Инструкция по эксплуатации RMx621/FML621

Ведомый модуль DP (соединитель PROFIBUS), начиная с версии V2.01.00

Подключение прибора RMx621/FML621 к системе PROFIBUS DP через интерфейс последовательной передачи данных RS485 с помощью выносного модуля (HMS AnyBus Communicator for PROFIBUS)

Содержание

1	Общие сведения	4
1.1 1.2 1.3 1.4 1.5 1.6	Повреждение при перевозкеКомплект поставки Символы по технике безопасности Описание информационных символов Символы на рисунках Список аббревиатур, определение терминов	4 • 4 • 4 • 5 5
2	Монтаж	6
2.1 2.2 2.3 2.4 2.5	Описание функций Требования Подключения и элементы управления Монтаж на DIN-рейку Подключения и схема расположения	. 6 7 . 7 8
2.6 2.7	Назначение клемм PROFIBUS-DP Настройка адреса для шины	. 9 . 9
3	Ввод в эксплуатацию	11
3.1 3.2 3.3	Настройка прибора RMx621/FML621 Настройка соединителя PROFIBUS Индикаторы состояния	11 12 12
4	Технологические параметры	13
4.1 4.2 4.3	Общие сведения	13 13 14
5	Интеграция в сеть Simatic S7	16
5.1 5.2 5.3	Обзор сети	16 16 16
6	Технические характеристики	18

1 Общие сведения

1.1 Повреждение при перевозке

Немедленно уведомите транспортную компанию и поставщика.

1.2 Комплект поставки

- Настоящее руководство по эксплуатации
- Ведомый модуль DP HMS AnyBus Communicator for PROFIBUS
- Соединительный кабель интерфейса последовательной связи для прибора RMx621/ FML621
- Компакт-диск с GSD-файлом и ВМР-файлами

В случае отсутствия какого-либо компонента немедленно уведомите поставщика!

1.3 Символы по технике безопасности

Символ	Значение
\Lambda ОПАСНО	ОПАСНО! Этот символ предупреждает об опасной ситуации. Допущение такой ситуации приведет к серьезным или смертельным травмам.
А ОСТОРОЖНО	ОСТОРОЖНО! Этот символ предупреждает об опасной ситуации. Допущение такой ситуации может привести к серьезным или смертельным травмам.
А ВНИМАНИЕ	ВНИМАНИЕ! Этот символ предупреждает об опасной ситуации. Допущение такой ситуации может привести к травмам небольшой и средней тяжести.
УВЕДОМЛЕНИЕ	УКАЗАНИЕ! Этот символ указывает на информацию о процедуре и на другие действия, которые не приводят к травмам.

1.4 Описание информационных символов

Символ	Значение				
	Разрешено Обозначает разрешенные процедуры, процессы или действия.				
	Предпочтительно Обозначает предпочтительные процедуры, процессы или действия.				
\mathbf{X}	Запрещено Обозначает запрещенные процедуры, процессы или действия.				
i	Подсказка Указывает на дополнительную информацию.				
Ĩ	Ссылка на документацию.				
	Ссылка на страницу.				
	Ссылка на рисунок.				
►	Указание, обязательное для соблюдения.				
1., 2., 3	Серия шагов.				

Символ	Значение		
Результат действия.			
?	Помощь в случае проблемы.		
	Внешний осмотр.		

1.5 Символы на рисунках

	Символ	Значение	Символ	Значение
	1, 2, 3, Номера пунктов		1., 2., 3	Серия шагов
А, В, С, Виды		A-A, B-B, C-C,	Разделы	
Ех Взрывоопасная зона		×	Безопасная среда (невзрывоопасная зона)	

1.6 Список аббревиатур, определение терминов

Coeдинитель PROFIBUS

В следующем тексте термин «соединитель PROFIBUS» используется для обозначения ведомого модуля DP HMS AnyBus Communicator for PROFIBUS.

Ведущее устройство PROFIBUS

Все узлы, такие как ПЛК и подключаемые компьютерные платы, выполняющие функции ведущего устройства PROFIBUS-DP,обозначаются термином «ведущее устройство PROFIBUS».

2 Монтаж

2.1 Описание функций

Подключение к системе Profibus-DP осуществляется с помощью выносного соединителя PROFIBUS. Модуль подключается к интерфейсу RS485 (RxTx1) прибора RMx621/FML621.

Соединитель PROFIBUS действует как ведущее устройство по отношению к прибору RMx621/FML621 и считывает технологические параметры в буферную память ежесекундно. По отношению к системе PROFIBUS DP соединитель PROFIBUS действует как ведомое устройство DP, обеспечивает циклическую передачу данных и передает буферизованные технологические параметры в шину по запросу.

Архитектура системы изображена на следующем рисунке.

Требования 2.2

Функция предусмотрена в приборах RMx621 и FML621 с версией встроенного ПО V 1.00.00 и более совершенных версий.

2.3 Подключения и элементы управления

- Светодиодные индикаторы состояния 1
- 2 3 Настройка адреса для шины
- Подключение цифровой шины
- 4 5 Подключение питания
- Подключение прибора RMx621, FML621

2.4 Монтаж на DIN-рейку

1 Установка 2 Снятие

2.5 Подключения и схема расположения клемм

Подключение прибора RMx621/FML621 с помощью соединителя PROFIBUS

🚹 Цветовое кодирование соответствует кабелю из комплекта поставки.

Подключение PROFIBUS DP (к соединителю PROFIBUS)

Для подключения к системе PROFIBUS предпочтительно использовать 9-контактный разъем D-sub с встроенными нагрузочными резисторами шины, согласно рекомендациям стандарта EN 50170.

2.6 Назначение клемм PROFIBUS-DP

Номер контакта	Сигнал	Значение
Корпус	Экран	Функциональное заземление
3	В-провод	RxTx (+)
5	Земля	Потенциал сравнения
6	VP	Источник питания для нагрузочных резисторов
8	А-провод	RxTx (-)

2.7 Настройка адреса для шины

Осторожно открыв переднюю крышку, пользователь получает доступ к двум поворотным переключателям для настройки адреса шины.

Используя эти поворотные переключатели, можно настроить адрес шины в диапазоне от 00 до 99.

1 Используйте только действительные адреса шины.

3 Ввод в эксплуатацию

3.1 Настройка прибора RMx621/FML621

В главном меню **Communication** → **RS485(1)** прибора RMx621/FML621 параметры интерфейса RS485(1) необходимо настроить следующим образом: для параметра **Unit** address установить значение 1, а для параметра **Baud rate** установить значение 38400.

Количество технологических параметров для вывода необходимо задать в главном меню **Communication** → **PROFIBUS** → **Number**. Максимальное количество – 48. На следующих этапах за каждым относительным адресом закрепляется требуемый технологический параметр с использованием списков выбора.

•

Пункт меню PROFIBUS изменен на пункт меню Anybus Gateway начиная с версии ПО V3.09.00 в приборе RMx621, и начиная с версии ПО V1.03.00 в приборе FML621.

Чтобы упростить дальнейшую обработку технологических параметров, список относительных адресов можно распечатать с помощью управляющего ПО ReadWin[®] 2000.

Определяя технологические параметры, отображаемые в системе PROFIBUS DP, следует помнить о том, что такие же технологические параметры могут быть закреплены за несколькими адресами.

Если соединитель PROFIBUS помечен маркировкой Rev.B, то для прибора RMC621 необходимо использовать ПО версии V03.02.03.

Для соединителей PROFIBUS с маркировкой Rev.В установлена фиксированная скорость передачи данных 38 400 бод.

Для устройств, выпущенных до маркировки Rev.B, устанавливайте скорость 57 600 бод.

3.2 Настройка соединителя PROFIBUS

Соединитель PROFIBUS предварительно настроен на заводе. Какие-либо настройки кроме адреса для шины не требуются. Соединитель автоматически адаптируется к скорости передачи данных в линии PROFIBUS-DP.

3.3 Индикаторы состояния

6 светодиодов указывают текущее состояние прибора и процесса обмена данными.

Светодиод	Описание	Дисплей	Состояние	Действия
1	ONLINE	Зеленый Выкл.	Соединитель PROFIBUS готов к работе	
2	OFFLINE	Красный	Соединитель PROFIBUS не готов к работе	Проверьте штепсельный
		Выкл.		разъем Проверьте сеть PROFIBUS
3	NOT USED			
4	FIELDBUS DIAG	Мигающий красный	Ошибка настройки	Проверьте настройку ПЛК
		Выкл.	Ошибки шины не обнаружены	
5	SUBNET STATUS	Зеленый	Происходит обмен данными	Проверьте проводку между соединителем PROFIBUS и
		Мигающий зеленый	Обмен данными приостановлен	прибором RMX621/FML621; проверьте параметры связи прибора RMx621/FML621
		Красный	Обмен данными невозможен	
		Выкл.	Сбой питания	Проверьте сетевое напряжение
6	DEVICE STATUS	Зеленый	Инициализация	
		Мигающий зеленый	Соединитель PROFIBUS работает	
		Мигающий красный/ зеленый	Ненадлежащая конфигурация	В приборе обнаружен дефект
		Выкл.	Сбой питания	Проверьте сетевое напряжение

4 Технологические параметры

4.1 Общие сведения

В зависимости от настроенных условий применения в приборе RMx621/FML621 вычисляются различные технологические параметры, которые доступны для считывания.

Кроме вычисляемых значений, в системе прибора RMx621/FML621 можно считывать входные переменные.

4.2 Структура информационного пакета

Каждый технологический параметр занимает 5 байтов в представлении технологического процесса.

Первые 4 байта соответствуют 32-разрядному числу с плавающей точкой согласно IEEE-754 (старший байт первый).

Октет	8	7	6	5	4	3	2	1
1	Знак	(E) 2 ⁷	(E) 2 ⁶					(E) 2 ¹
2	(E) 2 ⁰	(M) 2 ⁻¹	(M) 2 ⁻²					(M) 2 ⁻⁷
3	(M) 2 ⁻⁸							(M) 2 ⁻¹⁵
4	(M) 2 ⁻¹⁶							(M) 2 ⁻²³

32-разрядное число с плавающей точкой (IEEE-754)

Знак = 0: положительное число

Знак = 1: отрицательное число	$Y_{ucno} = -1^{3Hak} \cdot (1 + M) \cdot 2^{E-127}$
Е = экспонента; М = мантисса	
Пример: 40 F0 00 00 h	= 0100 0000 1111 0000 0000 0000 0000 00
Значение	$= -1^0 \cdot 2^{129-127} \cdot (1 + 2^{-1} + 2^{-2} + 2^{-3})$
	$= 1 \cdot 2^2 \cdot (1 + 0.5 + 0.25 + 0.125)$
	$= 1 \cdot 4 \cdot 1,875 = 7,5$

Последний байт указывает состояние

80h = действительное значение

81h = действительное значение с нарушением предельного значения (связано с релейным выходом)

10h = недействительное значение (например, обрыв цепи в кабеле)

00h = нет доступного значения (например, ошибка связи в подсети)

В отношении вычисляемых значений (например, массового расхода) проверяется состояние возникновения сбоя всех используемых входов и прикладной системы. Если в одной из этих переменных обнаружен сбой, то вычисленное значение переходит в состояние 10h, то есть «недействительное значение».

Пример

Обрыв цепи в кабеле Temp1; тип аварийного сигнала: неисправность => вычисленный массовый расход (10h)

Обрыв цепи в кабеле Temp1; тип аварийного сигнала: уведомление => вычисленный массовый расход (80h)

Количество технологических параметров, подлежащих передаче, определяется настройкой энергетического диспетчера, →
☐ 11. Минимальное количество – 1 технологический параметр (5 байтов), максимальное – 48 технологических параметров (240 байтов).

4.3 Единицы измерения для передачи технологических параметров

Единицы измерения для передачи технологических параметров настраиваются в меню Setup прибора RMx621/FML621.

Пункт меню PROFIBUS изменен на пункт меню Anybus Gateway начиная с версии ПО V3.09.00 в приборе RMx621, и начиная с версии ПО V1.03.00 в приборе FML621.

Выберите вариант **Display units**, чтобы использовать те единицы измерения, которые настроены для отображения значений, подлежащих передаче через систему PROFIBUS DP.

Выберите вариант **Default units**, чтобы использовать для передачи данных следующие значения по умолчанию.

Объемный расход	л/с
Температура	°C
Давление	бар
Количество теплоты	кДж
Расход тепла (выход)	кВт (қДж/с)
Массовый расход	кг/с
Скорректированный объем	(н)л/с
Общий объем	Л
Общая масса	КГ
Общий скорректированный объем	(н)л

Плотность	KL/W3
Энтальпия	қДж/кг

5 Интеграция в сеть Simatic S7

5.1 Обзор сети

5.2 GSD-файл EH_x153F.gsd

- Установите с помощью меню Options/Install new GSD
- Или скопируйте файлы GSD и BMP в программный каталог STEP 7. Например: c:\...\Siemens\Step7\S7data\GSD c:\...\ Siemens\Step7\S7data\NSBMP

GSD-файл находится на компакт-диске Readwin[®] 2000, в каталоге **\GSD\RMS621 RMC621 RMM621\DP**

Пример для энергетического диспетчера

5.3 Настройка прибора RMx621/FML621 в качестве ведомого устройства

Настройка аппаратной части (для примера взят энергетический диспетчер RMS/ RMC621)

- Перетащите энергетический диспетчер прибора RMx621 из каталога Hardware -> PROFIBUS DP -> Additional field devices -> General в сеть PROFIBUS DP
- Установите пользовательский адрес

В GSD-файле определены два модуля

Вход (ПЛК) RMx621 → ведущее устройство PROFIBUS		Строка настройки
AI: 5 bytes	Одно измеренное значение + состояние	0x40, 0x84
4 AI: 20 bytes	Четыре измеренных значения и данные состояния	0x40, 0x93

Закрепите столько модулей за отдельными слотами, сколько необходимо для такого количества технологических параметров, которое соответствует количеству, установленному в энергетическом диспетчере. Здесь можно использовать не более 12 модулей. Модуль 4 AI: 20 bytes можно использовать вместо четырех отдельных модулей AI: 5 bytes.

🖪 Настроенный адрес прибора должен совпадать с аппаратным адресом, который уже задан. Диапазон адресов технологических параметров должен быть сплошным, без прерываний.

6 Технические характеристики

Размеры	120 x 75 x 27 мм (высота, глубина, ширина)
Сетевое напряжение	24 В пост. тока +/-10 %
Потребление тока	Типично 120 мА, максимум – 280 мА
Скорость передачи данных в системе PROFIBUS-DP	9600, 19 200, 45 450, 93 750, 187 500, 500 000 бод; 1,5 Мбод, 3 Мбод, 6 Мбод, 12 Мбод
Параметры интерфейса RS485	Скорость передачи данных 38 400, 8 битов данных, 1 стоповый бит, адрес прибора 01
Температура окружающей среды	5 до 55 °С
Температура хранения	–55 до +85 °С
Влажность	От 5 до 95 %, без конденсации
Степень защиты	IP 20
Подключение защитного заземления	Внутреннее заземление через DIN-рейку
Сертификаты	UL - E214107

www.addresses.endress.com

