Operating Instructions
Smartec CLD18

Conductivity measuring system
Table of contents

1. **About this document**
 1.1 Warnings
 1.2 Symbols used
 1.3 Symbols on device

2. **Basic safety instructions**
 2.1 Requirements for personnel
 2.2 Designated use
 2.3 Workplace safety
 2.4 Operational safety
 2.5 Product safety
 2.6 IT security

3. **Product description**
 3.1 Product design

4. **Incoming acceptance and product identification**
 4.1 Incoming acceptance
 4.2 Product identification
 4.3 Scope of delivery
 4.4 Certificates and approvals

5. **Installation**
 5.1 Installation conditions
 5.2 Mounting the compact device
 5.3 Post-installation check

6. **Electrical connection**
 6.1 Connecting the transmitter
 6.2 Ensuring the degree of protection
 6.3 Post-connection check

7. **Operation options**
 7.1 Overview of operating options
 7.2 Structure and function of the operating menu

8. **Commissioning**
 8.1 Switching on the measuring device
 8.2 Display settings (Display menu)
 8.3 Configuring the measuring device
 8.4 Advanced settings
 8.5 Calibration (Calibration menu)

9. **Diagnostics and troubleshooting**
 9.1 General troubleshooting
 9.2 Troubleshooting instructions
 9.3 Queued diagnostic messages

10. **Maintenance**
 10.1 Maintenance tasks

11. **Repair**
 11.1 General notes
 11.2 Return
 11.3 Disposal

12. **Accessories**
 12.1 Calibration solutions

13. **Technical data**
 13.1 Input
 13.2 Output
 13.3 Power supply
 13.4 Performance characteristics
 13.5 Environment
 13.6 Process
 13.7 Mechanical construction

Index

Endress+Hauser
1 About this document

1.1 Warnings

<table>
<thead>
<tr>
<th>Structure of information</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DANGER</td>
<td>This symbol alerts you to a dangerous situation. Failure to avoid the dangerous situation will result in a fatal or serious injury.</td>
</tr>
<tr>
<td>Causes /consequences</td>
<td>If necessary, Consequences of non-compliance (if applicable)</td>
</tr>
<tr>
<td>Corrective action</td>
<td></td>
</tr>
</tbody>
</table>

WARNING	This symbol alerts you to a dangerous situation. Failure to avoid the dangerous situation can result in a fatal or serious injury.
Causes /consequences	If necessary, Consequences of non-compliance (if applicable)
Corrective action	

CAUTION	This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in minor or more serious injuries.
Causes /consequences	If necessary, Consequences of non-compliance (if applicable)
Corrective action	

NOTICE	This symbol alerts you to situations which may result in damage to property.
Cause/situation	If necessary, Consequences of non-compliance (if applicable)
Action/note	

1.2 Symbols used

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>🟢</td>
<td>Additional information, tips</td>
</tr>
<tr>
<td>✅</td>
<td>Permitted or recommended</td>
</tr>
<tr>
<td>❌</td>
<td>Not permitted or not recommended</td>
</tr>
<tr>
<td>📖</td>
<td>Reference to device documentation</td>
</tr>
<tr>
<td>📖</td>
<td>Reference to page</td>
</tr>
<tr>
<td>📖</td>
<td>Reference to graphic</td>
</tr>
<tr>
<td>🔴</td>
<td>Result of a step</td>
</tr>
</tbody>
</table>
1.3 Symbols on device

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>!→i</td>
<td>Reference to device documentation</td>
</tr>
</tbody>
</table>

2 Basic safety instructions

2.1 Requirements for personnel

- Installation, commissioning, operation and maintenance of the measuring system may be carried out only by specially trained technical personnel.
- The technical personnel must be authorized by the plant operator to carry out the specified activities.
- The electrical connection may be performed only by an electrical technician.
- The technical personnel must have read and understood these Operating Instructions and must follow the instructions contained therein.
- Faults at the measuring point may only be rectified by authorized and specially trained personnel.

NOTICE

Repairs not described in the Operating Instructions provided must be carried out only directly at the manufacturer's site or by the service organization.

2.2 Designated use

The compact measuring system is used for inductive conductivity measurement in liquids with medium to high conductivity.

Use of the device for any purpose other than that described, poses a threat to the safety of people and of the entire measuring system and is therefore not permitted.

The manufacturer is not liable for damage caused by improper or non-designated use.

NOTICE

Applications outside specifications!

Incorrect measurements, malfunctions and even measuring point failure could result

- Use the product only in accordance with the specifications.
- Pay attention to the technical data on the nameplate.

2.3 Workplace safety

As the user, you are responsible for complying with the following safety conditions:

- Installation guidelines
- Local standards and regulations
Electromagnetic compatibility

- The product has been tested for electromagnetic compatibility in accordance with the applicable international standards for industrial applications.
- The electromagnetic compatibility indicated applies only to a product that has been connected in accordance with these Operating Instructions.
2.4 Operational safety

Before commissioning the entire measuring point:

1. Verify that all connections are correct.
2. Ensure that electrical cables and hose connections are undamaged.
3. Do not operate damaged products, and protect them against unintentional operation.
4. Label damaged products as defective.

During operation:

- If faults cannot be rectified:
 products must be taken out of service and protected against unintentional operation.

2.5 Product safety

The product is designed to meet state-of-the-art safety requirements, has been tested, and left the factory in a condition in which it is safe to operate. The relevant regulations and international standards have been observed.

2.6 IT security

We only provide a warranty if the device is installed and used as described in the Operating Instructions. The device is equipped with security mechanisms to protect it against any inadvertent changes to the device settings.

IT security measures in line with operators’ security standards and designed to provide additional protection for the device and device data transfer must be implemented by the operators themselves.
3 Product description

3.1 Product design

1 Temperature sensor
2 Process connection
3 Leakage bore (offset by 90° in relation to the flow direction)
4 Removable housing cover
5 Window for display
6 Cable glands (M16)
7 Flow opening of sensor

A00191B4
4 Incoming acceptance and product identification

4.1 Incoming acceptance

1. Verify that the packaging is undamaged.
 - Notify the supplier of any damage to the packaging.
 Keep the damaged packaging until the issue has been resolved.

2. Verify that the contents are undamaged.
 - Notify the supplier of any damage to the delivery contents.
 Keep the damaged goods until the issue has been resolved.

3. Check that the delivery is complete and nothing is missing.
 - Compare the shipping documents with your order.

4. Pack the product for storage and transportation in such a way that it is protected against impact and moisture.
 - The original packaging offers the best protection.
 Make sure to comply with the permitted ambient conditions.

If you have any questions, please contact your supplier or your local Sales Center.

Technical data ➔ 40

4.2 Product identification

4.2.1 Nameplate

The nameplate provides you with the following information on your device:
- Manufacturer identification
- Order code
- Extended order code
- Serial number
- Firmware version
- Ambient and process conditions
- Input and output values
- Measuring range
- Safety information and warnings
- Protection class

- Compare the information on the nameplate with the order.
4.2.2 Product identification

Product page
www.endress.com/CLD18

Interpreting the order code
The order code and serial number of your product can be found in the following locations:
- On the nameplate
- In the delivery papers

Obtaining information on the product
2. Call up the site search (magnifying glass).
3. Enter a valid serial number.
4. Search.
 ➤ The product structure is displayed in a popup window.
5. Click on the product image in the popup window.
 ➤ A new window (Device Viewer) opens. All of the information relating to your device is displayed in this window as well as the product documentation.

Manufacturer's address
Endress+Hauser Conducta GmbH+Co. KG
Dieselstraße 24
D-70839 Gerlingen

4.3 Scope of delivery
The delivery comprises:
- A Smartec CLD18 measuring system in the version ordered
- Operating Instructions BA01149C/07/EN
4.4 Certificates and approvals

4.4.1 Declaration of Conformity
The product meets the requirements of the harmonized European standards. As such, it complies with the legal specifications of the EU directives. The manufacturer confirms successful testing of the product by affixing to it the CE mark.

4.4.2 Hygiene
FDA
All materials in contact with the product are FDA-listed materials (apart from the PVC process connections).

EHEDG
Certified cleanability according to EHEDG Type EL Class I.

When using the sensor in hygienic applications, please note that the cleanability of the sensor also depends on the way the sensor is installed. To install the sensor in a pipe, use the appropriate and EHEDG-certified flow vessels for the particular process connection.

3-A
Certified according to 3-A Standard 74- (“3-A Sanitary Standards for Sensor and Sensor Fittings and Connections Used on Milk and Milk Products Equipment”).

EC Regulation No. 1935/2004
The sensor meets the requirements of EC Regulation No. 1935/2004 on materials and articles intended to come into contact with food.

4.4.3 Pressure approval
Canadian pressure approval for pipes according to ASME B31.3

5 Installation

5.1 Installation conditions

5.1.1 Installation instructions

Hygienic requirements

- Easily cleanable installation of equipment according to the criteria of the EHEDG must be free of dead legs.
- If a dead leg is unavoidable, it shall be kept as short as possible. Under no circumstances shall the length of a dead leg L exceed the pipe’s inner diameter D minus the equipment’s enveloping diameter d. The condition L ≤ D – d applies.
- Furthermore, the dead leg must be self-draining, so neither product nor process fluids are retained therein.
Within tank installations, the cleaning device must be located so that it directly flushes the dead leg.

For further reference, see the recommendations concerning hygienic seals and installations in EHEDG Doc. 10 and the Position Paper: “Easy cleanable Pipe couplings and Process connections”.

For 3-A-compliant installation, please observe the following:

- After the device has been mounted, hygienic integrity must be guaranteed.
- The leakage hole must be located at the lowest point on the device.
- 3-A-compliant process connections must be used.

** Orientations **

The sensor must be completely immersed in the medium. Avoid air bubbles in the area of the sensor.

If the flow direction changes (after pipe bends), turbulence in the medium can result.

- Install the sensor at a distance of at least 1 m (3.3 ft) downstream from a pipe bend.
The product should flow along the hole of the sensor (see the arrows on the housing). The symmetrical measuring channel allows flow in both directions.

In confined installation conditions, the walls affect the ionic current in the liquid. This effect is offset by what is referred to as the installation factor. The installation factor can be entered in the transmitter for the measurement or the cell constant is corrected by multiplying by the installation factor. The value of the installation factor depends on the diameter and the conductivity of the pipe nozzle as well as the distance a between the sensor and the wall.

The installation factor can be disregarded (f = 1.00) if the distance to the wall is sufficient (a > 20 mm, from DN 60). If the distance to the wall is smaller, the installation factor increases for electrically insulating pipes (f > 1) and decreases for electrically conductive pipes (f < 1).

It can be measured using calibration solutions, or a close approximation can be determined from the following diagram.

Install the measuring system in such a way that the housing is not exposed to direct sunlight.
5 Dimensions and versions (examples). Dimensions: mm (in)

A Plastic housing with thread G 1½
B Stainless steel housing with ISO 2852 clamp 2”
C Stainless steel housing with Varivent DN 40 to 125
D Plastic housing with coupling nut 2¼” PVC
5.1.2 Installation examples

![Diagram showing installation in DN 40 pipe with Tri-Clamp 2" process connection. Dimensions: mm (in)](image)

6 Installation in DN 40 pipe with Tri-Clamp 2" process connection. Dimensions: mm (in)
7 Installation in DN 40 pipe with Varivent process connection. Dimensions: mm (in)

8 Installation in DN 40 pipe with 2¼" PVC coupling nut process connection. Dimensions: mm (in)
5.2 Mounting the compact device

- Choose the installation depth of the sensor in the medium such that the coil body is completely immersed in the medium.

Pay attention to the information on wall clearance → 11

1. Mount the compact device directly on a pipe nozzle or tank nozzle via the process connection.
2. For the 1½" threaded connection, use a Teflon tape to seal the connection and an adjustable pin wrench (DIN 1810, flat face, size 45 to 50 mm (1.77 to 1.97 in)) to tighten it.
3. When installing, align the compact device in such a way that the medium flows through the flow opening of the sensor in the direction of medium flow. Use the arrow on the nameplate to help you align the device.
4. Tighten the flange.

5.3 Post-installation check

1. Following installation, check the compact device for damage.
2. Ensure that the compact device is protected against direct sunlight.

6 Electrical connection

⚠️ WARNING
Device is live!
Incorrect connection may result in injury or death!
- The electrical connection may be performed only by an electrical technician.
- The electrical technician must have read and understood these Operating Instructions and must follow the instructions contained therein.
- Prior to commencing connection work, ensure that no voltage is present on any cable.

6.1 Connecting the transmitter

⚠️ WARNING
Risk of electric shock!
- At the supply point, the power supply must be isolated from dangerous live cables by double or reinforced insulation in the case of devices with a 24 V power supply.
6.1.1 Direct connection of the cables

![Diagram of electrical connection]

The diagram illustrates the direct connection of the cables for Smartec CLD18.
10 Terminal assignment

IOut1 Current output conductivity (active)
IOut2 Current output temperature (active)
Out Alarm output (open-collector)
MRS Binary input (measuring range switch)
L+/L- Power supply
X Grounding pin (flat male tab 4.8 mm)
1 Cover on electronics box
2 Electronics box

NOTICE

Removing the electronics box will destroy the sensor connection!
- The electronics box must not be removed under any circumstances.
- Do not open the cover on the electronics box.

The recommended cable cross-section for the connecting cables is 0.5 mm². The maximum cable cross-section is 1.0 mm².

Connect the transmitter of the compact device as follows:
1. Unscrew the housing cover.
2. Guide the connecting cables through the cable glands.
3. Connect the cables as per the terminal assignment diagram.
4. Connect the protective ground to the terminal pin for the housing ground.

6.1.2 Connection via M12 connector

![Diagram showing M12 connector]

View of connector, 4-pin, data cable (at device)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IOUT1+ Conductivity</td>
</tr>
<tr>
<td>2</td>
<td>IOUT2+ Temperature</td>
</tr>
<tr>
<td>3</td>
<td>IOUT2- Temperature</td>
</tr>
<tr>
<td>4</td>
<td>IOUT1- Conductivity</td>
</tr>
</tbody>
</table>

View of connector, 8-pin, power supply/controller (at device)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L+ Power supply</td>
</tr>
<tr>
<td>2</td>
<td>L- Power supply</td>
</tr>
<tr>
<td>3</td>
<td>MRS+ Binary input</td>
</tr>
<tr>
<td>4</td>
<td>MRS- Binary input</td>
</tr>
<tr>
<td>5</td>
<td>Out+ Alarm output+</td>
</tr>
<tr>
<td>6</td>
<td>Out- Alarm output-</td>
</tr>
<tr>
<td>7</td>
<td>GND Functional ground</td>
</tr>
<tr>
<td>8</td>
<td>GND Functional ground</td>
</tr>
</tbody>
</table>
6.2 Ensuring the degree of protection
Guarantee the degree of protection as follows:

1. Verify that the O-ring is seated correctly in the housing cover.
2. Screw the housing cover tight until the stop.
3. Screw the cable glands tight.

6.3 Post-connection check
Once you have performed the electrical connections, carry out the following checks:

<table>
<thead>
<tr>
<th>Instrument status and specifications</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are the transmitter and cables free from damage on the outside?</td>
<td>Visual inspection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electrical connection</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are the installed cables strain-relieved and not twisted?</td>
<td></td>
</tr>
<tr>
<td>Is the cable run correct, without loops and cross-overs?</td>
<td></td>
</tr>
<tr>
<td>Are the signal cables correctly connected as per the wiring diagram?</td>
<td></td>
</tr>
<tr>
<td>Are all the cable entries fitted, tightened and leak-proof?</td>
<td></td>
</tr>
<tr>
<td>Are the PE distributor blocks grounded (if present)?</td>
<td>Grounding is carried out at the point of installation.</td>
</tr>
</tbody>
</table>
7 Operation options

13 Display and keys of the CLD18

1 Parameters
2 Measured value
3 Unit
4 Operating keys

The ASTN display (Advanced Super Twisted Nematic) is split into two sections. The segment section displays the measured value. The dot-matrix section displays the parameter and unit. The operating texts are displayed in English.

In the event of an error the device automatically alternates between displaying the error and the measured value.
7.1 Overview of operating options

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Open the Configuration menu</td>
</tr>
<tr>
<td></td>
<td>Confirm the entry</td>
</tr>
<tr>
<td></td>
<td>Select a parameter or submenu</td>
</tr>
<tr>
<td></td>
<td>Gradually select the specified menu items / characters for the parameter</td>
</tr>
<tr>
<td></td>
<td>Change the selected parameter</td>
</tr>
<tr>
<td></td>
<td>Display enabled and calculated channels, as well as minimum and maximum values, for all the active channels.</td>
</tr>
<tr>
<td><img src="image" alt="Press both keys simultaneously (< 3 s) to quit the setup without saving any changes." /></td>
<td>Press both keys simultaneously (< 3 s) to quit the setup without saving any changes.</td>
</tr>
</tbody>
</table>

Always quit menu items / submenus at the end of the menu via "x Back".

Symbols in the editing mode:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Accept entry. If this symbol is selected, the entry is applied at the position specified by the user, and you quit editing mode.</td>
</tr>
<tr>
<td></td>
<td>Reject entry. If this symbol is selected, the entry is rejected and you quit editing mode. The previously set text remains.</td>
</tr>
<tr>
<td></td>
<td>Jump one position to the left. If this symbol is selected, the cursor jumps one position to the left.</td>
</tr>
<tr>
<td></td>
<td>Delete backwards. If this symbol is selected, the character to the left of the cursor position is deleted.</td>
</tr>
<tr>
<td></td>
<td>Delete all. If this symbol is selected, the entire entry is deleted.</td>
</tr>
</tbody>
</table>
7.2 Structure and function of the operating menu
The operating functions of the compact measuring device are divided into the following menus:

<table>
<thead>
<tr>
<th>Display</th>
<th>Settings for the device display: contrast, brightness, time for alternating measured values on the display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setup</td>
<td>Device settings</td>
</tr>
<tr>
<td>Calibration</td>
<td>Perform sensor calibration*</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>Device information, diagnostics logbook, sensor information, simulation</td>
</tr>
</tbody>
</table>

* The air set and the correct cell constant have already been configured at the factory for the Smartec CLD18. A sensor calibration is not necessary during commissioning.
8 Commissioning

8.1 Switching on the measuring device

1. Familiarize yourself with the operation of the transmitter before it is first switched on. After power-up, the device performs a self-test and then goes to the measuring mode.

2. If you are commissioning the device for the first time, Setup program the as described in the following sections of the Operating Instructions.

8.2 Display settings (Display menu)

1. Use the 'E' key to call up the main menu. The menu appears on the display Display.

2. Press the 'E' key again to open the menu.

3. Use the option, Back which can be found at the bottom of each menu, to move up a level in the menu structure.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Possible settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrast</td>
<td>1 to 7 Default: 5</td>
<td>Setting for the contrast</td>
</tr>
<tr>
<td>Brightness</td>
<td>1 to 7 Default: 5</td>
<td>Setting for the brightness of the display</td>
</tr>
<tr>
<td>Alternating time</td>
<td>0, 3, 5, 10 s Default: 5</td>
<td>Alternating time between the two measured values 0 means that the values do not alternate on the display</td>
</tr>
</tbody>
</table>
8.3 Configuring the measuring device

1. Use the 'E' key to call up the main menu.
2. Navigate through the available menus with the '+' and '-' keys.
3. Press the 'E' key to open the desired menu.
4. Use the option, Back which can be found at the bottom of each menu, to move up a level in the menu structure.

Default settings are in bold.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Possible settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current range</td>
<td>4-20 mA 0-20 mA</td>
<td>Select the current range.</td>
</tr>
<tr>
<td>Out1 0/4 mA</td>
<td>0 to 2000000 μS/cm 0 μS/cm</td>
<td>Enter the measured value at which the min. current value (0/4 mA) is present at the transmitter output.</td>
</tr>
<tr>
<td>Out1 20 mA</td>
<td>0 to 2000000 μS/cm 0 μS/cm</td>
<td>Enter the measured value at which the max. current value (20 mA) is present at the transmitter output.</td>
</tr>
<tr>
<td>Out2 0/4 mA</td>
<td>-50 to 250 °C 0.0 °C</td>
<td>Enter the measured value at which the min. current value (0/4 mA) is present at the transmitter output.</td>
</tr>
<tr>
<td>Out2 20 mA</td>
<td>-50 to 250 °C 100.0 °C</td>
<td>Enter the measured value at which the max. current value (20 mA) is present at the transmitter output.</td>
</tr>
<tr>
<td>Damping main</td>
<td>0 ... 60 s 0 s</td>
<td>Damping value for the conductivity measured value</td>
</tr>
<tr>
<td>Extended setup</td>
<td></td>
<td>Advanced settings → 26</td>
</tr>
<tr>
<td>Manual hold</td>
<td>Off, On</td>
<td>Function for freezing the current and alarm outputs</td>
</tr>
</tbody>
</table>

8.4 Advanced settings

1. Use the 'E' key to call up the main menu.
2. Navigate through the available menus with the '+' and '-' keys.
3. Press the 'E' key to open the desired menu.
4. Use the option, Back which can be found at the bottom of each menu, to move up a level in the menu structure.

Default settings are in bold.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Possible settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td></td>
<td>General settings</td>
</tr>
<tr>
<td>Device tag</td>
<td>Customized text Max. 16 characters</td>
<td>Enter the device designation</td>
</tr>
<tr>
<td>Parameter</td>
<td>Possible settings</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>Temp. unit</td>
<td>°C</td>
<td>Setting for the temperature unit</td>
</tr>
<tr>
<td>Hold release</td>
<td>0 to 600 s</td>
<td>Prolongs the device hold when the hold condition no longer applies</td>
</tr>
<tr>
<td>Alarm delay</td>
<td>0 to 600 s</td>
<td>Time delay after which an alarm is output</td>
</tr>
<tr>
<td></td>
<td>0 s</td>
<td>This suppresses alarm conditions that are present for a period</td>
</tr>
<tr>
<td></td>
<td></td>
<td>that is shorter than the alarm delay time.</td>
</tr>
<tr>
<td>Input</td>
<td></td>
<td>Setting for the inputs</td>
</tr>
<tr>
<td>Cell const.</td>
<td>Read only</td>
<td>Displays the cell constant</td>
</tr>
<tr>
<td>Inst. factor</td>
<td>0.1 to 5.0, 1.0</td>
<td>The effects of the distance from the wall can be corrected with the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>installation factor → 29</td>
</tr>
<tr>
<td>Unit</td>
<td>Auto, μS/cm, mS/cm</td>
<td>Unit of conductivity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“auto” automatically switches between μS/cm and mS/cm.</td>
</tr>
<tr>
<td>Damping main</td>
<td>0 ... 60 s</td>
<td>Setting for the damping</td>
</tr>
<tr>
<td>Temp. comp.</td>
<td>Off, Linear</td>
<td>Setting for temperature compensation</td>
</tr>
<tr>
<td>Alpha coeff.</td>
<td>1.0 to 20.0 %/K</td>
<td>Coefficient for linear temperature compensation</td>
</tr>
<tr>
<td></td>
<td>2.1 %/K</td>
<td></td>
</tr>
<tr>
<td>Ref. temp.</td>
<td>+10 to +50 °C</td>
<td>Enter the reference temperature</td>
</tr>
<tr>
<td></td>
<td>25 °C</td>
<td></td>
</tr>
<tr>
<td>Process check</td>
<td></td>
<td>The process check checks the measuring signal for stagnation. An alarm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>is triggered if the measuring signal does not change over a specific</td>
</tr>
<tr>
<td></td>
<td></td>
<td>period (several measured values).</td>
</tr>
<tr>
<td>Function</td>
<td>On, Off</td>
<td>Switch the process check on or off.</td>
</tr>
<tr>
<td>Duration</td>
<td>1 to 240 min</td>
<td>The measured value must change within this time as otherwise an error</td>
</tr>
<tr>
<td></td>
<td>60 min</td>
<td>message is triggered.</td>
</tr>
<tr>
<td>Observation width</td>
<td>1 to 20 %</td>
<td>Bandwidth for the process check</td>
</tr>
<tr>
<td></td>
<td>0.0 %</td>
<td></td>
</tr>
<tr>
<td>Analog output</td>
<td></td>
<td>Setting for analog outputs</td>
</tr>
<tr>
<td>Current range</td>
<td>4-20 mA, 0-20 mA</td>
<td>Current range for analog output</td>
</tr>
<tr>
<td>Out1 0/4 mA</td>
<td>0 to 200000 μS/cm</td>
<td>Enter the measured value at which the min. current value (0/4 mA) is</td>
</tr>
<tr>
<td></td>
<td>0 μS/cm</td>
<td>present at the transmitter output</td>
</tr>
<tr>
<td>Out1 20 mA</td>
<td>0 to 200000 μS/cm</td>
<td>Enter the measured value at which the max. current value (20 mA) is</td>
</tr>
<tr>
<td></td>
<td>0 μS/cm</td>
<td>present at the transmitter output</td>
</tr>
<tr>
<td>Out2 0/4 mA</td>
<td>-50 to 250 °C</td>
<td>Enter the measured value at which the min. current value (0/4 mA) is</td>
</tr>
<tr>
<td></td>
<td>0.0 °C</td>
<td>present at the transmitter output</td>
</tr>
<tr>
<td>Out2 20 mA</td>
<td>-50 to 250 °C</td>
<td>Enter the measured value at which the max. current value (20 mA) is</td>
</tr>
<tr>
<td></td>
<td>100.0 °C</td>
<td>present at the transmitter output</td>
</tr>
<tr>
<td>Parameter</td>
<td>Possible settings</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MRS</td>
<td></td>
<td> Setting for measuring range switching → 31</td>
</tr>
<tr>
<td>Out1 0/4 mA</td>
<td>0 to 2000000 μS/cm 0 μS/cm</td>
<td>▶ Enter the measured value at which the min. current value (0/4 mA) is present at the transmitter output.</td>
</tr>
<tr>
<td>Out1 20 mA</td>
<td>0 to 2000000 μS/cm 0 μS/cm</td>
<td>▶ Enter the measured value at which the max. current value (20 mA) is present at the transmitter output.</td>
</tr>
<tr>
<td>Out2 0/4 mA</td>
<td>-50 to 250 °C 0.0 °C</td>
<td>▶ Enter the measured value at which the min. current value (0/4 mA) is present at the transmitter output.</td>
</tr>
<tr>
<td>Out2 20 mA</td>
<td>-50 to 250 °C 100.0 °C</td>
<td>▶ Enter the measured value at which the max. current value (20 mA) is present at the transmitter output.</td>
</tr>
<tr>
<td>Damping main</td>
<td>0 ... 60 s 0 s</td>
<td>Setting for the damping</td>
</tr>
<tr>
<td>Alpha coeff.</td>
<td>1.0 to 20 %/K 2.1 %/K</td>
<td>Coefficient for linear temperature compensation</td>
</tr>
<tr>
<td>Factory default</td>
<td></td>
<td>Factory settings</td>
</tr>
<tr>
<td>Please confirm</td>
<td>No No, Yes</td>
<td></td>
</tr>
</tbody>
</table>
8.4.1 Installation factor

In confined installation conditions, the conductivity measurement in the liquid is affected by the pipe walls. This effect is offset by the installation factor. The cell constant is corrected by multiplying by the installation factor.

The value of the installation factor depends on the diameter and the conductivity of the pipe nozzle as well as the sensor's distance to the wall.

The installation factor f ($f = 1.00$) can be disregarded if the distance to the wall is sufficient (a>20 mm (0.79 in), from DN60).

If the distance to the wall is small, the installation factor increases for electrically insulating pipes ($f > 1$), and decreases for electrically conductive pipes ($f < 1$).

It can be measured using calibration solutions, or a close approximation determined from the following diagram.

![Diagram showing relationship between installation factor (f) and distance from wall (a)]

14 Relationship between the installation factor (f) and the distance from wall (a)

1 Electrically conductive pipe wall
2 Electrically insulating pipe wall
8.4.2 Temperature compensation

The conductivity of a liquid depends heavily on the temperature, as the mobility of the ions and the number of dissociated molecules are temperature-dependent. In order to compare measured values, they must be referenced to a defined temperature. The reference temperature is 25 °C (77 °F).

The temperature is always specified when the conductivity is specified. \(k(T_0) \) represents the conductivity measured at 25 °C (77 °F) or referenced back to 25 °C (77 °F).

The temperature coefficient \(\alpha \) represents the percentage change in the conductivity per degree of temperature change. The conductivity \(k \) at the process temperature is calculated as follows:

\[
\kappa(T) = \kappa(T_0) \cdot (1 + \alpha \cdot (T - T_0))
\]

Where
\(k(T) = \) conductivity at process temperature \(T \)
\(k(T_0) = \) conductivity at process temperature \(T_0 \)

The temperature coefficient depends on both the chemical composition of the solution and on the temperature, and is between 1 and 5 % per °C. The electrical conductivity of the majority of diluted saline solutions and natural waters changes in a close-to-linear fashion.

Typical values for the temperature coefficient \(\alpha \):

- Natural waters: Approx. 2 %/K
- Salts (e.g. NaCl): Approx. 2.1 %/K
- Alkali (e.g. NaOH): Approx. 1.9 %/K
- Acids (e.g. HNO\(_3\)): Approx. 1.3 %/K
8.4.3 Measuring range switch (MRS)

Measuring range switching involves a parameter set changeover for two substances:
- in order to cover a large measuring range
- in order to adjust temperature compensation in the event of a product change

The two analog outputs can each be configured with two parameter sets.
- Parameter set 1:
 - The parameters for the current outputs and the damping can be set **Setup** in the menu.
 - The alpha coefficient for temperature compensation can be set **Setup/Extended setup/Input** in the menu.
 - Parameter set 1 is active if the "MRS" binary input is **Low**.
- Parameter set 2:
 - The parameters for the current outputs, the damping and the alpha coefficient for temperature compensation can be configured **Setup/Extended setup/Remote switch** in the menu.
 - Parameter set 2 is active if the "MRS" binary input **High** is.

The settings for parameter set 1 are also listed in **Extended setup/Analogue output** in the menu.

Technical data → 翻 41

8.5 Calibration (Calibration menu)

In the case of the Smartec CLD 18, the air set and the correct cell constant have already been configured at the factory. A sensor calibration is not necessary during commissioning.

8.5.1 Types of calibration

The following types of calibration are possible:
- Cell constant with calibration solution
- Air set (residual coupling)

8.5.2 Cell constant

General

The calibration of a conductivity measuring system is always performed in such a way that the suitable calibration solutions determine or verify the exact cell constant. This process is described in the standards EN 7888 and ASTM D 1125, for example, and the method for producing a number of calibration solutions is explained.
Calibrating the cell constant

- With this type of calibration, enter a reference value for the conductivity.
 ➣ In the result, the device calculates a new cell constant for the sensor.

First switch off the temperature compensation:

1. Select the menu **Setup/Extended setup/Input/Temp. comp.**
2. **Off** Select .
3. Return to the menu **Setup** .

Perform the calculation of the cell constant as follows:

1. Select the menu **Calibration/Cell const.**
2. **Cond. ref.** Select and enter the value of the standard solution.
3. Place the sensor in the medium.
4. Start the calibration.
 ➣ "**Wait calib.**" - wait for calibration to end. The new value is displayed after the calibration.
5. Press the Plus key.
 ➣ "**Save calib data?""
6. **Yes** Select .
 ➣ "**Calib successful""
7. Switch the temperature compensation back on.
8.5.3 Air set (residual coupling)

For physical reasons, the calibration line goes through zero in the case of conductive sensors (a current flow of 0 corresponds to a conductivity of 0). When working with inductive sensors, the residual coupling between the primary coil (transmitter coil) and secondary coil (receiver coil) must be taken into account or compensated for. The residual coupling is not only caused by the direct magnetic coupling of the coils but also by crosstalk in the supply cables.

As is the case with the sensors, the cell constant is then determined using a precise calibration solution.

To perform an airset, the sensor must be dry.

Perform an airset as follows:

1. **Calibration/Airset** Select .
 - The current value is displayed.

2. Press the Plus key.
 - "Keep sensor in air"

3. Keep the dried sensor in air and press the Plus key.
 - "Wait calib." - wait for calibration to end. The new value is displayed after the calibration.

4. Press the Plus key.
 - "Save calib data?"

5. **Yes** Select .
 - "Calib successful"

6. Press the Plus key.
 - The device switches back to the measuring mode.
9 Diagnostics and troubleshooting

9.1 General troubleshooting

<table>
<thead>
<tr>
<th>User interface</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>No measured value displayed</td>
<td>No power supply connected</td>
<td>Check the device's power supply.</td>
</tr>
<tr>
<td></td>
<td>Power is supplied, device is defective</td>
<td>The device must be replaced.</td>
</tr>
<tr>
<td>Diagnostic message is displayed</td>
<td></td>
<td>Diagnostic messages → 35</td>
</tr>
</tbody>
</table>

9.2 Troubleshooting instructions

1. Use the 'E' key to call up the main menu.
2. Navigate through the available menus with the '+' and '-' keys.
3. Press the 'E' key to open the desired menu.
4. Use the option, Back which can be found at the bottom of each menu, to move up a level in the menu structure.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Possible settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current diag.</td>
<td>Read only</td>
<td>Displays the current diagnostic message</td>
</tr>
<tr>
<td>Last diag.</td>
<td>Read only</td>
<td>Displays the last diagnostic message</td>
</tr>
<tr>
<td>Diag. logbook</td>
<td>Read only</td>
<td>Displays the last diagnostic messages</td>
</tr>
<tr>
<td>Device info</td>
<td>Read only</td>
<td>Displays device information</td>
</tr>
<tr>
<td>Sensor info</td>
<td>Read only</td>
<td>Displays sensor information</td>
</tr>
<tr>
<td>Simulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog out 1</td>
<td>Off 0 mA, 3.6 mA, 4 mA, 10 mA, 12 mA, 20 mA, 21 mA</td>
<td>Outputs a corresponding value at the "Analog out 1" output.</td>
</tr>
<tr>
<td>Analog out 2</td>
<td>Off 0 mA, 3.6 mA, 4 mA, 10 mA, 12 mA, 20 mA, 21 mA</td>
<td>Outputs a corresponding value at the "Analog out 2" output.</td>
</tr>
<tr>
<td>Alarm out</td>
<td>Off Active Inactive</td>
<td></td>
</tr>
<tr>
<td>Reset device</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9.3 Queued diagnostic messages

The diagnostic message consists of a diagnostic code and a message text. The diagnostic code consists of the error category as per Namur NE 107 and the message number.

Error category (letter in front of the message number):
- **F** = **Failure**, a malfunction has been detected
 The measured value of the affected channel is no longer reliable. Look for the cause in the measuring point. If a control system is connected, it must be switched to manual mode.
- **M** = **Maintenance required**, action should be taken as soon as possible
 The device still measures correctly. Immediate measures are not necessary. Proper maintenance efforts may prevent a possible malfunction in the future.
- **C** = **Function check**, waiting (no error)
 Maintenance work is being performed on the device. Wait until the work has been completed.
- **S** = **Out of specification**, the measuring point is being operated outside your specification
 Operation is still possible. However, you run the risk of increased wear, shorter operating life or reduced measurement accuracy. Look for the cause in the measuring point.

<table>
<thead>
<tr>
<th>Diagnostic code</th>
<th>Message text</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F61</td>
<td>Sensor elec.</td>
<td>Sensor electronics defective</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Remedy:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contact the Service Department</td>
</tr>
<tr>
<td>F62</td>
<td>Sens. Connect</td>
<td>Sensor connection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Remedy:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contact the Service Department</td>
</tr>
<tr>
<td>F100</td>
<td>Sensor comm.</td>
<td>Sensor not communicating</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Possible reasons:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No sensor connection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Remedy:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contact the Service Department</td>
</tr>
<tr>
<td>F130</td>
<td>Sensor supply</td>
<td>Sensor check</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No conductivity displayed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Possible reasons:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Sensor in air</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Sensor defective</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Remedy:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check sensor installation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Contact the Service Department</td>
</tr>
<tr>
<td>F143</td>
<td>Selftest</td>
<td>Sensor self-test error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Remedy:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contact the Service Department</td>
</tr>
<tr>
<td>F152</td>
<td>No airset</td>
<td>Sensor data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No calibration data available</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Remedy:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perform an air set</td>
</tr>
</tbody>
</table>
Diagnostic code | Message text | Description |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F523</td>
<td>Cell constant</td>
<td>Sensor calibration warning
Invalid cell constant, max. range reached
Remedy:
• Enter cell constant as per factory specifications
• Contact the Service Department</td>
</tr>
<tr>
<td>F524</td>
<td>Cell constant</td>
<td>Sensor calibration warning
Min. possible cell constant is undershot
Remedy:
• Enter cell constant as per factory specifications
• Contact the Service Department</td>
</tr>
<tr>
<td>F845</td>
<td>Device id</td>
<td>Incorrect hardware configuration</td>
</tr>
<tr>
<td>F847</td>
<td>Couldn’t save param</td>
<td>Incorrect parameters</td>
</tr>
<tr>
<td>F848</td>
<td>Calib AO1</td>
<td>Incorrect calibration values for analog output 1</td>
</tr>
<tr>
<td>F849</td>
<td>Calib AO2</td>
<td>Incorrect calibration values for analog output 2</td>
</tr>
<tr>
<td>F904</td>
<td>Process check</td>
<td>Process check system alarm
Measuring signal has not changed for a long time
Possible reasons:
• Contaminated sensor, or sensor in air
• No flow to sensor
• Sensor defective
• Software error
Remedy:
• Check electrode system
• Check sensor
• Restart device</td>
</tr>
<tr>
<td>C107</td>
<td>Calib. active</td>
<td>Sensor calibration is active
Remedy:
Wait for calibration to be finished</td>
</tr>
<tr>
<td>C154</td>
<td>No calib. data</td>
<td>Sensor data
No calibration data available, factory settings are used
Remedy:
• Check the calibration information of the sensor
• Contact the Service Department</td>
</tr>
<tr>
<td>C850</td>
<td>Simu AO1</td>
<td>Simulation of analog output 1 is active</td>
</tr>
<tr>
<td>C851</td>
<td>Simu AO2</td>
<td>Simulation of analog output 2 is active</td>
</tr>
<tr>
<td>Diagnostic code</td>
<td>Message text</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| S844 | Process value | Measured value outside the specified range
Possible reasons:
 - Sensor in air
 - Incorrect flow to sensor
 - Sensor defective
Remedy:
 - Increase process value
 - Check electrode system |
| M500 | Not stable | Sensor calibration aborted
Main measured value fluctuating
Possible reasons:
 - Sensor in air
 - Sensor fouled
 - Incorrect flow to sensor
 - Sensor defective
Remedy:
 - Check sensor
 - Check installation |
| M526 | Cell constant | Sensor calibration warning
Invalid cell constant, max. range reached
Remedy:
 - Repeat the calibration
 - Enter cell constant as per factory specifications
 - Contact the Service Department |
| M528 | Cell constant | Sensor calibration warning
Min. possible cell constant is undershot
Remedy:
 - Repeat the calibration
 - Enter cell constant as per factory specifications
 - Contact the Service Department |
10 Maintenance

WARNING
Risk of injury if medium escapes!
- Before each maintenance task, ensure that the process pipe is unpressurized, empty and rinsed.

The electronics box does not contain any parts that the user must maintain.
- The cover on the electronics box may be opened only by the Endress+Hauser Service Department.
- The electronics box may only be removed by the Endress+Hauser Service Department.

10.1 Maintenance tasks

10.1.1 Cleaning the housing
- Clean the front of the housing using commercially available cleaning agents only.

The front of the housing is resistant to the following in accordance with DIN 42 115:
- Ethanol (for a short time)
- Diluted acids (max. 2% HCl)
- Diluted bases (max. 3% NaOH)
- Soap-based household cleaning agents

- When performing any work on the device, bear in mind any potential impact this may have on the process control system or on the process itself.

NOTICE
Prohibited cleaning agents!
Damage to the housing surface or housing seal
- Never use concentrated mineral acids or alkaline solutions for cleaning.
- Never use organic cleaners such as benzyl alcohol, methanol, methylene chloride, xylene or concentrated glycerol cleaner.
- Never use high-pressure steam for cleaning.
11 Repair
The O-ring is defective if medium escapes from the leakage hole.

- Contact the E+H Service Department to replace the O-ring.

11.1 General notes
- Only use spare parts from Endress + Hauser to guarantee the safe and stable functioning of the device.

Detailed information on the spare parts is available at: www.endress.com/device-viewer

11.2 Return
The product must be returned if repairs or a factory calibration are required, or if the wrong product was ordered or delivered. As an ISO-certified company and also due to legal regulations, Endress+Hauser is obliged to follow certain procedures when handling any returned products that have been in contact with medium.

To ensure the swift, safe and professional return of the device:
- Refer to the website www.endress.com/support/return-material for information on the procedure and conditions for returning devices.

11.3 Disposal

If required by the Directive 2012/19/EU on waste electrical and electronic equipment (WEEE), the product is marked with the depicted symbol in order to minimize the disposal of WEEE as unsorted municipal waste. Do not dispose of products bearing this marking as unsorted municipal waste. Instead, return them to Endress+Hauser for disposal under the applicable conditions.
12 Accessories
The following are the most important accessories available at the time this documentation was issued.

- For accessories not listed here, please contact your Service or Sales Center.

12.1 Calibration solutions

Conductivity calibration solutions CLY11
Precision solutions referenced to SRM (Standard Reference Material) by NIST for qualified calibration of conductivity measuring systems in accordance with ISO 9000:

- CLY11-C, 1.406 mS/cm (reference temperature 25 °C (77 °F)), 500 ml (16.9 fl.oz)
 Order No. 50081904
- CLY11-D, 12.64 mS/cm (reference temperature 25 °C (77 °F)), 500 ml (16.9 fl.oz)
 Order No. 50081905
- CLY11-E, 107.00 mS/cm (reference temperature 25 °C (77 °F)), 500 ml (16.9 fl.oz)
 Order No. 50081906

For further information on "Calibration solutions", see the Technical Information

13 Technical data

13.1 Input

13.1.1 Measured variable
Conductivity
Temperature

13.1.2 Measuring range

Conductivity: Recommended range: 200 μS/cm to 1000 mS/cm (uncompensated)
Temperature: ~10 to 130 °C (14 to 266 °F)
13.1.3 Binary input
The binary input is used for measuring range switching.

Voltage range 0 V to 30 V
Voltage **High** Min. 12 V
Voltage **Low** max. 9.0 V
Current consumption at 24 V 30 mA
Undefined voltage range 9.0 to 12 V

13.2 Output

13.2.1 Output signal

Conductivity: 0 / 4 to 20 mA, galvanically isolated
Temperature: 0 / 4 to 20 mA, galvanically isolated

13.2.2 Load
Max. 500 Ω

13.2.3 Characteristic
Linear

13.2.4 Signal resolution

Resolution: > 13 bit
Accuracy: ± 20 μA

13.2.5 Alarm output
The alarm output is implemented as an "open collector".

Max. current 200 mA
Max. voltage 30 V DC

Error or device without supply voltage Alarm output blocked (0 mA)
No error Alarm output open (up to 200 mA)

13.3 Power supply

13.3.1 Supply voltage
24 V DC ± 20 %, protected against reverse polarity

13.3.2 Power consumption
3 W
13.3.3 Cable specification

Recommendation 0.5 mm²
max. 1.0 mm²

13.3.4 Overvoltage protection
Overvoltage category I

13.4 Performance characteristics

13.4.1 Response time

Conductivity: \(t_{95} < 1.5 \text{ s} \)
Temperature: \(t_{90} < 20 \text{ s} \)

13.4.2 Maximum measured error

Conductivity: \(\pm (2.0 \% \text{ of measured value } + 20 \mu\text{S/cm}) \)
Temperature: \(\pm 1.5 \text{ K} \)
Signal outputs \(\pm 50 \mu\text{A} \)

13.4.3 Repeatability

Conductivity: max. 0.5 \% of measured value \(\pm 5 \mu\text{S/cm} \pm 2 \text{ digits} \)

13.4.4 Cell constant

11.0 cm⁻¹

13.4.5 Temperature compensation

Range \(-10 \text{ to } 130 \degree \text{C (14 to 266} \degree \text{F}) \)
Types of compensation
- None
- Linear with user-configurable temperature coefficient

13.4.6 Reference temperature

25 °C (77 °F)

13.5 Environment

13.5.1 Ambient temperature range

Stainless steel process connection: \(-20 \text{ to } 60 \degree \text{C (} -4 \text{ to } 140 \degree \text{F}) \)
PVC process connection: \(-10 \text{ to } 60 \degree \text{C (14 to } 60 \degree \text{F}) \)
13.5.2 Storage temperature

Stainless steel process connection: −25 to 80 °C (−13 to 176 °F)
PVC process connection: −10 to 60 °C (14 to 140 °F)

13.5.3 Humidity
≤ 100 %, condensating

13.5.4 Climate class
Climate class 4K4H as per EN 60721-3-4

13.5.5 Degree of protection
IP 69k as per EN 40050:1993
Degree of protection NEMA TYPE 6P as per NEMA 250-2008

13.5.6 Shock resistance
Complies with IEC 61298-3, certified up to 5 g

13.5.7 Vibration resistance
Complies with IEC 61298-3, certified up to 5 g

13.5.8 Electromagnetic compatibility
Interference immunity as per EN 61326-1:2013

13.5.9 Degree of contamination
Pollution level 2

13.5.10 Altitude
<2000 m (6500 ft)

13.6 Process

13.6.1 Process temperature
Stainless steel process connection:
−10 to 110 °C (14 to 230 °F)
Max. 130 °C (266 °F) up to 60 minutes

PVC process connection:
−10 to 60 °C (14 to 140 °F)

13.6.2 Absolute process pressure
Stainless steel process connection:
13 bar (188.5 psi), abs to up to 50 °C (122 °F)
7.75 bar (112 psi), abs at 110 °C (230 °F)
6.0 bar (87 psi), abs at 130 °C (266 °F) max. 60 minutes
1 to 6 bar (14.5 to 87 psi), abs in CRN environment tested with 50 bar (725 psi)

PVC process connection:
9 bar (130.5 psi), abs to up to 50 °C (122 °F)
6.0 bar (87 psi), abs at 60 °C (140 °F)
1 to 6 bar (14.5 to 87 psi), abs in CRN environment tested with 50 bar (725 psi)

13.6.3 Pressure-temperature ratings

13.6.4 Flow velocity
max. 10 m/s (32.8 ft/s) for low-viscosity media in pipe DN 50

13.7 Mechanical construction

13.7.1 Dimensions
→ 12
13.7.2 Weight

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stainless steel housing</td>
<td>up to 1.870 kg (4.12 lbs)</td>
</tr>
<tr>
<td>Plastic housing:</td>
<td>up to 1.070 kg (2.36 lbs)</td>
</tr>
</tbody>
</table>

13.7.3 Materials

In contact with medium

Sensor:	PEEK (polyetheretherketone)
Process connection:	Stainless steel 1.4435 (AISI 316 L), PVC-U
Seal:	EPDM

Not in contact with medium

Stainless steel housing:	Stainless steel 1.4308 (ASTM CF-8, AISI 304)
Plastic housing:	PBT GF20, PBT GF10
Seals:	EPDM
Window:	PC
Cable glands:	PA, TPE
13.7.4 Process connections

![Diagram of process connections with dimensions in mm (inch)]
Technical data

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGE</td>
<td>Thread G1½</td>
</tr>
<tr>
<td>GCP</td>
<td>Thread G1½ PVC</td>
</tr>
<tr>
<td>MDK</td>
<td>Aseptic DIN 11864-1-A DN 50</td>
</tr>
<tr>
<td>MEK</td>
<td>Aseptic DIN 11864-1-A DN 40</td>
</tr>
<tr>
<td>MOK</td>
<td>Dairy fitting DIN 11851 DN 50</td>
</tr>
<tr>
<td>MQK</td>
<td>Dairy fitting DIN 11851 DN 40</td>
</tr>
<tr>
<td>MXK</td>
<td>Dairy fitting DIN 11853 -2 DN 40</td>
</tr>
<tr>
<td>MYK</td>
<td>Dairy fitting DIN 11853 -2 DN 50</td>
</tr>
<tr>
<td>TXJ</td>
<td>SMS 2"</td>
</tr>
<tr>
<td>TDK</td>
<td>Tri-Clamp ISO 2852 2"</td>
</tr>
<tr>
<td>TSK</td>
<td>Varivent N DN 40 to 125</td>
</tr>
<tr>
<td>LQP</td>
<td>Coupling nut 2¼" PVC</td>
</tr>
</tbody>
</table>

13.7.5 Temperature sensor

Pt1000
Index

A
- Accessories 40
- Advanced Setup 26
- Air set 33
- Application examples 15

C
- Calibration 31
- Cell constant 31
- Certificates and approvals 11
- Cleaning the housing 38
- Commissioning 25

D
- Declaration of Conformity 11
- Designated use 5
- Device configuration 26
- Device diagnostics 34
- Diagnostic messages 35
- Diagnostics 34
- Display settings 25
- Disposal 39

E
- Electrical connection 17
- Ensuring the degree of protection 21

I
- Incoming acceptance 9
- Installation 11, 17
- Installation conditions 11
- Installation examples 15
- Installation factor 29
- Interpreting the order code 10
- IT security measures 7

M
- Maintenance 38
- Manufacturer's address 10
- Measuring range switch 31
- Menu .. 26
 - Calibration 31
 - Diagnostics 34
 - Display 25
 - Setup 26

N
- Nameplate 9

O
- Operating keys 23
- Operation 22
- Operational safety 7
- Orientations 12

P
- Post-connection check 21
- Post-installation check 17
- Power up 25
- Product description 8
- Product identification 9
- Product page 10
- Product safety 7

R
- Repair 39
- Residual coupling 33
- Return 39

S
- Safety instructions 5
- Scope of delivery 10
- Symbols 4

T
- Technical data 40
- Temperature compensation 30
- Troubleshooting 34
- Troubleshooting instructions 34

W
- Warnings 4
- Wiring 17
- Workplace safety 5