Instrukcja obsługi RMx621 / FML621

Moduł Profibus DP slave ("Komunikator PROFIBUS") od V2.01.00

Podłączenie liczników RMx621 / FML621 do sieci PROFIBUS DP przez interfejs szeregowy RS485 z wykorzystaniem modułu zewnętrznego (komunikatora HMS AnyBus dla PROFIBUS)

Spis treści

1	Informacje ogólne	4
1.1	Uszkodzenie podczas transportu	4
1.2	Zakres dostawy	4
1.3	Symbole bezpieczeństwa	4
1.4	Symbole oznaczające rodzaj informacji	4
1.5	Symbole na rysunkach	5
1.0	Lista skrotow/definicje terminow	5
2	Montaż	6
2.1	Opis funkcji	6
2.2	Wymagania	7
2.3	Podłączenia i elementy obsługi	7
2.4	Montaż na szynie DIN	8
2.5	Schemat podłączeń i zacisków	8
2.6	Przyporządkowanie zaciskow sieci PROFIBUS	0
27	DP Arrange adresu sieciowego	9 9
2.7)
3	Uruchomienie	11
3.1	Konfiguracja liczników RMx621 / FML621	11
3.2	Konfiguracja komunikatora PROFIBUS	11
3.3	Kontrolki statusu	12
4	Dane procesowe	13
4.1	Informacie ogólne	13
4.2	Struktura ładunku danych	13
4.3	Jednostki przesyłanych zmiennych	
	procesowych	14
5	Integracja z systemem Simatic S7 2	15
5.1	Schemat ogólny sieci	15
5.2	Plik GSD EH_x153F.gsd	15
5.3	Konfiguracja licznika RMx621 / FML621	
	jako urządzenia slave	15
6	Dana tachniczna	17
U		τ/

1 Informacje ogólne

1.1 Uszkodzenie podczas transportu

Niezwłocznie powiadomić firmę przewozową i dostawcę.

1.2 Zakres dostawy

- Niniejsza instrukcja obsługi
- Moduł DP slave HMS AnyBus Communicator dla sieci PROFIBUS
- Szeregowy przewód podłączeniowy do licznika RMx621 / FML621
- Płyta CD-ROM zawierająca plik sterownika GSD i bitmapy

W przypadku gdy dostawa jest niekompletna, należy niezwłocznie powiadomić dostawcę!

1.3 Symbole bezpieczeństwa

	Symbol Funkcja					
A	NEBEZPIECZEŃSTV	NIEBEZPIECZEŃSTWO! Corzega przed niebezpieczną sytuacją. Niemożność uniknięcia tej sytuacji może spowodować poważne uszkodzenia ciała lub śmierć.				
	A OSTRZEŻENIE	OSTRZEŻENIE! Ostrzega przed niebezpieczną sytuacją. Niemożność uniknięcia tej sytuacji może spowodować poważne uszkodzenia ciała lub śmierć.				
	A PRZESTROGA	PRZESTROGA! Ostrzega przed niebezpieczną sytuacją. Niemożność uniknięcia tej sytuacji może spowodować średnie lub drobne uszkodzenia ciała.				
	NOTYFIKACJA	NOTYFIKACJA! Ten symbol zawiera informacje o procedurach oraz innych czynnościach, które nie powodują uszkodzenia ciała.				

1.4 Symbole oznaczające rodzaj informacji

Ikona	Znaczenie				
	Dopuszczalne Dopuszczalne procedury, procesy lub czynności.				
	Zalecane Zalecane procedury, procesy lub czynności.				
×	Zabronione Zabronione procedury, procesy lub czynności.				
i	Wskazówka Oznacza dodatkowe informacje.				
	Odsyłacz do dokumentacji.				
	Odsyłacz do strony.				
	Odsyłacz do rysunku.				
►	Uwaga lub krok procedury.				
1., 2., 3	Kolejne kroki procedury.				
L >	Wynik kroku procedury.				

Ikona	Znaczenie	
?	Pomoc w razie problemu.	
	Kontrola wzrokowa.	

1.5 Symbole na rysunkach

Symbol	Znaczenie	Symbol	Znaczenie
1, 2, 3, Numery pozycji		1., 2., 3	Kolejne kroki procedury
A, B, C,	Widoki	A-A, B-B, C-C, Przekroje	
EX Strefa zagrożona wybuchem		×	Strefa bezpieczna (niezagrożona wybuchem)

1.6 Lista skrótów/definicje terminów

Komunikator PROFIBUS

W poniższym tekście termin "komunikator PROFIBUS" oznacza zewnętrzny komunikator DP-Slave HMS AnyBus dla PROFIBUS.

Urządzenie PROFIBUS Master

Wszystkie urządzenia, jak np. sterowniki PLC i karty rozszerzeń do komputera PC ze złączem wtykowym, które pracują jako stacje PROFIBUS-DP Master, określane są jako urządzenie PROFIBUS Master.

2 Montaż

2.1 Opis funkcji

Połączenie z siecią Profibus-DP realizowane jest za pomocą zewnętrznego komunikatora PROFIBUS. Komunikator jest podłączony do interfejsu RS485 (RxTx1) licznika RMx621 / FML621.

Komunikator PROFIBUS pełni rolę urządzenia master dla liczników RMx621 / FML621 i co sekundę odczytuje wartości procesowe, zapisując je do wewnętrznego bufora pamięci. W sieci PROFIBUS DP komunikator PROFIBUS pełni funkcję urządzenia DP-Slave dla cyklicznego przesyłu danych i na żądanie udostępnia zapisane w pamięci wartości procesowe.

Architekturę systemu pokazano na poniższym rysunku.

2.2 Wymagania

Opcja ta jest dostępna w licznikach RMx621 i FML621 z zainstalowaną wersją oprogramowania V 1.00.00 i wyższą.

Podłączenia i elementy obsługi 2.3

- Kontrolki LED statusu 1
- 2 3 Przełączniki do konfiguracji adresu sieciowego
- Przyłącze sieci obiektowej
- 4 5 Przyłącze zasilania
- Przyłącze do podłączenia liczników RMx621, FML621

2.4 Montaż na szynie DIN

1 Montaż 2 Demontaż

2.5 Schemat podłączeń i zacisków

Połączenie licznika RMx621 / FML621 do komunikatora PROFIBUS

R Kolory żył dotyczą przewodów znajdujących się w dostawie.

Podłączenie komunikatora PROFIBUS do sieci PROFIBUS DP

Do podłączenia z siecią PROFIBUS zaleca się stosowanie 9-stykowego wtyku D-Sub z wbudowanymi rezystorami terminującymi, zgodnie z zaleceniami normy EN 50170.

2.6 Przyporządkowanie zacisków sieci PROFIBUS DP

Nr styku	Sygnał	Znaczenie
Obudowa	Ekran	Uziemienie funkcjonalne
3	Żyła B	RxTx (+)
5	GND	Potencjał odniesienia
6	VP	Zasilanie rezystorów terminujących
8	Żyła A	RxTx (-)

2.7 Konfiguracja adresu sieciowego

Po ostrożnym otwarciu pokrywy przedniej użytkownik ma do dyspozycji dwa przełączniki obrotowe służące do konfiguracji adresu sieciowego.

Za pomocą tych przełączników można skonfigurować adres sieciowy w zakresie od 00 do 99.

3 Uruchomienie

3.1 Konfiguracja liczników RMx621 / FML621

W menu głównym **Communication [Komunikacja]** \rightarrow **RS485(1)** licznika RMx621/ FML621 należy skonfigurować parametry interfejsu RS485(1) w następujący sposób: ustawić **Unit address [Adr.urządz.]** na 1, a **Baud rate [Pr.transm.]** na 38400.

Liczbę przesyłanych zmiennych procesowych należy określić w menu głównym **Communication [Komunikacja] → PROFIBUS → Number [Ilosc]**. Maksymalna liczba zmiennych procesowych wynosi 48. Następnie do każdego adresu należy wybrać z listy i przyporządkować żądaną zmienną procesową.

Od wersji V3.09.00 oprogramowania licznika RMx621 oraz od wersji V1.03.00 oprogramowania przelicznika FML621 pozycja menu "PROFIBUS" została zmieniona na "Anybus Gateway".

A00417

Aby ułatwić dalsze przetwarzanie zmiennych procesowych, listę adresów można również wydrukować za pomocą oprogramowania obsługowego ReadWin® 2000.

Podczas definiowania zmiennych procesowych odczytywanych za pomocą PROFIBUS DP należy pamiętać, że ta sama zmienna procesowa może być przypisana do więcej niż jednego adresu.

W przypadku zastosowania komunikatora PROFIBUS oznaczonego "Rev.B" licznik RMC621 powinien mieć zainstalowane oprogramowanie w wersji V03.02.03.

Komunikatory PROFIBUS oznaczone "Rev.B" mają stałą prędkość transmisji wynoszącą 38 400 bodów.

Dla urządzeń wcześniejszych niż "Rev.B" należy ustawić prędkość transmisji na 57 600.

3.2 Konfiguracja komunikatora PROFIBUS

Komunikator PROFIBUS jest skonfigurowany fabrycznie. Oprócz adresu sieciowego nie ma potrzeby dokonywania żadnych innych ustawień. Komunikator automatycznie dostosowuje się do prędkości transmisji danych w linii PROFIBUS-DP.

3.3 Kontrolki statusu

Do sygnalizacji aktualnego statusu urządzenia i wymiany danych służy 6 kontrolek LED.

Kontrolka LED	Opis	Wskazanie Status		Działania	
1	ONLINE	Zielona Nie świeci się	Komunikator PROFIBUS jest gotowy do pracy		
2	OFFLINE	Czerwona	Komunikator	Sprawdzić złącze wtykowe	
		Nie świeci się	gotowy do pracy	Sprawdzić sieć PROFIBUS	
3	NIEUŻYWANA				
4	DIAGNOSTYKA SIECI OBIEKTOWEJ	Czerwona pulsująca	Błąd konfiguracji	Sprawdzić konfigurację sterownika PLC	
		Nie świeci się	Nie wykryto błędu sieci		
5	STATUS PODSIECI	Zielona	Wymiana danych w toku	Sprawdzić podłączenie komunikatora PROFIBUS z	
		Zielona pulsująca	Wymiana danych wstrzymana	FML621; sprawdzić parametry komunikacji w	
		Czerwona	Wymiana danych niemożliwa	liczniku RMx621 / FML621	
		Nie świeci się	Błąd zasilania	Sprawdzić napięcie zasilania	
6	STATUS	Zielona	Inicjalizacja		
	URZĄDZENIA	Zielona pulsująca	Komunikator PROFIBUS działa		
		Pulsująca czerwona/zielona	Błędna konfiguracja	Awaria urządzenia	
		Nie świeci się	Błąd zasilania	Sprawdzić napięcie zasilania	

4 Dane procesowe

4.1 Informacje ogólne

W zależności od skonfigurowanych aplikacji, licznik RMx621/ FML621 oblicza różne zmienne procesowe, które następnie udostępnia do odczytu.

Oprócz wartości obliczonych, licznik RMx621/ FML621 umożliwia odczyt zmiennych wejściowych.

4.2 Struktura ładunku danych

Każda zmienna procesowa ma długość 5 bajtów.

Zgodnie z IEEE-754 pierwsze 4 bajty zajmuje 32-bitowa liczba zmiennoprzecinkowa (MSB jako pierwszy).

32-bitowa liczba zmiennoprzecinkowa	(IEEE-754)

Oktet	8	7	6	5	4	3	2	1
1	Znak	(E) 2 ⁷	(E) 2 ⁶					(E) 2 ¹
2	(E) 2 ⁰	(M) 2 ⁻¹	(M) 2 ⁻²					(M) 2 ⁻⁷
3	(M) 2 ⁻⁸							(M) 2 ⁻¹⁵
4	(M) 2 ⁻¹⁶							(M) 2 ⁻²³

Znak = 0: liczba dodatnia

Znak = 1: liczba ujemna	$Liczba = -1^{\text{znak}} \cdot (1+M) \cdot 2^{E-127}$
E = wykładnik; M = mantysa	
Przykład: 40 F0 00 00 h	= 0100 0000 1111 0000 0000 0000 0000 00
Wartość	$= -1^0 \cdot 2^{129-127} \cdot (1 + 2^{-1} + 2^{-2} + 2^{-3})$
	$= 1 \cdot 2^2 \cdot (1 + 0.5 + 0.25 + 0.125)$
	$= 1 \cdot 4 \cdot 1.875 = 7.5$

Ostatni bajt wskazuje status:

80h = wartość ważna

81h = wartość ważna przekraczająca wartości graniczne (powiązana z wyjściem przekaźnikowym)

10h = wartość nieważna (np. przerwa w obwodzie)

00h = brak wartości (np. błąd komunikacji w podsieci)

W przypadku wartości obliczonych (np. strumienia masy) sprawdzany jest stan alarmowy wszystkich używanych wejść i aplikacji. Jeżeli dla jednej z tych zmiennych sygnalizowana jest "usterka", wartość obliczona przyjmuje status "10h", tzn. wartość nieważna.

Przykład:

Przerwa w obwodzie pomiarowym Temp1; typ alarmu: usterka => obliczony strumień masy (10h)

Przerwa w obwodzie pomiarowym Temp1; typ alarmu: powiadomienie => obliczony strumień masy (80h)

Liczba przesyłanych zmiennych procesowych jest określana podczas konfiguracji licznika ciepła i przepływu, → 🗎 11. Minimalna liczba to 1 zmienna procesowa (5 bajtów), maksymalna to 48 zmiennych procesowych (240 bajtów).

4.3 Jednostki przesyłanych zmiennych procesowych

Do konfiguracji jednostek przesyłanych zmiennych procesowych służy menu Setup [Ustawienia] licznika RMx621 / FML621.

Od wersji V3.09.00 oprogramowania licznika RMx621 oraz od wersji V1.03.00 oprogramowania przelicznika FML621 pozycja menu "PROFIBUS" została zmieniona na "Anybus Gateway".

Wybrać opcję **Display units** [Wyswietlane jednostki], aby transmisja wartości mierzonych poprzez protokół PROFIBUS DP odbywała się w tych samych jednostkach, co jednostki wskazań.

Wybrać opcję **Default units** [Domyslne jednostki], aby używać następujących domyślnych jednostek przesyłanych danych:

Strumień objętości	l/s
Temperatura	٦°
Ciśnienie	bar
Ciepło	kJ
Strumień ciepła (moc)	kW (kJ/s)
Strumień masy	kg/s
Objętość normalizowana	(N)l/s
Suma objętości	1
Suma masy	kg
Suma objętości normalizowanej	(N)1
Gęstość	kg/m ³
Entalpia	kJ/kg

5 Integracja z systemem Simatic S7

5.1 Schemat ogólny sieci

5.2 Plik GSD EH_x153F.gsd

- Zainstalować nowy plik GSD, wybierając Options/Install [Opcje/Instaluj],
- lub skopiować pliki GSD i BMP do odpowiedniego katalogu w oprogramowaniu STEP 7. np.: c:\...\Siemens\Step7\S7data\GSD

c:\...\ Siemens\Step7\S7data\NSBMP

Plik GSD znajduje się na płycie CD-ROM z oprogramowaniem Readwin[®] 2000 w katalogu **\GSD\RMS621 RMC621 RMM621\DP**

Przykład dla licznika ciepła i przepływu:

5.3 Konfiguracja licznika RMx621 / FML621 jako urządzenia slave

Konfiguracja urządzenia (na przykładzie licznika ciepła i przepływu RMS/RMC621):

- Przeciągnąć ikonę licznika ciepła i przepływu RMx621 z katalogu Hardware [Urządzenia]
 PROFIBUS DP -> Additional field devices [Dodatkowe urządzenia obiektowe] -> General [Ogólne] do systemu PROFIBUS DP
- Ustawić adres użytkownika

W pliku GSD zdefiniowane są dwa moduły:

Wejście (sterownika PLC)	$RMx621 \rightarrow PROFIBUS master$	Ciąg konfiguracyjny	
AI: 5 bajtów	Jedna wartość mierzona + status	0x40, 0x84	
4 AI: 20 bajtów	Cztery wartości mierzone wraz ze statusami	0x40, 0x93	

Do poszczególnych gniazd należy przypisać tyle modułów, ile zmiennych procesowych zostało ustawionych w liczniku ciepła i przepływu. Można wybrać maksymalnie 12 modułów. Zamiast czterech pojedynczych modułów "AI: 5 bajtów" można wybrać moduł "4 AI: 20 bajtów".

Ustawiony adres urządzenia musi odpowiadać faktycznie ustawionemu adresowi sprzętowemu. Zakres adresów zmiennych procesowych musi być nieprzerwany.

6 Dane techniczne

	1
Wymiary:	120mm x 75mm x 27mm (wysokość, głębokość, szerokość)
Napięcie zasilania:	24V DC +/-10%
Pobór prądu:	Typ. 120 mA, maks. 280 mA
Prędkość transmisji PROFIBUS-DP:	9600, 19 200, 45 450, 93 750, 187 500, 500 000, 1.5M, 3M, 6M, 12M
Parametry interfejsu RS485:	Prędkość transmisji 38400, 8 bitów danych, 1 bit stopu, adres urządzenia 01
Temperatura otoczenia:	5 55 °C
Temperatura składowania:	−55 +85 °C
Wilgotność:	595%, bez kondensacji
Stopień ochrony:	IP 20
Zacisk uziemienia ochronnego:	Uziemienie wewnętrzne przez szynę DIN
Dopuszczenia:	UL - E214107

www.addresses.endress.com

