Technical Information
Prosonic S FDU91F
Ultrasonic measuring technology

Ultrasonic sensor for level and flow measurement

Application
- Continuous, non-contact level measurement of liquids and bulk solids in silos, on conveyor belts, in material stockpiles and in crushers
- Flow measurement in open flumes and measuring weirs
- Maximum measuring range: 10 m (33 ft) in liquids; 5 m (16 ft) in bulk solids

Your benefits
- Integrated temperature sensor for time-of-flight correction, enabling accurate measurements even if temperatures change
- Hermetically welded PVDF sensor for maximum chemical resistance
- Suitable for harsh ambient conditions thanks to separate transmitter installation (up to 300 m (984 ft))
- Self-cleaning effect ensures minimum deposit build-up
- Weather resistant and flood-proof (IP68)
- International Dust-Ex and Gas-Ex certificates available
Table of contents

Important document information
- Document conventions ... 3

Function and system design
- Level measurement .. 4
- Flow measurement in flumes or weirs 4
- Temperature-dependent time-of-flight correction 5

Input
- Blocking distance .. 5
- Measuring range .. 5
- Operating frequency ... 6

Power supply
- Supply voltage ... 6
- Electrical connection ... 6
- Connection diagram for sensor → FMU90 7
- Connection diagram for sensor → FMU95 7
- Extension cable specifications 8
- Shortening the sensor cable 8

Installation
- Installation conditions for level measurement 8
- Installation conditions for flow measurement 9
- Installation options (examples) 10
- Nozzle mounting .. 10
- Securing the sensor ... 11
- Slip-on flange without adapter flange for flush mounting . 12
- Slip-on flange with adapter flange for flush mounting 13

Environment
- Degree of protection ... 13
- Vibration resistance ... 14
- Storage temperature ... 14
- Thermal shock resistance .. 14
- Electromagnetic compatibility 14

Process
- Process temperature ... 14
- Process pressure ... 14

Mechanical construction
- Dimensions .. 14
- Weight ... 14
- Materials ... 15
- Materials of connecting cable 15

Certificates and approvals
- CE mark ... 15
- RoHS ... 15
- RCM-Tick marking .. 15
- Ex approval .. 15
- Other standards and guidelines 15

Ordering information
- Ordering information ... 15

5-point linearity protocol .. 16
Scope of delivery .. 16

Accessories
- Sensor extension cable ... 17
- Mounting bracket for ceiling mounting 17
- FAU40 alignment unit .. 17
- IP66 protective housing for RN130 power supply unit 18

Supplementary documentation
- Documentation for FMU90 transmitter 18
- Documentation for FMU95 transmitter 19
- Other documentation ... 19

Ordering information ... 15
Important document information

Document conventions

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety symbols</td>
<td></td>
</tr>
<tr>
<td></td>
<td>This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in serious or fatal injury.</td>
</tr>
<tr>
<td></td>
<td>This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury.</td>
</tr>
<tr>
<td></td>
<td>This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in minor or medium injury.</td>
</tr>
<tr>
<td></td>
<td>This symbol contains information on procedures and other facts which do not result in personal injury.</td>
</tr>
</tbody>
</table>

Electrical symbols

- ![Ground connection](image)
 - Ground connection
 - A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system.

Tool symbols

- ![Open-ended wrench](image)
 - Open-ended wrench

Symbols for certain types of information and graphics

- ![Permitted](image)
 - Procedures, processes or actions that are permitted

- ![Forbidden](image)
 - Procedures, processes or actions that are forbidden

- ![Tip](image)
 - Indicates additional information

- ![Reference to documentation](image)
 - Reference to documentation

- ![Series of steps](image)
 - 1, 2, 3, ...
 - Item numbers

- ![Views](image)
 - A, B, C, ...
Function and system design

Level measurement

The sensor transmits ultrasonic pulses in the direction of the surface of the medium. There, they are reflected back and received by the sensor. The transmitter measures the time t between the transmission and reception of a pulse. From this time, and using the sonic velocity c, the transmitter calculates the distance D between the reference point (sensor membrane) and the surface of the medium:

$$D = \frac{c \cdot t}{2}$$

The level L is derived from D. With linearization, the volume V or the mass M is derived from L.

Flow measurement in flumes or weirs

The sensor transmits ultrasonic pulses in the direction of the surface of the liquid. There, they are reflected back and received by the sensor. The transmitter measures the time t between the transmission and reception of a pulse. From this time, and using the sonic velocity c, the transmitter calculates the distance D between the (reference point) sensor membrane and the surface of the liquid:

$$D = \frac{c \cdot t}{2}$$
The level \(L \) is derived from \(D \). With linearization, the flow \(Q \) is derived from \(L \).

Temperature-dependent time-of-flight correction

Temperature-dependent time-of-flight correction via the temperature sensors integrated in the ultrasonic sensors.

Input

Blocking distance

Signals within the blocking distance (BD) range cannot be measured due to the transient response of the sensor.

![Diagram](image)

1. Blocking distance of the ultrasonic sensor. Engineering unit m (ft)

1. Reference point (sensor membrane) of measurement

Measuring range

Estimation of the effective sensor range depending on the operating conditions

1. Add up all the applicable attenuation values from the following lists.
2. From the total calculated attenuation, use the range chart below to calculate the range of the sensor.

- **Attenuation caused by surface of liquid**
 - Calm surface: 0 dB
 - Waves on surface: 5 to 10 dB
 - Very turbulent surface: 10 to 20 dB
 - Frothy surface: contact Endress+Hauser: http://www.endress.com/contact

- **Attenuation due to bulk solids surface**
 - Hard, rough surface (e.g. rubble): 40 dB
 - Soft surface (e.g. peat, dust-covered clinker): 40 to 60 dB

- **Attenuation due to dust**
 - No dust formation: 0 dB
 - Minor dust formation: 5 dB
 - Major dust formation: 5 to 20 dB

- **Attenuation caused by filling curtain in detection range**
 - No filling curtain: 0 dB
 - Small volumes: 5 dB
 - Large volumes: 5 to 20 dB

- **Attenuation caused by temperature difference between sensor and product surface**
 - Up to 20 °C (68 °F): 0 dB
 - Up to 40 °C (104 °F): 5 to 10 dB
 - Up to 80 °C (176 °F): 10 to 20 dB
Operating frequency
42 kHz

Power supply

Supply voltage
Is provided by the transmitter.

Electrical connection

General information

⚠️ **CAUTION**

Inadequate potential equalization can compromise electrical safety

- Connect the yellow/green protective conductor (GNYE) of the sensor to local potential equalization after a **maximum distance of 30 m (98 ft)**. This can be done in a terminal box, at the transmitter or in the cabinet.

⚠️ **NOTICE**

Interference signals may cause malfunctions

- Do not route the sensor cables parallel to high-voltage electric power lines or near frequency converters.

⚠️ **NOTICE**

A damaged cable shield may cause malfunctions

- For pre-terminated cables: connect the black wire (shield) to the "BK" terminal.
- For extension cables: twist the shield and connect to the "BK" terminal.
3 Connection diagram for sensor; YE: yellow, BK: black; RD: red; BU: blue; BN: brown; protective conductor GNYE: green/yellow

A Grounding at terminal box
B Grounding at transmitter FMU90
1 Shielding of sensor cable
2 Terminal box
3 Shielding of extension cable

4 Connection diagram for sensor; YE: yellow, BK: black; RD: red; BU: blue; BN: brown; protective conductor GNYE: green/yellow

A Grounding at terminal box
B Grounding at transmitter FMU95
1 Shielding of sensor cable
2 Terminal box
3 Shielding of extension cable
Extension cable specifications

- **Maximum total length (sensor cable + extension cable)**
 - 300 m (984 ft)
- **Number of wires**
 - As per connection diagram
- **Shielding**
 - One shielding braid for the YE wire and one for the RD wire (no foil shield)
- **Cross-section**
 - 0.75 to 2.5 mm² (18 to 14 AWG)
- **Resistance**
 - Max. 8 Ω per wire
- **Capacitance, wire to shield**
 - Max. 60 nF
- **Protective ground**
 - May not be within the shielding.

Suitable extension cables are available from Endress+Hauser.

Shortening the sensor cable

The sensor cable can be shortened if necessary (see the Operating Instructions for the FMU90 or FMU95 transmitter).

Installation

Installation conditions for level measurement

1. Recommended distance to the vessel wall: 1/6 of the vessel diameter D.
2. Do not mount in the center of the vessel.
3. Avoid measurements through the filling curtain.
4. There must be no internal fixtures in the signal beam.
5. Symmetrical internal fixtures, in particular, negatively impact the measurement.
6. For bulk solids: using the FAU40 alignment unit, align the sensor so that it is perpendicular to the surface of the product.

BD Blocking distance

Emitting angle/beam

- α (typical) = 12°
- L (max) = 10 m (33 ft)
- r (max) = 1.05 m (3.4 ft)
Other conditions
- The lower edge of the sensor should be located inside the vessel
- The maximum level may not enter the blocking distance

Several sensors in one vessel
Sensors that are connected to a common FMU90 or FMU95 transmitter can be used in one vessel.

Installation conditions for flow measurement

<table>
<thead>
<tr>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Mount the sensor on the upstream side above the maximum upstream level H_{max} plus the blocking distance BD</td>
</tr>
<tr>
<td>- Position the sensor in the center of the channel or weir</td>
</tr>
<tr>
<td>- Align the sensor so that it is perpendicular to the surface of the water</td>
</tr>
<tr>
<td>- Observe the specified mounting distance (clearance) to the flume constriction or weir edge</td>
</tr>
<tr>
<td>- See the Operating Instructions for FMU90 / FMU95</td>
</tr>
<tr>
<td>- Protect the sensor against sun and precipitation using the weather protection cover</td>
</tr>
</tbody>
</table>

Example: Khafagi-Venturi flume

- A Khafagi-Venturi flume
- b_0 Width of Khafagi-Venturi flume
- B Upstream side
- C Downstream side
- BD Blocking distance of the sensor
- E Empty calibration (to be entered during commissioning)
- H_{max} Maximum upstream level
- V Flow
Example: Triangular weir

BD Blocking distance of the sensor
E Empty calibration (to be entered during commissioning)
H_{max} Maximum upstream level

Installation options (examples)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Installation in systems

- A On U-rail or bracket
- B With FAU40 alignment unit
- C With 1” sleeve welded to a grating

The sensor can also be flush-mounted with a slip-on flange.

Nozzle mounting

- D Nozzle diameter
- L Nozzle length
Conditions at the nozzle
- Smooth interior, without edges or welds
- No burr on the inside of the nozzle end on the tank side
- Beveled nozzle end on tank side (ideally: 45°)

Maximum nozzle length
- D = DN80/3": $L_{\text{max}} = 250$ mm (9.84 in)
- D = DN100/4" to DN300/12": $L_{\text{max}} = 300$ mm (11.8 in)

Securing the sensor

NOTICE
Risk of damage to the sensor
- Do not use the sensor cable for suspension purposes.
- Do not damage the sensor membrane when installing.

7 Securing the ultrasonic sensor; mounted with counter nut
Slip-on flange without adapter flange for flush mounting

- The process seal is not included in the scope of supply.
- Endress+Hauser supplies DIN/EN flanges made of stainless steel AISI 316L with the material number 1.4435 or 1.4404. With regard to their stability-temperature property, the materials 1.4435 and 1.4404 are grouped together under 13EO in EN 1092-1 Tab. 1B. The chemical composition of the two materials can be identical.
- For 3A applications:
 The internal diameter of the adapter must be selected according to the applicable tolerance limits for 3A applications. Usually, the internal diameter of the nozzle should be larger than or equal to the internal diameter of the sensor.
- Maximum process pressure for PPs slip-on flanges: 1.5 bar(abs)

![Dimensions of FAU80 slip-on flange without adapter flange. Unit of measurement mm (in)](image)

Version suitable for DN80 PN16 A (EN1092-1)
- $b = 20$ mm (0.79 in)
- $D = 200$ mm (7.87 in)
- $k = 160$ mm (6.3 in)
- $d_2 = 18$ (0.71)
- Number $d_2 = 8$
- Order code for PPs material: FAU80-CAP
- Order code for 316L (1.4435) material: FAU80-CAJ

Version suitable for NPS 3" Cl.150 FF (ASME B16.5)
- $b = 23.9$ (0.94)
- $D = 190.5$ (7.5)
- $k = 152$ (6.0)
- $d_2 = 19.1$ (0.75)
- Number $d_2 = 4$
- Order code for PPs material: FAU80-AAP
- Order code for 316L (1.4435) material: FAU80-AAJ

Version suitable for 10K 80A FF (JIS B2220)
- $b = 18$ (0.71)
- $D = 185$ (7.28)
- $k = 150$ (5.9)
- $d_2 = 19$ (0.75)
- Number $d_2 = 8$
- Order code for PPs material: FAU80-KAP
- Order code for 316L (1.4435) material: FAU80-KAJ
Slip-on flange with adapter flange for flush mounting

- The process seal is not included in the scope of supply.
- Endress+Hauser supplies DIN/EN flanges made of stainless steel AISI 316L with the material number 1.4435 or 1.4404. With regard to their stability-temperature property, the materials 1.4435 and 1.4404 are grouped together under 13EO in EN 1092-1 Tab. 18. The chemical composition of the two materials can be identical.
- For 3A applications:
 The internal diameter of the adapter must be selected according to the applicable tolerance limits for 3A applications. Usually, the internal diameter of the nozzle should be larger than or equal to the internal diameter of the sensor.
- Maximum process pressure for PPs slip-on flanges: 1.5 bar(abs)

![Diagram of FAU80 slip-on flange with adapter flange](image)

9 Dimensions of FAU80 slip-on flange with adapter flange. Unit of measurement mm (in)

1. Hexagonal-headed bolts made of V2A; included in the delivery
2. Washers made of PPs or 316L (1.4435); included in the delivery

Version suitable for DN100 PN16 A (EN1092-1)

- b = 20 mm (0.79 in)
- D = 220 (8.66)
- k = 180 (7.09)
- d₂ = 18 (0.71)
- Number d₂ = 8
- Order code for PPs material: FAU80-CHP
- Order code for 316L (1.4435) material: FAU80-CHJ

Version suitable for NPS 4" Cl.150 FF (ASME B16.5)

- b = 23.9 (0.94)
- D = 228.6 (9.0)
- k = 190.5 (7.5)
- d₂ = 19.1 (0.75)
- Number d₂ = 4
- Order code for PPs material: FAU80-AHP
- Order code for 316L (1.4435) material: FAU80-AHJ

Version suitable for 10K 100A FF (JIS B2220)

- b = 18 (0.71)
- D = 210 (8.27)
- k = 175 (6.89)
- d₂ = 19 (0.75)
- Number d₂ = 8
- Order code for PPs material: FAU80-KHP
- Order code for 316L (1.4435) material: FAU80-KHJ

Environment

| Degree of protection | Tested according to IP68/NEMA6P (24 h at 1.83 m (6 ft) under water) |
Vibration resistance
DIN EN 600068-2-64; 20 to 2000 Hz; 1 (m/s²)/Hz; 3x100 min

Storage temperature
Identical to process temperature

Thermal shock resistance
Based on DIN EN 60068-2-14; test according to min./max. process temperature; 0.5 K/min; 1000 h

Electromagnetic compatibility
Electromagnetic compatibility in accordance with all the relevant requirements outlined in the EN 61326 series and NAMUR Recommendation EMC (NE 21). For details, refer to the Declaration of Conformity. With regard to interference emission, the devices meet the requirements of class A, and are only designed for use in an "industrial environment".

Process

Process temperature
- Non-Ex, max. 30 min: 135 °C (275 °F) (for Tri-Clamp or flush mounting)
- Ex: –40 to +80 °C (–40 to +176 °F)

Process pressure
0.7 to 4 bar (10.15 to 58 psi)

Mechanical construction

Dimensions

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø97</td>
<td>Ø80</td>
<td>Ø80</td>
<td>Ø80</td>
</tr>
<tr>
<td>Ø76</td>
<td>Ø76</td>
<td>Ø76</td>
<td>Ø119</td>
</tr>
<tr>
<td>Ø97</td>
<td>Ø97</td>
<td>Ø106</td>
<td>Ø106</td>
</tr>
<tr>
<td>124</td>
<td>152</td>
<td>124</td>
<td>152</td>
</tr>
<tr>
<td>28</td>
<td>26</td>
<td>28</td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimensions. Unit of measurement mm (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
</tbody>
</table>

Weight
Weight including cable 5 m (16 ft)
Approx. 1.6 kg (3.53 lb)
Materials

- **1** Sensor housing: 316L (1.4404/1.4435)
- **2** Cable gland: PA
- **3** Pipe adapter: CuZn nickel-plated
- **4** O-ring: EPDM

Materials of connecting cable

- PVC

Certificates and approvals

CE mark

The measuring system meets the legal requirements of the applicable EU Directives. These are listed in the corresponding EU Declaration of Conformity along with the standards applied.

Endress+Hauser confirms successful testing of the device by affixing to it the CE mark.

RoHS

The measuring system complies with the substance restrictions of the Restriction on Hazardous Substances Directive 2011/65/EU (RoHS 2).

RCM-Tick marking

The supplied product or measuring system meets the ACMA (Australian Communications and Media Authority) requirements for network integrity, interoperability, performance characteristics as well as health and safety regulations. Here, especially the regulatory arrangements for electromagnetic compatibility are met. The products are labelled with the RCM-Tick marking on the name plate.

Ex approval

Available Ex approvals: see Product Configurator

Sensors with an Ex approval can be connected to the FMU90 transmitter without an Ex approval.

Other standards and guidelines

- **EN 60529**
 Degrees of protection provided by enclosures (IP code)
- **EN 61326 series**
 EMC product family standard for electrical equipment for measurement, control and laboratory use
- **NAMUR**
 User association of automation technology in process industries

Ordering information

Detailed ordering information is available for your nearest sales organization www.addresses.endress.com or in the Product Configurator under www.endress.com

1. Click Corporate
2. Select the country
3. Click Products
4. Select the product using the filters and search field
5. Open the product page
The Configuration button to the right of the product image opens the Product Configurator.

Product Configurator - the tool for individual product configuration
- Up-to-the-minute configuration data
- Depending on the device: Direct input of measuring point-specific information such as measuring range or operating language
- Automatic verification of exclusion criteria
- Automatic creation of the order code and its breakdown in PDF or Excel output format
- Ability to order directly in the Endress+Hauser Online Shop

5-point linearity protocol

Conditions for 5-point linearity protocol
- The 5-point linearity protocol applies for the entire measuring system, consisting of the sensor and transmitter. When ordering, specify the transmitter sensor input where the sensor is to be tested.
- The linearization test is conducted under the reference operating conditions of the transmitter.

Position of the linearization points
- The 5 points of the linearity protocol are evenly distributed over the span S.
- In order to define the span, values for **Empty calibration** (E) and **Full calibration** (F) must be specified when ordering.
- The specified values are only used to create the linearity protocol. **Empty calibration** and **Full calibration** are then reset to their factory settings.

Conditions for defining the span

![Diagram of linearization points](image)

- **E** ≤ 10,000 mm (394 in)
- **F** = 100 to 9,700 mm (3.94 to 382 in)
- **A** ≥ 300 mm (11.8 in)

Variables to define the span
- **R**: Reference point (sensor membrane)
- **E**: "Empty calibration" (distance from sensor membrane to 0%-point)
- **F**: "Full calibration" (distance from 0%-point to 100%-point)
- **A**: Distance from sensor membrane to 100%-point

Scope of delivery
- Ordered version of the sensor
- For certified versions: Safety Instructions (XAs)
Accessories

Sensor extension cable
- Maximum permissible total length (sensor cable + extension cable): 300 m (984 ft)
- The sensor cable and extension cable are the same type of cable.
 - Cable type: LiYY 2x(0.75)D+1x0.75
 - Material: PVC
 - Ambient temperature: –40 to +105 °C (–40 to +221 °F)
 - Order number: 71027743

Mounting bracket for ceiling mounting

![Mounting bracket for ceiling mounting](image)

- Material: 316L (1.4404)
- Order No.: 71093130

FAU40 alignment unit

Use
- To align an ultrasonic sensor with the bulk solids surface
- Swivel range: 15°
- Zone separation for explosion hazardous areas
Dimensions

1. Cable gland M20x1.5 (if selected in the product structure)
2. Seal here
3. Two Allen screws for height adjustment (8 Nm (6 lbf ft)±2 Nm (±1.5 lbf ft))
4. Grounding screw
5. O-ring
6. Seal supplied with the sensor, must be used for applications in ATEX Zone 20
7. Screw for lateral adjustment (18 Nm (13.5 lbf ft)±2 Nm (±1.5 lbf ft))
8. Mounting slots (on version with UNI flange)

Additional information

Technical Information TI00179F

IP66 protective housing for RNB130 power supply unit
- Order number: 51002468
- Additional information: Technical Information TI00080R

Supplementary documentation

Documentation for FMU90 transmitter
- Technical Information TI00397F
- Operating Instructions:
 - BA00288F (HART, level measurement)
 - BA00289F (HART, flow measurement)
 - BA00292F (Profinet DP, level measurement)
 - BA00293F (Profinet DP, flow measurement)
- Description of Device Parameters: GP01151F
Documentation for FMU95 transmitter

- Technical Information TI00398F
- Operating Instructions: BA00344F
- Description of Device Parameters: GP01152F

Other documentation

Further information and the documentation currently available can be found on the Endress+Hauser website: www.endress.com → Downloads.