to n)

Description

Displays the terminal numbers used by the status input module.

User interface

- Not used
- 24–25 (I/O 2)

Additional information

"Not used" option

The status input module does not use any terminal numbers.

Assign stat.inp.

Navigation

Expert → Input → Status input 1 to n → Assign stat.inp. (1352–1 to n)

Description

Use this function to select the function for the status input.

Selection

- Off
- Reset totaliz. 1
- Reset totaliz. 2
- Reset totaliz. 3
- Reset all tot.
- Flow override

Factory setting

Off

Additional information

Selection

- Off
 The status input is switched off.
- Reset totaliz. 1...3
 The individual totalizers are reset.
- Reset all tot.
 All totalizers are reset.
- Flow override
 The Flow override (→ 70) is activated.

Note on the Flow override (→ 70):

- The Flow override (→ 70) is enabled as long as the level is at the status input (continuous signal).
- All other assignments react to a change in level (pulse) at the status input.
Val.stat.inp.

Navigation

Expert → Input → Status input 1 to n → Val.stat.inp. (1353 – 1 to n)

Description

Displays the current input signal level.

User interface

- High
- Low

Active level

Navigation

Expert → Input → Status input 1 to n → Active level (1351 – 1 to n)

Description

Use this function to determine the input signal level at which the assigned function is activated.

Selection

- High
- Low

Factory setting

High

Response time

Navigation

Expert → Input → Status input 1 to n → Response time (1354 – 1 to n)

Description

Use this function to enter the minimum time period for which the input signal level must be present before the selected function is activated.

User entry

5 to 200 ms

Factory setting

50 ms

3.5 "Output" submenu

Navigation

Expert → Output
3.5.1 "Current output 1 to n" submenu

Navigation
Expert → Output → Curr.output 1 to n

<table>
<thead>
<tr>
<th>Terminal no. (0379–1 to n)</th>
<th>→ 101</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal mode (0377–1 to n)</td>
<td>→ 102</td>
</tr>
<tr>
<td>Assign curr. 1 to n (0359–1 to n)</td>
<td>→ 102</td>
</tr>
<tr>
<td>Current span (0353–1 to n)</td>
<td>→ 103</td>
</tr>
<tr>
<td>Fixed current (0365–1 to n)</td>
<td>→ 104</td>
</tr>
<tr>
<td>0/4 mA value (0367–1 to n)</td>
<td>→ 105</td>
</tr>
<tr>
<td>20 mA value (0372–1 to n)</td>
<td>→ 106</td>
</tr>
<tr>
<td>Measuring mode (0351–1 to n)</td>
<td>→ 107</td>
</tr>
<tr>
<td>Damping out. 1 to n (0363–1 to n)</td>
<td>→ 112</td>
</tr>
<tr>
<td>Response time (0378–1 to n)</td>
<td>→ 112</td>
</tr>
<tr>
<td>Failure mode (0364–1 to n)</td>
<td>→ 113</td>
</tr>
<tr>
<td>Failure current (0352–1 to n)</td>
<td>→ 114</td>
</tr>
<tr>
<td>Output curr. 1 to n (0361–1 to n)</td>
<td>→ 115</td>
</tr>
<tr>
<td>Measur. curr. 1 to n (0366–1 to n)</td>
<td>→ 115</td>
</tr>
</tbody>
</table>

Terminal no.

Navigation
Expert → Output → Curr.output 1 to n → Terminal no. (0379–1 to n)

Description
Displays the terminal numbers used by the current output module.

User interface
- Not used
- 24–25 (I/O 2)

Additional information
Not used" option
The current output module does not use any terminal numbers.
Description of device parameters

Proline Promass 300 PROFIBUS PA

Signal mode

Navigation

![Navigation](Expert → Output → Curr.output 1 to n → Signal mode (0377–1 to n))

Description

Use this function to select the signal mode for the current output.

Selection

- Passive *
- Active*

Factory setting

Active

Assign curr. 1 to n

Navigation

![Navigation](Expert → Output → Curr.output 1 to n → Assign curr. 1 to n (0359–1 to n))

Description

Use this function to select a process variable for the current output.

- Detailed description of the options **Oscil. frequency**, **Oscil. amplitude**, **Oscil. damping** and **Signal asymmetry: Value 1 display** parameter (→ ![Detail](18))

Selection

- Off *
- Mass flow
- Volume flow
- Correct.vol.flow *
- Target mass flow *
- Carrier mass fl.*
- Target vol. flow *
- Carrier vol. fl.*
- Targ.corr.vol.fl *
- Carr.corr.vol.fl *
- Density
- Ref.density *
- Ref.dens.altern.
- GSV flow *
- GSVa *
- NSV flow *
- NSVa *
- S&W volume flow *
- Water cut *
- Oil density *
- Water density *
- Oil mass flow *
- Water mass flow *
- Oil volume flow *
- Water vol. flow *
- Oil corr.vol.fl *
- Water corr.v.fl *
- Concentration *
- Dynam. viscosity *
- Kinematic visc.
- TempCompDynVisc *
- TempCompKinVisc *

* Visibility depends on order options or device settings
Proline Promass 300 PROFIBUS PA

Description of device parameters

- Temperature
- Carr. pipe temp. *
- Electronic temp.
- Osc. freq. 0
- Osc. freq. 1 *
- Osc. ampl. 0 *
- Osc. ampl. 1 *
- Freq. fluct. 0 *
- Freq. fluct. 1 *
- Osc. damping 0 *
- Osc. damping 1 *
- Osc.damp.fluct 0 *
- Osc.damp.fluct 1 *
- Signal asymmetry *
- Exc. current 0 *
- Exc. current 1 *
- HBSI *
- Pressure

Factory setting

Mass flow

Current span

Navigation

Expert → Output → Curr.output 1 to n → Current span (0353–1 to n)

Description

Use this function to select the current range for the process value output and the upper and lower level for signal on alarm.

Selection

- 4...20 mA NAMUR
- 4...20 mA US
- 4...20 mA
- 0...20 mA
- Fixed current

Factory setting

Country-specific:
- 4...20 mA NAMUR
- 4...20 mA US

* Visibility depends on order options or device settings
Additional information

Description

- In the event of a device alarm, the current output adopts the value specified in the **Failure mode** parameter (→ 113).
- If the measured value is outside the measuring range, the diagnostic message **S441 Curr.output 1 to n** is displayed.
- The measuring range is specified via the **0/4 mA value** parameter (→ 105) and **20 mA value** parameter (→ 106).

"Fixed current" option

The current value is set via the **Fixed current** parameter (→ 104).

Example

Shows the relationship between the current span for the output of the process variable and the lower and upper alarm levels:

![Diagram showing current values](image)

- **1** Current span for process value
- **2** Lower level for signal on alarm
- **3** Upper level for signal on alarm

Selection

<table>
<thead>
<tr>
<th>Options</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4...20 mA NAMUR</td>
<td>3.8 to 20.5 mA</td>
<td>< 3.6 mA</td>
<td>> 21.95 mA</td>
</tr>
<tr>
<td>4...20 mA US</td>
<td>3.9 to 20.8 mA</td>
<td>< 3.6 mA</td>
<td>> 21.95 mA</td>
</tr>
<tr>
<td>4...20 mA</td>
<td>4 to 20.5 mA</td>
<td>< 3.6 mA</td>
<td>> 21.95 mA</td>
</tr>
<tr>
<td>0...20 mA</td>
<td>0 to 20.5 mA</td>
<td>< 0 mA</td>
<td>> 21.95 mA</td>
</tr>
</tbody>
</table>

If the flow exceeds or falls below the upper or lower signal on alarm level, the diagnostic message **S441 Curr.output 1 to n** is displayed.

Fixed current

Navigation

- Expert → Output → Curr.output 1 to n → Fixed current (0365–1 to n)

Prerequisite

- The **Fixed current** option is selected in the **Current span** parameter (→ 103).

Description

- Use this function to enter a constant current value for the current output.

User entry

- 0 to 22.5 mA

Factory setting

- 22.5 mA
0/4 mA value

Navigation

Expert → Output → Curr.output 1 to n → 0/4 mA value (0367–1 to n)

Prerequisite

One of the following options is selected in the Current span parameter (→ 103):
 • 4...20 mA NAMUR
 • 4...20 mA US
 • 4...20 mA
 • 0...20 mA

Description

Use this function to enter a value for the 0/4 mA current.

User entry

Signed floating-point number

Factory setting

Country-specific:
 • 0 kg/h
 • 0 lb/min

Additional information

Description

Positive and negative values are permitted depending on the process variable assigned in the Assign curr. parameter (→ 102). In addition, the value can be greater than or smaller than the value assigned for the 20 mA current in the 20 mA value parameter (→ 106).

Dependency

The unit depends on the process variable selected in the Assign curr. parameter (→ 102).

Current output behavior

The current output behaves differently depending on the settings configured in the following parameters:
 • Current span (→ 103)
 • Failure mode (→ 113)

Configuration examples

Some examples of parameter settings and their effect on the current output are given in the following section.

Configuration example A

Measuring mode with Forward flow option
 • 0/4 mA value parameter (→ 105) = not equal to zero flow (e.g. –250 m³/h)
 • 20 mA value parameter (→ 106) = not equal to zero flow (e.g. +750 m³/h)
 • Calculated current value = 8 mA at zero flow

Q Flow
I Current

Measuring range is exceeded or undershot
The operational range of the measuring device is defined by the values entered for the 0/4 mA value parameter (→ 105) and 20 mA value parameter (→ 106). If the effective flow exceeds or falls below this operational range, the diagnostic message S441 Curr.output 1 to n is displayed.

Configuration example B
Measuring mode with Forward/Reverse option

The current output signal is independent of the direction of flow (absolute amount of the measured variable). The values for the 0/4 mA value parameter (→ 105) and 20 mA value parameter (→ 106) must have the same sign. The value for the 20 mA value parameter (→ 106) (e.g. reverse flow) corresponds to the mirrored value for the 20 mA value parameter (→ 106) (e.g. forward flow).

Configuration example C
Measuring mode with Rev. flow comp. option
If flow is characterized by severe fluctuations (e.g. when using reciprocating pumps), flow components outside the measuring range are buffered, balanced and output after a maximum delay of 60 s → 107.

20 mA value

Navigation
Expert → Output → Curr.output 1 to n → 20 mA value (0372–1 to n)

Prerequisite
One of the following options is selected in the Current span parameter (→ 103):
- 4...20 mA NAMUR
- 4...20 mA US
- 4...20 mA
- 0...20 mA

Description
Use this function to enter a value for the 20 mA current.

User entry
Signed floating-point number

Factory setting
Depends on country and nominal diameter → 273

Additional information
Description
Positive and negative values are permitted depending on the process variable assigned in the Assign curr. parameter (→ 102). In addition, the value can be greater than or
smaller than the value assigned for the 0/4 mA current in the **0/4 mA value** parameter (→ 105).

Dependency

- The unit depends on the process variable selected in the **Assign curr.** parameter (→ 102).

Example

- Value assigned to 0/4 mA = –250 m³/h
- Value assigned to 20 mA = +750 m³/h
- Calculated current value = 8 mA (at zero flow)

If the **Forward/Reverse** option is selected in the **Measuring mode** parameter (→ 107), different signs cannot be entered for the values of the **0/4 mA value** parameter (→ 105) and **20 mA value** parameter (→ 106). The diagnostic message △S441 Curr.output 1 to n is displayed.

Configuration examples

- Observe the configuration examples for the **0/4 mA value** parameter (→ 105).

Table: Measuring mode

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Output → Curr.output 1 to n → Measuring mode (0351–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>In the Assign curr. parameter (→ 102), one of the following options is selected:</td>
</tr>
<tr>
<td></td>
<td>Mass flow</td>
</tr>
<tr>
<td></td>
<td>Volume flow</td>
</tr>
<tr>
<td></td>
<td>Correct.vol.flow</td>
</tr>
<tr>
<td></td>
<td>Target mass flow *</td>
</tr>
<tr>
<td></td>
<td>Carrier mass fl. *</td>
</tr>
<tr>
<td></td>
<td>Density</td>
</tr>
<tr>
<td></td>
<td>Ref.density</td>
</tr>
<tr>
<td></td>
<td>Concentration *</td>
</tr>
<tr>
<td></td>
<td>Dynam. viscosity *</td>
</tr>
<tr>
<td></td>
<td>Kinematic visc.</td>
</tr>
<tr>
<td></td>
<td>TempCompDynVisc *</td>
</tr>
<tr>
<td></td>
<td>TempCompKinVisc *</td>
</tr>
<tr>
<td></td>
<td>Temperature</td>
</tr>
<tr>
<td></td>
<td>Carr. pipe temp. *</td>
</tr>
<tr>
<td></td>
<td>Electronic temp.</td>
</tr>
<tr>
<td></td>
<td>Osc. freq. 0</td>
</tr>
<tr>
<td></td>
<td>Osc. freq. 1 *</td>
</tr>
<tr>
<td></td>
<td>Osc. ampl. 0 *</td>
</tr>
<tr>
<td></td>
<td>Osc. ampl. 1 *</td>
</tr>
<tr>
<td></td>
<td>Freq. fluct. 0</td>
</tr>
<tr>
<td></td>
<td>Freq. fluct. 1 *</td>
</tr>
<tr>
<td></td>
<td>Osc. damping 0</td>
</tr>
<tr>
<td></td>
<td>Osc. damping 1 *</td>
</tr>
<tr>
<td></td>
<td>Osc.damp.fluct 0</td>
</tr>
<tr>
<td></td>
<td>Osc.damp.fluct 1 *</td>
</tr>
<tr>
<td></td>
<td>Signal asymmetry</td>
</tr>
</tbody>
</table>

* Visibility depends on order options or device settings
Description of device parameters

Proline Promass 300 PROFIBUS PA

- Exc. current 0
- Exc. current 1 *
- HBSI *

Detailed description of the options Oscil. frequency, Oscil. amplitude, Oscil. damping and Signal asymmetry: Value 1 display parameter (→ 18)

In the Current span parameter (→ 103), one of the following options is selected:
- 4...20 mA NAMUR
- 4...20 mA US
- 4...20 mA
- 0...20 mA

Description

Use this function to select the measuring mode for the current output.

Selection

- Forward flow
- Forward/Reverse *
- Rev. flow comp.

Factory setting

Forward flow

Additional information

Description

The process variable that is assigned to the current output via the Assign curr. parameter (→ 102) is displayed below the parameter.

"Forward flow" option

The current output signal is proportional to the process variable assigned. The measuring range is defined by the values that are assigned to the 0/4 mA and 20 mA current value.

The flow components outside the scaled measuring range are taken into account for signal output as follows:
- Both values are defined such that they are not equal to zero flow e.g.:
 - 0/4 mA current value = −5 m³/h
 - 20 mA current value = 10 m³/h
- If the effective flow exceeds or falls below this measuring range, the diagnostic message ΔS441 Curr. output 1 to n is displayed.

"Forward/Reverse" option

![Diagram of current distribution]

1. Current
2. Flow
3. Value assigned to the 0/4 mA current
4. Forward flow
5. Reverse flow

* Visibility depends on order options or device settings
- The current output signal is independent of the direction of flow (absolute amount of the measured variable). The values for the 0/4 mA value parameter (→ 105) and 20 mA value parameter (→ 106) must have the same sign.

- The value for the 20 mA value parameter (→ 106) (e.g. reverse flow) corresponds to the mirrored value for the 20 mA value parameter (→ 106) (e.g. forward flow).

'Rev. flow comp.' option

The Rev. flow comp. option is primarily used to compensate for abrupt reverse flow which can occur in connection with positive displacement pumps as a result of wear or high viscosity. The reverse flows are recorded in a buffer and balanced against forward flow the next time flow is in the forward direction.

If buffering cannot be processed within approx. 60 s, the diagnostic message ▲S441 Curr.output 1 to n is displayed.

Flow values can aggregate in the buffer in the event of prolonged and unwanted fluid reverse flow. However, these flows are not taken into consideration by the current output configuration, i.e. the reverse flow is not compensated.

If this option is set, the measuring device does not attenuate the flow signal. The flow signal is not attenuated.

Examples of how the current output behaves

Example 1

Defined measuring range: lower range value and upper range value with the same sign

With the following flow response:

With Forward flow option

The current output signal is proportional to the process variable assigned. The flow components outside the scaled measuring range are not taken into account for signal output:
With **Forward/Reverse** option

The current output signal is independent of the direction of flow.

With **Rev. flow comp.** option

Flow components outside the span are buffered, balanced and output after a maximum delay of 60 s.

Example 2

Defined measuring range: lower range value and upper range value with **different** signs

<table>
<thead>
<tr>
<th>4</th>
<th>Measuring range</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Current</td>
</tr>
<tr>
<td>Q</td>
<td>Flow</td>
</tr>
<tr>
<td>1</td>
<td>Lower range value (value assigned to 0/4 mA current)</td>
</tr>
<tr>
<td>2</td>
<td>Upper range value (value assigned to 20 mA current)</td>
</tr>
</tbody>
</table>
With flow a (—) outside, b (- -) inside the measuring range

\[
\begin{array}{c}
\text{Q} \quad \text{Flow} \\
\text{t} \quad \text{Time} \\
1 \quad \text{Lower range value (value assigned to 0/4 mA current)} \\
2 \quad \text{Upper range value (value assigned to 20 mA current)}
\end{array}
\]

With **Forward flow** option

- a (—): The flow components outside the scaled measuring range cannot be taken into account for signal output.
 The diagnostic message Δ\text{S441 Curr.output 1 to n} is displayed.
- b (- -): The current output signal is proportional to the process variable assigned.

With **Forward/Reverse** option

This option is not possible in this case as the values for the **0/4 mA value** parameter (→ 105) and **20 mA value** parameter (→ 106) have different signs.

With **Rev. flow comp.** option

Flow components outside the span are buffered, balanced and output after a maximum delay of 60 s.
Description of device parameters

Proline Promass 300 PROFIBUS PA

Damping out. 1 to n

Navigation

Expert → Output → Curr.output 1 to n → Damping out. 1 to n (0363–1 to n)

Prerequisite

A process variable is selected in the Assign curr. parameter (→ 102) and one of the following options is selected in the Current span parameter (→ 103):

• 4...20 mA NAMUR
• 4...20 mA US
• 4...20 mA
• 0...20 mA

Description

Use this function to enter a time constant for the reaction time of the current output signal to fluctuations in the measured value caused by process conditions.

User entry

0.0 to 999.9 s

Factory setting

1.0 s

Additional information

Use this function to enter a time constant (PT1 element 6) for current output damping:

• If a low time constant is entered, the current output reacts particularly quickly to fluctuating measured variables.
• On the other hand, the current output reacts more slowly if a high time constant is entered.

Damping is switched off if 0 is entered (factory setting).

Response time

Navigation

Expert → Output → Curr.output 1 to n → Response time (0378–1 to n)

Prerequisite

One of the following options is selected in the Assign curr. parameter (→ 102):

• Mass flow
• Volume flow
• Correct.vol.flow
• Target mass flow *
• Carrier mass fl. *
• Density
• Ref.density
• Concentration *
• Dynam. viscosity *
• Kinematic visc.
• TempCompDynVisc *
• TempCompKinVisc *
• Temperature
• Carr. pipe temp. *
• Electronic temp.
• Osc. freq. 0
• Osc. freq. 1 *

6) proportional transmission behavior with first order delay
* Visibility depends on order options or device settings
• Osc. ampl. 0 *
• Osc. ampl. 1 *
• Freq. fluct. 0
• Freq. fluct. 1 *
• Osc. damping 0
• Osc. damping 1 *
• Osc.damp.fluct 0
• Osc.damp.fluct 1 *
• Signal asymmetry
• Exc. current 0
• Exc. current 1 *
• HBSI *

Detailed description of the options Oscil. frequency, Oscil. amplitude, Oscil. damping and Signal asymmetry: Value 1 display parameter (→ 18)

One of the following options is selected in the Current span parameter (→ 103):
• 4...20 mA NAMUR
• 4...20 mA US
• 4...20 mA
• 0...20 mA

Description Displays the response time. This specifies how quickly the current output reaches the measured value change of 63 % of 100 % of the measured value change.

User interface Positive floating-point number

Additional information Description

The response time is made up of the time specified for the following dampings:
• Current output damping → 112
 and
 • Depending on the measured variable assigned to the output.
 – Flow damping
 or
 – Density damping
 or
 – Temperature damping

Failure mode

Navigation Expert → Output → Curr.output 1 to n → Failure mode (0364–1 to n)

Prerequisite A process variable is selected in the Assign curr. parameter (→ 102) and one of the following options is selected in the Current span parameter (→ 103):
• 4...20 mA NAMUR
• 4...20 mA US
• 4...20 mA
• 0...20 mA

Description Use this function to select the value of the current output in the event of a device alarm.

* Visibility depends on order options or device settings
Description of device parameters

Proline Promass 300 PROFIBUS PA

Selection

- Min.
- Max.
- Last valid value
- Actual value
- Defined value

Factory setting
Max.

Additional information

Description
This setting does not affect the failsafe mode of other outputs and totalizers. This is specified in separate parameters.

"Min." option
The current output adopts the value of the lower level for signal on alarm.

The signal on alarm level is defined via the Current span parameter (→ 103).

"Max." option
The current output adopts the value of the upper level for signal on alarm.

The signal on alarm level is defined via the Current span parameter (→ 103).

"Last valid value" option
The current output adopts the last measured value that was valid before the device alarm occurred.

"Actual value" option
The current output adopts the measured value on the basis of the current flow measurement; the device alarm is ignored.

"Defined value" option
The current output adopts a defined measured value.

The measured value is defined via the Failure current parameter (→ 114).

Failure current

Navigation
Expert → Output → Curr.output 1 to n → Failure current (0352–1 to n)

Prerequisite
The Defined value option is selected in the Failure mode parameter (→ 113).

Description
Use this function to enter a fixed value that the current output adopts in the event of a device alarm.

User entry
0 to 22.5 mA

Factory setting
22.5 mA
Output curr. 1 to n

Navigation

Expert → Output → Curr.output 1 to n → Output curr. 1 to n (0361–1 to n)

Description
Displays the current value currently calculated for the current output.

User interface
3.59 to 22.5 mA

Measur. curr. 1 to n

Navigation

Expert → Output → Curr.output 1 to n → Measur. curr. 1 to n (0366–1 to n)

Description
Use this function to display the actual measured value of the output current.

User interface
0 to 30 mA

3.5.2 "Pulse/frequency/switch output 1 to n" submenu

Navigation

Expert → Output → PFS output 1 to n

<table>
<thead>
<tr>
<th>PFS output 1 to n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal no. (0492–1 to n)</td>
</tr>
<tr>
<td>Signal mode (0490–1 to n)</td>
</tr>
<tr>
<td>Operating mode (0469–1 to n)</td>
</tr>
<tr>
<td>Assign pulse 1 to n (0460–1 to n)</td>
</tr>
<tr>
<td>Value per pulse (0455–1 to n)</td>
</tr>
<tr>
<td>Pulse width (0452–1 to n)</td>
</tr>
<tr>
<td>Measuring mode (0457–1 to n)</td>
</tr>
<tr>
<td>Failure mode (0480–1 to n)</td>
</tr>
<tr>
<td>Pulse output 1 to n (0456–1 to n)</td>
</tr>
<tr>
<td>Assign freq. (0478–1 to n)</td>
</tr>
<tr>
<td>Min. freq. value (0453–1 to n)</td>
</tr>
<tr>
<td>Parameter Description</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Max. freq. value (0454–1 to n)</td>
</tr>
<tr>
<td>Val. at min.freq (0476–1 to n)</td>
</tr>
<tr>
<td>Val. at max.freq (0475–1 to n)</td>
</tr>
<tr>
<td>Measuring mode (0479–1 to n)</td>
</tr>
<tr>
<td>Damping out. 1 to n (0477–1 to n)</td>
</tr>
<tr>
<td>Response time (0491–1 to n)</td>
</tr>
<tr>
<td>Failure mode (0451–1 to n)</td>
</tr>
<tr>
<td>Failure freq. (0474–1 to n)</td>
</tr>
<tr>
<td>Output freq. 1 to n (0471–1 to n)</td>
</tr>
<tr>
<td>Switch out funct (0481–1 to n)</td>
</tr>
<tr>
<td>Assign diag. beh (0482–1 to n)</td>
</tr>
<tr>
<td>Assign limit (0483–1 to n)</td>
</tr>
<tr>
<td>Switch-on value (0466–1 to n)</td>
</tr>
<tr>
<td>Switch-off value (0464–1 to n)</td>
</tr>
<tr>
<td>Assign dir.check (0484–1 to n)</td>
</tr>
<tr>
<td>Assign status (0485–1 to n)</td>
</tr>
<tr>
<td>Switch-on delay (0467–1 to n)</td>
</tr>
<tr>
<td>Switch-off delay (0465–1 to n)</td>
</tr>
<tr>
<td>Failure mode (0486–1 to n)</td>
</tr>
<tr>
<td>Switch status 1 to n (0461–1 to n)</td>
</tr>
<tr>
<td>Invert outp.sig. (0470–1 to n)</td>
</tr>
</tbody>
</table>

Terminal no.

Navigation

Expert → Output → PFS output 1 to n → Terminal no. (0492–1 to n)

Description

Displays the terminal numbers used by the pulse/frequency/switch output module.
User interface

- Not used
- 24-25 (I/O 2)

Additional information

"Not used" option

The pulse/frequency/switch output module does not use any terminal numbers.

Signal mode

Navigation

Expert → Output → PFS output 1 to n → Signal mode (0490–1 to n)

Description

Use this function to select the signal mode for the pulse/frequency/switch output.

Selection

- Passive
- Active

Factory setting

Passive

Operating mode

Navigation

Expert → Output → PFS output 1 to n → Operating mode (0469–1 to n)

Description

Use this function to select the operating mode of the output as a pulse, frequency or switch output.

Selection

- Pulse
- Frequency
- Switch

Factory setting

Pulse

Additional information

"Pulse" option

Quantity-dependent pulse with configurable pulse width

- Whenever a specific mass, volume, corrected volume, target mass or carrier mass is reached (pulse value), a pulse is output, the duration of which was set previously (pulse width).
- The pulses are never shorter than the set duration.

Example

- Flow rate approx. 100 g/s
- Pulse value 0.1 g
- Pulse width 0.05 ms
- Pulse rate 1.000 Impuls/s
5 Quantity-proportional pulse (pulse value) with pulse width to be configured

B Pulse width entered

P Pauses between the individual pulses

"Frequency" option

Flow-proportional frequency output with 1:1 on/off ratio
An output frequency is output that is proportional to the value of a process variable, such as mass flow, volume flow, corrected volume flow, target mass flow, carrier mass flow, density, reference density, concentration, dynamic viscosity, kinematic viscosity, temperature-compensated dynamic viscosity, temperature-compensated kinematic viscosity, temperature, carrier tube temperature, electronic temperature, vibration frequency, frequency fluctuation, oscillation amplitude, oscillation damping, oscillation damping fluctuation, signal asymmetry or excitation current.

Example
- Flow rate approx. 100 g/s
- Max. frequency 10 kHz
- Flow rate at max. frequency 1000 g/s
- Output frequency approx. 1000 Hz

6 Flow-proportional frequency output

"Switch" option

Contact for displaying a condition (e.g. alarm or warning if a limit value is reached)

Example
Alarm response without alarm

7 No alarm, high level

Example
Alarm response in case of alarm
Assign pulse 1 to n

Navigation

Expert → Output → PFS output 1 to n → Assign pulse 1 to n (0460–1 to n)

Prerequisite

The Pulse option is selected in the Operating mode parameter (→ 117) parameter.

Description

Use this function to select the process variable for the pulse output.

Selection

- Off
- Mass flow
- Volume flow
- Correct.vol.flow
- Target mass flow
- Carrier mass fl.
- Target vol. flow
- Carrier vol. fl.
- Targ.corr.vol.fl
- Carr.corr.vol.fl
- GSV flow
- GSVa
- NSV flow
- NSVa
- S&W volume flow
- Oil mass flow
- Water mass flow
- Oil volume flow
- Water vol. flow
- Oil corr.vol.fl
- Water corr.v.fl

Factory setting

Off

Value per pulse

Navigation

Expert → Output → PFS output 1 to n → Value per pulse (0455–1 to n)

Prerequisite

The Pulse option is selected in the Operating mode parameter (→ 117) and a process variable is selected in the Assign pulse parameter (→ 119).

Description

Use this function to enter the value for the measured value that a pulse is equivalent to.

Visibility depends on order options or device settings
User entry

Signed floating-point number

Factory setting

Depends on country and nominal diameter → 274

Additional information

User entry

Weighting of the pulse output with a quantity.

The lower the pulse value, the

• better the resolution.
• the higher the frequency of the pulse response.

Pulse width

Navigation

Expert → Output → PFS output 1 to n → Pulse width (0452–1 to n)

Prerequisite

The Pulse option is selected in the Operating mode parameter (→ 117) and a process variable is selected in the Assign pulse parameter (→ 119).

Description

Use this function to enter the duration of the output pulse.

User entry

0.05 to 2,000 ms

Factory setting

100 ms

Additional information

Description

• Define how long a pulse is (duration).
• The maximum pulse rate is defined by \(f_{\text{max}} = 1 / (2 \times \text{pulse width}) \).
• The interval between two pulses lasts at least as long as the set pulse width.
• The maximum flow is defined by \(Q_{\text{max}} = f_{\text{max}} \times \text{pulse value} \).
• If the flow exceeds these limit values, the measuring device displays the diagnostic message S443 Pulse output 1 to n.

Example

• Pulse value: 0.1 g
• Pulse width: 0.1 ms
• \(f_{\text{max}} = 1 / (2 \times 0.1 \text{ ms}) = 5 \text{ kHz} \)
• \(Q_{\text{max}} = 5 \text{ kHz} \times 0.1 \text{ g} = 0.5 \text{ kg/s} \)
Measuring mode

Navigation

Expert → Output → PFS output 1 to n → Measuring mode (0457–1 to n)

Prerequisite

In the Operating mode parameter (→ 117), the Pulse option is selected, and one of the following options is selected in the Assign pulse parameter (→ 119):

- Mass flow
- Volume flow
- Correct.vol.flow
- Target mass flow *
- Carrier mass fl.

Description

Use this function to select the measuring mode for the pulse output.

Selection

- Forward flow
- Forward/Reverse
- Reverse flow
- Rev. flow comp.

Factory setting

Forward flow

Additional information

Selection

- Forward flow
 Positive flow is output, negative flow is not output.
- Forward/Reverse
 Positive and negative flow are output (absolute value), but a distinction is not made between positive and negative flow.
- Reverse flow
 Negative flow is output, positive flow is not output.
- Rev. flow comp.
 The flow components outside the span are buffered, balanced and output after a maximum delay of 60 s.

ℹ️ For a detailed description of the options available, see the Measuring mode parameter (→ 107)

Examples

ℹ️ For a detailed description of the configuration examples, see the Measuring mode parameter (→ 107)

Failure mode

Navigation

Expert → Output → PFS output 1 to n → Failure mode (0480–1 to n)

Prerequisite

The Pulse option is selected in the Operating mode parameter (→ 117) and a process variable is selected in the Assign pulse parameter (→ 119).

Description

Use this function to select the failure mode of the pulse output in the event of a device alarm.

* Visibility depends on order options or device settings
Selection

- Actual value
- No pulses

Factory setting

No pulses

Additional information

Description

The dictates of safety render it advisable to ensure that the pulse output shows a predefined behavior in the event of a device alarm.

Selection

- Actual value
 In the event of a device alarm, the pulse output continues on the basis of the current flow measurement. The fault is ignored.
- No pulses
 In the event of a device alarm, the pulse output is "switched off".

NOTICE! A device alarm is a measuring device error that must be taken seriously. It can affect the measurement quality such that the quality can no longer be guaranteed. The Actual value option is only recommended if it can be guaranteed that all possible alarm conditions will not affect the measurement quality.

Pulse output 1 to n

Navigation

Expert → Output → PFS output 1 to n → Pulse output 1 to n (0456–1 to n)

Prerequisite

The Pulse option is selected in the Operating mode parameter (→ 117) parameter.

Description

Displays the pulse frequency currently output.

User interface

Positive floating-point number

Additional information

Description

- The pulse output is an open collector output.
- This is configured at the factory in such a way that the transistor is conductive for the duration of the pulse (NO contact) and is safety-oriented.

The output behavior can be reversed via the Invert outp.sig. parameter (→ 136) i.e. the transistor does not conduct for the duration of the pulse.

In addition, the behavior of the output in the event of a device alarm (Failure mode parameter (→ 121)) can be configured.
Assign freq.

Navigation

Expert → Output → PFS output 1 to n → Assign freq. (0478–1 to n)

Prerequisite

The **Frequency** option is selected in the **Operating mode** parameter (→ 117) parameter.

Description

Use this function to select the process variable for the frequency output.

Detailed description of the options **Oscil. frequency, Oscil. amplitude, Oscil. damping** and **Signal asymmetry: Value 1 display** parameter (→ 18)

Selection

- Off
- Mass flow
- Volume flow
- Correct.vol.flow
- Target mass flow *
- Carrier mass fl. *
- Target vol. flow *
- Carrier vol. fl. *
- Targ.corr.vol.fl *
- Carr.corr.vol.fl *
- Density
- Ref.density
- Ref.dens.altern. *
- GSV flow *
- GSVa *
- NSV flow *
- NSVa *
- S&W volume flow *
- Water cut
- Oil density *
- Water density *
- Oil mass flow *
- Water mass flow *
- Oil volume flow *
- Water vol. flow *
- Oil corr.vol.fl. *
- Water corr.v.fl. *
- Concentration
- Dynam. viscosity *
- Kinematic visc.
- TempCompDynVisc *
- TempCompKinVisc *
- Temperature
- Carr. pipe temp. *
- Electronic temp.
- Osc. freq. 0
- Osc. freq. 1 *
- Osc. ampl. 0 *
- Osc. ampl. 1 *
- Freq. fluct. 0 *
- Freq. fluct. 1 *
- Osc. damping 0 *
- Osc. damping 1 *

* Visibility depends on order options or device settings
Description of device parameters

- Osc. damp. fluct 0 *
- Osc. damp. fluct 1 *
- Signal asymmetry *
- Exc. current 0 *
- Exc. current 1 *
- HBSI *
- Pressure

Factory setting

Off

Min. freq. value

Navigation

Expert → Output → PFS output 1 to n → Min. freq. value (0453–1 to n)

Prerequisite

The **Frequency** option is selected in the **Operating mode** parameter (→ 117) and a process variable is selected in the **Assign freq.** parameter (→ 123).

Description

Use this function to enter the start value frequency.

User entry

0.0 to 10000.0 Hz

Factory setting

0.0 Hz

Max. freq. value

Navigation

Expert → Output → PFS output 1 to n → Max. freq. value (0454–1 to n)

Prerequisite

The **Frequency** option is selected in the **Operating mode** parameter (→ 117) and a process variable is selected in the **Assign freq.** parameter (→ 123).

Description

Use this function to enter the end value frequency.

User entry

0.0 to 10000.0 Hz

Factory setting

10000.0 Hz

Val. at min.freq

Navigation

Expert → Output → PFS output 1 to n → Val. at min.freq (0476–1 to n)

Prerequisite

The **Frequency** option is selected in the **Operating mode** parameter (→ 117) and a process variable is selected in the **Assign freq.** parameter (→ 123).

Description

Use this function to enter the measured value for the start value frequency.

* Visibility depends on order options or device settings
User entry
Signed floating-point number

Factory setting
Depends on country and nominal diameter

Additional information
Dependency
The entry depends on the process variable selected in the Assign freq. parameter (→ 123).

Val. at max.freq

Navigation
Expert → Output → PFS output 1 to n → Val. at max.freq (0475–1 to n)

Prerequisite
The Frequency option is selected in the Operating mode parameter (→ 117) and a process variable is selected in the Assign freq. parameter (→ 123).

Description
Use this function to enter the measured value for the end value frequency.

User entry
Signed floating-point number

Factory setting
Depends on country and nominal diameter

Additional information
Description
Use this function to enter the maximum measured value at the maximum frequency. The selected process variable is output as a proportional frequency.

Dependency
The entry depends on the process variable selected in the Assign freq. parameter (→ 123).

Measuring mode

Navigation
Expert → Output → PFS output 1 to n → Measuring mode (0479–1 to n)

Prerequisite
In the Operating mode parameter (→ 117), the Frequency option is selected, and one of the following options is selected in the Assign freq. parameter (→ 123):
- Mass flow
- Volume flow
- Correct.vol.flow
- Target mass flow *
- Carrier mass fl. *
- Density
- Ref.density
- Concentration *
- Dynam. viscosity *
- Kinematic visc.
- TempCompDynVisc *
- TempCompKinVisc *

* Visibility depends on order options or device settings
Description of device parameters

Proline Promass 300 PROFIBUS PA

- Temperature
- Carr. pipe temp.*
- Electronic temp.
- Osc. freq. 0
- Osc. freq. 1 *
- Freq. fluct. 0
- Freq. fluct. 1 *
- Osc. ampl. 0 *
- Osc. ampl. 1 *
- Osc. damping 0
- Osc. damping 1 *
- Osc.damp.fluct 0
- Osc.damp.fluct 1 *
- Signal asymmetry
- Exc. current 0
- Exc. current 1 *

Detailed description of the options Oscil. frequency, Oscil. amplitude, Oscil. damping and Signal asymmetry. Value 1 display parameter (→ 18)

Description

Use this function to select the measuring mode for the frequency output.

Selection

- Forward flow
- Forward/Reverse
- Rev. flow comp.

Factory setting

Forward flow

Additional information

Selection

For a detailed description of the options available, see the Measuring mode parameter (→ 107)

Examples

For a detailed description of the configuration examples, see the Measuring mode parameter (→ 107)

Damping out. 1 to n

Navigation

Expert → Output → PFS output 1 to n → Damping out. 1 to n (0477–1 to n)

Prerequisite

In the Operating mode parameter (→ 117), the Frequency option is selected, and one of the following options is selected in the Assign freq. parameter (→ 123):

- Mass flow
- Volume flow
- Correct.vol.flow
- Target mass flow *
- Carrier mass fl. *
- Density
- Ref. density
- Concentration *
- Dynam. viscosity *
- Kinematic visc. *

* Visibility depends on order options or device settings
Proline Promass 300 PROFIBUS PA

Description of device parameters

- TempCompDynVisc *
- TempCompKinVisc *
- Temperature
- Carr. pipe temp. *
- Electronic temp.
- Osc. freq. 0
- Osc. freq. 1 *
- Freq. fluct. 0
- Freq. fluct. 1 *
- Osc. ampl. 0 *
- Osc. ampl. 1 *
- Osc. damping 0
- Osc. damping 1 *
- Osc.damp.fluct 0
- Osc.damp.fluct 1 *
- Signal asymmetry
- Exc. current 0
- Exc. current 1 *

Detailed description of the options **Oscil. frequency**, **Oscil. amplitude**, **Oscil. damping** and **Signal asymmetry**: Value 1 display parameter (→ 18)

Description

Use this function to enter a time constant for the reaction time of the output signal to fluctuations in the measured value.

User entry

0 to 999.9 s

Factory setting

0.0 s

Additional information

User entry

Use this function to enter a time constant (PT1 element 7) for frequency output damping:
- If a low time constant is entered, the current output reacts particularly quickly to fluctuating measured variables.
- On the other hand, the current output reacts more slowly if a high time constant is entered.

Damping is switched off if 0 is entered (factory setting).

The frequency output is subject to separate damping that is independent of all preceding time constants.

Response time

Navigation

[] Expert → Output → PFS output 1 to n → Response time (0491–1 to n)

Prerequisite

In the **Operating mode** parameter (→ 117), the **Frequency** option is selected, and one of the following options is selected in the **Assign freq.** parameter (→ 123):
- Mass flow
- Volume flow
- Correct.vol.flow
- Target mass flow *
- Carrier mass fl. *

* Visibility depends on order options or device settings
7) proportional transmission behavior with first order delay
Description of device parameters

Proline Promass 300 PROFIBUS PA

- Density
- Ref. density
- Concentration *
- Dynam. viscosity *
- Kinematic visc.
- TempCompDynVisc *
- TempCompKinVisc *
- Temperature
- Carr. pipe temp. *
- Electronic temp.
- Osc. freq. 0
- Osc. freq. 1 *
- Freq. fluct. 0
- Freq. fluct. 1 *
- Osc. ampl. 0 *
- Osc. ampl. 1 *
- Osc. damping 0
- Osc. damping 1 *
- Osc. damp.fluct 0
- Osc. damp.fluct 1 *
- Signal asymmetry
- Exc. current 0
- Exc. current 1 *

Detailed description of the options Oscil. frequency, Oscil. amplitude, Oscil. damping and Signal asymmetry: Value 1 display parameter (→ 18)

Description
Displays the response time. This specifies how quickly the pulse/frequency/switch output reaches the measured value change of 63 % of 100 % of the measured value change.

User interface
Positive floating-point number

Additional information
Description
The response time is made up of the time specified for the following dampings:
- Damping of pulse/frequency/switch output → 112
and
- Depending on the measured variable assigned to the output.
 - Flow damping
 or
 - Density damping
 or
 - Temperature damping

Failure mode

Navigation
Expert → Output → PFS output 1 to n → Failure mode (0451–1 to n)

Prerequisite
The Frequency option is selected in the Operating mode parameter (→ 117) and a process variable is selected in the Assign freq. parameter (→ 123).

Description
Use this function to select the failure mode of the frequency output in the event of a device alarm.

Visibility depends on order options or device settings
Selection
- Actual value
- Defined value
- 0 Hz

Factory setting
0 Hz

Additional information
Selection
- Actual value
 In the event of a device alarm, the frequency output continues on the basis of the current flow measurement. The device alarm is ignored.
- Defined value
 In the event of a device alarm, the frequency output continues on the basis of a predefined value. The Failure freq. (→ 129) replaces the current measured value, making it possible to bypass the device alarm. The actual measurement is switched off for the duration of the device alarm.
- 0 Hz
 In the event of a device alarm, the frequency output is "switched off".

NOTICE! A device alarm is a measuring device error that must be taken seriously. It can affect the measurement quality such that the quality can no longer be guaranteed. The Actual value option is only recommended if it can be guaranteed that all possible alarm conditions will not affect the measurement quality.

Failure freq.

Navigation
Expert → Output → PFS output 1 to n → Failure freq. (0474–1 to n)

Prerequisite
The Frequency option is selected in the Operating mode parameter (→ 117) and a process variable is selected in the Assign freq. parameter (→ 123).

Description
Use this function to enter the value for the frequency output in the event of a device alarm in order to bypass the alarm.

User entry
0.0 to 12.500.0 Hz

Factory setting
0.0 Hz

Output freq. 1 to n

Navigation
Expert → Output → PFS output 1 to n → Output freq. 1 to n (0471–1 to n)

Prerequisite
In the Operating mode parameter (→ 117), the Frequency option is selected.

Description
Displays the actual value of the output frequency which is currently measured.

User interface
0.0 to 12.500.0 Hz
Switch out funct

Navigation

Expert → Output → PFS output 1 to n → Switch out funct (0481–1 to n)

Prerequisite

The **Switch** option is selected in the **Operating mode** parameter (→ 117).

Description

Use this function to select a function for the switch output.

Selection

- Off
- On
- Diag. behavior
- Limit
- Fl. direct.check
- Status

Factory setting

Off

Additional information

Selection

- Off
 The switch output is permanently switched off (open, non-conductive).
- On
 The switch output is permanently switched on (closed, conductive).
- Diag. behavior
 Indicates if the diagnostic event is present or not. Is used to output diagnostic information and to react to it appropriately at the system level.
- Limit
 Indicates if a specified limit value has been reached for the process variable. Is used to output diagnostic information relating to the process and to react to it appropriately at the system level.
- Fl. direct.check
 Indicates the flow direction (forward or reverse flow).
- Status
 Indicates the device status depending on whether empty pipe detection or low flow cutoff is selected.

Assign diag. beh

Navigation

Expert → Output → PFS output 1 to n → Assign diag. beh (0482–1 to n)

Prerequisite

- In the **Operating mode** parameter (→ 117), the **Switch** option is selected.
- In the **Switch out funct** parameter (→ 130), the **Diag. behavior** option is selected.

Description

Use this function to select the diagnostic event category that is displayed for the switch output.

Selection

- Alarm
- Alarm or warning
- Warning

Factory setting

Alarm
Additional information

Description

If no diagnostic event is pending, the switch output is closed and conductive.

Selection

- **Alarm**
 The switch output signals only diagnostic events in the alarm category.
- **Alarm or warning**
 The switch output signals diagnostic events in the alarm and warning category.
- **Warning**
 The switch output signals only diagnostic events in the warning category.

Assign limit

Navigation

Expert → Output → PFS output 1 to n → Assign limit (0483–1 to n)

Prerequisite

- The Switch option is selected in the Operating mode parameter (→ 117) parameter.
- The Limit option is selected in the Switch out funct parameter (→ 130) parameter.

Description

Use this function to select a process variable for the limit function.

Selection

- Mass flow
- Volume flow
- Correct.vol.flow
- Target mass flow
- Carrier mass fl.
- Target vol. flow
- Carrier vol. fl.
- Targ.corr.vol.fl
- Carr.corr.vol.fl
- Density
- Ref.density
- Ref.dens.altern.
- GSV flow
- GSVa
- NSV flow
- NSVa
- S&W volume flow
- Water cut
- Oil density
- Water density
- Oil mass flow
- Water mass flow
- Oil volume flow
- Water vol. flow
- Oil corr.vol.fl
- Water corr.v.fl.
- Dynam. viscosity
- Concentration
- Kinematic visc.
- TempCompDynVisc
- TempCompKinVisc

* Visibility depends on order options or device settings
Factory setting

Mass flow

Additional information

Description

Behavior of status output when Switch-on value > Switch-off value:
- Process variable > Switch-on value: transistor is conductive
- Process variable < Switch-off value: transistor is non-conductive

Behavior of status output when Switch-on value < Switch-off value:
- Process variable < Switch-on value: transistor is conductive
- Process variable > Switch-off value: transistor is non-conductive

Behavior of status output when Switch-on value = Switch-off value:
- Process variable > Switch-on value: transistor is conductive
- Process variable < Switch-off value: transistor is non-conductive
Switch-on value

Navigation
- Expert → Output → PFS output 1 to n → Switch-on value (0466–1 to n)

Prerequisite
- In the Operating mode parameter (→ 117), the Switch option is selected.
- In the Switch out funct parameter (→ 130), the Limit option is selected.

Description
Use this function to enter the measured value for the switch-on point.

User entry
Signed floating-point number

Factory setting
Country-specific:
- 0 kg/h
- 0 lb/min

Additional information
Description
Use this function to enter the limit value for the switch-on value (process variable > switch-on value = closed, conductive).

When using a hysteresis: Switch-on value > Switch-off value.

Dependency
The unit depends on the process variable selected in the Assign limit parameter (→ 131).

Switch-off value

Navigation
- Expert → Output → PFS output 1 to n → Switch-off value (0464–1 to n)

Prerequisite
- In the Operating mode parameter (→ 117), the Switch option is selected.
- In the Switch out funct parameter (→ 130), the Limit option is selected.

Description
Use this function to enter the measured value for the switch-off point.
User entry
Signed floating-point number

Factory setting
Country-specific:
• 0 kg/h
• 0 lb/min

Additional information
Description
Use this function to enter the limit value for the switch-off value (process variable < switch-off value = open, non-conductive).

When using a hysteresis: Switch-on value > Switch-off value.

Dependency
The unit depends on the process variable selected in the Assign limit parameter (→ 131).

Assign dir.check

Navigation
Expert → Output → PFS output 1 to n → Assign dir.check (0484–1 to n)

Prerequisite
• The Switch option is selected in the Operating mode parameter (→ 117).
• The Fl. direct.check option is selected in the Switch out funct parameter (→ 130).

Description
Use this function to select a process variable for monitoring the flow direction.

Selection
• Off
• Volume flow
• Mass flow
• Correct.vol.flow *

Factory setting
Mass flow

Assign status

Navigation
Expert → Output → PFS output 1 to n → Assign status (0485–1 to n)

Prerequisite
• The Switch option is selected in the Operating mode parameter (→ 117).
• The Status option is selected in the Switch out funct parameter (→ 130).

Description
Use this function to select a device status for the switch output.

Selection
• Partial pipe det
• Low flow cut off
• Digital outp. 4 *

Factory setting
Partial pipe det

* Visibility depends on order options or device settings
Additional information

Options
If empty pipe detection or low flow cut off are enabled, the output is conductive. Otherwise, the switch output is non-conductive.

Switch-on delay

Navigation

Expert → Output → PFS output 1 to n → Switch-on delay (0467–1 to n)

Prerequisite

- The Switch option is selected in the Operating mode parameter (→ 117).
- The Limit option is selected in the Switch out funct parameter (→ 130).

Description

Use this function to enter a delay time for switching on the switch output.

User entry

0.0 to 100.0 s

Factory setting

0.0 s

Switch-off delay

Navigation

Expert → Output → PFS output 1 to n → Switch-off delay (0465–1 to n)

Prerequisite

- The Switch option is selected in the Operating mode parameter (→ 117).
- The Limit option is selected in the Switch out funct parameter (→ 130).

Description

Use this function to enter a delay time for switching off the switch output.

User entry

0.0 to 100.0 s

Factory setting

0.0 s

Failure mode

Navigation

Expert → Output → PFS output 1 to n → Failure mode (0486–1 to n)

Description

Use this function to select a failsafe mode for the switch output in the event of a device alarm.

Selection

- Actual status
- Open
- Closed

Factory setting

Open
Additional information

Options

- Actual status
 In the event of a device alarm, faults are ignored and the current behavior of the input value is output by the switch output. The Actual status option behaves in the same way as the current input value.
- Open
 In the event of a device alarm, the switch output's transistor is set to non-conductive.
- Closed
 In the event of a device alarm, the switch output's transistor is set to conductive.

Switch status 1 to n

Navigation

Expert → Output → PFS output 1 to n → Switch status 1 to n (0461–1 to n)

Prerequisite

The Switch option is selected in the Operating mode parameter (→ 117).

Description

Displays the current switch status of the status output.

User interface

- Open
- Closed

Additional information

User interface

- Open
 The switch output is not conductive.
- Closed
 The switch output is conductive.

Invert outp.sig.

Navigation

Expert → Output → PFS output 1 to n → Invert outp.sig. (0470–1 to n)

Description

Use this function to select whether to invert the output signal.

Selection

- No
- Yes

Factory setting

No

Additional information

Selection

No option (passive - negative)

Yes option (passive - positive)
3.5.3 "Relay output 1 to n" submenu

Navigation

Expert → Output → Relay output 1 to n → Terminal no. (0812–1 to n)

Description

Displays the terminal numbers used by the relay output module.
User interface
- Not used
- 24-25 (I/O 2)

Additional information
"Not used" option

The relay output module does not use any terminal numbers.

Relay outp.func.

Navigation

Expert → Output → Relay output 1 to n → Relay outp.func. (0804–1 to n)

Description

Use this function to select an output function for the relay output.

Selection

- Closed
- Open
- Diag. behavior
- Limit
- Fl. direct.check
- Digital Output

Factory setting

Closed

Additional information

Selection

- Closed
 The relay output is permanently switched on (closed, conductive).
- Open
 The relay output is permanently switched off (open, non-conductive).
- Diag. behavior
 Indicates if the diagnostic event is present or not. Is used to output diagnostic information and to react to it appropriately at the system level.
- Limit
 Indicates if a specified limit value has been reached for the process variable. Is used to output diagnostic information relating to the process and to react to it appropriately at the system level.
- Fl. direct.check
 Indicates the flow direction (forward or reverse flow).
- Digital Output
 Indicates the device status depending on whether empty pipe detection or low flow cut off is selected.

Assign dir.check

Navigation

Expert → Output → Relay output 1 to n → Assign dir.check (0808–1 to n)

Prerequisite

In the **Relay outp.func.** parameter (→ 138), the **Fl. direct.check** option is selected.

Description

Use this function to select a process variable for monitoring the flow direction.
Selection

- Off
- Volume flow
- Mass flow
- Correct. vol. flow *

Factory setting

Mass flow

Assign limit

Navigation

Expert → Output → Relay output 1 to n → Assign limit (0807–1 to n)

Prerequisite

The Limit option is selected in the Relay outp. func. parameter (→ 138) parameter.

Description

Use this function to select a process variable for the limit value function.

Selection

- Mass flow
- Volume flow
- Correct. vol. flow *
- Target mass flow *
- Carrier mass fl. *
- Target vol. flow *
- Carrier vol. fl. *
- Targ. corr. vol. fl *
- Carr. corr. vol. fl *
- Density
- Ref. density *
- Ref. dens. altern. *
- GSV flow *
- GSVa *
- NSV flow *
- NSVa *
- S&W volume flow *
- Water cut
- Oil density *
- Water density *
- Oil mass flow
- Water mass flow *
- Oil volume flow *
- Water vol. flow *
- Oil corr. vol. fl *
- Water corr. v. fl *
- Dynam. viscosity *
- Concentration
- Kinematic visc. *
- TempCompDynVisc *
- TempCompKinVisc *
- Temperature
- Oscil. damping
- Pressure
- Totalizer 1
- Totalizer 2
- Totalizer 3

* Visibility depends on order options or device settings
Factory setting
Mass flow

Assign diag. beh

Navigation
Expert → Output → Relay output 1 to n → Assign diag. beh (0806–1 to n)

Prerequisite
In the **Relay outp.func.** parameter (→ 138), the **Diag. behavior** option is selected.

Description
Use this function to select the category of the diagnostic events that are displayed for the relay output.

Selection
- Alarm
- Alarm or warning
- Warning

Factory setting
Alarm

Additional information
Description

If no diagnostic event is pending, the relay output is closed and conductive.

Selection
- Alarm
The relay output signals only diagnostic events in the alarm category.
- Alarm or warning
The relay output signals diagnostic events in the alarm and warning category.
- Warning
The relay output signals only diagnostic events in the warning category.

Assign status

Navigation
Expert → Output → Relay output 1 to n → Assign status (0805–1 to n)

Prerequisite
In the **Relay outp.func.** parameter (→ 138), the **Digital Output** option is selected.

Description
Use this function to select the device status for the relay output.

Selection
- Partial pipe det
- Low flow cut off
- Digital outp. 4 *

Factory setting
Partial pipe det

* Visibility depends on order options or device settings
Switch-off value

Navigation
Expert → Output → Relay output 1 to n → Switch-off value (0809–1 to n)

Prerequisite
In the Relay outp.func. parameter (→ 138), the Limit option is selected.

Description
Use this function to enter the measured value for the switch-off point.

User entry
Signed floating-point number

Factory setting
Country-specific:
- 0 kg/h
- 0 lb/min

Additional information

Description
Use this function to enter the limit value for the switch-off value (process variable < switch-off value = open, non-conductive).

- When using a hysteresis: Switch-on value > Switch-off value.

Dependency
The unit is dependent on the process variable selected in the Assign limit parameter (→ 139).

Switch-off delay

Navigation
Expert → Output → Relay output 1 to n → Switch-off delay (0813–1 to n)

Prerequisite
In the Relay outp.func. parameter (→ 138), the Limit option is selected.

Description
Use this function to enter a delay time for switching off the switch output.

User entry
0.0 to 100.0 s

Factory setting
0.0 s

Switch-on value

Navigation
Expert → Output → Relay output 1 to n → Switch-on value (0810–1 to n)

Prerequisite
In the Relay outp.func. parameter (→ 138), the Limit option is selected.

Description
Use this function to enter the measured value for the switch-on point.

User entry
Signed floating-point number
Description of device parameters

Proline Promass 300 PROFIBUS PA

Factory setting

Country-specific:
- 0 kg/h
- 0 lb/min

Additional information

Description
Use this function to enter the limit value for the switch-on value (process variable > switch-on value = closed, conductive).

When using a hysteresis: Switch-on value > Switch-off value.

Dependency

The unit is dependent on the process variable selected in the Assign limit parameter (→ 139).

Switch-on delay

Navigation

Expert → Output → Relay output 1 to n → Switch-on delay (0814–1 to n)

Prerequisite

In the Relay outp.func. parameter (→ 138), the Limit option is selected.

Description
Use this function to enter a delay time for switching on the switch output.

User entry

0.0 to 100.0 s

Factory setting

0.0 s

Failure mode

Navigation

Expert → Output → Relay output 1 to n → Failure mode (0811–1 to n)

Description
Use this function to select the failure mode of the relay output in the event of a device alarm.

Selection

- Actual status
- Open
- Closed

Factory setting

Open

Additional information

Selection

- Actual status
 In the event of a device alarm, faults are ignored and the current behavior of the input value is output by the relay output. The Actual status option behaves in the same way as the current input value.
- Open
 In the event of a device alarm, the relay output's transistor is set to non-conductive.
- Closed
 In the event of a device alarm, the relay output's transistor is set to conductive.
Switch status

Navigation
Expert → Output → Relay output 1 to n → Switch status (0801–1 to n)

Description
Displays the current status of the relay output.

User interface
- Open
- Closed

Additional information

User interface
- Open
The relay output is not conductive.
- Closed
The relay output is conductive.

Powerless relay

Navigation
Expert → Output → Relay output 1 to n → Powerless relay (0816–1 to n)

Description
Use this function to select the quiescent state for the relay output.

Selection
- Open
- Closed

Factory setting
Open

Additional information

Selection
- Open
The relay output is not conductive.
- Closed
The relay output is conductive.

3.6 "Communication" submenu

Navigation
Expert → Communication

<table>
<thead>
<tr>
<th>■ Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>❯ PROFIBUS PA conf ➔ 144</td>
</tr>
<tr>
<td>❯ PROFIBUS PA info ➔ 145</td>
</tr>
<tr>
<td>❯ Physical block ➔ 147</td>
</tr>
</tbody>
</table>
3.6.1 "PROFIBUS PA conf" submenu

Navigation Expert → Communication → PROFIBUS PA conf

Address mode

Navigation Expert → Communication → PROFIBUS PA conf → Address mode (1468)

Description Displays the configured address mode.

User interface

• Hardware
• Software

Factory setting Software

Additional information

For detailed information, see the "Setting the device address" section of the Operating Instructions.

Device address

Navigation Expert → Communication → PROFIBUS PA conf → Device address (1462)

Description Use this function to enter the device address.

User entry 0 to 126

Factory setting 126

Additional information

The address must always be configured for a PROFIBUS device. The valid address range is between 1 and 126. In a PROFIBUS network, each address can only be assigned once. If an address is not configured correctly, the device is not recognized by the master. All
measuring devices are delivered from the factory with the device address 126 and with the software addressing method.

Displays the configured address mode: **Address mode** parameter (→ 144)

Ident num select

Navigation

Expert → Communication → PROFIBUS PA conf → Ident num select (1461)

Description

Use this function to select the device master file (GSD).

Selection

- Automatic mode
- Manufacturer
- Profile
- 1AI,1Tot(0x9740)
- 2AI,1Tot(0x9741)
- Promass 80
- Promass 83

Factory setting

Automatic mode

Additional information

Description

In order to integrate the field devices into the bus system, the PROFIBUS system needs a description of the device parameters, such as output data, input data, data format, data volume and supported transmission rate. These data are available in the device master file (GSD) which is provided to the PROFIBUS Master when the communication system is commissioned.

3.6.2 "PROFIBUS PA info" submenu

Navigation

Expert → Communication → PROFIBUS PA info

PROFIBUS PA info

- Stat Master Conf (1465) → 146
- Ident number (1464) → 146
- Profile version (1463) → 146
- Baudrate (1504) → 146
- Master avail. (1517) → 147
Stat Master Conf

Navigation

[Menu] Expert → Communication → PROFIBUS PA info → Stat Master Conf (1465)

Description

For displaying the status of the PROFIBUS Master configuration.

User interface

- Active
- Not active

Factory setting

Not active

Ident number

Navigation

[Menu] Expert → Communication → PROFIBUS PA info → Ident number (1464)

Description

For displaying the PROFIBUS identification number.

User interface

0 to FFFF

Factory setting

0x156D

Profile version

Navigation

[Menu] Expert → Communication → PROFIBUS PA info → Profile version (1463)

Description

Displays the profile version.

User interface

Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /).

Factory setting

3.02

Baudrate

Navigation

[Menu] Expert → Communication → PROFIBUS PA info → Baudrate (1504)

Description

Displays the transmission rate.

User interface

- Not available
- 31.25 kBaud

Factory setting

31.25 kBaud
Master avail.

Navigation

Expert → Communication → PROFIBUS PA info → Master avail. (1517)

Description
Displays whether or not a PROFIBUS master is present in the network.

User interface
- No
- Yes

Factory setting
No

3.6.3 "Physical block" submenu

Navigation
Expert → Communication → Physical block

<table>
<thead>
<tr>
<th>▶ Physical block</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device tag (1496) → 148</td>
</tr>
<tr>
<td>Static revision (1495) → 148</td>
</tr>
<tr>
<td>Strategy (1494) → 149</td>
</tr>
<tr>
<td>Alert key (1473) → 149</td>
</tr>
<tr>
<td>Target mode (1497) → 149</td>
</tr>
<tr>
<td>Mode block act (1472) → 149</td>
</tr>
<tr>
<td>Mode block perm (1493) → 150</td>
</tr>
<tr>
<td>Mode blk norm (1492) → 150</td>
</tr>
<tr>
<td>Alarm summary (1474) → 150</td>
</tr>
<tr>
<td>Software rev. (1478) → 151</td>
</tr>
<tr>
<td>Hardware rev. (1479) → 151</td>
</tr>
<tr>
<td>Manufacturer ID (1502) → 151</td>
</tr>
<tr>
<td>Device ID (1480) → 152</td>
</tr>
<tr>
<td>Serial number (1481) → 152</td>
</tr>
<tr>
<td>Diagnostics (1482) → 152</td>
</tr>
</tbody>
</table>
Device tag

Navigation
Expert → Communication → Physical block → Device tag (1496)

Description
Use this function to enter the name for the measuring point.

User entry
Max. 32 characters, such as letters, numbers or special characters (e.g. @, %, /).

Factory setting
Promass 300 PA

Static revision

Navigation
Expert → Communication → Physical block → Static revision (1495)

Description
Displays the event counter: every write access to a static block parameter is counted.

User interface
0 to FFFF

Additional information
Description
Static parameters are parameters that are not changed by the process.
Strategy

Navigation
Expert → Communication → Physical block → Strategy (1494)

Description
Use this function to enter the strategy: makes it possible to group blocks by entering identical numbers.

User entry
0 to FFFF

Factory setting
0

Alert key

Navigation
Expert → Communication → Physical block → Alert key (1473)

Description
Use this function to enter the alert key: identifies the section of the plant where the transmitter is located. This helps in pinpointing events.

User entry
0 to 0xFF

Factory setting
0

Target mode

Navigation
Expert → Communication → Physical block → Target mode (1497)

Description
Displays the Target mode: The target mode indicates which mode of operation is used for this function block. This mode is generally set by a control application.

User interface
- Auto
- Out of service

Mode block act

Navigation
Expert → Communication → Physical block → Mode block act (1472)

Description
Displays the Mode block act: Under certain conditions, it is possible that a function block will not operate in the required mode. In this case, the Mode block act shows the actual mode in which the function block is currently operating. A comparison of the Mode block act with the Target mode indicates whether it was possible to reach the Target mode (→ 149).

User interface
- Auto
- Out of service
Description of device parameters

Proline Promass 300 PROFIBUS PA

Additional information

Description

A comparison of the current mode with the target mode (Target mode parameter (→ 149)) indicates whether it was possible to reach the target mode.

Mode block perm

Navigation

Expert → Communication → Physical block → Mode block perm (1493)

Description

Displays the Mode block perm: This defines which modes of operation in the Target mode (→ 149) are available for the function block. The operating modes that are supported vary depending on the type and function of the block.

User interface

0 to 255

Mode blk norm

Navigation

Expert → Communication → Physical block → Mode blk norm (1492)

Description

Displays the Mode blk norm: This is available to allow the operator to select the Mode blk norm from the available modes of operation. This can be set using an operating tool in order to help the user configure the operating mode of a function block.

User interface

• Auto
• Out of service

Alarm summary

Navigation

Expert → Communication → Physical block → Alarm summary (1474)

Description

Displays the alarm summary: the current status of the block alarms is displayed. A summary of up to 16 statuses can be displayed.

User interface

• Discrete alarm
• Alm statHiHi lim
• Alm stat Hi lim
• Alm statLoLo lim
• Alm stat Lo lim
• Update Event
Additional information

Description

Currently, the system only displays a change in a static parameter for 10 seconds, and violations of the early warning and alarm limits in the Physical Block function block.

User interface

- Discrete alarm
 Alarm or warning message with a discrete value.
- Alm statHiHi lim
 Upper alarm limit
- Alrm stat Hi lim
 Upper warning limit
- Alm statLoLo lim
 Lower alarm limit
- Alrm stat Lo lim
 Lower warning limit
- Update Event
 This option constitutes a special alarm that is triggered if a static parameter is changed. If such a parameter is modified, the associated bit is set in the Alarm summary parameter (→ 150), the output of the block switches to "GOOD (NC) Active Update Event" (if the current status has a lower priority than this), and the block remains in this state for a duration of 10 s. The block then reverts to the normal state (the output has the last status and the Update Event option bit in the Alarm summary parameter (→ 150) is deleted again).

Software rev.

Navigation

Expert → Communication → Physical block → Software rev. (1478)

Description

Displays the firmware version of the measuring device.

User interface

Max. 16 characters such as letters, numbers or special characters (e.g. @, %, /).

Hardware rev.

Navigation

Expert → Communication → Physical block → Hardware rev. (1479)

Description

Displays the hardware revision of the measuring device.

User interface

Max. 16 characters such as letters, numbers or special characters (e.g. @, %, /).

Manufacturer ID

Navigation

Expert → Communication → Physical block → Manufacturer ID (1502)

Description

Displays the manufacturer ID with which the measuring device has been registered with the PNO (PROFIBUS User Organization).
<table>
<thead>
<tr>
<th>User interface</th>
<th>0 to FFFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factory setting</td>
<td>0x11</td>
</tr>
</tbody>
</table>

Device ID

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Communication → Physical block → Device ID (1480)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the device ID for identifying the measuring device in a PROFIBUS network.</td>
</tr>
<tr>
<td>User interface</td>
<td>Max. 16 characters such as letters, numbers or special characters (e.g. @, %, /).</td>
</tr>
<tr>
<td>Factory setting</td>
<td>Promass300/500PA</td>
</tr>
</tbody>
</table>

Serial number

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Communication → Physical block → Serial number (1481)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the serial number of the measuring device. It can also be found on the nameplate of the sensor and transmitter.</td>
</tr>
<tr>
<td>User interface</td>
<td>Max. 11-digit character string comprising letters and numbers.</td>
</tr>
</tbody>
</table>

Additional information

Uses of the serial number
- To identify the measuring device quickly, e.g. when contacting Endress+Hauser.
- To obtain specific information on the measuring device using the Device Viewer: www.endress.com/deviceviewer

Diagnostics

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Communication → Physical block → Diagnostics (1482)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the diagnostic messages.</td>
</tr>
</tbody>
</table>
| **User interface** | - HW Error
- HW Error
- Temp motor
- Electronic temp
- Checksum error
- Measurement error
- Not initialized
- Init. error
- Zero point error
- Power supply
- Conf invalid
- On warmstart |
Diagnostics mask

Navigation
- Expert → Communication → Physical block → Diagnostics mask (1484)

Description
Displays the diagnostic messages supported by the measuring device.

User interface
- HW Error
- HW Error
- Temp motor
- Electronic temp
- Checksum error
- Measuremnt error
- Not initialized
- Init. error
- Zero point error
- Power supply
- Conf invalid
- On warmstart
- On coldstart
- Maintenance req.
- Char.invalid
- Identi num Error
- More info avible
- Mainten. alarm
- Mainten.demanded
- Fct.chk or sim.
- Inval.proc.cond.

Device certific.

Navigation
- Expert → Communication → Physical block → Device certific. (1486)

Description
Displays certificates of the measuring device, e.g. Ex certificate.

User interface
Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /).
Factory reset

Navigation

Expert → Communication → Physical block → Factory reset (1488)

Description

Use this function to reset a certain set of parameters in a block.

Selection

- to defaults *
- warmstart device
- reset bus addr
- Cancel

Factory setting

Cancel

Descriptor

Navigation

Expert → Communication → Physical block → Descriptor (1489)

Description

Use this function to enter a user-specific string to describe the device within the application.

User entry

Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /).

Device message

Navigation

Expert → Communication → Physical block → Device message (1490)

Description

Use this function to enter a user-definable message (a string) to describe the device within the application or in the plant.

User entry

Max. 32 Zeichen wie Buchstaben, Zahlen oder Sonderzeichen (z.B. @, %, /).

Device inst.date

Navigation

Expert → Communication → Physical block → Device inst.date (1491)

Description

Use this function to enter the date of installation of the device.

User entry

Max. 16 Zeichen wie Buchstaben, Zahlen oder Sonderzeichen (z.B. @, %, /).

* Visibility depends on order options or device settings
Ident num select

Navigation

Expert → Communication → Physical block → Ident num select (1461)

Description

Use this function to select the device master file (GSD).

Selection

- Automatic mode
- Manufacturer
- Profile
- 1AI,1Tot(0x9740)
- 2AI,1Tot(0x9741)
- Promass 80
- Promass 83

Factory setting

Automatic mode

Additional information

Description

In order to integrate the field devices into the bus system, the PROFIBUS system needs a description of the device parameters, such as output data, input data, data format, data volume and supported transmission rate. These data are available in the device master file (GSD) which is provided to the PROFIBUS Master when the communication system is commissioned.

Hardware lock

Navigation

Expert → Communication → Physical block → Hardware lock (1499)

Description

Displays the hardware write protection.

User interface

- Unprotected
- Protected

Additional information

Description

Indicates whether it is possible to write-access the measuring device via PROFIBUS (acyclic data transmission, e.g. via the “FieldCare” operating program).

For detailed information on hardware write protection, see the "Write protection via write protection switch" section of the Operating Instructions.

User interface

- Unprotected
 Write access via PROFIBUS is possible (acyclic data transmission).
- Protected
 Write access via PROFIBUS is locked (acyclic data transmission).
Feature support

Navigation
Expert → Communication → Physical block → Feature support (1477)

Description
Displays the PROFIBUS features that are supported by the measuring device.

User interface
- Condensed status
- Classic diag
- Data ex.broad.
- MS1 app.relation
- PROFIsafe comm.

Feature enabled

Navigation
Expert → Communication → Physical block → Feature enabled (1476)

Description
Displays the PROFIBUS features that are enabled in the measuring device.

User interface
- Condensed status
- Classic diag
- Data ex.broad.
- MS1 app.relation
- PROFIsafe comm.

Condensed status

Navigation
Expert → Communication → Physical block → Condensed status (1500)

Description
Use this function to switch the condensed status diagnostic on and off.

Selection
- Off
- On

Factory setting
On

3.6.4 "Web server" submenu

Navigation
Expert → Communication → Web server

Web server

Webserv.language (7221) → 157
Webserv.language

Navigation

Expert → Communication → Web server → Webserv.language (7221)

Description

Use this function to select the Web server language setting.

Selection

- English
- Deutsch
- Français
- Español
- Italiano
- Nederlands
- Portuguesa
- Polski
- русский язык (Ru)
- Svenska
- Türkçe
- 中文 (Chinese)
- 日本語 (Japanese)
- 한국어 (Korean)
- Bahasa Indonesia
- tiếng Việt (Vit)
- čeština (Czech)

Factory setting

English

MAC Address

Navigation

Expert → Communication → Web server → MAC Address (7214)

Description

Displays the MAC address of the measuring device.

8) Media Access Control
User interface
Unique 12-digit character string comprising letters and numbers

Factory setting
Each measuring device is given an individual address.

Additional information
Example
For the display format
00:07:05:10:01:5F

DHCP client

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Communication → Web server → DHCP client (7212)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to activate and deactivate the DHCP client functionality.</td>
</tr>
<tr>
<td>Selection</td>
<td>Off, On</td>
</tr>
<tr>
<td>Factory setting</td>
<td>Off</td>
</tr>
<tr>
<td>Additional information</td>
<td>Result</td>
</tr>
<tr>
<td></td>
<td>If the DHCP client functionality of the Web server is activated, the IP address (→ 158), Subnet mask (→ 158) and Default gateway (→ 159) are set automatically.</td>
</tr>
<tr>
<td></td>
<td>Identification is via the MAC address of the measuring device.</td>
</tr>
</tbody>
</table>

IP address

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Communication → Web server → IP address (7209)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Display or enter the IP address of the Web server integrated in the measuring device.</td>
</tr>
<tr>
<td>User entry</td>
<td>4 octet: 0 to 255 (in the particular octet)</td>
</tr>
<tr>
<td>Factory setting</td>
<td>192.168.1.212</td>
</tr>
</tbody>
</table>

Subnet mask

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Communication → Web server → Subnet mask (7211)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Display or enter the subnet mask.</td>
</tr>
<tr>
<td>User entry</td>
<td>4 octet: 0 to 255 (in the particular octet)</td>
</tr>
</tbody>
</table>
Factory setting

255.255.255.0

Default gateway

Navigation

Expert → Communication → Web server → Default gateway (7210)

Description

Display or enter the Default gateway (→ 159).

User entry

4 octet: 0 to 255 (in the particular octet)

Factory setting

0.0.0.0

Webserver funct.

Navigation

Expert → Communication → Web server → Webserver funct. (7222)

Description

Use this function to switch the Web server on and off.

Selection

- Off
- HTML Off
- On

Factory setting

On

Additional information

Description

Once disabled, the Webserver funct. can only be re-enabled via or the operating tool FieldCare.

Selection

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>- The web server is completely disabled.</td>
</tr>
<tr>
<td></td>
<td>- Port 80 is locked.</td>
</tr>
<tr>
<td>HTML Off</td>
<td>The HTML version of the web server is not available.</td>
</tr>
<tr>
<td>On</td>
<td>- The complete functionality of the web server is available.</td>
</tr>
<tr>
<td></td>
<td>- JavaScript is used.</td>
</tr>
<tr>
<td></td>
<td>- The password is transferred in an encrypted state.</td>
</tr>
<tr>
<td></td>
<td>- Any change to the password is also transferred in an encrypted state.</td>
</tr>
</tbody>
</table>

Login page

Navigation

Expert → Communication → Web server → Login page (7273)

Description

Use this function to select the format of the login page.
Selection

- Without header
- With header

Factory setting

With header

3.6.5 "WLAN settings" submenu

Navigation

Expert → Communication → WLAN settings

<table>
<thead>
<tr>
<th>WLAN settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>WLAN (2702)</td>
</tr>
<tr>
<td>WLAN mode (2717)</td>
</tr>
<tr>
<td>SSID name (2714)</td>
</tr>
<tr>
<td>Network security (2705)</td>
</tr>
<tr>
<td>Sec. identific. (2718)</td>
</tr>
<tr>
<td>User name (2715)</td>
</tr>
<tr>
<td>WLAN password (2716)</td>
</tr>
<tr>
<td>WLAN IP address (2711)</td>
</tr>
<tr>
<td>WLAN MAC address (2703)</td>
</tr>
<tr>
<td>WLAN subnet mask (2709)</td>
</tr>
<tr>
<td>WLAN MAC address (2703)</td>
</tr>
<tr>
<td>WLAN passphrase (2706)</td>
</tr>
<tr>
<td>Assign SSID name (2708)</td>
</tr>
<tr>
<td>SSID name (2707)</td>
</tr>
<tr>
<td>WLAN channel (2704)</td>
</tr>
<tr>
<td>Select antenna (2713)</td>
</tr>
<tr>
<td>Connection state (2722)</td>
</tr>
<tr>
<td>Rec.sig.strength (2721)</td>
</tr>
</tbody>
</table>
WLAN

Navigation
Expert → Communication → WLAN settings → WLAN (2702)

Description
Use this function to enable and disable the WLAN connection.

Selection
- Disable
- Enable

Factory setting
Enable

WLAN mode

Navigation
Expert → Communication → WLAN settings → WLAN mode (2717)

Description
Use this function to select the WLAN mode.

Selection
- Access point
- WLAN Client

Factory setting
Access point

SSID name

Navigation
Expert → Communication → WLAN settings → SSID name (2714)

Prerequisite
The client is activated.

Description
Use this function to enter the user-defined SSID name (max. 32 characters) of the WLAN network.

User entry
–

Factory setting
–
Network security

Navigation
- Expert → Communication → WLAN settings → Network security (2705)

Description
Use this function to select the type of security for the WLAN interface.

Selection
- Unsecured
- WPA2-PSK
- EAP-PEAP MSCHAP2 *
- EAP-PEAP NoAuth. *
- EAP-TLS *

Factory setting
WPA2-PSK

Additional information
Selection
- Unsecured
 Access the WLAN connection without identification.
- WPA2-PSK
 Access the WLAN connection with a network key.

Sec. identific.

Navigation
- Expert → Communication → WLAN settings → Sec. identific. (2718)

Description
Use this function to select the security settings (download via the menu: Data Management > Security > Download WLAN).

User interface
- Trust. iss.cert.
- Device certific.
- Dev. private key

User name

Navigation
- Expert → Communication → WLAN settings → User name (2715)

Description
Use this function to enter the username of the WLAN network.

User entry
- *

Factory setting
- *

* Visibility depends on order options or device settings
WLAN password

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Communication → WLAN settings → WLAN password (2716)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the WLAN password for the WLAN network.</td>
</tr>
<tr>
<td>User entry</td>
<td>–</td>
</tr>
<tr>
<td>Factory setting</td>
<td>–</td>
</tr>
</tbody>
</table>

WLAN IP address

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Communication → WLAN settings → WLAN IP address (2711)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the IP address of the measuring device's WLAN connection.</td>
</tr>
<tr>
<td>User entry</td>
<td>4 octet: 0 to 255 (in the particular octet)</td>
</tr>
<tr>
<td>Factory setting</td>
<td>192.168.1.212</td>
</tr>
</tbody>
</table>

WLAN MAC address

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Communication → WLAN settings → WLAN MAC address (2703)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the MAC address of the measuring device.</td>
</tr>
<tr>
<td>User interface</td>
<td>Unique 12-digit character string comprising letters and numbers</td>
</tr>
<tr>
<td>Factory setting</td>
<td>Each measuring device is given an individual address.</td>
</tr>
<tr>
<td>Additional information</td>
<td>Example</td>
</tr>
<tr>
<td></td>
<td>For the display format</td>
</tr>
<tr>
<td></td>
<td>00:07:05:10:01:5F</td>
</tr>
</tbody>
</table>

WLAN subnet mask

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Communication → WLAN settings → WLAN subnet mask (2709)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the subnet mask.</td>
</tr>
<tr>
<td>User entry</td>
<td>4 octet: 0 to 255 (in the particular octet)</td>
</tr>
</tbody>
</table>

9) Media Access Control
Description of device parameters

Proline Promass 300 PROFIBUS PA

Factory setting
255.255.255.0

WLAN passphrase

Navigation
Endress+Hauser

Prerequisite
The WPA2-PSK option is selected in the Security type parameter (→ 162).

Description
Use this function to enter the network key.

User entry
8 to 32-digit character string comprising numbers, letters and special characters

Factory setting
Serial number of the measuring device (e.g. L100A802000)

Assign SSID name

Navigation
Endress+Hauser

Description
Use this function to select which name is used for the SSID.

Selection
- Device tag
- User-defined

Factory setting
User-defined

Additional information
Selection
- Device tag
 The device tag name is used as the SSID.
- User-defined
 A user-defined name is used as the SSID.

SSID name

Navigation
Endress+Hauser

Prerequisite
- The User-defined option is selected in the Assign SSID name parameter (→ 164) parameter.
- The Access point option is selected in the WLAN mode parameter (→ 161) parameter.

Description
Use this function to enter a user-defined SSID name.

User entry
Max. 32-digit character string comprising numbers, letters and special characters

10) Service Set Identifier
WLAN channel

Navigation
Expert → Communication → WLAN settings → WLAN channel (2704)

Description
Use this function to enter the WLAN channel.

User entry
1 to 11

Factory setting
6

Additional information
- It is only necessary to enter a WLAN channel if multiple WLAN devices are in use.
- If just one measuring device is in use, it is recommended to keep the factory setting.

Select antenna

Navigation
Expert → Communication → WLAN settings → Select antenna (2713)

Description
Use this function to select whether the external or internal antenna is used for reception.

Selection
- External antenna
- Internal antenna

Factory setting
Internal antenna

Connection state

Navigation
Expert → Communication → WLAN settings → Connection state (2722)

Description
The connection status is displayed.

User interface
- Connected
- Not connected

Factory setting
Not connected
Rec.sig.strength

Navigation
Expert → Communication → WLAN settings → Rec.sig.strength (2721)

Description
Displays the signal strength received.

User interface
- Low
- Medium
- High

Factory setting
High

Gateway IP addr.

Navigation
Expert → Communication → WLAN settings → Gateway IP addr. (2719)

Description
Use this function to enter the IP address of the gateway.

Factory setting
192.168.1.212

IP address DNS

Navigation
Expert → Communication → WLAN settings → IP address DNS (2720)

Description
Use this function to enter the IP address of the domain name server.

Factory setting
192.168.1.212

3.7 "Analog inputs" submenu

Navigation
Expert → Analog inputs
3.7.1 "Analog input 1 to n" submenu

Navigation
Expert → Analog inputs → Analog input 1 to n

<table>
<thead>
<tr>
<th>Channel (1561–1 to n)</th>
<th>→ 167</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV filter time (1524–1 to n)</td>
<td>→ 168</td>
</tr>
<tr>
<td>Fail safe type (1525–1 to n)</td>
<td>→ 168</td>
</tr>
<tr>
<td>Fail-safe value (1526–1 to n)</td>
<td>→ 169</td>
</tr>
<tr>
<td>Out value (1552–1 to n)</td>
<td>→ 169</td>
</tr>
<tr>
<td>Out status (1564–1 to n)</td>
<td>→ 169</td>
</tr>
<tr>
<td>Out status (1549–1 to n)</td>
<td>→ 170</td>
</tr>
</tbody>
</table>

Channel

Navigation
Expert → Analog inputs → Analog input 1 to n → Channel (1561–1 to n)

Description
For selecting the process variable.

Selection
- Mass flow
- Volume flow
- Correct. vol. flow *
- Density
- Ref. density *
- Target mass flow *
- Carrier mass fl. *
- Concentration
- Target vol. flow *
- Carrier vol. fl. *
- Targ. corr. vol. fl *
- Carr. corr. vol. fl *
- Dynam. viscosity *
- Kinematic visc. *
- Temp. CompDynVisc *
- Temp. CompKinVisc *
- Temperature
- Carr. pipe temp. *
- Electronic temp.
- Osc. freq. 0
- Osc. freq. 1 *
- Osc. ampl. 0 *
- Osc. ampl. 1 *

* Visibility depends on order options or device settings
Proline Promass 300 PROFIBUS PA

- Freq. fluct. 0
- Freq. fluct. 1
- Osc. damping 0
- Osc. damping 1
- Osc.damp.fluct 0
- Osc.damp.fluct 1
- Signal asymmetry
- Exc. current 0
- Exc. current 1
- HBSI
- Current input 1
- Ref.dens.altern.
- GSV flow
- GSVa
- NSV flow
- NSVa
- S&W volume flow
- Oil density
- Water density
- Water cut
- Oil mass flow
- Water mass flow
- Oil volume flow
- Water vol. flow
- Oil corr.vol.fl.
- Water corr.v.fl.

Factory setting
Mass flow

PV filter time

Navigation
Expert → Analog inputs → Analog input 1 to n → PV filter time (1524–1 to n)

Description
Use this function to enter a time to suppress signal peaks. During the specified time the Analog input does not respond to an erratic increase in the process variable.

User entry
Positive floating-point number

Factory setting
0

Fail safe type

Navigation
Expert → Analog inputs → Analog input 1 to n → Fail safe type (1525–1 to n)

Description
Use this function to select the failure mode.

* Visibility depends on order options or device settings
Selection
- Fail-safe value
- Fallback value
- Off

Factory setting
Off

Additional information

Selection

If an input or simulation value has the status BAD, the function block uses this predefined failure value:
- Fail-safe value
 A substitute value is used. This is specified in the **Fail-safe value** parameter (→ 169).
- Fallback value
 If the value was good at one point, then this last valid value is used.
- Off
 The system continues to use the bad value.

Fail-safe value

Navigation

Expert → Analog inputs → Analog input 1 to n → Fail-safe value (1526–1 to n)

Prerequisite

In **Fail safe type** parameter (→ 168), the **Fail-safe value** option is selected.

Description

Use this function to enter a failure value. The value entered is displayed as the output value (**Out value** parameter (→ 169)) in the event of an error.

User entry

Signed floating-point number

Factory setting

0

Out value

Navigation

Expert → Analog inputs → Analog input 1 to n → Out value (1552–1 to n)

Prerequisite

In **Target mode** parameter (→ 171), the Auto option is selected.

Description

Displays the analog value which is calculated when the function is executed.

User interface

Signed floating-point number

Out status

Navigation

Expert → Analog inputs → Analog input 1 to n → Out status (1564–1 to n)

Description

Displays the current output status (Good, Bad, Uncertain).
Description of device parameters

Proline Promass 300 PROFIBUS PA

User interface
- Good
- Uncertain
- Bad

Out status

Navigation
Expert → Analog inputs → Analog input 1 to n → Out status (1549–1 to n)

Prerequisite
In Target mode parameter (→ 171), the Auto option is selected.

Description
Displays the current output status (hex value).

User interface
0 to 0xFF

Tag description

Navigation
Expert → Analog inputs → Analog input 1 to n → Tag description (1562–1 to n)

Description
Use this function to enter a string to identify the block.

User entry
Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /).

Static revision

Navigation
Expert → Analog inputs → Analog input 1 to n → Static revision (1560–1 to n)

Description
Displays the event counter: every write access to a static block parameter is counted.

User interface
0 to FFFF

Additional information

Description
Static parameters are parameters that are not changed by the process.

Strategy

Navigation
Expert → Analog inputs → Analog input 1 to n → Strategy (1559–1 to n)

Description
Use this function to enter the strategy: makes it possible to group blocks by entering identical numbers.

User entry
0 to FFFF
Alert key

Navigation

Expert → Analog inputs → Analog input 1 to n → Alert key (1522–1 to n)

Description
Use this function to enter the alert key: identifies the section of the plant where the transmitter is located. This helps in pinpointing events.

User entry
0 to 0xFF

Factory setting
0

Target mode

Navigation

Expert → Analog inputs → Analog input 1 to n → Target mode (1563–1 to n)

Description
Displays the Target mode: The target mode indicates which mode of operation is used for this function block. This mode is generally set by a control application.

User interface
- Auto
- Man
- Out of service

Mode block act

Navigation

Expert → Analog inputs → Analog input 1 to n → Mode block act (1521–1 to n)

Description
Displays the Mode block act: Under certain conditions, it is possible that a function block will not operate in the required mode. In this case, the Mode block act shows the actual mode in which the function block is currently operating. A comparison of the Mode block act with the Target mode indicates whether it was possible to reach the Target mode (→ 171).

User interface
- Auto
- Man
- Out of service

Additional information

A comparison of the current mode with the target mode (Target mode parameter (→ 171)) indicates whether it was possible to reach the target mode.
Mode block perm

Navigation
- Expert → Analog inputs → Analog input 1 to n → Mode block perm (1553–1 to n)

Description
Displays the Mode block perm: This defines which modes of operation in the Target mode (→ 171) are available for the function block. The operating modes that are supported vary depending on the type and function of the block.

User interface
- 0 to 255

Mode blk norm

Navigation
- Expert → Analog inputs → Analog input 1 to n → Mode blk norm (1546–1 to n)

Description
Displays the Mode blk norm: This is available to allow the operator to select the Mode blk norm from the available modes of operation. This can be set using an operating tool in order to help the user configure the operating mode of a function block.

User interface
- Auto
- Man
- Out of service

Alarm summary

Navigation
- Expert → Analog inputs → Analog input 1 to n → Alarm summary (1537–1 to n)

Description
Displays the alarm summary: the current status of the block alarms is displayed. A summary of up to 16 statuses can be displayed.

User interface
- Discrete alarm
- Alm statHiHi lim
- Alrm stat Hi lim
- Alm statLoLo lim
- Alrm stat Lo lim
- Update Event

Additional information

Description
Currently, the system only displays a change in a static parameter for 10 seconds, and violations of the early warning and alarm limits in the Analog Inputs function block.
Batch ID

Navigation
- Expert → Analog inputs → Analog input 1 to n → Batch ID (1533–1 to n)

Description
Use this function to enter the batch ID: identification of a specific batch to make it possible to assign device-specific information (e.g. errors, alarm conditions etc.) to the batching process.

User entry
Positive integer

Batch operation

Navigation
- Expert → Analog inputs → Analog input 1 to n → Batch operation (1534–1 to n)

Description
Use this function to enter the batch operation: control recipe operation number to identify the active control recipe operation.

User entry
0 to 65535

Factory setting
0

Batch phase

Navigation
- Expert → Analog inputs → Analog input 1 to n → Batch phase (1535–1 to n)

Description
Use this function to enter the batch phase: control recipe phase number to identify the active control recipe operation.

User entry
0 to 65535

Factory setting
0

Batch Recipe

Navigation
- Expert → Analog inputs → Analog input 1 to n → Batch Recipe (1536–1 to n)

Description
Use this function to enter the batch recipe unit procedure (RUP): identification of the active control recipe unit procedure or the associated unit (e.g. inductor, centrifuge, drying agent).

User entry
0 to 65535

Factory setting
0
Description of device parameters

Proline Promass 300 PROFIBUS PA

Additional information

Description

The unit is defined in IEC61512 Part1/ISA S88 but its meaning is different to that of the parameter unit, such as system units.

PVscale lo range

Navigation

Expert → Analog inputs → Analog input 1 to n → PVscale lo range (1554–1 to n)

Description

Use this function to enter the lower value range for the input value (Process Value Scale) in system units. The process value scale normalizes the input value to a user-specific range.

User entry

Signed floating-point number

Factory setting

0

PVscale up range

Navigation

Expert → Analog inputs → Analog input 1 to n → PVscale up range (1555–1 to n)

Description

Use this function to enter the upper value range for the input value (Process Value Scale) in system units. The process value scale normalizes the input value to a user-specific range.

User entry

Signed floating-point number

Factory setting

100.0

Out scale low

Navigation

Expert → Analog inputs → Analog input 1 to n → Out scale low (1548–1 to n)

Description

Use this function to enter the lower value range for the output value in system units.

User entry

Signed floating-point number

Factory setting

0

Out scale up

Navigation

Expert → Analog inputs → Analog input 1 to n → Out scale up (1551–1 to n)

Description

Use this function to enter the upper value range for the output value in system units.
User entry
Signed floating-point number

Factory setting
100.0

Lin type

Navigation
Expert → Analog inputs → Analog input 1 to n → Lin type (1523–1 to n)

Description
Use this function to switch off the linearization type for the input value.

Selection
Off

Factory setting
Off

Out unit

Navigation
Expert → Analog inputs → Analog input 1 to n → Out unit (1550–1 to n)

Description
Use this function to enter a numerical code (hex) for the system unit.

User entry
0 to 65535

Factory setting
1997

Out dec_point

Navigation
Expert → Analog inputs → Analog input 1 to n → Out dec_point (1547–1 to n)

Description
Use this function to enter the maximum number of decimal places that are displayed for the output value.

User entry
0 to 7

Factory setting
0

Alarm hysteresis

Navigation
Expert → Analog inputs → Analog input 1 to n → Alarm hysteresis (1527–1 to n)

Description
Use this function to enter the hysteresis value for the upper and lower warning or alarm limit values.

User entry
Signed floating-point number
Hi Hi Lim

Navigation
Expert → Analog inputs → Analog input 1 to n → Hi Hi Lim (1528–1 to n)

Description
Use this function to enter the value for the upper alarm limit (HiHi alarm value parameter (→ 177)).

User entry
Signed floating-point number

Factory setting
Positive floating-point number

Additional information

Description
If the output value Out value (→ 169) exceeds this limit value, the HiHi alarm state parameter (→ 178) is output.

User entry
The value is entered in the defined units (Out unit parameter (→ 175)) and must be in the range defined in the Out scale low parameter (→ 174) and Out scale up parameter (→ 174).

Hi Lim

Navigation
Expert → Analog inputs → Analog input 1 to n → Hi Lim (1529–1 to n)

Description
Use this function to enter the value for the upper warning limit (Hi alarm value parameter (→ 178)).

User entry
Signed floating-point number

Factory setting
Positive floating-point number

Additional information

Description
If the output value Out value (→ 169) exceeds this limit value, the Hi alarm state parameter (→ 178) is output.

User entry
The value is entered in the defined units (Out unit parameter (→ 175)) and must be in the range defined in the Out scale low parameter (→ 174) and Out scale up parameter (→ 174).
Lo Lim

Navigation
Expert → Analog inputs → Analog input 1 to n → Lo Lim (1530–1 to n)

Description
Use this function to enter the value for the lower warning limit (Lo alarm value parameter (→ 178)).

User entry
Signed floating-point number

Factory setting
Negative floating-point number

Additional information
Description
If the output value Out value (→ 169) exceeds this limit value, the Lo alarm state parameter (→ 179) is output.

User entry
The value is entered in the defined units (Out unit parameter (→ 175)) and must be in the range defined in the Out scale low parameter (→ 174) and Out scale up parameter (→ 174).

Lo Lo Lim

Navigation
Expert → Analog inputs → Analog input 1 to n → Lo Lo Lim (1531–1 to n)

Description
Use this function to enter the value for the lower alarm limit (LoLo alarm value parameter (→ 179)).

User entry
Signed floating-point number

Factory setting
Negative floating-point number

Additional information
Description
If the output value Out value (→ 169) exceeds this limit value, the LoLo alarm state parameter (→ 179) is output.

User entry
The value is entered in the defined units (Out unit parameter (→ 175)) and must be in the range defined in the Out scale low parameter (→ 174) and Out scale up parameter (→ 174).

HiHi alarm value

Navigation
Expert → Analog inputs → Analog input 1 to n → HiHi alarm value (1541–1 to n)

Description
Displays the alarm value for the upper alarm limit value (Hi Hi Lim parameter (→ 176)).
HiHi alarm state

Navigation
Expert → Analog inputs → Analog input 1 to n → HiHi alarm state (1540–1 to n)

Description
Displays the status for the upper alarm limit value ([Hi Hi Lim parameter](#))

User interface
- No alarm
- Alm statHiHi lim

Additional information
User interface
The display contains information such as the time of the alarm (date and time) and the value that triggered the alarm.

Hi alarm value

Navigation
Expert → Analog inputs → Analog input 1 to n → Hi alarm value (1539–1 to n)

Description
Displays the alarm value for the upper warning limit value ([Hi Lim parameter](#))

User interface
Signed floating-point number

Hi alarm state

Navigation
Expert → Analog inputs → Analog input 1 to n → Hi alarm state (1538–1 to n)

Description
Displays the status for the upper warning limit value ([Hi Lim parameter](#))

User interface
- No warning
- Alrm stat Hi lim

Additional information
User interface
The display contains information such as the time of the warning (date and time) and the value that triggered the alarm.

Lo alarm value

Navigation
Expert → Analog inputs → Analog input 1 to n → Lo alarm value (1543–1 to n)

Description
Displays the alarm value for the lower warning limit value ([Lo Lim parameter](#)).
User interface
Signed floating-point number

Lo alarm state

Navigation
Expert → Analog inputs → Analog input 1 to n → Lo alarm state (1542–1 to n)

Description
Displays the status for the lower warning limit value (Lo Lim parameter → 177).

User interface
- No warning
- Alrm stat Lo lim

Additional information
User interface
The display contains information such as the time of the warning (date and time) and the value that triggered the alarm.

LoLo alarm value

Navigation
Expert → Analog inputs → Analog input 1 to n → LoLo alarm value (1545–1 to n)

Description
Displays the alarm value for the lower alarm limit value (Lo Lo Lim parameter → 177).

User interface
Signed floating-point number

LoLo alarm state

Navigation
Expert → Analog inputs → Analog input 1 to n → LoLo alarm state (1544–1 to n)

Description
Displays the status for the lower alarm limit value (Lo Lo Lim parameter → 177).

User interface
- No alarm
- Alm stat LoLo lim

Additional information
User interface
The display contains information such as the time of the alarm (date and time) and the value that triggered the alarm.

Simulate enabled

Navigation
Expert → Analog inputs → Analog input 1 to n → Simulate enabled (1556–1 to n)

Description
Use this function to enable or disable block simulation.
Selection
- Disable
- Enable

Factory setting
Disable

Additional information
Description
The simulation is used to bypass the physical I/O channel. In this way, the block remains in the normal mode and uses the simulated discrete I/O channel during operation.

Simulate value

Navigation
- Expert → Analog inputs → Analog input 1 to n → Simulate value (1558–1 to n)

Description
Use this function to enter a simulation value for the block.

User entry
Signed floating-point number

Factory setting
0

Additional information
Description
The simulation is used to bypass the physical I/O channel. In this way, the block remains in the normal mode and uses the simulated value during operation.

Simulate status

Navigation
- Expert → Analog inputs → Analog input 1 to n → Simulate status (1557–1 to n)

Description
Use this function to enter a simulation status for the block.

User entry
0 to 255

Factory setting
0

Additional information
Description
The simulation is used to bypass the physical I/O channel. In this way, the block remains in the normal mode and uses the simulated status during operation.

Out unit text

Navigation
- Expert → Analog inputs → Analog input 1 to n → Out unit text (1532–1 to n)

Description
Use this function to enter the out unit text: if a specific out unit does not appear in the code list, the user can enter the specific text. The unit code is then equivalent to the definition provided here.
User entry
Max. 16 characters such as letters, numbers or special characters (e.g. @, %, /).

Factory setting
NoUnit

3.8 "Discrete inputs" submenu

Navigation
- Expert → Discrete inputs

3.8.1 "Discrete input 1 to n" submenu

Navigation
- Expert → Discrete inputs → Discrete input 1 to n

Channel

Navigation
- Expert → Discrete inputs → Discrete input 1 to n → Channel (2187–1 to n)

Description
Use this function to assign a measured variable to the particular function block.

Selection
- Empty pipe det.
- Low flow cut off
- Verific. status

Visibility depends on order options or device settings
Description of device parameters

Factory setting

Empty pipe det.

Invert

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Invert (2188–1 to n)

Description

Use this function to invert the input signal.

Selection

- Off
- On

Factory setting

Off

Fail safe type

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Fail safe type (2189–1 to n)

Description

Use this function to select the failure mode.

Selection

- Fail-safe value
- Fallback value
- Off

Factory setting

Off

Additional information

Selection

If an input or simulation value has the status BAD, the function block uses this predefined failure value:

- Fail-safe value
 A substitute value is used. This is specified in the **Fail-safe value** parameter (→ 182).
- Fallback value
 If the value was good at one point, then this last valid value is used.
- Off
 The system continues to use the bad value.

Fail-safe value

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Fail-safe value (2190–1 to n)

Prerequisite

In **Fail safe type** parameter (→ 182), the **Fail-safe value** option is selected.

Description

Use this function to enter a failure value. The value entered is displayed as the output value (**Out value** parameter (→ 183)) in the event of an error.

User entry

0 to 255
Factory setting

0

Out value

Navigation
Expert → Discrete inputs → Discrete input 1 to n → Out value (2194–1 to n)

Prerequisite
In **Target mode** parameter (→ 184), the **Auto** option is selected.

Description
Displays the analog value which is calculated when the function is executed.

User interface
0 to 255

Out status

Navigation
Expert → Discrete inputs → Discrete input 1 to n → Out status (2203–1 to n)

Description
Displays the current output status (Good, Bad, Uncertain).

User interface
- Good
- Uncertain
- Bad

Tag description

Navigation
Expert → Discrete inputs → Discrete input 1 to n → Tag description (2201–1 to n)

Description
Use this function to enter a string to identify the block.

User entry
Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /).
Static revision

Navigation
- Expert → Discrete inputs → Discrete input 1 to n → Static revision (2200–1 to n)

Description
Displays the event counter: every write access to a static block parameter is counted.

User interface
0 to FFFF

Additional information
- Static parameters are parameters that are not changed by the process.

Strategy

Navigation
- Expert → Discrete inputs → Discrete input 1 to n → Strategy (2199–1 to n)

Description
Use this function to enter the strategy: makes it possible to group blocks by entering identical numbers.

User entry
0 to FFFF

Factory setting
0

Alert key

Navigation
- Expert → Discrete inputs → Discrete input 1 to n → Alert key (2182–1 to n)

Description
Use this function to enter the alert key: identifies the section of the plant where the transmitter is located. This helps in pinpointing events.

User entry
0 to 0xFF

Factory setting
0

Target mode

Navigation
- Expert → Discrete inputs → Discrete input 1 to n → Target mode (2202–1 to n)

Description
Displays the Target mode: The target mode indicates which mode of operation is used for this function block. This mode is generally set by a control application.

User interface
- Auto
- Man
- Out of service
Mode block act

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Mode block act (2181–1 to n)

Description

Displays the Mode block act: Under certain conditions, it is possible that a function block will not operate in the required mode. In this case, the Mode block act shows the actual mode in which the function block is currently operating. A comparison of the Mode block act with the Target mode indicates whether it was possible to reach the Target mode (→ 184).

User interface

- Auto
- Man
- Out of service

Additional information

A comparison of the current mode with the target mode (Target mode parameter (→ 184)) indicates whether it was possible to reach the target mode.

Mode block perm

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Mode block perm (2195–1 to n)

Description

Displays the Mode block perm: This defines which modes of operation in the Target mode (→ 184) are available for the function block. The operating modes that are supported vary depending on the type and function of the block.

User interface

0 to 255

Mode blk norm

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Mode blk norm (2192–1 to n)

Description

Displays the Mode blk norm: This is available to allow the operator to select the Mode blk norm from the available modes of operation. This can be set using an operating tool in order to help the user configure the operating mode of a function block.

User interface

- Auto
- Man
- Out of service

Alarm summary

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Alarm summary (2191–1 to n)

Description

Displays the alarm summary: the current status of the block alarms is displayed. A summary of up to 16 statuses can be displayed.
Description of device parameters

User interface

• Discrete alarm
• Alm statHiHi lim
• Alrm stat Hi lim
• Alm statLoLo lim
• Alrm stat Lo lim
• Update Event

Additional information

Description
Currently, the system only displays a change in a static parameter for 10 seconds, and violations of the early warning and alarm limits in the Discrete Inputs function block.

Batch ID

Navigation
Expert → Discrete inputs → Discrete input 1 to n → Batch ID (2183–1 to n)

Description
Use this function to enter the batch ID: identification of a specific batch to make it possible to assign device-specific information (e.g. errors, alarm conditions etc.) to the batching process.

User entry
Positive integer

Batch operation

Navigation
Expert → Discrete inputs → Discrete input 1 to n → Batch operation (2184–1 to n)

Description
Use this function to enter the batch operation: control recipe operation number to identify the active control recipe operation.

User entry
0 to 65 535

Factory setting
0

Batch phase

Navigation
Expert → Discrete inputs → Discrete input 1 to n → Batch phase (2185–1 to n)

Description
Use this function to enter the batch phase: control recipe phase number to identify the active control recipe operation.

User entry
0 to 65 535

Factory setting
0
Batch Recipe

Navigation
- Expert → Discrete inputs → Discrete input 1 to n → Batch Recipe (2186–1 to n)

Description
Use this function to enter the batch recipe unit procedure (RUP): identification of the active control recipe unit procedure or the associated unit (e.g. inductor, centrifuge, drying agent).

User entry
0 to 65535

Factory setting
0

Additional information

Description

The unit is defined in IEC61512 Part1/ISA S88 but its meaning is different to that of the parameter unit, such as system units.

Simulate enabled

Navigation
- Expert → Discrete inputs → Discrete input 1 to n → Simulate enabled (2196–1 to n)

Description
Use this function to enable or disable block simulation.

Selection
- Disable
- Enable

Factory setting
Disable

Additional information

Description

The simulation is used to bypass the physical I/O channel. In this way, the block remains in the normal mode and uses the simulated discrete I/O channel during operation.

Simulate value

Navigation
- Expert → Discrete inputs → Discrete input 1 to n → Simulate value (2198–1 to n)

Description
Use this function to enter a simulation value for the block.

User entry
0 to 255

Factory setting
0

Additional information

Description

The simulation is used to bypass the physical I/O channel. In this way, the block remains in the normal mode and uses the simulated value during operation.
Simulate status

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Simulate status (2197–1 to n)

Description

Use this function to enter a simulation status for the block.

User entry

0 to 255

Factory setting

0

Additional information

Description

The simulation is used to bypass the physical I/O channel. In this way, the block remains in the normal mode and uses the simulated status during operation.

3.9 "Analog outputs" submenu

Navigation

Expert → Analog outputs

3.9.1 "Analog output 1 to n" submenu

Navigation

Expert → Analog outputs → Analog output 1 to n

Set point val (1661–1 to n) → 189
Set point status (1660–1 to n) → 189
Fail safe time (1635–1 to n) → 189
Fail safe type (1636–1 to n) → 190
Fail-safe value (1637–1 to n) → 190
Out value (1647–1 to n) → 190
Out status (1669–1 to n) → 191
Out status (1645–1 to n) → 191
Set point val

Navigation

- - - Profibus → Analog outputs → Analog output 1 to n → Set point val (1661–1 to n)

Description

Use this function to enter an analog set point.

User entry

Signed floating-point number

Factory setting

0

Set point status

Navigation

- - - Profibus → Analog outputs → Analog output 1 to n → Set point status (1660–1 to n)

Description

Use this function to enter a status for the analog set point.

User entry

0 to 255

Factory setting

0

Fail safe time

Navigation

- - - Profibus → Analog outputs → Analog output 1 to n → Fail safe time (1635–1 to n)

Description

Use this function to enter a time span within which the criteria for an error must be met continuously before an error message or notice message is generated.

User entry

0 to 999.0

Factory setting

0

Additional information

User entry

NOTE!

If this parameter is used, error messages and notice messages are delayed by the set time before being relayed to the higher-level controller (DCS, etc.).

- Check in advance to ensure that the safety-specific requirements of the process would permit this.
- If the error and notice messages may not be suppressed, a value of 0 seconds must be configured here.*
Fail safe type

Navigation
- Expert → Analog outputs → Analog output 1 to n → Fail safe type (1636–1 to n)

Description
Use this function to select the failure mode.

Selection
- Fail-safe value
- Fallback value
- Off

Factory setting
Fallback value

Additional information
Selection
If an input or simulation value has the status BAD, the function block uses this predefined failure value:
- Fail-safe value
 A substitute value is used. This is specified in the Fail-safe value parameter (190).
- Fallback value
 If the value was good at one point, then this last valid value is used.
- Off
 The system continues to use the bad value.

Fail-safe value

Navigation
- Expert → Analog outputs → Analog output 1 to n → Fail-safe value (1637–1 to n)

Prerequisite
In Fail safe type parameter (190), the Fallback value option is selected.

Description
Use this function to enter a failure value. The value entered is displayed as the output value (Out value parameter (190)) in the event of an error.

User entry
Signed floating-point number

Factory setting
0

Out value

Navigation
- Expert → Analog outputs → Analog output 1 to n → Out value (1647–1 to n)

Prerequisite
In Target mode parameter (192), the Auto option is selected.

Description
Displays the analog value which is calculated when the function is executed.

User interface
Signed floating-point number
Out status

Navigation
- Expert → Analog outputs → Analog output 1 to n → Out status (1669–1 to n)

Description
Displays the current output status (Good, Bad, Uncertain).

User interface
- Good
- Uncertain
- Bad

Out status

Navigation
- Expert → Analog outputs → Analog output 1 to n → Out status (1645–1 to n)

Prerequisite
In **Target mode** parameter (→ 192), the **Auto** option is selected.

Description
Displays the current output status (hex value).

User interface
0 to 0xFF

Tag description

Navigation
- Expert → Analog outputs → Analog output 1 to n → Tag description (1667–1 to n)

Description
Use this function to enter a string to identify the block.

User entry
Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /).

Static revision

Navigation
- Expert → Analog outputs → Analog output 1 to n → Static revision (1666–1 to n)

Description
Displays the event counter: every write access to a static block parameter is counted.

User interface
0 to FFFF

Additional information
Description
- Static parameters are parameters that are not changed by the process.
Strategy

Navigation

- Expert → Analog outputs → Analog output 1 to n → Strategy (1665–1 to n)

Description

Use this function to enter the strategy: makes it possible to group blocks by entering identical numbers.

User entry

0 to FFFF

Factory setting

0

Alert key

Navigation

- Expert → Analog outputs → Analog output 1 to n → Alert key (1632–1 to n)

Description

Use this function to enter the alert key: identifies the section of the plant where the transmitter is located. This helps in pinpointing events.

User entry

0 to 0xFF

Factory setting

0

Target mode

Navigation

- Expert → Analog outputs → Analog output 1 to n → Target mode (1668–1 to n)

Description

Displays the Target mode: The target mode indicates which mode of operation is used for this function block. This mode is generally set by a control application.

User interface

- Auto
- Local override
- Man
- Out of service
- Remote Cascaded

Mode block act

Navigation

- Expert → Analog outputs → Analog output 1 to n → Mode block act (1631–1 to n)

Description

Displays the Mode block act: Under certain conditions, it is possible that a function block will not operate in the required mode. In this case, the Mode block act shows the actual mode in which the function block is currently operating. A comparison of the Mode block act with the Target mode indicates whether it was possible to reach the Target mode (→ 192).
User interface

- Auto
- Local override
- Man
- Out of service
- Remote Cascaded

Additional information

Description

A comparison of the current mode with the target mode (Target mode parameter (→ 192)) indicates whether it was possible to reach the target mode.

Mode block perm

Navigation

Expert → Analog outputs → Analog output 1 to n → Mode block perm (1648–1 to n)

Description

Displays the Mode block perm: This defines which modes of operation in the Target mode (→ 192) are available for the function block. The operating modes that are supported vary depending on the type and function of the block.

User interface

0 to 255

Mode blk norm

Navigation

Expert → Analog outputs → Analog output 1 to n → Mode blk norm (1643–1 to n)

Description

Displays the Mode blk norm: This is available to allow the operator to select the Mode blk norm from the available modes of operation. This can be set using an operating tool in order to help the user configure the operating mode of a function block.

User interface

- Auto
- Local override
- Man
- Out of service
- Remote Cascaded

Alarm summary

Navigation

Expert → Analog outputs → Analog output 1 to n → Alarm summary (1642–1 to n)

Description

Displays the alarm summary: the current status of the block alarms is displayed. A summary of up to 16 statuses can be displayed.

User interface

- Discrete alarm
- Alm statHiHi lim
- Alrm stat Hi lim
- Alm statLoLo lim
- Alrm stat Lo lim
- Update Event
Description of device parameters

Proline Promass 300 PROFIBUS PA

Additional information

Description

Currently, the system only displays a change in a static parameter for 10 seconds, and violations of the early warning and alarm limits in the Analog Outputs function block.

Batch ID

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Analog outputs → Analog output 1 to n → Batch ID (1633–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the batch ID: identification of a specific batch to make it possible to assign device-specific information (e.g. errors, alarm conditions etc.) to the batching process.</td>
</tr>
<tr>
<td>User entry</td>
<td>Positive integer</td>
</tr>
</tbody>
</table>

Batch operation

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Analog outputs → Analog output 1 to n → Batch operation (1639–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the batch operation: control recipe operation number to identify the active control recipe operation.</td>
</tr>
<tr>
<td>User entry</td>
<td>0 to 65535</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
</tbody>
</table>

Batch phase

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Analog outputs → Analog output 1 to n → Batch phase (1640–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the batch phase: control recipe phase number to identify the active control recipe operation.</td>
</tr>
<tr>
<td>User entry</td>
<td>0 to 65535</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
</tbody>
</table>

Batch Recipe

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Analog outputs → Analog output 1 to n → Batch Recipe (1641–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the batch recipe unit procedure (RUP): identification of the active control recipe unit procedure or the associated unit (e.g. inductor, centrifuge, drying agent).</td>
</tr>
</tbody>
</table>
PVscale lo range

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Analog outputs → Analog output 1 to n → PVscale lo range (1651–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the lower value range for the input value (Process Value Scale) in system units. The process value scale normalizes the input value to a user-specific range.</td>
</tr>
<tr>
<td>User entry</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
</tbody>
</table>

PVscale up range

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Analog outputs → Analog output 1 to n → PVscale up range (1652–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the upper value range for the input value (Process Value Scale) in system units. The process value scale normalizes the input value to a user-specific range.</td>
</tr>
<tr>
<td>User entry</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Factory setting</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Readback value

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Analog outputs → Analog output 1 to n → Readback value (1659–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the readback value. The readback value indicates the current position of the control element within the travel range (between the open and close position) in PV scale units.</td>
</tr>
<tr>
<td>User interface</td>
<td>Signed floating-point number</td>
</tr>
</tbody>
</table>
Readback status

Navigation

Expert → Analog outputs → Analog output 1 to n → Readback status (1658–1 to n)

Description

Displays the readback status. The readback status contains the status information of the slave.

User interface

0 to 255

RCAS in value

Navigation

Expert → Analog outputs → Analog output 1 to n → RCAS in value (1655–1 to n)

Description

Use this function to enter the RCAS (Remote Cascade) in value. The block set point is set by a control application via the remote cascade RCAS in value parameter (→ 196). The normal algorithm calculates the output value of the block on the basis of this set point.

User entry

Signed floating-point number

Factory setting

0

RCAS in status

Navigation

Expert → Analog outputs → Analog output 1 to n → RCAS in status (1654–1 to n)

Description

Use this function to enter the RCAS (Remote Cascade) in status. Defines the status for the RCAS in value (→ 196).

User entry

0 to 255

Factory setting

0

Input channel

Navigation

Expert → Analog outputs → Analog output 1 to n → Input channel (1670–1 to n)

Description

Use this function to select the input channel. The number of logical hardware channels from the converter that is connected to this I/O block.

Selection

None

Factory setting

None
Output channel

Navigation
- Expert → Analog outputs → Analog output 1 to n → Output channel (1671–1 to n)

Description
Use this function to select the output channel. The number of logical hardware channels to the converter that is connected to this I/O block.

Selection
- External temp.
- Ext. ref. density
- External press.
- S&W
- Water cut

Factory setting
External press.

RCAS out value

Navigation
- Expert → Analog outputs → Analog output 1 to n → RCAS out value (1657–1 to n)

Description
Displays the RCAS out value. Displays the set point of the block which is made available to the higher-level host for monitoring/back calculation and which makes it possible to take action under certain conditions or in a different mode.

User interface
Signed floating-point number

RCAS out status

Navigation
- Expert → Analog outputs → Analog output 1 to n → RCAS out status (1656–1 to n)

Description
Displays the RCAS out status. Displays the status of the set point.

User interface
0 to 0xFF

Pos value

Navigation
- Expert → Analog outputs → Analog output 1 to n → Pos value (1650–1 to n)

Description
Displays the current value of the positioner.

User interface
0 to 255
Position status

Navigation

- Expert → Analog outputs → Analog output 1 to n → Position status (1649–1 to n)

Description

Displays the current status of the positioner.

User interface

0 to 255

Setp. deviation

Navigation

- Expert → Analog outputs → Analog output 1 to n → Setp. deviation (1653–1 to n)

Description

Displays the deviation between the set point (Set point val parameter (→ 189)) and the actual value (Readback value parameter (→ 195)).

User interface

Signed floating-point number

Simulate enabled

Navigation

- Expert → Analog outputs → Analog output 1 to n → Simulate enabled (1662–1 to n)

Description

Use this function to enable or disable block simulation.

Selection

- Disable
- Enable

Factory setting

Disable

Additional information

Description

The simulation is used to bypass the physical I/O channel. In this way, the block remains in the normal mode and uses the simulated discrete I/O channel during operation.

Simulate value

Navigation

- Expert → Analog outputs → Analog output 1 to n → Simulate value (1664–1 to n)

Description

Use this function to enter a simulation value.

User entry

Signed floating-point number

Factory setting

0
Additional information

Description
The simulation is used to bypass the physical I/O channel. In this way, the block remains in the normal mode and uses the simulated value during operation.

Simulate status

Navigation
Expert → Analog outputs → Analog output 1 to n → Simulate status (1663–1 to n)

Description
Use this function to enter a simulation status for the block.

User entry
0 to 255

Factory setting
0

Additional information

Description
The simulation is used to bypass the physical I/O channel. In this way, the block remains in the normal mode and uses the simulated status during operation.

Increase close

Navigation
Expert → Analog outputs → Analog output 1 to n → Increase close (1638–1 to n)

Description
Use this function to enter the effective direction of the positioner in automatic mode.

User entry
0 to 255

Factory setting
0

Out scale up

Navigation
Expert → Analog outputs → Analog output 1 to n → Out scale up (1646–1 to n)

Description
Use this function to enter the upper value range for the output value in system units.

User entry
Signed floating-point number

Factory setting
100.0
Out scale low

Navigation
- Expert → Analog outputs → Analog output 1 to n → Out scale low (1644–1 to n)

Description
Use this function to enter the lower value range for the output value in system units.

User entry
Signed floating-point number

Factory setting
0

3.10 "Discrete outputs" submenu

Navigation
- Expert → Discrete outputs

3.10.1 "Discrete output 1 to n" submenu

Navigation
- Expert → Discrete outputs → Discr. out. 1 to n

- Set point val (1715–1 to n) → 201
- Set point status (1714–1 to n) → 201
- Invert (1692–1 to n) → 201
- Fail safe time (1697–1 to n) → 201
- Fail safe type (1696–1 to n) → 202
- Fail-safe value (1693–1 to n) → 202
- Out value (1704–1 to n) → 203
- Out status (1723–1 to n) → 203
- Out status (1703–1 to n) → 203
Set point val

Navigation
Expert → Discrete outputs → Discr. out. 1 to n → Set point val (1715–1 to n)

Description
Use this function to enter an analog set point.

User entry
0 to 255

Factory setting
0

Set point status

Navigation
Expert → Discrete outputs → Discr. out. 1 to n → Set point status (1714–1 to n)

Description
Use this function to enter a status for the analog set point.

User entry
0 to 255

Factory setting
0

Invert

Navigation
Expert → Discrete outputs → Discr. out. 1 to n → Invert (1692–1 to n)

Description
Use this function to switch inversion on and off. Specifies whether the set point should be inverted before the value is set as the output value or the RCAS value (in the automatic mode).

Selection
- Off
- On

Factory setting
Off

Fail safe time

Navigation
Expert → Discrete outputs → Discr. out. 1 to n → Fail safe time (1697–1 to n)

Description
Use this function to enter a time span within which the criteria for an error must be met continuously before an error message or notice message is generated.

User entry
Signed floating-point number

Factory setting
0
Description of device parameters

Proline Promass 300 PROFIBUS PA

Additional information

User entry

NOTE!
If this parameter is used, error messages and notice messages are delayed by the set time before being relayed to the higher-level controller (DCS, etc.).

▸ Check in advance to ensure that the safety-specific requirements of the process would permit this.
▸ If the error and notice messages may not be suppressed, a value of 0 seconds must be configured here.

Fail safe type

Navigation

Expert → Discrete outputs → Discr. out. 1 to n → Fail safe type (1696–1 to n)

Description

Use this function to select the failure mode.

Selection

• Fail-safe value
• Fallback value
• Off

Factory setting

Fallback value

Additional information

Selection

If an input or simulation value has the status BAD, the function block uses this predefined failure value:

• Fail-safe value
 A substitute value is used. This is specified in the Fail-safe value parameter (→ 202).
• Fallback value
 If the value was good at one point, then the last valid value is used.
• Off
 The system continues to use the bad value.

Fail-safe value

Navigation

Expert → Discrete outputs → Discr. out. 1 to n → Fail-safe value (1693–1 to n)

Prerequisite

In Fail safe type parameter (→ 202), the Fail-safe value option is selected.

Description

Use this function to enter a failure value. The value entered is displayed as the output value (Out value parameter (→ 203)) in the event of an error.

User entry

0 to 255

Factory setting

0
Out value

Navigation
Expert → Discrete outputs → Discr. out. 1 to n → Out value (1704–1 to n)

Prerequisite
In **Target mode** parameter (→ 204), the **Auto** option is selected.

Description
Displays the analog value which is calculated when the function is executed.

User interface
0 to 255

Out status

Navigation
Expert → Discrete outputs → Discr. out. 1 to n → Out status (1723–1 to n)

Description
Displays the current output status (Good, Bad, Uncertain).

User interface
- Good
- Uncertain
- Bad

Out status

Navigation
Expert → Discrete outputs → Discr. out. 1 to n → Out status (1703–1 to n)

Prerequisite
In **Target mode** parameter (→ 204), the **Auto** option is selected.

Description
Displays the current output status (hex value).

User interface
0 to 0xFF

Tag description

Navigation
Expert → Discrete outputs → Discr. out. 1 to n → Tag description (1721–1 to n)

Description
Use this function to enter a string to identify the block.

User entry
Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /).
Static revision

Navigation
- Expert → Discrete outputs → Discr. out. 1 to n → Static revision (1720–1 to n)

Description
Displays the event counter: every write access to a static block parameter is counted.

User interface
0 to FFFF

Additional information
- Static parameters are parameters that are not changed by the process.

Strategy

Navigation
- Expert → Discrete outputs → Discr. out. 1 to n → Strategy (1719–1 to n)

Description
Use this function to enter the strategy: makes it possible to group blocks by entering identical numbers.

User entry
0 to FFFF

Factory setting
0

Alert key

Navigation
- Expert → Discrete outputs → Discr. out. 1 to n → Alert key (1694–1 to n)

Description
Use this function to enter the alert key: identifies the section of the plant where the transmitter is located. This helps in pinpointing events.

User entry
0 to 0xFF

Factory setting
0

Target mode

Navigation
- Expert → Discrete outputs → Discr. out. 1 to n → Target mode (1722–1 to n)

Description
Displays the Target mode: The target mode specifies which mode of operation is used for this function block. This mode is generally set by a control application.
User interface
- Local override
- Remote Cascaded
- Man
- Out of service
- Auto

Mode block act

Navigation
- Expert → Discrete outputs → Discr. out. 1 to n → Mode block act (1691–1 to n)

Description
Displays the Mode block act: Under certain conditions, it is possible that a function block will not operate in the required mode. In this case, the Mode block act shows the actual mode in which the function block is currently operating. A comparison of the Mode block act with the Target mode indicates whether it was possible to reach the Target mode (→ 204).

User interface
- Local override
- Remote Cascaded
- Man
- Out of service
- Auto

Additional information
Description
A comparison of the current mode with the target mode (Target mode parameter (→ 204)) indicates whether it was possible to reach the target mode.

Mode block perm

Navigation
- Expert → Discrete outputs → Discr. out. 1 to n → Mode block perm (1705–1 to n)

Description
Displays the Mode block perm: This defines which modes of operation in the Target mode (→ 204) are available for the function block. The operating modes that are supported vary depending on the type and function of the block.

User interface
0 to 255

Mode blk norm

Navigation
- Expert → Discrete outputs → Discr. out. 1 to n → Mode blk norm (1702–1 to n)

Description
Displays the Mode blk norm: This is available to allow the operator to select the Mode blk norm from the available modes of operation. This can be set using an operating tool in order to help the user configure the operating mode of a function block.
User interface

- Local override
- Remote Cascaded
- Man
- Out of service
- Auto

Alarm summary

Navigation
Expert → Discrete outputs → Discr. out. 1 to n → Alarm summary (1701–1 to n)

Description
Displays the alarm summary: the current status of the block alarms is displayed. A summary of up to 16 statuses can be displayed.

User interface

- Discrete alarm
- Alm statHiHi lim
- Alrm stat Hi lim
- Alm statLoLo lim
- Alrm stat Lo lim
- Update Event

Additional information

Description
Currently, the system only displays a change in a static parameter for 10 seconds, and violations of the early warning and alarm limits in the Discrete Outputs function block.

Batch ID

Navigation
Expert → Discrete outputs → Discr. out. 1 to n → Batch ID (1695–1 to n)

Description
Use this function to enter the batch ID: identification of a specific batch to make it possible to assign device-specific information (e.g. errors, alarm conditions etc.) to the batching process.

User entry
Positive integer

Batch operation

Navigation
Expert → Discrete outputs → Discr. out. 1 to n → Batch operation (1698–1 to n)

Description
Use this function to enter the batch operation: control recipe operation number to identify the active control recipe operation.

User entry
0 to 65535

Factory setting
0
Batch phase

Navigation
- Expert → Discrete outputs → Discr. out. 1 to n → Batch phase (1699–1 to n)

Description
Use this function to enter the batch phase: control recipe phase number to identify the active control recipe operation.

User entry
0 to 65535

Factory setting
0

Batch Recipe

Navigation
- Expert → Discrete outputs → Discr. out. 1 to n → Batch Recipe (1700–1 to n)

Description
Use this function to enter the batch recipe unit procedure (RUP): identification of the active control recipe unit procedure or the associated unit (e.g. inductor, centrifuge, drying agent).

User entry
0 to 65535

Factory setting
0

Additional information
Description
- The unit is defined in IEC61512 Part1/ISA S88 but its meaning is different to that of the parameter unit, such as system units.

Readback value

Navigation
- Expert → Discrete outputs → Discr. out. 1 to n → Readback value (1713–1 to n)

Description
Displays the readback value. The readback value indicates the current position of the control element and the element's sensors.

User interface
0 to 255

Readback status

Navigation
- Expert → Discrete outputs → Discr. out. 1 to n → Readback status (1712–1 to n)

Description
Displays the readback status. Displays the status of the readback value.

User interface
0 to 255
Description of device parameters

Proline Promass 300 PROFIBUS PA

RCAS in value

Navigation
Expert → Discrete outputs → Discr. out. 1 to n → RCAS in value (1707–1 to n)

Description
Use this function to enter the RCAS (Remote Cascade) in value. The block set point is set by a control application via the remote cascade **RCAS in value** parameter (→ 208). The normal algorithm calculates the output value of the block on the basis of this set point.

User entry
0 to 255

Factory setting
0

RCAS in status

Navigation
Expert → Discrete outputs → Discr. out. 1 to n → RCAS in status (1706–1 to n)

Description
Use this function to enter the RCAS (Remote Cascade) in status. Defines the status for the RCAS in value (→ 208).

User entry
0 to 255

Factory setting
0

Input channel

Navigation
Expert → Discrete outputs → Discr. out. 1 to n → Input channel (1724–1 to n)

Description
Use this function to select the input channel. The number of logical hardware channels from the converter that is connected to this I/O block.

Selection
None

Factory setting
None

Output channel

Navigation
Expert → Discrete outputs → Discr. out. 1 to n → Output channel (1725–1 to n)

Description
Use this function to select the output channel. The number of logical hardware channels to the converter that is connected to this I/O block.
Selection

- Start verification
- Zero point adj.
- Flow override
- I/O module 2
- I/O module 3
- I/O module 4
- Liqu. type conc.

Factory setting
Flow override

RCAS out value

Navigation
Expert → Discrete outputs → Discr. out. 1 to n → RCAS out value (1711–1 to n)

Description
Displays the RCAS out value. Displays the set point of the block which is made available to the higher-level host for monitoring/back calculation and which makes it possible to take action under certain conditions or in a different mode.

User interface
0 to 255

RCAS out status

Navigation
Expert → Discrete outputs → Discr. out. 1 to n → RCAS out status (1708–1 to n)

Description
Displays the RCAS out status. Displays the status of the set point.

User interface
0 to 255

Simulate enabled

Navigation
Expert → Discrete outputs → Discr. out. 1 to n → Simulate enabled (1716–1 to n)

Description
Use this function to enable or disable block simulation.

Selection
- Disable
- Enable

Factory setting
Disable

Additional information
Description
The simulation is used to bypass the physical I/O channel. In this way, the block remains in the normal mode and uses the simulated discrete I/O channel during operation.

* Visibility depends on order options or device settings
Description of device parameters

Simulate value

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Discrete outputs → Discr. out. 1 to n → Simulate value (1718–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter a simulation value.</td>
</tr>
<tr>
<td>User entry</td>
<td>0 to 255</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
<tr>
<td>Additional information</td>
<td>Description</td>
</tr>
<tr>
<td></td>
<td>The simulation is used to bypass the physical I/O channel. In this way, the block remains in the normal mode and uses the simulated value during operation.</td>
</tr>
</tbody>
</table>

Simulate status

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Discrete outputs → Discr. out. 1 to n → Simulate status (1717–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter a simulation status for the block.</td>
</tr>
<tr>
<td>User entry</td>
<td>0 to 255</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
<tr>
<td>Additional information</td>
<td>Description</td>
</tr>
<tr>
<td></td>
<td>The simulation is used to bypass the physical I/O channel. In this way, the block remains in the normal mode and uses the simulated status during operation.</td>
</tr>
</tbody>
</table>

3.11 "Application" submenu

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>▶️ ▶️</td>
</tr>
<tr>
<td>Totalizer 1 to n</td>
<td>➔ 211</td>
</tr>
<tr>
<td>Viscosity</td>
<td>➔ 224</td>
</tr>
<tr>
<td>Concentration</td>
<td>➔ 224</td>
</tr>
<tr>
<td>Petroleum</td>
<td>➔ 224</td>
</tr>
</tbody>
</table>
3.11.1 "Totalizer 1 to n" submenu

Navigation
Expert → Application → Totalizer 1 to n

<table>
<thead>
<tr>
<th>Totalizer 1 to n</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign variable (3808–1 to n)</td>
<td>➔ 211</td>
</tr>
<tr>
<td>Unit totalizer (3835–1 to n)</td>
<td>➔ 212</td>
</tr>
<tr>
<td>Control Tot. 1 to n (3830–1 to n)</td>
<td>➔ 213</td>
</tr>
<tr>
<td>Preset value 1 to n (3829–1 to n)</td>
<td>➔ 214</td>
</tr>
<tr>
<td>Operation mode (3823–1 to n)</td>
<td>➔ 214</td>
</tr>
<tr>
<td>Failure mode (3810–1 to n)</td>
<td>➔ 215</td>
</tr>
<tr>
<td>Totalizer val. 1 to n (3827–1 to n)</td>
<td>➔ 215</td>
</tr>
<tr>
<td>Tot. status 1 to n (3826–1 to n)</td>
<td>➔ 216</td>
</tr>
<tr>
<td>Status (Hex) 1 to n (3825–1 to n)</td>
<td>➔ 216</td>
</tr>
</tbody>
</table>

Assign variable

Navigation
Expert → Application → Totalizer 1 to n → Assign variable (3808–1 to n)

Description

Use this function to select a process variable for the Totalizer 1 to n.

Selection

- Mass flow
- Volume flow
- Correct.vol.flow *
- Target mass flow *
- Carrier mass fl. *
- Target vol. flow *
- Carrier vol. fl. *
- Targ.corr.vol.fl *
- Carr.corr.vol.fl *
- GSV flow
- GSVa *
- NSV flow *
- NSVa *
- S&W volume flow *
- Oil mass flow *
- Water mass flow *
- Oil volume flow *

* Visibility depends on order options or device settings
Description of device parameters

Proline Promass 300 PROFIBUS PA

- Water vol. flow *
- Oil corr.vol.fl. *
- Water corr.v.fl. *

Factory setting

Mass flow

Additional information

Description

If the option selected is changed, the device resets the totalizer to 0.

Unit totalizer

Navigation

Expert → Application → Totalizer 1 to n → Unit totalizer (3835–1 to n)

Description

Use this function to select the process variable of a totalizer.

The unit is selected separately for each totalizer. It is independent of the selection made in the System units submenu (→ 60).

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
<th>Imperial units</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>oz</td>
<td>gal (imp)</td>
</tr>
<tr>
<td>kg</td>
<td>lb</td>
<td>Mgal (imp)</td>
</tr>
<tr>
<td>t</td>
<td>STon</td>
<td>bbl (imp;oil)</td>
</tr>
</tbody>
</table>

* Visibility depends on order options or device settings

or

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
<th>Imperial units</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm³</td>
<td>ft³</td>
<td>gal (imp)</td>
</tr>
<tr>
<td>dm³</td>
<td>fl oz (us)</td>
<td>Mgal (imp)</td>
</tr>
<tr>
<td>m³</td>
<td>gal (us)</td>
<td>bbl (imp;oil)</td>
</tr>
<tr>
<td>ml</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l</td>
<td>kgal (us)</td>
<td></td>
</tr>
<tr>
<td>hl</td>
<td>Mgal (us)</td>
<td></td>
</tr>
<tr>
<td>Ml Mega</td>
<td>bbl (us;oil)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bbl (us;tank)</td>
<td></td>
</tr>
</tbody>
</table>

* Visibility depends on order options or device settings

or

<table>
<thead>
<tr>
<th>US units</th>
<th>Imperial units</th>
</tr>
</thead>
<tbody>
<tr>
<td>bbl (us;liq.)</td>
<td>bbl (imp;beer)</td>
</tr>
<tr>
<td>bbl (us;beer)</td>
<td></td>
</tr>
</tbody>
</table>

* Visibility depends on order options or device settings

or

* Visibility depends on order options or device settings
SI units | US units | Imperial units
--- | --- | ---
• Nl* | • Sft³* | • Sgal (imp)*
• Nm³* | • Sgal (us)* |
• Sl* | • Sbbl (us;liq.)* |

* Visibility depends on order options or device settings

Factory setting
Country-specific:
• kg
• lb

Additional information
Selection
The selection is independent of the process variable selected in the **Assign variable** parameter (→ 211).

Dependency
The following parameters depend on the option selected:
• **Alarm hysteresis** parameter (→ 220)
• **Hi Hi Lim** parameter (→ 220)
• **Hi Lim** parameter (→ 221)
• **Lo Lim** parameter (→ 221)
• **Lo Lo Lim** parameter (→ 222)
• **Totalizer val.** parameter (→ 54)
• **Preset value** parameter (→ 214)

Control Tot. 1 to n

Navigation
Expert → Application → Totalizer 1 to n → Control Tot. 1 to n (3830–1 to n)

Description
Use this function to select the control of totalizer value 1-3.

Selection
• Totalize
• Reset + hold
• Preset + hold

Factory setting
Totalize

Additional information
Selection
• Totalize
 The totalizer is started or continues totalizing with the current counter reading.
• Reset + hold
 The totaling process is stopped and the totalizer is reset to 0.
• Preset + hold
 The totaling process is stopped and the totalizer is set to its defined start value from the **Preset value** parameter.
Preset value 1 to n

Navigation

Expert → Application → Totalizer 1 to n → Preset value 1 to n (3829–1 to n)

Description

Use this function to enter an initial value for the specific totalizer.

User entry

Signed floating-point number

Factory setting

Country-specific:
- kg
- lb

Additional information

User entry

The unit of the selected process variable is specified for the totalizer in the Unit totalizer parameter (→ 212).

Example

This configuration is suitable for applications such as iterative filling processes with a fixed batch quantity.

Operation mode

Navigation

Expert → Application → Totalizer 1 to n → Operation mode (3823–1 to n)

Description

Use this function to select how the totalizer summates the flow.

Selection

- Net flow total
- Forward total
- Reverse total
- Last valid value

Factory setting

Net flow total

Additional information

Selection

- Net flow total
 Positive and negative flow values are totalized and balanced against one another. Net flow is registered in the flow direction.
- Forward total
 Only the flow in the forward flow direction is totalized.
- Reverse total
 Only the flow against the forward flow direction is totalized (= reverse flow total).
- Last valid value
 The value is frozen. Totaling is stopped.
Failure mode

Navigation

[Expert ➔ Application ➔ Totalizer 1 to n ➔ Failure mode (3810–1 to n)]

Description

Use this function to select how a totalizer behaves in the event of a device alarm.

Selection

- Stop
- Actual value
- Last valid value

Factory setting

Actual value

Additional information

Description

This setting does not affect the failsafe mode of other totalizers and the outputs. This is specified in separate parameters.

Selection

- Stop
 - Totalizing is stopped when a device alarm occurs.
- Actual value
 - The totalizer continues to count based on the current measured value; the device alarm is ignored.
- Last valid value
 - The totalizer continues to count based on the last valid measured value before the device alarm occurred.

Totalizer val. 1 to n

Navigation

[Expert ➔ Application ➔ Totalizer 1 to n ➔ Totalizer val. 1 to n (3827–1 to n)]

Prerequisite

In the **Target mode** parameter (➔ 217), the **Auto** option is selected.

Description

Displays the current reading for totalizer 1-3.

User interface

Signed floating-point number

Additional information

Description

In the event of an error, the totalizer adopts the mode defined in the **Failure mode** parameter (➔ 215).

User interface

The value of the process variable totalized since measuring began can be positive or negative. This depends on the settings in the **Operation mode** parameter (➔ 214).

Dependency

- The unit of the selected process variable is specified for the totalizer in the **Unit totalizer** parameter (➔ 212).
Tot. status 1 to n

Navigation
- Expert → Application → Totalizer 1 to n → Tot. status 1 to n (3826–1 to n)

Description
Displays the status of the particular totalizer.

User interface
- Good
- Uncertain
- Bad

Status (Hex) 1 to n

Navigation
- Expert → Application → Totalizer 1 to n → Status (Hex) 1 to n (3825–1 to n)

Prerequisite
In **Target mode** parameter (→ 217), the **Auto** option is selected.

Description
Displays the status value (hex) of the particular totalizer.

User interface
0 to 0xFF

Tag description

Navigation

- Expert → Application → Totalizer 1 to n → Tag description (3833–1 to n)

Description
Use this function to enter a string to identify the block.

User entry
Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /).

Static revision

Navigation

- Expert → Application → Totalizer 1 to n → Static revision (3832–1 to n)

Description
Displays the event counter: every write access to a static block parameter is counted.

User interface
0 to FFFF

Additional information
- **Description**
 Static parameters are parameters that are not changed by the process.
Strategy

Navigation

Expert → Application → Totalizer 1 to n → Strategy (3831–1 to n)

Description
Use this function to enter the strategy: makes it possible to group blocks by entering identical numbers.

User entry
0 to FFFF

Factory setting
0

Alert key

Navigation

Expert → Application → Totalizer 1 to n → Alert key (3803–1 to n)

Description
Use this function to enter the alert key: identifies the section of the plant where the transmitter is located. This helps in pinpointing events.

User entry
0 to 0xFF

Factory setting
0

Target mode

Navigation

Expert → Application → Totalizer 1 to n → Target mode (3834–1 to n)

Description
Displays the Target mode: The target mode indicates which mode of operation is used for this function block. This mode is generally set by a control application.

User interface
- Auto
- Man
- Out of service

Mode block act

Navigation

Expert → Application → Totalizer 1 to n → Mode block act (3801–1 to n)

Description
Displays the Mode block act: Under certain conditions, it is possible that a function block will not operate in the required mode. In this case, the Mode block act shows the actual mode in which the function block is currently operating. A comparison of the Mode block act with the Target mode indicates whether it was possible to reach the Target mode (→ 217).

User interface
- Auto
- Man
- Out of service
Additional information

Description

A comparison of the current mode with the target mode (Target mode parameter (→ 217)) indicates whether it was possible to reach the target mode.

Mode block perm

Navigation

Expert → Application → Totalizer 1 to n → Mode block perm (3828–1 to n)

Description

Displays the Mode block perm: This defines which modes of operation in the Target mode (→ 217) are available for the function block. The operating modes that are supported vary depending on the type and function of the block.

User interface

0 to 255

Mode blk norm

Navigation

Expert → Application → Totalizer 1 to n → Mode blk norm (3824–1 to n)

Description

Displays the Mode blk norm: This is available to allow the operator to select the Mode blk norm from the available modes of operation. This can be set using an operating tool in order to help the user configure the operating mode of a function block.

User interface

- Auto
- Man
- Out of service

Alarm summary

Navigation

Expert → Application → Totalizer 1 to n → Alarm summary (3809–1 to n)

Description

Displays the alarm summary: the current status of the block alarms is displayed. A summary of up to 16 statuses can be displayed.

User interface

- Discrete alarm
- Alm statHiHi lim
- Alrm stat Hi lim
- Alm statLoLo lim
- Alrm stat Lo lim
- Update Event

Additional information

Description

Currently, the system only displays a change in a static parameter for 10 seconds, and violations of the early warning and alarm limits in the Totalizer function block.
Batch ID

Navigation

Expert → Application → Totalizer 1 to n → Batch ID (3804–1 to n)

Description

Use this function to enter the batch ID: identification of a specific batch to make it possible to assign device-specific information (e.g. errors, alarm conditions etc.) to the batching process.

User entry

Positive integer

Factory setting

0

Batch operation

Navigation

Expert → Application → Totalizer 1 to n → Batch operation (3805–1 to n)

Description

Use this function to enter the batch operation: control recipe operation number to identify the active control recipe operation.

User entry

0 to 65535

Factory setting

0

Batch phase

Navigation

Expert → Application → Totalizer 1 to n → Batch phase (3806–1 to n)

Description

Use this function to enter the batch phase: control recipe phase number to identify the active control recipe operation.

User entry

0 to 65535

Factory setting

0

Batch Recipe

Navigation

Expert → Application → Totalizer 1 to n → Batch Recipe (3807–1 to n)

Description

Use this function to enter the batch recipe unit procedure (RUP): identification of the active control recipe unit procedure or the associated unit (e.g. inductor, centrifuge, drying agent).

User entry

0 to 65535

Factory setting

0
Additional Information

Description

The unit is defined in IEC61512 Part1/ISA S88 but its meaning is different to that of the parameter unit, such as system units.

Alarm Hysteresis

Navigation

Expert → Application → Totalizer 1 to n → Alarm hysteresis (3802–1 to n)

Description

Use this function to enter the hysteresis value for the upper and lower warning or alarm limit values.

User Entry

Signed floating-point number

Factory Setting

0 kg

Additional Information

The unit of the selected process variable is specified for the totalizer in the **Unit totalizer** parameter (→ 212).

Hi Hi Lim

Navigation

Expert → Application → Totalizer 1 to n → Hi Hi Lim (3815–1 to n)

Description

Use this function to enter the value for the upper alarm limit of the totalizer (**HiHi alarm value** parameter (→ 222)).

User Entry

Signed floating-point number

Factory Setting

Positive floating-point number

Additional Information

If the output value Out value (→ 169) exceeds this limit value, the **HiHi alarm state** parameter (→ 222) is output.

The value is entered in the defined units (**Out unit** parameter (→ 175)) and must be in the range defined in the **Out scale low** parameter (→ 174) and **Out scale up** parameter (→ 174).

The unit of the selected process variable is specified for the totalizer in the **Unit totalizer** parameter (→ 212).
Hi Lim

Navigation
Expert → Application → Totalizer 1 to n → Hi Lim (3816–1 to n)

Description
Use this function to enter the value for the upper warning limit of the totalizer (Hi alarm value parameter → 223).

User entry
Signed floating-point number

Factory setting
Positive floating-point number

Additional information

<table>
<thead>
<tr>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>If the output value Out value (→ 169) exceeds this limit value, the Hi alarm state parameter (→ 223) is output.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>User entry</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The value is entered in the defined units (Out unit parameter → 175) and must be in the range defined in the Out scale low parameter (→ 174) and Out scale up parameter (→ 174).</td>
<td></td>
</tr>
<tr>
<td>The unit of the selected process variable is specified for the totalizer in the Unit totalizer parameter (→ 212).</td>
<td></td>
</tr>
</tbody>
</table>

Lo Lim

Navigation
Expert → Application → Totalizer 1 to n → Lo Lim (3819–1 to n)

Description
Use this function to enter the value for the lower warning limit of the totalizer (Lo alarm value parameter → 223).

User entry
Signed floating-point number

Factory setting
Negative floating-point number

Additional information

<table>
<thead>
<tr>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>If the output value Out value (→ 169) exceeds this limit value, the Lo alarm state parameter (→ 223) is output.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>User entry</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The value is entered in the defined units (Out unit parameter → 175) and must be in the range defined in the Out scale low parameter (→ 174) and Out scale up parameter (→ 174).</td>
<td></td>
</tr>
<tr>
<td>The unit of the selected process variable is specified for the totalizer in the Unit totalizer parameter (→ 212).</td>
<td></td>
</tr>
</tbody>
</table>
Lo Lo Lim

Navigation

Expert → Application → Totalizer 1 to n → Lo Lo Lim (3822–1 to n)

Description

Use this function to enter the value for the lower alarm limit of the totalizer (LoLo alarm value parameter (→ 224)).

User entry

Signed floating-point number

Factory setting

Negative floating-point number

Additional information

If the output value Out value (→ 169) exceeds this limit value, the LoLo alarm state parameter (→ 224) is output.

User entry

- The value is entered in the defined units (Out unit parameter (→ 175)) and must be in the range defined in the Out scale low parameter (→ 174) and Out scale up parameter (→ 174).
- The unit of the selected process variable is specified for the totalizer in the Unit totalizer parameter (→ 212).

HiHi alarm value

Navigation

Expert → Application → Totalizer 1 to n → HiHi alarm value (3814–1 to n)

Description

Displays the alarm value for the upper alarm limit value (Hi Hi Lim parameter (→ 220)).

User interface

Signed floating-point number

HiHi alarm state

Navigation

Expert → Application → Totalizer 1 to n → HiHi alarm state (3813–1 to n)

Description

Displays the status for the upper alarm limit value (Hi Hi Lim parameter (→ 220)).

User interface

- No alarm
- Alm statHiHi lim

Additional information

User interface

The display contains information such as the time of the alarm (date and time) and the value that triggered the alarm.
Hi alarm value

Navigation

Expert → Application → Totalizer 1 to n → Hi alarm value (3812–1 to n)

Description

Displays the warning value for the upper warning limit value (Hi Lim parameter (→ 221)).

User interface

Signed floating-point number

Hi alarm state

Navigation

Expert → Application → Totalizer 1 to n → Hi alarm state (3811–1 to n)

Description

Displays the status for the upper warning limit value (Hi Lim parameter (→ 221)).

User interface

- No warning
- Alrm stat Hi lim

Additional information

User interface

The display contains information such as the time of the warning (date and time) and the value that triggered the alarm.

Lo alarm value

Navigation

Expert → Application → Totalizer 1 to n → Lo alarm value (3818–1 to n)

Description

Displays the warning value for the lower warning limit value (Lo Lim parameter (→ 221)).

User interface

Signed floating-point number

Lo alarm state

Navigation

Expert → Application → Totalizer 1 to n → Lo alarm state (3817–1 to n)

Description

Displays the status for the lower warning limit value (Lo Lim parameter (→ 221)).

User interface

- No warning
- Alrm stat Lo lim

Additional information

User interface

The display contains information such as the time of the warning (date and time) and the value that triggered the alarm.
LoLo alarm value

Navigation
- Expert → Application → Totalizer 1 to n → LoLo alarm value (3821–1 to n)

Description
Displays the alarm value for the lower alarm limit value (*Lo Lo Lim* parameter (→ 222)).

User interface
Signed floating-point number

LoLo alarm state

Navigation
- Expert → Application → Totalizer 1 to n → LoLo alarm state (3820–1 to n)

Description
Displays the status for the lower alarm limit value (*Lo Lo Lim* parameter (→ 222)).

User interface
- No alarm
- Alm statLoLo lim

Additional information
User interface

The display contains information such as the time of the alarm (date and time) and the value that triggered the alarm.

3.11.2 "Viscosity" submenu

Only available for Promass I.

For detailed information on the parameter descriptions for the *Viscosity* application package, refer to the Special Documentation for the device → 7

Navigation
- Expert → Application → Viscosity

3.11.3 "Concentration" submenu

For detailed information on the parameter descriptions for the *Concentration* application package, refer to the Special Documentation for the device → 7

Navigation
- Expert → Application → Concentration

3.11.4 "Petroleum" submenu

For detailed information on the parameter descriptions for the *Petroleum* application package, refer to the Special Documentation for the device → 7
3.12 "Diagnostics" submenu

Navigation
Expert → Application → Petroleum

<table>
<thead>
<tr>
<th>Submenu</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual diagnos. (0691)</td>
<td>226</td>
</tr>
<tr>
<td>Prev.diagnostics (0690)</td>
<td>226</td>
</tr>
<tr>
<td>Time fr. restart (0653)</td>
<td>227</td>
</tr>
<tr>
<td>Operating time (0652)</td>
<td>227</td>
</tr>
<tr>
<td>Diagnostic list</td>
<td>228</td>
</tr>
<tr>
<td>Event logbook</td>
<td>232</td>
</tr>
<tr>
<td>Device info</td>
<td>234</td>
</tr>
<tr>
<td>Main elec.+I/O1</td>
<td>238</td>
</tr>
<tr>
<td>Sens. electronic</td>
<td>239</td>
</tr>
<tr>
<td>I/O module 1</td>
<td>240</td>
</tr>
<tr>
<td>I/O module 2</td>
<td>240</td>
</tr>
<tr>
<td>Display module</td>
<td>242</td>
</tr>
<tr>
<td>Min/max val.</td>
<td>243</td>
</tr>
<tr>
<td>Data logging</td>
<td>253</td>
</tr>
<tr>
<td>Heartbeat</td>
<td>262</td>
</tr>
<tr>
<td>Simulation</td>
<td>262</td>
</tr>
</tbody>
</table>
Actual diagnosis.

Navigation

Expert → Diagnostics → Actual diagnos. (0691)

Prerequisite

A diagnostic event has occurred.

Description

Displays the current diagnostic message. If two or more messages occur simultaneously, the message with the highest priority is shown on the display.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

Display

Additional pending diagnostic messages can be viewed in the Diagnostic list submenu (→ 228).

Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the key.

Example

For the display format:

F271 Main electronics

Timestamp

Navigation

Expert → Diagnostics → Timestamp

Description

Displays the operating time when the current diagnostic message occurred.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

Display

The diagnostic message can be viewed via the Actual diagnos. parameter (→ 226).

Example

For the display format:

24d12h13m00s

Prev.diagnostics

Navigation

Expert → Diagnostics → Prev.diagnostics (0690)

Prerequisite

Two diagnostic events have already occurred.

Description

Displays the diagnostic message that occurred before the current message.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.
Description of device parameters

Additional information

Display

Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the key.

Example

For the display format:

F271 Main electronics

Timestamp

Navigation

Expert → Diagnostics → Timestamp

Description

Displays the operating time when the last diagnostic message before the current message occurred.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

Display

The diagnostic message can be viewed via the parameter → 226).

Example

For the display format:

24d12h13m00s

Time fr. restart

Navigation

Expert → Diagnostics → Time fr. restart (0653)

Description

Use this function to display the time the device has been in operation since the last device restart.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Operating time

Navigation

Expert → Diagnostics → Operating time (0652)

Description

Use this function to display the length of time the device has been in operation.

User interface

Days (d), hours (h), minutes (m) and seconds (s)
Additional information

User interface

The maximum number of days is 9999, which is equivalent to 27 years.

3.12.1 "Diagnostic list" submenu

Navigation

Expert → Diagnostics → Diagnostic list

![Diagnostic list]

Diagnostics 1 (0692) → 228
Diagnostics 2 (0693) → 229
Diagnostics 3 (0694) → 230
Diagnostics 4 (0695) → 230
Diagnostics 5 (0696) → 231

Diagnostics 1

Navigation

Expert → Diagnostics → Diagnostic list → Diagnostics 1 (0692)

Description

Displays the current diagnostics message with the highest priority.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

Display

Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the key.

Examples

For the display format:
- F271 Main electronics
- F276 I/O module

Timestamp

Navigation

Expert → Diagnostics → Diagnostic list → Timestamp

Description

Displays the operating time when the diagnostic message with the highest priority occurred.
User interface

| Description of device parameters |

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

Display

- The diagnostic message can be viewed via the Diagnostics 1 parameter (→ 228).

Example

For the display format:
24d12h13m00s

Diagnostics 2

Navigation

Expert → Diagnostics → Diagnostic list → Diagnostics 2 (0693)

Description

Displays the current diagnostics message with the second-highest priority.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

Display

- Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the key.

Examples

For the display format:
- F271 Main electronics
- F276 I/O module

Timestamp

Navigation

Expert → Diagnostics → Diagnostic list → Timestamp

Description

Displays the operating time when the diagnostic message with the second-highest priority occurred.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

Display

- The diagnostic message can be viewed via the Diagnostics 2 parameter (→ 229).

Example

For the display format:
24d12h13m00s
Diagnostics 3

Navigation
- Expert → Diagnostics → Diagnostic list → Diagnostics 3 (0694)

Description
Displays the current diagnostics message with the third-highest priority.

User interface
Symbol for diagnostic behavior, diagnostic code and short message.

Additional information
- Display
 - Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the key.

Examples
 - F271 Main electronics
 - F276 I/O module

Timestamp

Navigation
- Expert → Diagnostics → Diagnostic list → Timestamp

Description
Displays the operating time when the diagnostic message with the third-highest priority occurred.

User interface
- Days (d), hours (h), minutes (m) and seconds (s)

Additional information
- Display
 - The diagnostic message can be viewed via the Diagnostics 3 parameter (→ 230).

Example
 - For the display format:
 - 24d12h13m00s

Diagnostics 4

Navigation
- Expert → Diagnostics → Diagnostic list → Diagnostics 4 (0695)

Description
Displays the current diagnostics message with the fourth-highest priority.

User interface
Symbol for diagnostic behavior, diagnostic code and short message.
Proline Promass 300 PROFIBUS PA

Description of device parameters

Additional information

Display

Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the key.

Examples

For the display format:
- F271 Main electronics
- F276 I/O module

Timestamp

Navigation

Expert → Diagnostics → Diagnostic list → Timestamp

Description

Displays the operating time when the diagnostic message with the fourth-highest priority occurred.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

Display

The diagnostic message can be viewed via the Diagnostics parameter (→ 230).

Example

For the display format:
24d12h13m00s

Diagnostics 5

Navigation

Expert → Diagnostics → Diagnostic list → Diagnostics 5 (0696)

Description

Displays the current diagnostics message with the fifth-highest priority.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

Display

Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the key.

Examples

For the display format:
- F271 Main electronics
- F276 I/O module
Timestamp

Navigation

Expert Diagnostics Diagnostic list Timestamp

Description
Displays the operating time when the diagnostic message with the fifth-highest priority occurred.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information

Display

The diagnostic message can be viewed via the **Diagnostics 5** parameter (→ 231).

Example

For the display format:
24d12h13m00s

3.12.2 "Event logbook" submenu

Navigation

Expert Diagnostics Event logbook

- Event logbook

 Filter options (0705) → 232

 Event list → 233

Filter options

Navigation

Expert Diagnostics Event logbook Filter options (0705)

Description
Use this function to select the category whose event messages are displayed in the event list of the local display.

Selection

- All
- Failure (F)
- Funct. check (C)
- Out of spec. (S)
- Mainten. req. (M)
- Information (I)

Factory setting
All
Additional information

Description

The status signals are categorized in accordance with VDI/VDE 2650 and NAMUR Recommendation NE 107:

- F = Failure
- C = Function Check
- S = Out of Specification
- M = Maintenance Required

Filter options

Navigation

Expert → Diagnostics → Event logbook → Filter options

Description

Use this function to select the category whose event messages are displayed in the event list of the operating tool.

Selection

- All
- Failure (F)
- Funct. check (C)
- Out of spec. (S)
- Mainten. req. (M)
- Information (I)

Factory setting

All

Additional information

Description

The status signals are categorized in accordance with VDI/VDE 2650 and NAMUR Recommendation NE 107:

- F = Failure
- C = Function Check
- S = Out of Specification
- M = Maintenance Required

"Event list" submenu

The **Event list** submenu is only displayed if operating via the local display.

If operating via the FieldCare operating tool, the event list can be read out with a separate FieldCare module.

If operating via the Web browser, the event messages can be found directly in the **Event logbook** submenu.

Navigation

Expert → Diagnostics → Event logbook → Event list

`→ 234`
Event list

Navigation

Displays the history of event messages of the category selected in the Filter options parameter (→ 232).

Description

User interface

- For a "Category I" event message
 Information event, short message, symbol for event recording and operating time when error occurred
- For a "Category F, C, S, M" event message (status signal)
 Diagnostics code, short message, symbol for event recording and operating time when error occurred

Additional information

Description

A maximum of 20 event messages are displayed in chronological order.

If the Extended HistoROM application package (order option) is enabled in the device, the event list can contain up to 100 entries .

The following symbols indicate whether an event has occurred or has ended:
- Occurrence of the event
- End of the event

Examples

For the display format:
- I1091 Configuration modified
 24d12h13m00s
- F271 Main electronics
 01d04h12min30s

HistoROM

A HistoROM is a "non-volatile" device memory in the form of an EEPROM.

3.12.3 "Device info" submenu

Navigation

Device info

- Device tag (0011) → 235
- Serial number (0009) → 235
- Firmware version (0010) → 236
- Device name (0020) → 236
- Order code (0008) → 236
Device tag

Navigation

- Expert → Diagnostics → Device info → Device tag (0011)

Description

Displays a unique name for the measuring point so it can be identified quickly within the plant. The name is displayed in the header.

User interface

Max. 32 characters, such as letters, numbers or special characters (e.g. @, %, /).

Factory setting

Promass 300 PA

Additional information

Display

```
1
```

1. **Position of the header text on the display**

The number of characters displayed depends on the characters used.

Serial number

Navigation

- Expert → Diagnostics → Device info → Serial number (0009)

Description

Displays the serial number of the measuring device.

- The number can be found on the nameplate of the sensor and transmitter.

User interface

Max. 11-digit character string comprising letters and numbers.

Additional information

Description

Uses of the serial number

- To identify the measuring device quickly, e.g. when contacting Endress+Hauser.
- To obtain specific information on the measuring device using the Device Viewer: www.endress.com/deviceviewer
Firmware version

Navigation
Expert → Diagnostics → Device info → Firmware version (0010)

Description
Displays the device firmware version installed.

User interface
Character string in the format xx.yy.zz

Additional information
Display

- The Firmware version is also located:
 - On the title page of the Operating instructions
 - On the transmitter nameplate

Device name

Navigation
Expert → Diagnostics → Device info → Device name (0020)

Description
Displays the name of the transmitter. It can also be found on the nameplate of the transmitter.

User interface
Promass 300/500

Order code

Navigation
Expert → Diagnostics → Device info → Order code (0008)

Description
Displays the device order code.

User interface
Character string composed of letters, numbers and certain punctuation marks (e.g. /).

Additional information
Description

- The order code can be found on the nameplate of the sensor and transmitter in the "Order code" field.

The order code is generated from the extended order code through a process of reversible transformation. The extended order code indicates the attributes for all the device features in the product structure. The device features are not directly readable from the order code.

Uses of the order code

- To order an identical spare device.
- To identify the device quickly and easily, e.g. when contacting Endress+Hauser.
Ext. order cd. 1

Navigation
Expert → Diagnostics → Device info → Ext. order cd. 1 (0023)

Description
Displays the first part of the extended order code.
On account of length restrictions, the extended order code is split into a maximum of 3 parameters.

User interface
Character string

Additional information
Description
The extended order code indicates the version of all the features of the product structure for the measuring device and thus uniquely identifies the measuring device.

The extended order code can also be found on the nameplate of the sensor and transmitter in the 'Ext. ord. cd.' field.

Ext. order cd. 2

Navigation
Expert → Diagnostics → Device info → Ext. order cd. 2 (0021)

Description
Displays the second part of the extended order code.

User interface
Character string

Additional information
For additional information, see Ext. order cd. 1 parameter (→ 237)

Ext. order cd. 3

Navigation
Expert → Diagnostics → Device info → Ext. order cd. 3 (0022)

Description
Displays the third part of the extended order code.

User interface
Character string

Additional information
For additional information, see Ext. order cd. 1 parameter (→ 237)

ENP version

Navigation
Expert → Diagnostics → Device info → ENP version (0012)

Description
Displays the version of the electronic nameplate.

User interface
Character string
Description of device parameters

Factory setting
2.02.00

Additional information
Description
This electronic nameplate stores a data record for device identification that includes more data than the nameplates attached to the outside of the device.

3.12.4 "Main elec.+I/O1" submenu

Navigation

😉 Expert → Diagnostics → Main elec.+I/O1

Software rev.

Navigation

😉 Expert → Diagnostics → Main elec.+I/O1 → Software rev. (0072)

Description
Use this function to display the software revision of the module.

User interface

Positive integer

Build no. softw.

Navigation

😉 Expert → Diagnostics → Main elec.+I/O1 → Build no. softw. (0079)

Description
Use this function to display the software build number of the module.

User interface

Positive integer

Bootloader rev.

Navigation

😉 Expert → Diagnostics → Main elec.+I/O1 → Bootloader rev. (0073)

Description
Use this function to display the bootloader revision of the software.
3.12.5 "Sens. electronic" submenu

Navigation

Expert → Diagnostics → Sens. electronic

Description

Use this function to display the software revision of the module.

User interface

Positive integer

Software rev.

Navigation

Expert → Diagnostics → Sens. electronic → Software rev. (0072)

Description

Use this function to display the software revision of the module.

User interface

Positive integer

Build no. softw.

Navigation

Expert → Diagnostics → Sens. electronic → Build no. softw. (0079)

Description

Use this function to display the software build number of the module.

User interface

Positive integer

Bootloader rev.

Navigation

Expert → Diagnostics → Sens. electronic → Bootloader rev. (0073)

Description

Use this function to display the bootloader revision of the software.

User interface

Positive integer
3.12.6 "I/O module 1" submenu

Navigation

Expert → Diagnostics → I/O module 1

I/O 1 terminals

Navigation

Expert → Diagnostics → I/O module 1 → I/O 1 terminals (3902–1)

Description
Displays the terminal numbers used by the I/O module.

User interface
- Not used
- 26-27 (I/O 1)
- 24-25 (I/O 2)

Software rev.

Navigation

Expert → Diagnostics → I/O module → Software rev. (0072)

Description
Use this function to display the software revision of the module.

User interface
Positive integer

3.12.7 "I/O module 2" submenu

Navigation

Expert → Diagnostics → I/O module 2

I/O 2 terminals

Software rev.

Build no. softw.

Bootloader rev.
I/O 2 terminals

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Diagnostics → I/O module 2 → I/O 2 terminals (3902)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the terminal numbers used by the I/O module.</td>
</tr>
<tr>
<td>User interface</td>
<td></td>
</tr>
<tr>
<td>• Not used</td>
<td></td>
</tr>
<tr>
<td>• 26-27 (I/O 1)</td>
<td></td>
</tr>
<tr>
<td>• 24-25 (I/O 2)</td>
<td></td>
</tr>
</tbody>
</table>

Software rev.

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Diagnostics → I/O module → Software rev. (0072)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to display the software revision of the module.</td>
</tr>
<tr>
<td>User interface</td>
<td>Positive integer</td>
</tr>
</tbody>
</table>

Build no. softw.

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Diagnostics → I/O module 2 → Build no. softw. (0079)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to display the software build number of the module.</td>
</tr>
<tr>
<td>User interface</td>
<td>Positive integer</td>
</tr>
</tbody>
</table>

Bootloader rev.

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Diagnostics → I/O module 2 → Bootloader rev. (0073)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to display the bootloader revision of the software.</td>
</tr>
<tr>
<td>User interface</td>
<td>Positive integer</td>
</tr>
</tbody>
</table>
3.12.8 "Display module" submenu

Navigation
Expert → Diagnostics → Display module

<table>
<thead>
<tr>
<th>Software rev.</th>
<th>Software rev. (0072)</th>
<th>242</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build no. softw.</td>
<td>Build no. softw. (0079)</td>
<td>242</td>
</tr>
<tr>
<td>Bootloader rev.</td>
<td>Bootloader rev. (0073)</td>
<td>242</td>
</tr>
</tbody>
</table>

Software rev.

Navigation
Expert → Diagnostics → Display module → Software rev. (0072)

Description
Use this function to display the software revision of the module.

User interface
Positive integer

Build no. softw.

Navigation
Expert → Diagnostics → Display module → Build no. softw. (0079)

Description
Use this function to display the software build number of the module.

User interface
Positive integer

Bootloader rev.

Navigation
Expert → Diagnostics → Display module → Bootloader rev. (0073)

Description
Use this function to display the bootloader revision of the software.

User interface
Positive integer
3.12.9 "Min/max val." submenu

Navigation
Expert → Diagnostics → Min/max val.

Reset min/max

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset min/max [6151]</td>
<td>243</td>
</tr>
<tr>
<td>Electronic temp.</td>
<td>244</td>
</tr>
<tr>
<td>Medium temp.</td>
<td>245</td>
</tr>
<tr>
<td>Carr. pipe temp.</td>
<td>245</td>
</tr>
<tr>
<td>Oscil. frequency</td>
<td>247</td>
</tr>
<tr>
<td>Tors.oscil.freq.</td>
<td>247</td>
</tr>
<tr>
<td>Oscil. amplitude</td>
<td>248</td>
</tr>
<tr>
<td>Tor. osc. amp.</td>
<td>249</td>
</tr>
<tr>
<td>Oscil. damping</td>
<td>250</td>
</tr>
<tr>
<td>Tors.oscil.damp.</td>
<td>250</td>
</tr>
<tr>
<td>Signal asymmetry</td>
<td>251</td>
</tr>
<tr>
<td>Tors.sig.asymm.</td>
<td>252</td>
</tr>
</tbody>
</table>

Navigation
Expert → Diagnostics → Min/max val. → Reset min/max (6151)

Description
Use this function to select measured variables whose minimum, maximum and average measured values are to be reset.

Selection
- Cancel
- Oscil. amplitude
- Osc. ampl. 1
- Oscil. damping
- Tors.oscil.damp.
- Oscil. frequency
- Tors.oscil.freq.
- Signal asymmetry
- Tors.sig.asymm.

* Visibility depends on order options or device settings
"Electronic temp." submenu

Navigation

Expert → Diagnostics → Min/max val. → Electronic temp.

Minimum value

Navigation

Expert → Diagnostics → Min/max val. → Electronic temp. → Minimum value (6052)

Description
Displays the lowest previously measured temperature value of the main electronics module.

User interface
Signed floating-point number

Additional information

Dependency

The unit is taken from the **Temperature unit** parameter (→ 66)

Maximum value

Navigation

Expert → Diagnostics → Min/max val. → Electronic temp. → Maximum value (6051)

Description
Displays the highest previously measured temperature value of the main electronics module.

User interface
Signed floating-point number

Additional information

Dependency

The unit is taken from the **Temperature unit** parameter (→ 66)
"Medium temp." submenu

Navigation

Expert → Diagnostics → Min/max val. → Medium temp.

<table>
<thead>
<tr>
<th>Medium temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value (6109)</td>
</tr>
<tr>
<td>Maximum value (6108)</td>
</tr>
</tbody>
</table>

Minimum value

Navigation

Expert → Diagnostics → Min/max val. → Medium temp. → Minimum value (6109)

Description
Displays the lowest previously measured medium temperature value.

User interface
Signed floating-point number

Additional information
Dependency

The unit is taken from the Temperature unit parameter (→ 66)

Maximum value

Navigation

Expert → Diagnostics → Min/max val. → Medium temp. → Maximum value (6108)

Description
Displays the highest previously measured medium temperature value.

User interface
Signed floating-point number

Additional information
Dependency

The unit is taken from the Temperature unit parameter (→ 66)

"Carr. pipe temp." submenu

Navigation

Expert → Diagnostics → Min/max val. → Carr. pipe temp.

<table>
<thead>
<tr>
<th>Carr. pipe temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value (6030)</td>
</tr>
<tr>
<td>Maximum value (6029)</td>
</tr>
</tbody>
</table>
Minimum value

Navigation

Expert → Diagnostics → Min/max val. → Carr. pipe temp. → Minimum value (6030)

Prerequisite

Only available for:
- Promass A
- Promass F
- Promass H
- Promass I
- Promass O
- Promass P
- Promass Q
- Promass S
- Promass X

For the following order code
Application package, option EB "Heartbeat Verification + Monitoring"

Description

Displays the lowest previously measured temperature value of the carrier pipe.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the Temperature unit parameter (→ 66)

Maximum value

Navigation

Expert → Diagnostics → Min/max val. → Carr. pipe temp. → Maximum value (6029)

Prerequisite

Only available for:
- Promass A
- Promass F
- Promass H
- Promass I
- Promass O
- Promass P
- Promass Q
- Promass S
- Promass X

For the following order code
Application package, option EB "Heartbeat Verification + Monitoring"

Description

Displays the highest previously measured temperature value of the carrier pipe.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the Temperature unit parameter (→ 66)
"Oscil. frequency" submenu

Navigation ▶▶ Expert → Diagnostics → Min/max val. → Oscil. frequency

- Oscil. frequency
 - Minimum value (6071) → ▶ 247
 - Maximum value (6070) → ▶ 247

Minimum value

Navigation ▶▶ Expert → Diagnostics → Min/max val. → Oscil. frequency → Minimum value (6071)

Description Displays the lowest previously measured oscillation frequency.

User interface Signed floating-point number

Maximum value

Navigation ▶▶ Expert → Diagnostics → Min/max val. → Oscil. frequency → Maximum value (6070)

Description Displays the highest previously measured oscillation frequency.

User interface Signed floating-point number

"Tors.oscil.freq." submenu

- Tors.oscil.freq.
 - Minimum value (6069) → ▶ 248
 - Maximum value (6068) → ▶ 248
Minimum value

Navigation

Expert → Diagnostics → Min/max val. → Tors. oscil. freq. → Minimum value (6069)

Prerequisite

Only available for Promass I.

For the following order code:
Application package, option **EB** "Heartbeat Verification + Monitoring"

Description

Displays the lowest previously measured torsion oscillation frequency.

User interface

Signed floating-point number

Maximum value

Navigation

Expert → Diagnostics → Min/max val. → Tors. oscil. freq. → Maximum value (6068)

Prerequisite

Only available for Promass I.

For the following order code:
Application package, option **EB** "Heartbeat Verification + Monitoring"

Description

Displays the highest previously measured torsion oscillation frequency.

User interface

Signed floating-point number

"Oscil. amplitude" submenu

Navigation

Expert → Diagnostics → Min/max val. → Oscil. amplitude

<table>
<thead>
<tr>
<th>Oscil. amplitude</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value (6010)</td>
<td>→ 248</td>
</tr>
<tr>
<td>Maximum value (6009)</td>
<td>→ 249</td>
</tr>
</tbody>
</table>

Minimum value

Navigation

Expert → Diagnostics → Min/max val. → Oscil. amplitude → Minimum value (6010)

Description

Displays the lowest previously measured oscillation amplitude.

User interface

Signed floating-point number
Maximum value

Navigation

Expert → Diagnostics → Min/max val. → Oscil. amplitude → Maximum value (6009)

Description

Displays the highest previously measured oscillation amplitude.

User interface

Signed floating-point number

"Tor. osc. amp." submenu

Navigation

Expert → Diagnostics → Min/max val. → Tor. osc. amp.

Minimum value

Navigation

Expert → Diagnostics → Min/max val. → Tor. osc. amp. → Minimum value (6008)

Prerequisite

Only available for Promass I.

For the following order code:

"Application package", option EB "Heartbeat Verification + Monitoring"

Description

Displays the lowest previously measured torsion oscillation amplitude.

User interface

Signed floating-point number

Maximum value

Navigation

Expert → Diagnostics → Min/max val. → Tor. osc. amp. → Maximum value (6007)

Prerequisite

Only available for Promass I.

For the following order code:

"Application package", option EB "Heartbeat Verification + Monitoring"

Description

Displays the highest previously measured torsion oscillation amplitude.
Description of device parameters

Proline Promass 300 PROFIBUS PA

User interface
Signed floating-point number

“Oscil. damping” submenu

Navigation

Expert → Diagnostics → Min/max val. → Oscil. damping

Minimum value

Description
Displays the lowest previously measured oscillation damping.

User interface
Signed floating-point number

Maximum value

Description
Displays the highest previously measured oscillation damping.

User interface
Signed floating-point number

“Tors.oscil.damp.” submenu

Navigation

Expert → Diagnostics → Min/max val. → Tors.oscil.damp.
Minimum value

Navigation
Expert → Diagnostics → Min/max val. → Tors. oscil. damp. → Minimum value (6120)

Prerequisite
Only available for Promass I.

For the following order code:
'Application package', option **EB** 'Heartbeat Verification + Monitoring'

Description
Displays the lowest previously measured torsion oscillation damping.

User interface
Signed floating-point number

Maximum value

Navigation
Expert → Diagnostics → Min/max val. → Tors. oscil. damp. → Maximum value (6119)

Prerequisite
Only available for Promass I.

For the following order code:
'Application package', option **EB** 'Heartbeat Verification + Monitoring'

Description
Displays the highest previously measured torsion oscillation damping.

User interface
Signed floating-point number

"Signal asymmetry" submenu

Navigation
Expert → Diagnostics → Min/max val. → Signal asymmetry

<table>
<thead>
<tr>
<th>Signal asymmetry</th>
<th>Minimum value (6015)</th>
<th>→ 251</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum value (6014)</td>
<td>→ 252</td>
</tr>
</tbody>
</table>

Minimum value

Navigation
Expert → Diagnostics → Min/max val. → Signal asymmetry → Minimum value (6015)

Description
Displays the lowest previously measured signal asymmetry.
User interface
Signed floating-point number

Maximum value

Navigation
Expert → Diagnostics → Min/max val. → Signal asymmetry → Maximum value (6014)

Description
Displays the highest previously measured signal asymmetry.

User interface
Signed floating-point number

"Torsion signal asymmetry" submenu

Navigation
Expert → Diagnostics → Min/max val. → Tors.sig.asymm.

Minimum value

Navigation
Expert → Diagnostics → Min/max val. → Tors.sig.asymm. → Minimum value (6284)

Prerequisite
Only available for Promass I.

For the following order code:
'Application package', option **EB** 'Heartbeat Verification + Monitoring'

Description
Displays the lowest previously measured torsion signal asymmetry.

User interface
Signed floating-point number

Maximum value

Navigation
Expert → Diagnostics → Min/max val. → Tors.sig.asymm. → Maximum value (6283)

Prerequisite
Only available for Promass I.
For the following order code:
"Application package", option **EB** "Heartbeat Verification + Monitoring"

Description
Displays the highest previously measured torsion signal asymmetry.

User interface
Signed floating-point number

3.12.10 "Data logging" submenu

Navigation
Expert → Diagnostics → Data logging

<table>
<thead>
<tr>
<th>Data logging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign chan. 1</td>
</tr>
<tr>
<td>Assign chan. 2</td>
</tr>
<tr>
<td>Assign chan. 3</td>
</tr>
<tr>
<td>Assign chan. 4</td>
</tr>
<tr>
<td>Logging interval</td>
</tr>
<tr>
<td>Clear logging</td>
</tr>
<tr>
<td>Data logging</td>
</tr>
<tr>
<td>Logging delay</td>
</tr>
<tr>
<td>Data log.control</td>
</tr>
<tr>
<td>Data log. status</td>
</tr>
<tr>
<td>Logging duration</td>
</tr>
<tr>
<td>▶ Displ.channel 1</td>
</tr>
<tr>
<td>▶ Displ.channel 2</td>
</tr>
<tr>
<td>▶ Displ.channel 3</td>
</tr>
<tr>
<td>▶ Displ.channel 4</td>
</tr>
</tbody>
</table>
Assign chan. 1

Navigation

[Diagram] Expert → Diagnostics → Data logging → Assign chan. 1 (0851)

Prerequisite

The **Extended HistoROM** application package is available.

* The software options currently enabled are displayed in the **SW option overv.** parameter (→ 45).

Description

Use this function to select a process variable for the data logging channel.

Selection

- Off
- Mass flow
- Volume flow
- Correct.vol.flow *
- Target mass flow *
- Carrier mass fl. *
- Target vol. flow *
- Carrier vol. fl. *
- Targ.corr.vol.fl *
- Carr.corr.vol.fl *
- Density
- Ref.density *
- Ref.dens.altern. *
- GSV flow *
- GSVa *
- NSV flow *
- NSVa *
- S&W volume flow *
- Water cut *
- Oil density *
- Water density *
- Oil mass flow *
- Water mass flow *
- Oil volume flow *
- Water vol. flow *
- Oil corr.vol.fl *
- Water corr.v.fl *
- Concentration *
- Dynam. viscosity *
- Kinematic visc.
- TempCompDynVisc *
- TempCompKinVisc *
- Temperature
- Carr. pipe temp. *
- Electronic temp.
- Osc. freq. 0
- Osc. freq. 1 *
- Freq. fluct. 0 *
- Freq. fluct. 1 *
- Oscil. amplitude *
- Osc. ampl. 1 *
- Freq. fluct. 0 *
- Osc. damping 0 *
- Osc. damping 1 *

* Visibility depends on order options or device settings
- Osc.damp.fluct 0 *
- Osc.damp.fluct 1 *
- Signal asymmetry *
- Exc. current 0 *
- Exc. current 1 *
- HBSI *
- Curr.output 1 *
- Pressure

Factory setting

Off

Additional information

Description

A total of 1000 measured values can be logged. This means:
- 1000 data points if 1 logging channel is used
- 500 data points if 2 logging channels are used
- 333 data points if 3 logging channels are used
- 250 data points if 4 logging channels are used

Once the maximum number of data points is reached, the oldest data points in the data log are cyclically overwritten in such a way that the last 1000, 500, 333 or 250 measured values are always in the log (ring memory principle).

* The log contents are cleared if the option selected is changed.

Selection

Detailed description of the options Oscil. frequency, Oscil. amplitude, Oscil. damping and Signal asymmetry: Assign freq. parameter (→ 123)

Assign chan. 2

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Diagnostics → Data logging → Assign chan. 2 (0852)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>The Extended Histosoftware options currently enabled are displayed in the SW option overv. parameter (→ 45).</td>
</tr>
<tr>
<td>Description</td>
<td>Options for the assignment of a process variable to the data logging channel.</td>
</tr>
<tr>
<td>Selection</td>
<td>Picklist, see Assign channel 1 parameter (→ 254)</td>
</tr>
<tr>
<td>Factory setting</td>
<td>Off</td>
</tr>
</tbody>
</table>

* Visibility depends on order options or device settings
Assign chan. 3

Navigation

Expert → Diagnostics → Data logging → Assign chan. 3 (0853)

Prerequisite
The Extended HistoROM application package is available.

The software options currently enabled are displayed in the SW option overv. parameter (→ 45).

Description
Options for the assignment of a process variable to the data logging channel.

Selection
Picklist, see Assign channel 1 parameter (→ 254)

Factory setting
Off

Assign chan. 4

Navigation

Expert → Diagnostics → Data logging → Assign chan. 4 (0854)

Prerequisite
The Extended HistoROM application package is available.

The software options currently enabled are displayed in the SW option overv. parameter (→ 45).

Description
Options for the assignment of a process variable to the data logging channel.

Selection
Picklist, see Assign channel 1 parameter (→ 254)

Factory setting
Off

Logging interval

Navigation

Expert → Diagnostics → Data logging → Logging interval (0856)

Prerequisite
The Extended HistoROM application package is available.

The software options currently enabled are displayed in the SW option overv. parameter (→ 45).

Description
Use this function to enter the logging interval T_{log} for data logging.

User entry
0.1 to 3 600.0 s

Factory setting
1.0 s
Additional information

Description

This defines the interval between the individual data points in the data log, and thus the maximum loggable process time \(T_{\text{log}} \):

- If 1 logging channel is used: \(T_{\text{log}} = 1000 \times t_{\text{log}} \)
- If 2 logging channels are used: \(T_{\text{log}} = 500 \times t_{\text{log}} \)
- If 3 logging channels are used: \(T_{\text{log}} = 333 \times t_{\text{log}} \)
- If 4 logging channels are used: \(T_{\text{log}} = 250 \times t_{\text{log}} \)

Once this time elapses, the oldest data points in the data log are cyclically overwritten such that a time of \(T_{\text{log}} \) always remains in the memory (ring memory principle).

The log contents are cleared if the length of the logging interval is changed.

Example

If 1 logging channel is used:

- \(T_{\text{log}} = 1000 \times 1 \text{ s} = 1000 \text{ s} \approx 15 \text{ min} \)
- \(T_{\text{log}} = 1000 \times 10 \text{ s} = 10000 \text{ s} \approx 3 \text{ h} \)
- \(T_{\text{log}} = 1000 \times 80 \text{ s} = 80000 \text{ s} \approx 1 \text{ d} \)
- \(T_{\text{log}} = 1000 \times 3600 \text{ s} = 3600000 \text{ s} \approx 41 \text{ d} \)

Clear logging

Navigation

Expert → Diagnostics → Data logging → Clear logging (0855)

Prerequisite

The Extended HistoROM application package is available.

The software options currently enabled are displayed in the SW option overv. parameter (→ 45).

Description

Use this function to clear the entire logging data.

Selection

- Cancel
- Clear data

Factory setting

Cancel

Additional information

Selection

- Cancel
 The data is not cleared. All the data is retained.
- Clear data
 The logging data is cleared. The logging process starts from the beginning.

Data logging

Navigation

Expert → Diagnostics → Data logging → Data logging (0860)

Description

Use this function to select the data logging method.

Selection

- Overwriting
- Not overwriting
Description of device parameters

Factory setting
Overwriting

Additional information
Selection
- Overwriting
 The device memory applies the FIFO principle.
- Not overwriting
 Data logging is canceled if the measured value memory is full (single shot).

Logging delay

Navigation
Expert → Diagnostics → Data logging → Logging delay (0859)

Prerequisite
In the Data logging parameter (→ 257), the Not overwriting option is selected.

Description
Use this function to enter the time delay for measured value logging.

User entry
0 to 999 h

Factory setting
0 h

Additional information
Description
Once measured value logging has been started with the Data log.control parameter (→ 258), the device does not save any data for the duration of the time delay entered.

Data log.control

Navigation
Expert → Diagnostics → Data logging → Data log.control (0857)

Prerequisite
In the Data logging parameter (→ 257), the Not overwriting option is selected.

Description
Use this function to start and stop measured value logging.

Selection
- None
- Delete + start
- Stop

Factory setting
None

Additional information
Selection
- None
 Initial measured value logging status.
- Delete + start
 All the measured values recorded for all the channels are deleted and measured value logging starts again.
- Stop
 Measured value logging is stopped.
Data log. status

Navigation

Expert → Diagnostics → Data logging → Data log. status (0858)

Prerequisite

In the Data logging parameter (→ 257), the Not overwriting option is selected.

Description

Displays the measured value logging status.

User interface

- Done
- Delay active
- Active
- Stopped

Factory setting

Done

Additional information

Selection
- Done
 Measured value logging has been performed and completed successfully.
- Delay active
 Measured value logging has been started but the logging interval has not yet elapsed.
- Active
 The logging interval has elapsed and measured value logging is active.
- Stopped
 Measured value logging is stopped.

Logging duration

Navigation

Expert → Diagnostics → Data logging → Logging duration (0861)

Prerequisite

In the Data logging parameter (→ 257), the Not overwriting option is selected.

Description

Displays the total logging duration.

User interface

Positive floating-point number

Factory setting

0 s

"Displ.channel 1" submenu

Navigation

Expert → Diagnostics → Data logging → Displ.channel 1

[Display channel 1 ➔ 260]
Display channel 1

Navigation

Expert → Diagnostics → Data logging → Displ. channel 1

Prerequisite

The Extended HistoROM application package is available.

The software options currently enabled are displayed in the SW option overv. parameter (→ 45).

One of the following options is selected in the Assign chan. 1 parameter (→ 254):

• Mass flow
• Volume flow
• Correct.vol.flow
• Target mass flow
• Carrier mass fl.
• Density
• Ref.density
• Concentration
• Dynam. viscosity
• Kinematic visc.
• TempCompDynVisc
• TempCompKinVisc
• Carr. pipe temp.
• Electronic temp.
• Curr.output 1
• Osc. freq. 0
• Osc. freq. 1
• Freq. fluct. 0
• Freq. fluct. 1
• Oscil. amplitude
• Osc. ampl. 1
• Osc. damping 0
• Osc. damping 1
• Osc.damp.fluct 0
• Osc.damp.fluct 1
• Signal asymmetry
• Exc. current 0
• Exc. current 1

Description

Displays the measured value trend for the logging channel in the form of a chart.

Additional information

Prerequisite

Detailed description of the options Oscil. frequency, Oscil. amplitude, Oscil. damping and Signal asymmetry: Assign freq. parameter (→ 123)

Description

Chart of a measured value trend

Visibility depends on order options or device settings
- x-axis: depending on the number of channels selected displays 250 to 1000 measured values of a process variable.
- y-axis: displays the approximate measured value span and constantly adapts this to the ongoing measurement.

"Displ.channel 2" submenu

Navigation

Expert → Diagnostics → Data logging → Displ.channel 2

Display channel 2

Navigation

Expert → Diagnostics → Data logging → Displ.channel 2

Prerequisite

A process variable is defined in the Assign chan. 2 parameter.

Description

See the Display channel 1 parameter → 260

"Displ.channel 3" submenu

Navigation

Expert → Diagnostics → Data logging → Displ.channel 3

Display channel 3

Navigation

Expert → Diagnostics → Data logging → Displ.channel 3

Prerequisite

A process variable is defined in the Assign chan. 3 parameter.

Description

See the Display channel 1 parameter → 260
"Displ.channel 4" submenu

Navigation
Expert → Diagnostics → Data logging → Displ.channel 4

Display channel 4

Navigation
Expert → Diagnostics → Data logging → Displ.channel 4

Prerequisite
A process variable is defined in the Assign chan. 4 parameter.

Description
See the Display channel 1 parameter → 260

3.12.11 "Heartbeat" submenu

For detailed information on the parameter descriptions for the Heartbeat Verification+Monitoring application package, refer to the Special Documentation for the device → 7

Navigation
Expert → Diagnostics → Heartbeat

3.12.12 "Simulation" submenu

Navigation
Expert → Diagnostics → Simulation
Assign proc.var.

Navigation

Expert → Diagnostics → Simulation → Assign proc.var. (1810)

Description

Use this function to select a process variable for the simulation process that is activated. The display alternates between the measured value and a diagnostic message of the "Function check" category (C) while simulation is in progress.

Selection

- Off
- Mass flow
- Volume flow
Description of device parameters

Proline Promass 300 PROFIBUS PA

- Correct. vol. flow
- Target vol. flow
- Carrier vol. fl.
- Targ. corr. vol. fl.
- Carr. corr. vol. fl.
- Density
- Ref. density
- Ref. dens. altern.
- GSV flow
- GSVa
- NSV flow
- NSVa
- S&W volume flow
- Water cut
- Oil density
- Water density
- Oil mass flow
- Water mass flow
- Oil volume flow
- Water vol. flow
- Oil corr. vol. fl.
- Water corr. v.fl.
- Density average
- Temp. average
- Temperature
- Dynam. viscosity
- Kinematic visc.
- TempCompDynVisc
- TempCompKinVisc
- Concentration
- Target mass flow
- Carrier mass fl.

Factory setting

Off

Additional information

- Description

The simulation value of the process variable selected is defined in the **Proc. var. value** parameter (→ 264).

Proc. var. value

Navigation

Expert → Diagnostics → Simulation → Proc. var. value (1811)

Prerequisite

A process variable is selected in the **Assign proc. var.** parameter (→ 263).

Description

Use this function to enter a simulation value for the selected process variable. Subsequent measured value processing and the signal output use this simulation value. In this way, users can verify whether the measuring device has been configured correctly.

User entry

Depends on the process variable selected

Factory setting

0

* Visibility depends on order options or device settings
Additional information

User entry

The unit of the displayed measured value is taken from the System units submenu (→ 60).

Status inp. sim.

Navigation

Expert → Diagnostics → Simulation → Status inp. sim. (1355)

Description

Use this function to switch simulation of the status input on and off. The display alternates between the measured value and a diagnostic message of the 'Function check' category (C) while simulation is in progress.

Selection

• Off
• On

Factory setting

Off

Additional information Description

The desired simulation value is defined in the Signal level parameter (→ 265).

Selection

• Off
 Simulation for the status input is switched off. The device is in normal measuring mode or another process variable is being simulated.
• On
 Simulation for the status input is active.

Signal level

Navigation

Expert → Diagnostics → Simulation → Signal level (1356)

Prerequisite

In the Status inp. sim. parameter (→ 265), the On option is selected.

Description

Use this function to select the signal level for the simulation of the status input. In this way, users can verify the correct configuration of the status input and the correct function of upstream feed-in units.

Selection

• High
• Low
Curr.inp 1 to n sim.

Navigation

- Expert → Diagnostics → Simulation → Curr.inp 1 to n sim. (1608–1 to n)

Description

Option for switching simulation of the current input on and off. The display alternates between the measured value and a diagnostic message of the ‘Function check’ category (C) while simulation is in progress.

- The desired simulation value is defined in the Value curr.inp 1 to n parameter.

Selection

- Off
- On

Factory setting

- Off

Additional information

- Off
 - Current simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.

- On
 - Current simulation is active.

Value curr.inp 1 to n

Navigation

- Expert → Diagnostics → Simulation → Value curr.inp 1 to n (1609–1 to n)

Prerequisite

In the Curr.inp 1 to n sim. parameter, the On option is selected.

Description

Use this function to enter the current value for the simulation. In this way, users can verify the correct configuration of the current input and the correct function of upstream feed-in units.

User entry

0 to 22.5 mA

Curr.out. 1 to n sim.

Navigation

- Expert → Diagnostics → Simulation → Curr.out. 1 to n sim. (0354–1 to n)

Description

Use this function to switch simulation of the current output on and off. The display alternates between the measured value and a diagnostic message of the ‘Function check’ category (C) while simulation is in progress.

Selection

- Off
- On

Factory setting

- Off
Additional information

Description
The desired simulation value is defined in the **Value curr.out 1 to n** parameter.

Selection
- **Off**
 Current simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- **On**
 Current simulation is active.

Value curr.out 1 to n

Navigation

Expert → Diagnostics → Simulation → Value curr.out 1 to n (0355–1 to n)

Prerequisite

In the **Curr.out. 1 to n sim.** parameter, the **On** option is selected.

Description

Use this function to enter a current value for the simulation. In this way, users can verify the correct adjustment of the current output and the correct function of downstream switching units.

User entry

3.59 to 22.5 mA

Additional information

Dependency
The input range is dependent on the option selected in the **Current span** parameter (→ 103).

FreqOutputSim 1 to n

Navigation

Expert → Diagnostics → Simulation → FreqOutputSim 1 to n (0472–1 to n)

Prerequisite

In the **Operating mode** parameter (→ 117), the **Frequency** option is selected.

Description

Use this function to switch simulation of the frequency output on and off. The display alternates between the measured value and a diagnostic message of the 'Function check' category (C) while simulation is in progress.

Selection

- **Off**
- **On**

Factory setting

Off
Additional information

Description

The desired simulation value is defined in the **Freq value 1 to n** parameter.

Selection

- **Off**
 Frequency simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- **On**
 Frequency simulation is active.

Freq value 1 to n

Navigation

Expert → Diagnostics → Simulation → Freq value 1 to n (0473–1 to n)

Prerequisite

In the **FreqOutputSim 1 to n** parameter, the **On** option is selected.

Description

Use this function to enter a frequency value for the simulation. In this way, users can verify the correct adjustment of the frequency output and the correct function of downstream switching units.

User entry

0.0 to 12 500.0 Hz

Puls.outp.sim. 1 to n

Navigation

Expert → Diagnostics → Simulation → Puls.outp.sim. 1 to n (0458–1 to n)

Prerequisite

In the **Operating mode** parameter (→ 117), the **Pulse** option is selected.

Description

Use this function to switch simulation of the pulse output on and off. The display alternates between the measured value and a diagnostic message of the "Function check" category (C) while simulation is in progress.

Selection

- **Off**
- **Fixed value**
- **Down-count. val.**

Factory setting

Off
Additional information

Description

The desired simulation value is defined in the Pulse value 1 to n parameter.

Selection

- **Off**
 Pulse simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- **Fixed value**
 Pulses are continuously output with the pulse width specified in the Pulse width parameter (→ 120).
- **Down-count. val.**
 The pulses specified in the Pulse value parameter (→ 269) are output.

<table>
<thead>
<tr>
<th>Pulse value 1 to n</th>
</tr>
</thead>
</table>

Navigation

Expert → Diagnostics → Simulation → Pulse value 1 to n (0459–1 to n)

Prerequisite
In the Puls.outp.sim. 1 to n parameter, the Down-count. val. option is selected.

Description
Use this function to enter a pulse value for the simulation. In this way, users can verify the correct adjustment of the pulse output and the correct function of downstream switching units.

User entry
0 to 65535

<table>
<thead>
<tr>
<th>Switch sim. 1 to n</th>
</tr>
</thead>
</table>

Navigation

Expert → Diagnostics → Simulation → Switch sim. 1 to n (0462–1 to n)

Prerequisite
In the Operating mode parameter (→ 117), the Switch option is selected.

Description
Use this function to switch simulation of the switch output on and off. The display alternates between the measured value and a diagnostic message of the 'Function check' category (C) while simulation is in progress.

Selection

- **Off**
- **On**

Factory setting
Off
Additional information

Description

The desired simulation value is defined in the **Switch status 1 to n** parameter.

Selection

- **Off**
 Switch simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- **On**
 Switch simulation is active.

Switch status 1 to n

Navigation

Expert → Diagnostics → Simulation → Switch status 1 to n (0463–1 to n)

Description

Use this function to select a switch value for the simulation. In this way, users can verify the correct adjustment of the switch output and the correct function of downstream switching units.

Selection

- **Open**
- **Closed**

Additional information

Selection

- **Open**
 Switch simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- **Closed**
 Switch simulation is active.

Relay out. 1 to n sim

Navigation

Expert → Diagnostics → Simulation → Relay out. 1 to n sim (0802–1 to n)

Description

Use this function to switch simulation of the relay output on and off. The display alternates between the measured value and a diagnostic message of the 'Function check' category (C) while simulation is in progress.

Selection

- **Off**
- **On**

Factory setting

Off
Additional information

Description

The desired simulation value is defined in the **Switch status 1 to n** parameter.

Selection

- Off
 Relay simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- On
 Relay simulation is active.

Switch status 1 to n

Navigation

Expert \rightarrow Diagnostics \rightarrow Simulation \rightarrow Switch status 1 to n (0803–1 to n)

Prerequisite

The **On** option is selected in the **Switch sim. 1 to n** parameter parameter.

Description

Use this function to select a relay value for the simulation. In this way, users can verify the correct adjustment of the relay output and the correct function of downstream switching units.

Selection

- Open
- Closed

Additional information

Selection

- Open
 Relay simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- Closed
 Relay simulation is active.

Dev. alarm sim.

Navigation

Expert \rightarrow Diagnostics \rightarrow Simulation \rightarrow Dev. alarm sim. (0654)

Description

Use this function to switch the device alarm on and off.

Selection

- Off
- On

Factory setting

Off

Additional information

Description

The display alternates between the measured value and a diagnostic message of the "Function check" category (C) while simulation is in progress.
Event category

Navigation
Expert → Diagnostics → Simulation → Event category (0738)

Description
Use this function to select the category of the diagnostic events that are displayed for the simulation in the Diag. event sim. parameter (→ 272).

Selection
- Sensor
- Electronics
- Configuration
- Process

Factory setting
Process

Diag. event sim.

Navigation
Expert → Diagnostics → Simulation → Diag. event sim. (0737)

Description
Use this function to select a diagnostic event for the simulation process that is activated.

Selection
- Off
- Diagnostic event picklist (depends on the category selected)

Factory setting
Off

Additional information
Description

For the simulation, you can choose from the diagnostic events of the category selected in the Event category parameter (→ 272).
4 Country-specific factory settings

4.1 SI units

Not valid for USA and Canada.

4.1.1 System units

<table>
<thead>
<tr>
<th>Mass</th>
<th>kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass flow</td>
<td>kg/h</td>
</tr>
<tr>
<td>Volume</td>
<td>l</td>
</tr>
<tr>
<td>Volume flow</td>
<td>l/h</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>Nl</td>
</tr>
<tr>
<td>Corrected volume flow</td>
<td>Nl/h</td>
</tr>
<tr>
<td>Density</td>
<td>kg/l</td>
</tr>
<tr>
<td>Reference density</td>
<td>kg/Nl</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C</td>
</tr>
<tr>
<td>Pressure</td>
<td>bar a</td>
</tr>
</tbody>
</table>

4.1.2 Full scale values

The factory settings apply to the following parameters:
- 20 mA value (full scale value of the current output)
- 100% bar graph value 1

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>[kg/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
</tr>
<tr>
<td>8</td>
<td>400</td>
</tr>
<tr>
<td>15</td>
<td>1300</td>
</tr>
<tr>
<td>15 FB</td>
<td>3600</td>
</tr>
<tr>
<td>25</td>
<td>3600</td>
</tr>
<tr>
<td>25 FB</td>
<td>9000</td>
</tr>
<tr>
<td>40</td>
<td>9000</td>
</tr>
<tr>
<td>40 FB</td>
<td>14000</td>
</tr>
<tr>
<td>50</td>
<td>14000</td>
</tr>
<tr>
<td>50 FB</td>
<td>36000</td>
</tr>
<tr>
<td>80</td>
<td>36000</td>
</tr>
<tr>
<td>100</td>
<td>60000</td>
</tr>
<tr>
<td>150</td>
<td>130 t/h</td>
</tr>
<tr>
<td>250</td>
<td>360 t/h</td>
</tr>
<tr>
<td>350</td>
<td>650 t/h</td>
</tr>
</tbody>
</table>
4.1.3 Output current span

| Current output 1 to n | 4 to 20 mA NAMUR |

4.1.4 Pulse value

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>[kg/p]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.001</td>
</tr>
<tr>
<td>2</td>
<td>0.01</td>
</tr>
<tr>
<td>4</td>
<td>0.01</td>
</tr>
<tr>
<td>8</td>
<td>0.1</td>
</tr>
<tr>
<td>15</td>
<td>0.1</td>
</tr>
<tr>
<td>15 FB</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>25 FB</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
</tr>
<tr>
<td>40 FB</td>
<td>10</td>
</tr>
<tr>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>50 FB</td>
<td>10</td>
</tr>
<tr>
<td>80</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>150</td>
<td>100</td>
</tr>
<tr>
<td>250</td>
<td>100</td>
</tr>
<tr>
<td>350</td>
<td>100</td>
</tr>
</tbody>
</table>

4.1.5 On value low flow cut off

The switch-on point depends on the type of medium and the nominal diameter.

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>On-value for liquid [kg/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.08</td>
</tr>
<tr>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>4</td>
<td>1.8</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td>26</td>
</tr>
<tr>
<td>15 FB</td>
<td>72</td>
</tr>
<tr>
<td>25</td>
<td>72</td>
</tr>
<tr>
<td>25 FB</td>
<td>180</td>
</tr>
<tr>
<td>40</td>
<td>180</td>
</tr>
<tr>
<td>40 FB</td>
<td>300</td>
</tr>
<tr>
<td>50</td>
<td>300</td>
</tr>
<tr>
<td>50 FB</td>
<td>720</td>
</tr>
<tr>
<td>80</td>
<td>720</td>
</tr>
<tr>
<td>100</td>
<td>1200</td>
</tr>
</tbody>
</table>
Nominal diameter [mm] vs. On-value for liquid [kg/h]

<table>
<thead>
<tr>
<th>Nominal Diameter [mm]</th>
<th>On-value for Liquid [kg/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>2.6 t/h</td>
</tr>
<tr>
<td>250</td>
<td>7.2 t/h</td>
</tr>
<tr>
<td>350</td>
<td>13 t/h</td>
</tr>
</tbody>
</table>

Nominal diameter [mm] vs. Switch-on value for gas [kg/h]

<table>
<thead>
<tr>
<th>Nominal Diameter [mm]</th>
<th>Switch-on Value for Gas [kg/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.02</td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
</tr>
<tr>
<td>4</td>
<td>0.45</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>6.5</td>
</tr>
<tr>
<td>15 FB</td>
<td>18</td>
</tr>
<tr>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>25 FB</td>
<td>45</td>
</tr>
<tr>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>40 FB</td>
<td>75</td>
</tr>
<tr>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>50 FB</td>
<td>180</td>
</tr>
<tr>
<td>80</td>
<td>180</td>
</tr>
<tr>
<td>100</td>
<td>300</td>
</tr>
<tr>
<td>150</td>
<td>650</td>
</tr>
<tr>
<td>250</td>
<td>1.8 t/h</td>
</tr>
<tr>
<td>350</td>
<td>3.25 t/h</td>
</tr>
</tbody>
</table>

4.2 US units

- **Only valid for USA and Canada.**

4.2.1 System units

<table>
<thead>
<tr>
<th>Unit</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>lb</td>
</tr>
<tr>
<td>Mass flow</td>
<td>lb/min</td>
</tr>
<tr>
<td>Volume</td>
<td>gal (US)</td>
</tr>
<tr>
<td>Volume flow</td>
<td>gal/min (US)</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>ft³</td>
</tr>
<tr>
<td>Corrected volume flow</td>
<td>ft³/min</td>
</tr>
<tr>
<td>Density</td>
<td>lb/ft³</td>
</tr>
<tr>
<td>Reference density</td>
<td>lb/ft³</td>
</tr>
<tr>
<td>Temperature</td>
<td>°F</td>
</tr>
<tr>
<td>Pressure</td>
<td>psi a</td>
</tr>
</tbody>
</table>
4.2.2 Full scale values

The factory settings apply to the following parameters:
- 20 mA value (full scale value of the current output)
- 100% bar graph value 1

<table>
<thead>
<tr>
<th>Nominal diameter [in]</th>
<th>[lb/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>¹/₂₄</td>
<td>0.15</td>
</tr>
<tr>
<td>¹/₁₂</td>
<td>0.75</td>
</tr>
<tr>
<td>¹/₈</td>
<td>3.3</td>
</tr>
<tr>
<td>³/₈</td>
<td>15</td>
</tr>
<tr>
<td>½</td>
<td>50</td>
</tr>
<tr>
<td>¾ FB</td>
<td>130</td>
</tr>
<tr>
<td>1</td>
<td>130</td>
</tr>
<tr>
<td>1 FB</td>
<td>330</td>
</tr>
<tr>
<td>1½</td>
<td>330</td>
</tr>
<tr>
<td>1½ FB</td>
<td>550</td>
</tr>
<tr>
<td>2</td>
<td>550</td>
</tr>
<tr>
<td>2 FB</td>
<td>1300</td>
</tr>
<tr>
<td>3</td>
<td>1300</td>
</tr>
<tr>
<td>4</td>
<td>2200</td>
</tr>
<tr>
<td>6</td>
<td>4800</td>
</tr>
<tr>
<td>10</td>
<td>13000</td>
</tr>
<tr>
<td>14</td>
<td>23500</td>
</tr>
</tbody>
</table>

4.2.3 Output current span

Current output 1 to n | 4 to 20 mA US

4.2.4 Pulse value

<table>
<thead>
<tr>
<th>Nominal diameter [in]</th>
<th>[lb/p]</th>
</tr>
</thead>
<tbody>
<tr>
<td>¹/₂₄</td>
<td>0.002</td>
</tr>
<tr>
<td>¹/₁₂</td>
<td>0.02</td>
</tr>
<tr>
<td>¹/₈</td>
<td>0.02</td>
</tr>
<tr>
<td>³/₈</td>
<td>0.2</td>
</tr>
<tr>
<td>½</td>
<td>0.2</td>
</tr>
<tr>
<td>¾ FB</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1 FB</td>
<td>2</td>
</tr>
<tr>
<td>1½</td>
<td>2</td>
</tr>
<tr>
<td>1½ FB</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>2 FB</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
</tr>
</tbody>
</table>
4.2.5 **On value low flow cut off**

The switch-on point depends on the type of medium and the nominal diameter.

<table>
<thead>
<tr>
<th>Nominal diameter [in]</th>
<th>On-value for liquid [lb/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>¹/₂₄</td>
<td>0.003</td>
</tr>
<tr>
<td>¹/₁₂</td>
<td>0.015</td>
</tr>
<tr>
<td>¹/₈</td>
<td>0.066</td>
</tr>
<tr>
<td>³/₈</td>
<td>0.3</td>
</tr>
<tr>
<td>½</td>
<td>1</td>
</tr>
<tr>
<td>½ FB</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>2.6</td>
</tr>
<tr>
<td>1 FB</td>
<td>6.6</td>
</tr>
<tr>
<td>1½</td>
<td>6.6</td>
</tr>
<tr>
<td>1½ FB</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>2 FB</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>44</td>
</tr>
<tr>
<td>6</td>
<td>95</td>
</tr>
<tr>
<td>10</td>
<td>260</td>
</tr>
<tr>
<td>14</td>
<td>470</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal diameter [in]</th>
<th>Switch-on value for gas [lb/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>¹/₂₄</td>
<td>0.001</td>
</tr>
<tr>
<td>¹/₁₂</td>
<td>0.004</td>
</tr>
<tr>
<td>¹/₈</td>
<td>0.016</td>
</tr>
<tr>
<td>³/₈</td>
<td>0.075</td>
</tr>
<tr>
<td>½</td>
<td>0.25</td>
</tr>
<tr>
<td>½ FB</td>
<td>0.65</td>
</tr>
<tr>
<td>1</td>
<td>0.65</td>
</tr>
<tr>
<td>1 FB</td>
<td>1.65</td>
</tr>
<tr>
<td>1½</td>
<td>1.65</td>
</tr>
<tr>
<td>1½ FB</td>
<td>2.75</td>
</tr>
<tr>
<td>2</td>
<td>2.75</td>
</tr>
<tr>
<td>2 FB</td>
<td>6.5</td>
</tr>
<tr>
<td>Nominal diameter [in]</td>
<td>Switch-on value for gas [lb/min]</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>3</td>
<td>6.5</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>23.75</td>
</tr>
<tr>
<td>10</td>
<td>65</td>
</tr>
<tr>
<td>14</td>
<td>117.5</td>
</tr>
</tbody>
</table>
5 Explanation of abbreviated units

5.1 SI units

<table>
<thead>
<tr>
<th>Process variable</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>g/cm³, g/m³</td>
<td>Gram/volume unit</td>
</tr>
<tr>
<td></td>
<td>kg/dm³, kg/l, kg/m³</td>
<td>Kilogram/volume unit</td>
</tr>
<tr>
<td></td>
<td>SD4°C, SD15°C, SD20°C</td>
<td>Specific density: The specific density is the ratio of the density of the fluid to the density of water at a water temperature of 4 °C (39 °F), 15 °C (59 °F), 20 °C (68 °F).</td>
</tr>
<tr>
<td></td>
<td>SG4°C, SG15°C, SG20°C</td>
<td>Specific gravity: The specific gravity is the ratio of the density of the fluid to the density of water at a water temperature of 4 °C (39 °F), 15 °C (59 °F), 20 °C (68 °F).</td>
</tr>
<tr>
<td>Pressure</td>
<td>Pa a, kPa a, MPa a</td>
<td>Pascal, kilopascal, megapascal (absolute)</td>
</tr>
<tr>
<td></td>
<td>Pa g, kPa g, MPa g</td>
<td>Pascal, kilopascal, megapascal (relative/gauge)</td>
</tr>
<tr>
<td>Mass</td>
<td>g, kg, t</td>
<td>Gram, kilogram, metric ton</td>
</tr>
<tr>
<td>Mass flow</td>
<td>g/s, g/min, g/h, g/d</td>
<td>Gram/time unit</td>
</tr>
<tr>
<td></td>
<td>kg/s, kg/min, kg/h, kg/d</td>
<td>Kilogram/time unit</td>
</tr>
<tr>
<td></td>
<td>t/s, t/min, t/h, t/d</td>
<td>Metric ton/time unit</td>
</tr>
<tr>
<td>Ref. density</td>
<td>kg/Nm³, kg/Nl, g/Scm³, kg/Sm³</td>
<td>Kilogram, gram/standard volume unit</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>Nl, Nm³, Sm³</td>
<td>Normal liter, normal cubic meter, standard cubic meter</td>
</tr>
<tr>
<td>Correct. vol. flow</td>
<td>Nl/s, Nl/min, Nl/h, Nl/d</td>
<td>Normal liter/time unit</td>
</tr>
<tr>
<td></td>
<td>Nm³/s, Nm³/min, Nm³/h, Nm³/d</td>
<td>Normal cubic meter/time unit</td>
</tr>
<tr>
<td></td>
<td>Sm³/s, Sm³/min, Sm³/h, Sm³/d</td>
<td>Standard cubic meter/time unit</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C, K</td>
<td>Celsius, Kelvin</td>
</tr>
<tr>
<td>Volume</td>
<td>cm³, dm³, m³</td>
<td>Cubic centimeter, cubic decimeter, cubic meter</td>
</tr>
<tr>
<td></td>
<td>ml, l, hl, h Mega</td>
<td>Milliliter, liter, hectoliter, megaliter</td>
</tr>
<tr>
<td>Volume flow</td>
<td>cm³/s, cm³/min, cm³/h, cm³/d</td>
<td>Cubic centimeter/time unit</td>
</tr>
<tr>
<td></td>
<td>dm³/s, dm³/min, dm³/h, dm³/d</td>
<td>Cubic decimeter/time unit</td>
</tr>
<tr>
<td></td>
<td>m³/s, m³/min, m³/h, m³/d</td>
<td>Cubic meter/time unit</td>
</tr>
<tr>
<td></td>
<td>ml/s, ml/min, ml/h, ml/d</td>
<td>Milliliter/time unit</td>
</tr>
<tr>
<td></td>
<td>I/s, l/min, l/h, l/d</td>
<td>Liter/time unit</td>
</tr>
<tr>
<td></td>
<td>hl/s, hl/min, hl/h, hl/d</td>
<td>Hectoliter/time unit</td>
</tr>
<tr>
<td></td>
<td>Mi/s, Mi/min, Mi/h, Mi/d</td>
<td>Megaliter/time unit</td>
</tr>
<tr>
<td>Time</td>
<td>s, m, h, d, y</td>
<td>Second, minute, hour, day, year</td>
</tr>
</tbody>
</table>

5.2 US units

<table>
<thead>
<tr>
<th>Process variable</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>lb/ft³, lb/gal (us)</td>
<td>Pound/cubic foot, pound/gallon</td>
</tr>
<tr>
<td></td>
<td>lb/bbl (us;liq.), lb/bbl (us;beer), lb/bbl (us;oil), lb/bbl (us;tank)</td>
<td>Pound/volume unit</td>
</tr>
<tr>
<td>Process variable</td>
<td>Units</td>
<td>Explanation</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Pressure</td>
<td>psi a</td>
<td>Pounds per square inch (absolute)</td>
</tr>
<tr>
<td></td>
<td>psi g</td>
<td>Pounds per square inch (gauge)</td>
</tr>
<tr>
<td>Mass</td>
<td>oz, lb, STon</td>
<td>Ounce, pound, standard ton</td>
</tr>
<tr>
<td>Mass flow</td>
<td>oz/s, oz/min, oz/h, oz/d</td>
<td>Ounce/time unit</td>
</tr>
<tr>
<td></td>
<td>lb/s, lb/min, lb/h, lb/d</td>
<td>Pound/time unit</td>
</tr>
<tr>
<td></td>
<td>STon/s, STon/min, STon/h, STon/d</td>
<td>Standard ton/time unit</td>
</tr>
<tr>
<td>Ref. density</td>
<td>lb/ft³</td>
<td>Weight unit/standard volume unit</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>Sft³, Sgal (us), Sbbl (us;liq.)</td>
<td>Standard cubic foot, standard gallon, standard barrel</td>
</tr>
<tr>
<td>Correct. vol. flow</td>
<td>Sft³/s, Sft³/min, Sft³/h, Sft³/d</td>
<td>Standard cubic foot/time unit</td>
</tr>
<tr>
<td></td>
<td>Sgal/s (us), Sgal/min (us), Sgal/h (us), Sgal/d (us)</td>
<td>Standard gallon/time unit</td>
</tr>
<tr>
<td></td>
<td>Sbbl/s (us;liq.), Sbbl/min (us;liq.), Sbbl/h (us;liq.), Sbbl/d (us;liq.)</td>
<td>Barrel/time unit (normal liquids)</td>
</tr>
<tr>
<td>Temperature</td>
<td>°F, °R</td>
<td>Fahrenheit, Rankine</td>
</tr>
<tr>
<td>Volume</td>
<td>af</td>
<td>Acre foot</td>
</tr>
<tr>
<td></td>
<td>ft³</td>
<td>Cubic foot</td>
</tr>
<tr>
<td></td>
<td>fl oz (us), gal (us), kgal (us), Mgal (us)</td>
<td>Fluid ounce, gallon, kilogallon, million gallon</td>
</tr>
<tr>
<td></td>
<td>bbl (us;liq.), bbl (us;beer), bbl (us;oil), bbl (us;tank)</td>
<td>Barrel (normal liquids), barrel (beer), barrel (petrochemicals), barrel (filling tanks)</td>
</tr>
<tr>
<td>Volume flow</td>
<td>af/s, af/min, af/h, af/d</td>
<td>Acre foot/time unit</td>
</tr>
<tr>
<td></td>
<td>ft³/s, ft³/min, ft³/h, ft³/d</td>
<td>Cubic foot/time unit</td>
</tr>
<tr>
<td></td>
<td>fl oz (us), fl oz/min (us), fl oz/h (us), fl oz/d (us)</td>
<td>Fluid ounce/time unit</td>
</tr>
<tr>
<td></td>
<td>gal/s (us), gal/min (us), gal/h (us), gal/d (us)</td>
<td>Gallon/time unit</td>
</tr>
<tr>
<td></td>
<td>kgal/s (us), kgal/min (us), kgal/h (us), kgal/d (us)</td>
<td>Kilogallon/time unit</td>
</tr>
<tr>
<td></td>
<td>Mgal/s (us), Mgal/min (us), Mgal/h (us), Mgal/d (us)</td>
<td>Million gallon/time unit</td>
</tr>
<tr>
<td></td>
<td>bbl/s (us;liq.), bbl/min (us;liq.), bbl/h (us;liq.), bbl/d (us;liq.)</td>
<td>Barrel/time unit (normal liquids)</td>
</tr>
<tr>
<td></td>
<td>Normal liquids: 31.5 gal/bbl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bbl/s (us;beer), bbl/min (us;beer), bbl/h (us;beer), bbl/d (us;beer)</td>
<td>Barrel/time unit (beer)</td>
</tr>
<tr>
<td></td>
<td>Beer: 31.0 gal/bbl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bbl/s (us;oil), bbl/min (us;oil), bbl/h (us;oil), bbl/d (us;oil)</td>
<td>Barrel/time unit (petrochemicals)</td>
</tr>
<tr>
<td></td>
<td>Petrochemicals: 42.0 gal/bbl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bbl/s (us;tank), bbl/min (us;tank), bbl/h (us;tank), bbl/d (us;tank)</td>
<td>Barrel/time unit (filling tank)</td>
</tr>
<tr>
<td></td>
<td>Filling tanks: 55.0 gal/bbl</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>s, m, h, d, y</td>
<td>Second, minute, hour, day, year</td>
</tr>
<tr>
<td></td>
<td>am, pm</td>
<td>Ante meridiem (before midday), post meridiem (after midday)</td>
</tr>
</tbody>
</table>
5.3 Imperial units

<table>
<thead>
<tr>
<th>Process variable</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>lb/gal (imp), lb/bbl (imp;beer), lb/bbl (imp;oil)</td>
<td>Pound/volume unit</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>Sgal (imp)</td>
<td>Standard gallon</td>
</tr>
<tr>
<td>Correct.vol.flow</td>
<td>Sgal/s (imp), Sgal/min (imp), Sgal/h (imp), Sgal/d (imp)</td>
<td>Standard gallon/time unit</td>
</tr>
<tr>
<td>Volume</td>
<td>gal (imp), Mgal (imp)</td>
<td>Gallon, mega gallon</td>
</tr>
<tr>
<td></td>
<td>bbl (imp;beer), bbl (imp;oil)</td>
<td>Barrel (beer), barrel (petrochemicals)</td>
</tr>
<tr>
<td>Volume flow</td>
<td>gal/s (imp), gal/min (imp), gal/h (imp), gal/d (imp)</td>
<td>Gallon/time unit</td>
</tr>
<tr>
<td></td>
<td>Mgal/s (imp), Mgal/min (imp), Mgal/h (imp), Mgal/d (imp)</td>
<td>Mega gallon/time unit</td>
</tr>
<tr>
<td></td>
<td>bbl/s (imp;beer), bbl/min (imp;beer), bbl/h (imp;beer), bbl/d (imp;beer)</td>
<td>Barrel/time unit (beer)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Beer: 36.0 gal/bbl</td>
</tr>
<tr>
<td></td>
<td>bbl/s (imp;oil), bbl/min (imp;oil), bbl/h (imp;oil), bbl/d (imp;oil)</td>
<td>Barrel/time unit (petrochemicals)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Petrochemicals: 34.97 gal/bbl</td>
</tr>
<tr>
<td>Time</td>
<td>s, m, h, d, y</td>
<td>Second, minute, hour, day, year</td>
</tr>
<tr>
<td></td>
<td>am, pm</td>
<td>Ante meridiem (before midday), post meridiem (after midday)</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 ... 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/4 mA value (Parameter)</td>
<td>97, 105</td>
<td></td>
</tr>
<tr>
<td>0% bargraph value 1 (Parameter)</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>0% bargraph value 3 (Parameter)</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>2.4 GHz WLAN channel (Parameter)</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>20 mA value (Parameter)</td>
<td>97, 106</td>
<td></td>
</tr>
<tr>
<td>100% bargraph value 1 (Parameter)</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>100% bargraph value 3 (Parameter)</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access status (Parameter)</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Activate SW option (Parameter)</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Active level (Parameter)</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Actual diagnostics (Parameter)</td>
<td>226</td>
<td></td>
</tr>
<tr>
<td>Address mode (Parameter)</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>Administration (Submenu)</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Alarm delay (Parameter)</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Alarm hysteresis (Parameter)</td>
<td>175, 220</td>
<td></td>
</tr>
<tr>
<td>Alarm summary (Parameter)</td>
<td>150, 172, 185, 193, 206, 218</td>
<td></td>
</tr>
<tr>
<td>Alert key (Parameter)</td>
<td>149, 171, 184, 192, 204, 217</td>
<td></td>
</tr>
<tr>
<td>Alteration code (Parameter)</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (Submenu)</td>
<td>167</td>
<td></td>
</tr>
<tr>
<td>Analog inputs (Submenu)</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>Analog output 1 to n (Submenu)</td>
<td>188</td>
<td></td>
</tr>
<tr>
<td>Analog outputs (Submenu)</td>
<td>188</td>
<td></td>
</tr>
<tr>
<td>Application (Submenu)</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>Apply I/O configuration (Parameter)</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 046 (Parameter)</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 140 (Parameter)</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 144 (Parameter)</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 302 (Parameter)</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 374 (Parameter)</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 441 (Parameter)</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 442 (Parameter)</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 443 (Parameter)</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 444 (Parameter)</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 830 (Parameter)</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 831 (Parameter)</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 832 (Parameter)</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 833 (Parameter)</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 834 (Parameter)</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 835 (Parameter)</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 842 (Parameter)</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 862 (Parameter)</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 912 (Parameter)</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 913 (Parameter)</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 944 (Parameter)</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 948 (Parameter)</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Assign channel 1 (Parameter)</td>
<td>254</td>
<td></td>
</tr>
<tr>
<td>Assign channel 2 (Parameter)</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>Assign channel 3 (Parameter)</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>Assign channel 4 (Parameter)</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>Assign current output 1 to n (Parameter)</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>Assign diagnostic behavior (Parameter)</td>
<td>130, 140</td>
<td></td>
</tr>
<tr>
<td>Assign flow direction check (Parameter)</td>
<td>134, 138</td>
<td></td>
</tr>
<tr>
<td>Assign frequency output (Parameter)</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td>Assign limit (Parameter)</td>
<td>131, 139</td>
<td></td>
</tr>
<tr>
<td>Assign process variable (Parameter)</td>
<td>71, 74, 211</td>
<td></td>
</tr>
<tr>
<td>Assign pulse output 1 to n (Parameter)</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>Assign simulation process variable (Parameter)</td>
<td>263</td>
<td></td>
</tr>
<tr>
<td>Assign SSID name (Parameter)</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>Assign status (Parameter)</td>
<td>134, 140</td>
<td></td>
</tr>
<tr>
<td>Assign status input (Parameter)</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backlight (Parameter)</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Backup state (Parameter)</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Batch ID (Parameter)</td>
<td>173, 186, 194, 206, 219</td>
<td></td>
</tr>
<tr>
<td>Batch operation (Parameter)</td>
<td>173, 186, 194, 206, 219</td>
<td></td>
</tr>
<tr>
<td>Batch phase (Parameter)</td>
<td>173, 186, 194, 207, 219</td>
<td></td>
</tr>
<tr>
<td>Batch Recipe Unit Procedure (Parameter)</td>
<td>173, 187, 194, 207, 219</td>
<td></td>
</tr>
<tr>
<td>Baudrate (Parameter)</td>
<td>146</td>
<td></td>
</tr>
<tr>
<td>Bootloader revision (Parameter)</td>
<td>238, 239, 241, 242</td>
<td></td>
</tr>
<tr>
<td>Build no. software (Parameter)</td>
<td>238, 239, 241, 242</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C0 to 5 (Parameter)</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>Calculated values (Submenu)</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Calibration (Submenu)</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>Calibration factor (Parameter)</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>Carrier corrected volume flow (Parameter)</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Carrier mass flow (Parameter)</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Carrier pipe temperature (Submenu)</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>Carrier volume flow (Parameter)</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>Channel (Parameter)</td>
<td>167, 181</td>
<td></td>
</tr>
<tr>
<td>Clear logging data (Parameter)</td>
<td>257</td>
<td></td>
</tr>
<tr>
<td>Communication (Submenu)</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>Comparison result (Parameter)</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Concentration (Parameter)</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Concentration (Submenu)</td>
<td>224</td>
<td></td>
</tr>
<tr>
<td>Condensed status diagnostic (Parameter)</td>
<td>156</td>
<td></td>
</tr>
<tr>
<td>Configuration backup (Submenu)</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Configuration management (Parameter)</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Confirm access code (Parameter)</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Connection state (Parameter)</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>Contrast display (Parameter)</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Control Totalizer 1 to n (Parameter)</td>
<td>213</td>
<td></td>
</tr>
<tr>
<td>Corrected volume flow (Parameter)</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Corrected volume flow calculation (Parameter)</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>Corrected volume flow calculation (Submenu)</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Corrected volume flow factor (Parameter)</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Corrected volume flow offset (Parameter)</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Corrected volume flow unit (Parameter)</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Corrected volume unit (Parameter)</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Current input 1 to n (Submenu)</td>
<td>55, 95</td>
<td></td>
</tr>
<tr>
<td>Current input 1 to n simulation (Parameter)</td>
<td>266</td>
<td></td>
</tr>
<tr>
<td>Current output 1 to n (Submenu)</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>Current output 1 to n simulation (Parameter)</td>
<td>266</td>
<td></td>
</tr>
<tr>
<td>Current span (Parameter)</td>
<td>96, 103</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Damping output 1 to n (Parameter)</td>
<td>112, 126</td>
</tr>
<tr>
<td>D</td>
<td>Data logging (Parameter)</td>
<td>257</td>
</tr>
<tr>
<td>D</td>
<td>Data logging (Submenu)</td>
<td>253</td>
</tr>
<tr>
<td>D</td>
<td>Data logging control (Parameter)</td>
<td>258</td>
</tr>
<tr>
<td>D</td>
<td>Data logging status (Parameter)</td>
<td>259</td>
</tr>
<tr>
<td>D</td>
<td>Date/time format (Parameter)</td>
<td>68</td>
</tr>
<tr>
<td>D</td>
<td>Decimal places 1 (Parameter)</td>
<td>20</td>
</tr>
<tr>
<td>D</td>
<td>Decimal places 2 (Parameter)</td>
<td>21</td>
</tr>
<tr>
<td>D</td>
<td>Decimal places 3 (Parameter)</td>
<td>23</td>
</tr>
<tr>
<td>D</td>
<td>Decimal places 4 (Parameter)</td>
<td>24</td>
</tr>
<tr>
<td>D</td>
<td>Default gateway (Parameter)</td>
<td>159</td>
</tr>
<tr>
<td>D</td>
<td>Define access code (Parameter)</td>
<td>41</td>
</tr>
<tr>
<td>D</td>
<td>Define access code (Wizard)</td>
<td>41</td>
</tr>
<tr>
<td>D</td>
<td>Density (Parameter)</td>
<td>48</td>
</tr>
<tr>
<td>D</td>
<td>Density damping (Parameter)</td>
<td>69</td>
</tr>
<tr>
<td>D</td>
<td>Density factor (Parameter)</td>
<td>89</td>
</tr>
<tr>
<td>D</td>
<td>Density offset (Parameter)</td>
<td>89</td>
</tr>
<tr>
<td>D</td>
<td>Density unit (Parameter)</td>
<td>65</td>
</tr>
<tr>
<td>D</td>
<td>Descriptor (Parameter)</td>
<td>154</td>
</tr>
<tr>
<td>D</td>
<td>Device address (Parameter)</td>
<td>144</td>
</tr>
<tr>
<td>D</td>
<td>Device alarm simulation (Parameter)</td>
<td>271</td>
</tr>
<tr>
<td>D</td>
<td>Device certification (Parameter)</td>
<td>153</td>
</tr>
<tr>
<td>D</td>
<td>Device ID (Parameter)</td>
<td>152</td>
</tr>
<tr>
<td>D</td>
<td>Device install date (Parameter)</td>
<td>154</td>
</tr>
<tr>
<td>D</td>
<td>Device information (Submenu)</td>
<td>234</td>
</tr>
<tr>
<td>D</td>
<td>Device message (Parameter)</td>
<td>154</td>
</tr>
<tr>
<td>D</td>
<td>Device name (Parameter)</td>
<td>236</td>
</tr>
<tr>
<td>D</td>
<td>Device reset (Parameter)</td>
<td>43</td>
</tr>
<tr>
<td>D</td>
<td>Device tag (Parameter)</td>
<td>148, 235</td>
</tr>
<tr>
<td>D</td>
<td>DHCP client (Parameter)</td>
<td>158</td>
</tr>
<tr>
<td>D</td>
<td>Diagnostic behavior (Submenu)</td>
<td>31</td>
</tr>
<tr>
<td>D</td>
<td>Diagnostic event category (Parameter)</td>
<td>272</td>
</tr>
<tr>
<td>D</td>
<td>Diagnostic event simulation (Parameter)</td>
<td>272</td>
</tr>
<tr>
<td>D</td>
<td>Diagnostic handling (Submenu)</td>
<td>31</td>
</tr>
<tr>
<td>D</td>
<td>Diagnostic list (Submenu)</td>
<td>228</td>
</tr>
<tr>
<td>D</td>
<td>Diagnostics (Parameter)</td>
<td>152</td>
</tr>
<tr>
<td>D</td>
<td>Diagnostics (Submenu)</td>
<td>225</td>
</tr>
<tr>
<td>D</td>
<td>Diagnostics 1 (Parameter)</td>
<td>228</td>
</tr>
<tr>
<td>D</td>
<td>Diagnostics 2 (Parameter)</td>
<td>229</td>
</tr>
<tr>
<td>D</td>
<td>Diagnostics 3 (Parameter)</td>
<td>230</td>
</tr>
<tr>
<td>D</td>
<td>Diagnostics 4 (Parameter)</td>
<td>230</td>
</tr>
<tr>
<td>D</td>
<td>Diagnostics 5 (Parameter)</td>
<td>231</td>
</tr>
<tr>
<td>D</td>
<td>Diagnostics mask (Parameter)</td>
<td>153</td>
</tr>
<tr>
<td>D</td>
<td>Direct access</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0/4 mA value</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Current input 1 to n (1606–1 to n)</td>
<td>97</td>
</tr>
<tr>
<td>D</td>
<td>Current output 1 to n (0367–1 to n)</td>
<td>105</td>
</tr>
<tr>
<td>D</td>
<td>0% bargraph value 1 (0123)</td>
<td>19</td>
</tr>
<tr>
<td>D</td>
<td>0% bargraph value 3 (0124)</td>
<td>22</td>
</tr>
<tr>
<td>D</td>
<td>2.4 GHz WLAN channel (2704)</td>
<td>165</td>
</tr>
<tr>
<td>D</td>
<td>20 mA value</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Current input 1 to n (1607–1 to n)</td>
<td>97</td>
</tr>
<tr>
<td>D</td>
<td>Current output 1 to n (0372–1 to n)</td>
<td>106</td>
</tr>
<tr>
<td>D</td>
<td>100% bargraph value 1 (0125)</td>
<td>20</td>
</tr>
<tr>
<td>D</td>
<td>100% bargraph value 3 (0126)</td>
<td>23</td>
</tr>
<tr>
<td>D</td>
<td>Access status (0005)</td>
<td>13</td>
</tr>
<tr>
<td>D</td>
<td>Activate SW option (0029)</td>
<td>44</td>
</tr>
</tbody>
</table>

| Index |
Active level	Status input 1 to n (1351–1 to n)	100
Actual diagnostics (0691)	226	
Address mode (1468)	144	
Alarm delay (0651)	31	
Alarm hysteresis	Analog input 1 to n (1527–1 to n)	175
Totalizer 1 to n (3802–1 to n)	220	
Alarm summary	Analog input 1 to n (1537–1 to n)	172
Analog output 1 to n (1642–1 to n)	193	
Discrete input 1 to n (2191–1 to n)	185	
Discrete output 1 to n (1701–1 to n)	206	
Totalizer 1 to n (3809–1 to n)	218	
Alarm summary (1474)	150	
Alert key	Analog input 1 to n (1522–1 to n)	171
Analog output 1 to n (1632–1 to n)	192	
Discrete input 1 to n (2182–1 to n)	184	
Discrete output 1 to n (1694–1 to n)	204	
Totalizer 1 to n (3803–1 to n)	217	
Alert key (1473)	149	
Alteration code (2762)	95	
Apply I/O configuration (3907)	94	
Assign behavior of diagnostic no. 046 (0709)	33	
Assign behavior of diagnostic no. 140 (0708)	33	
Assign behavior of diagnostic no. 144 (0731)	34	
Assign behavior of diagnostic no. 302 (0739)	34	
Assign behavior of diagnostic no. 374 (0710)	34	
Assign behavior of diagnostic no. 441 (0657)	35	
Assign behavior of diagnostic no. 442 (0658)	35	
Assign behavior of diagnostic no. 443 (0659)	35	
Assign behavior of diagnostic no. 444 (0740)	36	
Assign behavior of diagnostic no. 830 (0800)	36	
Assign behavior of diagnostic no. 831 (0641)	36	
Assign behavior of diagnostic no. 832 (0681)	37	
Assign behavior of diagnostic no. 833 (0682)	37	
Assign behavior of diagnostic no. 834 (0700)	38	
Assign behavior of diagnostic no. 835 (0702)	38	
Assign behavior of diagnostic no. 842 (0638)	38	
Assign behavior of diagnostic no. 862 (0679)	39	
Assign behavior of diagnostic no. 912 (0703)	39	
Assign behavior of diagnostic no. 913 (0712)	39	
Assign behavior of diagnostic no. 944 (0732)	40	
Assign behavior of diagnostic no. 948 (0744)	40	
Assign channel 1 (0851)	254	
Assign channel 2 (0852)	255	
Assign channel 3 (0853)	256	
Assign channel 4 (0854)	256	
Assign current output 1 to n (0359–1 to n)	102	
Assign diagnostic behavior	Pulse/frequency/switch output 1 to n (0482–1 to n)	130
Relay output 1 to n (0806–1 to n)	140	
Assign flow direction check	Pulse/frequency/switch output 1 to n (0484–1 to n)	134
Relay output 1 to n (0808–1 to n)	138	
Assign process variable

Assign process variable (1860) ... 74
Assign process variable (1837) ... 71

Assign status

Assign status

Assign status input

Status input 1 to n (1352–1 to n) .. 99
Backlight (0111) ... 27
Backup state (2759) ... 29

Batch ID

Analog input 1 to n (1533–1 to n) ... 173
Analog output 1 to n (1633–1 to n) .. 194
Discrete input 1 to n (2183–1 to n) 186
Discrete output 1 to n (1695–1 to n) 206
Totalizer 1 to n (3804–1 to n) ... 219

Batch operation

Analog input 1 to n (1534–1 to n) ... 173
Analog output 1 to n (1639–1 to n) .. 194
Discrete input 1 to n (2184–1 to n) 186
Discrete output 1 to n (1698–1 to n) 206
Totalizer 1 to n (3805–1 to n) ... 219

Batch phase

Analog input 1 to n (1535–1 to n) ... 173
Analog output 1 to n (1640–1 to n) .. 194
Discrete input 1 to n (2185–1 to n) 186
Discrete output 1 to n (1699–1 to n) 207
Totalizer 1 to n (3806–1 to n) ... 219

Batch Recipe Unit Procedure

Analog input 1 to n (1536–1 to n) ... 173
Analog output 1 to n (1641–1 to n) .. 194
Discrete input 1 to n (2186–1 to n) 187
Discrete output 1 to n (1700–1 to n) 207
Totalizer 1 to n (3807–1 to n) ... 219

Baudrate (1504) ... 146

Bootsloader revision

I/O module 2 (0073) ... 241
I/O module 3 (0073) ... 241
I/O module 4 (0073) ... 241

Bootsloader revision (0073) .. 238, 239, 242

Build no. software

I/O module 2 (0079) ... 241
I/O module 3 (0079) ... 241
I/O module 4 (0079) ... 241

Build no. software (0079) ... 238, 239, 242

C0 to 5 (6022) ... 93

Calibration factor (6025) .. 92

Carrier corrected volume flow (1894) 52
Carrier mass flow (1865) .. 52
Carrier volume flow (1896) ... 53

Channel

Analog input 1 to n (1561–1 to n) .. 167
Discrete input 1 to n (2187–1 to n) 181
Clear logging data (0855) .. 257
Comparison result (2760) .. 30
Concentration (1887) ... 51
Condensed status diagnostic (1500) 156
Configuration management (2758) 28
Connection state (2722) ... 165
Contrast display (0105) .. 27
Control Totalizer 1 to n (3830–1 to n) 213
Corrected volume flow (1851) .. 48
Corrected volume flow calculation (1812) 82
Corrected volume flow factor (1867) 90
Corrected volume flow offset (1866) 89
Corrected volume flow unit (0558) 64
Corrected volume unit (0575) ... 64
Current input 1 to n simulation (1608–1 to n) 266
Current output 1 to n simulation (0354–1 to n) 266
Current span

Current input 1 to n (1605–1 to n) 96
Current output 1 to n (0353–1 to n) 103
Damping output 1 to n (0363–1 to n) 112
Damping output 1 to n (0477–1 to n) 126
Data logging (0860) ... 257
Data logging control (0857) ... 258
Data logging status (0858) .. 259
Date/time format (2812) .. 68
Decimal places 1 (0095) ... 20
Decimal places 2 (0117) ... 21
Decimal places 3 (0118) ... 23
Decimal places 4 (0119) ... 24
Default gateway (7210) .. 159
Density (1850) ... 48
Density damping (1803) ... 69
Density factor (1849) ... 89
Density offset (1848) ... 89
Density unit (0555) ... 65

Descriptor (1489) .. 154
Device address (1462) ... 144
Device alarm simulation (0654) ... 271
Device certification (1486) ... 153
Device ID (1480) ... 152
Device install date (1491) .. 154
Device message (1490) ... 154
Device name (0020) ... 236
Device reset (0000) ... 43
Device tag (0011) .. 235
Device tag (1496) .. 148
DHCP client (7212) ... 158
Diagnostic event category (0738) 272
Diagnostic event simulation (0737) 272
Diagnoses (1482) ... 152
Diagnoses 1 (0692) ... 228
Diagnoses 2 (0693) ... 229
Diagnoses 3 (0694) ... 230

Endress+Hauser
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostics 4 (0695)</td>
<td>230</td>
</tr>
<tr>
<td>Diagnostics 5 (0696)</td>
<td>231</td>
</tr>
<tr>
<td>Diagnostics mask (1484)</td>
<td>153</td>
</tr>
<tr>
<td>Direct access (0106)</td>
<td>11</td>
</tr>
<tr>
<td>Display damping (0094)</td>
<td>25</td>
</tr>
<tr>
<td>Display interval (0096)</td>
<td>24</td>
</tr>
<tr>
<td>Display language (0104)</td>
<td>15</td>
</tr>
<tr>
<td>Dynamic viscosity (1854)</td>
<td>49</td>
</tr>
<tr>
<td>ENP version (0012)</td>
<td>237</td>
</tr>
<tr>
<td>Enter access code (0003)</td>
<td>13</td>
</tr>
<tr>
<td>Entire logging duration (0861)</td>
<td>259</td>
</tr>
<tr>
<td>Extended order code 1 (0023)</td>
<td>237</td>
</tr>
<tr>
<td>Extended order code 2 (0021)</td>
<td>237</td>
</tr>
<tr>
<td>Extended order code 3 (0022)</td>
<td>237</td>
</tr>
<tr>
<td>External pressure (6209)</td>
<td>80</td>
</tr>
<tr>
<td>External reference density (6198)</td>
<td>82</td>
</tr>
<tr>
<td>External temperature (6080)</td>
<td>81</td>
</tr>
<tr>
<td>Factory reset (1468)</td>
<td>154</td>
</tr>
<tr>
<td>Fail safe time</td>
<td></td>
</tr>
<tr>
<td>Analog output 1 to n (1635–1 to n)</td>
<td>189</td>
</tr>
<tr>
<td>Discrete output 1 to n (1697–1 to n)</td>
<td>201</td>
</tr>
<tr>
<td>Fail safe type</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (1525–1 to n)</td>
<td>168</td>
</tr>
<tr>
<td>Analog output 1 to n (1636–1 to n)</td>
<td>190</td>
</tr>
<tr>
<td>Discrete input 1 to n (2189–1 to n)</td>
<td>182</td>
</tr>
<tr>
<td>Discrete output 1 to n (1696–1 to n)</td>
<td>202</td>
</tr>
<tr>
<td>Fail-safe value</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (1526–1 to n)</td>
<td>169</td>
</tr>
<tr>
<td>Analog output 1 to n (1637–1 to n)</td>
<td>190</td>
</tr>
<tr>
<td>Discrete input 1 to n (2190–1 to n)</td>
<td>182</td>
</tr>
<tr>
<td>Discrete output 1 to n (1693–1 to n)</td>
<td>202</td>
</tr>
<tr>
<td>Failure current</td>
<td></td>
</tr>
<tr>
<td>Current output 1 to n (0352–1 to n)</td>
<td>114</td>
</tr>
<tr>
<td>Failure frequency</td>
<td></td>
</tr>
<tr>
<td>Pulse/frequency/switch output 1 to n (0474–1 to n)</td>
<td>129</td>
</tr>
<tr>
<td>Failure mode</td>
<td></td>
</tr>
<tr>
<td>Current input 1 to n (1601–1 to n)</td>
<td>98</td>
</tr>
<tr>
<td>Current output 1 to n (0364–1 to n)</td>
<td>113</td>
</tr>
<tr>
<td>Pulse/frequency/switch output 1 to n (0451–1 to n)</td>
<td>128</td>
</tr>
<tr>
<td>Pulse/frequency/switch output 1 to n (0480–1 to n)</td>
<td>121</td>
</tr>
<tr>
<td>Pulse/frequency/switch output 1 to n (0486–1 to n)</td>
<td>135</td>
</tr>
<tr>
<td>Relay output 1 to n (0811–1 to n)</td>
<td>142</td>
</tr>
<tr>
<td>Totalizer 1 to n (3810–1 to n)</td>
<td>215</td>
</tr>
<tr>
<td>Failure value</td>
<td></td>
</tr>
<tr>
<td>Current input 1 to n (1602–1 to n)</td>
<td>98</td>
</tr>
<tr>
<td>Feature enabled (1476)</td>
<td>156</td>
</tr>
<tr>
<td>Feature supported (1477)</td>
<td>156</td>
</tr>
<tr>
<td>Filter options</td>
<td>233</td>
</tr>
<tr>
<td>Filter options (0705)</td>
<td>232</td>
</tr>
<tr>
<td>Firmware version (0010)</td>
<td>236</td>
</tr>
<tr>
<td>Fixed current</td>
<td></td>
</tr>
<tr>
<td>Current output 1 to n (0365–1 to n)</td>
<td>104</td>
</tr>
<tr>
<td>Fixed reference density (1814)</td>
<td>82</td>
</tr>
<tr>
<td>Flow damping (1802)</td>
<td>69</td>
</tr>
<tr>
<td>Flow override (1839)</td>
<td>70</td>
</tr>
<tr>
<td>Format display (0098)</td>
<td>15</td>
</tr>
<tr>
<td>Frequency output simulation 1 to n (0472–1 to n)</td>
<td>267</td>
</tr>
<tr>
<td>Frequency value 1 to n (0473–1 to n)</td>
<td>268</td>
</tr>
<tr>
<td>Gateway IP address (2719)</td>
<td>166</td>
</tr>
<tr>
<td>Hardware lock (1499)</td>
<td>155</td>
</tr>
<tr>
<td>Hardware revision (1479)</td>
<td>151</td>
</tr>
<tr>
<td>Header (0097)</td>
<td>25</td>
</tr>
<tr>
<td>Header text (0112)</td>
<td>26</td>
</tr>
<tr>
<td>Hi alarm state</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (1538–1 to n)</td>
<td>178</td>
</tr>
<tr>
<td>Totalizer 1 to n (3811–1 to n)</td>
<td>223</td>
</tr>
<tr>
<td>Hi alarm value</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (1539–1 to n)</td>
<td>178</td>
</tr>
<tr>
<td>Totalizer 1 to n (3812–1 to n)</td>
<td>223</td>
</tr>
<tr>
<td>Hi Hi alarm state</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (1540–1 to n)</td>
<td>178</td>
</tr>
<tr>
<td>Totalizer 1 to n (3813–1 to n)</td>
<td>222</td>
</tr>
<tr>
<td>Hi Hi alarm value</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (1541–1 to n)</td>
<td>177</td>
</tr>
<tr>
<td>Totalizer 1 to n (3814–1 to n)</td>
<td>222</td>
</tr>
<tr>
<td>Hi Hi Lim</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (1528–1 to n)</td>
<td>176</td>
</tr>
<tr>
<td>Totalizer 1 to n (3815–1 to n)</td>
<td>220</td>
</tr>
<tr>
<td>Hi Lim</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (1529–1 to n)</td>
<td>176</td>
</tr>
<tr>
<td>Totalizer 1 to n (3816–1 to n)</td>
<td>221</td>
</tr>
<tr>
<td>High value partial filled pipe detection (1858)</td>
<td>75</td>
</tr>
<tr>
<td>I/O module 1 terminal numbers (3902–1)</td>
<td>240</td>
</tr>
<tr>
<td>I/O module 1 to n information (3906–1 to n)</td>
<td>93</td>
</tr>
<tr>
<td>I/O module 1 to n terminal numbers (3902–1 to n)</td>
<td>93</td>
</tr>
<tr>
<td>I/O module 1 to n type (3901–1 to n)</td>
<td>94</td>
</tr>
<tr>
<td>I/O module 2 terminal numbers</td>
<td></td>
</tr>
<tr>
<td>I/O module 2 (3902)</td>
<td>241</td>
</tr>
<tr>
<td>Ident number selector (1461)</td>
<td>145, 155</td>
</tr>
<tr>
<td>Increase close</td>
<td></td>
</tr>
<tr>
<td>Analog output 1 to n (1638–1 to n)</td>
<td>199</td>
</tr>
<tr>
<td>Input channel</td>
<td></td>
</tr>
<tr>
<td>Analog output 1 to n (1670–1 to n)</td>
<td>196</td>
</tr>
<tr>
<td>Discrete output 1 to n (1724–1 to n)</td>
<td>208</td>
</tr>
<tr>
<td>Input signal level (1356)</td>
<td>265</td>
</tr>
<tr>
<td>Installation angle pitch (6236)</td>
<td>85</td>
</tr>
<tr>
<td>Installation angle roll (6282)</td>
<td>85</td>
</tr>
<tr>
<td>Installation direction (1809)</td>
<td>84</td>
</tr>
<tr>
<td>Invert</td>
<td></td>
</tr>
<tr>
<td>Discrete input 1 to n (2188–1 to n)</td>
<td>182</td>
</tr>
<tr>
<td>Discrete output 1 to n (1692–1 to n)</td>
<td>201</td>
</tr>
<tr>
<td>Invert output signal</td>
<td></td>
</tr>
<tr>
<td>Pulse/frequency/switch output 1 to n (0470–1 to n)</td>
<td>136</td>
</tr>
<tr>
<td>IP address (7209)</td>
<td>158</td>
</tr>
<tr>
<td>IP address domain name server (2720)</td>
<td>166</td>
</tr>
<tr>
<td>Kinematic viscosity (1857)</td>
<td>50</td>
</tr>
<tr>
<td>Last backup (2757)</td>
<td>28</td>
</tr>
<tr>
<td>Lin type</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (1523–1 to n)</td>
<td>175</td>
</tr>
<tr>
<td>Linear expansion coefficient (1817)</td>
<td>83</td>
</tr>
</tbody>
</table>
Lo alarm state
 Analog input 1 to n (1542–1 to n) 179
 Totalizer 1 to n (3817–1 to n) 223
Lo alarm value
 Analog input 1 to n (1543–1 to n) 178
 Totalizer 1 to n (3818–1 to n) 223
Lo Lim
 Analog input 1 to n (1530–1 to n) 177
 Totalizer 1 to n (3819–1 to n) 221
Lo Lo alarm state
 Analog input 1 to n (1544–1 to n) 179
 Totalizer 1 to n (3820–1 to n) 224
Lo Lo alarm value
 Analog input 1 to n (1545–1 to n) 179
 Totalizer 1 to n (3821–1 to n) 224
Lo Lo Lim
 Analog input 1 to n (1531–1 to n) 177
 Totalizer 1 to n (3822–1 to n) 222
 Locking status (0004) 12
 Logging delay (0859) 258
 Logging interval (0856) 256
 Login page (7273) 159
 Low value partial filled pipe detection (1861) 74
 MAC address (7214) 157
 Manufacturer ID (1502) 151
 Mass flow (1838) 47
 Mass flow factor (1832) 88
 Mass flow offset (1831) 87
 Mass flow unit (0554) 61
 Mass unit (0574) 61
 Master availability (1517) 147
Max. switch cycles number
 Relay output 1 to n (0817–1 to n) 60
Maximum damping partial filled pipe det. (6040) . 76
Maximum frequency value
 Pulse/frequency/switch output 1 to n (0454–1 to n) 124
 Maximum value (6009) 249
 Maximum value (6014) 252
 Maximum value (6029) 246
 Minimum value (6030) 251
 Minimum value (6049) 244
 Minimum value (6069) 248
 Minimum value (6071) 247
 Minimum value (6109) 251
 Minimum value (6120) 250
 Minimum value (6284) 252
 Mode block actual
 Analog input 1 to n (1521–1 to n) 171
 Analog output 1 to n (1631–1 to n) 192
 Discrete input 1 to n (2181–1 to n) 185
 Discrete output 1 to n (1691–1 to n) 205
 Totalizer 1 to n (3801–1 to n) 217
 Mode block actual (1472) 149
 Mode block normal
 Analog input 1 to n (1546–1 to n) 172
 Analog output 1 to n (1643–1 to n) 193
 Discrete input 1 to n (2192–1 to n) 185
 Discrete output 1 to n (1702–1 to n) 205
 Totalizer 1 to n (3824–1 to n) 218
 Mode block normal (1492) 150
 Mode block permitted
 Analog input 1 to n (1553–1 to n) 172
 Analog output 1 to n (1648–1 to n) 193
 Discrete input 1 to n (2195–1 to n) 185
 Discrete output 1 to n (1705–1 to n) 205
 Totalizer 1 to n (3828–1 to n) 218
 Mode block permitted (1493) 150
 Network security (2705) 162
 Nominal diameter (2807) 92
 Off value low flow cutoff (1804) 72
 On value low flow cutoff (1805) 71
Operating mode
 Pulse/frequency/switch output 1 to n (0469–1 to n) 117
 Operating time (0652) 28, 42, 227
 Operating time from restart (0653) 227
 Order code (0008) 236
 Out decimal point
 Analog input 1 to n (1547–1 to n) 175
 Out scale lower range
 Analog input 1 to n (1548–1 to n) 174
 Analog output 1 to n (1644–1 to n) 200
 Out scale upper range
 Analog input 1 to n (1551–1 to n) 174
 Analog output 1 to n (1646–1 to n) 199
 Out status
 Analog input 1 to n (1549–1 to n) 170
 Analog input 1 to n (1564–1 to n) 169
Measuring mode
 Current output 1 to n (0351–1 to n) 107
 Pulse/frequency/switch output 1 to n (0457–1 to n) 121
 Pulse/frequency/switch output 1 to n (0479–1 to n) 125
Measuring value at maximum frequency
 Pulse/frequency/switch output 1 to n (0475–1 to n) 125
Measuring value at minimum frequency
 Pulse/frequency/switch output 1 to n (0476–1 to n) 124
Minimum frequency value
 Pulse/frequency/switch output 1 to n (0453–1 to n) 124
 Minimum value (6008) 249
 Minimum value (6010) 248
 Minimum value (6015) 251
 Minimum value (6030) 246
 Minimum value (6052) 244
 Minimum value (6069) 248
 Minimum value (6071) 247
 Minimum value (6109) 245
 Minimum value (6120) 251
 Minimum value (6122) 250
 Minimum value (6284) 252
Analog output 1 to n (1645–1 to n) 191
Analog output 1 to n (1669–1 to n) 191
Discrete input 1 to n (2193–1 to n) 183
Discrete input 1 to n (2203–1 to n) 183
Discrete output 1 to n (1703–1 to n) 203
Discrete output 1 to n (1723–1 to n) 203
Discrete output 1 to n (1725–1 to n) 208
Discrete output 1 to n (1704–1 to n) 203
Out unit
Analog input 1 to n (1532–1 to n) 180
Out unit text
Analog input 1 to n (1550–1 to n) 175
Out value
Analogue current 1 to n (0361–1 to n) 115
Preset value 1 to n (3829–1 to n) 214
Pulse output 1 to n (0456–1 to n) 58, 122
Pulse output simulation 1 to n (0458–1 to n) ... 268
Pulse value 1 to n (0459–1 to n) 269
Pulse width
Pulse/frequency/output 1 to n (0452–1 to n) 117
PV filter time
Analogue current 1 to n (1524–1 to n) 168
PV scale lower range
Analogue current 1 to n (1554–1 to n) 174
PV scale upper range
Analogue current 1 to n (1555–1 to n) 174
RCAS in status
Analogue current 1 to n (1654–1 to n) 196
Discrete output 1 to n (1706–1 to n) 208
RCAS in value
Analogue current 1 to n (1655–1 to n) 196
Discrete output 1 to n (1707–1 to n) 208
RCAS out status
Analogue current 1 to n (1656–1 to n) 197
Discrete output 1 to n (1708–1 to n) 209
Readback out value
Analogue current 1 to n (1657–1 to n) 197
Discrete output 1 to n (1711–1 to n) 209
Readback status
Analogue current 1 to n (1658–1 to n) 196
Discrete output 1 to n (1712–1 to n) 207
Readback value
Analogue current 1 to n (1659–1 to n) 195
Discrete output 1 to n (1713–1 to n) 207
Received signal strength (2721) 166
Reference density (1852) ... 48
Reference density factor (1869) 90
Reference density offset (1868) 90
Reference density unit (0556) 66
Reference sound velocity (6147) 78
Reference temperature (1816) 83
Relay output 1 to n simulation (0802–1 to n) ... 270
Relay output function
Relay output 1 to n (0804–1 to n) 138
Reset access code (0024) 42
Reset min/max values (6151) 243
Response time
Current output 1 to n (0378–1 to n) 112
Pulse/frequency/output 1 to n (0491–1 to n) 127
Response time part. filled pipe detect. (1859) ... 75
Response time status input
Status input 1 to n (1354–1 to n) 100
Security identification (2718) 162
Select antenna (2713) 165
Select gas type (6074) 77
Select medium (6062) 77
Separator (0101) 27
Serial number (0009) 235
Serial number (1481) 152
Set point status
Analogue current 1 to n (1660–1 to n) 189
Discrete output 1 to n (1714–1 to n) 201
Set point value
Analogue current 1 to n (1661–1 to n) 189
Discrete output 1 to n (1715–1 to n) 201
Setpoint deviation
Analogue current 1 to n (1653–1 to n) 198
Signal mode
Current output 1 to n (1610–1 to n) 96
Pulse/frequency/output 1 to n (0490–1 to n) 117
Simulate enabled
Analogue current 1 to n (1556–1 to n) 179
Discrete output 1 to n (1662–1 to n) 198
Discrete output 1 to n (2196–1 to n) 187
Discrete output 1 to n (1716–1 to n) 209
Simulate status
Analogue current 1 to n (1557–1 to n) 180
Discrete output 1 to n (1663–1 to n) 199
Discrete output 1 to n (2197–1 to n) 188
Discrete output 1 to n (1717–1 to n) 210
Simulate value
- Analog input 1 to n (1558–1 to n) 180
- Analog output 1 to n (1664–1 to n) 198
- Discrete input 1 to n (2198–1 to n) 187
- Discrete output 1 to n (1718–1 to n) ... 210
- Software option overview (0015) 45

Software revision
- I/O module (0072) 240, 241
- Software revision (0072) 238, 239, 242
- Software revision (1478) 148
- Square expansion coefficient (1818) 84

SSID name
- SSID name (2707) 164
- SSID name (2714) 161

Static revision
- Analog input 1 to n (1560–1 to n) 170
- Analog output 1 to n (1666–1 to n) 191
- Discrete input 1 to n (2200–1 to n) 184
- Discrete output 1 to n (1720–1 to n) 204
- Totalizer 1 to n (3832–1 to n) 216

Static revision (1495) 148

Status PROFIBUS Master Config (1465) . 146

Strategy
- Analog input 1 to n (1559–1 to n) 170
- Analog output 1 to n (1665–1 to n) 192
- Discrete input 1 to n (2199–1 to n) 184
- Discrete output 1 to n (1719–1 to n) 204
- Totalizer 1 to n (3831–1 to n) 217

Strategy (1494) 149

Subnet mask (7211) 158

Switch cycles
- Relay output 1 to n (0815–1 to n) 60

Switch output function
- Pulse/frequency/switch output 1 to n (0481–1 to n) 130

Switch output simulation 1 to n (0462–1 to n) 269

Switch status
- Relay output 1 to n (0801–1 to n) 59, 143
- Switch status 1 to n (0461–1 to n) 59, 136
- Switch status 1 to n (0463–1 to n) 270
- Switch status 1 to n (0803–1 to n) 271

Switch-off delay
- Pulse/frequency/switch output 1 to n (0465–1 to n) 135
- Relay output 1 to n (0813–1 to n) 141

Switch-off value
- Pulse/frequency/switch output 1 to n (0464–1 to n) 133
- Relay output 1 to n (0809–1 to n) 141

Switch-on delay
- Pulse/frequency/switch output 1 to n (0467–1 to n) 135
- Relay output 1 to n (0814–1 to n) 142

Switch-on value
- Pulse/frequency/switch output 1 to n (0466–1 to n) 133
- Relay output 1 to n (0810–1 to n) 141

Tag description
- Analog input 1 to n (1562–1 to n) 170
- Analog output 1 to n (1667–1 to n) 191
- Discrete input 1 to n (2201–1 to n) 183
- Discrete output 1 to n (1721–1 to n) 203
- Totalizer 1 to n (3833–1 to n) 216
- Target corrected volume flow (1893) 52
- Target mass flow (1864) 51

Target mode
- Analog input 1 to n (1563–1 to n) 171
- Analog output 1 to n (1668–1 to n) 192
- Discrete input 1 to n (2202–1 to n) 184
- Discrete output 1 to n (1722–1 to n) 204
- Totalizer 1 to n (3834–1 to n) 217
- Target mode (1497) 149
- Target volume flow (1895) 53
- Temp. compensated dynamic viscosity (1872) 50
- Temp. compensated kinematic viscosity (1863) 50
- Temperature (1853) 49
- Temperature coefficient sound velocity (6181) 78
- Temperature correction source (6184) 80
- Temperature damping (1822) 70
- Temperature factor (1871) 91
- Temperature offset (1870) 91
- Temperature unit (0557) 66

Terminal number
- Current input 1 to n (1611–1 to n) 96
- Current output 1 to n (0379–1 to n) 101
- Pulse/frequency/switch output 1 to n (0492–1 to n) 116
- Relay output 1 to n (0812–1 to n) 137
- Status input 1 to n (1358–1 to n) 99

Timestamp 226, 227, 228, 229, 230, 231, 232

Totalizer operation mode
- Totalizer 1 to n (3823–1 to n) 214
- Totalizer status (Hex) 1 to n (3825–1 to n) 54, 216
- Totalizer status 1 to n (3826–1 to n) 55, 216
- Totalizer value 1 to n (3827–1 to n) 54, 215

Unit totalizer
- Totalizer 1 to n (3835–1 to n) 212

User name (2715) 162

Value 1 display (0107) 18

Value 2 display (0108) 21

Value 3 display (0110) 22

Value per pulse
- Pulse/frequency/switch output 1 to n (0455–1 to n) 119

Value status input
- Status input 1 to n (1353–1 to n) 100
- Value status input 1 to n (1353–1 to n) 56

Volume flow (1847) 47

Volume flow factor (1846) 88

Volume flow offset (1841) 88

Volume flow unit (0553) 62

Volume unit (0563) 63

Web server functionality (7222) 159

Web server language (7221) 157

WLAN (2702) 161
Proline Promass 300 PROFIBUS PA

Display module (Submenu)
- **242**

Display channel 3 (Submenu)
- **261**

Document
- **242**

- **Explanation of the structure of a parameter description**
 - **6**

Document function
- **4**

Dynamic viscosity (Parameter)
- **49**

Electronic viscosity (Parameter)
- **244**

ENP version (Parameter)
- **237**

Enter access code (Parameter)
- **13**

Entire logging duration (Parameter)
- **259**

Event list (Submenu)
- **233**

Event logbook (Submenu)
- **232**

Extended order code 1 (Parameter)
- **241**

Extended order code 2 (Parameter)
- **241**

Extended order code 3 (Parameter)
- **241**

External compensation (Submenu)
- **78**

External pressure (Parameter)
- **80**

External reference density (Parameter)
- **82**

External temperature (Parameter)
- **81**

Factory reset (Parameter)
- **154**

Factory settings
- **273**

- **US units**
 - **275**

Fail safe time (Parameter)
- **189, 201**

Fail safe type (Parameter)
- **168, 182, 190, 202**

Fail-safe value (Parameter)
- **169, 182, 190, 202**

Failure current (Parameter)
- **114**

Failure frequency (Parameter)
- **129**

Gateway IP address (Parameter)
- **166**

High value partial filled pipe detection (Parameter)
- **75**

High alarm state (Parameter)
- **178, 223**

High alarm value (Parameter)
- **178, 223**

Hi Hi alarm state (Parameter)
- **178, 222**

Hi Hi alarm value (Parameter)
- **177, 222**

Hi Lim (Parameter)
- **176, 220**

Hi Spread Limit (Parameter)
- **176, 211**

Header text (Parameter)
- **26**

Heartbeat (Submenu)
- **262**

Hardware lock (Parameter)
- **155**

Hardware revision (Parameter)
- **151**

I/O configuration (Submenu)
- **93**

I/O module 1 (Submenu)
- **240**

I/O module 1 to n (Parameter)
- **240**

I/O module 1 to n information (Parameter)
- **93**

I/O module 1 to n terminal numbers (Parameter)
- **93**

I/O module 2 (Submenu)
- **240**

I/O module 2 to n terminal numbers (Parameter)
- **241**

Ident number selector (Parameter)
- **145, 155**

Increase close (Parameter)
- **199**

Input (Submenu)
- **95**

Input channel (Parameter)
- **196, 208**

Input signal level (Parameter)
- **265**

Input values (Submenu)
- **55**

Installation angle pitch (Parameter)
- **85**

Installation angle roll (Parameter)
- **85**

Installation direction (Parameter)
- **84**

Invert (Parameter)
- **182, 201**

Invert output signal (Parameter)
- **136**

IP address (Parameter)
- **158**

IP address domain name server (Parameter)
- **166**

Kinematic viscosity (Parameter)
- **50**

Fixed current (Parameter)
- **104**

Fixed reference density (Parameter)
- **82**

Flow damping (Parameter)
- **69**

Flow override (Parameter)
- **70**

Format display (Parameter)
- **15**

Frequency output simulation 1 to n (Parameter)
- **267**

Frequency value 1 to n (Parameter)
- **268**

Function
- **see Parameter**
| L | Last backup (Parameter) | 28 |
| | Lin type (Parameter) | 175 |
| | Linear expansion coefficient (Parameter) | 83 |
| | Lo alarm state (Parameter) | 179, 223 |
| | Lo alarm value (Parameter) | 178, 223 |
| | Lo Lim (Parameter) | 177, 221 |
| | Lo Lo alarm state (Parameter) | 179, 224 |
| | Lo Lo alarm value (Parameter) | 179, 224 |
| | Lo Lo Lim (Parameter) | 177, 222 |
| | Locking status (Parameter) | 12 |
| | Logging delay (Parameter) | 258 |
| | Logging interval (Parameter) | 256 |
| | Login page (Parameter) | 159 |
| | Low flow cut off (Submenu) | 71 |
| | Low value partial filled pipe detection (Parameter) | 74 |
| M | MAC address (Parameter) | 157 |
| | Main electronic module + I/O module 1 (Submenu) | 238 |
| | Manufacturer ID (Parameter) | 151 |
| | Mass flow (Parameter) | 47 |
| | Mass flow factor (Parameter) | 88 |
| | Mass flow offset (Parameter) | 87 |
| | Mass flow unit (Parameter) | 61 |
| | Mass unit (Parameter) | 61 |
| | Master availability (Parameter) | 147 |
| | Max. switch cycles number (Parameter) | 60 |
| | Maximum damping partial filled pipe det. (Parameter) | 76 |
| | Maximum frequency value (Parameter) | 124 |
| | Maximum value (Parameter) | 244, 245, 246, 247, 248, 249, 250, 251, 252 |
| | Measured current 1 to n (Parameter) | 56, 57, 115 |
| | Measured values (Submenu) | 46 |
| | Measured values 1 to n (Parameter) | 55 |
| | Measurement mode (Submenu) | 76 |
| | Measuring mode (Parameter) | 107, 121, 125 |
| | Measuring value at maximum frequency (Parameter) | 125 |
| | Measuring value at minimum frequency (Parameter) | 124 |
| | Medium temperature (Submenu) | 245 |
| | Min/max values (Submenu) | 243 |
| | Minimum frequency value (Parameter) | 124 |
| | Minimum value (Parameter) | 244, 245, 246, 247, 248, 249, 250, 251, 252 |
| | Mode block actual (Parameter) | 149, 171, 185, 192, 205 |
| | Mode block normal (Parameter) | 150, 172, 185, 193, 205 |
| | Mode block permitted (Parameter) | 150, 172, 185, 193, 205 |
| N | Network security (Parameter) | 162 |
| | Nominal diameter (Parameter) | 92 |
| O | Off value low flow cutoff (Parameter) | 72 |
| | On value low flow cutoff (Parameter) | 71 |
| | Operating mode (Parameter) | 117 |
| | Operating time (Parameter) | 28, 42, 227 |
| | Operating time from restart (Parameter) | 227 |
| | Order code (Parameter) | 236 |
| | Oscillation amplitude (Submenu) | 248 |
| | Oscillation damping (Submenu) | 250 |
| | Oscillation frequency (Submenu) | 247 |
| | Out decimal point (Parameter) | 175 |
| | Out scale lower range (Parameter) | 200 |
| | Out scale upper range (Parameter) | 199 |
| | Out status (Parameter) | 169, 170, 183, 191, 203 |
| | Out unit (Parameter) | 175 |
| | Out unit text (Parameter) | 180 |
| | Out value (Parameter) | 169, 183, 190, 203 |
| | Output (Submenu) | 100 |
| | Output channel (Parameter) | 197, 208 |
| | Output current 1 to n (Parameter) | 57, 115 |
| | Output frequency 1 to n (Parameter) | 58, 129 |
| | Output values (Submenu) | 56 |
| P | Parameter |
| | Structure of a parameter description | 6 |
| | Partially filled pipe detection (Submenu) | 74 |
| | Petroleum (Submenu) | 224 |
| | Physical block (Submenu) | 147 |
| | Position status (Parameter) | 198 |
| | Position value (Parameter) | 197 |
| | Powerless relay status (Parameter) | 143 |
| | Preset value 1 to n (Parameter) | 214 |
| | Pressure compensation (Parameter) | 79 |
| | Pressure shock suppression (Parameter) | 72 |
| | Pressure unit (Parameter) | 67 |
| | Pressure value (Parameter) | 49, 79 |
| | Previous diagnostics (Parameter) | 226 |
| | Process parameters (Submenu) | 68 |
| | Process variable adjustment (Submenu) | 87 |
| | Process variable value (Parameter) | 264 |
| | Process variables (Submenu) | 46 |
| | PROFIBUS ident number (Parameter) | 146 |
| | PROFIBUS PA configuration (Submenu) | 144 |
| | PROFIBUS PA info (Submenu) | 145 |
| | Profile version (Parameter) | 146 |
| | Progress (Parameter) | 87 |
| | Pulse output 1 to n (Parameter) | 58, 122 |
| | Pulse output simulation 1 to n (Parameter) | 268 |
| | Pulse value 1 to n (Parameter) | 269 |
| | Pulse width (Parameter) | 120 |
| | Pulse/frequency/switch output 1 to n (Submenu) | 57, 115 |
| | PV filter time (Parameter) | 168 |
| | PV scale lower range (Parameter) | 174, 195 |
| | PV scale upper range (Parameter) | 174, 195 |
| R | RCAS in status (Parameter) | 196, 208 |
RCAS in value (Parameter) 196, 208
RCAS out status (Parameter) 197, 209
RCAS out value (Parameter) 197, 209
Readback status (Parameter) 196, 207
Readback value (Parameter) 195, 207
Received signal strength (Parameter) 166
Reference density (Parameter) 48
Reference density factor (Parameter) 90
Reference density offset (Parameter) 90
Reference density unit (Parameter) 66
Reference sound velocity (Parameter) 78
Reference temperature (Parameter) 83
Relay output 1 to n (Submenu) 59, 137
Relay output 1 to n simulation (Parameter) 270
Relay output function (Parameter) 138
Reset access code (Parameter) 42
Reset access code (Submenu) 42
Reset min/max values (Parameter) 243
Response time (Parameter) 112, 127
Response time part. filled pipe detect. (Parameter) 75
Response time status input (Parameter) 100

S
Security identification (Parameter) 162
Select antenna (Parameter) 165
Select gas type (Parameter) 77
Select medium (Parameter) 77
Sensor (Submenu) ... 45
Sensor adjustment (Submenu) 84
Sensor electronic module (ISEM) (Submenu) 239
Separator (Parameter) .. 27
Serial number (Parameter) 152, 235
Set point status (Parameter) 189, 201
Set point value (Parameter) 189, 201
Set point deviation (Parameter) 198
Signal asymmetry (Submenu) 251
Signal mode (Parameter) 96, 102, 117
Simulate enabled (Parameter) 179, 187, 198, 209
Simulate status (Parameter) 180, 188, 199, 210
Simulate value (Parameter) 180, 187, 198, 210
Simulation (Submenu) .. 262
Software option overview (Parameter) 45
Software revision (Parameter) 151, 238, 239, 240, 241, 242
Square expansion coefficient (Parameter) 84
SSID name (Parameter) ... 161, 164
Static revision (Parameter) 148, 170, 184, 191, 204, 216
Status input 1 to n (Submenu) 98
Status input simulation (Parameter) 265
Status PROFIBUS Master Config (Parameter) 146
Strategy (Parameter) 149, 170, 184, 192, 204, 217
Submenu
Administration .. 40
Analog input 1 to n .. 167
Analog inputs .. 166
Analog output 1 to n ... 188
Analog outputs .. 188
Application ... 210
Calculated values .. 81
Calibration .. 91
Carrier pipe temperature 245
Communication .. 143
Concentration .. 224
Configuration backup .. 28
Corrected volume flow calculation 81
Current input 1 to n .. 55, 95
Current output 1 to n .. 101
Data logging .. 253
Device information ... 234
Diagnostic behavior ... 31
Diagnostic handling .. 31
Diagnostic list .. 228
Diagnostics .. 225
Discrete input 1 to n .. 181
Discrete inputs .. 181
Discrete output 1 to n .. 200
Discrete outputs ... 200
Display .. 14
Display channel 1 ... 259
Display channel 2 ... 261
Display channel 3 ... 261
Display channel 4 ... 262
Display module .. 242
Electronic temperature 244
Event list ... 233
Event logbook ... 232
External compensation 78
Heartbeat .. 262
I/O configuration ... 93
I/O module 1 ... 240
I/O module 2 ... 240
Input .. 95
Input values .. 55
Low flow cut off ... 71
Main electronic module + I/O module 1 238
Measured values ... 46
Measurement mode .. 76
Medium temperature .. 245
Min/max values .. 243
Oscillation amplitude ... 248
Oscillation damping ... 250
Oscillation frequency ... 247
Output .. 100
Output values ... 56
Partially filled pipe detection 74
Petroleum ... 224
Physical block ... 147
Process parameters .. 68
Process variable adjustment 87
Process variables ... 46
PROFIBUS PA configuration 144
PROFIBUS PA info ... 145
Pulse/frequency/switch output 1 to n 57, 115
Relay output 1 to n .. 59, 137
Reset access code .. 42
Sensor .. 45
Sensor adjustment .. 84
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor electronic module (ISEM)</td>
<td>239</td>
</tr>
<tr>
<td>Signal asymmetry</td>
<td>251</td>
</tr>
<tr>
<td>Simulation</td>
<td>262</td>
</tr>
<tr>
<td>Status input 1 to n</td>
<td>98</td>
</tr>
<tr>
<td>System</td>
<td>13</td>
</tr>
<tr>
<td>System units</td>
<td>60</td>
</tr>
<tr>
<td>Torsion oscillation amplitude</td>
<td>249</td>
</tr>
<tr>
<td>Torsion oscillation damping</td>
<td>250</td>
</tr>
<tr>
<td>Torsion oscillation frequency</td>
<td>247</td>
</tr>
<tr>
<td>Torsion signal asymmetry</td>
<td>252</td>
</tr>
<tr>
<td>Totalizer</td>
<td>54</td>
</tr>
<tr>
<td>Totalizer 1 to n</td>
<td>211</td>
</tr>
<tr>
<td>Value current output 1 to n</td>
<td>57</td>
</tr>
<tr>
<td>Value status input 1 to n</td>
<td>56</td>
</tr>
<tr>
<td>Viscosity</td>
<td>224</td>
</tr>
<tr>
<td>Web server</td>
<td>156</td>
</tr>
<tr>
<td>WLAN settings</td>
<td>160</td>
</tr>
<tr>
<td>Zero point adjustment</td>
<td>86</td>
</tr>
<tr>
<td>Subnet mask (Parameter)</td>
<td>158</td>
</tr>
<tr>
<td>Switch cycles (Parameter)</td>
<td>60</td>
</tr>
<tr>
<td>Switch output function (Parameter)</td>
<td>130</td>
</tr>
<tr>
<td>Switch output simulation 1 to n (Parameter)</td>
<td>269</td>
</tr>
<tr>
<td>Switch status (Parameter)</td>
<td>59, 143</td>
</tr>
<tr>
<td>Switch status 1 to n (Parameter)</td>
<td>59, 136, 270, 271</td>
</tr>
<tr>
<td>Switch-off delay (Parameter)</td>
<td>135, 141</td>
</tr>
<tr>
<td>Switch-off value (Parameter)</td>
<td>133, 141</td>
</tr>
<tr>
<td>Switch-on delay (Parameter)</td>
<td>135, 142</td>
</tr>
<tr>
<td>Switch-on value (Parameter)</td>
<td>133, 141</td>
</tr>
<tr>
<td>System (Submenu)</td>
<td>13</td>
</tr>
<tr>
<td>System units (Submenu)</td>
<td>60</td>
</tr>
</tbody>
</table>

T

Tag description (Parameter)	170, 183, 191, 203, 216
Target corrected volume flow (Parameter)	52
Target group	4
Target mass flow (Parameter)	51
Target mode (Parameter)	169, 171, 184, 192, 204, 217
Target volume flow (Parameter)	53
Temp. compensated dynamic viscosity (Parameter)	50
Temp. compensated kinematic viscosity (Parameter)	50
Temperature (Parameter)	49
Temperature coefficient sound velocity (Parameter)	78
Temperature correction source (Parameter)	80
Temperature damping (Parameter)	70
Temperature factor (Parameter)	91
Temperature offset (Parameter)	91
Temperature unit (Parameter)	66
Terminal number (Parameter)	96, 99, 101, 116, 137
Timestamp (Parameter)	226, 227, 228, 229, 230, 231
Torsion oscillation amplitude (Submenu)	249
Torsion oscillation damping (Submenu)	250
Torsion oscillation frequency (Submenu)	247
Torsion signal asymmetry (Submenu)	252
Totalizer (Submenu)	54
Totalizer 1 to n (Submenu)	211
Totalizer operation mode (Parameter)	214
Totalizer status (Hex) 1 to n (Parameter)	54, 216
Totalizer status 1 to n (Parameter)	55, 216

U

| Unit totalizer (Parameter) | 212 |
| User name (Parameter) | 162 |

V

Value 1 display (Parameter)	18
Value 2 display (Parameter)	21
Value 3 display (Parameter)	22
Value 4 display (Parameter)	23
Value current input 1 to n (Parameter)	266
Value current output 1 to n (Parameter)	267
Value current output 1 to n (Submenu)	57
Value per pulse (Parameter)	119
Value status input (Parameter)	56, 100
Value status input 1 to n (Submenu)	56
Viscosity (Submenu)	224
Volume flow (Parameter)	47
Volume flow factor (Parameter)	88
Volume flow offset (Parameter)	88
Volume flow unit (Parameter)	62
Volume unit (Parameter)	63

W

Web server (Submenu)	156
Web server functionality (Parameter)	159
Web server language (Parameter)	157
Wizard	
Define access code	41
WLAN (Parameter)	161
WLAN IP address (Parameter)	163
WLAN MAC address (Parameter)	163
WLAN mode (Parameter)	161
WLAN passphrase (Parameter)	164
WLAN password (Parameter)	163
WLAN settings (Submenu)	160
WLAN subnet mask (Parameter)	163

Z

Zero point (Parameter)	92
Zero point adjustment (Submenu)	86
Zero point adjustment control (Parameter)	86