
Valid as of version 01.03.zz (Device firmware)

Operating Instructions **Proline Promass I 100**

Coriolis flowmeter Modbus RS485

Solutions

- Make sure the document is stored in a safe place such that it is always available when working on or with the device.
- To avoid danger to individuals or the facility, read the "Basic safety instructions" section carefully, as well as all other safety instructions in the document that are specific to working procedures.
- The manufacturer reserves the right to modify technical data in line with technological developments without prior notice. Your Endress+Hauser sales center will supply you with current information and updates to this manual.

Table of contents

mbols used	5			
2.2 Electrical symbols	5	7	Electrical connection	23
2.3 Tool symbols	5 6 6 7 7	7.1	Connection conditions 7.1.1 Required tools 7.1.2 Requirements for connecting cable 7.1.3 Terminal assignment 7.1.4 Pin assignment, device plug 7.1.5 Shielding and grounding 7.1.6 Preparing the measuring device Connecting the measuring device	23 23 25 27 28 28
			7.2.2 Connecting the Safety Barrier	
-		7.3	Hardware settings	30
signated use	8 9	7.4 7.5	Ensuring the degree of protection	. 31
oduct safety		8	Operation options	33
roduct description	10	8.1 8.2	Overview of operation options Structure and function of the operating	33
oduct design	10	8.3	menu	35
coming acceptance and product			8.3.1 Connecting the operating tool	36
			8.3.2 FieldCare	36
oduct identification	12 12 13 14	9 9.1 9.2	System integration	. 38 . 38 38 38 38
J 1			9.2.3 Response time	
ansporting the product	15	10	Commissioning	
stallation conditions	17 17 19 20 21	10.1 10.2 10.3	Function check	42 42 45 46
	.3 Tool symbols	.3 Tool symbols	.3 Tool symbols	.3 Tool symbols 6 / 4 Symbols for certain types of information

10.4	Advanced settings		14.2 14.3	Spare parts	
	10.4.2 Calculated values		14.4	Return	
	10.4.3 Carrying out a sensor adjustment		14.5	Disposal	
	10.4.4 Configuring the totalizer			14.5.1 Removing the measuring device	
10.5	Simulation			14.5.2 Disposing of the measuring device	
10.6	description	54 54	15	Accessories	73
10.0	10.6.1 Write protection via write protection	JŦ	15.1	Device-specific accessories	73
	switch	54		15.1.1 For the sensor	
			15.2	Communication-specific accessories	
11	Operation	56	15.3 15.4	Service-specific accessories	
11.1	Read device locking status	56		-,	
11.2	Reading measured values		16	Technical data	75
	11.2.1 Process variables				
	11.2.2 Totalizer	57	16.1 16.2	Application	
11.3	Adapting the measuring device to the process		16.3	Input	
11 /	conditions	58	16.4	Output	77
11.4	Performing a totalizer reset	58	16.5	Power supply	
			16.6	Performance characteristics	
12	Diagnostics and troubleshooting	60	16.7	Installation	
12.1	General troubleshooting	60	16.8	Environment	
12.2	Diagnostic information via light emitting		16.9	Process	85
	diodes	60		Mechanical construction	87
	12.2.1 Transmitter			Operability	90
	12.2.2 Safety Barrier Promass 100			Certificates and approvals	90
12.3	Diagnostic information in FieldCare			Application packages	
	12.3.1 Diagnostic options			Accessories	
12.4	12.3.2 Calling up remedy information Diagnostic information via communication		16.15	Documentation	92
	interface		17	Appendix	94
	12.4.1 Reading out diagnostic information		17.1	Overview of the operating menu	94
12.5	12.4.2 Configuring error response mode Adapting the diagnostic information	63 63		r	
14.7	12.5.1 Adapting the diagnostic behavior		Index	 .	110
12.6	Overview of diagnostic information		IIIacz		110
12.7	Pending diagnostic events	66			
12.8	Diagnostic list	66			
12.9	Event logbook	67			
	12.9.1 Event history	67			
	12.9.2 Filtering the event logbook	67			
10.10	12.9.3 Overview of information events	67			
	Resetting the measuring device	68			
	Device information	68			
12.12	Firmware history	69			
13	Maintenance	70			
13.1	Maintenance tasks	70			
	13.1.1 Exterior cleaning				
	13.1.2 Interior cleaning	70			
13.2	Measuring and test equipment	70			
13.3	Endress+Hauser services	70			
14	Repair	71			
	_				
14.1	General notes	71			

1 Document information

1.1 Document function

These Operating Instructions contain all the information that is required in various phases of the life cycle of the device: from product identification, incoming acceptance and storage, to mounting, connection, operation and commissioning through to troubleshooting, maintenance and disposal.

1.2 Symbols used

1.2.1 Safety symbols

Symbol	Meaning
A0011189-EN	DANGER! This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in serious or fatal injury.
WARNING A0011190-EN	WARNING! This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury.
A0011191-EN	CAUTION! This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in minor or medium injury.
NOTICE A0011192-EN	NOTICE! This symbol contains information on procedures and other facts which do not result in personal injury.

1.2.2 Electrical symbols

Symbol	Meaning	
A0011197	Direct current A terminal to which DC voltage is applied or through which direct current flows.	
A0011198	Alternating current A terminal to which alternating voltage is applied or through which alternating current flows.	
A0017381	Direct current and alternating current ■ A terminal to which alternating voltage or DC voltage is applied. ■ A terminal through which alternating current or direct current flows.	
	Ground connection A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system.	
A0011199	Protective ground connection A terminal which must be connected to ground prior to establishing any other connections.	
A0011201	Equipotential connection A connection that has to be connected to the plant grounding system: This may be a potential equalization line or a star grounding system depending on national or company codes of practice.	

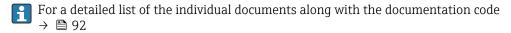
1.2.3 Tool symbols

Symbol	Meaning
A0011221	Allen key
A0011222	Open-ended wrench

1.2.4 Symbols for certain types of information

Symbol	Meaning
A0011182	Allowed Indicates procedures, processes or actions that are allowed.
A0011183	Preferred Indicates procedures, processes or actions that are preferred.
A0011184	Forbidden Indicates procedures, processes or actions that are forbidden.
A0011193	Tip Indicates additional information.
A0011194	Reference to documentation Refers to the corresponding device documentation.
A0011195	Reference to page Refers to the corresponding page number.
A0011196	Reference to graphic Refers to the corresponding graphic number and page number.
1. , 2. , 3	Series of steps
~	Result of a sequence of actions
? A0013562	Help in the event of a problem

1.2.5 Symbols in graphics


Symbol	Meaning
1, 2, 3,	Item numbers
1. , 2. , 3	Series of steps
A, B, C,	Views
A-A, B-B, C-C,	Sections
≋➡	Flow direction
A0013441	
A0011187	Hazardous area Indicates a hazardous area.
A0011188	Safe area (non-hazardous area) Indicates a non-hazardous area.

1.3 **Documentation**

The following document types are available:

- On the CD-ROM supplied with the device
- In the Download Area of the Endress+Hauser Internet site: www.endress.com → Download

1.3.1 Standard documentation

Document type	Purpose and content of the document
Technical Information	Planning aid for your device The document contains all the technical data on the device and provides an overview of the accessories and other products that can be ordered for the device.
Brief Operating Instructions	Guide that takes you quickly to the 1st measured value The Brief Operating Instructions contain all the essential information from incoming acceptance to initial commissioning.
Modbus RS485 register information	Reference for Modbus RS485 register information The document provides Modbus-specific information for each individual parameter in the operating menu.

1.3.2 Supplementary device-dependent documentation

Additional documents are supplied depending on the device version ordered: Always comply strictly with the instructions in the supplementary documentation. The supplementary documentation is an integral part of the device documentation.

1.4 Registered trademarks

Modbus®

Registered trademark of SCHNEIDER AUTOMATION, INC.

TRI-CLAMP®

Registered trademark of Ladish & Co., Inc., Kenosha, USA

Applicator[®], FieldCare[®], Field XpertTM, HistoROM[®], TMB[®], Heartbeat TechnologyTM Registered or registration-pending trademarks of the Endress+Hauser Group

2 Basic safety instructions

2.1 Requirements for the personnel

The personnel for installation, commissioning, diagnostics and maintenance must fulfill the following requirements:

- ► Trained, qualified specialists must have a relevant qualification for this specific function and task
- ► Are authorized by the plant owner/operator
- ► Are familiar with federal/national regulations
- ▶ Before beginning work, the specialist staff must have read and understood the instructions in the Operating Instructions and supplementary documentation as well as in the certificates (depending on the application)
- ▶ Following instructions and basic conditions

The operating personnel must fulfill the following requirements:

- ► Being instructed and authorized according to the requirements of the task by the facility's owner-operator
- ► Following the instructions in these Operating Instructions

2.2 Designated use

Application and media

The measuring device described in these Instructions is intended only for flow measurement of liquids and gases.

Depending on the version ordered, the measuring device can also measure potentially explosive, flammable, poisonous and oxidizing media.

Measuring devices for use in hazardous areas, in hygienic applications or in applications where there is an increased risk due to process pressure, are labeled accordingly on the nameplate.

To ensure that the measuring device remains in proper condition for the operation time:

- ▶ Only use the measuring device in full compliance with the data on the nameplate and the general conditions listed in the Operating Instructions and supplementary documentation.
- ▶ Based on the nameplate, check whether the ordered device is permitted for the intended use in the hazardous area (e.g. explosion protection, pressure vessel safety).
- ► Use the measuring device only for media against which the process-wetted materials are adequately resistant.
- ▶ If the measuring device is not operated at atmospheric temperature, compliance with the relevant basic conditions specified in the device documentation provided (on the CD-ROM) is absolutely essential.

Incorrect use

Non-designated use can compromise safety. The manufacturer is not liable for damage caused by improper or non-designated use.

A WARNING

Danger of breakage of the measuring tube due to corrosive or abrasive fluids.

Housing breakage due to mechanical overload possible!

- ▶ Verify the compatibility of the process fluid with the measuring tube material.
- ► Ensure the resistance of all fluid-wetted materials in the process.
- ▶ Observe the specified pressure and temperature range.

Verification for borderline cases:

► For special fluids and fluids for cleaning, Endress+Hauser is glad to provide assistance in verifying the corrosion resistance of fluid-wetted materials, but does not accept any

warranty or liability as minute changes in the temperature, concentration or level of contamination in the process can alter the corrosion resistance properties.

Residual risks

The external surface temperature of the housing can increase by max. 20 K due to the power consumption of the electronic components. Hot process fluids passing through the measuring device will further increase the surface temperature of the housing. The surface of the sensor, in particular, can reach temperatures which are close to the fluid temperature.

Possible burn hazard due to fluid temperatures!

► For elevated fluid temperature, ensure protection against contact to prevent burns.

2.3 Workplace safety

For work on and with the device:

► Wear the required personal protective equipment according to federal/national regulations.

For welding work on the piping:

▶ Do not ground the welding unit via the measuring device.

2.4 Operational safety

Risk of injury.

- ▶ Operate the device in proper technical condition and fail-safe condition only.
- ► The operator is responsible for interference-free operation of the device.

Conversions to the device

Unauthorized modifications to the device are not permitted and can lead to unforeseeable dangers.

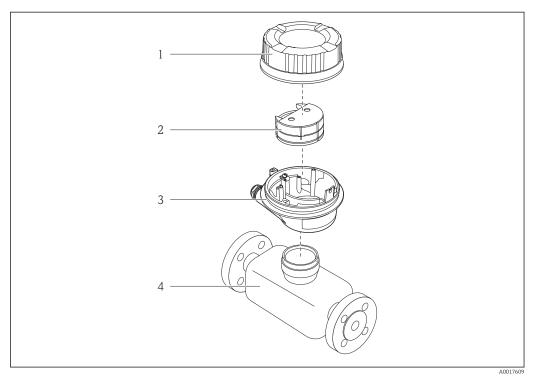
▶ If, despite this, modifications are required, consult with Endress+Hauser.

Repair

To ensure continued operational safety and reliability,

- ► Carry out repairs on the device only if they are expressly permitted.
- ▶ Observe federal/national regulations pertaining to repair of an electrical device.
- ▶ Use original spare parts and accessories from Endress+Hauser only.

2.5 Product safety

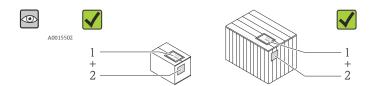

This measuring device is designed in accordance with good engineering practice to meet state-of-the-art safety requirements, has been tested, and left the factory in a condition in which they are safe to operate.

It meets general safety standards and legal requirements. It also complies with the EC directives listed in the device-specific EC Declaration of Conformity. Endress+Hauser confirms this by affixing the CE mark to the device.

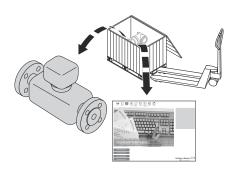
3 Product description

3.1 Product design

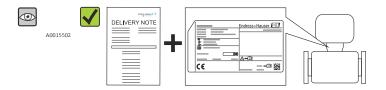
3.1.1 Device version with Modbus RS485 communication type

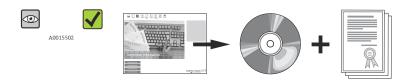


- $\blacksquare 1$ Important components of a measuring device
- 1 Transmitter housing cover
- 2 Main electronics module for Modbus RS485
- 3 Transmitter housing
- 4 Sensor


In the case of the device version with Modbus RS485 intrinsically safe, the Safety Barrier Promass 100 forms part of the scope of supply.

Incoming acceptance and product 4 identification


4.1 Incoming acceptance


Is the order code on the delivery note (1) identical to the order code on the product sticker

Are the goods undamaged?

Do the nameplate data match the ordering information on the delivery note?

Is the CD-ROM with the Technical Documentation and documents present?

Endress+Hauser 11

A0013695

A0013843

A0013698

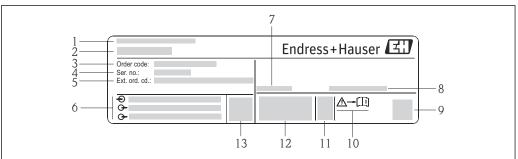
A0013697

A0013699

i

If one of the conditions is not satisfied, contact your Endress+Hauser Sales Center.

4.2 Product identification

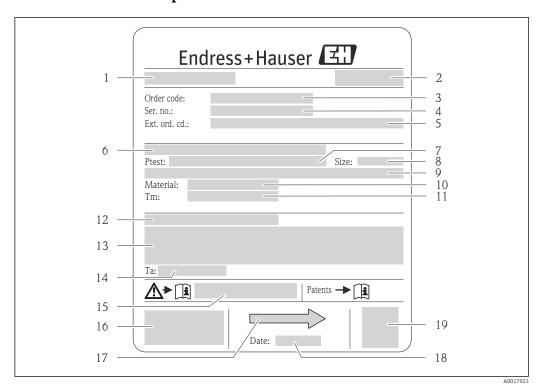

The following options are available for identification of the measuring device:

- Nameplate specifications
- Order code with breakdown of the device features on the delivery note
- Enter serial numbers from nameplates in *W@M Device Viewer* (www.endress.com/deviceviewer): All information about the measuring device is displayed.

For an overview of the scope of the Technical Documentation provided, refer to the following:

- The "Additional standard documentation on the device" \rightarrow \blacksquare 7 and "Supplementary device-dependent documentation" \rightarrow \blacksquare 7 sections
- The *W@M Device Viewer*: Enter the serial number from the nameplate (www.endress.com/deviceviewer)

4.2.1 Transmitter nameplate


A001752

■ 2 Example of a transmitter nameplate

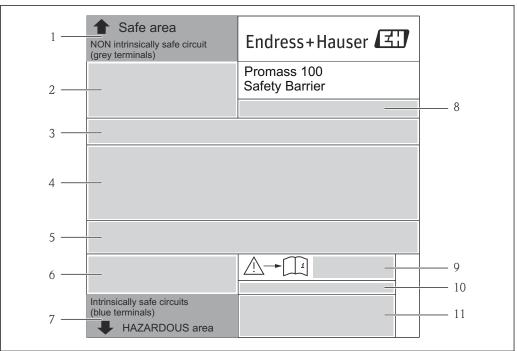
- 1 Manufacturing location
- 2 Name of the transmitter
- 3 Order code
- 4 Serial number
- 5 Extended order code
- 6 Electrical connection data, e.g. available inputs and outputs, supply voltage
- 7 Permitted ambient temperature range (T_a)
- 8 Degree of protection
- 9 2-D matrix code
- 11 Manufacturing date: year-month
- 12 CE mark, C-Tick
- 13 Firmware version (FW)

12

4.2.2 Sensor nameplate

■ 3 Example of a sensor nameplate

- 1 Name of the sensor
- 2 Manufacturing location
- 3 Order code
- 4 Serial number (Ser. no.)
- 5 Extended order code (Ext. ord. cd.)
- 6 Flange nominal diameter/nominal pressure
- 7 Test pressure of the sensor
- 8 Nominal diameter of the sensor
- 9 Sensor-specific data: e.g. pressure range of secondary containment, wide-range density specification (special density calibration)
- 10 Material of measuring tube and manifold
- 11 Medium temperature range
- 12 Degree of protection
- 13 Approval information for explosion protection and Pressure Equipment Directive
- 14 Permitted ambient temperature (T_a)
- 16 CE mark, C-Tick
- 17 Flow direction
- 18 Manufacturing date: year-month
- 19 2-D matrix code


Order code

The measuring device is reordered using the order code.

Extended order code

- The device type (product root) and basic specifications (mandatory features) are always listed.
- Of the optional specifications (optional features), only the safety and approvalrelated specifications are listed (e.g. LA). If other optional specifications are also ordered, these are indicated collectively using the # placeholder symbol (e.g. #LA#).
- If the ordered optional specifications do not include any safety and approval-related specifications, they are indicated by the + placeholder symbol (e.g. XXXXXX-ABCDE +).

4.2.3 Promass 100 safety barrier - nameplate

A001785

■ 4 Example of a Safety Barrier Promass 100 nameplate

- 1 Non-hazardous area or zone 2/div. 2
- 2 Serial number, material number and 2-D matrix code of the Safety Barrier Promass 100
- 3 Electrical connection data, e.g. available inputs and outputs, supply voltage
- 4 Explosion protection approval information
- 5 Safety warning
- 6 Communication-specific information
- 7 Intrinsically safe area
- 8 Manufacturing location
- Document number of safety-related supplementary documentation $\Rightarrow \implies 92$
- 10 Permitted ambient temperature (T_a)
- 11 CE mark, C-Tick

4.2.4 Symbols on measuring device

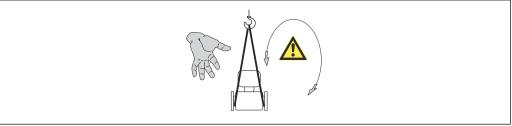
Symbol	Meaning
Δ	WARNING! This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury.
A0011194	Reference to documentation Refers to the corresponding device documentation.
A0011199	Protective ground connection A terminal which must be connected to ground prior to establishing any other connections.

5 Storage and transport

5.1 Storage conditions

Observe the following notes for storage:

- Store in the original packaging to ensure protection from shock.
- Do not remove protective covers or protective caps installed on process connections. They prevent mechanical damage to the sealing surfaces and fouling in the measuring
- Protect from direct sunlight to avoid unacceptably high surface temperatures.
- Storage temperature: -40 to +80 °C (-40 to +176 °F), preferable for +20 °C (+68 °F)
- Store in a dry and dust-free place.
- Do not store outdoors.


5.2 Transporting the product

A WARNING

Center of gravity of the measuring device is higher than the suspension points of the webbing slings.

Risk of injury if the measuring device slips.

- ► Secure the measuring device from rotating or slipping.
- Observe the weight specified on the packaging (stick-on label).
- Observe the transport instructions on the stick-on label on the electronics compartment cover.

Observe the following notes during transport:

- Transport the measuring device to the measuring point in the original packaging.
- Lifting gear
 - Webbing slings: Do not use chains, as they could damage the housing.
 - For wood crates, the floor structure enables these to be loaded lengthwise or broadside using a forklift.
- For measuring device > DN 40 (1½ in): lift the measuring device using the webbing slings at the process connections; do not lift at the transmitter housing.
- Do not remove protective covers or protective caps installed on process connections. They prevent mechanical damage to the sealing surfaces and fouling in the measuring tube.

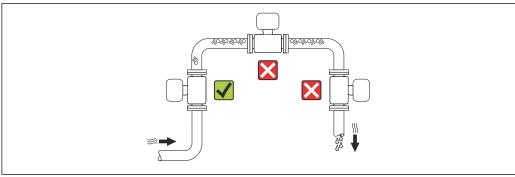
5.3 Packaging disposal

All packaging materials are environmentally friendly and 100% recyclable:

- Measuring device secondary packaging: polymer stretch film that conforms to EC Directive 2002/95/EC (RoHS).
- Packaging:
 - Wood crate, treated in accordance with ISPM 15 standard, which is confirmed by the affixed IPPC logo.
 - Carton in accordance with European Packaging Directive 94/62EC; recyclability is confirmed by the affixed RESY symbol.
- Seaworthy packaging (optional): Wood crate, treated in accordance with ISPM 15 standard, which is confirmed by the affixed IPPC logo.
- Carrying and mounting hardware:
 - Disposable plastic pallet
 - Plastic straps
 - Plastic adhesive strips
- Dunnage: Paper cushion

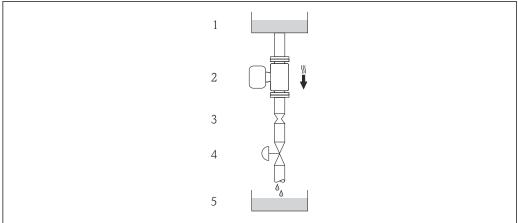
Installation 6

6.1 Installation conditions


No special measures such as supports are necessary. External forces are absorbed by the construction of the device.

6.1.1 Mounting position

Mounting location


To prevent measuring errors arising from accumulation of gas bubbles in the measuring tube, avoid the following mounting locations in the pipe:

- Highest point of a pipeline.
- Directly upstream of a free pipe outlet in a down pipe.

Installation in down pipes

However, the following installation suggestion allows for installation in an open vertical pipeline. Pipe restrictions or the use of an orifice with a smaller cross-section than the nominal diameter prevent the sensor running empty while measurement is in progress.

- **₽** 5 Installation in a down pipe (e.g. for batching applications)
- Supply tank
- 2 Sensor
- 3 Orifice plate, pipe restriction
- Valve
- Batching tank

DN		Ø orifice plate, pipe restriction	
[mm]	[in]	[mm]	[in]
8	³ / ₈	6	0.24
15	1/2	10	0.40
15 FB	½ FB	15	0.60
25	1	14	0.55
25 FB	1 FB	24	0.95
40	1½	22	0.87
40 FB	1½ FB	35	1.38
50	2	28	1.10
50 FB	2 FB	54	2.13
80	3	50	1.97
FB = Full bore			

Orientation

The direction of the arrow on the sensor nameplate helps you to install the sensor according to the flow direction (direction of medium flow through the piping).

Orientation			Recommendation
A	Vertical orientation	A0015591	
В	Horizontal orientation, transmitter head up	A0015589	Exception:
С	Horizontal orientation, transmitter head down	A0015590	✓ ✓ ²⁾ Exception:
D	Horizontal orientation, transmitter head at side	A0015592	✓ ✓ → 🖺 20

- 1) Applications with low process temperatures may reduce the ambient temperature. To maintain the minimum ambient temperature for the transmitter, this orientation is recommended.
- 2) Applications with high process temperatures may increase the ambient temperature. To maintain the maximum ambient temperature for the transmitter, this orientation is recommended.

Inlet and outlet runs

No special precautions need to be taken for fittings which create turbulence, such as valves, elbows or T-pieces, as long as no cavitation occurs $\Rightarrow riangleq riang$

Installation dimensions

For the dimensions and installation lengths of the device, see the "Technical Information" document, "Mechanical construction" section

6.1.2 Requirements from environment and process

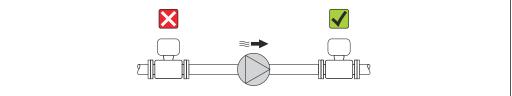
Ambient temperature range

Measuring device	■ -40 to +60 °C (-40 to +140 °F) ■ -50 to +60 °C (-58 to +140 °F) (Order code for "Test, certificate", option JM
Safety Barrier Promass 100	-40 to +60 °C (-40 to +140 °F)

► If operating outdoors:

Avoid direct sunlight, particularly in warm climatic regions.

System pressure


It is important that cavitation does not occur, or that gases entrained in the liquids do not outgas.

Cavitation is caused if the pressure drops below the vapor pressure:

- In liquids that have a low boiling point (e.g. hydrocarbons, solvents, liquefied gases)
- In suction lines
- ► Ensure the system pressure is sufficiently high to prevent cavitation and outgassing.

For this reason, the following mounting locations are recommended:

- At the lowest point in a vertical pipe
- Downstream from pumps (no danger of vacuum)

A0015594

Heating

NOTICE

Electronics can overheat due to elevated ambient temperature!

- ▶ Observe maximum permitted ambient temperature for the transmitter $\rightarrow \triangleq 19$.
- ► Depending on the fluid temperature, take the device orientation requirements into account .

Heating options

If a fluid requires that no heat loss should occur at the sensor, users can avail of the following heating options:

- Electrical heating, e.g. with electric band heaters
- Via pipes carrying hot water or steam
- Via heating jackets

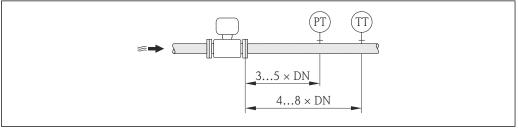
Using an electrical trace heating system

If heating is regulated via phase angle control or pulse packages, magnetic fields can affect the measured values (= for values that are greater than the values approved by the EN standard (sine 30 A/m)).

For this reason, the sensor must be magnetically shielded: the housing can be shielded with tin plates or electric sheets without a privileged direction (e.g. V330-35A).

The sheet must have the following properties:

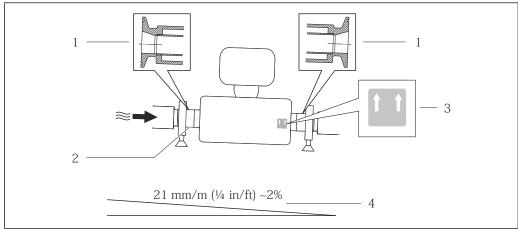
- Relative magnetic permeability µr ≥ 300
- Plate thickness $d \ge 0.35$ mm ($d \ge 0.014$ in)


Vibrations

The high oscillation frequency of the measuring tubes ensures that the correct operation of the measuring system is not influenced by plant vibrations.

6.1.3 Special mounting instructions

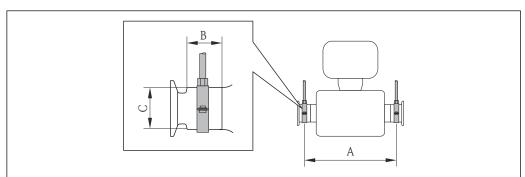
Outlet run for peripheral device


If a pressure and temperature measuring device are installed downstream from the measuring device, make sure there is sufficient distance between the two devices.

- PT Pressure transmitter
- Temperature transmitter

Guarantees complete drainability

When the sensor is installed in a horizontal line, eccentric clamps can be used to ensure complete drainability. When the system is pitched in a specific direction and at a specific slope, gravity can be used to achieve complete drainability. The sensor must be mounted in the correct position to ensure full drainability in the horizontal position. Markings on the sensor show the correct mounting position to optimize drainability.


- **₽** 6
- 1 Eccentric clamp connection
- 2 *Line on the underside indicates the lowest point of the eccentric process connection.*
- 3 "This side up" label indicates which side is up
- Slope the device in accordance with the hygiene guidelines. Slope: approx. 2 % or 21mm/m (0.24 in/feet)

20

Securing with mounting clamp in the case of hygiene connections

It is not necessary to provide additional support for the sensor for operational performance purposes. If, however, additional support is required for installation purposes, the following dimensions must be observed.

Use mounting clamp with lining between clamp and measuring instrument.

A0016E00

SI units

DN [mm]	8	15	15 FB	25	25 FB	40	40 FB	50	50 FB	80
A [mm]	373	409	539	539	668	668	780	780	1152	1152
B [mm]	20	20	30	30	28	28	35	35	57	57
C [mm]	40	40	44.5	44.5	60	60	80	80	90	90

US units

DN [in]	8	15	15 FB	25	25 FB	40	40 FB	50	50 FB	80
A [in]	14.69	16.1	21.22	21.22	26.3	26.3	30.71	30.71	45.35	45.35
B [in]	0.79	0.79	1.18	1.18	1.1	1.1	1.38	1.38	2.24	2.24
C [in]	1.57	1.57	1.75	1.75	2.36	2.36	3.15	3.15	3.54	3.54

Zero point adjustment

Experience shows that zero point adjustment is advisable only in special cases:

- To achieve maximum measuring accuracy even with very low flow rates
- Under extreme process or operating conditions, e.g.:
 - high process temperature (> 50 °C (122 °F)
 - high viscosity (> 100 cSt)
 - high process pressure (> 20 bar (290 psi))

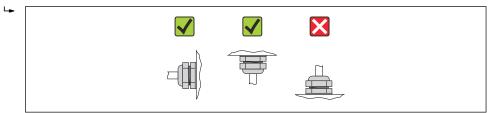
6.2 Mounting the measuring device

6.2.1 Required tools

For sensor

For flanges and other process connections: Corresponding mounting tools

6.2.2 Preparing the measuring device


- 1. Remove all remaining transport packaging.
- 2. Remove any protective covers or protective caps present from the sensor.
- 3. Remove stick-on label on the electronics compartment cover.

6.2.3 Mounting the measuring device

A WARNING

Danger due to improper process sealing!

- ► Ensure that the inside diameters of the gaskets are greater than or equal to that of the process connections and piping.
- ► Ensure that the gaskets are clean and undamaged.
- ► Install the gaskets correctly.
- 1. Ensure that the direction of the arrow on the nameplate of the sensor matches the flow direction of the fluid.
- 2. Install the measuring device or turn the transmitter housing so that the cable entries do not point upwards.

A001396

6.3 Post-installation check

Is the device damaged (visual inspection)?	→
Does the measuring device conform to the measuring point specifications? For example: Process temperature → 🖺 85 Process pressure (refer to the chapter on "Material load curves" of the "Technical Information" document) Ambient temperature → 🖺 19 Measuring range → 🖺 75	→
Has the correct orientation for the sensor been selected? According to sensor type According to medium temperature According to medium properties (outgassing, with entrained solids))
Does the arrow on the sensor nameplate match the direction of flow of the fluid through the piping $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	\rightarrow
Are the measuring point identification and labeling correct (visual inspection)?	→
Is the device adequately protected from precipitation and direct sunlight?	→
Are the securing screw and securing clamp tightened securely?	\rightarrow

7 Electrical connection

7.1 Connection conditions

7.1.1 Required tools

- For cable entries: Use corresponding tools
- For securing clamp (on aluminum housing): Allen screw 3 mm
- For securing screw (for stainless steel housing): open-ended wrench 8 mm
- Wire stripper
- When using stranded cables: Crimping tool for wire end ferrule

7.1.2 Requirements for connecting cable

The connecting cables provided by the customer must fulfill the following requirements.

Electrical safety

In accordance with applicable federal/national regulations.

Permitted temperature range

- -40 °C (-40 °F)...≥ 80 °C (176 °F)
- Minimum requirement: cable temperature range ≥ ambient temperature + 20 K

Power supply cable

Standard installation cable is sufficient.

Signal cable

Modbus RS485

The EIA/TIA-485 standard specifies two types of cable (A and B) for the bus line which can be used for every transmission rate. Cable type A is recommended.

Cable type	A				
Characteristic impedance	135 to 165 Ωat a measuring frequency of 3 to 20 MHz				
Cable capacitance	<30 pF/m				
Wire cross-section	>0.34 mm ² (22 AWG)				
Cable type	Twisted pairs				
Loop resistance	≤110 Ω/km				
Signal damping	Max. 9 dB over the entire length of the cable cross-section				
Shielding	Copper braided shielding or braided shielding with foil shield. When grounding the cable shield, observe the grounding concept of the plant.				

Connecting cable between Safety Barrier Promass 100 and measuring device

	Shielded twisted-pair cable with $2x2$ wires. When grounding the cable shield, observe the grounding concept of the plant.
Maximum cable resistance	2.5Ω , one side

► Comply with the maximum cable resistance specifications to ensure the operational reliability of the measuring device.

The maximum cable length for individual wire cross-sections is specified in the table below. Observe the maximum capacitance and inductance per unit length of the cable and the connection values in the Ex documentation $\Rightarrow \implies 92$.

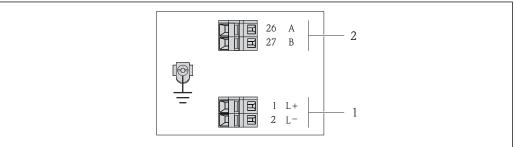
Wire cro	ss-section	Maximum cable length			
[mm ²]	[AWG]	[m]	[ft]		
0.5	20	70	230		
0.75	18	100	328		
1.0	17	100	328		
1.5	16	200	656		
2.5	2.5 14		984		

Cable diameter

- Cable glands supplied: M20 \times 1.5 with cable ϕ 6 to 12 mm (0.24 to 0.47 in)
- Spring terminals: wire cross-sections 0.5 to 2.5 mm² (20 to 14 AWG)
- With Safety Barrier Promass 100: Plug-in screw terminals for wire cross-sections 0.5 to 2.5 mm2 (20 to 14 AWG)

7.1.3 Terminal assignment

Transmitter


Connection version Modbus RS485, for use in non-hazardous areas and Zone 2/Div. 2 Order code for "Output", option ${\bf M}$

Depending on the housing version, the transmitters can be ordered with terminals or device plugs.

Order code for	Connection me	thods available	Possible options for order code		
"Housing"	Output	Power supply	"Electrical connection"		
Options A, B	Terminals	Terminals	 Option A: coupling M20x1 Option B: thread M20x1 Option C: thread G ½" Option D: thread NPT ½" 		
Options A, B	Device plug → 🖺 27	Terminals	■ Option L: plug M12x1 + thread NPT ½" ■ Option N: plug M12x1 + coupling M20 ■ Option P: plug M12x1 + thread G ½" ■ Option U: plug M12x1 + thread M20		
Options A, B, C	Device plug → 🖺 27	Device plug → 🖺 27	Option Q : 2 x plug M12x1		

Order code for "Housing":

- Option A: compact, coated alu
- Option **B**: compact hygienic, stainless
- Option C: ultra compact hygienic, stainless, M12 device plug

A0019528

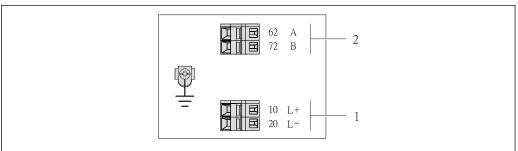
- 7 Modbus RS485 terminal assignment, connection version for use in non-hazardous areas and Zone 2/Div.
 2
- 1 Power supply: DC 24 V
- 2 Output: Modbus RS485

	Terminal number					
Order code for "Output"	Power	supply	Output			
4.0	2 (L-)	1 (L+)	27 (B)	26 (A)		
Option M	24 DC V		Modbus RS485			

Order code for "Output":

Option \mathbf{M} : Modbus RS485, for use in non-hazardous areas and Zone 2/Div. 2

Connection version Modbus RS485, for use in intrinsically safe areas (connection via Safety Barrier Promass 100)


Order code for "Output", option \mathbf{M} : Modbus R485, for use in intrinsically safe areas (connection via Safety Barrier Promass 100)

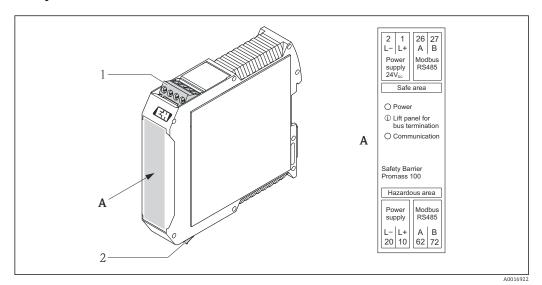
Depending on the housing version, the transmitters can be ordered with terminals or device plugs.

Order code for	Connection me	thods available	Possible options for order code
"Housing"	Output	Power supply	"Electrical connection"
Options A, B	Terminals	Terminals	 Option A: coupling M20x1 Option B: thread M20x1 Option C: thread G ½" Option D: thread NPT ½"
A, B, C	Device plug → 🖺 27		Option I: plug M12x1

Order code for "Housing":

- Option **A**: compact, coated alu
- Option **B**: compact hygienic, stainless
- Option **C**: ultra compact hygienic, stainless, M12 device plug

A0017053


- Modbus RS485 terminal assignment, connection version for use in intrinsically safe areas (connection via Safety Barrier Promass 100)
- 1 Intrinsically safe power supply
- 2 Output: Modbus RS485

Order code for "Output"	20 (L-)	10 (L+)	72 (B)	62 (A)	
Option M	Intrinsically safe supply voltage		Modbus RS485 intrinsically safe		

Order code for "Output":

 $Option \ \textbf{\textit{M}}{:}\ Modbus\ RS485, for use in intrinsically safe areas (connection via Safety Barrier Promass\ 100)$

Safety Barrier Promass 100

- 9 Safety Barrier Promass 100 with terminals
- 1 Non-hazardous area and Zone 2/Div. 2
- 2 Intrinsically safe area

7.1.4 Pin assignment, device plug

Modbus RS485

Modbus RS485 intrinsically safe with supply voltage (on the device side)

	2	Pin		Assignment	Coding	Plug/socket
		1	L+	Supply voltage, intrinsically safe	A	Plug
1 2		2	Α	Madhua DC/OE intringigally anto		
		3	В	Modbus RS485 intrinsically safe		
	5	4	L-	Supply voltage, intrinsically safe		
	4 A0016809	5		Grounding/shielding		

Supply voltage for Modbus RS485, non-hazardous area and Zone $2/Div.\ 2$ (on the device side)

2	Pin		Assignment	Coding	Plug/socket
	1	L+	DC24 V	A	Plug
3 10 0 0 1	2				
	3				
5	4	L-	DC24 V		
4 A0016809	5		Grounding/shielding		

Modbus RS485, non-hazardous areas and zone 2/Div. 2 (on the device side)

	2		Assignment		Coding	Plug/socket
		1			В	Socket
1	$\frac{1}{2}$	2	Α	Modbus RS485		
-		3				
5	5	4	В	Modbus RS485		
	4 A0016811	5		Grounding/shielding		

7.1.5 Shielding and grounding

The shielding and grounding concept requires compliance with the following:

- Electromagnetic compatibility (EMC)
- Explosion protection
- Personal protection equipment
- National installation regulations and guidelines
- Keep the stripped and twisted lengths of cable shield to the ground terminal as short as possible.
- Seamless cable shielding.

Grounding of the cable shield

To comply with EMC requirements:

- Ensure the cable shield is grounded to the potential matching line at multiple points.
- Connect every local ground terminal to the potential matching line.

NOTICE

In systems without potential matching, the multiple grounding of the cable shield causes mains frequency equalizing currents!

Damage to the bus cable shield.

▶ Only ground the bus cable shield to either the local ground or the protective ground at one end.

7.1.6 Preparing the measuring device

1. Remove dummy plug if present.

2. NOTICE

Insufficient sealing of the housing!

Operational reliability of the measuring device could be compromised.

▶ Use suitable cable glands corresponding to the degree of protection.

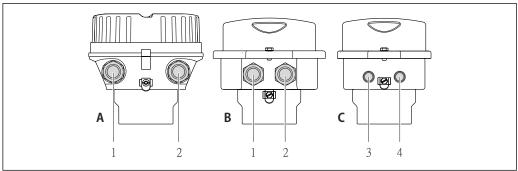
If measuring device is delivered without cable glands:

Provide suitable cable gland for corresponding connecting cable $\rightarrow \triangleq 23$.

3. If measuring device is delivered with cable glands:

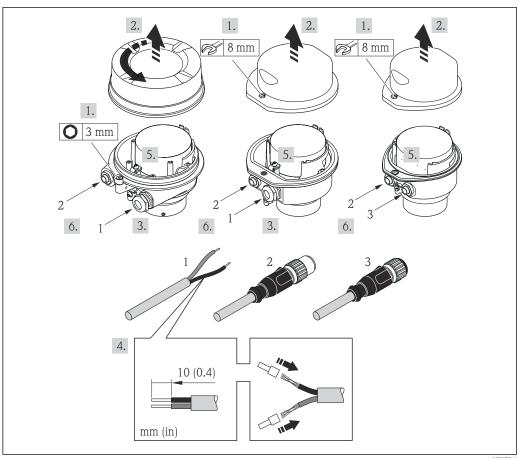
7.2 Connecting the measuring device

NOTICE


Limitation of electrical safety due to incorrect connection!

- ► Have electrical connection work carried out by correspondingly trained specialists only.
- ▶ Observe applicable federal/national installation codes and regulations.
- ► Comply with local workplace safety regulations.
- ► For use in potentially explosive atmospheres, observe the information in the device-specific Ex documentation.

7.2.1 Connecting the transmitter


The connection of the transmitter depends on the following order codes:

- Housing version: compact or ultracompact
- Connection version: device plug or terminals

■ 10 Device versions and connection versions

- Α Housing version: compact, aluminum coated
- В Housing version: compact hygienic, stainless
- Cable entry or device plug for signal transmission
- 2 Cable entry or device plug for supply voltage
- С Housing version: ultra-compact hygienic, stainless, device plug M12
- 3 Device plug for signal transmission
- Device plug for supply voltage

 \blacksquare 11 Device versions with connection examples

- 1
- 2 Device plug for signal transmission
- Device plug for supply voltage

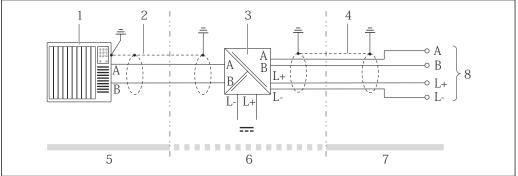
For device version with device plug: only pay attention to Step 6.

- 1. Depending on the housing version, loosen the securing clamp or fixing screw of the housing cover.
- 2. Depending on the housing version, unscrew or open the housing cover.

- 3. Push the cable through the cable entry . To ensure tight sealing, do not remove the sealing ring from the cable entry.
- 4. Strip the cable and cable ends. In the case of stranded cables, also fit ferrules.
- 5. Connect the cable in accordance with the terminal assignment or the device plug pin assignment $\rightarrow \cong 27$.
- 6. Depending on the device version: tighten the cable glands or plug in the device plug and tighten $\rightarrow \stackrel{\triangle}{=} 27$.
- 7. Enable the terminating resistor if applicable $\rightarrow \triangleq 30$.

8. NOTICE

Housing degree of protection voided due to insufficient sealing of the housing.


► Screw in the screw without using any lubricant. The threads on the cover are coated with a dry lubricant.

Reverse the removal procedure to reassemble the transmitter.

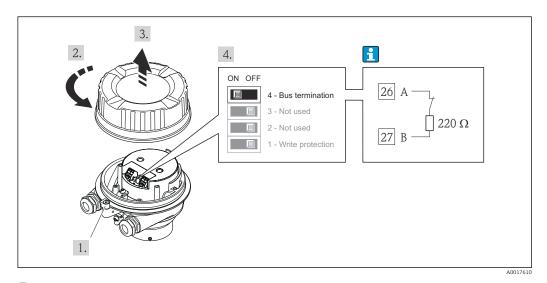
7.2.2 Connecting the Safety Barrier Promass 100

In the case of the device version with Modbus RS485 intrinsically safe, the transmitter must be connected to the Safety Barrier Promass 100.

- 1. Strip the cable ends. In the case of stranded cables, also fit ferrules.
- 2. Connect the cable in accordance with the terminal assignment $\rightarrow \blacksquare 27$.
- 3. Where applicable, enable the terminating resistor in the Safety Barrier Promass 100 $\rightarrow \implies 30$.

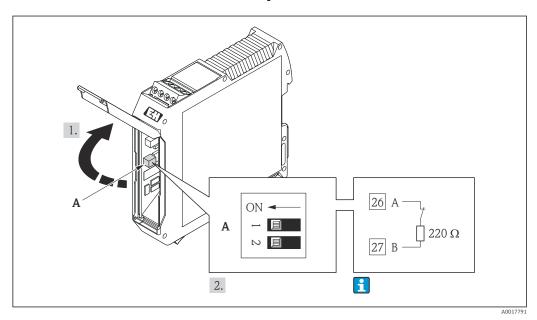
A0016804

■ 12 Electrical connection between the transmitter and Safety Barrier Promass 100


- 1 Control system (e.g. PLC)
- 2 Observe cable specification
- 3 Safety Barrier Promass 100: terminal assignment → 🗎 27
- 4 Observe cable specification → 🖺 23
- 5 Non-hazardous area
- 6 Non-hazardous area and Zone 2/Div. 2
- 7 Intrinsically safe area
- 8 Transmitter: terminal assignment

7.3 Hardware settings

7.3.1 Enabling the terminating resistor

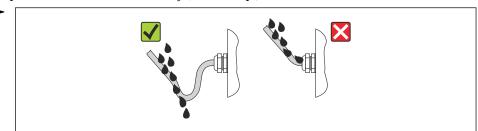

To avoid incorrect communication transmission caused by impedance mismatch, connect the Modbus RS485 cable correctly to the start and end of the bus segment.

If the transmitter is used in the non-hazardous area or Zone 2/Div. 2

■ 13 Terminating resistor can be enabled via DIP switch on the main electronics module

If the transmitter is used in the intrinsically safe area

■ 14 Terminating resistor can be enabled via DIP switch in the Safety Barrier Promass 100


7.4 Ensuring the degree of protection

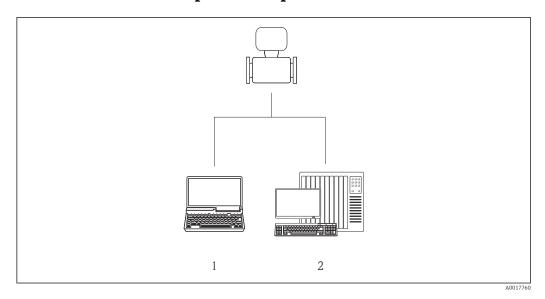
The measuring device fulfills all the requirements for the IP66/67 degree of protection, Type 4X enclosure.

To guarantee IP66/67 degree of protection, Type 4X enclosure, carry out the following steps after the electrical connection:

- 1. Check that the housing seals are clean and fitted correctly. Dry, clean or replace the seals if necessary.
- 2. Tighten all housing screws and screw covers.
- 3. Firmly tighten the cable glands.

4. To ensure that moisture does not enter the cable entry, route the cable so that it loops down before the cable entry ("water trap").

A0013960

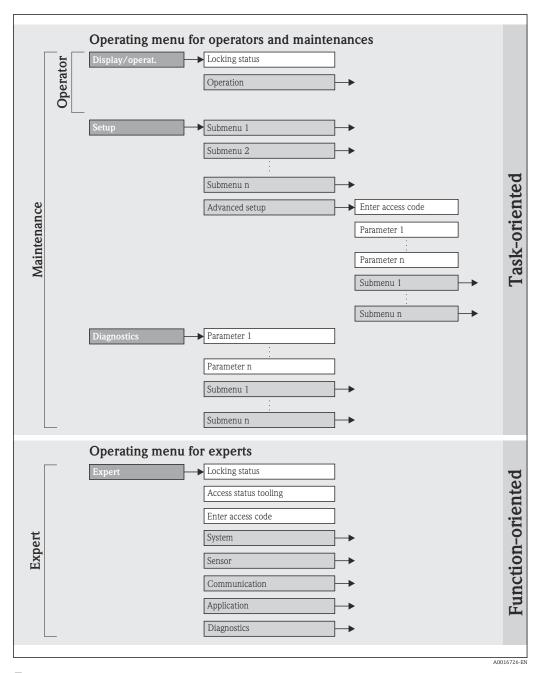

5. Insert dummy plugs into unused cable entries.

7.5 Post-connection check

Are cables or the device undamaged (visual inspection)?				
Do the cables comply with the requirements → 🖺 23?				
Do the cables have adequate strain relief?				
Are all the cable glands installed, firmly tightened and leak-tight? Cable run with "water trap" $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $				
Depending on the device version: are all the device plugs firmly tightened → 🖺 28?				
 Does the supply voltage match the specifications on the transmitter nameplate → □ 79? For device version with Modbus RS485 intrinsically safe: does the supply voltage match the specifications on the nameplate of the Safety Barrier Promass 100 → □ 79? 				
Is the terminal assignment or the pin assignment of the device plug $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $				
 If supply voltage is present, is the power LED on the electronics module of the transmitter lit green → □ 10? For device version with Modbus RS485 intrinsically safe, if supply voltage is present, is the power LED on the Safety Barrier Promass 100 lit → □ 10? 				
Depending on the device version, is the securing clamp or fixing screw firmly tightened?				

8 Operation options

8.1 Overview of operation options



- 1 Computer with "FieldCare" operating tool via Commubox FXA291 and service interface (CDI)
- 2 Control system (e.g. PLC)

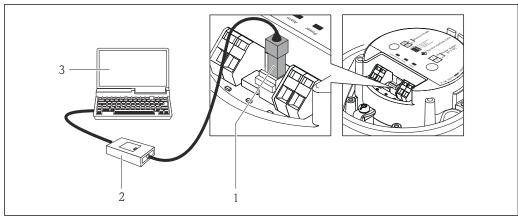
8.2 Structure and function of the operating menu

8.2.1 Structure of the operating menu

For an overview of the operating menu with menus and parameters $\rightarrow \triangleq 94$

 \blacksquare 15 Taking the example of the "FieldCare" operating tool

8.2.2 Operating philosophy


The individual parts of the operating menu are assigned to certain user roles. Each user role corresponds to typical tasks within the device lifecycle.

Menu		User role and tasks	Content/meaning	
Display/operat.	task-oriented	Role "Operator", "Maintenance" Tasks during operation: Reading measured values	Resetting and controlling totalizers	
Setup		"Maintenance" role Commissioning: Configuration of the measurement Configuration of the communication interface	Submenus for fast commissioning: Setting the individual system units Defining the medium Configuration of the digital communication interface Configuring the low flow cut off Configuring the monitoring of partial and empty pipe detection	
			 "Advanced setup" submenu: For more customized configuration of the measurement (adaptation to special measuring conditions) Configuration of totalizers 	
Diagnostics		"Maintenance" role Fault elimination: Diagnostics and elimination of process and device errors Measured value simulation	Contains all parameters for error detection and analyzing process and device errors: "Diagnostic list" submenu Contains up to 5 currently pending diagnostic messages. "Event logbook" submenu Contains 20 event messages that have occurred. "Device information" submenu Contains information for identifying the device. "Measured values" submenu Contains all current measured values. "Simulation" submenu Is used to simulate measured values or output values. "Device reset" submenu Resets the device configuration to certain settings	
Expert	function-oriented	Tasks that require detailed knowledge of the function of the device: Commissioning measurements under difficult conditions Optimal adaptation of the measurement to difficult conditions Detailed configuration of the communication interface Error diagnostics in difficult cases	Contains all the parameters of the device and makes it possible to access these parameters directly using an access code. The structure of this menu is based on the function blocks of the device: "System" submenu Contains all higher-order device parameters that do not pertain either to measurement or the measured value communication. "Sensor" submenu Contains all parameters for configuring the measurement. "Communication" submenu Contains all parameters for configuring the digital communication interface. "Application" submenu Contains all parameters for configuring the functions that go beyond the actual measurement (e.g. totalizer). "Diagnostics" submenu Contains all parameters for error detection and analyzing process and device errors and for device simulation.	

8.3 Access to the operating menu via the operating tool

8.3.1 Connecting the operating tool

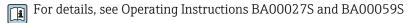
Via service interface (CDI)

A001692

- 1 Service interface (CDI) of the measuring device
- 2 Commubox FXA291
- 3 Computer with "FieldCare" operating tool with COM DTM "CDI Communication FXA291"

8.3.2 FieldCare

Function scope


FDT-based plant asset management tool from Endress+Hauser. It can configure all smart field units in a system and helps you manage them. By using the status information, it is also a simple but effective way of checking their status and condition.

Access takes place via:

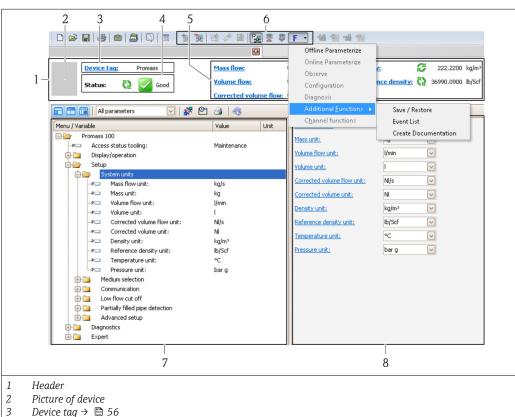
Service interface CDI $\rightarrow \triangleq 36$

Typical functions:

- Configuring parameters of transmitters
- Loading and saving device data (upload/download)
- Documentation of the measuring point
- Visualization of the measured value memory (line recorder) and event logbook

Source for device description files

See data → 🖺 38


Establishing a connection

Via service interface (CDI)

- 1. Start FieldCare and launch the project.
- 2. In the network: Add a device.
 - ► The **Add device** window opens.
- 3. Select the **CDI Communication FXA291** option from the list and press **OK** to confirm.
- 4. Right-click **CDI Communication FXA291** and select the **Add device** option in the context menu that opens.

- 5. Select the desired device from the list and press **OK** to confirm.
- Establish the online connection to the device.
- For details, see Operating Instructions BA00027S and BA00059S

User interface

- 4 Status area with status signal $\rightarrow \triangleq 62$
- 5 Display area for current measured values $\rightarrow \stackrel{-}{\boxtimes} 56$
- 6 Event list with additional functions such as save/load, events list and document creation
- Navigation area with operating menu structure
- 8 Working area

9 System integration

9.1 Overview of device description files

9.1.1 Current version data for the device

Firmware version	01.02.00	 On the title page of the Operating instructions On transmitter nameplate →
Release date of firmware version	04.2013	

9.1.2 Operating tools

The suitable device description file for the operating tool is listed in the table below, along with information on where the file can be acquired.

Operating tool via service interface (CDI)	Sources for obtaining device descriptions
FieldCare	 www.endress.com → Download Area CD-ROM (contact Endress+Hauser) DVD (contact Endress+Hauser)

9.2 Modbus RS485 information

9.2.1 Function codes

Function codes are used to define which read or write action is carried out via the Modbus protocol. The measuring device supports the following function codes:

Code	Name	Description	Application
03	Read holding register	Master reads one or more Modbus registers from the device. A maximum of 125 consecutive registers can be read with 1 telegram: 1 register = 2 bytes The measuring device does not make a distinction between function codes 03 and 04; these codes therefore yield the same result.	Read device parameters with read and write access Example: Read mass flow
04	Read input register	Master reads one or more Modbus registers from the device. A maximum of 125 consecutive registers can be read with 1 telegram: 1 register = 2 bytes The measuring device does not make a distinction between function codes 03 and 04; these codes therefore yield the same result.	Read device parameters with read access Example: Read totalizer value

Code	Name	Description	Application
06	Write single registers	Master writes a new value to one Modbus register of the measuring device. Use function code 16 to write	Write only 1 device parameter Example: reset totalizer
		Use function code 16 to write multiple registers with just 1 telegram.	
08	Diagnostics	Master checks the communication connection to the measuring device.	
		The following "Diagnostics codes" are supported: Sub-function 00 = Return query data (loopback test) Sub-function 02 = Return diagnostics register	
16	Write multiple registers	Master writes a new value to multiple Modbus registers of the device. A maximum of 120 consecutive registers can be written with 1 telegram.	Write multiple device parameters Example: • Mass flow unit • Mass unit
		If the required device parameters are not available as a group, yet must nevertheless be addressed with a single telegram, use Modbus data map → 🖺 39	
23	Read/Write multiple registers	Master reads and writes a maximum of 118 Modbus registers of the measuring device simultaneously with 1 telegram.	Write and read multiple device parameters Example: Read mass flow
		Write access is executed before read access.	Reset totalizer

Broadcast messages are only allowed with function codes 06, 16 and 23.

9.2.2 **Register information**

For an overview on Modbus-specific information of the individual device parameters, please refer to the additional document on Modbus RS485 register information → 🖺 92

9.2.3 Response time

Response time of the measuring device to the request telegram of the Modbus master: typically 3 to 5 ms

9.2.4 Modbus data map

Function of the Modbus data map

The device offers a special memory area, the Modbus data map (for a maximum of 16 device parameters), to allow users to call up multiple device parameters via Modbus RS485 and not only individual device parameters or a group of consecutive device parameters.

Grouping of device parameters is flexible and the Modbus master can read or write to the entire data block simultaneously with a single request telegram.

Structure of the Modbus data map

The Modbus data map consists of two data sets:

- Scan list: Configuration area The device parameters to be grouped are defined in a list in that their Modbus RS485 register addresses are entered in the list.
- Data area

The measuring device reads out the register addresses entered in the scan list cyclically and writes the associated device data (values) to the data area.

For an overview of device parameters with their individual Modbus register address, please refer to the additional document on Modbus RS485 register information → 🖺 92

Scan list configuration

For configuration, the Modbus RS485 register addresses of the device parameters to be grouped must be entered in the scan list. Please note the following basic requirements of the scan list:

Max. entries	16 device parameters
Supported device parameters	Only parameters with the following characteristics are supported: Access type: read or write access Data type: float or integer

Configuring the scan list via FieldCare

Carried out using the operating menu of the measuring device: Expert \rightarrow Communication \rightarrow Modbus data map \rightarrow Scan list register 0 -15

Scan list	
No.	Configuration register
0	Scan list register 0
15	Scan list register 15

Configuring the scan list via Modbus RS485

Carried out using register addresses 5001 - 5016

Scan list	Scan list			
No.	Modbus RS485 register	Data type	Configuration register	
0	5001	Integer	Scan list register 0	
		Integer		
15	5016	Integer	Scan list register 15	

Reading out data via Modbus RS485

The Modbus master accesses the data area of the Modbus data map to read out the current values of the device parameters defined in the scan list.

Master access to data area	Via register addresses 5051-5081
----------------------------	----------------------------------

Data area			
Device parameter value	Modbus RS485 register	Data type*	Access**
Value of scan list register 0	5051	Integer/float	Read/write
Value of scan list register 1	5053	Integer/float	Read/write
Value of scan list register			
Value of scan list register 15	5081	Integer/float	Read/write

^{*} Data type depends on the device parameters entered in the scan list.

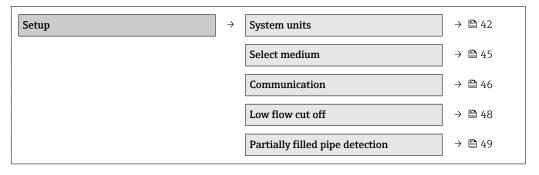
** Data access depends on the device parameters entered in the scan list. If the device parameter entered supports read and write access, the parameter can also be accessed via the data area.

10 Commissioning

10.1 Function check

Before commissioning the device, make sure that the post-installation and post-connection checks have been performed.

- "Post-mounting check" checklist → 🖺 22
- "Post-connection check" checklist → 🖺 32

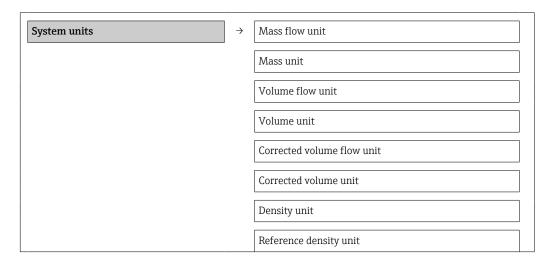

10.2 Establishing a connection via FieldCare

- For FieldCare connection → 🗎 36
- For FieldCare user interface → 🖺 37

10.3 Configuring the measuring device

The **Setup** menu with its submenus contains all parameters needed for standard operation.

Structure of the "Setup" menu


10.3.1 Setting the system units

In the **System units** submenu, you can configure the units of all measured values.

Navigation path

"Setup" menu \rightarrow Advanced setup \rightarrow System units

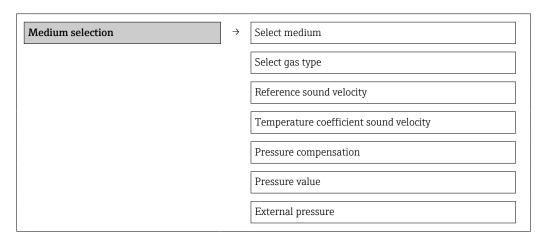
Structure of the submenu

Temperature unit
Pressure unit

Parameter overview with brief description

Parameter	Description	Selection/ User entry	Factory setting
Mass flow unit	Select the unit for mass flow. Result The selected unit applies for: Output Low flow cut off Simulation process variable	Unit choose list	Country-dependent: kg/h lb/min
Mass unit	Select the unit for mass. Result The selected unit is taken from: Mass flow unit	Unit choose list	Country-dependent: • kg • lb
Volume flow unit	Select the unit for volume flow. Result The selected unit applies for: Output Low flow cut off Simulation process variable	Unit choose list	Country-dependent: I/h gal/min (us)
Volume	Select the unit for volume. Result The selected unit is taken from: Volume flow unit		Country-dependent 1 gal (us)
Corrected volume flow unit	Select the unit for corrected volume flow. Result The selected unit applies for: Output Low flow cut off Simulation process variable	Unit choose list	Country-dependent: NI/h Scf/min
Corrected volume unit	Select the unit for standard volume. Result The selected unit is taken from: Corrected volume flow unit	Unit choose list	Country-dependent: NI Scf
Density unit	Select the unit for density. Result The selected unit applies for: Output Low value partial filled pipe detection High value partial filled pipe detection Simulation process variable Density adjustment (in the Expert menu)	Unit choose list	Country-dependent kg/l lb/cf
Reference density unit	Select the unit for reference density. Result The selected unit applies for: Output Low value partial filled pipe detection High value partial filled pipe detection Simulation process variable Fixed reference density Density adjustment (in the Expert menu)	Unit choose list	Country-dependent: • kg/Nl • lb/Scf

Parameter	Description	Selection/ User entry	Factory setting
Temperature unit	Select the unit for temperature. Result The selected unit applies for: Output Reference temperature Simulation process variable	Unit choose list	Country-dependent: °C (Celsius) °F (Fahrenheit)
Pressure unit	Select the unit for pipe pressure.	Unit choose list	Country-dependent: • bar a • psi a


10.3.2 Selecting and setting the medium

The **Medium selection** submenu contains parameters that have to be configured for selecting and setting the medium.

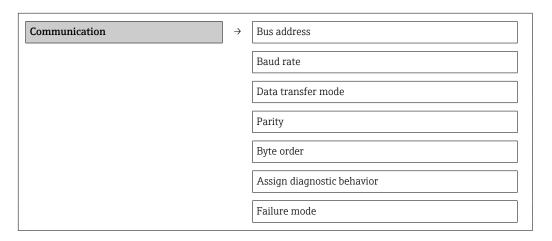
Navigation path

"Setup" menu \rightarrow Medium selection

Structure of the submenu

Parameter overview with brief description

Parameter	Prerequisite	Description	Selection/ User entry	Factory setting
Medium selection	_	Select the medium type.	LiquidGas	Liquid
Select gas type	The following option is selected in the Medium selection parameter: Gas	Select the gas type for the measurement application.	Gas type choose list	Air
Reference sound velocity	The following option is selected in the Select gas type parameter: Others	Enter the sound velocity of the gas at 0°C (32°F).	0 to 99 999 m/s	0 m/s
Temperature coefficient sound velocity	The following option is selected in the Select gas type parameter: Others	Enter the temperature coefficient of the sound velocity of the gas.	Max. 15-digit, positive floating-point number	0 (m/s)/K
Pressure compensation	The following option is selected in the Medium selection parameter:	Enable the automatic pressure correction.	OffFixed value	Off
Pressure value	The following option is selected in the Pressure compensation parameter: Fixed value	Enter a value for the process pressure to be used for pressure correction.	0 to 99 999 [bar, psi]	Country-dependent: 1.01325 bar 14.7 psi
External pressure	The following option is selected in the Pressure compensation parameter: External value	External value	0 to 99 999 [bar, psi]	Country-dependent: 1.01325 bar 14.7 psi


10.3.3 Configuring communication interface

The **Communication** submenu guides you systematically through all parameters that must be configured for selecting and setting the communication interface.

Navigation path

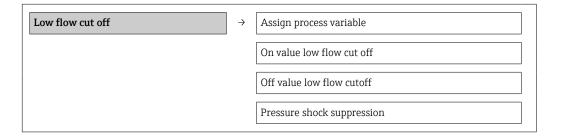
"Setup" menu \rightarrow Communication

Structure of the submenu

Parameter overview with brief description

Parameter	Description	Selection/ User entry	Factory setting
Bus address	Enter device address.	1 to 247	247
Baud rate	Define data transfer speed.	Baud rate list box → 🖺 78	19 200 BAUD
Data transfer mode	Select data transfer mode.	ASCII Transmission of data in the form of readable ASCII characters. Error protection via LRC. RTU Transmission of data in binary form. Error protection via CRC16.	
Parity	Select parity bits.	ASCII picklist 0 = even 1 = odd	Even
		RTU picklist • 0 = even • 1 = odd • 2 = no parity bit/1 stop bit • 3 = no parity bit/2 stop bits	
Byte order	Select byte transmission sequence.	0-1-2-33-2-1-01-0-3-22-3-0-1	1-0-3-2

Parameter	Description	Selection/ User entry	Factory setting
Assign diagnostic behavior	Select diagnostic behavior for MODBUS communication.	 Off Alarm or warning Warning Alarm	Alarm
Failure mode	Select measured value output behavior when a diagnostic message occurs via Modbus communication.	NaN valueLast valid valueNaN = not a number	NaN value
	This parameter operates in accordance with the option selected in the Assign diagnostic behavior parameter.		


10.3.4 Configuring the low flow cut off

The **Low flow cut off** submenu contains parameters that have to be set for configuring the low flow cut off.

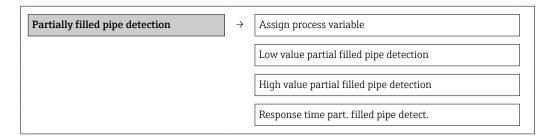
Navigation path

"Setup" menu \rightarrow Low flow cut off

Structure of the submenu

Parameter overview with brief description

Parameter	Prerequisite	Description	Selection/ User entry	Factory setting
Assign process variable	-	Select the process variable for low flow cut off.	OffMass flowVolume flowCorrected volume flow	Mass flow
On value low flow cut off	One of the following options is selected in the Assign process variable parameter: Mass flow Volume flow Corrected volume flow	Enter the on value for low flow cut off.	Max. 15-digit, positive floating- point number	For liquids: depends on country and nominal diameter
Off value low flow cut off	One of the following options is selected in the Assign process variable parameter: Mass flow Volume flow Corrected volume flow	Enter the off value for low flow cut off.	0 to 100 %	50 %
Pressure shock suppression	One of the following options is selected in the Assign process variable parameter: Mass flow Volume flow Corrected volume flow	Enter the time interval for signal suppression (= active pressure shock suppression).	0 to 100 s	0 s


10.3.5 Configuring the partial filled pipe detection

The **Partially filled pipe detection** submenu contains parameters that have to be set for configuring empty pipe detection.

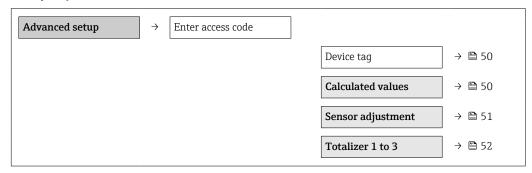
Navigation path

"Setup" menu \rightarrow Partial filled pipe detection

Structure of the submenu

Parameter overview with brief description

Parameter	Prerequisite	Description	Selection/ User entry	Factory setting
Assign process variable	-	Select a process variable to detect empty or partially filled pipes.	OffDensityReference density	Density
Low value partial filled pipe detection	One of the following options is selected in the Assign process variable parameter: Density Reference density	Enter a lower limit value to activate detection of an empty or partially filled pipe.	Max. 15-digit, positive floating- point number	Country-dependent: • 0.2 kg/l • 12.5 lb/cf
High value partial filled pipe detection	One of the following options is selected in the Assign process variable parameter: Density Reference density	Enter an upper limit value to activate detection of an empty or partially filled pipe.	Max. 15-digit, positive floating- point number	Country-dependent: • 6 kg/l • 374.6 lb/cf
Response time part. filled pipe detect.	One of the following options is selected in the Assign process variable parameter: Density Reference density	Enter the time interval until the diagnostic message <u>A</u> S862 Partly filled pipe detection is displayed for an empty or partially filled pipe.	0 to 100 s	1 s


10.4 Advanced settings

The **Advanced setup** menu with its submenus contains all parameters needed for specific settings.

Navigation path

"Setup" menu → Advanced setup

Overview of the parameters and submenus in the "Advanced setup" menu taking the example of the Web browser

10.4.1 Defining the tag name

To enable quick identification of the measuring point within the system, you can enter a unique designation using the **Device tag** parameter and thus change the factory setting.

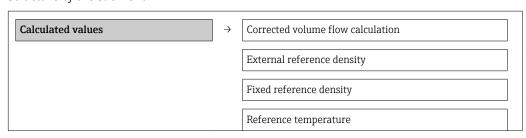
Navigation path

Setup \rightarrow Advanced setup \rightarrow Device tag

Parameter overview with brief description

Parameter	Description	Selection/ User entry	Factory setting
Device tag	Enter the name for the measuring point.	Max. 32 characters, such as letters, numbers or special characters (e.g. @, %, /)	Promass

- The number of characters displayed depends on the characters used.


10.4.2 Calculated values

The **Calculated values** submenu contains parameters for calculating the corrected volume flow.

Navigation path

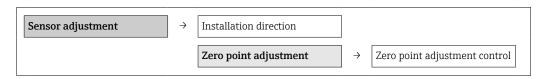
"Setup" menu → Advanced setup → Calculated values

Structure of the submenu

Linear expansion coefficient
Square expansion coefficient

Parameter overview with brief description

Parameter	Prerequisites	Description	Selection/input	Factory settings
Corrected volume flow calculation	-	Select the reference density for calculating the corrected volume flow.	 Fixed reference density Calculated reference density Reference density according to API 53 External reference density 	Calculated reference density
External reference density	-	Shows external reference density.	Floating-point number with sign	Country- dependent: 0 kg/Nl (0 lb/scf)
Fixed reference density	The following option is selected in the Corrected volume flow calculation parameter: Fixed reference density	Enter the fixed value for the reference density.	Positive floating- point number with leading sign	Country-dependent: 0.001 kg/Nl (0.062 lb/scf)
Reference temperature	The following option is selected in the Corrected volume flow calculation parameter: Calculated reference density	Enter the reference temperature for calculating the reference density.	Floating-point number with sign	Country- dependent: 20 °C (68 ° F)
Linear expansion coefficient	The following option is selected in the Corrected volume flow calculation parameter: Calculated reference density	Enter the linear, medium- specific expansion coefficient for calculating the reference density.	0 to 1	0.0
Square expansion coefficient	-	For media with a non- linear expansion pattern, use this function to enter a quadratic, medium- specific expansion coefficient for calculating the reference density.	0 to 1	0.0


10.4.3 Carrying out a sensor adjustment

The **Sensor adjustment** submenu contains parameters that pertain to the functionality of the sensor.

Navigation path

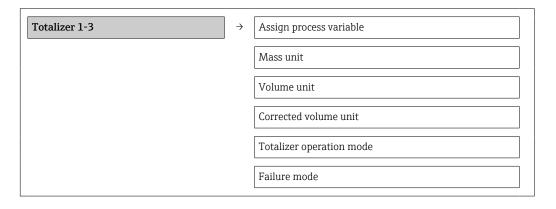
"Setup" menu → Advanced setup → Sensor adjustment

Structure of the submenu

	Progress	

Parameter overview with brief description

Parameter	Description	Selection/ User entry	Factory setting
Installation direction	Change the sign of the direction of flow of the fluid.	Flow in arrow directionFlow against arrow direction	Flow in arrow direction
Zero point adjustment control	Start the zero point adjustment.	CancelStart	Cancel
Progress		0100 %	0


10.4.4 Configuring the totalizer

You can configure each totalizer in the three submenus **Totalizer 1-3**.

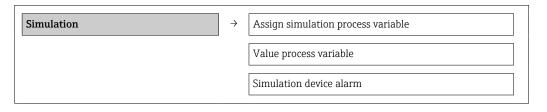
Navigation path

"Setup" menu \rightarrow Advanced setup \rightarrow Totalizer 1-3

Structure of the submenu

Parameter overview with brief description

Parameter	Prerequisite	Description	Selection/ User entry	Factory setting
Assign process variable	-	Select process variable for totalizer. Result The selection determines the choose list of the Unit parameter.	Mass flow Volume flow Corrected volume flow The range of options increases if the measuring device has one or more application packages.	Mass flow
Mass unit	The following option is selected in the Assign process variable parameter: Mass flow	Select the unit for mass. Result The selected unit is taken from: Mass flow unit	Unit choose list	Country-dependent: • kg • lb


Parameter	Prerequisite	Description	Selection/ User entry	Factory setting
Volume unit	The following option is selected in the Assign process variable parameter: Volume flow	Select the unit for volume. Result The selected unit is taken from: Volume flow unit	Unit choose list	Country-dependent l gal (us)
Corrected volume unit	The following option is selected in the Assign process variable parameter: Corrected volume flow	Select the unit for standard volume. Result The selected unit is taken from: Corrected volume flow unit	Unit choose list	Country-dependent: Nl Scf
Totalizer operation mode	One of the following options is selected in the Assign process variable parameter: Mass flow Volume flow Corrected volume flow	Select totalizer calculation mode.	 Net flow total Forward flow total Reverse flow total 	Net flow total
Failure mode	One of the following options is selected in the Assign process variable parameter: Mass flow Volume flow Corrected volume flow	Specify the behavior of the totalizer in the event of a device alarm.	StopActual valueLast valid value	Stop

10.5 Simulation

The **Simulation** submenu enables you to simulate, without a real flow situation, various process variables in the process and the device alarm mode and to verify downstream signal chains (switching valves or closed-control loops).

Navigation path

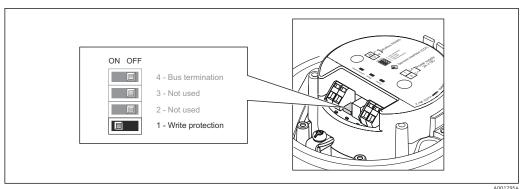
"Diagnostics" menu → Simulation

10.5.1 Parameter overview with brief description

Parameter	Prerequisite	Description	Selection/ User entry	Factory setting
Assign simulation process variable	-	Select a process variable for the simulation process that is activated.	Off Mass flow Volume flow Corrected volume flow Density Reference density Temperature The range of options increases if the measuring device has one or more application packages.	Off
Value process variable	A process variable is selected in the Assign simulation process variable parameter.	Enter the simulation value for the selected process variable.	Depends on the process variable selected	-
Simulation device alarm	-	Switch the device alarm on and off.	Off On	Off

10.6 Protecting settings from unauthorized access

The following option exists for protecting the configuration of the measuring device from unintentional modification after commissioning: Write protection via write protection switch


10.6.1 Write protection via write protection switch

The write protection switch makes it possible to block write access to the entire operating menu with the exception of the following parameters:

- External pressure
- External temperature
- Reference density
- All parameters for configuring the totalizer

The parameter values are now read only and cannot be edited any more:

- Via service interface (CDI)
- Via Modbus RS485

110017331

- 1. Depending on the housing version, loosen the securing clamp or fixing screw of the housing cover.
- 2. Depending on the housing version, unscrew or open the housing cover.
- 3. Setting the write protection switch on the main electronics module to the ON position enables the hardware write protection. Setting the write protection switch on the main electronics module to the OFF position (factory setting) disables the hardware write protection.
 - If hardware write protection is enabled, the **Hardware locked** option is displayed in the **Locking status** parameter $\rightarrow \boxminus 56$; if disabled, no option is displayed in the **Locking status** parameter $\rightarrow \boxminus 56$
- 4. Reverse the removal procedure to reassemble the transmitter.

11 Operation

11.1 Read device locking status

The write protection types that are currently active can be determined using the **Locking status** parameter.

Navigation path

"Display/operation" menu → Locking status

Function scope of "Locking status" parameter

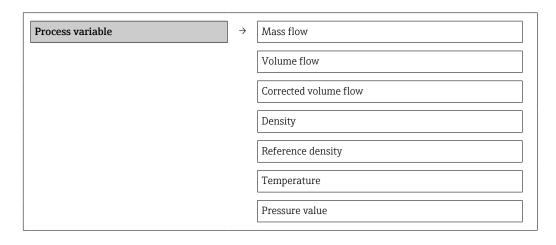
Options	Description
Hardware locked	The write protection switch (DIP switch) for hardware locking is activated on the main electronics module. This prevents write access to the parameters $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Temporarily locked	Write access to the parameters is temporarily locked on account of internal processes running in the device (e.g. data upload/download, reset etc). Once the internal processing has been completed, the parameters can be changed once again.

11.2 Reading measured values

You can read all measured values using the **Measured values** menu.

Navigation path

Diagnostics → Measured values


11.2.1 Process variables

The **Process variables** submenu contains all the parameters needed to display the current measured values for every process variable.

Navigation path

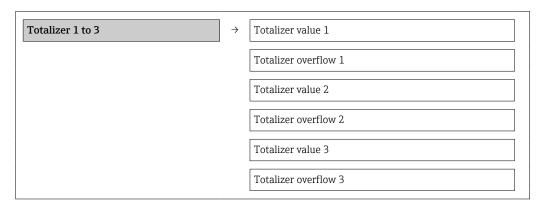
"Diagnostics" menu → Measured values → Process variables

Structure of the submenu

Parameter overview with brief description

Parameter overview with brief description

Parameter	Prerequisite	Description	Display
Mass flow	_	Displays the mass flow currently measured	Floating-point number with sign
Volume flow	_	Displays the volume flow currently calculated	Floating-point number with sign
Corrected volume flow	_	Displays the corrected volume flow currently calculated	Floating-point number with sign
Density	_	Displays the density currently measured	Floating-point number with sign
Reference density	_	Displays the density currently measured at reference temperature	Floating-point number with sign
Temperature	_	Displays the medium temperature currently measured	Floating-point number with sign
Pressure value	_	Displays either a fixed or external pressure value	Floating-point number with sign


11.2.2 Totalizer

The **Totalizer** submenu contains all the parameters needed to display the current measured values for every totalizer.

Navigation path

"Diagnostics" menu \rightarrow Measured values \rightarrow Totalizer

Structure of the submenu

Parameter overview with brief description

Parameter	Prerequisite	Description	Display
Totalizer value 1-3	One of the following options is selected in the Assign process variable parameter of the Totalizer 1-3 submenu: • Mass flow • Volume flow • Corrected volume flow	Displays the current totalizer counter value.	Floating point number with sign
Totalizer overflow 1-3	One of the following options is selected in the Assign process variable parameter of the Totalizer 1-3 submenu: • Mass flow • Volume flow • Corrected volume flow	Displays the current totalizer overflow.	Integer

11.3 Adapting the measuring device to the process conditions

The following are available for this purpose:

- Basic settings using the **Setup** menu \rightarrow $\stackrel{ riangle}{ riangle}$ 42
- Advanced settings using the **Advanced setup** menu $\rightarrow \triangleq 50$

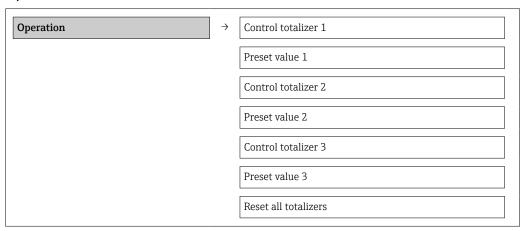
11.4 Performing a totalizer reset

In the **Operation** submenu, 2 parameters with various options for resetting the three totalizers are available:

- Control totalizer 1-3
- Reset all totalizers

Navigation path

"Display/operat." menu → Operation


Function scope of the "Control totalizer" parameter

Options	Description
Totalize	The totalizer is started.
Reset + hold	The totaling process is stopped and the totalizer is reset to 0.
Preset + hold	The totaling process is stopped and the totalizer is set to the defined start value in the Preset parameter.
Reset + totalize	The totalizer is reset to 0 and the totaling process is restarted.
Preset + totalize	The totalizer is set to the defined start value in the Preset parameter and the totaling process is restarted.

Function scope of the "Reset all totalizers" parameter

Options	Description
Reset + totalize	Resets all totalizers to 0 and restarts the totaling process. This deletes all the flow values previously totalized.

"Operation" submenu

Parameter overview with brief description

Parameter	Prerequisite	Description	Selection/ User entry	Factory setting
Control totalizer 1-3	A process variable is selected in the Assign process variable parameter of the Totalizer 1-3 submenu.	Control totalizer value.	 Totalize Reset + hold Preset + hold Reset + totalize Preset + totalize 	Totalize
Preset value 1-3	A process variable is selected in the Assign process variable parameter of the Totalizer 1-3 submenu.	Specify start value for totalizer.	Floating-point number with sign	Country-dependent: • 0 kg • 0 lb
Reset all totalizers	-	Reset all totalizers to 0 and start.	CancelReset + totalize	Cancel

12 Diagnostics and troubleshooting

12.1 General troubleshooting

For output signals

Problem	Possible causes	Remedy
Green power LED on the main electronics module of the transmitter is dark	Supply voltage does not match that specified on the nameplate.	Apply the correct supply voltage → 🖺 28.
Green power LED on the main electronics module of the transmitter is dark	Power supply cable connected incorrectly	Check the terminal assignment .
Green power LED on Safety Barrier Promass 100 is dark	Supply voltage does not match that specified on the nameplate.	Apply the correct supply voltage → 🖺 28.
Green power LED on Safety Barrier Promass 100 is dark	Power supply cable connected incorrectly	Check the terminal assignment → 🖺 27.
Device measures incorrectly.	Configuration error or device is operated outside the application.	Check and correct parameter configuration. Observe limit values specified in the "Technical Data".

For access

Problem	Possible causes	Remedy
No write access to parameters	Hardware write protection enabled	Set the write protection switch on the main electronics module to the OFF position $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
No connection via Modbus RS485	Modbus RS485 bus cable connected incorrectly	Check the terminal assignment .
No connection via Modbus RS485	Device plug connected incorrectly	Check the pin assignment of the device plug $\rightarrow \stackrel{\square}{=} 27$.
No connection via Modbus RS485	Modbus RS485 cable incorrectly terminated	Check terminating resistor $\rightarrow \stackrel{\triangle}{=} 30$.
No connection via Modbus RS485	Incorrect settings for the communication interface	Check the Modbus RS485 configuration $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
No connection via service interface	Incorrect configuration of USB interface on PC or driver not	Observe the documentation for the Commubox.
	installed correctly.	FXA291: Document "Technical Information" TI00405C

12.2 Diagnostic information via light emitting diodes

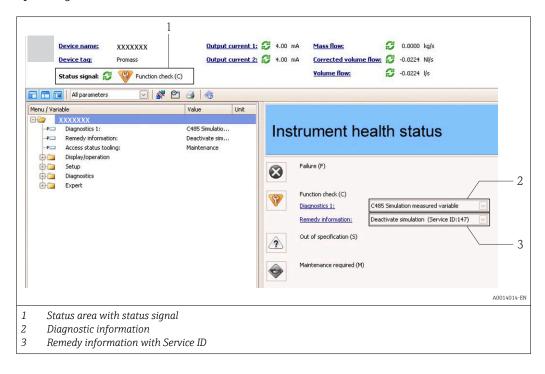
12.2.1 Transmitter

Various light emitting diodes (LEDs) on the main electronics module of the transmitter provide information on device status.

LED	Color	Meaning
Power	Off	Supply voltage is off or too low.
	Green	Supply voltage is ok.

Alarm	Off	Device status is ok.
	Flashing red	A device error of diagnostic behavior "Warning" has occurred.
	Red	 A device error of diagnostic behavior "Alarm" has occurred. Boot loader is active.
Communication	Flashing white	Modbus RS485 communication is active.

12.2.2 Safety Barrier Promass 100


Various light emitting diodes (LEDs) on the Safety Barrier Promass 100 provide status information.

LED	Color	Meaning
Power	Off	Supply voltage is off or too low.
	Green	Supply voltage is ok.
Communication	Flashing white	Modbus RS485 communication is active.

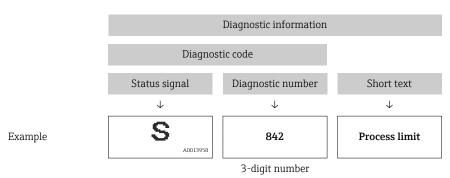
12.3 Diagnostic information in FieldCare

12.3.1 Diagnostic options

Any faults detected by the measuring device are displayed on the home page of the operating tool once the connection has been established.

- Furthermore, diagnostic events that have occurred can be viewed in the **Diagnostics** menu:
 - Via parameters
 - Via submenu → 🖺 66

Status signals


The status signals provide information on the state and reliability of the device by categorizing the cause of the diagnostic information (diagnostic event).

Symbol	Meaning
A0017271	Failure A device error has occurred. The measured value is no longer valid.
A0017278	Function check The device is in service mode (e.g. during a simulation).
A0017277	Out of specification The device is operated: Outside its technical specification limits (e.g. outside the process temperature range)
A0017276	Maintenance required Maintenance is required. The measured value is still valid.

The status signals are categorized in accordance with VDI/VDE 2650 and NAMUR Recommendation NE 107.

Diagnostic information

The fault can be identified using the diagnostic information. The short text helps you by providing information about the fault.

12.3.2 Calling up remedy information

Remedy information is provided for every diagnostic event to ensure that problems can be rectified quickly:

- On the home page
 - Remedy information is displayed in a separate field below the diagnostics information.
- In the **Diagnostics** menu
 Remedy information can be called up in the working area of the user interface.

The user is in the **Diagnostics** menu.

- 1. Call up the desired parameter.
- 2. On the right in the working area, mouse over the parameter.
 - ► A tool tip with remedy information for the diagnostic event appears.

12.4 Diagnostic information via communication interface

12.4.1 Reading out diagnostic information

Diagnostic information can be read out via Modbus RS485 register addresses.

- Via register address **6821** (data type = string): diagnosis code, e.g. F270
- Via register address **6859** (data type = integer): diagnosis number, e.g. 270
- For an overview of diagnostic events with diagnosis number and diagnosis code $\rightarrow \stackrel{\cong}{=} 64$

12.4.2 Configuring error response mode

Error response mode for Modbus RS485 communication can be configured in the **Communication** submenu using 2 parameters.

Navigation path

"Setup" menu \rightarrow Communication

Parameter overview with brief description

Parameter	Description	Options	Factory setting
Assign diagnostic behavior	Select diagnostic behavior for MODBUS communication.	OffAlarm or warningWarningAlarm	Alarm
Failure mode	Select measured value output behavior when a diagnostic message occurs via Modbus communication.	NaN valueLast valid valueNaN = not a number	NaN value
	This parameter operates in accordance with the option selected in the Assign diagnostic behavior parameter.		

12.5 Adapting the diagnostic information

12.5.1 Adapting the diagnostic behavior

Each diagnostic number is assigned a certain diagnostic behavior at the factory. The user can change this assignment for certain diagnostic numbers via the **Diagnostic no. xxx** parameter.

Navigation path

"Expert" menu \rightarrow System \rightarrow Diagnostic handling \rightarrow Diagnostic behavior \rightarrow Assign behavior of diagnostic no. xxx

You can assign the following options to the diagnostic number as the diagnostic behavior:

Options	Description
Alarm	Measurement is interrupted. Measured value output via Modbus RS485 and totalizers assume the defined alarm condition. A diagnostic message is generated.
Warning	Measurement is resumed. Measured value output via Modbus RS485 and totalizers are not affected. A diagnostic message is generated.
Logbook entry only	The device continues to measure. The diagnostic message is entered in the Event logbook (events list) submenu only and is not displayed in alternation with the measured value display.
Off	The diagnostic event is ignored, and no diagnostic message is generated or entered.

12.6 Overview of diagnostic information

The amount of diagnostic information increases if the measuring device has one or more application packages.

Diagnostics for the sensor

Diagnosti c number	Short text	Remedial measures	Status signal from the factory	Diagnostic behavior from the factory
022	Sensor temperature	Change main electronic module. Change sensor.	F	Alarm
044	Sensor drift	Check or change main electronics. Change sensor.	S	Alarm*
046	Sensor limit	Inspect sensor. Check process conditions.	S	Alarm*
062	Sensor connection	Change main electronic module. Change sensor.	F	Alarm
082	Data storage	1. Change main electronic module. 2. Change sensor.	F	Alarm
083	Memory content	Restart device. Restore S-DAT data. Change sensor.	F	Alarm
* Diagnostic behavior can be changed: "Adapting the diagnostic behavior" section $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $				

Diagnostics for the electronics

Diagnosti c number	Short text	Remedial measures	Status signal from the factory	Diagnostic behavior from the factory
242	Software incompatible	Check software. Flash or change main electronic module.	F	Alarm
261	Electronic modules	Restart device. Check electronic modules. Change I/O module or main electronics.	F	Alarm
270	Main electronic failure	Change main electronic module.	F	Alarm
271	Main electronic failure	Restart device. Change main electronic module.	F	Alarm
272	Main electronic failure	Restart device. Contact service.	F	Alarm
273	Main electronic failure	Replace electronics.	F	Alarm
274	Main electronic failure	Replace electronics.	S	Warning *
311	Electronic failure	Transfer data or reset device. Contact service.	F	Alarm
* Diagnostic behavior can be changed: "Adapting the diagnostic behavior" section $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $				

Diagnostics for the configuration

Diagnosti c number	Short text	Remedial measures	Status signal from the factory	Diagnostic behavior from the factory
410	Data transfer	Check connection. Retry data transfer.	F	Alarm
411	Up-/download active	Up-/download active, please wait	С	Warning
438	Dataset	Check data set file. Check device configuration. Up- and download new configuration.	M	Warning
453	Flow override	Deactivate flow override.	С	Warning
484	Simulation failsafe mode	Deactivate simulation.	С	Alarm
485	Simulation process variable	Deactivate simulation.	С	Warning
* Diagnostic	* Diagnostic behavior can be changed: "Adapting the diagnostic behavior" section → 🖺 63			

Diagnostics for the process

Diagnosti c number	Short text	Remedial measures	Status signal from the factory	Diagnostic behavior from the factory
830	Ambient temperature	Reduce the ambient temperature around the sensor housing.	S	Warning
831	Ambient temperature	Increase the ambient temperature around the sensor housing.	S	Warning
832	Ambient temperature	Reduce ambient temperature.	S	Warning*
833	Ambient temperature	Increase ambient temperature.	S	Warning*
834	Process temperature	Reduce process temperature.	S	Warning*
835	Process temperature	Increase process temperature.	S	Warning*
843	Process limit	Check process conditions.	S	Warning
862	Partly filled pipe	Check for gas in process. Check detection limits.	S	Warning
910	Measuring tube does not vibrate	Check electronics. Inspect sensor.	F	Alarm
912	Inhomogeneous	Fluid is inhomogeneous, e.g. gas or solid content! 1. Check process conditions. 2. Increase system pressure. In particular with outgassing media and/or increased gas content, the following measures are recommended to increase system pressure: Install the instrument at the outlet side of a pump. Install the instrument at the lowest point of an ascending pipeline. Install a flow restriction, e.g. reducer or orifice plate, downstream from the instrument.	S	Warning*

Diagnosti c number	Short text	Remedial measures	Status signal from the factory	Diagnostic behavior from the factory
913	Inhomogeneous	Oscillation amplitude limit! The fluid properties do not allow a precise measurement. Cause: Process fluid is very inhomogeneous (gas or solid content) 1. Check process conditions. 2. Increase voltage. 3. Check main electronic module or sensor.	S	Alarm*
* Diagnostic	Diagnostic behavior can be changed: "Adapting the diagnostic behavior" section → 🖺 63			

12.7 Pending diagnostic events

The **Diagnostics** menu allows the user to view the current diagnostic event and the previous diagnostic event separately.

Navigation path

- "Diagnostics" menu → Actual diagnostics
- "Diagnostics" menu → Previous diagnostics

Parameter overview with brief description

Parameter	Prerequisite	Description	Display
Actual diagnostics	1 diagnostic event has occurred	Displays the current diagnostic event along with the diagnostic information. If two or more messages occur simultaneously, the message with the highest priority is shown	Diagnostic code, short message
		on the display.	
Previous diagnostics	2 diagnostic events have already occurred	Displays the diagnostic event that occurred prior to the current diagnostic event along with the diagnostic information.	Diagnostic code, short message

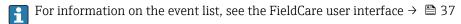
- Other diagnostic events that are pending can be viewed in the **Diagnostic list** submenu $\rightarrow \stackrel{\triangle}{=} 66$

12.8 Diagnostic list

In the **Diagnostic list** submenu, up to 5 currently pending diagnostic events can be displayed along with the related diagnostic information. If more than 5 diagnostic events are pending, the events with the highest priority are shown on the display.

Navigation path

"Diagnostics" menu → Diagnostic list


12.9 Event logbook

12.9.1 Event history

A chronological overview of the event messages that have occurred is provided in the events list which contains a maximum of 20 message entries. This list can be displayed via FieldCare if necessary.

Navigation path

Event list: $\mathbf{F} \rightarrow \text{Tool box} \rightarrow \text{Additional functions}$

This event history includes entries for:

- Diagnostic events → 🖺 64
- Information events \rightarrow $\stackrel{\triangle}{=}$ 67

In addition to the operation time of its occurrence and possible troubleshooting measures, each event is also assigned a symbol that indicates whether the event has occurred or is ended:

- Diagnostics event
 - ①: Event has occurred
 - (→: Event has ended
- Information event
 - ⊕: Event has occurred
- To call up the measures to rectify a diagnostic event: Via "FieldCare" operating tool → 🖺 62
- For filtering the displayed event messages $\rightarrow \triangleq 67$

12.9.2 Filtering the event logbook

Using the **Filter options** parameter, you can define which category of event messages is displayed in the **Events list** submenu.

Navigation path

"Diagnostics" menu \rightarrow Event logbook \rightarrow Filter options

Filter categories

- All
- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- Information (I)

12.9.3 Overview of information events

Unlike a diagnostic event, an information event is displayed in the event logbook only and not in the diagnostic list.

Information event	Event text
I1000	(device ok)
I1089	Power on
I1090	Configuration reset
I1091	Configuration changed
I1110	Write protection switch changed
I1111	Density adjust. error

Information event	Event text
I1151	History reset
I1209	Density adjustment OK
I1221	Zero point adjust failure
I1222	Zero point adjustment OK

12.10 Resetting the measuring device

Using the **Device reset** parameter it is possible to reset the entire device configuration or some of the configuration to a defined state.

Navigation path

"Diagnostics" menu → Device reset → Device reset

Function scope of the "Device reset" parameter

Options	Description
Cancel	The user exists the parameter and no action is performed.
To factory defaults	Every parameter is reset to its factory setting.
To delivery settings	Every parameter for which a customized default setting was ordered is reset to that customized value; all other parameters are reset to their factory setting. This option is not visible if no customized settings were ordered.
Restart device	Restarting the device resets every parameter whose data are saved in the volatile memory (RAM) to the parameter's factory setting (e.g. measured value data). The device configuration remains unchanged.


12.11 Device information

The **Device information** submenu contains all the parameters that display different information for identifying the device.

Navigation path

"Diagnostics" menu → Device information

Structure of the submenu

Parameter overview with brief description

Parameter	Prerequisite	Description	Display
Serial number	-	Displays the serial number of the measuring device. The number can be found on the nameplate of the sensor and transmitter.	Max. 11-digit character string comprising letters and numbers
Firmware version	-	Displays the device firmware version installed.	Character string in the format xx.yy.zz
Device name	-	Displays the name of the transmitter. The name can be found on the nameplate of the transmitter.	Promass 100
Order code	-	Displays the device order code. The order code can be found on the nameplate of the sensor and transmitter in the "Order code" field.	Character string composed of letters, numbers and certain punctuation marks
Extended order code 1-3	Depending on the length of the extended order code, the code is divided into a maximum of 3 parameters.	Displays the 1st, 2nd or 3rd part of the extended order code. The extended order code can also be found on the nameplate of the sensor and transmitter in the "Ext. ord. cd." field.	Character string
ENP version	-	Displays the version of the electronic nameplate.	Character string in the format xx.yy.zz

12.12 Firmware history

Release date	Firmware version	Order code for "Firmware version"	Firmware changes	Documentation type	Documentation
04.2013	01.02.00	Option 74	Update	Operating Instructions	BA01058D/06/DE/02.13 BA01058D/06/EN/02.13
06.2012	01.01.00	Option 78	Original firmware	Operating Instructions	BA01058D/06/DE/01.12 BA01058D/06/EN/01.12

- Flashing the firmware to the current version or to the previous version is possible via the service interface (CDI) .
- For the compatibility of the firmware version with the previous version, the installed device description files and operating tools, observe the information about the device in the "Manufacturer's information" document.
- The manufacturer's information is available:
 - In the Download Area of the Endress+Hauser Internet site: www.endress.com → Download
 - Specify the following details:
 - Product root, e.g. 8E1B
 - Text search: Manufacturer's information
 - Search range: documentation

13 Maintenance

13.1 Maintenance tasks

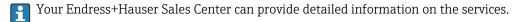
No special maintenance work is required.

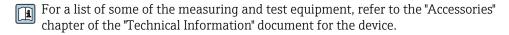
13.1.1 Exterior cleaning

When cleaning the exterior of measuring devices, always use cleaning agents that do not attack the surface of the housing or the seals.

13.1.2 Interior cleaning

Observe the following points for CIP and SIP cleaning:


- Use only cleaning agents to which the process-wetted materials are adequately resistant.


Observe the following points for cleaning with pigs:

Observe the inside diameter of the measuring tube and process connection.

13.2 Measuring and test equipment

Endress+Hauser offers a wide variety of measuring and test equipment, such as W@M or device tests.

13.3 Endress+Hauser services

Endress+Hauser offers a wide variety of services for maintenance such as recalibration, maintenance service or device tests.

Your Endress+Hauser Sales Center can provide detailed information on the services.

14 Repair

14.1 General notes

Repair and conversion concept

The Endress+Hauser repair and conversion concept provides for the following:

- The measuring devices have a modular design.
- Spare parts are grouped into logical kits with the associated Installation Instructions.
- Repairs are carried out by Endress+Hauser Service or by correspondingly trained customers.
- Certified devices can be converted into other certified devices by Endress+Hauser Service or at the factory only.

Notes for repair and conversion

For repair and modification of a measuring device, observe the following notes:

- Use only original Endress+Hauser spare parts.
- Carry out the repair according to the Installation Instructions.
- Observe the applicable standards, federal/national regulations, Ex documentation (XA) and certificates.
- Document every repair and each conversion and enter them into the W@M life cycle management database.

14.2 Spare parts

W@M Device Viewer (www.endress.com/deviceviewer):

All the spare parts for the measuring device, along with the order code, are listed here and can be ordered. If available, users can also download the associated Installation Instructions.

Measuring device serial number:

- Is located on the nameplate of the device.

14.3 Endress+Hauser services

Contact your Endress+Hauser Sales Center for information on services and spare parts.

14.4 Return

The measuring device must be returned if repairs or a factory calibration are required, or if the wrong measuring device has been ordered or delivered. According to legal regulations, Endress+Hauser, as an ISO-certified company, is required to follow certain procedures when handling returned products that are in contact with medium.

To ensure swift, safe and professional device returns, please read the return procedures and conditions on the Endress+Hauser website at www.services.endress.com/return-material

14.5 Disposal

14.5.1 Removing the measuring device

1. Switch off the device.

2. **AWARNING**

Danger to persons from process conditions.

▶ Beware of hazardous process conditions such as pressure in the measuring device, high temperatures or aggressive fluids.

Carry out the mounting and connection steps from the chapters "Mounting the measuring device" and "Connecting the measuring device" in the logically reverse sequence. Observe the safety instructions.

14.5.2 Disposing of the measuring device

WARNING

Danger to personnel and environment from fluids that are hazardous to health.

► Ensure that the measuring device and all cavities are free of fluid residues that are hazardous to health or the environment, e.g. substances that have permeated into crevices or diffused through plastic.

Observe the following notes during disposal:

- Observe valid federal/national regulations.
- Ensure proper separation and reuse of the device components.

72

15 Accessories

Various accessories, which can be ordered with the device or subsequently from Endress +Hauser, are available for the device. Detailed information on the order code in question is available from your local Endress+Hauser sales center or on the product page of the Endress+Hauser website: www.endress.com.

15.1 Device-specific accessories

15.1.1 For the sensor

Accessories	Description
Heating jacket	Is used to stabilize the temperature of the fluids in the sensor. Water, water vapor and other non-corrosive liquids are permitted for use as fluids. If using oil as a heating medium, please consult with Endress+Hauser. Heating jackets cannot be used with sensors fitted with a rupture disk.
	For details, see Operating Instructions BA00099D

15.2 Communication-specific accessories

Accessories	Description	
Commubox FXA195 HART	For intrinsically safe HART communication with FieldCare via the USB interface. For details, see "Technical Information" TI00404F	
Commubox FXA291	Connects Endress+Hauser field devices with a CDI interface (= Endress+Hauser Common Data Interface) and the USB port of a computer or laptop. For details, see "Technical Information" TI00405C	
HART Loop Converter HMX50	Is used to evaluate and convert dynamic HART process variables to analog current signals or limit values. For details, see "Technical Information" TI00429F and Operating Instructions BA00371F	
Wireless HART adapter SWA70	Is used for the wireless connection of field devices. The WirelessHART adapter can be easily integrated into field devices and existing infrastructures, offers data protection and transmission safety and can be operated in parallel with other wireless networks with minimum cabling complexity. For details, see Operating Instructions BA00061S	
Fieldgate FXA320	Gateway for the remote monitoring of connected 4-20 mA measuring devices via a Web browser. For details, see "Technical Information" TI00025S and Operating Instructions BA00053S	
Fieldgate FXA520	Gateway for the remote diagnostics and remote configuration of connected HART measuring devices via a Web browser. For details, see "Technical Information" TI00025S and Operating Instructions BA00051S	
Field Xpert SFX100	Compact, flexible and robust industry handheld terminal for remote configuration and for obtaining measured values via the HART current output (4-20 mA). For details, see Operating Instructions BA00060S	

15.3 Service-specific accessories

Accessories	Description	
Applicator	Software for selecting and sizing Endress+Hauser measuring devices: Calculation of all the necessary data for identifying the optimum flowmeter: e.g. nominal diameter, pressure loss, accuracy or process connections. Graphic illustration of the calculation results	
	Administration, documentation and access to all project-related data and parameters over the entire life cycle of a project.	
	Applicator is available: Via the Internet: https://wapps.endress.com/applicator On CD-ROM for local PC installation.	
W@M	Life cycle management for your plant W@M supports you with a wide range of software applications over the entire process: from planning and procurement, to the installation, commissioning and operation of the measuring devices. All the relevant device information, such as the device status, spare parts and device-specific documentation, is available for every device over the entire life cycle. The application already contains the data of your Endress+Hauser device. Endress +Hauser also takes care of maintaining and updating the data records. W@M is available: Via the Internet: www.endress.com/lifecyclemanagement On CD-ROM for local PC installation.	
FieldCare	FDT-based plant asset management tool from Endress+Hauser. It can configure all smart field units in your system and helps you manage them. By using the status information, it is also a simple but effective way of checking their status and condition.	
	For details, see Operating Instructions BA00027S and BA00059S	

15.4 System components

Accessories	Description	
Memograph M graphic display recorder	The Memograph M graphic data manager provides information on all the relevant measured variables. Measured values are recorded correctly, limit values are monitored and measuring points analyzed. The data are stored in the 256 MB internal memory and also on a SD card or USB stick.	
	For details, see "Technical Information" TI00133R and Operating Instructions BA00247R	
Cerabar M	The pressure transmitter for measuring the absolute and gauge pressure of gases, steam and liquids. It can be used to read in the operating pressure value via Modbus RS485 or EtherNet/IP.	
	For details, see "Technical Information" TI00426P, TI00436P and Operating Instructions BA00200P, BA00382P	
Cerabar S	The pressure transmitter for measuring the absolute and gauge pressure of gases steam and liquids. It can be used to read in the operating pressure value via Modbus RS485 or EtherNet/IP.	
	For details, see "Technical Information" TI00383P and Operating Instructions BA00271P	
iTEMP	The temperature transmitters can be used in all applications and are suitable for the measurement of gases, steam and liquids. They can be used to read in the medium temperature via analog or digital communication.	
	For details, see "Fields of Activity", FA00006T	

16 Technical data

16.1 Application

The measuring device is suitable for flow measurement of liquids and gases only.

Depending on the version ordered, the measuring device can also measure potentially explosive, flammable, poisonous and oxidizing media.

To ensure that the device remains in proper operating condition for its service life, use the measuring device only for media against which the process-wetted materials are adequately resistant.

16.2 Function and system design

Measuring principle

Mass flow measurement based on the Coriolis measuring principle

Measuring system

The device consists of a transmitter and a sensor. If a device with Modbus RS485 intrinsically safe is ordered, the Safety Barrier Promass 100 is part of the scope of supply and must be implemented to operate the device.

One device version is available: compact version, transmitter and sensor form a mechanical unit.

For information on the structure of the device $\rightarrow \blacksquare 10$

16.3 Input

Measured variable

Direct measured variables

- Mass flow
- Density
- Temperature
- Viscosity

Calculated measured variables

- Volume flow
- Corrected volume flow
- Reference density

Measuring range

Measuring ranges for liquids

DN		Measuring range full scale values $\dot{m}_{min(F)}$ to $\dot{m}_{max(F)}$	
[mm]	[in]	[kg/h]	[lb/min]
8	3/8	0 to 2 000	0 to 73.5
15	1/2	0 to 6 500	0 to 238
15 FB	½ FB	0 to 18000	0 to 660
25	1	0 to 18000	0 to 660
25 FB	1 FB	0 to 45 000	0 to 1650
40	11/2	0 to 45 000	0 to 1650
40 FB	1½ FB	0 to 70 000	0 to 2 570

DN		Measuring range full scale values $\dot{m}_{min(F)}$ to $\dot{m}_{max(F)}$	
[mm]	[in]	[kg/h]	[lb/min]
50	2	0 to 70 000	0 to 2 570
50 FB	2 FB	0 to 180 000	0 to 6600
80	3	0 to 180 000	0 to 6600
FB = Full bore			

Measuring ranges for gases

The full scale values depend on the density of the gas and can be calculated with the formula below:

 $\dot{m}_{max(G)} = \dot{m}_{max(F)} \cdot \rho_G : x$

ṁ _{max(G)}	Maximum full scale value for gas [kg/h]
m _{max(F)}	Maximum full scale value for liquid [kg/h]
$\dot{m}_{\max(G)} < \dot{m}_{\max(F)}$	$\dot{m}_{ max(G)}$ can never be greater than $\dot{m}_{ max(F)}$
ρ_{G}	Gas density in [kg/m³] at operating conditions

DN		х
[mm]	[in]	[kg/m³]
8	3/8	60
15	1/2	80
15 FB	½ FB	90
25	1	90
25 FB	1 FB	90
40	1½	90
40 FB	1½ FB	90
50	2	90
50 FB	2 FB	110
80	3	155 110
FB = Full bore		<u> </u>

Calculation example for gas

- Sensor: Promass I, DN 50
- Gas: Air with a density of 60.3 kg/m 3 (at 20 $^{\circ}$ C and 50 bar)
- Measuring range (liquid):70 000 kg/h
- $x = 90 \text{ kg/m}^3 \text{ (for Promass I, DN 50)}$

Maximum possible full scale value:

 $\dot{m}_{\max(G)} = \dot{m}_{\max(F)} \cdot \rho_G : x = 70\,000 \text{ kg/h} \cdot 60.3 \text{ kg/m}^3 : 90 \text{ kg/m}^3 = 46\,900 \text{ kg/h}$

Recommended measuring range

"Flow limit" section \rightarrow \blacksquare 86

Operable flow range

Over 1000:1.

Flow rates above the preset full scale value are not overridden by the electronics unit, with the result that the totalizer values are registered correctly.

76

Input signal

Fieldbuses

To increase the accuracy of certain measured variables or to calculate the corrected volume flow for gases, the automation system can continuously write different measured values to the measuring device via Modbus RS485, EtherNet/IP or HART input:

- Process pressure or medium temperature to increase accuracy (e.g. external values from Cerabar M, Cerabar S or iTEMP)
- Reference density for calculating the corrected volume flow

16.4 Output

Output signal

Modbus RS485

Physical interface	In accordance with EIA/TIA-485-A standard	
Terminating resistor	 For device version used in non-hazardous areas or Zone 2/Div. 2: integrated and can be activated via DIP switches on the transmitter electronics module For device version used in intrinsically safe areas: integrated and can be activated via DIP switches on the Safety Barrier Promass 100 	

Signal on alarm

Depending on the interface, failure information is displayed as follows:

Modbus RS485

Failure mode	Choose from:
	■ NaN value instead of current value
	■ Last valid value

Operating tool

Plain text display	With information on cause and remedial measures
--------------------	---

Light emitting diodes (LED)

Status information	Status indicated by various light emitting diodes	
	The following information is displayed depending on the device version: Supply voltage active Data transmission active Device alarm/error has occurred	

Ex connection data

These values only apply for the following device version:

Order code for "Output", option M: Modbus RS485, for use in intrinsically safe areas

Transmitter

Intrinsically safe values

Order code for	Terminal numbers			
"Approvals"	Supply voltage		Signal transmission	
	20 (L-)	10 (L+)	62 (A)	72 (B)
 Option BM: ATEX II2G + IECEx Z1 Ex ia, II2D Ex tb Option BO: ATEX II1/2G + IECEx Z0/Z1 Ex ia, II2D Option BQ: ATEX II1/2G + IECEx Z0/Z1 Ex ia Option BU: ATEX II2G + IECEx Z1 Ex ia Option C2: CSA C/US IS Cl. I, II, III Div. 1 Option 85: ATEX II2G + IECEx Z1 Ex ia + CSA C/US IS Cl. I, II, III Div. 1 		$I_i = 62$ $P_i = 2$ $L_i = 62$	5.24 V 3 mA 45 W 0 µH 6 nF	

^{*} The gas group depends on the sensor and nominal diameter.

For an overview and for information on the interdependencies between the gas group - sensor - nominal diameter, see the "Safety Instructions" (XA) document for the measuring device

Low flow cut off

The switch points for low flow cut off are user-selectable.

Galvanic isolation

The following connections are galvanically isolated from each other:

- Outputs
- Power supply

Protocol-specific data

Modbus RS485

Protocol	Modbus Applications Protocol Specification V1.1
Device type	Slave
Slave address range	1 to 247
Broadcast address range	0
Function codes	 03: Read holding register 04: Read input register 06: Write single registers 08: Diagnostics 16: Write multiple registers 23: Read/write multiple registers
Broadcast messages	Supported by the following function codes: O6: Write single registers 16: Write multiple registers 23: Read/write multiple registers
Supported baud rate	 1200 BAUD 2400 BAUD 4800 BAUD 9600 BAUD 19200 BAUD 38400 BAUD 57600 BAUD 115200 BAUD
Data transfer mode	ASCII RTU
Data access	Each device parameter can be accessed via Modbus RS485. For Modbus register information $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $

78

16.5 Power supply

Terminal assignment

→ 🖺 25

Pin assignment, device plug

→ 🖺 27

Supply voltage

Transmitter

- For device version with all communication types except Modbus RS485 intrinsically safe: DC20 to 30 V
- For device version with Modbus RS485100 intrinsically safe: power supply via Safety Barrier Promass 100

The power unit must be tested to ensure it meets safety requirements (e.g. PELV, SELV).

Safety Barrier Promass 100

DC20 to 30 V

Power consumption

Transmitter

Order code for "Output"	Maximum Power consumption
Option M : Modbus RS485, for use in non-hazardous areas and Zone 2/Div. 2	3.5 W
Option M : Modbus RS485, for use in intrinsically safe areas	2.45 W

Safety Barrier Promass 100

Order code for	Maximum	
"Output"	Power consumption	
Option M : Modbus RS485, for use in intrinsically safe areas	4.8 W	

Current consumption

Transmitter

Order code for "Output"	Maximum Current consumption	Maximum switch-on current	
Option M : Modbus RS485, for use in non-hazardous areas and Zone 2/Div. 2	90 mA	10 A (< 0.8 ms)	
Option M : Modbus RS485, for use in intrinsically safe areas	145 mA	16 A (< 0.4 ms)	

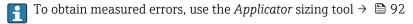
Safety Barrier Promass 100

Order code for	Maximum	Maximum
"Output"	Current consumption	switch-on current
Option M : Modbus RS485, for use in intrinsically safe areas	230 mA	10 A (< 0.8 ms)

Power supply failure

- Totalizers stop at the last value measured.
- Depending on the device version, the configuration is retained in the device memory or in the plug-in memory (HistoROM DAT).
- Error messages (incl. total operated hours) are stored.

Electrical connection


→ 🗎 28

Potential equalization	No special measures for potential equalization are required.
Terminals	Transmitter Spring terminals for wire cross-sections 0.5 to 2.5 mm ² (20 to 14 AWG)
	Safety Barrier Promass 100 Plug-in screw terminals for wire cross-sections 0.5 to 2.5 $\mathrm{mm^2}$ (20 to 14 AWG)
Cable entries	Transmitter Cable gland: $M20 \times 1.5$ with cable ϕ 6 to 12 mm (0.24 to 0.47 in) Thread for cable entry: NPT $\frac{1}{2}$ G $\frac{1}{2}$ M20
Cable specification	→ 1 23

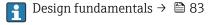
16.6 Performance characteristics

Reference operating conditions

- Error limits based on ISO 11631
- Water with +15 to +45 °C (+59 to +113 °F) at2 to 6 bar (29 to 87 psi)
- Specifications as per calibration protocol
- Accuracy based on accredited calibration rigs that are traced to ISO 17025.

Maximum measured error

o.r. = of reading; $1 \text{ g/cm}^3 = 1 \text{ kg/l}$; T = medium temperature


Base accuracy

Mass flow and volume flow (liquids)

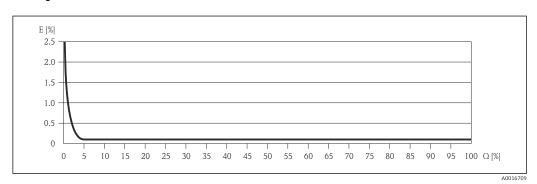
±0.10 %

Mass flow (gases)

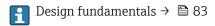
±0.50 % o.r.

Density (liquids)

- Reference conditions:±0.0005 g/cm³
- Standard density calibration:±0.02 g/cm³
 (valid over the entire temperature range and density range)
- Wide-range density specification (order code for "Application package", option EF "Special density and concentration" or EH "Special density and viscosity"): ±0.004 g/cm³ (valid range for special density calibration: 0 to 2 g/cm³, +10 to +80 °C (+50 to +176 °F))


Temperature

 $\pm 0.5 \,^{\circ}\text{C} \pm 0.005 \cdot \text{T} \,^{\circ}\text{C} \, (\pm 0.9 \,^{\circ}\text{F} \pm 0.003 \cdot (\text{T} - 32) \,^{\circ}\text{F})$


Zero point stability

D	N	Zero point stability				
[mm]	[in]	[kg/h]	[lb/min]			
8	³ / ₈	0.150	0.0055			
15	1/2	0.488	0.0179			
15 FB	½ FB	1.350	0.0496			
25	1	1.350	0.0496			
25 FB	1 FB	3.375	0.124			
40	1½	3.375	0.124			
40 FB	1 ½ FB	5.25	0.193			
50	2	5.25	0.193			
50 FB	2 FB	13.5	0.496			
80	3	13.5	0.496			
FB = Full bore						

Example for max. measured error

- E Error: Maximum measured error as % o.r. (example)
- Q Flow rate as %

Flow values

Flow values as turndown parameter depending on nominal diameter.

SI units

DN	1:1	1:10	1:20	1:50	1:100	1:500
[mm]	[kg/h]	[kg/h]	[kg/h]	[kg/h]	[kg/h]	[kg/h]
8	2 000	200	100	40	20	4
15	6500	650	325	130	65	13
15 FB	18 000	1800	900	360	180	36
25	18 000	1800	900	360	180	36
25 FB	45 000	4500	2 2 5 0	900	450	90
40	45 000	4500	2 2 5 0	900	450	90
40 FB	70 000	7 000	3 500	1400	700	140
50	70 000	7 000	3 500	1400	700	140

DN	1:1	1:10	1:20	1:50	1:100	1:500
[mm]	[kg/h]	[kg/h]	[kg/h]	[kg/h]	[kg/h]	[kg/h]
50 FB	180 000	18000	9000	3 600	1800	360
80	180 000	18000	9000	3 600	1800	360
FB = Full bore						

US units

DN	1:1	1:10	1:20	1:50	1:100	1:500
[inch]	[lb/min]	[lb/min]	[lb/min]	[lb/min]	[lb/min]	[lb/min]
3/8	73.5	7.35	3.675	1.47	0.735	0.147
1/2	238	23.8	11.9	4.76	2.38	476
½ FB	660	66	33	13.2	6.6	1.32
1	660	66	33	13.2	6.6	1.32
1 FB	1650	165	825	33	16.5	3.3
1½	1650	165	825	33	16.5	3.3
1½ FB	2 570	257	1'285	51.4	25.7	5.14
2	2 570	257	1'285	51.4	25.7	5.14
2 FB	6 600	660	330	132	66	13.2
3	6 600	660	330	132	66	13.2
FB = Full bo	FB = Full bore					

Repeatability

o.r. = of reading; $1 \text{ g/cm}^3 = 1 \text{ kg/l}$; T = medium temperature

Mass flow and volume flow (liquids)

±0.05 % o.r.

Mass flow (gases)

±0.25 % o.r.

Design fundamentals $\rightarrow \triangleq 83$

Density (liquids)

 $\pm 0.00025 \text{ g/cm}^3$

Temperature

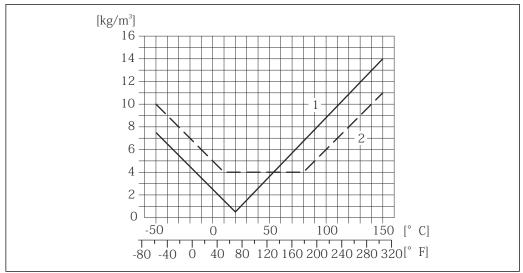
 $\pm 0.25 \,^{\circ}\text{C} \pm 0.0025 \cdot \text{T} \,^{\circ}\text{C} \, (\pm 0.45 \,^{\circ}\text{F} \pm 0.0015 \cdot (\text{T}-32) \,^{\circ}\text{F})$

Response time

- The response time depends on the configuration (damping).
- Response time in the event of erratic changes in the measured variable (only mass flow):
 after 100 ms 95 % of the full scale value

Influence of medium temperature

Mass flow and volume flow


When there is a difference between the temperature for zero point adjustment and the process temperature, the typical measured error of the sensor is ± 0.0002 % of the full scale value/°C (± 0.0001 % of the full scale value/°F).

Density

When there is a difference between the density calibration temperature and the process temperature, the typical measured error of the sensor is $\pm 0.0001 \text{ g/cm}^3$ /°C ($\pm 0.00005 \text{ g/cm}^3$ /°F). Field density calibration is possible.

Wide-range density specification (special density calibration)

If the process temperature is outside the valid range $\rightarrow \triangleq 80$ the measured error is $\pm 0.0001 \text{ g/cm}^3$ /°C ($\pm 0.00005 \text{ g/cm}^3$ /°F)

A0016614

- 1 Field density calibration, for example at +20 $^{\circ}$ C (+68 $^{\circ}$ F)
- 2 Special density calibration

Temperature

 $\pm 0.005 \cdot \text{T} \, ^{\circ}\text{C} \, (\pm 0.005 \cdot (\text{T} - 32) \, ^{\circ}\text{F})$

Influence of medium pressure

The table below shows the effect on accuracy of mass flow due to a difference between calibration pressure and process pressure.

o.r. = of reading

DN		[% o.r./bar]	[% o.r./psi]
[mm]	[in]		
8	3/8	no influence	no influence
15	1/2	no influence	no influence
15 FB	½ FB	-0.003	-0.0002
25	1	-0.003	-0.0002
25 FB	1 FB	no influence	no influence
40	11/2	no influence	no influence
40 FB	1½ FB	no influence	no influence
50	2	no influence	no influence
50 FB	2 FB	-0.003	-0.0002
80	3	no influence	no influence
FB = Full bore			

Design fundamentals

o.r. = of reading, o.f.s. = of full scale value

Dependent on the flow:

- Flow in % o.f.s. ≥ (zero point stability : base accuracy in % o.r.) · 100
 - Maximum measured error in % o.r.: ±base accuracy in % o.r.
 - Repeatability in % o.r.: $\pm \frac{1}{2}$ · base accuracy in % o.r.
- Flow in % o.f.s. < (zero point stability : base accuracy in % o.r.) · 100
 - Maximum measured error in % o.r.: ± (zero point stability : measured value) · 100
 - Repeatability in % o.r.: $\pm \frac{1}{2}$ · (zero point stability : measured value) · 100

Base accuracy for	[% o.r.]
Mass flow, liquids	0.1
Volume flow, liquids	0.1
Mass flow, gases	0.5

16.7 Installation

"Mounting requirements" $\rightarrow \Box$ 17

16.8 Environment

Ambient temperature range	→ 🖺 19
Storage temperature	-40 to $+80$ °C (-40 to $+176$ °F), preferably at $+20$ °C ($+68$ °F)
Climate class	DIN EN 60068-2-38 (test Z/AD)
Degree of protection	Transmitter and sensor ■ As standard: IP66/67, type 4X enclosure ■ With the order code for "Sensor options", option CM: IP69K can also be ordered ■ When housing is open: IP20, type 1 enclosure
	Safety Barrier Promass 100 IP20
Shock resistance	As per IEC/EN 60068-2-31
Vibration resistance	Acceleration up to 1 g, 10 to 150 Hz, based on IEC/EN 60068-2-6
Interior cleaning	■ SIP cleaning ■ CIP cleaning
Electromagnetic compatibility (EMC)	 As per IEC/EN 61326 and NAMUR Recommendation 21 (NE 21) Complies with emission limits for industry as per EN 55011 (Class A)
	Details are provided in the Declaration of Conformity.

16.9 **Process**

Medium temperature range

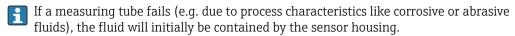
Sensor

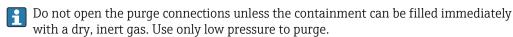
 $-50 \text{ to } +150 ^{\circ}\text{C} (-58 \text{ to } +302 ^{\circ}\text{F})$

No internal seals

Medium density

0 to 5000 kg/m^3 (0 to 312 lb/cf)


Pressure-temperature ratings


An overview of the material load diagrams (pressure/temperature diagrams) for the process connections is provided in the "Technical Information" document.

Sensor housing

The sensor housing is filled with dry nitrogen gas and protects the electronics and mechanics inside.

If the sensor is to be purged with gas (gas detection), it should be equipped with purge connections.

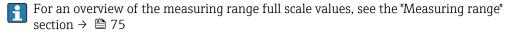
Maximum pressure: 5 bar (72.5 psi)

Burst pressure of the sensor housing

The following sensor housing burst pressures are only valid for standard devices and/or devices equipped with closed purge connections (not opened/as delivered).

If a device fitted with purge connections (order code for "Sensor option", option CH "Purge connection") is connected to the purge system, the maximum pressure is determined by the purge system itself or by the device, depending on which component has the lower pressure classification.

The sensor housing burst pressure refers to a typical internal pressure which is reached prior to mechanical failure of the sensor housing and which was determined during type testing. The corresponding type test declaration can be ordered with the device (order code for "Additional approval", option LN "Sensor housing burst pressure, type test").


D	N	Sensor housing	burst pressure
[mm]	[in]	[bar]	[psi]
8	3/8	220	3 190
15	1/2	220	3 190
15 FB	½ FB	235	3 408
25	1	235	3 408
25 FB	1 FB	220	3 190
40	1½	220	3 190
40 FB	1 ½ FB	235	3 408
50	2	235	3 408
50 FB	2 FB	460	6670

DN		Sensor housing burst pressure	
[mm]	[in]	[bar]	[psi]
80	3	460	6670
FB = Full bore			

For information on the dimensions: see the "Mechanical construction" section of the "Technical Information" document

Flow limit

Select the nominal diameter by optimizing between the required flow range and permissible pressure loss.

- The minimum recommended full scale value is approx. 1/20 of the maximum full scale
- In most applications, 20 to 50 % of the maximum full scale value can be considered ideal
- Select a lower full scale value for abrasive substances (such as liquids with entrained solids): flow velocity <1 m/s (<3 ft/s).
- For gas measurement the following rules apply:
 - The flow velocity in the measuring tubes should not exceed half the sonic velocity
 - The maximum mass flow depends on the density of the gas: formula \rightarrow \bigcirc 76

Pressure loss

16.10 Mechanical construction

Design, dimensions

For the dimensions and installation lengths of the device, see the "Technical Information" document, "Mechanical construction" section.

Weight

All values (weight exclusive of packaging material) refer to devices with EN/DIN PN 40 flanges. Weight specifications including transmitter: order code for "Housing", option A "Compact, aluminum coated".

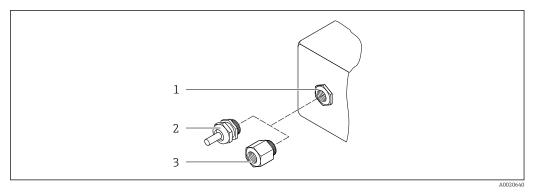
Weight in SI units

DN [mm]	Weight [kg]
8	11
15	13
15 FB	19
25	20
25 FB	39
40	40
40 FB	65
50	67
50 FB	118
80	122
FB = Full bore	

Weight in US units

DN [in]	Weight [lbs]
3/8	24
1/2	29
½ FB	42
1	44
1 FB	86
1½	88
1½ FB	143
2	148
2 FB	260
3	269
FB = Full bore	

Safety Barrier Promass 100


49 g (1.73 ounce)

Materials

Transmitter housing

- Order code for "Housing", option A "Compact, aluminum coated": Aluminum, AlSi10Mg, coated
- Order code for "Housing", option **B** "Compact, hygienic, stainless": Hygienic version, stainless steel 1.4301 (304)
- Order code for "Housing", option **C** "Ultra-compact, hygienic, stainless": Hygienic version, stainless steel 1.4301 (304)

Cable entries/cable glands

■ 16 Possible cable entries/cable glands

- 1 Female thread $M20 \times 1.5$
- 2 Cable gland $M20 \times 1.5$
- 3 Adapter for cable entry with female thread G ½" or NPT ½"

Order code for "Housing", option A "Compact, aluminum, coated"

The various cable entries are suitable for hazardous and non-hazardous areas.

Cable entry/cable gland	Material	
Cable gland M20 × 1.5		
Adapter for cable entry with female thread G ½"	ntry with female thread G ½" Nickel-plated brass	
Adapter for cable entry with female thread NPT ½"		

Order code for "Housing", option B "Compact, hygienic, stainless"

The various cable entries are suitable for hazardous and non-hazardous areas.

Cable entry/cable gland	Material
Cable gland M20 × 1.5	Stainless steel, 1.4404 (316L)
Adapter for cable entry with female thread G ½"	
Adapter for cable entry with female thread NPT ½"	

Device plug

Electrical connection	Material
Plug M12x1	 Socket: Stainless steel, 1.4404 (316L) Contact housing: Polyamide Contacts: Gold-plated brass

Sensor housing

- Acid and alkali-resistant outer surface
- Stainless steel 1.4301 (304)

Measuring tubes

Grade 9 titanium

Process connections

- Flanges according to EN 1092-1 (DIN 2501) / according to ASME B16.5/ according to IIS:
 - Stainless steel 1.4301 (304)
 - Wetted parts: Grade 2 titanium
- All other process connections:
 Grade 2 titanium
- Available process connections→ 🖺 89

Seals

Welded process connections without internal seals

Accessories

Protective cover

Stainless steel, 1.4404 (316L)

Safety Barrier Promass 100

Housing: Polyamide

Process connections

- Fixed flange connections:
 - EN 1092-1 (DIN 2501) flange
 - EN 1092-1 (DIN 2512N) flange
 - ASME B16.5 flange
 - JIS B2220 flange
 - DIN 11864-2 Form A flange, DIN 11866 series A, flange with notch
- Clamp connections:

Tri-Clamp (OD tubes), DIN 11866 series C

• Eccentric clamp connection:

Eccen. Tri-Clamp, DIN 11866 series C

- Thread:
 - DIN 11851 thread, DIN 11866 series A
 - SMS 1145 thread
 - ISO 2853 thread, ISO 2037
 - DIN 11864-1 Form A thread, DIN 11866 series A
- Process connection materials

Surface roughness

All data relate to parts in contact with fluid. The following surface roughness quality can be ordered.

- Not polished
- $Ra_{max} = 0.76 \mu m (30 \mu in)$
- $Ra_{max} = 0.38 \mu m (15 \mu in)$

16.11 Operability

Remote operation	Service interface (CDI)	
	Operation of the measuring device with the service interface (CDI) via: "FieldCare" operating tool with COM DTM "CDI Communication FXA291" via Commubox FXA291	
Languages	Can be operated in the following languages: Via "FieldCare" operating tool: English, German, French, Spanish, Italian, Chinese, Japanese	
	16.12 Certificates and approvals	
CE mark	The measuring system is in conformity with the statutory requirements of the applicable EC Directives. These are listed in the corresponding EC Declaration of Conformity along with the standards applied.	
	Endress+Hauser confirms successful testing of the device by affixing to it the CE mark.	
C-Tick symbol	The measuring system meets the EMC requirements of the "Australian Communications and Media Authority (ACMA)".	
Ex approval	The devices are certified for use in hazardous areas and the relevant safety instructions are provided in the separate "Safety Instructions" (XA) document. Reference is made to this document on the nameplate.	
Hygienic compatibility	3A approvalEHEDG-tested	
Modbus RS485 certification	The measuring device meets all the requirements of the MODBUS/TCP conformity test and has the "MODBUS/TCP Conformance Test Policy, Version 2.0". The measuring device has successfully passed all the test procedures carried out and is certified by the "MODBUS/TCP Conformance Test Laboratory" of the University of Michigan.	
Pressure Equipment Directive	 With the PED/G1/x (x = category) marking on the sensor nameplate, Endress+Hauser confirms compliance with the "Essential Safety Requirements" specified in Annex I of the Pressure Equipment Directive 97/23/EC. Devices not bearing this marking (PED) are designed and manufactured according to good engineering practice. They meet the requirements of Art.3 Section 3 of the Pressure Equipment Directive 97/23/EC. The range of application is indicated in tables 6 to 9 in Annex II of the Pressure Equipment Directive. 	
Other standards and guidelines	 EN 60529 Degrees of protection provided by enclosures (IP code) IEC/EN 60068-2-6 Environmental influences: Test procedure - Test Fc: vibrate (sinusoidal). IEC/EN 60068-2-31 Environmental influences: Test procedure - Test Ec: shocks due to rough handling, primarily for devices. 	

■ EN 61010-1

Safety requirements for electrical equipment for measurement, control and laboratory use

■ IEC/EN 61326

Emission in accordance with Class A requirements. Electromagnetic compatibility (EMC requirements)

■ NAMUR NE 21

Electromagnetic compatibility (EMC) of industrial process and laboratory control equipment

■ NAMUR NE 32

Data retention in the event of a power failure in field and control instruments with microprocessors

■ NAMUR NE 43

Standardization of the signal level for the breakdown information of digital transmitters with analog output signal.

■ NAMUR NE 53

Software of field devices and signal-processing devices with digital electronics

NAMUR NE 80

The application of the pressure equipment directive to process control devices

■ NAMUR NE 105

Specifications for integrating fieldbus devices in engineering tools for field devices

■ NAMUR NE 107

Self-monitoring and diagnosis of field devices

■ NAMUR NE 131

Requirements for field devices for standard applications

■ NAMUR NE 132

Coriolis mass meter

16.13 Application packages

Many different application packages are available to enhance the functionality of the device. Such packages might be needed to address safety aspects or specific application requirements.

The application packages can be ordered from Endress+Hauser either directly with the device or subsequently. Detailed information on the order code in question is available from your local Endress+Hauser sales center or on the product page of the Endress+Hauser website: www.endress.com.

Heartbeat Technology

Package	Description
Heartbeat Verification +Monitoring	Heartbeat Monitoring: Continuously supplies monitoring data, which are characteristic of the measuring principle, for an external condition monitoring system. This makes it possible to: Draw conclusions - using these data and other information - about the impact the measuring application has on the measuring performance over time. Schedule servicing in time. Monitor the product quality, e.g. gas pockets.
	Heartbeat Verification: Makes it possible to check the device functionality on demand when the device is installed, without having to interrupt the process. Access via onsite operation or other interfaces (requires no on-site presence). Ideal solution for recurring device checks (SIL). End-to-end, traceable documentation of the verification results and verification report. Extension of calibration intervals.

Concentration

Package	Description
Concentration measurement and special density	Calculation and outputting of fluid concentrations Many applications use density as a key measured value for monitoring quality or controlling processes. The device measures the density of the fluid as standard and makes this value available to the control system. The "Special Density" application package offers high-precision density measurement over a wide density and temperature range particularly for applications subject to varying process conditions.
	With the help of the "Concentration Measurement" application package, the measured density is used to calculate other process parameters: Temperature-compensated density (reference density). Percentage mass of the individual substances in a two-phase fluid. (Concentration in %). Fluid concentration is output with special units ("Brix, "Baumé, "API, etc.) for standard applications.
	standard applications. The measured values are output via the digital and analog outputs of the device.

Viscosity

Package	Description
Viscosity measurement	In-line and real-time viscosity measurement Promass I with the "Viscosity" application package also measures the real-time viscosity of the fluid directly in the process, in addition to measuring the mass flow/volume flow/ temperature and density.
	The following viscosity measurements are performed on liquids: Dynamic viscosity Kinematic viscosity Temperature-compensated viscosity (kinematic and dynamic) in relation to the reference temperature
	Viscosity measurement can be used for Newtonian and non-Newtonian applications and supplies accurate measured data irrespective of the flow, even under difficult conditions.

16.14 Accessories

16.15 Documentation

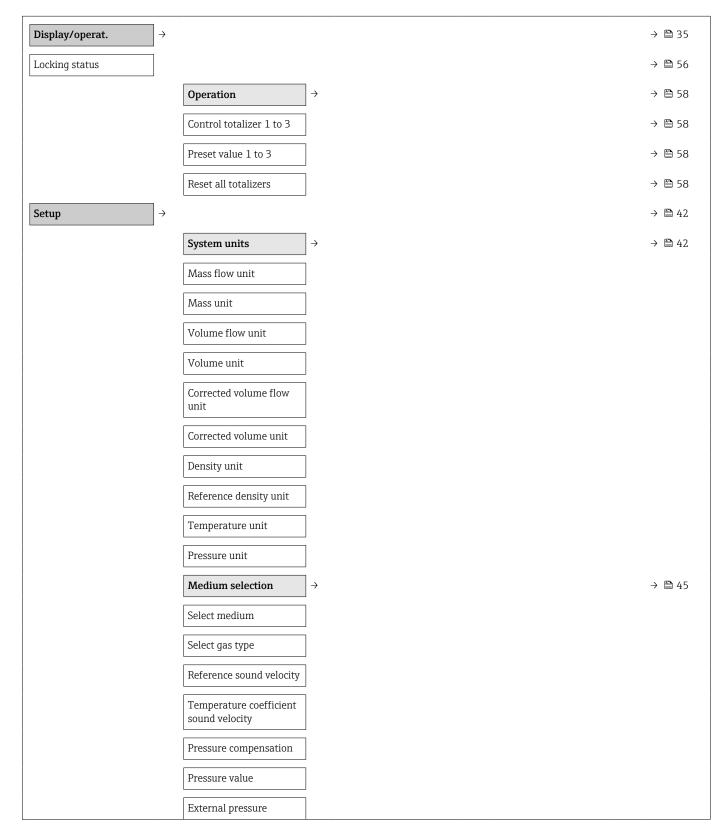
The following document types are available:
• On the CD-ROM supplied with the device

- In the Download Area of the Endress+Hauser Internet site: www.endress.com → Download

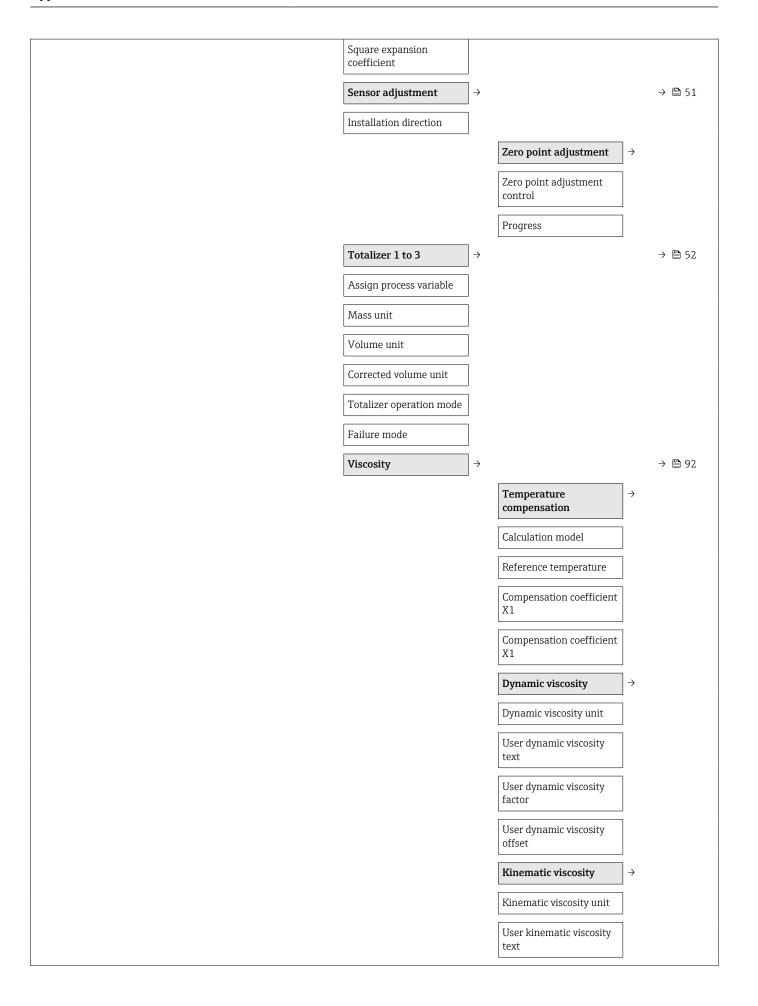
Standard documentation

Communication	Document type	Documentation code
	Brief Operating Instructions	KA01117D
	Technical Information	TI01035D

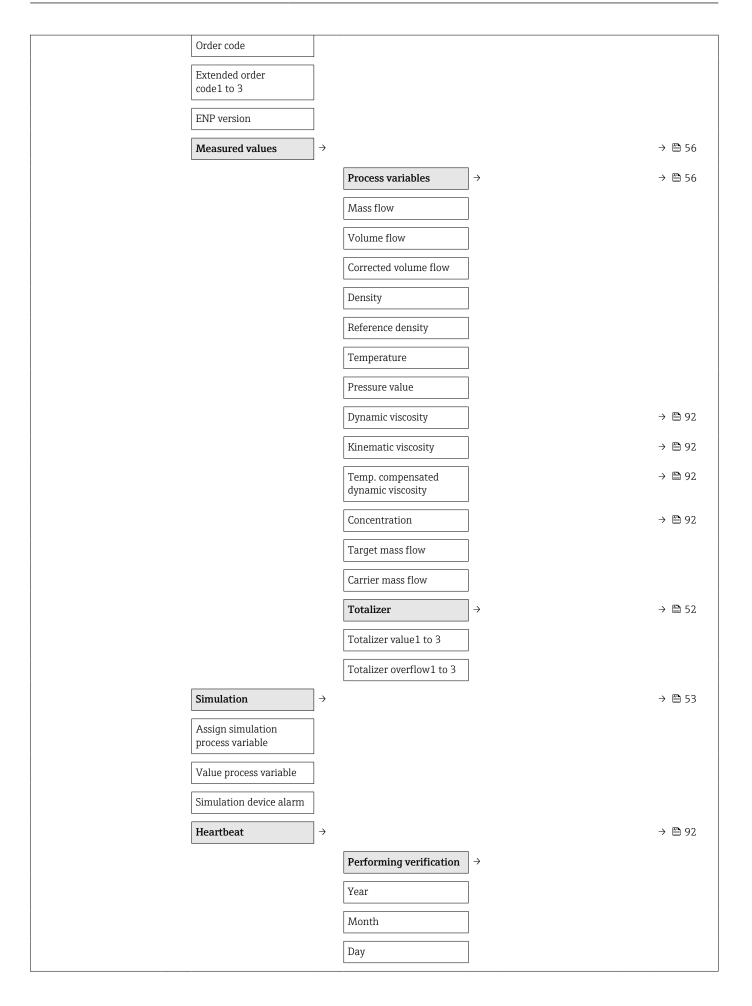
Supplementary devicedependent documentation


Document type	Contents	Documentation code
Safety Instructions	ATEX/IECEx Ex i	XA00159D
	ATEX/IECEx Ex nA	XA01029D
	cCSAus IS	XA00160D
Special documentation	Information on the Pressure Equipment Directive	SD00142D

Document type	Contents	Documentation code
Special documentation	Modbus RS485 Register Information	SD00154D
Special documentation	Concentration Measurement	SD01152D
Special documentation	Viscosity Measurement	SD01151D
Special documentation	Heartbeat Technology	SD01153D
Installation Instructions		Specified for each individual accessory → 🖺 73
		Overview of accessories available for order → 🗎 73

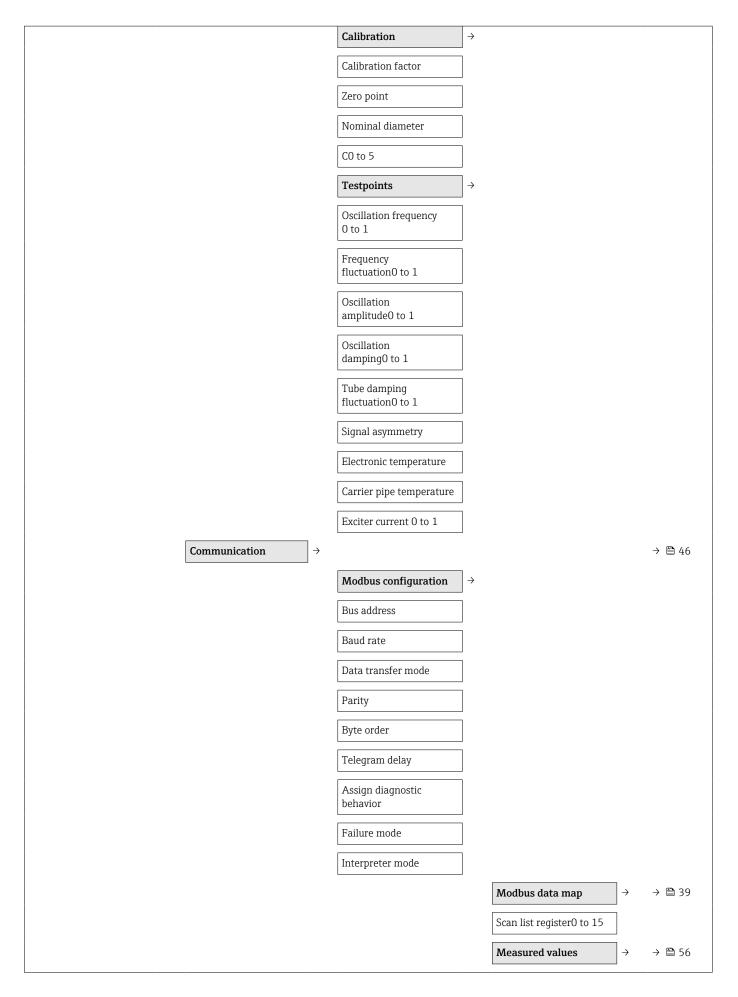

17 Appendix

17.1 Overview of the operating menu


The following table provides an overview of the entire operating menu structure with menus and parameters. The page reference indicates where a description of the parameter can be found in the manual.

Communication	\rightarrow	→ 🖺 46
Bus address		
Baud rate		
Data transfer mode		
Parity		
Byte order		
Assign diagnostic behavior		
Failure mode		
Low flow cut off	\rightarrow	→ 🖺 48
Assign process variable		
On value low flow cutoff		
Off value low flow cutoff		
Pressure shock suppression		
Partially filled pipe detection	\rightarrow	→ 🖺 49
Assign process variable		
Low value partial filled pipe detection		
High value partial filled pipe detection		
Response time part. filled pipe detect.		
Advanced setup	\rightarrow	→ 🖺 50
Enter access code		
Device tag		→ 🖺 50
		→ 🖺 50
	Corrected volume flow calculation	
	External reference density	
	Fixed reference density	
	Reference temperature	
	Linear expansion coefficient	

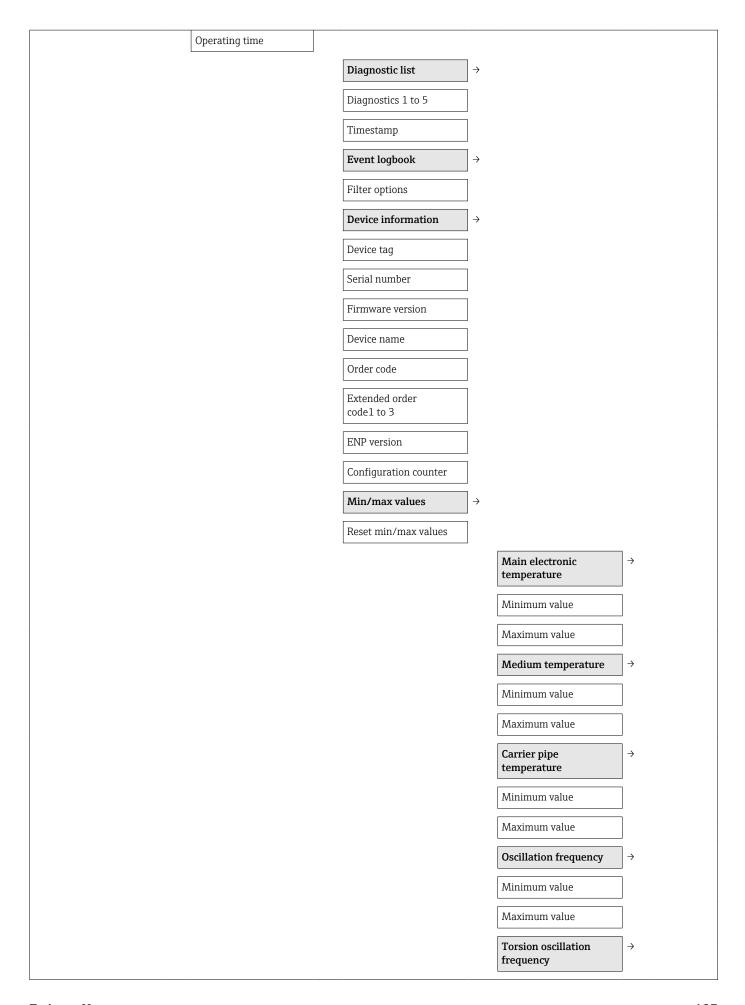
		Concentration Concentration unit User concentration text User concentration factor User concentration offset	User kinematic viscosity factor User kinematic viscosity offset	→ 🖺 92
		A0 to A4 B1 to B3		
		Heartbeat Setup		→ 🖺 92
		Progress		
			Heartbeat Monitoring →	
			Activate monitoring	
	\rightarrow			→ 🖺 66
Actual diagnostics				
Timestamp				
Previous diagnostics				
Timestamp Operating time from				
Operating time from restart				
Operating time				
	Diagnostic list	\rightarrow		→ 🖺 66
	Diagnostics 1 to 5			
	Timestamp			
	Event logbook	\rightarrow		→ 🖺 67
	Filter options			→ 🖺 67
	Device information	\rightarrow		→ 🖺 68
	Device tag			→ 🖺 50
	Serial number			
	Firmware version			
	Device name			

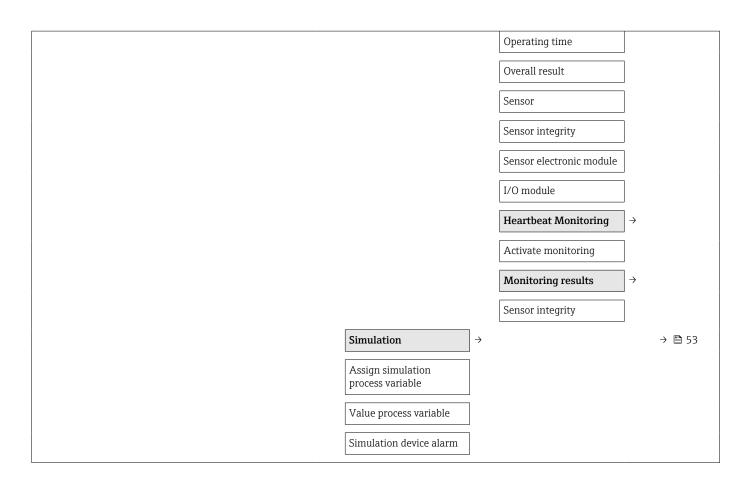

		Hour	
		AM/PM	
		Minute	
		Start verification	
		Progress	
		Status	
		Verification results	\rightarrow
		Date/time	
		Verification ID	
		Operating time	
		Overall result	
		Sensor	
		Sensor integrity	
		Sensor electronic module	
		I/O module	
		Monitoring results	\rightarrow
			→ 🖺 68
Expert →			→ 🗎 35
Locking status			→ 🖺 56
Access status tooling			→ 🖺 54
Enter access code			
	System →		
		Diagnostic behavior	→ 🗎 63
		Alarm delay	
		Assign behavior of diagnostic no. 044	
		Assign behavior of diagnostic no. 46	
		Assign behavior of diagnostic no. 144	
		Assign behavior of diagnostic no. 192	
		Assign behavior of diagnostic no. 274	

Assign behavior of diagnostic no. 392 Assign behavior of diagnostic no. 592 Assign behavior of diagnostic no. 832 Assign behavior of diagnostic no. 833 Assign behavior of diagnostic no. 834 Assign behavior of diagnostic no. 835 Assign behavior of diagnostic no. 912 Assign behavior of diagnostic no. 913 Assign behavior of diagnostic no. 944 Assign behavior of diagnostic no. 992 Management Device reset Activate SW option SW option overview Permanent storage Device tag Sensor → 🖺 56 Measured values → 🖺 56 **Process variables** → 🖺 56 Mass flow Volume flow Corrected volume flow Density Reference density Temperature Pressure value Dynamic viscosity → 🖺 92

	Kinematic viscosity	→ 🖺 92
	Temp. compensated dynamic viscosity	→ 🖺 92
	Temp. compensated kinematic viscosity	→ 🖺 92
	Concentration	→ 🖺 92
	Target mass flow	
	Carrier mass flow	
	Totalizer	→ → 🖺 57
	Totalizer value1 to 3	
	Totalizer overflow1 to 3	
		→ 🖺 42
Mass flow unit		
Mass unit		
Volume flow unit		
Volume unit		
Corrected volume flow unit		
Corrected volume unit		
Density unit		
Reference density unit		
Temperature unit		
Pressure unit		
Date/time format		
	User-specific units	$\bigg] \rightarrow$
	User mass text	
	User mass factor	
	User volume text	
	User volume factor	
	User corrected volume text	
	User corrected volume factor	
	User density text	

User density offset User density factor User pressure text User pressure offset User pressure factor Process param. Flow damping Density damping Flow override Temperature damping → 🖺 48 Low flow cut off Assign process variable On value low flow cutoff Off value low flow cutoff Pressure shock suppression Partially filled pipe → 🖺 49 detection Assign process variable Low value partial filled pipe detection High value partial filled pipe detection Response time part. filled pipe detect. Maximum damping partial filled pipe det. Measuring mode → 🖺 45 Select medium Select gas type Reference sound velocity Temperature coefficient sound velocity External compensation Pressure compensation Pressure value


	1			
External pressure				
Temperature mode				
External temperature				
Calculated values	$\bigg] \rightarrow$			→ 🖺 50
Corrected volume flow calculation				
External reference density				
Fixed reference density				
Reference temperature				
Linear expansion coefficient				
Square expansion coefficient				
Sensor adjustment	\rightarrow			→ 🖺 51
Installation direction				
		Zero point adjustment	\rightarrow	
		Zero point adjustment control		
		Progress		
		Variable adjust	\rightarrow	
		Mass flow offset		
		Mass flow factor		
		Volume flow offset		
		Volume flow factor		
		Corrected volume flow offset		
		Corrected volume flow factor		
		Density offset		
		Density factor		
		Reference density offset		
		Reference density factor		
		Temperature offset		
		Temperature factor		


104

	Process variables	\rightarrow	→ 🖺 56
	Mass flow		
	Volume flow		
	Density		
	Temperature		
	Pressure value		
	Totalizer	\rightarrow	→ 🖺 57
	Totalizer value1 to 2		
	System units	\rightarrow	→ 🖺 42
	Mass flow unit		
	Mass unit		
	Volume flow unit		
	Volume unit		
	Density unit		
	Reference density unit		
	Temperature unit		
	Pressure unit		
	Modbus configuration	\rightarrow	
	Bus address		
Reset all totalizers			→ 🖺 58
$\boxed{ \textbf{Totalizer 1 to 3} } \rightarrow$			
Assign process variable			
Mass unit			
Volume flow unit			
Corrected volume unit			
Totalizer operation mode			
Control totalizer 1 to 3			
Preset value 1 to 3			
Failure mode			
Viscosity →			→ 🖺 92
Viscosity damping			

				Temperature compensation	\rightarrow
				Calculation model	
				Reference temperature	
				Compensation coefficient X1, X2	
				Dynamic viscosity	\rightarrow
				Dynamic viscosity unit	
				User dynamic viscosity text	
				User dynamic viscosity factor	
				User dynamic viscosity offset	
				Kinematic viscosity	\rightarrow
				Kinematic viscosity unit	
				User kinematic viscosity text	
				User kinematic viscosity factor	
				User kinematic viscosity offset	
		Concentration	\rightarrow		→ 🖺 92
		Concentration damping			
		Concentration unit			
		User concentration text			
		User concentration factor			
		User concentration offset			
		A0 to A1			
Diagnostics	\rightarrow				
Actual diagnostics					
Timestamp					
Previous diagnostics					
Timestamp					
Operating time from restart					

		Minimum value	
		Maximum value	
		Oscillation amplitude	\rightarrow
		Minimum value	
		Maximum value	
		Torsion oscillation amplitude	\rightarrow
		Minimum value	
		Maximum value	
		Oscillation damping	\rightarrow
		Minimum value	
		Maximum value	
		Torsion oscillation damping	\rightarrow
		Minimum value	
		Maximum value	
		Signal asymmetry	\rightarrow
		Minimum value	
		Maximum value	
Heartbeat	\rightarrow		→ 🖺 92
		Performing verification	\rightarrow
		Year	
		Month	
		Day	
		Hour	
		AM/PM	
		Minute	
		Start verification	
		Progress	
		Status	
		Verification results	\rightarrow
		Date/time	
		Verification ID	

Index

A		Device documentation
Accuracy	80	Supplementary do
Adapting the diagnostic behavior		Device locking, status
Ambient temperature range		Device name
Application		Sensor
Application packages		Transmitter
Applicator		Device repair
Approvals		Device revision
Auto scan buffer	50	Device type ID
see Modbus RS485 Modbus data map		Diagnostic information
See Modbus 10409 Modbus data map		Communication in
С		Design, description
C-Tick symbol	90	FieldCare
Cable entries		Light emitting dioc
Technical data	80	Overview
Cable entry	00	Remedial measure
Degree of protection	31	Diagnostic list
CE mark		DIP switch
Certificates		see Write protection
Check		Disabling write protec
Post-connection	32	Display
Post-installation		Current diagnostic
Checklist		Previous diagnosti
Post-connection check	32	Display values
Post-installation check		For device info
CIP cleaning		For locking status
Cleaning	0 1	For process variable
CIP cleaning	70	For the totalizer
Exterior cleaning		Disposal
Interior cleaning		Document
SIP cleaning		Function
Climate class		Symbols used
Commissioning		Document function
Advanced settings		Down pipe
Configuring the measuring device		
Configuring error response mode, Modbus RS485.		E
Connecting cable		Electrical connection
Connecting the measuring device		Commubox FXA29
Connection	20	Degree of protection
see Electrical connection		Measuring device .
Connection preparations	28	Operating tools
Connection tools		Via service inte
Current consumption		Electromagnetic comp
F		Enabling write protect
D		Endress+Hauser servi
Declaration of Conformity	9	Maintenance
Degree of protection		Repair
Design		Error messages
Measuring device	10	see Diagnostic mes
Design fundamentals		Event history
Maximum measured error	83	Events list
Repeatability		Ex approval
Designated use		Ex connection data
Device components		Extended order code
Device description files		Sensor
_	-	Transmitter

Device documentation	_
Supplementary documentation	
Device locking, status	56
Device name	
	13
	12
	71
	38
Device type ID	38
Diagnostic information	
Communication interface	62
Design, description	62
FieldCare	61
Light emitting diodes	60
Overview	64
Remedial measures	64
	66
DIP switch	
see Write protection switch	
Disabling write protection	54
Display	
Current diagnostic event	66
Previous diagnostic event	
Display values	
For device info	69
For locking status	
For process variables	
For the totalizer	
Disposal	
Document	_
Function	5
Symbols used	
Document function	
Down pipe	
p.pe	
E	
Electrical connection	
Commubox FXA291	36
Degree of protection	
ÿ -	23
Operating tools	
1 9	36
	84
	54
Endress+Hauser services	_ 1
	70
	71
Error messages	, 1
see Diagnostic messages	
Event history	67
Events list	
Ex approval	
* *	77
Extended order code	, ,
	13
	12
11441311111111	14

Endress+Hauser

110

Exterior cleaning	Manufacturing date
F	Materials
Field of application	Measured variables
Residual risks	see Process variables
FieldCare	
Device description file	Measuring and test equipment
Establishing a connection	Measuring device
Function	Configuration
User interface	Conversion
	Design
Filtering the event logbook 67	Disposal
Firmware	Integrating via HART protocol
Release date	Mounting the sensor
Version	Preparing for electrical connection 28
Firmware history	Preparing for mounting
Flow direction	Removing
Flow limit	Repair
Function check 42	Measuring principle
Function codes	Measuring range
Functions	Calculation example for gas
see Parameter	For gases
	For liquids
G	Measuring range, recommended 86
Galvanic isolation	Measuring system
	Media
H	Medium density
Hardware write protection 54	Medium pressure
Hygienic compatibility 90	Influence
	Medium temperature
I	Influence
I/O electronics module	Menus
Identifying the measuring device	
Incoming acceptance	For measuring device configuration
Influence	For specific settings 50
Medium pressure 83	Modbus RS485
Medium temperature 82	Configuring error response mode 63
Information on the document 5	Diagnostic information
Inlet runs	Function codes
Input	Modbus data map
Inspection check	Read access
Received goods	Reading out data 40
Installation	Register addresses
Installation conditions	Register information
Down pipe	Response time
Mounting location	Scan list
Orientation	Write access
	Modbus RS485 certification 90
Sensor heating	Mounting dimensions
System pressure	see Installation dimensions
Vibrations	Mounting location
Installation dimensions	Mounting preparations
Interior cleaning	Mounting requirements
L	Inlet and outlet runs
	Installation dimensions
Languages, operation options	Mounting tools
Low flow cut off	4
M	N
	Nameplate
Main electronics module	Safety Barrier Promass 100
Maintenance tasks	Sensor
Manufacturer ID	

Transmitter	12	Repair	
0		Notes	
~	76	Repair of a device	
Operable flow range	76	Repeatability	82
Operating menu	2/1	Replacement	71
Menus, submenus		Device components	
Overview of menus with parameters		Requirements for personnel	
Structure		Response time	
Submenus and user roles	1	Returning devices	71
Operating philosophy		S	
Operation			_
Operation options		Safety	. Շ
Operational safety		Seals	0.5
Order code		Medium temperature range	85
Orientation (vertical, horizontal)	18	Sensor	0.5
Outlet run	20	Medium temperature range	
Peripheral device		Mounting	
Outlet runs		Sensor heating	
Output		Sensor housing	
Output signal	//	Serial number	
Overview		Service interface (CDI)	90
Operating menu	94	Settings	
P		Adapting the measuring device to the process	
_	16		
Packaging disposal	10	Communication interface	
Parameter settings	1.6	Device reset	
For communication interface		Device tag	
For low flow cut off		Low flow cut off	
	49	Medium	
For selecting and setting the medium		Partial filled pipe detection	
For sensor adjustment	1	Resetting the totalizer	
For system units	1	Sensor adjustment	
For the operation		Simulation	
For the tag name		System units	
For the totalizer			
Performance characteristics		Totalizer reset	
Post-connection check (checklist)	1	Shock resistance	
	42	Signal on alarm	
Post-installation check (checklist)		SIP cleaning	
Potential equalization		Software release	
<u> </u>	1	Spare part	
Power supply failure		Spare parts	
Pressure Equipment Directive		Standards and guidelines	
Pressure-temperature ratings		Status signals	
Process connections	1	Storage conditions	
Process variables	09	Storage temperature	15
Calculated	75	Structure	٦,
Measured		Operating menu	34
		Submenu	, ,
Product safety		Communication	
Protecting parameter settings	54	Device information	
R		Events list	
N Reading measured values	56	Low flow cut off 48,	
Reading out diagnostic information, Modbus RS485		Operation	59
Recalibration		Overview	
Reference operating conditions		Process variables 50,	
Registered trademarks		Select medium	
Remote operation		Sensor adjustment	
icinote operation	70	System units	42

112

Totalizer	57
Supply voltage	
Surface roughness	89
System design	
Measuring system	75
see Measuring device design	
System integration	38
System pressure	19
Т	
Technical data, overview	75
Temperature range	1)
Medium temperature	25
Storage temperature	
Terminal assignment	
Terminals	
Tools	00
Electrical connection	23
Installation	
Transport	
Transmitter	1)
Connecting the signal cables	2.8
Transporting the measuring device	
Troubleshooting	
General	60
U	
Use of the measuring device	
Borderline cases	. 8
Incorrect use	8
see Designated use	
User roles	35
**	
V	200
Version data for the device	38
Vibration resistance	84
Vibrations	ZU
W	
W@M 70,	71
W@M Device Viewer	
Weight	
SI units	87
Transport (notes)	
US units	
Workplace safety	
Write protection	_
Via write protection switch	54
Write protection switch	

www.addresses.endress.com