Description of Device Parameters

Proline t-mass 500

HART

Thermal mass flowmeter
Table of contents

1 **About this document** ... 4
 1.1 Document function .. 4
 1.2 Target group .. 4
 1.3 Using this document .. 4
 1.3.1 Information on the document structure 4
 1.3.2 Structure of a parameter description 6
 1.4 Symbols used .. 6
 1.4.1 Symbols for certain types of information 6
 1.4.2 Symbols in graphics ... 7
 1.5 Documentation .. 7
 1.5.1 Standard documentation ... 7
 1.5.2 Supplementary device-dependent documentation 7

2 **Overview of the Expert operating menu** 8

3 **Description of Device Parameters** 11
 3.1 "System" submenu .. 14
 3.1.1 "Display" submenu ... 14
 3.1.2 "Configuration backup" submenu 26
 3.1.3 "Diagnostic handling" submenu 29
 3.1.4 "Administration" submenu 36
 3.2 "Sensor" submenu .. 41
 3.2.1 "Measured values" submenu 42
 3.2.2 "System units" submenu ... 54
 3.2.3 "Process parameters" submenu 64
 3.2.4 "Measurement mode" submenu 68
 3.2.5 "Sensor adjustment" submenu 87
 3.2.6 "Zero point adjustment" submenu 89
 3.2.7 "External compensation" submenu 90
 3.2.8 "In-situ adjustment" submenu 94
 3.2.9 "Calibration" submenu ... 104
 3.3 "Input" submenu ... 104
 3.3.1 "Current input 1 to n" submenu 104
 3.3.2 "Status input 1 to n" submenu 107
 3.4 "Output" submenu ... 110
 3.4.1 "Current output 1 to n" submenu 110
 3.4.2 "Pulse/frequency/switch output 1 to n" submenu 117
 3.4.3 "Relay output 1 to n" submenu 134
 3.5 "Communication" submenu ... 139
 3.5.1 "HART input" submenu .. 139
 3.5.2 "HART output" submenu ... 144
 3.5.3 "Web server" submenu .. 159
 3.5.4 "Diagnostic configuration" submenu 162
 3.5.5 "WLAN settings" submenu 167
 3.6 "Application" submenu .. 174
 3.6.1 "Totalizer 1 to n" submenu 175
 3.7 "Diagnostics" submenu .. 180
 3.7.1 "Diagnostic list" submenu 183
 3.7.2 "Event logbook" submenu 187
 3.7.3 "Device information" submenu 188
 3.7.4 "Main electronic module + I/O module 1" submenu 192
 3.7.5 "Sensor electronic module (ISEM)" submenu 193
 3.7.6 "I/O module 2" submenu ... 194
 3.7.7 "I/O module 3" submenu ... 195
 3.7.8 "I/O module 4" submenu ... 197
 3.7.9 "Display module" submenu 198
 3.7.10 "Minimum/maximum values" submenu 199
 3.7.11 "Data logging" submenu ... 201
 3.7.12 "Heartbeat" submenu .. 209
 3.7.13 "Simulation" submenu .. 209
 3.8 "I/O configuration" submenu 218

4 **Country-specific factory settings** 221
 4.1 SI units ... 221
 4.1.1 System units ... 221
 4.1.2 Full scale values .. 221
 4.1.3 Output current span ... 221
 4.1.4 On value low flow cut off 221
 4.2 US units ... 221
 4.2.1 System units ... 221
 4.2.2 Full scale values .. 222
 4.2.3 Output current span ... 222
 4.2.4 On value low flow cut off 222

5 **Explanation of abbreviated units** 223
 5.1 SI units ... 223
 5.2 US units ... 223

Index ... 225
1 About this document

1.1 Document function

The document is part of the Operating Instructions and serves as a reference for parameters, providing a detailed explanation of each individual parameter of the Expert operating menu.

It is used to perform tasks that require detailed knowledge of the function of the device:

• Commissioning measurements under difficult conditions
• Optimal adaptation of the measurement to difficult conditions
• Detailed configuration of the communication interface
• Error diagnostics in difficult cases

1.2 Target group

The document is aimed at specialists who work with the device over the entire life cycle and perform specific configurations.

1.3 Using this document

1.3.1 Information on the document structure

The document lists the submenus and their parameters according to the structure from the Expert menu (→ 8), which is displayed when the "Maintenance" user role is enabled.
Operating menu for operators and maintenances

- Language
- Operation
 - Parameter 1
 - Parameter n
 - Submenu 1
 - Submenu n
- Setup
 - Device tag
 - Wizard 1 / Parameter 1
 - Wizard n / Parameter n
 - Advanced setup
 - Enter access code
 - Parameter 1
 - Parameter n
 - Submenu 1
 - Submenu n
- Diagnostics
 - Parameter 1
 - Parameter n
 - Submenu 1
 - Submenu n

Operating menu for experts

- Expert
 - Access status display
 - Parameter n
 - System
 - Sensor
 - Input
 - Output
 - Communication
 - Application
 - Diagnostics

1. Sample graphic for the schematic layout of the operating menu

Additional information regarding:
- The arrangement of the parameters according to the menu structure of the Operation menu, Setup menu, Diagnostics menu with a brief description: Operating Instructions
- Operating concept of the operating menus: Operating Instructions
1.3.2 Structure of a parameter description

The individual parts of a parameter description are described in the following section:

<table>
<thead>
<tr>
<th>Complete parameter name</th>
<th>Write-protected parameter</th>
</tr>
</thead>
</table>

Navigation
- Navigation path to the parameter via the local display (direct access code) or web browser
- Navigation path to the parameter via the operating tool
 - The names of the menus, submenus and parameters are abbreviated to the form in which they appear on the display and in the operating tool.

Prerequisite
- The parameter is only available under these specific conditions

Description
- Description of the parameter function

Selection
- List of the individual options for the parameter
 - Option 1
 - Option 2

User entry
- Input range for the parameter

User interface
- Display value/data for the parameter

Factory setting
- Default setting ex works

Additional information
- Additional explanations (e.g. in examples):
 - On individual options
 - On display values/data
 - On the input range
 - On the factory setting
 - On the parameter function

1.4 Symbols used

1.4.1 Symbols for certain types of information

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Indicates additional information.</td>
</tr>
<tr>
<td></td>
<td>Reference to documentation</td>
</tr>
<tr>
<td></td>
<td>Reference to page</td>
</tr>
<tr>
<td></td>
<td>Reference to graphic</td>
</tr>
<tr>
<td></td>
<td>Operation via local display</td>
</tr>
<tr>
<td></td>
<td>Operation via operating tool</td>
</tr>
<tr>
<td></td>
<td>Write-protected parameter</td>
</tr>
</tbody>
</table>
1.4.2 Symbols in graphics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3 ...</td>
<td>Item numbers</td>
<td>A, B, C, ...</td>
<td>Views</td>
</tr>
<tr>
<td>A-A, B-B, C-C, ...</td>
<td>Sections</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.5 Documentation

1.5.1 Standard documentation

Operating Instructions

<table>
<thead>
<tr>
<th>Measuring device</th>
<th>Documentation code</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-mass F 500</td>
<td>BA01996D</td>
</tr>
<tr>
<td>t-mass I 500</td>
<td>BA01997D</td>
</tr>
</tbody>
</table>

1.5.2 Supplementary device-dependent documentation

Special Documentation

<table>
<thead>
<tr>
<th>Contents</th>
<th>Documentation code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information on the Pressure Equipment Directive</td>
<td>SD01614D</td>
</tr>
<tr>
<td>Functional Safety Manual</td>
<td>SD02484D</td>
</tr>
<tr>
<td>Remote display and operating module DKX001</td>
<td>SD01763D</td>
</tr>
<tr>
<td>Radio approvals for WLAN interface for A309/A310 display module</td>
<td>SD01793D</td>
</tr>
<tr>
<td>Web server</td>
<td>SD02487D</td>
</tr>
<tr>
<td>Heartbeat Technology</td>
<td>SD02479D</td>
</tr>
</tbody>
</table>
Overview of the Expert operating menu

The following table provides an overview of the menu structure of the expert operating menu and its parameters. The page reference indicates where the associated description of the submenu or parameter can be found.

<table>
<thead>
<tr>
<th>Submenu</th>
<th>Page Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct access</td>
<td>13</td>
</tr>
<tr>
<td>Access code</td>
<td>13</td>
</tr>
<tr>
<td>Locking status</td>
<td>11</td>
</tr>
<tr>
<td>Access status</td>
<td>12</td>
</tr>
<tr>
<td>Enter access code</td>
<td>13</td>
</tr>
<tr>
<td>System</td>
<td>14</td>
</tr>
<tr>
<td>Display</td>
<td>14</td>
</tr>
<tr>
<td>Configuration backup</td>
<td>26</td>
</tr>
<tr>
<td>Diagnostic handling</td>
<td>29</td>
</tr>
<tr>
<td>Administration</td>
<td>36</td>
</tr>
<tr>
<td>Sensor</td>
<td>41</td>
</tr>
<tr>
<td>Measured values</td>
<td>42</td>
</tr>
<tr>
<td>System units</td>
<td>54</td>
</tr>
<tr>
<td>Process parameters</td>
<td>64</td>
</tr>
<tr>
<td>Measurement mode</td>
<td>68</td>
</tr>
<tr>
<td>Sensor adjustment</td>
<td>87</td>
</tr>
<tr>
<td>Zero point adjustment</td>
<td></td>
</tr>
<tr>
<td>External compensation</td>
<td>90</td>
</tr>
<tr>
<td>In-situ adjustment</td>
<td>94</td>
</tr>
<tr>
<td>Calibration</td>
<td>104</td>
</tr>
<tr>
<td>I/O configuration</td>
<td>218</td>
</tr>
</tbody>
</table>
Overview of the Expert operating menu

<table>
<thead>
<tr>
<th>Module Type</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O module</td>
<td>Information (3906–1 to n)</td>
<td>218</td>
</tr>
<tr>
<td></td>
<td>Type (3901–1 to n)</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>Apply I/O configuration (3907)</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>Alteration code (2762)</td>
<td>220</td>
</tr>
<tr>
<td>Input</td>
<td>Current input 1 to n</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>Status input 1 to n</td>
<td>107</td>
</tr>
<tr>
<td>Output</td>
<td>Current output 1 to n</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>Pulse/frequency/switch output 1 to n</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Relay output 1 to n</td>
<td>134</td>
</tr>
<tr>
<td>Communication</td>
<td>HART input</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>HART output</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>Web server</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>WLAN settings</td>
<td>159</td>
</tr>
<tr>
<td>Diagnostic configuration</td>
<td></td>
<td>162</td>
</tr>
<tr>
<td>Application</td>
<td>Reset all totalizers (2806)</td>
<td>174</td>
</tr>
<tr>
<td></td>
<td>Totalizer 1 to n</td>
<td>175</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>Actual diagnostics (0691)</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>Previous diagnostics (0690)</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>Operating time from restart (0653)</td>
<td>182</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Operating time (0652)</td>
<td>182</td>
<td></td>
</tr>
<tr>
<td>Diagnostic list</td>
<td>183</td>
<td></td>
</tr>
<tr>
<td>Event logbook</td>
<td>187</td>
<td></td>
</tr>
<tr>
<td>Device information</td>
<td>188</td>
<td></td>
</tr>
<tr>
<td>Main electronic module + I/O module 1</td>
<td>192</td>
<td></td>
</tr>
<tr>
<td>Sensor electronic module (ISEM)</td>
<td>193</td>
<td></td>
</tr>
<tr>
<td>I/O module 2</td>
<td>194</td>
<td></td>
</tr>
<tr>
<td>I/O module 3</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>I/O module 4</td>
<td>197</td>
<td></td>
</tr>
<tr>
<td>Display module</td>
<td>198</td>
<td></td>
</tr>
<tr>
<td>Minimum/maximum values</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>Data logging</td>
<td>201</td>
<td></td>
</tr>
<tr>
<td>Heartbeat Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulation</td>
<td>209</td>
<td></td>
</tr>
</tbody>
</table>
3 Description of Device Parameters

In the following section, the parameters are listed according to the menu structure of the local display. Specific parameters for the operating tools are included at the appropriate points in the menu structure.

| Expert |
|------------------|------------------|
| Direct access (0106) | → 13 |
| Locking status (0004) | → 11 |
| Access status (0005) | → 12 |
| Enter access code (0003) | → 13 |
| System | → 14 |
| Sensor | → 41 |
| I/O configuration | → 218 |
| Input | → 104 |
| Output | → 110 |
| Communication | → 139 |
| Application | → 174 |
| Diagnostics | → 180 |

Locking status

Navigation

Expert → Locking status (0004)

Description

Displays the active write protection.

User interface

- Hardware locked
- SIL locked
- Temporarily locked
Additional information

User interface

If two or more types of write protection are active, the write protection with the highest priority is shown on the local display. In the operating tool all active types of write protection are displayed.

Detailed information on access authorization is provided in the "User roles and associated access authorization" and "Operating concept" sections of the Operations Instructions for the device.

Selection

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>The access status displayed in the Access status parameter (→ 12) applies. Only appears on local display.</td>
</tr>
<tr>
<td>Hardware locked (priority 1)</td>
<td>The DIP switch for hardware locking is activated on the PCB board. This locks write access to the parameters (e.g. via local display or operating tool).</td>
</tr>
<tr>
<td>SIL locked (priority 2)</td>
<td>The SIL mode is enabled. This locks write access to the parameters (e.g. via local display or operating tool).</td>
</tr>
<tr>
<td>Temporarily locked</td>
<td>Write access to the parameters is temporarily locked on account of internal processes running in the device (e.g. data upload/download, reset etc.). Once the internal processing has been completed, the parameters can be changed once again.</td>
</tr>
</tbody>
</table>

Access status

Navigation

[Expert] Access status (0005)

Description

Displays the access authorization to the parameters via the local display, Web browser or operating tool.

User interface

- Operator
- Maintenance

Additional information

Description

Access authorization can be modified via the Enter access code parameter (→ 13).

If additional write protection is active, this restricts the current access authorization even further.

Display

Detailed information on access authorization is provided in the "User roles and associated access authorization" and "Operating concept" sections of the Operations Instructions for the device.
Enter access code

Navigation
Expert → Ent. access code (0003)

Description
Use this function to enter the user-specific release code to remove parameter write protection.

User entry
Max. 16-digit character string comprising numbers, letters and special characters

Direct access

Navigation
Expert → Direct access (0106)

Description
Use this function to enter the access code to enable direct access to the desired parameter via the local display. A parameter number is assigned to each parameter for this purpose.

User entry
0 to 65535

Additional information
User entry

The direct access code consists of a 5-digit number (at maximum) and the channel number, which identifies the channel of a process variable: e.g. 00914-2. In the navigation view, this appears on the right-hand side in the header of the selected parameter.

Note the following when entering the direct access code:
- The leading zeros in the direct access code do not have to be entered.
 Example: Enter "914" instead of "00914"
- If no channel number is entered, channel 1 is accessed automatically.
 Example: Enter 00914 → Assign process variable parameter
- If a different channel is accessed: Enter the direct access code with the corresponding channel number.
 Example: Enter 00914-2 → Assign process variable parameter
3.1 "System" submenu

Navigation

Adobe Reader

[Expert → System]

- System
 - Display
 - Display language (0104)
 - Format display (0098)
 - Value 1 display (0107)
 - 0% bargraph value 1 (0123)
 - 100% bargraph value 1 (0125)
 - Decimal places 1 (0095)
 - Value 2 display (0108)
 - Decimal places 2 (0117)
 - Value 3 display (0110)
 - 0% bargraph value 3 (0124)
 - 100% bargraph value 3 (0126)
 - Decimal places 3 (0118)
 - Value 4 display (0109)
 - Decimal places 4 (0119)

- Configuration backup
 → 14

- Diagnostic handling
 → 26

- Administration
 → 29

- Configuration backup
 → 36

3.1.1 "Display" submenu

Navigation

Adobe Reader

[Expert → System → Display]

- Display
 - Display language (0104)
 - Format display (0098)
 - Value 1 display (0107)
 - 0% bargraph value 1 (0123)
 - 100% bargraph value 1 (0125)
 - Decimal places 1 (0095)
 - Value 2 display (0108)
 - Decimal places 2 (0117)
 - Value 3 display (0110)
 - 0% bargraph value 3 (0124)
 - 100% bargraph value 3 (0126)
 - Decimal places 3 (0118)
 - Value 4 display (0109)
 - Decimal places 4 (0119)
Display language

Navigation
Expert → System → Display → Display language (0104)

Prerequisite
A local display is provided.

Description
Use this function to select the configured language on the local display.

Selection
- English
- Deutsch
- Français
- Español
- Italiano
- Nederlands
- Portuguesa
- Polski
- русский язык (Russian)
- Svenska
- Türkçe
- 中文 (Chinese)
- 日本語 (Japanese)
- 한국어 (Korean)
- العربية (Arabic)*
- Bahasa Indonesia
- ภาษาไทย (Thai)*
- tiếng Việt (Vietnamese)
- čeština (Czech)

Factory setting
English (alternatively, the ordered language is preset in the device)

* Visibility depends on order options or device settings
Description of Device Parameters

Proline t-mass 500 HART

Format display

Navigation

Expert → System → Display → Format display (0098)

Prerequisite

A local display is provided.

Description

Use this function to select how the measured value is shown on the local display.

Selection

- 1 value, max. size
- 1 bargraph + 1 value
- 2 values
- 1 value large + 2 values
- 4 values

Additional information

The display format (size, bar graph etc.) and number of measured values displayed simultaneously (1 to 4) can be configured. This setting only applies to normal operation.

- The **Value 1 display** parameter (→ 18) to **Value 4 display** parameter (→ 22) are used to specify which measured values are shown on the local display and in what order.
- If more measured values are specified than the display mode selected permits, then the values alternate on the device display. The display time until the next change is configured via the **Display interval** parameter (→ 23).
Possible measured values shown on the local display:

"1 value, max. size" option

```
 XXXXXXXXX
-------------------
 \ 900.00

 l/h
```

"1 bargraph + 1 value" option

```
 XXXXXXXXX
-------------------
 \[\begin{array}{c}
 \hat{m}_1 \\
 \hat{u}_1
\end{array}\]

 900.00 kg/h

 \[\begin{array}{c}
 \hat{u}_1 \\
 \hat{p}_1
\end{array}\]

 900.00 l/h
```

"2 values" option

```
 XXXXXXXXX
-------------------
 \[\begin{array}{c}
 \hat{m}_1 \\
 \hat{u}_1
\end{array}\]

 900.00 kg/h

 \[\begin{array}{c}
 \hat{u}_1
\end{array}\]

 900.00 l/h
```

"1 value large + 2 values" option

```
 XXXXXXXXX
-------------------
 \[\begin{array}{c}
 \hat{m}_1 \\
 \hat{u}_1 \\
 \hat{p}_1 \\
 \hat{\rho}_1
\end{array}\]

 900.00 kg/h

 900.00 l/h

 1.00 kg/l
```

"4 values" option

```
 XXXXXXXXX
-------------------
 \[\begin{array}{c}
 \hat{m}_1 \\
 \hat{u}_1 \\
 \hat{\rho}_1 \\
 \hat{\Sigma}_1
\end{array}\]

 900.00 kg/h

 900.00 l/h

 1.00 kg/l

 213.94 kg
```
Value 1 display

Navigation

Expert → System → Display → Value 1 display (0107)

Prerequisite

A local display is provided.

Description

Use this function to select one of the measured values shown on the local display.

Selection

- Temperature
- Mass flow
- Corrected volume flow
- FAD volume flow
- Volume flow
- Energy flow
- Heat flow
- Density
- Flow velocity
- Pressure
- 2nd temperature delta heat
- Electronic temperature
- Totalizer 1
- Totalizer 2
- Totalizer 3
- Current output 1
- Current output 2
- Current output 3
- Current output 4

Additional information

Description

If several measured values are displayed at once, the measured value selected here will be the first value to be displayed. The value is only displayed during normal operation.

The Format display parameter (→ 16) is used to specify how many measured values are displayed simultaneously and how.

Dependency

The unit of the displayed measured value is taken from the System units submenu (→ 54).

0% bargraph value 1

Navigation

Expert → System → Display → 0% bargraph 1 (0123)

Prerequisite

A local display is provided.

Description

Use this function to enter the 0% bar graph value to be shown on the display for the measured value 1.

User entry

Signed floating-point number

* Visibility depends on order options or device settings
Additional information

Description

The Format display parameter (→ 16) is used to specify that the measured value is to be displayed as a bar graph.

User entry

The unit of the displayed measured value is taken from the System units submenu (→ 54).

100% bargraph value 1

Navigation

Expert → System → Display → 100% bargraph 1 (0125)

Prerequisite

A local display is provided.

Description

Use this function to enter the 100% bar graph value to be shown on the display for the measured value 1.

User entry

Signed floating-point number

Factory setting

Depends on country and nominal diameter → 221

Additional information

Description

The Format display parameter (→ 16) is used to specify that the measured value is to be displayed as a bar graph.

User entry

The unit of the displayed measured value is taken from the System units submenu (→ 54).

Decimal places 1

Navigation

Expert → System → Display → Decimal places 1 (0095)

Prerequisite

A measured value is specified in the Value 1 display parameter (→ 18).

Description

Use this function to select the number of decimal places for measured value 1.

Selection

- x
- x.x
- x.xx
- x.xxx
- x.xxxx

Additional information

Description

This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.
Value 2 display

Navigation
Expert → System → Display → Value 2 display (0108)

Prerequisite
A local display is provided.

Description
Use this function to select one of the measured values shown on the local display.

Selection
For the picklist, see the Value 1 display parameter (→ 18)

Additional information
If several measured values are displayed at once, the measured value selected here will be the second value to be displayed. The value is only displayed during normal operation.

The Format display parameter (→ 16) is used to specify how many measured values are displayed simultaneously and how.

Dependency
The unit of the displayed measured value is taken from the System units submenu (→ 54).

Decimal places 2

Navigation
Expert → System → Display → Decimal places 2 (0117)

Prerequisite
A measured value is specified in the Value 2 display parameter (→ 20).

Description
Use this function to select the number of decimal places for measured value 2.

Selection
- x
- x.x
- x.xx
- x.xxx
- x.xxxx

Additional information
This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.

Value 3 display

Navigation
Expert → System → Display → Value 3 display (0110)

Prerequisite
A local display is provided.

Description
Use this function to select one of the measured values shown on the local display.
Selection

For the picklist, see the **Value 1 display** parameter (→ 18).

Additional information

Description

If several measured values are displayed at once, the measured value selected here will be the third value to be displayed. The value is only displayed during normal operation.

The **Format display** parameter (→ 16) is used to specify how many measured values are displayed simultaneously and how.

Selection

The unit of the displayed measured value is taken from the **System units** submenu (→ 54).

0% bargraph value 3

Navigation

Expert → System → Display → 0% bargraph 3 (0124)

Prerequisite

A selection was made in the **Value 3 display** parameter (→ 20).

Description

Use this function to enter the 0% bar graph value to be shown on the display for the measured value 3.

User entry

Signed floating-point number

Additional information

Description

The **Format display** parameter (→ 16) is used to specify that the measured value is to be displayed as a bar graph.

User entry

The unit of the displayed measured value is taken from the **System units** submenu (→ 54).

100% bargraph value 3

Navigation

Expert → System → Display → 100% bargraph 3 (0126)

Prerequisite

A selection was made in the **Value 3 display** parameter (→ 20).

Description

Use this function to enter the 100% bar graph value to be shown on the display for the measured value 3.

User entry

Signed floating-point number
Description of Device Parameters

Proline t-mass 500 HART

Additional information

Description

The Format display parameter (→ [16]) is used to specify that the measured value is to be displayed as a bar graph.

User entry

The unit of the displayed measured value is taken from the System units submenu (→ [54]).

Decimal places 3

Navigation

Graph Expert → System → Display → Decimal places 3 (0118)

Prerequisite

A measured value is specified in the Value 3 display parameter (→ [20]).

Description

Use this function to select the number of decimal places for measured value 3.

Selection

• x
• x.x
• x.xx
• x.xxx
• x.xxxx

Additional information

Description

This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.

Value 4 display

Navigation

Graph Expert → System → Display → Value 4 display (0109)

Prerequisite

A local display is provided.

Description

Use this function to select one of the measured values shown on the local display.

Selection

For the picklist, see the Value 1 display parameter (→ [18])

Additional information

Description

If several measured values are displayed at once, the measured value selected here will be the fourth value to be displayed. The value is only displayed during normal operation.

The Format display parameter (→ [16]) is used to specify how many measured values are displayed simultaneously and how.

Selection

The unit of the displayed measured value is taken from the System units submenu (→ [54]).
Decimal places 4

Navigation
Expert → System → Display → Decimal places 4 (0119)

Prerequisite
A measured value is specified in the Value 4 display parameter (→ 22).

Description
Use this function to select the number of decimal places for measured value 4.

Selection
- x
- x.x
- x.xx
- x.xxx
- x.xxxx

Additional information
Description
This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.

Display interval

Navigation
Expert → System → Display → Display interval (0096)

Prerequisite
A local display is provided.

Description
Use this function to enter the length of time the measured values are displayed if the values alternate on the display.

User entry
1 to 10 s

Additional information
Description
This type of alternating display only occurs automatically if the number of measured values defined exceeds the number of values the selected display format can display simultaneously.

- The Value 1 display parameter (→ 18) to Value 4 display parameter (→ 22) are used to specify which measured values are shown on the local display.
- The display format of the displayed measured values is specified using the Format display parameter (→ 16).

Display damping

Navigation
Expert → System → Display → Display damping (0094)

Prerequisite
A local display is provided.

Description
Use this function to enter a time constant for the reaction time of the local display to fluctuations in the measured value caused by process conditions.
User entry

0.0 to 999.9 s

Additional information

User entry

Use this function to enter a time constant (PT1 element) for display damping:
- If a low time constant is entered, the display reacts particularly quickly to fluctuating measured variables.
- On the other hand, the display reacts more slowly if a high time constant is entered.

Damping is switched off if 0 is entered (factory setting).

Header

Navigation

Expert → System → Display → Header (0097)

Prerequisite

A local display is provided.

Description

Use this function to select the contents of the header of the local display.

Selection

- Device tag
- Free text

Additional information

Description

The header text only appears during normal operation.

1) Position of the header text on the display

```
1  xxxxxxxxxxx
```

Selection

- Device tag
 - Is defined in the **Device tag** parameter (→ 188).
- Free text
 - Is defined in the **Header text** parameter (→ 24).

Header text

Navigation

Expert → System → Display → Header text (0112)

Prerequisite

In the **Header** parameter (→ 24), the **Free text** option is selected.

Description

Use this function to enter a customer-specific text for the header of the local display.

1) proportional transmission behavior with first order delay
User entry
Max. 12 characters such as letters, numbers or special characters (e.g. @, %, /)

Additional information
Description
The header text only appears during normal operation.

Position of the header text on the display

User entry
The number of characters displayed depends on the characters used.

Separator

Navigation
Expert → System → Display → Separator (0101)

Prerequisite
A local display is provided.

Description
Use this function to select the decimal separator.

Selection
. (point)
, (comma)

Factory setting
. (point)

Contrast display

Navigation
Expert → System → Display → Contrast display (0105)

Prerequisite
A local display is provided.

Description
Use this function to enter a value to adapt the display contrast to the ambient conditions (e.g. the lighting or viewing angle).

User entry
20 to 80 %

Factory setting
Depends on the display
Backlight

Navigation

Expert → System → Display → Backlight (0111)

Prerequisite

One of the following conditions is met:
- Order code for "Display; operation", option F "4-line, illum.; touch control"
- Order code for "Display; operation", option G "4-line, illum.; touch control +WLAN"

Description

Use this function to switch the backlight of the local display on and off.

Selection

- Disable
- Enable

3.1.2 "Configuration backup" submenu

Navigation

Expert → System → Config. backup

- Operating time (0652)
- Last backup (2757)
- Configuration management (2758)
- Backup state (2759)
- Comparison result (2760)

Operating time

Navigation

Expert → System → Config. backup → Operating time (0652)

Description

Use this function to display the length of time the device has been in operation.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

User interface

The maximum number of days is 9999, which is equivalent to 27 years.
Last backup

Navigation
Expert → System → Config. backup → Last backup (2757)

Description
Displays the time since a backup copy of the data was last saved to the device memory.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Configuration management

Navigation
Expert → System → Config. backup → Config. managem. (2758)

Description
Use this function to select an action to save the data to the device memory.

Selection

- Cancel
- Execute backup
- Restore *
- Compare *
- Clear backup data

Additional information

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancel</td>
<td>No action is executed and the user exits the parameter.</td>
</tr>
<tr>
<td>Execute backup</td>
<td>A backup copy of the current device configuration is saved from the HistOROM backup to the memory of the device. The backup copy includes the transmitter data of the device. The following message appears on local display: Backup active, please wait!</td>
</tr>
<tr>
<td>Restore</td>
<td>The last backup copy of the device configuration is restored from the device memory to the device's HistOROM backup. The backup copy includes the transmitter data of the device. The following message appears on local display: Restore active! Do not interrupt power supply!</td>
</tr>
<tr>
<td>Compare</td>
<td>The device configuration saved in the device memory is compared with the current device configuration of the HistOROM backup. The following message appears on local display: Comparing files The result can be viewed in Comparison result parameter.</td>
</tr>
<tr>
<td>Clear backup data</td>
<td>The backup copy of the device configuration is deleted from the memory of the device. The following message appears on local display: Deleting file</td>
</tr>
</tbody>
</table>

HistoROM

A HistoROM is a 'non-volatile' device memory in the form of an EEPROM.
Backup state

Navigation
Expert → System → Config. backup → Backup state (2759)

Description
Displays the status of the data backup process.

User interface
- None
- Backup in progress
- Restoring in progress
- Delete in progress
- Compare in progress
- Restoring failed
- Backup failed

Comparison result

Navigation
Expert → System → Config. backup → Compar. result (2760)

Description
Displays the last result of the comparison of the data records in the device memory and in the HistoROM.

User interface
- Settings identical
- Settings not identical
- No backup available
- Backup settings corrupt
- Check not done
- Dataset incompatible

Additional information

Description
The comparison is started via the Compare option in the Configuration management parameter (→ 27).

Selection

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Settings identical</td>
<td>The current device configuration of the HistoROM is identical to the backup copy in the device memory. If the transmitter configuration of another device has been transmitted to the device via HistoROM in the Configuration management parameter, the current device configuration of the HistoROM is only partially identical to the backup copy in the device memory. The settings for the transmitter are not identical.</td>
</tr>
<tr>
<td>Settings not identical</td>
<td>The current device configuration of the HistoROM is not identical to the backup copy in the device memory.</td>
</tr>
<tr>
<td>No backup available</td>
<td>There is no backup copy of the device configuration of the HistoROM in the device memory.</td>
</tr>
<tr>
<td>Backup settings corrupt</td>
<td>The current device configuration of the HistoROM is corrupt or not compatible with the backup copy in the device memory.</td>
</tr>
</tbody>
</table>
Options and Description

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check not done</td>
<td>The device configuration of the HistoROM has not yet been compared to the backup copy in the device memory.</td>
</tr>
<tr>
<td>Dataset incompatible</td>
<td>The backup copy in the device memory is not compatible with the device.</td>
</tr>
</tbody>
</table>

HistoROM

A HistoROM is a "non-volatile" device memory in the form of an EEPROM.

3.1.3 "Diagnostic handling" submenu

Navigation

Expert → System → Diagn. handling

Alarm delay (0651)

Description

Use this function to enter the time interval until the device generates a diagnostic message.

The diagnostic message is reset without a time delay.

User entry

0 to 60 s

Additional information

This setting affects the following diagnostic messages:
- 832 Electronic temperature too high
- 833 Electronic temperature too low
- 834 Process temperature too high
- 835 Process temperature too low

"Diagnostic behavior" submenu

Each item of diagnostic information is assigned a specific diagnostic behavior at the factory. The user can change this assignment for specific diagnostic information in the Diagnostic behavior submenu (→ 29).
The following options are available in the **Assign behavior of diagnostic no. xxx** parameters:

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm</td>
<td>The device stops measurement. The signal outputs and totalizers assume the defined alarm condition. A diagnostic message is generated. The background lighting changes to red.</td>
</tr>
<tr>
<td>Warning</td>
<td>The device continues to measure. The signal outputs and totalizers are not affected. A diagnostic message is generated.</td>
</tr>
<tr>
<td>Logbook entry only</td>
<td>The device continues to measure. The diagnostic message is displayed only in the Event logbook submenu (→ 187) (Event list submenu) and is not displayed in alternation with the operational display.</td>
</tr>
<tr>
<td>Off</td>
<td>The diagnostic event is ignored, and no diagnostic message is generated or entered.</td>
</tr>
</tbody>
</table>

For a list of all the diagnostic events, see the Operating Instructions for the device

Navigation

 رغم ○ Expert → System → Diagn. handling → Diagn. behavior

<table>
<thead>
<tr>
<th>Diagnostic behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign behavior of diagnostic no. 144 (0631) → 31</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 302 (0742) → 31</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 441 (0657) → 31</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 442 (0658) → 32</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 443 (0659) → 32</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 444 (0740) → 33</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 832 (0675) → 33</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 833 (0676) → 33</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 834 (0677) → 34</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 835 (0678) → 34</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 842 (0638) → 34</td>
</tr>
</tbody>
</table>
Assign behavior of diagnostic no. 144 (Sensor drift)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 144 (0631)

Description
Use this function to change the diagnostic behavior of the **144 Sensor drift** diagnostic message.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Additional information
Detailed description of the options available for selection: → 30

Assign behavior of diagnostic no. 302 (Device verification active)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 302 (0742)

Description
Use this function to change the diagnostic behavior of the **302 Device verification active** diagnostic message.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Additional information
Detailed description of the options available for selection: → 30

Assign behavior of diagnostic no. 441 (Current output 1 to n)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 441 (0657)

Description
Use this function to change the diagnostic behavior of the **441 Current output 1 to n** diagnostic message.
Description of Device Parameters

Selection

- Off
- Alarm
- Warning
- Logbook entry only

Additional information

Selection

Detailed description of the options available for selection: → 30

Assign behavior of diagnostic no. 442 (Frequency output 1 to n)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 442 (0658)

Prerequisite

The measuring device has a pulse/frequency/switch output.

Description

Use this function to change the diagnostic behavior of the 442 Frequency output 1 to n diagnostic message.

Selection

- Off
- Alarm
- Warning
- Logbook entry only

Additional information

Selection

Detailed description of the options available for selection: → 30

Assign behavior of diagnostic no. 443 (Pulse output)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 443 (0659)

Prerequisite

The measuring device has a pulse/frequency/switch output.

Description

Use this function to change the diagnostic behavior of the 443 Pulse output diagnostic message.

Selection

- Off
- Alarm
- Warning
- Logbook entry only

Additional information

Selection

Detailed description of the options available for selection: → 30
Assign behavior of diagnostic no. 444 (Current input 1 to n)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 444 (0740)

Prerequisite

The device has one current input.

Description

Use this function to change the diagnostic behavior of the 444 Current input 1 to n diagnostic message.

Selection

- Off
- Alarm
- Warning
- Logbook entry only

Additional information

Detailed description of the options available for selection: → 30

Assign behavior of diagnostic no. 832 (Electronic temperature too high)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 832 (0675)

Description

Use this function to change the diagnostic behavior of the 832 Electronic temperature too high diagnostic message.

Selection

- Off
- Alarm
- Warning
- Logbook entry only

Additional information

Detailed description of the options available for selection: → 30

Assign behavior of diagnostic no. 833 (Electronic temperature too low)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 833 (0676)

Description

Use this function to change the diagnostic behavior of the 833 Electronic temperature too low diagnostic message.

Selection

- Off
- Alarm
- Warning
- Logbook entry only

Additional information

Selection

Detailed description of the options available for selection: → 30
Assign behavior of diagnostic no. 834 (Process temperature too high)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 834 (0677)

Description

Use this function to change the diagnostic behavior of the **Process temperature too high** diagnostic message.

Selection

- Off
- Alarm
- Warning
- Logbook entry only

Additional information

Selection

Detailed description of the options available for selection: → 30

Assign behavior of diagnostic no. 835 (Process temperature too low)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 835 (0678)

Description

Use this function to change the diagnostic behavior of the **Process temperature too low** diagnostic message.

Selection

- Off
- Alarm
- Warning
- Logbook entry only

Additional information

Selection

Detailed description of the options available for selection: → 30

Assign behavior of diagnostic no. 842 (Process limit)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 842 (0638)

Description

Use this function to change the diagnostic behavior of the **Process limit** diagnostic message.

Selection

- Off
- Alarm
- Warning
- Logbook entry only

Additional information

Detailed description of the options available for selection: → 30
<table>
<thead>
<tr>
<th>Assign behavior of diagnostic no. 976 (Mass flow out of calibrated range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Description</td>
</tr>
</tbody>
</table>
| **Selection** | - Off
- Alarm
- Warning
- Logbook entry only |
| **Additional information** | 更多关于选项的详细说明：→ 30 |

<table>
<thead>
<tr>
<th>Assign behavior of diagnostic no. 977 (Reverse flow detected)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Description</td>
</tr>
</tbody>
</table>
| **Selection** | - Off
- Alarm
- Warning
- Logbook entry only |
| **Additional information** | 更多关于选项的详细说明：→ 30 |

<table>
<thead>
<tr>
<th>Assign behavior of diagnostic no. 979 (Unstable process conditions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Description</td>
</tr>
</tbody>
</table>
| **Selection** | - Off
- Alarm
- Warning
- Logbook entry only |
| **Additional information** | 更多关于选项的详细说明：→ 30 |
3.1.4 "Administration" submenu

Navigation
- Expert → System → Administration

<table>
<thead>
<tr>
<th>Submenu</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration</td>
<td>Discovery of the Define access code wizard.</td>
</tr>
<tr>
<td>Define access code</td>
<td>The Define access code wizard is only available when operating via the local display or web browser.</td>
</tr>
<tr>
<td>Reset access code</td>
<td>Device reset (0000)</td>
</tr>
<tr>
<td>Transmitter identifier (2765)</td>
<td>Transmitter identifier (2765)</td>
</tr>
<tr>
<td>Activate SW option (0029)</td>
<td>Activate SW option (0029)</td>
</tr>
<tr>
<td>Software option overview (0015)</td>
<td>Software option overview (0015)</td>
</tr>
</tbody>
</table>

"Define access code" wizard

The Define access code wizard is only available when operating via the local display or web browser. If operating via the operating tool, the Define access code parameter can be found directly in the Administration submenu. There is no Confirm access code parameter if the device is operated via the operating tool.

Navigation
- Expert → System → Administration → Def. access code

<table>
<thead>
<tr>
<th>Define access code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Define access code</td>
<td>Use this function to enter a user-specific release code to restrict write-access to the parameters. This protects the device configuration against any inadvertent modifications via the local display, Web browser, FieldCare or DeviceCare (via CDI-RJ45 service interface).</td>
</tr>
<tr>
<td>Confirm access code</td>
<td>Maximum 16-digit character string comprising numbers, letters and special characters.</td>
</tr>
</tbody>
</table>

Additional information

The write protection affects all parameters in the document marked with the symbol.
On the local display, the symbol in front of a parameter indicates that the parameter is write-protected.

The parameters that cannot be write-accessed are grayed out in the Web browser.

Once the access code has been defined, write-protected parameters can only be modified if the access code is entered in the Enter access code parameter (→ 13).

If you lose the access code, please contact your Endress+Hauser sales organization.

User entry
A message is displayed if the access code is not in the input range.

Factory setting
If the factory setting is not changed or 0 is defined as the access code, the parameters are not write-protected and the device configuration data can be modified. The user is logged on in the "Maintenance" role.

Confirm access code

Navigation

Expert → System → Administration → Def. access code → Confirm code

Description
Enter the defined release code a second time to confirm the release code.

User entry
Max. 16-digit character string comprising numbers, letters and special characters

"Reset access code" submenu

Navigation

Expert → System → Administration → Reset acc. code

<table>
<thead>
<tr>
<th>▶ Reset access code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating time (0652) → 38</td>
</tr>
<tr>
<td>Reset access code (0024) → 38</td>
</tr>
</tbody>
</table>
Operating time

Navigation
- Diagnostics → Operating time (0652)
- Expert → Diagnostics → Operating time (0652)
- Expert → System → Config. backup → Operating time (0652)
- Expert → System → Administration → Reset acc. code → Operating time (0652)
- Setup → Advanced setup → Administration → Reset acc. code → Operating time (0652)
- Setup → Advanced setup → Config. backup → Operating time (0652)

Description
Use this function to display the length of time the device has been in operation.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information
User interface

The maximum number of days is 9999, which is equivalent to 27 years.

Reset access code

Navigation
- Expert → System → Administration → Reset acc. code → Reset acc. code (0024)
- Setup → Advanced setup → Administration → Reset acc. code → Reset acc. code (0024)

Description
Use this function to enter a reset code to reset the user-specific release code to the factory setting.

User entry
Character string comprising numbers, letters and special characters

Additional information
Description

For a reset code, contact your Endress+Hauser service organization.

User entry
The reset code can only be entered via:
- Web browser
- DeviceCare, FieldCare (via interface CDI RJ45)
- Fieldbus
Additional parameters in the "Administration" submenu

Device reset

Navigation

Expert → System → Administration → Device reset (0000)

Description

Use this function to choose whether to reset the device configuration - either entirely or in part - to a defined state.

Selection

- Cancel
- To delivery settings
- Restart device
- Restore S-DAT backup *

Additional information

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancel</td>
<td>No action is executed and the user exits the parameter.</td>
</tr>
<tr>
<td>To delivery settings</td>
<td>Every parameter for which a customer-specific default setting was ordered is reset to this customer-specific value. All other parameters are reset to the factory setting.</td>
</tr>
<tr>
<td>Restart device</td>
<td>The restart resets every parameter whose data are in the volatile memory (RAM) to the factory setting (e.g. measured value data). The device configuration remains unchanged.</td>
</tr>
<tr>
<td>Restore S-DAT backup</td>
<td>Restore the data that are saved on the S-DAT. The data record is restored from the electronics memory to the S-DAT. * This option is displayed only in an alarm condition.</td>
</tr>
</tbody>
</table>

Transmitter identifier

Navigation

Expert → System → Administration → Transm. identif. (2765)

Description

Select transmitter identifier.

User interface

- Unknown
- 500
- 300

Factory setting

500

* Visibility depends on order options or device settings
Activate SW option

Navigation

Expert → System → Administration → Activate SW opt. (0029)

Description

Use this function to enter an activation code to enable an additional, ordered software option.

User entry

Max. 10-digit string consisting of numbers.

Factory setting

Depends on the software option ordered

Additional information

Description

If a measuring device was ordered with an additional software option, the activation code is programmed in the device at the factory.

User entry

To activate a software option subsequently, please contact your Endress+Hauser sales organization.

NOTE!

The activation code is linked to the serial number of the measuring device and varies according to the device and software option.

If an incorrect or invalid code is entered, this results in the loss of software options that have already been activated.

▸ Before you enter a new activation code, make a note of the current activation code.

▸ Enter the new activation code provided by Endress+Hauser when the new software option was ordered.

▸ If the code entered is incorrect or invalid, enter the old activation code.

▸ Have your Endress+Hauser sales organization check the new activation code remembering to specify the serial number or ask for the code again.

Example for a software option

Order code for "Application package", option EA "Extended HistoROM"

Web browser

Once a software option has been activated, the page must be loaded again in the Web browser.

Software option overview

Navigation

Expert → System → Administration → SW option overv. (0015)

Description

Displays all the software options that are enabled in the device.
User interface

- Extended HistoROM *
- SIL *
- Second gas
- Heartbeat Monitoring *
- Heartbeat Verification *

Additional information

Description
Displays all the options that are available if ordered by the customer.

"Extended HistoROM" option
Order code for "Application package", option EA "Extended HistoROM"

"SIL" option
Order code for "Additional approval", option LA "SIL"

"Heartbeat Verification" option and "Heartbeat Monitoring" option
Order code for "Application package", option EB "Heartbeat Verification + Monitoring"

"Second gas" option
Order code for "Application package", option EV "Second gas group"

3.2 "Sensor" submenu

Navigation ⊿ Expert → Sensor

<table>
<thead>
<tr>
<th>➤ Sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>➤ Measured values ➤ 42</td>
</tr>
<tr>
<td>➤ System units ➤ 54</td>
</tr>
<tr>
<td>➤ Process parameters ➤ 64</td>
</tr>
<tr>
<td>➤ Measurement mode ➤ 68</td>
</tr>
<tr>
<td>➤ Sensor adjustment ➤ 87</td>
</tr>
<tr>
<td>➤ Zero point adjustment</td>
</tr>
<tr>
<td>➤ External compensation ➤ 90</td>
</tr>
<tr>
<td>➤ In-situ adjustment ➤ 94</td>
</tr>
<tr>
<td>➤ Calibration ➤ 104</td>
</tr>
</tbody>
</table>

* Visibility depends on order options or device settings
3.2.1 "Measured values" submenu

Navigation
Expert → Sensor → Measured val.

<table>
<thead>
<tr>
<th>Measured values</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Process variables</td>
<td>→ 42</td>
</tr>
<tr>
<td>▪ System values</td>
<td>→ 47</td>
</tr>
<tr>
<td>▪ Totalizer</td>
<td>→ 47</td>
</tr>
<tr>
<td>▪ Input values</td>
<td>→ 49</td>
</tr>
<tr>
<td>▪ Output values</td>
<td>→ 50</td>
</tr>
</tbody>
</table>

"Process variables" submenu

Navigation

<table>
<thead>
<tr>
<th>Process variables</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass flow (1838)</td>
<td>→ 43</td>
</tr>
<tr>
<td>Corrected volume flow (1847)</td>
<td>→ 43</td>
</tr>
<tr>
<td>Volume flow (1850)</td>
<td>→ 43</td>
</tr>
<tr>
<td>FAD volume flow (1851)</td>
<td>→ 44</td>
</tr>
<tr>
<td>Energy flow (1852)</td>
<td>→ 44</td>
</tr>
<tr>
<td>Heat flow (1872)</td>
<td>→ 44</td>
</tr>
<tr>
<td>Temperature (1853)</td>
<td>→ 45</td>
</tr>
<tr>
<td>Density (1854)</td>
<td>→ 45</td>
</tr>
<tr>
<td>Process pressure (17343)</td>
<td>→ 45</td>
</tr>
<tr>
<td>2nd temperature heat flow (17344)</td>
<td>→ 45</td>
</tr>
<tr>
<td>Flow velocity (1857)</td>
<td>→ 46</td>
</tr>
<tr>
<td>Mach number (17302)</td>
<td>→ 46</td>
</tr>
</tbody>
</table>
Mass flow

Navigation

Description
Displays the mass flow that is currently measured.

User interface
Signed floating-point number

Additional information

- **Dependency**
 The unit is taken from the **Mass flow unit** parameter (→ 55)

Corrected volume flow

Navigation

Description
Displays the corrected volume flow that is currently calculated.

User interface
Signed floating-point number

Additional information

- **Description**
The corrected volume flow is derived from the measured volume flow corrected to the selected reference conditions.

- **Dependency**
The unit is taken from the **Corrected volume flow unit** parameter (→ 56)

Volume flow

Navigation

Description
Displays the volume flow that is currently measured.

User interface
Signed floating-point number

Additional information

- **Dependency**
The unit is taken from the **Volume flow unit** parameter (→ 57)
FAD volume flow

Navigation

Prerequisite
The Air or compressed air option is selected in the Measurement application parameter (→ 68) parameter.

Description
Displays the FAD volume flow that is currently measured.

User interface
Signed floating-point number

Additional information
Dependency
The unit is taken from the FAD volume flow unit parameter (→ 58).

Energy flow

Navigation

Prerequisite
The Energy option is selected in the Measurement application parameter (→ 68) parameter.

Description
Shows the energy flow currently calculated.

User interface
Signed floating-point number

Additional information
Dependency
The unit is taken from the Energy flow unit parameter (→ 59)

Heat flow

Navigation

Prerequisite
The Energy option is selected in the Measurement application parameter (→ 68) parameter.

Description
Shows the heat flow currently calculated.

User interface
Signed floating-point number

Additional information
Dependency
The unit is taken from the Energy flow unit parameter (→ 59)

2) Free Air Delivery
Temperature

Navigation

Description
Displays the temperature that is currently measured.

User interface
Signed floating-point number

Additional information
- *Dependency*

![i] The unit is taken from the **Temperature unit** parameter (→ 62)

Density

Navigation

Description
Shows the density currently calculated.

User interface
Signed floating-point number

Additional information
- *Dependency*

![i] The unit is taken from the **Density unit** parameter (→ 61)

Process pressure

Navigation

Description
Shows depending on the setting the entered or external process pressure.

User interface
Signed floating-point number

Additional information
- *Dependency*

![i] The unit is taken from the **Pressure unit** parameter (→ 62)

2nd temperature heat flow

Navigation

Prerequisite
The **Energy** option is selected in the **Measurement application** parameter (→ 68) parameter.

Description
Displays the 2nd temperature for heat flow calculation. The temperature can be an external value or a fixed, entered value.
Description of Device Parameters

Proline t-mass 500 HART

User interface Signed floating-point number

Additional information Dependency

The unit is taken from the Temperature unit parameter (→ 62)

Flow velocity

Description Shows the flow velocity currently calculated.

User interface Signed floating-point number

Additional information Dependency

The unit is taken from the Velocity unit parameter (→ 63)

Mach number

Description Shows the Mach number currently calculated. For the calculation the density and the pressure are required.

User interface Signed floating-point number

Power coefficient fluctuation

Description Indicates the standard deviation of the unprocessed sensor signal.

User interface Signed floating-point number

Factory setting 0 to 1

Additional information Unit: normalized value.
Level of flow fluctuation

Navigation

专家 → 传感器 → 测量值 → 过程变量 → 流量波动 (12113)

Description

指示过程稳定性通过峰值值确定。

User interface

浮点数

Factory setting

0 到 1

Additional information

U: 标准化值。

"System values" submenu

Navigation

专家 → 传感器 → 测量值 → 系统值

Electronic temperature

Navigation

专家 → 传感器 → 测量值 → 系统值 → 电子温度 (17301)

Description

指示电流电子温度。

User interface

浮点数

"Totalizer" submenu

Navigation

专家 → 传感器 → 测量值 → 总计器
Totalizer value 1 to n

Navigation

Expert → Sensor → Measured val. → Totalizer → Totalizer val. 1 to n (0911–1 to n)

Description

Displays the current totalizer reading.

User interface

Signed floating-point number

Additional information

Description

As it is only possible to display a maximum of 7 digits in the operating tool, the current counter value is the sum of the totalizer value and the overflow value from the Totalizer overflow 1 to n parameter if the display range is exceeded.

In the event of an error, the totalizer adopts the mode defined in the Failure mode parameter (→ 179).

User interface

The unit of the selected process variable is specified for the totalizer in the Unit totalizer parameter (→ 176).

Example

Calculation of the current totalizer reading when the value exceeds the 7-digit display range of the operating tool:

- Value in the Totalizer value 1 parameter: 1968457 kg
- Value in Totalizer overflow 1 parameter: \(1 \times 10^7\) (1 overflow) = 10000000 [kg]
- Current totalizer reading: 11968457 kg

Totalizer overflow 1 to n

Navigation

Expert → Sensor → Measured val. → Totalizer → Tot. overflow 1 to n (0910–1 to n)

Description

Displays the current totalizer overflow.

User interface

Integer with sign

Additional information

Description

If the current totalizer reading exceeds 7 digits, which is the maximum value range that can be displayed by the operating tool, the value above this range is output as an overflow.
The current totalizer value is therefore the sum of the overflow value and the totalizer value from the **Totalizer value 1 to n** parameter.

User interface

- The unit of the selected process variable is specified for the totalizer in the **Unit totalizer** parameter (→ 176).

Example

Calculation of the current totalizer reading when the value exceeds the 7-digit display range of the operating tool:
- Value in the **Totalizer value 1** parameter: 1968457 kg
- Value in **Totalizer overflow 1** parameter: $2 \cdot 10^7$ (2 overflows) = 20000000 [kg]
- Current totalizer reading: 21968457 kg

"Input values" submenu

Navigation

- Expert → Sensor → Measured val. → Input values

- **Input values**

 - **Current input 1 to n** → 49
 - **Value status input 1 to n** → 50

'Current input 1 to n' submenu

Navigation

- Expert → Sensor → Measured val. → Input values → Current input 1 to n

- **Current input 1 to n**

 - Measured values 1 to n (1603–1 to n) → 49
 - Measured current 1 to n (1604–1 to n) → 50

Measured values 1 to n

Navigation

- Expert → Sensor → Measured val. → Input values → Current input 1 to n → Measured val. 1 to n (1603–1 to n)

Description

Displays the current input value.

User interface

Signed floating-point number
Description of Device Parameters

Proline t-mass 500 HART

Measured current 1 to n

Navigation

Expert → Sensor → Measured val. → Input values → Current input 1 to n → Measur. curr. 1 to n (1604–1 to n)

Description

Displays the current value of the current input.

User interface

0 to 22.5 mA

"Value status input 1 to n" submenu

Navigation

Expert → Sensor → Measured val. → Input values → Val.stat.inp. 1 to n

Description

Displays the current input signal level.

User interface

- High
- Low

"Output values" submenu

Navigation

Expert → Sensor → Measured val. → Output values

Description

User interface

- Value current output 1 to n
- Pulse/frequency/switch output 1 to n
- Relay output 1 to n
"Value current output 1 to n" submenu

Navigation

Expert → Sensor → Measured val. → Output values → Value curr.out 1 to n

<table>
<thead>
<tr>
<th>▶ Value current output 1 to n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output current 1 to n (0361–1 to n)</td>
</tr>
<tr>
<td>Measured current 1 to n (0366–1 to n)</td>
</tr>
</tbody>
</table>

Output current 1 to n

Navigation

Expert → Sensor → Measured val. → Output values → Value curr.out 1 to n → Output curr. 1 to n (0361–1 to n)

Description
Displays the current value currently calculated for the current output.

User interface
0 to 22.5 mA

Measured current 1 to n

Navigation

Expert → Sensor → Measured val. → Output values → Value curr.out 1 to n → Measur. curr. 1 to n (0366–1 to n)

Description
Use this function to display the actual measured value of the output current.

User interface
0 to 30 mA

"Pulse/frequency/switch output 1 to n" submenu

Navigation

Expert → Sensor → Measured val. → Output values → PFS output 1 to n

<table>
<thead>
<tr>
<th>▶ Pulse/frequency/switch output 1 to n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output frequency 1 to n (0471–1 to n)</td>
</tr>
<tr>
<td>Pulse output 1 to n (0456–1 to n)</td>
</tr>
<tr>
<td>Switch status 1 to n (0461–1 to n)</td>
</tr>
</tbody>
</table>
Description of Device Parameters

Proline t-mass 500 HART

Output frequency 1 to n

Navigation

Expert → Sensor → Measured val. → Output values → PFS output 1 to n → Output freq. 1 to n (0471–1 to n)

Prerequisite

In the Operating mode parameter (→ 119), the Frequency option is selected.

Description

Displays the actual value of the output frequency which is currently measured.

User interface

0.0 to 12 500.0 Hz

Pulse output 1 to n

Navigation

Expert → Sensor → Measured val. → Output values → PFS output 1 to n → Pulse output 1 to n (0456–1 to n)

Prerequisite

The Pulse option is selected in the Operating mode parameter (→ 119) parameter.

Description

Displays the pulse frequency currently output.

User interface

Positive floating-point number

Additional information

- The pulse output is an open collector output.
- This is configured at the factory in such a way that the transistor is conductive for the duration of the pulse (NO contact) and is safety-oriented.

The output behavior can be reversed via the Invert output signal parameter (→ 133) i.e. the transistor does not conduct for the duration of the pulse.

In addition, the behavior of the output in the event of a device alarm (Failure mode parameter (→ 122)) can be configured.
Switch status 1 to n

Navigation

Expert → Sensor → Measured val. → Output values → PFS output 1 to n → Switch status 1 to n (0461–1 to n)

Prerequisite

The **Switch** option is selected in the Operating mode parameter (→ 119).

Description

Displays the current switch status of the status output.

User interface

- Open
- Closed

Additional information

User interface

- Open
 The switch output is not conductive.
- Closed
 The switch output is conductive.

Relay output 1 to n submenu

Navigation

Expert → Sensor → Measured val. → Output values → Relay output 1 to n

Switch status

Navigation

Expert → Sensor → Measured val. → Output values → Relay output 1 to n → Switch status (0801–1 to n)

Description

Displays the current status of the relay output.

User interface

- Open
- Closed
Additional information

* User interface

- **Open**
 The relay output is not conductive.
- **Closed**
 The relay output is conductive.

Switch cycles

Navigation

Expert → Sensor → Measured val. → Output values → Relay output 1 to n → Switch
cycles (0815–1 to n)

Description
Displays all the switch cycles performed.

User interface
Positive integer

Max. switch cycles number

Navigation

Expert → Sensor → Measured val. → Output values → Relay output 1 to n → Max.
cycles no. (0817–1 to n)

Description
Displays the maximum number of guaranteed switch cycles.

User interface
Positive integer

3.2.2 "System units" submenu

Navigation

Expert → Sensor → System units

| System units |
|--------------------------------------|----------------------------------|
| Mass flow unit (0554) | ➔ 55 |
| Mass unit (0574) | ➔ 56 |
| Corrected volume flow unit (0558) | ➔ 56 |
| Corrected volume unit (0575) | ➔ 57 |
| Volume flow unit (0553) | ➔ 57 |
| Volume unit (0563) | ➔ 58 |
| FAD volume flow unit (0601) | ➔ 58 |

Endress+Hauser
Navigation

Expert → Sensor → System units → Mass flow unit (0554)

Description

Use this function to select the unit for the mass flow.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/s</td>
<td>lb/s</td>
</tr>
<tr>
<td>g/min</td>
<td>lb/min</td>
</tr>
<tr>
<td>g/h</td>
<td>lb/h</td>
</tr>
<tr>
<td>g/d</td>
<td>lb/d</td>
</tr>
<tr>
<td>kg/s</td>
<td>STon/s</td>
</tr>
<tr>
<td>kg/min</td>
<td>STon/min</td>
</tr>
<tr>
<td>kg/h</td>
<td>STon/h</td>
</tr>
<tr>
<td>kg/d</td>
<td>STon/d</td>
</tr>
<tr>
<td>t/s</td>
<td></td>
</tr>
<tr>
<td>t/min</td>
<td></td>
</tr>
<tr>
<td>t/h</td>
<td></td>
</tr>
<tr>
<td>t/d</td>
<td></td>
</tr>
</tbody>
</table>

Factory setting

Country-specific:
- kg/h
- lb/h
Additional information

Result
The selected unit applies for:
Mass flow parameter (→ 43)

Selection
For an explanation of the abbreviated units: → 223

Mass unit

Navigation
Expert → Sensor → System units → Mass unit (0574)

Description
Use this function to select the unit for the mass.

Selection
SI units
• g
• kg
• t

US units
• lb
• STon

Factory setting
Country-specific:
• kg
• lb

Additional information
Selection
For an explanation of the abbreviated units: → 223

Corrected volume flow unit

Navigation
Expert → Sensor → System units → Cor.volflow unit (0558)

Description
Use this function to select the unit for the corrected volume flow.

Selection
SI units
• Nl/s
• Nl/min
• Nl/h
• Nl/d
• Nm³/s
• Nm³/min
• Nm³/h
• Nm³/d
• Sl/s
• Sl/min
• Sl/h
• Sl/d

US units
• Sft³/s
• Sft³/min
• Sft³/h
• Sft³/d
• Sm³/s
• Sm³/min
• Sm³/h
• Sm³/d
Factory setting
Country-specific:
- Nm³/h
- Sft³/h

Additional information
Selection
For an explanation of the abbreviated units: → 223

Corrected volume unit

Navigation
Expert → Sensor → System units → Corr. vol. unit (0575)

Description
Use this function to select the unit for the corrected volume.

Selection
SI units
- Nl
- Nm³
- Sl
- Sm³

US units
- Sft³

Factory setting
Country-specific:
- Nm³
- Sft³

Additional information
Selection
For an explanation of the abbreviated units: → 223

Volume flow unit

Navigation
Expert → Sensor → System units → Volume flow unit (0553)

Description
Use this function to select the unit for the volume flow.

Selection
SI units
- m³/s
- m³/min
- m³/h
- m³/d
- l/s
- l/min
- l/h
- l/d

US units
- ft³/s
- ft³/min
- ft³/h
- ft³/d

Factory setting
Country-specific:
- l/h
- ft³/h
Volume unit

Navigation
Expert → Sensor → System units → Volume unit (0563)

Description
Use this function to select the unit for the volume.

Selection
- **SI units**
 - m³
 - l
- **US units**
 - ft³

Factory setting
Country-specific:
- ft³
- m³

Additional information
Selection

FAD volume flow unit

Navigation
Expert → Sensor → System units → FAD vol.fl. unit (0601)

Description
Use this function to select the unit for the FAD volume flow.

Selection
- **SI units**
 - 1 FAD/s
 - 1 FAD/min
 - 1 FAD/h
 - 1 FAD/d
 - m³ FAD/s
 - m³ FAD/min
 - m³ FAD/h
 - m³ FAD/d
- **US units**
 - cf FAD/s
 - cf FAD/min
 - cf FAD/h
 - cf FAD/d

Factory setting
Country-specific:
- m³ FAD/h
- cf FAD/min

Additional information
Result

The selected unit applies for:
FAD volume flow parameter (→ 44)

Selection

For an explanation of the abbreviated units: → 223

3) Free air delivery
FAD volume unit

Navigation

Expert → Sensor → System units → FAD volume unit (0591)

Description

Use this function to select the unit for the FAD volume.

Selection

SI units
- l FAD
- m³ FAD

US units
- cf FAD

Factory setting

Country-specific:
- m³ FAD
- cf FAD

Additional information

Selection

For an explanation of the abbreviated units: → 223

Energy flow unit

Navigation

Expert → Sensor → System units → Energy flow unit (0565)

Description

Use this function to select the unit for the energy flow.

4) Free air delivery
Selection

SI units
- kW
- MW
- GW
- kJ/s
- kJ/min
- kJ/h
- kJ/d
- MJ/s
- MJ/min
- MJ/h
- MJ/d
- GJ/s
- GJ/min
- GJ/h
- GJ/d
- kcal/s
- kcal/min
- kcal/h
- kcal/d
- Mcal/s
- Mcal/min
- Mcal/h
- Mcal/d
- Gcal/s
- Gcal/min
- Gcal/h
- Gcal/d

Imperial units
- Btu/s
- Btu/min
- Btu/h
- Btu/day
- MBtu/s
- MBtu/min
- MBtu/h
- MBtu/d
- MMBtu/s
- MMBtu/min
- MMBtu/h
- MMBtu/d

Factory setting

Country-specific:
- kW
- Btu/h

Additional information

Selection

For an explanation of the abbreviated units: → 223

Energy unit

Navigation

 Expert → Sensor → System units → Energy unit (0559)

Description

Use this function to select the unit for energy.

Selection

SI units
- kWh
- MWh
- GWh
- kJ
- MJ
- GJ
- kcal
- Mcal
- Gcal

Imperial units
- Btu
- MBtu
- MMBtu
Factory setting
Country-specific:
- kWh
- Btu

Additional information
Selection
For an explanation of the abbreviated units: → 223

Calorific value unit

Navigation
Expert → Sensor → System units → Cal. value unit (0552)

Description
Use this function to select the unit for the calorific value.

Selection
SI units
- kJ/Nm³
- kWh/Nm³
- kWh/Sm³
- kJ/Sm³
Imperial units
- Btu/Sm³
- MBtu/Sm³
- Btu/Sft³
- MBtu/Sft³

Factory setting
Country-specific:
- kWh/Nm³
- Btu/Sft³

Additional information

Density unit

Navigation
Expert → Sensor → System units → Density unit (0555)

Description
Use this function to select the unit for the density.

Selection
SI units
- g/cm³
- kg/dm³
- kg/l
- kg/m³
US units
- lb/ft³

Factory setting
Country-specific:
- kg/m³
- lb/ft³

Additional information
Selection
For an explanation of the abbreviated units: → 223
Temperature unit

Navigation
Expert → Sensor → System units → Temperature unit (0557)

Description
Use this function to select the unit for the temperature.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>°F</td>
</tr>
<tr>
<td>K</td>
<td>°R</td>
</tr>
</tbody>
</table>

Factory setting
Country-specific:
- °C
- °F

Additional information

Result

The selected unit applies for:
- Temperature parameter (→ 45)
- FAD temperature parameter
- Reference combustion temperature parameter
- Reference temperature parameter
- Maximum value parameter
- Minimum value parameter
- Maximum value parameter
- Minimum value parameter

Selection

For an explanation of the abbreviated units: → 223

Pressure unit

Navigation
Expert → Sensor → System units → Pressure unit (0564)

Description
Use this function to select the unit for the pipe pressure.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPa a</td>
<td>psi a</td>
</tr>
<tr>
<td>kPa a</td>
<td></td>
</tr>
<tr>
<td>bar a</td>
<td></td>
</tr>
<tr>
<td>mbar a</td>
<td></td>
</tr>
</tbody>
</table>

Factory setting
Country-specific:
- bar a
- psi a
Additional information

Result
The unit is taken from:
- **FAD pressure** parameter
- **Reference pressure** parameter

Selection

For an explanation of the abbreviated units: → 223

Velocity unit

Navigation

Expert → Sensor → System units → Velocity unit (0566)

Description
Use this function to select the unit for the flow velocity.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
</tr>
</thead>
<tbody>
<tr>
<td>m/s</td>
<td>ft/s</td>
</tr>
</tbody>
</table>

Factory setting

Country-specific:
- m/s
- ft/s

Length unit

Navigation

Expert → Sensor → System units → Length unit (0551)

Description
Use this function to select the unit of length.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>ft</td>
</tr>
<tr>
<td>mm</td>
<td>in</td>
</tr>
</tbody>
</table>

Factory setting

Country-specific:
- mm
- in

Additional information

Result
The selected unit applies for:
- **Duct internal height** parameter
- **Insertion depth** parameter
- **Pipe inner diameter** parameter
- **Mounting set height** parameter
- **Pipe wall thickness** parameter
- **Duct internal width** parameter

Selection

For an explanation of the abbreviated units: → 223
Date/time format

Navigation

Expert → Sensor → System units → Date/time format (2812)

Description

Use this function to select the desired time format for calibration history.

Selection

- dd.mm.yy hh:mm
- dd.mm.yy hh:mm am/pm
- mm/dd/yy hh:mm
- mm/dd/yy hh:mm am/pm

Additional information

Selection

For an explanation of the abbreviated units: → 223

3.2.3 "Process parameters" submenu

Navigation

<table>
<thead>
<tr>
<th>Process parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow override (1839)</td>
</tr>
<tr>
<td>Flow damping (1802)</td>
</tr>
<tr>
<td>Temperature damping (1822)</td>
</tr>
<tr>
<td>Sensitivity (17032)</td>
</tr>
<tr>
<td>Low flow cut off</td>
</tr>
</tbody>
</table>

Flow override

Navigation

Description

Use this function to select whether to interrupt the evaluation of measured values. This is useful for the cleaning processes of a pipeline, for example.

Selection

- Off
- On
Additional information

Flow override is active
- The 453 Flow override diagnostic message is output.
- Output values
 - Temperature: continues to be output
 - Totalizers 1-3: stop being totalized

The Flow override option can also be activated in the Status input submenu: Assign status input parameter (→ 108).

Flow damping

Navigation

Description

Use this function to enter a time constant for flow damping (PT1 element). Reduction of the variability of the flow measured value (in relation to interference). For this purpose, the depth of the flow filter is adjusted: when the filter setting increases, the reaction time of the device also increases.

User entry

0 to 999.9 s

Additional information

The damping is performed by a PT1 element 5).

User entry

- Value = 0: no damping
- Value > 0: damping is increased

Damping is switched off if 0 is entered (factory setting).

Result

The damping affects the following variables of the device:
- Outputs → 110
- Low flow cut off → 66
- Totalizers → 175

Temperature damping

Navigation

Description

Use this function to enter a time constant for the damping (PT1 element) of the temperature measured value.

User entry

0 to 999.9 s

5) Proportional behavior with first-order lag
Additional information

Description

1. The damping is performed by a PT1 element\(^6\).

User entry

- **Value = 0:** no damping
- **Value > 0:** damping is increased

2. Damping is switched off if 0 is entered (factory setting).

Sensitivity

Navigation

Description

Enter the threshold value for process stability. The higher the value, the better disturbances are detected.

User entry

1 to 9

"Low flow cut off" submenu

Navigation

- Expert → Sensor → Process param. → Low flow cut off

Assign process variable

Navigation

- Expert → Sensor → Process param. → Low flow cut off → Assign variable (1837)

Description

Use this function to select the process variable for low flow cutoff detection.

\(^6\) Proportional behavior with first-order lag
Proline t-mass 500 HART

Selection
- Off
- Mass flow
- Volume flow
- Corrected volume flow
- FAD volume flow

On value low flow cutoff

Navigation
➡️ Expert → Sensor → Process param. → Low flow cut off → On value (1805)

Prerequisite
A process variable is selected in the Assign process variable parameter (➡️ 66).

Description
Use this function to enter a switch-on value for low flow cut off. Low flow cut off is activated if the value entered is not equal to 0 → 67.

User entry
Positive floating-point number

Factory setting
Depends on country and nominal diameter ➡️ 221

Additional information
Dependency
The unit depends on the process variable selected in the Assign process variable parameter (➡️ 66).

Off value low flow cutoff

Navigation
➡️ Expert → Sensor → Process param. → Low flow cut off → Off value (1804)

Prerequisite
A process variable is selected in the Assign process variable parameter (➡️ 66).

Description
Use this function to enter a switch-off value for low flow cut off. The off value is entered as a positive hysteresis from the on value ➡️ 67.

User entry
0 to 100.0 %

* Visibility depends on order options or device settings
Additional information

Example

![Diagram](image)

Q Flow
τ Time
H Hysteresis
A Low flow cut off active
1 Low flow cut off is activated
2 Low flow cut off is deactivated
3 On value entered
4 Off value entered

3.2.4 "Measurement mode" submenu

Navigation

Expert → Sensor → Measurement mode

Measurement application

Navigation

Expert → Sensor → Measurement mode → Measurem. appl. (17350)

Description

Select measurement application.

Selection

- Air or compressed air
- Gas or gas mixture
- Energy
Calorific value type

Navigation

Expert → Sensor → Measurement mode → Calorif.val.type (3101)

Prerequisite

The **Energy** option is selected in the **Measurement application** parameter (→ 68) parameter.

Description

Select calculation based on gross calorific value or net calorific value.

Selection

- Gross calorific value mass
- Net calorific value mass

Active gas

Navigation

Expert → Sensor → Measurement mode → Active gas (17001)

Prerequisite

Second gas option application package is available.

Description

Select the gas that the device is currently using for the measurement.

Selection

- Gas
- Second gas

"Gas" submenu

Navigation

Expert → Sensor → Measurement mode → Gas

<table>
<thead>
<tr>
<th>Gas</th>
<th>→ 70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special gas name</td>
<td>→ 71</td>
</tr>
<tr>
<td>Gas composition</td>
<td>→ 71</td>
</tr>
<tr>
<td>Mol% Air</td>
<td>→ 72</td>
</tr>
<tr>
<td>Mol% Ar</td>
<td>→ 72</td>
</tr>
<tr>
<td>Mol% C2H4</td>
<td>→ 72</td>
</tr>
<tr>
<td>Mol% C2H6</td>
<td>→ 73</td>
</tr>
</tbody>
</table>
Select gas type

<table>
<thead>
<tr>
<th>Gas</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mol% C3H8</td>
<td>73</td>
</tr>
<tr>
<td>Mol% CH4</td>
<td>73</td>
</tr>
<tr>
<td>Mol% Cl2</td>
<td>73</td>
</tr>
<tr>
<td>Mol% CO</td>
<td>73</td>
</tr>
<tr>
<td>Mol% CO2</td>
<td>74</td>
</tr>
<tr>
<td>Mol% H2</td>
<td>74</td>
</tr>
<tr>
<td>Mol% H2O</td>
<td>74</td>
</tr>
<tr>
<td>Mol% H2S</td>
<td>74</td>
</tr>
<tr>
<td>Mol% HCl</td>
<td>74</td>
</tr>
<tr>
<td>Mol% He</td>
<td>75</td>
</tr>
<tr>
<td>Mol% i-C4H10</td>
<td>75</td>
</tr>
<tr>
<td>Mol% Kr</td>
<td>75</td>
</tr>
<tr>
<td>Mol% N2</td>
<td>75</td>
</tr>
<tr>
<td>Mol% Ne</td>
<td>75</td>
</tr>
<tr>
<td>Mol% NH3</td>
<td>76</td>
</tr>
<tr>
<td>Mol% O2</td>
<td>76</td>
</tr>
<tr>
<td>Mol% O3</td>
<td>76</td>
</tr>
<tr>
<td>Mol% Xe</td>
<td>76</td>
</tr>
</tbody>
</table>

Navigation

Expert → Sensor → Measurement mode → Gas → Select gas type (3109)

Description

Select measured gas type.

Selection

- Single gas
- Gas mixture
- Special gas *

* Visibility depends on options or device settings
Gas

Navigation

Prerequisite
The **Single gas** option is selected in the **Select gas type** parameter.

Description
Select measured gas.

Selection
- Air
- Ammonia NH3
- Argon Ar
- Butane C4H10
- Carbon dioxide CO2
- Carbon monoxide CO
- Chlorine Cl2
- Ethane C2H6
- Ethylene C2H4
- Helium He
- Hydrogen H2
- Hydrogen chloride HCl
- Hydrogen sulfide H2S
- Krypton Kr
- Methane CH4
- Neon Ne
- Nitrogen N2
- Oxygen O2
- Ozone O3
- Propane C3H8
- Xenon Xe

Special gas name

Navigation

Prerequisite
Special gas option application package is available.

Description
Shows the description of the gas ordered by the customer, e.g. gas name or gas composition.

User interface
-

Factory setting
-

Gas composition

Navigation

Prerequisite
The **Gas mixture** option is selected in the **Select gas type** parameter.
Description
Select measured gas mixture.

Selection
- Air
- Hydrogen H2
- Helium He
- Neon Ne
- Argon Ar
- Krypton Kr
- Xenon Xe
- Nitrogen N2
- Oxygen O2
- Chlorine Cl2
- Ammonia NH3
- Carbon monoxide CO
- Carbon dioxide CO2
- Hydrogen sulfide H2S
- Hydrogen chloride HCl
- Methane CH4
- Propane C3H8
- Ethane C2H6
- Butane C4H10
- Ethylene C2H4
- Water
- Ozone O3

Mol% Air

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Sensor → Measurement mode → Gas → Mol% Air (3170)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Air</td>
</tr>
<tr>
<td>User entry</td>
<td>0 to 100 %</td>
</tr>
</tbody>
</table>

Mol% Ar

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Sensor → Measurement mode → Gas → Mol% Ar (3112)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Ar = Argon</td>
</tr>
<tr>
<td>User entry</td>
<td>0 to 100 %</td>
</tr>
</tbody>
</table>

Mol% C2H4

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Sensor → Measurement mode → Gas → Mol% C2H4 (3114)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>C2H4 = ethylene</td>
</tr>
</tbody>
</table>
User entry

0 to 100 %

Mol% C2H6

Navigation

Expert → Sensor → Measurement mode → Gas → Mol% C2H6 (3115)

Description

C₂H₆ = ethane

User entry

0 to 100 %

Mol% C3H8

Navigation

Expert → Sensor → Measurement mode → Gas → Mol% C3H8 (3116)

Description

C₃H₈ = propane

User entry

0 to 100 %

Mol% CH₄

Navigation

Expert → Sensor → Measurement mode → Gas → Mol% CH₄ (3117)

Description

CH₄ = methane

User entry

0 to 100 %

Mol% Cl₂

Navigation

Expert → Sensor → Measurement mode → Gas → Mol% Cl₂ (3118)

Description

Cl₂ = chlorine

User entry

0 to 100 %

Mol% CO

Navigation

Expert → Sensor → Measurement mode → Gas → Mol% CO (3119)

Description

CO = carbon monoxide
Description of Device Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>User entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mol% CO₂</td>
<td>CO₂ = carbon dioxide</td>
<td>0 to 100 %</td>
</tr>
<tr>
<td>Mol% H₂</td>
<td>H₂ = hydrogen</td>
<td>0 to 100 %</td>
</tr>
<tr>
<td>Mol% H₂O</td>
<td>H₂O = water</td>
<td>0 to 20 %</td>
</tr>
<tr>
<td>Mol% H₂S</td>
<td>H₂S = hydrogen sulfide</td>
<td>0 to 100 %</td>
</tr>
<tr>
<td>Mol% HCl</td>
<td>HCl = hydrogen chloride</td>
<td></td>
</tr>
<tr>
<td>Device Parameters</td>
<td>User entry</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Mol% He</td>
<td>0 to 100 %</td>
<td></td>
</tr>
</tbody>
</table>

Navigation

Expert → Sensor → Measurement mode → Gas → Mol% He (3125)

Description

He = helium

Mol% i-C4H10

Navigation

Expert → Sensor → Measurement mode → Gas → Mol% i-C4H10 (3126)

Description

i-C4H10 = isobutane

Mol% Kr

Navigation

Expert → Sensor → Measurement mode → Gas → Mol% Kr (3128)

Description

Kr = krypton

Mol% N2

Navigation

Expert → Sensor → Measurement mode → Gas → Mol% N2 (3129)

Description

N2 = nitrogen

Mol% Ne

Navigation

Expert → Sensor → Measurement mode → Gas → Mol% Ne (3137)

Description

Ne = neon
Mol% NH₃

Navigation

Expert → Sensor → Measurement mode → Gas → Mol% NH₃ (3138)

Description

NH₃ = ammonia

User entry

0 to 100 %

Mol% O₂

Navigation

Expert → Sensor → Measurement mode → Gas → Mol% O₂ (3139)

Description

O₂ = oxygen

User entry

0 to 100 %

Mol% O₃

Navigation

Expert → Sensor → Measurement mode → Gas → Mol% O₃ (3174)

Prerequisite

Mixture only possible with O₂.

- O₃: 65 to 100 %
- O₂: 0 to 35 %

Description

Enter amount of substance for the gas mixture.

User entry

65 to 100 %

Mol% Xe

Navigation

Expert → Sensor → Measurement mode → Gas → Mol% Xe (3142)

Description

Xe = xenon

User entry

0 to 100 %
"Second gas" submenu

Navigation

Expert → Sensor → Measurement mode → Second gas → Special gas name (3177)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select gas type</td>
<td>→ 78</td>
</tr>
<tr>
<td>Gas</td>
<td>→ 78</td>
</tr>
<tr>
<td>Special gas name</td>
<td>→ 79</td>
</tr>
<tr>
<td>Gas composition</td>
<td>→ 79</td>
</tr>
<tr>
<td>Mol% Air</td>
<td>→ 80</td>
</tr>
<tr>
<td>Mol% Ar</td>
<td>→ 80</td>
</tr>
<tr>
<td>Mol% C2H4</td>
<td>→ 80</td>
</tr>
<tr>
<td>Mol% C2H6</td>
<td>→ 80</td>
</tr>
<tr>
<td>Mol% C3H8</td>
<td>→ 80</td>
</tr>
<tr>
<td>Mol% CH4</td>
<td>→ 81</td>
</tr>
<tr>
<td>Mol% Cl2</td>
<td>→ 81</td>
</tr>
<tr>
<td>Mol% CO</td>
<td>→ 81</td>
</tr>
<tr>
<td>Mol% CO2</td>
<td>→ 81</td>
</tr>
<tr>
<td>Mol% H2</td>
<td>→ 81</td>
</tr>
<tr>
<td>Mol% H2O</td>
<td>→ 82</td>
</tr>
<tr>
<td>Mol% H2S</td>
<td>→ 82</td>
</tr>
<tr>
<td>Mol% HCl</td>
<td>→ 82</td>
</tr>
<tr>
<td>Mol% He</td>
<td>→ 82</td>
</tr>
<tr>
<td>Mol% i-C4H10</td>
<td>→ 82</td>
</tr>
<tr>
<td>Mol% Kr</td>
<td>→ 83</td>
</tr>
<tr>
<td>Mol% N2</td>
<td>→ 83</td>
</tr>
<tr>
<td>Mol% Ne</td>
<td>→ 83</td>
</tr>
</tbody>
</table>
Select gas type

Navigation
Expert → Sensor → Measurement mode → Second gas → Select gas type (3109)

Description
Select measured gas type.

Selection
- Single gas
- Gas mixture
- Special gas *

Gas

Navigation
Expert → Sensor → Measurement mode → Second gas → Gas (3151)

Prerequisite
The Single gas option is selected in the Select gas type parameter parameter.

Description
Select measured gas.

Selection
- Air
- Ammonia NH3
- Argon Ar
- Butane C4H10
- Carbon dioxide CO2
- Carbon monoxide CO
- Chlorine Cl2
- Ethane C2H6
- Ethylene C2H4
- Helium He
- Hydrogen H2
- Hydrogen chloride HCl
- Hydrogen sulfide H2S
- Krypton Kr
- Methane CH4
- Neon Ne
- Nitrogen N2
- Oxygen O2

* Visibility depends on order options or device settings
- Ozone O3
- Propane C3H8
- Xenon Xe

Special gas name

Navigation

- Expert → Sensor → Measurement mode → Second gas → Special gas name (3177)

Prerequisite

Special gas option application package is available.

Description

Shows the description of the gas ordered by the customer, e.g. gas name or gas composition.

User interface

-

Factory setting

-

Gas composition

Navigation

- Expert → Sensor → Measurement mode → Second gas → Gas composition (3110)

Prerequisite

The Gas mixture option is selected in the Select gas type parameter parameter.

Description

Select measured gas mixture.

Selection

- Air
- Hydrogen H2
- Helium He
- Neon Ne
- Argon Ar
- Krypton Kr
- Xenon Xe
- Nitrogen N2
- Oxygen O2
- Chlorine Cl2
- Ammonia NH3
- Carbon monoxide CO
- Carbon dioxide CO2
- Hydrogen sulfide H2S
- Hydrogen chloride HCl
- Methane CH4
- Propane C3H8
- Ethane C2H6
- Butane C4H10
- Ethylene C2H4
- Water
- Ozone O3
Mol% Air

Navigation
Expert → Sensor → Measurement mode → Second gas → Mol% Air (3170)

Description
Air

User entry
0 to 100 %

Mol% Ar

Navigation
Expert → Sensor → Measurement mode → Second gas → Mol% Ar (3112)

Description
Ar = Argon

User entry
0 to 100 %

Mol% C₂H₄

Navigation
Expert → Sensor → Measurement mode → Second gas → Mol% C₂H₄ (3114)

Description
C₂H₄ = ethylene

User entry
0 to 100 %

Mol% C₂H₆

Navigation
Expert → Sensor → Measurement mode → Second gas → Mol% C₂H₆ (3115)

Description
C₂H₆ = ethane

User entry
0 to 100 %

Mol% C₃H₈

Navigation
Expert → Sensor → Measurement mode → Second gas → Mol% C₃H₈ (3116)

Description
C₃H₈ = propane

User entry
0 to 100 %
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>User entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mol% CH₄</td>
<td>CH₄ = methane</td>
<td>0 to 100 %</td>
</tr>
<tr>
<td>Mol% Cl₂</td>
<td>Cl₂ = chlorine</td>
<td>0 to 100 %</td>
</tr>
<tr>
<td>Mol% CO</td>
<td>CO = carbon monoxide</td>
<td>0 to 100 %</td>
</tr>
<tr>
<td>Mol% CO₂</td>
<td>CO₂ = carbon dioxide</td>
<td>0 to 100 %</td>
</tr>
<tr>
<td>Mol% H₂</td>
<td>H₂ = hydrogen</td>
<td>0 to 100 %</td>
</tr>
</tbody>
</table>
Mol% H₂O

Navigation
Expert → Sensor → Measurement mode → Second gas → Mol% H₂O (3122)

Description
H₂O = water

User entry
0 to 20 %

Mol% H₂S

Navigation
Expert → Sensor → Measurement mode → Second gas → Mol% H₂S (3123)

Description
H₂S = hydrogen sulfide

User entry
0 to 100 %

Mol% HCl

Navigation
Expert → Sensor → Measurement mode → Second gas → Mol% HCl (3124)

Description
HCl = hydrogen chloride

User entry
0 to 100 %

Mol% He

Navigation
Expert → Sensor → Measurement mode → Second gas → Mol% He (3125)

Description
He = helium

User entry
0 to 100 %

Mol% i-C₄H₁₀

Navigation
Expert → Sensor → Measurement mode → Second gas → Mol% i-C₄H₁₀ (3126)

Description
i-C₄H₁₀ = isobutane

User entry
0 to 100 %
Mol% Kr

Navigation
Expert → Sensor → Measurement mode → Second gas → Mol% Kr (3128)

Description
Kr = krypton

User entry
0 to 100 %

Mol% N2

Navigation
Expert → Sensor → Measurement mode → Second gas → Mol% N2 (3129)

Description
N₂ = nitrogen

User entry
0 to 100 %

Mol% Ne

Navigation
Expert → Sensor → Measurement mode → Second gas → Mol% Ne (3137)

Description
Ne = neon

User entry
0 to 100 %

Mol% NH₃

Navigation
Expert → Sensor → Measurement mode → Second gas → Mol% NH₃ (3138)

Description
NH₃ = ammonia

User entry
0 to 100 %

Mol% O₂

Navigation
Expert → Sensor → Measurement mode → Second gas → Mol% O₂ (3139)

Description
O₂ = oxygen

User entry
0 to 100 %
Mol% O3

Navigation
Expert → Sensor → Measurement mode → Second gas → Mol% O3 (3174)

Prerequisite
Mixture only possible with O2.
- O3: 65 to 100%
- O2: 0 to 35%

Description
Enter amount of substance for the gas mixture.

User entry
65 to 100%

Mol% Xe

Navigation
Expert → Sensor → Measurement mode → Second gas → Mol% Xe (3142)

Description
Xe = xenon

User entry
0 to 100%

"Reference conditions" submenu

Navigation
Expert → Sensor → Measurement mode → Ref. conditions

```plaintext
Reference conditions (3155) → 85
Reference pressure (3146) → 85
Reference temperature (3147) → 85
FAD conditions (3173) → 85
FAD pressure (3175) → 86
FAD temperature (3176) → 86
Reference combustion temperature (3165) → 86
Reference combustion temperature (3143) → 86
```
Reference conditions

Navigation

Expert → Sensor → Measurement mode → Ref. conditions → Ref. conditions (3155)

Description

Select reference conditions for calculation of the corrected volume flow.

Selection

- 1013.25 mbara, 0 °C
- 1013.25 mbara, 15 °C
- 1013.25 mbara, 20 °C
- 1013.25 mbara, 25 °C
- 1000 mbara, 0 °C
- 1000 mbara, 15 °C
- 1000 mbara, 20 °C
- 1000 mbara, 25 °C
- 14.696 psia, 59 °F
- 14.696 psia, 60 °F
- User-defined

Reference pressure

Navigation

Expert → Sensor → Measurement mode → Ref. conditions → Ref. pressure (3146)

Prerequisite

The Others option is selected in the Reference conditions parameter (→ 85).

Description

Select reference conditions for the corrected volume flow.

User entry

0 to 250 bar a

Reference temperature

Navigation

Expert → Sensor → Measurement mode → Ref. conditions → Ref. temperature (3147)

Prerequisite

The Others option is selected in the Reference conditions parameter (→ 85).

Description

Select reference conditions for the corrected volume flow.

User entry

−200 to 450 °C

FAD conditions

Navigation

Expert → Sensor → Measurement mode → Ref. conditions → FAD conditions (3173)

Prerequisite

The Air or compressed air option is selected in the Measurement application parameter (→ 68) parameter.

Endress+Hauser
Description of Device Parameters

Select reference conditions for the calculation of the FAD density (FAD = free air delivery).

Selection

- 1000 mbara, 20 °C
- 14.504 psia, 68 °F
- User-defined

FAD pressure

Navigation

Expert → Sensor → Measurement mode → Ref. conditions → FAD pressure (3175)

Prerequisite

- The Air or compressed air option is selected in the Measurement application parameter (→ 68) parameter.
- The User-defined option is selected in the FAD conditions parameter parameter.

Description

Enter reference pressure for the calculation of the FAD density (FAD = free air delivery).

User entry

0 to 250 bar a

FAD temperature

Navigation

Expert → Sensor → Measurement mode → Ref. conditions → FAD temperature (3176)

Prerequisite

- The Air or compressed air option is selected in the Measurement application parameter (→ 68) parameter.
- The User-defined option is selected in the FAD conditions parameter parameter.

Description

Enter reference temperature for the calculation of the FAD density (FAD = free air delivery).

User entry

–200 to 450 °C

Reference combustion temperature

Navigation

Expert → Sensor → Measurement mode → Ref. conditions → Ref. comb. temp. (3143)

Prerequisite

The Energy option is selected in the Measurement application parameter (→ 68) parameter.

Description

Enter reference combustion temperature to calculate the natural gas energy value.

User entry

–200 to 450 °C
3.2.5 "Sensor adjustment" submenu

Navigation

<table>
<thead>
<tr>
<th>Sensor adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation direction (1809) → 87</td>
</tr>
<tr>
<td>Installation factor (17333) → 87</td>
</tr>
<tr>
<td>Pipe shape (17339) → 88</td>
</tr>
<tr>
<td>Pipe inner diameter (17009) → 88</td>
</tr>
<tr>
<td>Duct height (17010) → 88</td>
</tr>
<tr>
<td>Duct width (17011) → 88</td>
</tr>
<tr>
<td>Pipe wall thickness (17340) → 89</td>
</tr>
<tr>
<td>Mounting set height (17336) → 89</td>
</tr>
<tr>
<td>Insertion depth (17335) → 89</td>
</tr>
</tbody>
</table>

Installation direction

Navigation

- Expert → Sensor → Sensor adjusmt. → Install. direct. (1809)

Description

Use this function to change the sign of the medium flow direction.

Selection

- Flow in arrow direction
- Flow against arrow direction

Additional information

- Description

> Before changing the sign: ascertain the actual direction of fluid flow with reference to the direction indicated by the arrow on the device.

Installation factor

Navigation

- Expert → Sensor → Sensor adjusmt. → Install. factor (17333)

Description

Enter factor to compensate the mounting-related measurement error.

User entry

0.01 to 100.0
Pipe shape

Navigation

Expert → Sensor → Sensor adjustm. → Pipe shape (17339)

Prerequisite

Only available with t-mass I.

Description

Select the shape of the pipe.

Selection

- Circular
- Rectangular

Pipe inner diameter

Navigation

Expert → Sensor → Sensor adjustm. → Pipe inner diam. (17009)

Prerequisite

Only available with t-mass I.

Description

Enter the internal diameter of a circular pipe.

User entry

0.050 to 5 m

Duct height

Navigation

Expert → Sensor → Sensor adjustm. → Duct height (17010)

Prerequisite

Only available with t-mass I.

Description

Enter inner duct height. Duct height and sensor shaft are parallel.

User entry

0.050 to 5 m

Duct width

Navigation

Expert → Sensor → Sensor adjustm. → Duct width (17011)

Prerequisite

Only available with t-mass I.

Description

Enter inner duct width. The duct width is vertical to the sensor shaft.

User entry

0.050 to 5 m
Pipe wall thickness

Navigation
Menu → Expert → Sensor → Sensor adjustm. → Wall thickness (17340)

Description
Enter the pipe wall thickness.

User entry
0 to 1 m

Mounting set height

Navigation

Description
Enter mounting set height.

User entry
0 to 1 m

Insertion depth

Navigation
Menu → Expert → Sensor → Sensor adjustm. → Insertion depth (17335)

Description
Shows calculated insertion depth of the sensor.

User interface
Positive floating-point number

3.2.6 "Zero point adjustment" submenu

Navigation
Menu → Expert → Sensor → Zero point adj.

- Zero point (17012)
- Zero point adjustment control (17013)
- Zeropoint adjust state (17014)
- Progress (2808)
Zero point adjustment control

Navigation
- 📘 Expert → Sensor → Zero point adj. → Zero point adj. (17013)

Description
Start zero point adjustment.

Selection
- Cancel
- Start

Zero point adjust state

Navigation
- 📘 Expert → Sensor → Zero point adj. → Zero adj. state (17014)

User interface
- Busy
- Zero point adjust failure
- Ok

Progress

Navigation
- 📘 Expert → Diagnostics → HBT → Perform.verific. → Progress (2808)
- 📘 Expert → Diagnostics → HBT → Perform.verific. → Progress (2808)
- 📘 Expert → Sensor → Zero point adj. → Progress (2808)

Description
The progress of the process is indicated.

User interface
0 to 100 %

3.2.7 "External compensation" submenu

Navigation
Description of Device Parameters

Delta heat calculation (17006) → 92

2nd temperature heat flow (17328) → 92

External 2nd temperature heat flow (17342) → 93

Gas compensation (17003) → 93

Gas component (17005) → 93

Mol% (17007) → 94

Pressure compensation

Navigation

Expert → Sensor → External comp. → Pressure compen. (17326)

Description
Select pressure compensation type.

Selection
- Fixed value
- External value *
- Current input 1 *
- Current input 2 *
- Current input 3 *

Pressure

Navigation

Expert → Sensor → External comp. → Pressure (17325)

Description
Enter fixed value for the process pressure.

User entry
0.1 to 40 bar a

External pressure

Navigation

Description
Shows the external process pressure value.

User interface
0.1 to 40 bar a

* Visibility depends on order options or device settings
Input type 2nd temperature heat flow

Navigation

Expert → Sensor → External comp. → Input 2nd temp. (17327)

Prerequisite

The **Energy** option is selected in the **Measurement application** parameter (→ 68) parameter.

Description

Select input type for the 2nd temperature for the heat flow calculation.

Selection

- Off
- Fixed value
- External value *
- Current input 1 *
- Current input 2 *
- Current input 3 *

Delta heat calculation

Navigation

Prerequisite

The **Energy** option is selected in the **Measurement application** parameter (→ 68) parameter.

Description

Select the position of the measuring device in relation to the external temperature sensor.

Selection

- Off
- Upstream
- Downstream

2nd temperature heat flow

Navigation

Expert → Sensor → External comp. → 2nd temp. heat fl (17328)

Prerequisite

The **Energy** option is selected in the **Measurement application** parameter (→ 68) parameter.

Description

Enter fixed value for the 2nd temperature for the heat flow calculation.

User entry

233.15 to 453.15 °C

Factory setting

293.15 °C

* Visibility depends on order options or device settings
External 2nd temperature heat flow

Navigation

Expert → Sensor → External comp. → Ext. 2nd temp. (17342)

Prerequisite

The **Energy** option is selected in the **Measurement application** parameter (→ 68) parameter.

Description

Shows the value for the external 2nd temperature for heat flow calculation.

User interface

Signed floating-point number

Gas compensation

Navigation

Expert → Sensor → External comp. → Gas compensation (17003)

Description

Select the input type for gas compensation. The selected gas component is measured by an external gas analyzer.

Selection

- Off
- External value *
- Current input 1 *
- Current input 2 *
- Current input 3 *

Gas component

Navigation

Expert → Sensor → External comp. → Gas component (17005)

Description

Select the gas component that is measured by an external gas analyzer.

Selection

- Air
- Oxygen O2
- Ozone O3
- Nitrogen N2
- Methane CH4
- Hydrogen H2
- Helium He
- Hydrogen chloride HCl
- Hydrogen sulfide H2S
- Ethylene C2H4
- Carbon dioxide CO2
- Carbon monoxide CO
- Chlorine Cl2
- Butane C4H10
- Propane C3H8
- Ethane C2H6

* Visibility depends on order options or device settings
Description of Device Parameters

- Argon Ar
- Ammonia NH3
- Water

Mol%

Navigation

Enter amount of substance for the gas mixture.

User interface

0 to 100 %

3.2.8 "In-situ adjustment" submenu

Navigation

Enter amount of substance for the gas mixture.

User interface

0 to 100 %
Activate in-situ adjustment

Navigation

Expert → Sensor → In-situ adjust. → In-situ adjustm. (17360)

Description

Activate the in-situ adjustment. The points stored by the user are used for the in-situ adjustment.

Selection

- No
- Yes

Input type reference value

Navigation

Expert → Sensor → In-situ adjust. → Input ref. value (17351)

Description

Select input type for the reference value.

Selection

- Off
- Manual
- Current input 1 *
- Current input 2 *
- Current input 3 *
- External value *

Delete values

Navigation

Expert → Sensor → In-situ adjust. → Delete values (17355)

Description

Delete previous adjustment values and descriptions.

Selection

- No
- Yes

* Visibility depends on order options or device settings
Confirm

Navigation
Expert → Sensor → In-situ adjust. → Confirm (17356)

Description
Confirm deletion.

Selection
- No
- Yes

Select flow reference

Navigation
Expert → Sensor → In-situ adjust. → Select flow ref. (17354)

Description
Select process variable. This process variable is used as reference value for the in situ adjustment.

Selection
- Mass flow
- Corrected volume flow
- FAD volume flow
- Volume flow

Stability check

Navigation
Expert → Sensor → In-situ adjust. → Stability check (17366)

Description
Activate stability check. New adjustment value is only accepted when the measurement is stable.

Selection
- No
- Yes

Actual flow value

Navigation
Expert → Sensor → In-situ adjust. → Act. flow value (17365)

Description
Shows the actual flow in relation to the maximum, factory-measured value that is adapted to the actual process conditions.

User interface
-2,000 to 2,000 %
External reference value

Navigation

Expert → Sensor → In-situ adjust. → Ext. ref. value (17352)

Description

Shows the external reference value for the in situ adjustment.

User interface

Signed floating-point number

Reference value

Navigation

Expert → Sensor → In-situ adjust. → Reference value (17353)

Description

Enter fixed value as reference value used for the in situ adjustment.

User entry

Signed floating-point number

Apply value

Navigation

Expert → Sensor → In-situ adjust. → Apply value (17364)

Description

Apply the actual value.

Selection

- No
- Yes

Status

Navigation

Expert → Sensor → In-situ adjust. → Status (17367)

Description

Shows the validity of the actual reference value.

User interface

- Passed
- Replaced
- Unstable
- Invalid

Description 1

Navigation

Expert → Sensor → In-situ adjust. → Description 1 (17359)

Description

Description for in-situ adjustment: e.g. facility, operator, date.
Description of Device Parameters

User entry -
Factory setting -

Description 2

Navigation

Expert → Sensor → In-situ adjust. → Description 2 (17358)

Description
Description for in-situ adjustment: e.g. facility, operator, date.

User entry -
Factory setting -

Description 3

Navigation

Expert → Sensor → In-situ adjust. → Description 3 (17357)

Description
Description for in-situ adjustment: e.g. facility, operator, date.

User entry -
Factory setting -

Description 4

Navigation

Expert → Sensor → In-situ adjust. → Description 4 (17002)

Description
Description for in-situ adjustment: e.g. facility, operator, date.

User entry -
Factory setting -

"Adjustment values in use" submenu

Navigation

Expert → Sensor → In-situ adjust. → Values in use

Gas description 1/2 (17361)

→ 99
Gas description 1/2

Navigation

Expert → Sensor → In-situ adjust. → Values in use → Gas descrip. 1/2 (17361)

Description

Shows the 1st part of the description of the set gas used in the in-situ adjustment.

User interface

-

Factory setting

-
Gas description 2/2

Navigation

Expert → Sensor → In-situ adjust. → Values in use → Gas descrip. 2/2 (17362)

Description
Shows the 2nd part of the description of the set gas used in the in-situ adjustment.

User interface
-

Flow value 1

Navigation

Expert → Sensor → In-situ adjust. → Values in use → Flow value 1 (17368)

Description
Shows the stored flow value in relation to the maximum, factory-measured value that is adapted to the actual process conditions.

User interface
−2000 to 2000%

Flow value 2

Navigation

Expert → Sensor → In-situ adjust. → Values in use → Flow value 2 (17369)

Description
Shows the stored flow value in relation to the maximum, factory-measured value that is adapted to the actual process conditions.

User interface
−2000 to 2000%

Flow value 3

Navigation

Expert → Sensor → In-situ adjust. → Values in use → Flow value 3 (17370)

Description
Shows the stored flow value in relation to the maximum, factory-measured value that is adapted to the actual process conditions.

User interface
−2000 to 2000%
Flow value 4

Navigation
Expert → Sensor → In-situ adjust. → Values in use → Flow value 4 (17371)

Description
Shows the stored flow value in relation to the maximum, factory-measured value that is adapted to the actual process conditions.

User interface
-2000 to 2000%

Flow value 5

Navigation
Expert → Sensor → In-situ adjust. → Values in use → Flow value 5 (17372)

Description
Shows the stored flow value in relation to the maximum, factory-measured value that is adapted to the actual process conditions.

User interface
-2000 to 2000%

Flow value 6

Navigation
Expert → Sensor → In-situ adjust. → Values in use → Flow value 6 (17373)

Description
Shows the stored flow value in relation to the maximum, factory-measured value that is adapted to the actual process conditions.

User interface
-2000 to 2000%

Flow value 7

Navigation
Expert → Sensor → In-situ adjust. → Values in use → Flow value 7 (17374)

Description
Shows the stored flow value in relation to the maximum, factory-measured value that is adapted to the actual process conditions.

User interface
-2000 to 2000%

Flow value 8

Navigation
Expert → Sensor → In-situ adjust. → Values in use → Flow value 8 (17375)

Description
Shows the stored flow value in relation to the maximum, factory-measured value that is adapted to the actual process conditions.
Description of Device Parameters

Proline t-mass 500 HART

User interface

Flow value 9

Navigation

Expert → Sensor → In-situ adjust. → Values in use → Flow value 9 (17376)

Description

Shows the stored flow value in relation to the maximum, factory-measured value that is adapted to the actual process conditions.

User interface

–2 000 to 2 000 %

Flow value 10

Navigation

Expert → Sensor → In-situ adjust. → Values in use → Flow value 10 (17377)

Description

Shows the stored flow value in relation to the maximum, factory-measured value that is adapted to the actual process conditions.

User interface

–2 000 to 2 000 %

Flow value 11

Navigation

Expert → Sensor → In-situ adjust. → Values in use → Flow value 11 (17378)

Description

Shows the stored flow value in relation to the maximum, factory-measured value that is adapted to the actual process conditions.

User interface

–2 000 to 2 000 %

Flow value 12

Navigation

Expert → Sensor → In-situ adjust. → Values in use → Flow value 12 (17379)

Description

Shows the stored flow value in relation to the maximum, factory-measured value that is adapted to the actual process conditions.

User interface

–2 000 to 2 000 %
Flow value 13

Navigation

Expert → Sensor → In-situ adjust. → Values in use → Flow value 13 (17380)

Description
Shows the stored flow value in relation to the maximum, factory-measured value that is adapted to the actual process conditions.

User interface
–2,000 to 2,000 %

Flow value 14

Navigation

Expert → Sensor → In-situ adjust. → Values in use → Flow value 14 (17381)

Description
Shows the stored flow value in relation to the maximum, factory-measured value that is adapted to the actual process conditions.

User interface
–2,000 to 2,000 %

Flow value 15

Navigation

Expert → Sensor → In-situ adjust. → Values in use → Flow value 15 (17382)

Description
Shows the stored flow value in relation to the maximum, factory-measured value that is adapted to the actual process conditions.

User interface
–2,000 to 2,000 %

Flow value 16

Navigation

Expert → Sensor → In-situ adjust. → Values in use → Flow value 16 (17383)

Description
Shows the stored flow value in relation to the maximum, factory-measured value that is adapted to the actual process conditions.

User interface
–2,000 to 2,000 %
3.2.9 "Calibration" submenu

Navigation

Expert → Sensor → Calibration

Nominal diameter

Navigation

Expert → Sensor → Calibration → Nominal diameter (2807)

Prerequisite

Only available with t-mass F.

Description

Displays the nominal diameter of the sensor.

User interface

DNxx / x”

Factory setting

Depends on the size of the sensor

Additional information

The value is also specified on the sensor nameplate.

3.3 "Input" submenu

Navigation

Expert → Input

3.3.1 "Current input 1 to n" submenu

Navigation

Expert → Input → Current input 1 to n

Terminal number (1611–1 to n)

→ 105

Signal mode (1610–1 to n)

→ 105
Terminal number

Navigation

- Expert → Input → Current input 1 to n → Terminal no. (1611–1 to n)

Description

Displays the terminal numbers used by the current input module.

User interface

- Not used
- 24–25 (I/O 2)
- 22–23 (I/O 3)
- 20–21 (I/O 4)*

Additional information

Not used option

The current input module does not use any terminal numbers.

Signal mode

Navigation

- Expert → Input → Current input 1 to n → Signal mode (1610–1 to n)

Prerequisite

The measuring device is **not** approved for use in the hazardous area with type of protection Ex-i.

Description

Use this function to select the signal mode for the current input.

Selection

- Passive
- Active*

Factory setting

Active

* Visibility depends on order options or device settings
Current span

Navigation
Expert → Input → Current input 1 to n → Current span (1605–1 to n)

Description
Use this function to select the current range for the process value output and the upper and lower level for signal on alarm.

Selection
- 4...20 mA (4... 20.5 mA)
- 4...20 mA NAMUR (3.8...20.5 mA)
- 4...20 mA US (3.9...20.8 mA)
- 0...20 mA (0... 20.5 mA)

Factory setting
Country-specific:
- 4...20 mA NAMUR (3.8...20.5 mA)
- 4...20 mA US (3.9...20.8 mA)

Additional information

Examples
Sample values for the current range: **Current span** parameter (→ 112)

0/4 mA value

Navigation
Expert → Input → Current input 1 to n → 0/4 mA value (1606–1 to n)

Description
Enter 4 mA value.

User entry
Signed floating-point number

Additional information

Current input behavior
The current input behaves differently depending on the settings configured in the following parameters:
- Current span (→ 106)
- Failure mode (→ 107)

Configuration examples
Pay attention to the configuration examples for **4 mA value** parameter (→ 113).

20 mA value

Navigation
Expert → Input → Current input 1 to n → 20 mA value (1607–1 to n)

Description
Enter 20 mA value.

User entry
Signed floating-point number

Factory setting
Depends on country and nominal diameter
Additional information

Configuration examples

Pay attention to the configuration examples for 4 mA value parameter (→ 113).

Failure mode

Navigation

Expert → Input → Current input 1 to n → Failure mode (1601–1 to n)

Description

Use this function to select the input behavior when measuring a current outside the configured Current span parameter (→ 106).

Selection

- Alarm
- Last valid value
- Defined value

**Additional information

Options

- Alarm
 An error message is set.
- Last valid value
 The last valid measured value is used.
- Defined value
 A user-defined measured value is used (Failure value parameter (→ 107)).

Failure value

Navigation

Expert → Input → Current input 1 to n → Failure value (1602–1 to n)

Prerequisite

In the Failure mode parameter (→ 107), the Defined value option is selected.

Description

Use this function to enter the value that the device uses if it does not receive an input signal from the external device, or if the input signal is invalid.

User entry

Signed floating-point number

3.3.2 "Status input 1 to n" submenu

Navigation

Expert → Input → Status input 1 to n

- Status input 1 to n

 Terminal number (1358–1 to n) → 108
 Assign status input (1352–1 to n) → 108
Terminal number

Navigation

Expert → Input → Status input 1 to n → Terminal no. (1358–1 to n)

Description
Displays the terminal numbers used by the status input module.

User interface
- Not used
- 24-25 (I/O 2)
- 22-23 (I/O 3)
- 20-21 (I/O 4) *

Additional information

'Not used' option
The status input module does not use any terminal numbers.

Assign status input

Navigation

Expert → Input → Status input 1 to n → Assign stat.inp. (1352–1 to n)

Description
Use this function to select the function for the status input.

Selection
- Off
- Reset totalizer 1
- Reset totalizer 2
- Reset totalizer 3
- Reset all totalizers
- Flow override
- Gas group *
- Zero point adjustment

* Visibility depends on order options or device settings
Additional information

Selection

- Off
 The status input is switched off.
- Reset totalizer 1...3
 The individual totalizers are reset.
- Reset all totalizers
 All totalizers are reset.
- Flow override
 The Flow override (→ 64) is activated.

Note on the Flow override (→ 64):
- The Flow override (→ 64) is enabled as long as the level is at the status input (continuous signal).
- All other assignments react to a change in level (pulse) at the status input.

Value status input

Navigation

Expert → Input → Status input 1 to n → Val.stat.inp. (1353–1 to n)

Description
Displays the current input signal level.

User interface

- High
- Low

Active level

Navigation

Expert → Input → Status input 1 to n → Active level (1351–1 to n)

Description
Use this function to determine the input signal level at which the assigned function is activated.

Selection

- High
- Low

Response time status input

Navigation

Expert → Input → Status input 1 to n → Response time (1354–1 to n)

Description
Use this function to enter the minimum time period for which the input signal level must be present before the selected function is activated.

User entry
5 to 200 ms
3.4 "Output" submenu

Navigation ☐ ☐ Expert → Output

[Diagram: Output menu]

3.4.1 "Current output 1 to n" submenu

Navigation ☐ ☐ Expert → Output → Curr.output 1 to n

[Diagram: Current output 1 to n menu]
Terminal number

Navigation

Expert → Output → Curr.output 1 to n → Terminal no. (0379–1 to n)

Description

Displays the terminal numbers used by the current output module.

User interface

- Not used
- 26-27 (I/O 1)
- 24-25 (I/O 2)
- 22-23 (I/O 3)
- 20-21 (I/O 4)

Additional information

Not used option

The current output module does not use any terminal numbers.

Signal mode

Navigation

Expert → Output → Curr.output 1 to n → Signal mode (0377–1 to n)

Description

Use this function to select the signal mode for the current output.

Selection

- Active *
- Passive *

Factory setting

Active

Assign current output 1 to n

Navigation

Expert → Output → Curr.output 1 to n → Assign curr. 1 to n (0359–1 to n)

Description

Use this function to select a process variable for the current output.

Selection

- Off *
- Temperature
- Mass flow
- Corrected volume flow
- FAD volume flow *
- Volume flow
- Energy flow *
- Heat flow *
- Density
- Flow velocity
- Pressure
- 2nd temperature delta heat *
- Electronic temperature

* Visibility depends on order options or device settings
Description of Device Parameters

Proline t-mass 500 HART

Current span

Navigation

Navigate to Expert → Output → Curr.output 1 to n → Current span (0353–1 to n)

Description

Use this function to select the current range for the process value output and the upper and lower level for signal on alarm.

Selection

- 4...20 mA NAMUR (3.8...20.5 mA)
- 4...20 mA US (3.9...20.8 mA)
- 4...20 mA (4... 20.5 mA)
- 0...20 mA (0... 20.5 mA)
- Fixed current

Factory setting

Country-specific:
- 4...20 mA NAMUR (3.8...20.5 mA)
- 4...20 mA US (3.9...20.8 mA)

Additional information

Description

- In the event of a device alarm, the current output adopts the value specified in the Failure mode parameter (→ 115).
- The measuring range is specified via the 0/4 mA value parameter (→ 113) and 20 mA value parameter (→ 114).

"Fixed current" option

- This option is used for a HART Multidrop network.
- It can only be used for the 4...20 mA HART current output (current output 1).
- The current value is set via the Fixed current parameter (→ 113).

Example

Shows the relationship between the current span for the output of the process variable and the lower and upper alarm levels:

1 Current span for process value
2 Lower level for signal on alarm
3 Upper level for signal on alarm

Selection

<table>
<thead>
<tr>
<th>Selection</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4...20 mA NAMUR (3.8...20.5 mA)</td>
<td>3.8 to 20.5 mA</td>
<td>< 3.6 mA</td>
<td>> 21.95 mA</td>
</tr>
<tr>
<td>4...20 mA US (3.9...20.8 mA)</td>
<td>3.9 to 20.8 mA US</td>
<td>< 3.6 mA</td>
<td>> 21.95 mA</td>
</tr>
<tr>
<td>4...20 mA (4... 20.5 mA)</td>
<td>4 to 20.5 mA</td>
<td>< 3.6 mA</td>
<td>> 21.95 mA</td>
</tr>
<tr>
<td>0...20 mA (0... 20.5 mA)</td>
<td>0 to 20.5 mA</td>
<td>< 0 mA</td>
<td>> 21.95 mA</td>
</tr>
</tbody>
</table>
Fixed current

Navigation
Expert → Output → Curr.output 1 to n → Fixed current (0365–1 to n)

Prerequisite
The Fixed current option is selected in the Current span parameter (→ 112).

Description
Use this function to enter a constant current value for the current output.

User entry
0 to 22.5 mA

Factory setting
22.5 mA

0/4 mA value

Navigation
Expert → Output → Curr.output 1 to n → 0/4 mA value (0367–1 to n)

Prerequisite
In the Current span parameter (→ 112), one of the following options is selected:
- 4...20 mA NAMUR (3.8...20.5 mA)
- 4...20 mA US (3.9...20.8 mA)
- 4...20 mA (4... 20.5 mA)
- 0...20 mA (0... 20.5 mA)

Description
Use this function to enter a value for the 0/4 mA current.

User entry
Signed floating-point number

Additional information
Description
Positive and negative values are permitted depending on the process variable assigned in the Assign current output parameter (→ 111). In addition, the value can be greater than or smaller than the value assigned for the 20 mA current in the 20 mA value parameter (→ 114).

Dependency
The unit depends on the process variable selected in the Assign current output parameter (→ 111).

Current output behavior
The current output behaves differently depending on the settings configured in the following parameters:
- Current span (→ 112)
- Failure mode (→ 115)

Configuration examples
A configuration example and its effect on the current output is explained in the following section.

Configuration example
In the Forward flow
- 0/4 mA value parameter (→ 113) = not equal to zero flow (e.g. –250 kg/h)
- 20 mA value parameter (→ 114) = not equal to zero flow (e.g. +750 kg/h)
- Calculated current value = 8 mA at zero flow
20 mA value

Navigation
Expert → Output → Curr.output 1 to n → 20 mA value (0372–1 to n)

Prerequisite
In the Current span parameter (→ 112), one of the following options is selected:
- 4...20 mA NAMUR (3.8...20.5 mA)
- 4...20 mA US (3.9...20.8 mA)
- 4...20 mA (4...20.5 mA)
- 0...20 mA (0...20.5 mA)

Description
Use this function to enter a value for the 20 mA current.

User entry
Signed floating-point number

Factory setting
Depends on country and nominal diameter (→ 221)

Additional information

Description
Positive and negative values are permitted depending on the process variable assigned in the Assign current output parameter (→ 111). In addition, the value can be greater than or smaller than the value assigned for the 0/4 mA current in the 0/4 mA value parameter (→ 113).

Dependency
The unit depends on the process variable selected in the Assign current output parameter (→ 111).

Example
- Value assigned to 0/4 mA = –250 kg/h
- Value assigned to 20 mA = +750 kg/h
- Calculated current value = 8 mA (at zero flow)

Configuration examples
Observe the configuration examples for the 0/4 mA value parameter (→ 113).
Damping output 1 to n

Navigation

Expert → Output → Curr.output 1 to n → Damping out. 1 to n (0363–1 to n)

Prerequisite

A process variable is selected in the Assign current output parameter (→ 111) and one of the following options is selected in the Current span parameter (→ 112):

- 4...20 mA NAMUR (3.8...20.5 mA)
- 4...20 mA US (3.9...20.8 mA)
- 4...20 mA (4... 20.5 mA)
- 0...20 mA (0... 20.5 mA)

Description

Use this function to enter a time constant for the reaction time of the current output signal to fluctuations in the measured value caused by process conditions.

User entry

0.0 to 999.9 s

Additional information

User entry

Use this function to enter a time constant (PT1 element) for current output damping:

- If a low time constant is entered, the current output reacts particularly quickly to fluctuating measured variables.
- On the other hand, the current output reacts more slowly if a high time constant is entered.

Damping is switched off if 0 is entered (factory setting).

Failure mode

Navigation

Expert → Output → Curr.output 1 to n → Failure mode (0364–1 to n)

Prerequisite

A process variable is selected in the Assign current output parameter (→ 111) and one of the following options is selected in the Current span parameter (→ 112):

- 4...20 mA NAMUR (3.8...20.5 mA)
- 4...20 mA US (3.9...20.8 mA)
- 4...20 mA (4... 20.5 mA)
- 0...20 mA (0... 20.5 mA)

Description

Use this function to select the value of the current output in the event of a device alarm.

Selection

- Min.
- Max.
- Last valid value
- Actual value
- Defined value

7) proportional transmission behavior with first order delay
Additional information

Description

This setting does not affect the failsafe mode of other outputs and totalizers. This is specified in separate parameters.

Min. option

The current output adopts the value of the lower level for signal on alarm.

The signal on alarm level is defined via the **Current span** parameter (→ 112).

Max. option

The current output adopts the value of the upper level for signal on alarm.

The signal on alarm level is defined via the **Current span** parameter (→ 112).

Last valid value option

The current output adopts the last measured value that was valid before the device alarm occurred.

Actual value option

The current output adopts the measured value on the basis of the current flow measurement; the device alarm is ignored.

Defined value option

The current output adopts a defined measured value.

The measured value is defined via the **Failure current** parameter (→ 116).

Failure current

Navigation

Expert → Output → Curr.output 1 to n → Failure current (0352–1 to n)

Prerequisite

The **Defined value** option is selected in the **Failure mode** parameter (→ 115).

Description

Use this function to enter a fixed value that the current output adopts in the event of a device alarm.

User entry

0 to 22.5 mA

Factory setting

22.5 mA

Output current 1 to n

Navigation

Expert → Output → Curr.output 1 to n → Output curr. 1 to n (0361–1 to n)

Description

Displays the current value currently calculated for the current output.

User interface

3.59 to 22.5 mA
Measured current 1 to n

Description
Use this function to display the actual measured value of the output current.

User interface
0 to 30 mA

3.4.2 "Pulse/frequency/switch output 1 to n" submenu

Navigation
Expert → Output → PFS output 1 to n

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal number</td>
<td>118</td>
</tr>
<tr>
<td>Signal mode</td>
<td>119</td>
</tr>
<tr>
<td>Operating mode</td>
<td>119</td>
</tr>
<tr>
<td>Assign pulse output 1 to n</td>
<td>120</td>
</tr>
<tr>
<td>Pulse scaling</td>
<td>121</td>
</tr>
<tr>
<td>Pulse width</td>
<td>121</td>
</tr>
<tr>
<td>Failure mode</td>
<td>122</td>
</tr>
<tr>
<td>Pulse output 1 to n</td>
<td>123</td>
</tr>
<tr>
<td>Assign frequency output</td>
<td>123</td>
</tr>
<tr>
<td>Minimum frequency value</td>
<td>124</td>
</tr>
<tr>
<td>Maximum frequency value</td>
<td>124</td>
</tr>
<tr>
<td>Measuring value at minimum frequency</td>
<td>124</td>
</tr>
<tr>
<td>Measuring value at maximum frequency</td>
<td>125</td>
</tr>
<tr>
<td>Damping output 1 to n</td>
<td>125</td>
</tr>
<tr>
<td>Response time</td>
<td>126</td>
</tr>
<tr>
<td>Parameter</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Failure mode</td>
<td>126</td>
</tr>
<tr>
<td>Failure frequency</td>
<td>127</td>
</tr>
<tr>
<td>Output frequency 1 to n</td>
<td>127</td>
</tr>
<tr>
<td>Switch output function</td>
<td>127</td>
</tr>
<tr>
<td>Assign diagnostic behavior</td>
<td>128</td>
</tr>
<tr>
<td>Assign limit</td>
<td>128</td>
</tr>
<tr>
<td>Switch-on value</td>
<td>130</td>
</tr>
<tr>
<td>Switch-off value</td>
<td>131</td>
</tr>
<tr>
<td>Assign status</td>
<td>131</td>
</tr>
<tr>
<td>Switch-on delay</td>
<td>132</td>
</tr>
<tr>
<td>Switch-off delay</td>
<td>132</td>
</tr>
<tr>
<td>Failure mode</td>
<td>132</td>
</tr>
<tr>
<td>Switch status 1 to n</td>
<td>133</td>
</tr>
<tr>
<td>Invert output signal</td>
<td>133</td>
</tr>
</tbody>
</table>

Terminal number

Navigation

Expert → Output → PFS output 1 to n → Terminal no. (0492–1 to n)

Description

Displays the terminal numbers used by the pulse/frequency/switch output module.

User interface

- Not used
- 24-25 (I/O 2)
- 22-23 (I/O 3)
- 20-21 (I/O 4) *

Additional information

Not used option

The pulse/frequency/switch output module does not use any terminal numbers.

* Visibility depends on order options or device settings
Signal mode

Navigation

Expert → Output → PFS output 1 to n → Signal mode (0490–1 to n)

Description

Use this function to select the signal mode for the pulse/frequency/switch output.

Selection

- Passive
- Active
- Passive NAMUR

Operating mode

Navigation

Expert → Output → PFS output 1 to n → Operating mode (0469–1 to n)

Description

Use this function to select the operating mode of the output as a pulse, frequency or switch output.

Selection

- Pulse
- Frequency
- Switch

Additional information

Pulse option

Quantity-dependent pulse with configurable pulse width.
The pulses are never shorter than the set duration.

Example

- Flow rate approx. 100 g/s
- Pulse value 0.1 g
- Pulse width 0.05 ms
- Pulse rate 1 000 Impuls/s

![Diagram](#)

2. Quantity-proportional pulse (pulse value) with pulse width to be configured

* B Pulse width entered
* P Pauses between the individual pulses

Frequency option

Flow-proportional frequency output with 1:1 on/off ratio

* Visibility depends on order options or device settings
Example
- Flow rate approx. 100 g/s
- Max. frequency 10 kHz
- Flow rate at max. frequency 1000 g/s
- Output frequency approx. 1000 Hz

“Switch” option
Contact for displaying a condition (e.g. alarm or warning if a limit value is reached)
Example
Alarm response without alarm

Example
Alarm response in case of alarm

Assign pulse output 1 to n

Navigation
Expert → Output → PFS output 1 to n → Assign pulse 1 to n (0460–1 to n)

Prerequisite
The Pulse option is selected in the Operating mode parameter (→ 119) parameter.

Description
Use this function to select the process variable for the pulse output.

Selection
- Off
- Mass flow
- Corrected volume flow
- FAD volume flow *
- Volume flow
- Energy flow *
- Heat flow

Pulse scaling

Navigation

Expert → Output → PFS output 1 to n → Pulse scaling (0455–1 to n)

Prerequisite

The Pulse option is selected in the Operating mode parameter (→ 119) and a process variable is selected in the Assign pulse output parameter (→ 120).

Description

Use this function to enter the value for the measured value that a pulse is equivalent to.

User entry

Positive floating point number

Factory setting

Depends on country and nominal diameter

Additional information

User entry

Weighting of the pulse output with a quantity.

The lower the pulse value, the
- better the resolution.
- the higher the frequency of the pulse response.

Pulse width

Navigation

Expert → Output → PFS output 1 to n → Pulse width (0452–1 to n)

Prerequisite

The Pulse option is selected in the Operating mode parameter (→ 119) and a process variable is selected in the Assign pulse output parameter (→ 120).

Description

Use this function to enter the duration of the output pulse.

User entry

0.05 to 2,000 ms

Additional information

Description

- Define how long a pulse is (duration).
- The maximum pulse rate is defined by \(f_{\text{max}} = \frac{1}{2 \times \text{pulse width}} \).
- The interval between two pulses lasts at least as long as the set pulse width.
- The maximum flow is defined by \(Q_{\text{max}} = f_{\text{max}} \times \text{pulse value} \).
- If the flow exceeds these limit values, the measuring device displays the 443 Pulse output 1 to n diagnostic message.

* Visibility depends on order options or device settings
Description of Device Parameters

Proline t-mass 500 HART

Failure mode

Navigation

Expert → Output → PFS output 1 to n → Failure mode (0480–1 to n)

Prerequisite

The Pulse option is selected in the Operating mode parameter (→ 119) and a process variable is selected in the Assign pulse output parameter (→ 120).

Description

Use this function to select the failure mode of the pulse output in the event of a device alarm.

Selection

- Actual value
- No pulses

Additional information

Description

The dictates of safety render it advisable to ensure that the pulse output shows a predefined behavior in the event of a device alarm.

Selection

- Actual value
 - In the event of a device alarm, the pulse output continues on the basis of the current flow measurement. The fault is ignored.
- No pulses
 - In the event of a device alarm, the pulse output is "switched off".

NOTICE! A device alarm is a measuring device error that must be taken seriously. It can affect the measurement quality such that the quality can no longer be guaranteed. The Actual value option is only recommended if it can be guaranteed that all possible alarm conditions will not affect the measurement quality.

Example

- Pulse value: 0.1 g
- Pulse width: 0.1 ms
- \(f_{\text{max}} \): \(\frac{1}{(2 \times 0.1 \, \text{ms})} = 5 \, \text{kHz} \)
- \(Q_{\text{max}} \): \(5 \, \text{kHz} \times 0.1 \, \text{g} = 0.5 \, \text{kg/s} \)
Pulse output 1 to n

Navigation

Expert → Output → PFS output 1 to n → Pulse output 1 to n (0456–1 to n)

Prerequisite

The Pulse option is selected in the Operating mode parameter (→ 119) parameter.

Description

Displays the pulse frequency currently output.

User interface

Positive floating-point number

Additional information

Description

- The pulse output is an open collector output.
- This is configured at the factory in such a way that the transistor is conductive for the duration of the pulse (NO contact) and is safety-oriented.

0 Non-conductive
1 Conductive
NC NC contact (normally closed)
NO NO contact (normally open)

The output behavior can be reversed via the Invert output signal parameter (→ 133) i.e. the transistor does not conduct for the duration of the pulse.

In addition, the behavior of the output in the event of a device alarm (Failure mode parameter (→ 122)) can be configured.

Assign frequency output

Navigation

Expert → Output → PFS output 1 to n → Assign freq. (0478–1 to n)

Prerequisite

The Frequency option is selected in the Operating mode parameter (→ 119).

Description

Use this function to select the process variable for the frequency output.

Selection

- Off
- Temperature
- Mass flow
- Corrected volume flow
- FAD volume flow
- Volume flow
- Energy flow
- Heat flow
- Density

* Visibility depends on order options or device settings
• Flow velocity
• Pressure
• 2nd temperature delta heat *
• Electronic temperature

Minimum frequency value

Navigation
Expert → Output → PFS output 1 to n → Min. freq. value (0453–1 to n)

Prerequisite
The Frequency option is selected in the Operating mode parameter (→ 119) and a process variable is selected in the Assign frequency output parameter (→ 123).

Description
Use this function to enter the minimum frequency.

User entry
0.0 to 10000.0 Hz

Maximum frequency value

Navigation
Expert → Output → PFS output 1 to n → Max. freq. value (0454–1 to n)

Prerequisite
The Frequency option is selected in the Operating mode parameter (→ 119) and a process variable is selected in the Assign frequency output parameter (→ 123).

Description
Use this function to enter the end value frequency.

User entry
0.0 to 10000.0 Hz

Measuring value at minimum frequency

Navigation
Expert → Output → PFS output 1 to n → Val. at min.freq (0476–1 to n)

Prerequisite
The Frequency option is selected in the Operating mode parameter (→ 119) and a process variable is selected in the Assign frequency output parameter (→ 123).

Description
Use this function to enter the measured value for the start value frequency.

User entry
Signed floating-point number

Factory setting
Depends on country and nominal diameter

Additional information
Dependency
The entry depends on the process variable selected in the Assign frequency output parameter (→ 123).

* Visibility depends on order options or device settings
Measuring value at maximum frequency

Navigation

Expert → Output → PFS output 1 to n → Val. at max.freq (0475–1 to n)

Prerequisite

The **Frequency** option is selected in the **Operating mode** parameter (→ 119) and a process variable is selected in the **Assign frequency output** parameter (→ 123).

Description

Use this function to enter the measured value for the end value frequency.

User entry

Signed floating-point number

Factory setting

Depends on country and nominal diameter

Additional information

Description

Use this function to enter the maximum measured value at the maximum frequency. The selected process variable is output as a proportional frequency.

Dependency

The entry depends on the process variable selected in the **Assign frequency output** parameter (→ 123).

Damping output 1 to n

Navigation

Expert → Output → PFS output 1 to n → Damping out. 1 to n (0477–1 to n)

Description

Use this function to enter a time constant for the reaction time of the output signal to fluctuations in the measured value.

User entry

0 to 999.9 s

Additional information

User entry

Use this function to enter a time constant (PT1 element) for frequency output damping:

- If a low time constant is entered, the current output reacts particularly quickly to fluctuating measured variables.
- On the other hand, the current output reacts more slowly if a high time constant is entered.

Damping is switched off if 0 is entered (factory setting).

The frequency output is subject to separate damping that is independent of all preceding time constants.

8) proportional transmission behavior with first order delay
Description of Device Parameters

Response time

Navigation

Expert → Output → PFS output 1 to n → Response time (0491–1 to n)

Description

Displays the response time. This specifies how quickly the pulse/frequency/switch output reaches the measured value change of 63 % of 100 % of the measured value change.

User interface

Positive floating-point number

Additional information

Description

The response time is made up of the time specified for the following dampings:

- Damping of pulse/frequency/switch output → 115
- Depending on the measured variable assigned to the output. Flow damping

Failure mode

Navigation

Expert → Output → PFS output 1 to n → Failure mode (0451–1 to n)

Prerequisite

The Frequency option is selected in the Operating mode parameter (→ 119) and a process variable is selected in the Assign frequency output parameter (→ 123).

Description

Use this function to select the failure mode of the frequency output in the event of a device alarm.

Selection

- Actual value
- Defined value
- 0 Hz

Additional information

Selection

- Actual value
 In the event of a device alarm, the frequency output continues on the basis of the current flow measurement. The device alarm is ignored.
- Defined value
 In the event of a device alarm, the frequency output continues on the basis of a predefined value. The Failure frequency (→ 127) replaces the current measured value, making it possible to bypass the device alarm. The actual measurement is switched off for the duration of the device alarm.
- 0 Hz
 In the event of a device alarm, the frequency output is "switched off".

NOTICE! A device alarm is a measuring device error that must be taken seriously. It can affect the measurement quality such that the quality can no longer be guaranteed. The Actual value option is only recommended if it can be guaranteed that all possible alarm conditions will not affect the measurement quality.
Failure frequency

Navigation
Expert → Output → PFS output 1 to n → Failure freq. (0474–1 to n)

Prerequisite
The Frequency option is selected in the Operating mode parameter (→ 119) and a process variable is selected in the Assign frequency output parameter (→ 123).

Description
Use this function to enter the value for the frequency output in the event of a device alarm in order to bypass the alarm.

User entry
0.0 to 12 500.0 Hz

Output frequency 1 to n

Navigation
Expert → Output → PFS output 1 to n → Output freq. 1 to n (0471–1 to n)

Prerequisite
In the Operating mode parameter (→ 119), the Frequency option is selected.

Description
Displays the actual value of the output frequency which is currently measured.

User interface
0.0 to 12 500.0 Hz

Switch output function

Navigation
Expert → Output → PFS output 1 to n → Switch out funct (0481–1 to n)

Prerequisite
The Switch option is selected in the Operating mode parameter (→ 119) parameter.

Description
Use this function to select a function for the switch output.

Selection
- Off
- On
- Diagnostic behavior
- Limit
- Flow direction check *
- Status

* Visibility depends on order options or device settings
Additional information

Selection
- Off
 The switch output is permanently switched off (open, non-conductive).
- On
 The switch output is permanently switched on (closed, conductive).
- Diagnostic behavior
 Indicates if the diagnostic event is present or not. Is used to output diagnostic information and to react to it appropriately at the system level.
- Limit
 Indicates if a specified limit value has been reached for the process variable. Is used to output diagnostic information relating to the process and to react to it appropriately at the system level.
- Status
 Indicates the device status depending on whether empty pipe detection or low flow cut off is selected.

Assign diagnostic behavior

Navigation
Expert → Output → PFS output 1 to n → Assign diag. beh (0482–1 to n)

Prerequisite
- In the Operating mode parameter (→ 119), the Switch option is selected.
- In the Switch output function parameter (→ 127), the Diagnostic behavior option is selected.

Description
Use this function to select the diagnostic event category that is displayed for the switch output.

Selection
- Alarm
- Alarm or warning
- Warning

Additional information
Description
If no diagnostic event is pending, the switch output is closed and conductive.

Selection
- Alarm
 The switch output signals only diagnostic events in the alarm category.
- Alarm or warning
 The switch output signals diagnostic events in the alarm and warning category.
- Warning
 The switch output signals only diagnostic events in the warning category.

Assign limit

Navigation
Expert → Output → PFS output 1 to n → Assign limit (0483–1 to n)

Prerequisite
- The Switch option is selected in the Operating mode parameter (→ 119).
- The Limit option is selected in the Switch output function parameter (→ 127).
Use this function to select a process variable for the limit function.

Selection
- Temperature
- Mass flow
- Corrected volume flow
- FAD volume flow *
- Volume flow
- Energy flow *
- Heat flow *
- Density
- Flow velocity
- 2nd temperature delta heat *
- Electronic temperature
- Totalizer 1
- Totalizer 2
- Totalizer 3

Additional information

description

Behavior of status output when Switch-on value > Switch-off value:
- Process variable > Switch-on value: transistor is conductive
- Process variable < Switch-off value: transistor is non-conductive

Behavior of status output when Switch-on value < Switch-off value:
- Process variable < Switch-on value: transistor is conductive
- Process variable > Switch-off value: transistor is non-conductive

* Visibility depends on order options or device settings
Description of Device Parameters

Proline t-mass 500 HART

Behavior of status output when Switch-on value = Switch-off value:
- Process variable > Switch-on value: transistor is conductive
- Process variable < Switch-off value: transistor is non-conductive

Switch-on value

Navigation

Expert → Output → PFS output 1 to n → Switch-on value (0466-1 to n)

Prerequisite

- The Switch option is selected in the Operating mode parameter (→ 119) parameter.
- The Limit option is selected in the Switch output function parameter (→ 127) parameter.

Description

Use this function to enter the measured value for the switch-on point.

User entry

Signed floating-point number

Factory setting

Depends on country and nominal diameter
Additional information

Description

Use this function to enter the limit value for the switch-on value (process variable > switch-on value = closed, conductive).

> When using a hysteresis: Switch-on value > Switch-off value.

Dependency

> The unit depends on the process variable selected in the Assign limit parameter (→ 128).

Switch-off value

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Output → PFS output 1 to n → Switch-off value (0464–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>The Switch option is selected in the Operating mode parameter (→ 119).</td>
</tr>
<tr>
<td></td>
<td>The Limit option is selected in the Switch output function parameter (→ 127).</td>
</tr>
<tr>
<td>Description</td>
<td>Use this function to enter the measured value for the switch-off point.</td>
</tr>
<tr>
<td>User entry</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Additional information</td>
<td>Description Use this function to enter the limit value for the switch-off value (process variable < switch-off value = open, non-conductive).</td>
</tr>
<tr>
<td></td>
<td>> When using a hysteresis: Switch-on value > Switch-off value.</td>
</tr>
<tr>
<td></td>
<td>> The unit depends on the process variable selected in the Assign limit parameter (→ 128).</td>
</tr>
</tbody>
</table>

Assign status

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Output → PFS output 1 to n → Assign status (0485–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>The Switch option is selected in the Operating mode parameter (→ 119).</td>
</tr>
<tr>
<td></td>
<td>The Status option is selected in the Switch output function parameter (→ 127).</td>
</tr>
<tr>
<td>Description</td>
<td>Use this function to select a device status for the switch output.</td>
</tr>
<tr>
<td>Selection</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>Low flow cut off</td>
</tr>
<tr>
<td>Additional information</td>
<td>Options If empty pipe detection or low flow cut off are enabled, the output is conductive. Otherwise, the switch output is non-conductive.</td>
</tr>
</tbody>
</table>
Description of Device Parameters

Proline t-mass 500 HART

Switch-on delay

Navigation

Expert → Output → PFS output 1 to n → Switch-on delay (0467–1 to n)

Prerequisite

- The Switch option is selected in the Operating mode parameter (→ 119).
- The Limit option is selected in the Switch output function parameter (→ 127).

Description

Use this function to enter a delay time for switching on the switch output.

User entry

0.0 to 100.0 s

Switch-off delay

Navigation

Expert → Output → PFS output 1 to n → Switch-off delay (0465–1 to n)

Prerequisite

- The Switch option is selected in the Operating mode parameter (→ 119).
- The Limit option is selected in the Switch output function parameter (→ 127).

Description

Use this function to enter a delay time for switching off the switch output.

User entry

0.0 to 100.0 s

Failure mode

Navigation

Expert → Output → PFS output 1 to n → Failure mode (0486–1 to n)

Description

Use this function to select a failsafe mode for the switch output in the event of a device alarm.

Selection

- Actual status
- Open
- Closed

Additional information

Options

- Actual status
 In the event of a device alarm, faults are ignored and the current behavior of the input value is output by the switch output. The Actual status option behaves in the same way as the current input value.
- Open
 In the event of a device alarm, the switch output's transistor is set to non-conductive.
- Closed
 In the event of a device alarm, the switch output's transistor is set to conductive.
Switch status 1 to n

Navigation

Expert → Output → PFS output 1 to n → Switch status 1 to n (0461–1 to n)

Prerequisite

The Switch option is selected in the Operating mode parameter (→ 119).

Description

Displays the current switch status of the status output.

User interface

- Open
- Closed

Additional information

User interface

- Open
 The switch output is not conductive.
- Closed
 The switch output is conductive.

Invert output signal

Navigation

Expert → Output → PFS output 1 to n → Invert outp.sig. (0470–1 to n)

Description

Use this function to select whether to invert the output signal.

Selection

- No
- Yes

Additional information

Selection

No option (passive - negative)

Yes option (passive - positive)
3.4.3 "Relay output 1 to n" submenu

Navigation
Expert → Output → Relay output 1 to n

<table>
<thead>
<tr>
<th>Terminal number (0812–1 to n)</th>
<th>→ 134</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay output function (0804–1 to n)</td>
<td>→ 135</td>
</tr>
<tr>
<td>Assign limit (0807–1 to n)</td>
<td>→ 135</td>
</tr>
<tr>
<td>Assign diagnostic behavior (0806–1 to n)</td>
<td>→ 136</td>
</tr>
<tr>
<td>Assign status (0805–1 to n)</td>
<td>→ 136</td>
</tr>
<tr>
<td>Switch-off value (0809–1 to n)</td>
<td>→ 136</td>
</tr>
<tr>
<td>Switch-off delay (0813–1 to n)</td>
<td>→ 137</td>
</tr>
<tr>
<td>Switch-on value (0810–1 to n)</td>
<td>→ 137</td>
</tr>
<tr>
<td>Switch-on delay (0814–1 to n)</td>
<td>→ 138</td>
</tr>
<tr>
<td>Failure mode (0811–1 to n)</td>
<td>→ 138</td>
</tr>
<tr>
<td>Switch status (0801–1 to n)</td>
<td>→ 138</td>
</tr>
<tr>
<td>Powerless relay status (0816–1 to n)</td>
<td>→ 139</td>
</tr>
</tbody>
</table>

Terminal number

Navigation
Expert → Output → Relay output 1 to n → Terminal no. (0812–1 to n)

Description
Displays the terminal numbers used by the relay output module.

User interface
- Not used
- 24-25 (I/O 2)
- 22-23 (I/O 3)
- 20-21 (I/O 4)

Additional information
"Not used" option
The relay output module does not use any terminal numbers.
Relay output function

Navigation
Expert → Output → Relay output 1 to n → Relay outp.func. (0804–1 to n)

Description
Use this function to select an output function for the relay output.

Selection
- Closed
- Open
- Diagnostic behavior
- Limit
- Flow direction check
- Digital Output

Additional information

Selection
- Closed
 The relay output is permanently switched on (closed, conductive).
- Open
 The relay output is permanently switched off (open, non-conductive).
- Diagnostic behavior
 Indicates if the diagnostic event is present or not. Is used to output diagnostic information and to react to it appropriately at the system level.
- Limit
 Indicates if a specified limit value has been reached for the process variable. Is used to output diagnostic information relating to the process and to react to it appropriately at the system level.
- Flow direction check
 Indicates the flow direction (forward or reverse flow).
- Digital Output
 Indicates the device status depending on whether empty pipe detection or low flow cut off is selected.

Assign limit

Navigation
Expert → Output → Relay output 1 to n → Assign limit (0807–1 to n)

Prerequisite
The Limit option is selected in the Relay output function parameter (→ 135).

Description
Use this function to select a process variable for the limit value function.

Selection
- Temperature
- Mass flow
- Corrected volume flow
- FAD volume flow
- Volume flow
- Energy flow
- Heat flow
- Density
- Flow velocity
- 2nd temperature delta heat
- Electronic temperature

* Visibility depends on order options or device settings
Assign diagnostic behavior

Navigation

Expert → Output → Relay output 1 to n → Assign diag. beh (0806–1 to n)

Prerequisite

In the **Relay output function** parameter (→ 135), the **Diagnostic behavior** option is selected.

Description

Use this function to select the category of the diagnostic events that are displayed for the relay output.

Selection

- Alarm
- Alarm or warning
- Warning

Additional information

Description

If no diagnostic event is pending, the relay output is closed and conductive.

Selection

- Alarm
 The relay output signals only diagnostic events in the alarm category.
- Alarm or warning
 The relay output signals diagnostic events in the alarm and warning category.
- Warning
 The relay output signals only diagnostic events in the warning category.

Assign status

Navigation

Expert → Output → Relay output 1 to n → Assign status (0805–1 to n)

Prerequisite

In the **Relay output function** parameter (→ 135), the **Digital Output** option is selected.

Description

Use this function to select the device status for the relay output.

Selection

- Off
- Low flow cut off

Switch-off value

Navigation

Expert → Output → Relay output 1 to n → Switch-off value (0809–1 to n)

Prerequisite

In the **Relay output function** parameter (→ 135), the **Limit** option is selected.
Description
Use this function to enter the measured value for the switch-off point.

User entry
Signed floating-point number

Additional information
Description
Use this function to enter the limit value for the switch-off value (process variable < switch-off value = open, non-conductive).

⚠️ When using a hysteresis: Switch-on value > Switch-off value.

Dependency
The unit is dependent on the process variable selected in the **Assign limit** parameter (→ 135).

Switch-off delay

Navigation
Expert → Output → Relay output 1 to n → Switch-off delay (0813–1 to n)

Prerequisite
In the **Relay output function** parameter (→ 135), the **Limit** option is selected.

Description
Use this function to enter a delay time for switching off the switch output.

User entry
0.0 to 100.0 s

Switch-on value

Navigation
Expert → Output → Relay output 1 to n → Switch-on value (0810–1 to n)

Prerequisite
The **Limit** option is selected in the **Relay output function** parameter (→ 135) parameter.

Description
Use this function to enter the measured value for the switch-on point.

User entry
Signed floating-point number

Factory setting
Depends on country and nominal diameter

Additional information
Description
Use this function to enter the limit value for the switch-on value (process variable > switch-on value = closed, conductive).

⚠️ When using a hysteresis: Switch-on value > Switch-off value.

Dependency
The unit is dependent on the process variable selected in the **Assign limit** parameter (→ 135).
Switch-on delay

Navigation

Expert → Output → Relay output 1 to n → Switch-on delay (0814–1 to n)

Prerequisite

In the **Relay output function** parameter (→ 135), the **Limit** option is selected.

Description

Use this function to enter a delay time for switching on the switch output.

User entry

0.0 to 100.0 s

Failure mode

Navigation

Expert → Output → Relay output 1 to n → Failure mode (0811–1 to n)

Description

Use this function to select the failure mode of the relay output in the event of a device alarm.

Selection

- Actual status
- Open
- Closed

Additional information

Selection

- Actual status

 In the event of a device alarm, faults are ignored and the current behavior of the input value is output by the relay output. The **Actual status** option behaves in the same way as the current input value.
- Open

 In the event of a device alarm, the relay output's transistor is set to **non-conductive**.
- Closed

 In the event of a device alarm, the relay output's transistor is set to **conductive**.

Switch status

Navigation

Expert → Output → Relay output 1 to n → Switch status (0801–1 to n)

Description

Displays the current status of the relay output.

User interface

- Open
- Closed

Additional information

User interface

- Open

 The relay output is not conductive.
- Closed

 The relay output is conductive.
Powerless relay status

Navigation

Expert → Output → Relay output 1 to n → Powerless relay (0816–1 to n)

Description

Use this function to select the quiescent state for the relay output.

Selection

- Open
- Closed

Additional information

Selection

- Open
 The relay output is not conductive.
- Closed
 The relay output is conductive.

3.5 "Communication" submenu

Navigation

Expert → Communication

3.5.1 "HART input" submenu

Navigation

Expert → Communication → HART input
"Configuration" submenu

Navigation
Expert → Communication → HART input → Configuration

<table>
<thead>
<tr>
<th>Configuration</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Capture mode (7001)</td>
<td>→ 140</td>
</tr>
<tr>
<td>Device ID (7007)</td>
<td>→ 141</td>
</tr>
<tr>
<td>Device type (7008)</td>
<td>→ 141</td>
</tr>
<tr>
<td>Manufacturer ID (7009)</td>
<td>→ 141</td>
</tr>
<tr>
<td>Burst command (7006)</td>
<td>→ 142</td>
</tr>
<tr>
<td>Slot number (7010)</td>
<td>→ 142</td>
</tr>
<tr>
<td>Timeout (7005)</td>
<td>→ 143</td>
</tr>
<tr>
<td>Failure mode (7011)</td>
<td>→ 143</td>
</tr>
<tr>
<td>Failure value (7012)</td>
<td>→ 143</td>
</tr>
</tbody>
</table>

Capture mode

Navigation
Expert → Communication → HART input → Configuration → Capture mode (7001)

Description
Use this function to select the capture mode via burst or master communication.

Selection
- Off
- Burst network
- Master network

Additional information
Burst network option
The device records data transmitted via burst in the network.

Master network option
In this case, the device must be located in a HART network in which a HART master (control) queries the measured values of the up to 64 network participants. The device reacts only to the responses of a specific device in the network. Device ID, device type, manufacturer ID and the HART commands used by the master must be defined.
Device ID

Navigation [Expert → Communication → HART input → Configuration → Device ID (7007)]

Prerequisite The **Master network** option is selected in the **Capture mode** parameter (→ 140).

Description Use this function to enter the device ID of the HART slave device whose data are to be recorded.

User entry 6-digit value:
- Via local operation: enter as hexadecimal or decimal number
- Via operating tool: enter as decimal number

Additional information In addition to the device ID and manufacturer ID, the device type is part of the unique ID. Each HART device is uniquely identified by the unique device ID.

Device type

Navigation [Expert → Communication → HART input → Configuration → Device type (7008)]

Prerequisite In the **Capture mode** parameter (→ 140), the **Master network** option is selected.

Description Use this function to enter the device type of the HART slave device whose data are to be recorded.

User entry 2-digit hexadecimal number

Factory setting 0x00

Additional information In addition to the device ID and manufacturer ID, the device type is part of the unique ID. Each HART device is uniquely identified by the unique device ID.

Manufacturer ID

Navigation [Expert → Communication → HART input → Configuration → Manufacturer ID (7009)]

Prerequisite The **Master network** option is selected in the **Capture mode** parameter (→ 140).

Description Use this function to enter the manufacturer ID of the HART slave device whose data are to be recorded.

User entry 2-digit value:
- Via local operation: enter as hexadecimal or decimal number
- Via operating tool: enter as decimal number

Additional information In addition to the device ID and manufacturer ID, the device type is part of the unique ID. Each HART device is uniquely identified by the unique device ID.
Burst command

Navigation

Expert → Communication → HART input → Configuration → Burst command (7006)

Prerequisite

The **Burst network** option or the **Master network** option are selected in the **Capture mode** parameter (→ 140).

Description

Use this function to select the burst command to be recorded.

Selection

- Command 1
- Command 3
- Command 9
- Command 33

Additional information

Selection

- Command 1
 - Use this function to capture the primary variable.
- Command 3
 - Use this function to capture the dynamic HART variables and the current.
- Command 9
 - Use this function to capture the dynamic HART variables including the associated status.
- Command 33
 - Use this function to capture the dynamic HART variables including the associated unit.

Slot number

Navigation

Expert → Communication → HART input → Configuration → Slot number (7010)

Prerequisite

The **Burst network** option or the **Master network** option is selected in the **Capture mode** parameter (→ 140).

Description

Use this function to enter the position of the process variable to be recorded in the burst command.

User entry

1 to 8

Additional information

User entry

<table>
<thead>
<tr>
<th>Slot</th>
<th>1</th>
<th>3</th>
<th>9</th>
<th>33</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PV</td>
<td>PV</td>
<td>HART variable (slot 1)</td>
<td>HART variable (slot 1)</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>SV</td>
<td>HART variable (slot 2)</td>
<td>HART variable (slot 2)</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>TV</td>
<td>HART variable (slot 3)</td>
<td>HART variable (slot 3)</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>QV</td>
<td>HART variable (slot 4)</td>
<td>HART variable (slot 4)</td>
</tr>
</tbody>
</table>
Timeout

Navigation
Expert → Communication → HART input → Configuration → Timeout (7005)

Prerequisite
The **Burst network** option or the **Master network** option is selected in the **Capture mode** parameter (→ 140).

Description
Use this function to enter the maximum permitted interval between two HART frames.

User entry
1 to 120 s

Additional information
Description

If the interval is exceeded, the measuring device displays the **F882 Input signal** diagnostic message.

Failure mode

Navigation
Expert → Communication → HART input → Configuration → Failure mode (7011)

Prerequisite
In the **Capture mode** parameter (→ 140), the **Burst network** option or **Master network** option is selected.

Description
Use this function to select the device behavior if no data are recorded within the maximum permitted interval.

Selection
- Alarm
- Last valid value
- Defined value

Additional information
Options

- Alarm
 An error message is set.
- Last valid value
 The last valid measured value is used.
- Defined value
 A user-defined measured value is used: (**Failure value** parameter (→ 143)).

Failure value

Navigation
Expert → Communication → HART input → Configuration → Failure value (7012)

Prerequisite
The following conditions are met:
- In the **Capture mode** parameter (→ 140), the **Burst network** option or **Master network** option is selected.
- In the **Failure mode** parameter (→ 143), the **Defined value** option is selected.

Description
Use this function to enter the measured value to be used if no data are recorded within the maximum permitted interval.
User entry
Signed floating-point number

"Input" submenu

Navigation
Expert → Communication → HART input → Input

<table>
<thead>
<tr>
<th>Input</th>
<th>144</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value (7003)</td>
<td>→ 144</td>
</tr>
<tr>
<td>Status (7004)</td>
<td>→ 144</td>
</tr>
</tbody>
</table>

Value

Navigation
Expert → Communication → HART input → Input → Value (7003)

Description
Displays the value of the device variable recorded by the HART input.

User interface
Signed floating-point number

Status

Navigation
Expert → Communication → HART input → Input → Status (7004)

Description
Displays the value of the device variable recorded by the HART input in accordance with the HART specification.

User interface
- Manual/Fixed
- Good
- Poor accuracy
- Bad

3.5.2 "HART output" submenu

Navigation
Expert → Communication → HART output

<table>
<thead>
<tr>
<th>HART output</th>
<th>145</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration</td>
<td>→ 145</td>
</tr>
</tbody>
</table>
"Configuration" submenu

Navigation

Expert → Communication → HART output → Configuration

- HART short tag (0220)
- Device tag (0215)
- HART address (0219)
- No. of preambles (0217)
- Fieldbus writing access (0273)

HART short tag

Navigation

Expert → Communication → HART output → Configuration → HART short tag (0220)

Description

Use this function to enter a brief description for the measuring point. This can be edited and displayed via HART protocol or using the local display.

User entry

Max. 8 characters: A to Z, 0 to 9 and certain special characters (e.g. punctuation marks, @, %).

Device tag

Navigation

Expert → Communication → HART output → Configuration → Device tag (0215)

Description

Use this function to enter the name for the measuring point.

User entry

Max. 32 characters, such as letters, numbers or special characters (e.g. @, %, /).
Description of Device Parameters

Proline t-mass 500 HART

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>User entry</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>HART address</td>
<td>Use this function to enter the address via which the data exchange takes place via HART protocol.</td>
<td>0 to 63</td>
<td>For addressing in a HART Multidrop network, the Fixed current option must be set in the Current span parameter (→ 112) (current output 1).</td>
</tr>
<tr>
<td>No. of preambles</td>
<td>Use this function to enter the number of preambles in the HART protocol.</td>
<td>2 to 20</td>
<td>As every modem component can 'swallow' a byte, 2-byte preambles at least must be defined.</td>
</tr>
<tr>
<td>Fieldbus writing access</td>
<td>Use this function to restrict access to the measuring device via fieldbus (HART interface).</td>
<td></td>
<td>If read and/or write protection is enabled, the parameter can only be controlled and reset via local operation. Access is no longer possible via operating tools.</td>
</tr>
</tbody>
</table>

Navigation

- Expert → Communication → HART output → Configuration → HART address (0219)
- Expert → Communication → HART output → Configuration → No. of preambles (0217)
- Expert → Communication → HART output → Configuration → Fieldb.writ.acc. (0273)
“Burst configuration 1 to n” submenu

Navigation

Expert → Communication → HART output → Burst config. → Burst config. 1 to n

Burst mode 1 to n

Use this function to select whether to activate the HART burst mode for burst message X.

Selection

- Off
- On
Additional information

Options

- **Off**
 The measuring device transmits data only when requested by the HART master.

- **On**
 The measuring device transmits data regularly without being requested.

Burst command 1 to n

Navigation

Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Burst command 1 to n (2031–1 to n)

Description

Use this function to select the HART command that is sent to the HART master.

Selection

- Command 1
- Command 2
- Command 3
- Command 9
- Command 33
- Command 48

Additional information

Selection

- Command 1
 Read out the primary variable.
- Command 2
 Read out the current and the main measured value as a percentage.
- Command 3
 Read out the dynamic HART variables and the current.
- Command 9
 Read out the dynamic HART variables including the related status.
- Command 33
 Read out the dynamic HART variables including the related unit.
- Command 48
 Read out the complete device diagnostics.

"Command 33" option

The HART device variables are defined via Command 107.

Commands

- Information about the defined details of the command: HART specifications
- The measured variables (HART device variables) are assigned to the dynamic variables in the **Output** submenu (→ 110).

Burst variable 0

Navigation

Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Burst variable 0 (2033)

Description

For HART command 9 and 33: select the HART device variable or the process variable.
Selection

- Mass flow
- Corrected volume flow
- FAD volume flow
- Volume flow
- Temperature
- Density
- Flow velocity
- Pressure
- Energy flow *
- Heat flow *
- 2nd temperature delta heat *
- Electronic temperature
- Totalizer 1
- Totalizer 2
- Totalizer 3
- Percent of range
- Measured current
- Current input 1 *
- Current input 2 *
- Current input 3 *
- Primary variable (PV)
- Secondary variable (SV)
- Tertiary variable (TV)
- Quaternary variable (QV)
- HART input
- Not used

Additional information

Selection

The Not used option is set if a burst message is not configured.

Burst variable 1

Navigation

Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Burst variable 1 (2034)

Description

For HART command 9 and 33: select the HART device variable or the process variable.

Selection

See the Burst variable 0 parameter (→ 148).

Burst variable 2

Navigation

Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Burst variable 2 (2035)

Description

For HART command 9 and 33: select the HART device variable or the process variable.

Selection

See the Burst variable 0 parameter (→ 148).

* Visibility depends on order options or device settings
Burst variable 3

Navigation

Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Burst variable 3 (2036)

Description

For HART command 9 and 33: select the HART device variable or the process variable.

Selection

See the Burst variable 0 parameter (→ 148).

Burst variable 4

Navigation

Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Burst variable 4 (2037)

Description

For HART command 9: select the HART device variable or the process variable.

Selection

See the Burst variable 0 parameter (→ 148).

Burst variable 5

Navigation

Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Burst variable 5 (2038)

Description

For HART command 9: select the HART device variable or the process variable.

Selection

See the Burst variable 0 parameter (→ 148).

Burst variable 6

Navigation

Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Burst variable 6 (2039)

Description

For HART command 9: select the HART device variable or the process variable.

Selection

See the Burst variable 0 parameter (→ 148).

Burst variable 7

Navigation

Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Burst variable 7 (2040)

Description

For HART command 9: select the HART device variable or the process variable.
Selection

See the **Burst variable 0** parameter (→ 148).

Burst trigger mode

Navigation

Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Trigger mode (2044–1 to n)

Description

Use this function to select the event that triggers burst message X.

Selection

- Continuous
- Window *
- Rising *
- Falling
- On change

Additional information

Selection

- Continuous
 The message is sent continuously, at least at intervals corresponding to the time frame specified in the **Burst min period** parameter (→ 152).
- Window
 The message is sent if the specified measured value has changed by the value in the **Burst trigger level** parameter (→ 151).
- Rising
 The message is sent if the specified measured value exceeds the value in the **Burst trigger level** parameter (→ 151).
- Falling
 The message is sent if the specified measured value drops below the value in the **Burst trigger level** parameter (→ 151).
- On change
 The message is sent if a measured value changes in the burst message.

Burst trigger level

Navigation

Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Trigger level (2043–1 to n)

Description

For entering the burst trigger value.

User entry

Signed floating-point number

Additional information

Description

Together with the option selected in the **Burst trigger mode** parameter (→ 151) the burst trigger value determines the time of burst message X.

* Visibility depends on order options or device settings
Min. update period

Navigation

Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Min. upd. per. (2042–1 to n)

Description

Use this function to enter the minimum time span between two burst commands of burst message X.

User entry

Positive integer

Max. update period

Navigation

Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Max. upd. per. (2041–1 to n)

Description

Use this function to enter the maximum time span between two burst commands of burst message X.

User entry

Positive integer

“Information” submenu

Navigation

Expert → Communication → HART output → Information

<table>
<thead>
<tr>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device revision (0204) → 153</td>
</tr>
<tr>
<td>Device ID (0221) → 153</td>
</tr>
<tr>
<td>Device type (0209) → 153</td>
</tr>
<tr>
<td>Manufacturer ID (0259) → 154</td>
</tr>
<tr>
<td>HART revision (0205) → 154</td>
</tr>
<tr>
<td>HART descriptor (0212) → 154</td>
</tr>
<tr>
<td>HART message (0216) → 154</td>
</tr>
<tr>
<td>Hardware revision (0206) → 154</td>
</tr>
<tr>
<td>Software revision (0224) → 155</td>
</tr>
<tr>
<td>HART date code (0202) → 155</td>
</tr>
</tbody>
</table>
Device revision

Navigation
Expert → Communication → HART output → Information → Device revision (0204)

Description
Displays the device revision with which the device is registered with the HART Communication Foundation.

User interface
2-digit hexadecimal number

Factory setting
0x1

Additional information
Description
The device revision is needed to assign the appropriate device description file (DD) to the device.

Device ID

Navigation
Expert → Communication → HART output → Information → Device ID (0221)

Description
Use this function to view the device ID for identifying the measuring device in a HART network.

User interface
6-digit hexadecimal number

Additional information
Description
In addition to the device type and manufacturer ID, the device ID is part of the unique ID. Each HART device is uniquely identified by the unique device ID.

Device type

Navigation
Expert → Communication → HART output → Information → Device type (0209)

Description
Displays the device type with which the measuring device is registered with the HART Communication Foundation.

User interface
2-digit hexadecimal number

Factory setting
0x1160 (for t-mass 300/500)

Additional information
Description
The device type is specified by the manufacturer. It is needed to assign the appropriate device description file (DD) to the device.
Manufacturer ID

Navigation

Expert → Communication → HART output → Information → Manufacturer ID (0259)

Description

Use this function to view the manufacturer ID with which the measuring device is registered with the HART Communication Foundation.

User interface

2-digit hexadecimal number

Factory setting

0x11 (for Endress+Hauser)

HART revision

Navigation

Expert → Communication → HART output → Information → HART revision (0205)

Description

Use this function to display the HART protocol revision of the measuring device.

User interface

5 to 7

HART descriptor

Navigation

Expert → Communication → HART output → Information → HART descriptor (0212)

Description

Use this function to enter a description for the measuring point. This can be edited and displayed via HART protocol or using the local display.

User entry

Max. 16 characters such as letters, numbers or special characters (e.g. @, %, /)

HART message

Navigation

Expert → Communication → HART output → Information → HART message (0216)

Description

Use this function to enter a HART message which is sent via the HART protocol when requested by the master.

User entry

Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /)

Hardware revision

Navigation

Expert → Communication → HART output → Information → Hardware rev. (0206)

Description

Displays the hardware revision of the measuring device.
User interface
0 to 255

Software revision

Navigation
Expert → Communication → HART output → Information → Software rev. (0224)

Description
Displays the software revision of the measuring device.

User interface
0 to 255

HART date code

Navigation
Expert → Communication → HART output → Information → HART date code (0202)

Description
Use this function to enter the date information for individual use.

User entry
Date entry format: yyyy-mm-dd

Additional information
Example
Device installation date

"Output" submenu

Navigation
Expert → Communication → HART output → Output

<table>
<thead>
<tr>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign PV (0234)</td>
</tr>
<tr>
<td>Primary variable (PV) (0201)</td>
</tr>
<tr>
<td>Assign SV (0235)</td>
</tr>
<tr>
<td>Secondary variable (SV) (0226)</td>
</tr>
<tr>
<td>Assign TV (0236)</td>
</tr>
<tr>
<td>Tertiary variable (TV) (0228)</td>
</tr>
<tr>
<td>Assign QV (0237)</td>
</tr>
<tr>
<td>Quaternary variable (QV) (0203)</td>
</tr>
</tbody>
</table>
Assign PV

Navigation

Expert → Communication → HART output → Output → Assign PV (0234)

Description

Use this function to select a measured variable (HART device variable) for the primary dynamic variable (PV).

Selection

- Off *
- Temperature
- Mass flow
- Corrected volume flow
- FAD volume flow *
- Volume flow
- Energy flow *
- Heat flow *
- Density
- Flow velocity
- Pressure
- 2nd temperature delta heat *
- Electronic temperature

Primary variable (PV)

Navigation

Expert → Communication → HART output → Output → Primary var (PV) (0201)

Description

Displays the current measured value of the primary dynamic variable (PV).

User interface

Signed floating-point number

Additional information

User interface

The measured value displayed depends on the process variable selected in the Assign PV parameter (→ 156).

Dependency

The unit of the displayed measured value is taken from the System units submenu (→ 54).

Assign SV

Navigation

Expert → Communication → HART output → Output → Assign SV (0235)

Description

Use this function to select a measured variable (HART device variable) for the secondary dynamic variable (SV).

Visibility depends on order options or device settings
Selection

- Mass flow
- Corrected volume flow
- FAD volume flow
- Volume flow
- Temperature
- Density
- Flow velocity
- Pressure
- Energy flow *
- Heat flow *
- 2nd temperature delta heat *
- Electronic temperature
- Totalizer 1
- Totalizer 2
- Totalizer 3
- Current input 1 *
- Current input 2 *
- Current input 3 *
- HART input

Secondary variable (SV)

Navigation

Expert → Communication → HART output → Output → Second.var(SV) (0226)

Description

Displays the current measured value of the secondary dynamic variable (SV).

User interface

Signed floating-point number

Additional information

User interface

The measured value displayed depends on the process variable selected in the Assign SV parameter (→ 156).

Dependency

The unit of the displayed measured value is taken from the System units submenu (→ 54).

Assign TV

Navigation

Expert → Communication → HART output → Output → Assign TV (0236)

Description

Use this function to select a measured variable (HART device variable) for the tertiary (third) dynamic variable (TV).

Selection

- Mass flow
- Corrected volume flow
- FAD volume flow
- Volume flow
- Temperature

* Visibility depends on order options or device settings
Description of Device Parameters

Proline t-mass 500 HART

- Density
- Flow velocity
- Pressure
- Energy flow *
- Heat flow *
- 2nd temperature delta heat *
- Electronic temperature
- Totalizer 1
- Totalizer 2
- Totalizer 3
- Current input 1 *
- Current input 2 *
- Current input 3 *
- HART input

Tertiary variable (TV)

Navigation
Expert → Communication → HART output → Output → Tertiary var(TV) (0228)

Description
Displays the current measured value of the tertiary dynamic variable (TV).

User interface
Signed floating-point number

Additional information
User interface
The measured value displayed depends on the process variable selected in the Assign TV parameter (→ 157).

Dependency
The unit of the displayed measured value is taken from the System units submenu (→ 54).

Assign QV

Navigation
Expert → Communication → HART output → Output → Assign QV (0237)

Description
Use this function to select a measured variable (HART device variable) for the quaternary (fourth) dynamic variable (QV).

Selection
- Mass flow
- Corrected volume flow
- FAD volume flow *
- Volume flow
- Temperature
- Density
- Flow velocity
- Pressure
- Energy flow *
- Heat flow *

* Visibility depends on order options or device settings
2nd temperature delta heat *
Electronic temperature
Totalizer 1
Totalizer 2
Totalizer 3
Current input 1 *
Current input 2 *
Current input 3 *
HART input

Quaternary variable (QV)

Navigation

Expert → Communication → HART output → Output → Quaterna.var(QV) (0203)

Description
Displays the current measured value of the quaternary dynamic variable (QV).

User interface
Signed floating-point number

Additional information

User interface
The measured value displayed depends on the process variable selected in the Assign QV parameter (→ 158).

Dependency
The unit of the displayed measured value is taken from the System units submenu (→ 54).

3.5.3 "Web server" submenu

Navigation
Expert → Communication → Web server

Web server language (7221)	→ 160
MAC address (7214)	→ 160
DHCP client (7212)	→ 161
IP address (7209)	→ 161
Subnet mask (7211)	→ 161
Default gateway (7210)	→ 161

* Visibility depends on order options or device settings
Web server language

Navigation

Expert → Communication → Web server → Webserv.language (7221)

Description
Use this function to select the Web server language setting.

Selection

- English
- Deutsch
- Français
- Español
- Italiano
- Nederlands
- Portuguesa
- Polski
- русский язык (Russian)
- Svenska
- Türkçe
- 中文 (Chinese)
- 日本語 (Japanese)
- 한국어 (Korean)
- العربية (Arabic)
- Bahasa Indonesia
- ภาษาไทย (Thai)
- tiếng Việt (Vietnamese)
- čeština (Czech)

MAC address

Navigation

Expert → Communication → Web server → MAC Address (7214)

Description
Displays the MAC address of the measuring device.

User interface
Unique 12-digit character string comprising letters and numbers

Factory setting
Each measuring device is given an individual address.

Additional information

Example
For the display format
00:07:05:10:01:5F

* Visibility depends on order options or device settings
9) Media Access Control
DHCP client

Navigation

[Expert → Communication → Web server → DHCP client (7212)]

Description

Use this function to activate and deactivate the DHCP client functionality.

Selection

- Off
- On

Additional information

Result

If the DHCP client functionality of the Web server is activated, the IP address (→ 161), Subnet mask (→ 161) and Default gateway (→ 161) are set automatically.

- Identification is via the MAC address of the measuring device.
- The IP address (→ 161) in the **IP address** parameter (→ 161) is ignored as long as the **DHCP client** parameter (→ 161) is active. This is also the case, in particular, if the DHCP server cannot be reached. The IP address (→ 161) in the parameter of the same name is only used if the **DHCP client** parameter (→ 161) is inactive.

IP address

Navigation

[Expert → Communication → Web server → IP address (7209)]

Description

Display or enter the IP address of the Web server integrated in the measuring device.

User entry

4 octet: 0 to 255 (in the particular octet)

Subnet mask

Navigation

[Expert → Communication → Web server → Subnet mask (7211)]

Description

Display or enter the subnet mask.

User entry

4 octet: 0 to 255 (in the particular octet)

Default gateway

Navigation

[Expert → Communication → Web server → Default gateway (7210)]

Description

Display or enter the Default gateway (→ 161).

User entry

4 octet: 0 to 255 (in the particular octet)
Web server functionality

Navigation

Expert → Communication → Web server → Webserver funct. (7222)

Description
Use this function to switch the Web server on and off.

Selection
- Off
- HTML Off
- On

Additional information
Description
Once disabled, the Web server functionality can only be re-enabled via or the operating tool FieldCare.

Selection

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| Off | The web server is completely disabled.
 | Port 80 is locked. |
| On | The complete functionality of the web server is available.
 | JavaScript is used.
 | The password is transferred in an encrypted state.
 | Any change to the password is also transferred in an encrypted state. |

Login page

Navigation

Expert → Communication → Web server → Login page (7273)

Description
Use this function to select the format of the login page.

Selection
- Without header
- With header

3.5.4 "Diagnostic configuration" submenu

For a list of all the diagnostic events, see the Operating Instructions for the device

Assign a category to the particular diagnostic event:

<table>
<thead>
<tr>
<th>Category</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure (F)</td>
<td>A device error is present. The measured value is no longer valid.</td>
</tr>
<tr>
<td>Function check (C)</td>
<td>The device is in service mode (e.g. during a simulation).</td>
</tr>
</tbody>
</table>
| Out of specification (S)| The device is being operated:
 | - Outside its technical specification limits (e.g. outside the process temperature range)
 | - Outside of the configuration carried out by the user (e.g. maximum flow in parameter 20 mA value) |
Description of Device Parameters

<table>
<thead>
<tr>
<th>Category</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance required (M)</td>
<td>Maintenance is required. The measured value is still valid.</td>
</tr>
<tr>
<td>No effect (N)</td>
<td>Has no effect on the condensed status.</td>
</tr>
</tbody>
</table>

1) Condensed status according to NAMUR recommendation NE107

Navigation

Expert → Communication → Diag. config.

Event category 144 (Sensor drift)

Description

Use this function to select a category for the **Sensor drift** diagnostic message.

Selection

- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- No effect (N)

Additional information

For a detailed description of the event categories available for selection: → 162

Diagnostic configuration

<table>
<thead>
<tr>
<th>Event category</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>144 (0300)</td>
<td>→ 163</td>
</tr>
<tr>
<td>441 (0210)</td>
<td>→ 164</td>
</tr>
<tr>
<td>442 (0230)</td>
<td>→ 164</td>
</tr>
<tr>
<td>443 (0231)</td>
<td>→ 164</td>
</tr>
<tr>
<td>832 (0218)</td>
<td>→ 165</td>
</tr>
<tr>
<td>833 (0225)</td>
<td>→ 165</td>
</tr>
<tr>
<td>834 (0227)</td>
<td>→ 165</td>
</tr>
<tr>
<td>835 (0229)</td>
<td>→ 166</td>
</tr>
<tr>
<td>842 (0295)</td>
<td>→ 166</td>
</tr>
<tr>
<td>979 (0299)</td>
<td>→ 166</td>
</tr>
<tr>
<td>976 (0298)</td>
<td>→ 167</td>
</tr>
</tbody>
</table>
Event category 441 (Current output 1 to n)

Navigation

Expert → Communication → Diag. config. → Event category 441 (0210)

Description

Use this function to select a category for the **441 Current output 1 to n** diagnostic message.

Selection

- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- No effect (N)

Additional information

For a detailed description of the event categories available for selection: ➔ 162

Event category 442 (Frequency output 1 to n)

Navigation

Expert → Communication → Diag. config. → Event category 442 (0230)

Prerequisite

The pulse/frequency/switch output is available.

Description

Use this function to select a category for the **442 Frequency output 1 to n** diagnostic message.

Selection

- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- No effect (N)

Additional information

For a detailed description of the event categories available for selection: ➔ 162

Event category 443 (Pulse output 1 to n)

Navigation

Expert → Communication → Diag. config. → Event category 443 (0231)

Prerequisite

The pulse/frequency/switch output is available.

Description

Use this function to select a category for the **443 Pulse output 1 to n** diagnostic message.

Selection

- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- No effect (N)

Additional information

For a detailed description of the event categories available for selection: ➔ 162
Event category 832 (Electronic temperature too high)

Navigation

Expert → Communication → Diag. config. → Event category 832 (0218)

Description

Use this function to select a category for the **832 Electronic temperature too high** diagnostic message.

Selection

- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- No effect (N)

Additional information

Selection

For a detailed description of the event categories available for selection: → 162

Event category 833 (Electronic temperature too low)

Navigation

Expert → Communication → Diag. config. → Event category 833 (0225)

Description

Use this option to select a category for the **833 Electronic temperature too low** diagnostic message.

Selection

- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- No effect (N)

Additional information

Selection

For a detailed description of the event categories available for selection: → 162

Event category 834 (Process temperature too high)

Navigation

Expert → Communication → Diag. config. → Event category 834 (0227)

Description

Use this option to select a category for the **834 Process temperature too high** diagnostic message.

Selection

- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- No effect (N)
Event category 835 (Process temperature too low)

Navigation

Expert → Communication → Diag. config. → Event category 835 (0229)

Description

Use this option to select a category for the **835 Process temperature too low** diagnostic message.

Selection

- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- No effect (N)

Additional information

For a detailed description of the event categories available for selection: → 162

Event category 842 (Process limit)

Navigation

Expert → Communication → Diag. config. → Event category 842 (0295)

Description

Use this function to select a category for the **842 Process limit** diagnostic message.

Selection

- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- No effect (N)

Additional information

For a detailed description of the event categories available for selection: → 162

Event category 979 (Unstable process conditions)

Navigation

Expert → Communication → Diag. config. → Event category 979 (0299)

Description

Use this function to select a category for the **Unstable process conditions** diagnostic message.
Selection

- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- No effect (N)

Additional information

For a detailed description of the event categories available for selection: → 162

Event category 976 (Mass flow out of calibrated range)

Navigation

Expert → Communication → Diag. config. → Event category 976 (0298)

Description

Use this function to select a category for the Mass flow out of calibrated range diagnostic message.

Selection

- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- No effect (N)

Additional information

For a detailed description of the event categories available for selection: → 162

3.5.5 "WLAN settings" submenu

Navigation

Expert → Communication → WLAN settings

<table>
<thead>
<tr>
<th>WLAN settings</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WLAN (2702)</td>
<td>168</td>
</tr>
<tr>
<td>WLAN mode (2717)</td>
<td>169</td>
</tr>
<tr>
<td>SSID name (2714)</td>
<td>169</td>
</tr>
<tr>
<td>Network security (2705)</td>
<td>169</td>
</tr>
<tr>
<td>Security identification (2718)</td>
<td>170</td>
</tr>
<tr>
<td>User name (2715)</td>
<td>170</td>
</tr>
<tr>
<td>WLAN password (2716)</td>
<td>170</td>
</tr>
</tbody>
</table>
WLAN

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>WLAN IP address (2711)</td>
<td>171</td>
</tr>
<tr>
<td>WLAN MAC address (2703)</td>
<td>171</td>
</tr>
<tr>
<td>WLAN subnet mask (2709)</td>
<td>171</td>
</tr>
<tr>
<td>WLAN MAC address (2703)</td>
<td>171</td>
</tr>
<tr>
<td>WLAN passphrase (2706)</td>
<td>171</td>
</tr>
<tr>
<td>WLAN MAC address (2703)</td>
<td>171</td>
</tr>
<tr>
<td>Assign SSID name (2708)</td>
<td>172</td>
</tr>
<tr>
<td>SSID name (2707)</td>
<td>172</td>
</tr>
<tr>
<td>2.4 GHz WLAN channel (2704)</td>
<td>172</td>
</tr>
<tr>
<td>Select antenna (2713)</td>
<td>173</td>
</tr>
<tr>
<td>Connection state (2722)</td>
<td>173</td>
</tr>
<tr>
<td>Received signal strength (2721)</td>
<td>173</td>
</tr>
<tr>
<td>WLAN IP address (2711)</td>
<td>171</td>
</tr>
<tr>
<td>Gateway IP address (2719)</td>
<td>173</td>
</tr>
<tr>
<td>IP address domain name server (2720)</td>
<td>174</td>
</tr>
</tbody>
</table>

Navigation

- Expert → Communication → WLAN settings → WLAN (2702)

Description

Use this function to enable and disable the WLAN connection.

Selection

- Disable
- Enable
WLAN mode

Navigation
- Expert → Communication → WLAN settings → WLAN mode (2717)
- Setup → Advanced setup → WLAN settings → WLAN mode (2717)

Description
Use this function to select the WLAN mode.

Selection
- WLAN access point
- WLAN Client

SSID name

Navigation
- Expert → Communication → WLAN settings → SSID name (2714)
- Setup → Advanced setup → WLAN settings → SSID name (2714)

Prerequisite
The client is activated.

Description
Use this function to enter the user-defined SSID name (max. 32 characters) of the WLAN network.

User entry
-

Factory setting
-

Network security

Navigation
- Expert → Communication → WLAN settings → Network security (2705)

Description
Use this function to select the type of security for the WLAN interface.

Selection
- Unsecured
- WPA2-PSK
- EAP-PEAP with MSCHAPv2 *
- EAP-PEAP MSCHAPv2 no server authentic. *
- EAP-TLS *

Additional information

Selection
- Unsecured
 - Access the WLAN connection without identification.
- WPA2-PSK
 - Access the WLAN connection with a network key.

* Visibility depends on order options or device settings
Security identification

Description
Use this function to select the security settings (download via the menu: Data Management > Security > Download WLAN).

User interface
- Trusted issuer certificate
- Device certificate
- Device private key

User name

Description
Use this function to enter the username of the WLAN network.

User entry
-

Factory setting
-

WLAN password

Description
Use this function to enter the WLAN password for the WLAN network.

User entry
-

Factory setting
-
WLAN IP address

Navigation
- Expert → Communication → WLAN settings → WLAN IP address (2711)
- Setup → Advanced setup → WLAN settings → WLAN IP address (2711)
- Setup → Advanced setup → WLAN settings → WLAN IP address (2711)

Description
Use this function to enter the IP address of the measuring device's WLAN connection.

User entry
4 octet: 0 to 255 (in the particular octet)

WLAN MAC address

Navigation
- Expert → Communication → WLAN settings → WLAN MAC address (2703)
- Setup → Advanced setup → WLAN settings → WLAN MAC address (2703)

Description
Displays the MAC address of the measuring device.

User interface
Unique 12-digit character string comprising letters and numbers

Factory setting
Each measuring device is given an individual address.

Additional information
Example
For the display format
00:07:05:10:01:5F

WLAN subnet mask

Navigation
- Expert → Communication → WLAN settings → WLAN subnet mask (2709)

Description
Use this function to enter the subnet mask.

User entry
4 octet: 0 to 255 (in the particular octet)

WLAN passphrase

Navigation
- Expert → Communication → WLAN settings → WLAN passphrase (2706)
- Setup → Advanced setup → WLAN settings → WLAN passphrase (2706)
- Setup → Advanced setup → WLAN settings → WLAN passphrase (2706)

Prerequisite
The **WPA2-PSK** option is selected in the **Security type** parameter (→ 169).

10) Media Access Control
Description of Device Parameters

Description

Use this function to enter the network key.

User entry

8 to 32-digit character string comprising numbers, letters and special characters (without spaces)

Factory setting

Serial number of the measuring device (e.g. L100A802000)

Assign SSID name

Navigation
- Expert → Communication → WLAN settings → Assign SSID name (2708)
- Setup → Advanced setup → WLAN settings → Assign SSID name (2708)
- Setup → Advanced setup → WLAN settings → Assign SSID name (2708)

Description
Use this function to select which name is used for the SSID.

Selection
- Device tag
- User-defined

Additional information

Selection
- Device tag
 - The device tag name is used as the SSID.
- User-defined
 - A user-defined name is used as the SSID.

SSID name

Navigation
- Expert → Communication → WLAN settings → SSID name (2707)

Prerequisite
- The User-defined option is selected in the Assign SSID name parameter (→ 172).
- The WLAN access point option is selected in the WLAN mode parameter (→ 169).

Description
Use this function to enter a user-defined SSID name.

User entry
Max. 32-digit character string comprising numbers, letters and special characters

2.4 GHz WLAN channel

Navigation
- Expert → Communication → WLAN settings → WLAN channel (2704)

Description
Use this function to enter the 2.4 GHz WLAN channel.

User entry
1 to 11

11) Service Set Identifier
Additional information

Description

- It is only necessary to enter a 2.4 GHz WLAN channel if multiple WLAN devices are in use.
- If just one measuring device is in use, it is recommended to keep the factory setting.

Select antenna

Navigation

- [Expert → Communication → WLAN settings → Select antenna](2713)

Description

Use this function to select whether the external or internal antenna is used for reception.

Selection

- External antenna
- Internal antenna

Connection state

Navigation

- [Expert → Communication → WLAN settings → Connection state](2722)
- [Setup → Advanced setup → WLAN settings → Connection state](2722)
- [Setup → Advanced setup → WLAN settings → Connection state](2722)

Description

The connection status is displayed.

User interface

- Connected
- Not connected

Received signal strength

Navigation

- [Expert → Communication → WLAN settings → Rec.sig.strength](2721)
- [Setup → Advanced setup → WLAN settings → Rec.sig.strength](2721)
- [Setup → Advanced setup → WLAN settings → Rec.sig.strength](2721)

Description

Displays the signal strength received.

User interface

- Low
- Medium
- High

Gateway IP address

Navigation

- [Expert → Communication → WLAN settings → Gateway IP addr.](2719)

Description

Use this function to enter the IP address of the gateway.
User interface
Character string comprising numbers, letters and special characters (#15)

IP address domain name server

Navigation
Expert → Communication → WLAN settings → IP address DNS (2720)

Description
Use this function to enter the IP address of the domain name server.

User interface
Character string comprising numbers, letters and special characters (#15)

3.6 "Application" submenu

Navigation
Expert → Application

```
► Application
  Reset all totalizers (2806) → 174
  Totalizer 1 to n → 175
```

Reset all totalizers

Navigation
Expert → Application → Reset all tot. (2806)

Description
Use this function to reset all totalizers to the value 0 and restart the totaling process. This deletes all the flow values previously totalized.

Selection
- Cancel
- Reset + totalize

Additional information

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancel</td>
<td>No action is executed and the user exits the parameter.</td>
</tr>
<tr>
<td>Reset + totalize</td>
<td>Resets all totalizers to 0 and restarts the totaling process. This deletes all the flow values previously totalized.</td>
</tr>
</tbody>
</table>
3.6.1 "Totalizer 1 to n" submenu

Navigation

> Expert → Application → Totalizer 1 to n

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign process variable (0914–1 to n)</td>
<td>175</td>
</tr>
<tr>
<td>Unit totalizer 1 to n (0915–1 to n)</td>
<td>176</td>
</tr>
<tr>
<td>Totalizer operation mode (0908–1 to n)</td>
<td>177</td>
</tr>
<tr>
<td>Control Totalizer 1 to n (0912–1 to n)</td>
<td>178</td>
</tr>
<tr>
<td>Preset value 1 to n (0913–1 to n)</td>
<td>178</td>
</tr>
<tr>
<td>Failure mode (0901–1 to n)</td>
<td>179</td>
</tr>
<tr>
<td>Assign gas (0906–1 to n)</td>
<td>179</td>
</tr>
</tbody>
</table>

Assign process variable

Navigation

> Expert → Application → Totalizer 1 to n → Assign variable (0914–1 to n)

Description

Use this function to select a process variable for the Totalizer 1 to n.

Selection

- Off
- Mass flow
- Corrected volume flow
- FAD volume flow
- Volume flow
- Energy flow
- Heat flow

Additional information

Description

If the option selected is changed, the device resets the totalizer to 0.

Selection

If the Off option is selected, only Assign process variable parameter (→ 175) is still displayed in the Totalizer 1 to n submenu. All other parameters in the submenu are hidden.

* Visibility depends on order options or device settings
Description of Device Parameters

Unit totalizer 1 to n

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Application → Totalizer 1 to n → Unit totalizer 1 to n (0915–1 to n)</th>
</tr>
</thead>
</table>

Prerequisite

A process variable is selected in the **Assign process variable** parameter (→ 175) of the **Totalizer 1 to n** submenu.

Description

Use this function to select the process variable unit for the Totalizer 1 to n (→ 175).

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
</tr>
</thead>
<tbody>
<tr>
<td>g*</td>
<td>oz*</td>
</tr>
<tr>
<td>kg*</td>
<td>lb*</td>
</tr>
<tr>
<td>t*</td>
<td>STon*</td>
</tr>
</tbody>
</table>

* Visibility depends on order options or device settings

or

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
</tr>
</thead>
<tbody>
<tr>
<td>m³*</td>
<td>ft³*</td>
</tr>
<tr>
<td>l*</td>
<td>Mft³*</td>
</tr>
</tbody>
</table>

* Visibility depends on order options or device settings

or

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nl*</td>
<td>Sft³*</td>
</tr>
<tr>
<td>Nm³*</td>
<td></td>
</tr>
<tr>
<td>Sl*</td>
<td></td>
</tr>
<tr>
<td>Sm³*</td>
<td></td>
</tr>
</tbody>
</table>

* Visibility depends on order options or device settings

or

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
</tr>
</thead>
<tbody>
<tr>
<td>m³ FAD*</td>
<td>cf FAD*</td>
</tr>
<tr>
<td>l FAD*</td>
<td></td>
</tr>
</tbody>
</table>

* Visibility depends on order options or device settings

or
SI units
- kWh
- MWh
- GWh
- kJ
- MJ
- GJ
- kcal
- Mcal
- Gcal

Imperial units
- Btu
- MBtu
- MMBtu

* Visibility depends on order options or device settings

Imperial units
- Btu
- MBtu
- MMBtu

* Visibility depends on order options or device settings

Additional information

Description

The unit is selected separately for each totalizer. It is independent of the selection made in the **System units** submenu (→ 54).

Selection

The selection is dependent on the process variable selected in the **Assign process variable** parameter (→ 175).

Totalizer operation mode

Navigation

Expert → Application → Totalizer 1 to n → Operation mode (0908–1 to n)

Prerequisite

A process variable is selected in the **Assign process variable** parameter (→ 175) of the **Totalizer 1 to n** submenu.

Description

Use this function to select how the totalizer summates the flow.

Selection

- Net flow total
- Forward flow total
- Reverse flow total

Additional information

Selection

- Net flow total
 Flow values in the forward and reverse flow direction are totalized and balanced against one another. Net flow is registered in the flow direction.
- Forward flow total
 Only the flow in the forward flow direction is totalized.
- Reverse flow total
 Only the flow in the reverse flow direction is totalized (= reverse flow quantity).
Control Totalizer 1 to n

Navigation

Expert → Application → Totalizer 1 to n → Control Tot. 1 to n (0912–1 to n)

Prerequisite

A process variable is selected in the Assign process variable parameter (→ 175) of the Totalizer 1 to n submenu.

Description

Use this function to select the control of totalizer value 1-3.

Selection

- Totalize
- Reset + hold
- Preset + hold
- Reset + totalize
- Preset + totalize
- Hold

Additional information

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totalize</td>
<td>The totalizer is started or continues running.</td>
</tr>
<tr>
<td>Reset + hold</td>
<td>The totaling process is stopped and the totalizer is reset to 0.</td>
</tr>
<tr>
<td>Preset + hold</td>
<td>The totaling process is stopped and the totalizer is set to its defined start value from the Preset value parameter.</td>
</tr>
<tr>
<td>Reset + totalize</td>
<td>The totalizer is reset to 0 and the totaling process is restarted.</td>
</tr>
<tr>
<td>Preset + totalize</td>
<td>The totalizer is set to the defined start value from the Preset value parameter and the totaling process is restarted.</td>
</tr>
<tr>
<td>Hold</td>
<td>Totalizing is stopped.</td>
</tr>
</tbody>
</table>

Preset value 1 to n

Navigation

Expert → Application → Totalizer 1 to n → Preset value 1 to n (0913–1 to n)

Prerequisite

A process variable is selected in the Assign process variable parameter (→ 175) of the Totalizer 1 to n submenu.

Description

Use this function to enter a start value for the Totalizer 1 to n.

User entry

Signed floating-point number

Additional information

User entry

The unit of the selected process variable is specified for the totalizer in the Unit totalizer parameter (→ 176).

Example

This configuration is suitable for applications such as iterative filling processes with a fixed batch quantity.
Failure mode

Navigation

Expert → Application → Totalizer 1 to n → Failure mode (0901–1 to n)

Prerequisite

A process variable is selected in the Assign process variable parameter (→ 175) of the Totalizer 1 to n submenu.

Description

Use this function to select how a totalizer behaves in the event of a device alarm.

Selection

- Stop
- Actual value
- Last valid value

Additional information

Description

This setting does not affect the failsafe mode of other totalizers and the outputs. This is specified in separate parameters.

Selection

- Stop
 The totalizer is stopped in the event of a device alarm.
- Actual value
 The totalizer continues to count based on the actual measured value; the device alarm is ignored.
- Last valid value
 The totalizer continues to count based on the last valid measured value before the device alarm occurred.

Assign gas (Only with order code for "Application package", option EV "Second gas group")

Navigation

Expert → Application → Totalizer 1 to n → Assign gas (0906–1 to n)

Description

Select the gas that the totalizer uses. This gas is only totalized when it is currently active (‘Active gas’ parameter).

Selection

- Both gases
- Gas
- Second gas

Factory setting

- Both gases option (only with order code for "Application package", option EV "Second gas group")
- Gas
3.7 "Diagnostics" submenu

Navigation

Expert → Diagnostics

- **Diagnostics**
 - Actual diagnostics (0691) → 180
 - Previous diagnostics (0690) → 181
 - Operating time from restart (0653) → 182
 - Operating time (0652) → 182
 - Diagnostic list → 183
 - Event logbook → 187
 - Device information → 188
 - Main electronic module + I/O module 1 → 192
 - Sensor electronic module (ISEM) → 193
 - I/O module 2 → 194
 - I/O module 3 → 195
 - I/O module 4 → 197
 - Display module → 198
 - Minimum/maximum values → 199
 - Data logging → 201
 - Heartbeat Technology → 209
 - Simulation → 209

Actual diagnostics

Navigation

Expert → Diagnostics → Actual diagnos. (0691)

Prerequisite

A diagnostic event has occurred.
<table>
<thead>
<tr>
<th>Description</th>
<th>Displays the current diagnostic message. If two or more messages occur simultaneously, the message with the highest priority is shown on the display.</th>
</tr>
</thead>
<tbody>
<tr>
<td>User interface</td>
<td>Symbol for diagnostic behavior, diagnostic code and short message.</td>
</tr>
</tbody>
</table>
| **Additional information** | **Display**
Additional pending diagnostic messages can be viewed in the Diagnostic list submenu (→ 183).
Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the key. |
| **Example** | For the display format:
F271 Main electronic failure |

Timestamp

| **Navigation** |
Expert → Diagnostics → Timestamp |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the operating time when the current diagnostic message occurred.</td>
</tr>
<tr>
<td>User interface</td>
<td>Days (d), hours (h), minutes (m) and seconds (s)</td>
</tr>
</tbody>
</table>
| **Additional information** | **Display**
The diagnostic message can be viewed via the Actual diagnostics parameter (→ 180).
Example
For the display format:
24d12h13m00s |

Previous diagnostics

| **Navigation** |
Expert → Diagnostics → Prev.diagnostics (0690) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>Two diagnostic events have already occurred.</td>
</tr>
<tr>
<td>Description</td>
<td>Displays the diagnostic message that occurred before the current message.</td>
</tr>
<tr>
<td>User interface</td>
<td>Symbol for diagnostic behavior, diagnostic code and short message.</td>
</tr>
</tbody>
</table>
| **Additional information** | **Display**
Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the key.
Example
For the display format:
F271 Main electronic failure |
Description of Device Parameters

Proline t-mass 500 HART

Timestamp

Navigation
Expert → Diagnostics → Timestamp

Description
Displays the operating time when the last diagnostic message before the current message occurred.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information
Display

- The diagnostic message can be viewed via the Previous diagnostics parameter (→ 181).

 Example

 For the display format:
 24d12h13m00s

Operating time from restart

Navigation
Expert → Diagnostics → Time fr. restart (0653)

Description
Use this function to display the time the device has been in operation since the last device restart.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Operating time

Navigation
Expert → Diagnostics → Operating time (0652)

Description
Use this function to display the length of time the device has been in operation.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information
User interface

- The maximum number of days is 9999, which is equivalent to 27 years.
3.7.1 "Diagnostic list" submenu

Navigation

[Diagram](#) Expert → Diagnostics → Diagnostic list

<table>
<thead>
<tr>
<th>Diagnostics 1 (0692)</th>
<th>→</th>
<th>183</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostics 2 (0693)</td>
<td>→</td>
<td>184</td>
</tr>
<tr>
<td>Diagnostics 3 (0694)</td>
<td>→</td>
<td>185</td>
</tr>
<tr>
<td>Diagnostics 4 (0695)</td>
<td>→</td>
<td>185</td>
</tr>
<tr>
<td>Diagnostics 5 (0696)</td>
<td>→</td>
<td>186</td>
</tr>
</tbody>
</table>

Diagnostics 1

Navigation

[Diagram](#) Expert → Diagnostics → Diagnostic list → Diagnostics 1 (0692)

Description

Displays the current diagnostics message with the highest priority.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

Display

Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the [key](#).

Examples

For the display format:
- ✱F271 Main electronic failure
- ✱F276 I/O module failure

Timestamp

Navigation

[Diagram](#) Expert → Diagnostics → Diagnostic list → Timestamp

Description

Displays the operating time when the diagnostic message with the highest priority occurred.

User interface

Days (d), hours (h), minutes (m) and seconds (s)
Additional information

Display

The diagnostic message can be viewed via the **Diagnostics 1** parameter (→ 183).

Example

For the display format:

24d12h13m00s

Diagnostics 2

Navigation

عبر خبير → تطبيقات → قائمة التشخيص → Diagnostics 2 (0693)

Description

Displays the current diagnostics message with the second-highest priority.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

Display

Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the [] key.

Examples

For the display format:

- F271 Main electronic failure
- F276 I/O module failure

Timestamp

Navigation

عبر خبير → تطبيقات → قائمة التشخيص → Timestamp

Description

Displays the operating time when the diagnostic message with the second-highest priority occurred.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

Display

The diagnostic message can be viewed via the **Diagnostics 2** parameter (→ 184).

Example

For the display format:

24d12h13m00s
Diagnostics 3

Navigation
Expert → Diagnostics → Diagnostic list → Diagnostics 3 (0694)

Description
Displays the current diagnostics message with the third-highest priority.

User interface
Symbol for diagnostic behavior, diagnostic code and short message.

Additional information
Display
Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the key.

Examples
For the display format:
- F271 Main electronic failure
- F276 I/O module failure

Timestamp

Navigation
Expert → Diagnostics → Diagnostic list → Timestamp

Description
Displays the operating time when the diagnostic message with the third-highest priority occurred.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information
Display
The diagnostic message can be viewed via the Diagnostics 3 parameter (→ 185).

Example
For the display format:
24d12h13m00s

Diagnostics 4

Navigation
Expert → Diagnostics → Diagnostic list → Diagnostics 4 (0695)

Description
Displays the current diagnostics message with the fourth-highest priority.

User interface
Symbol for diagnostic behavior, diagnostic code and short message.
Description of Device Parameters

Additional information

Display

Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the key.

Examples

For the display format:
- F271 Main electronic failure
- F276 I/O module failure

Timestamp

Navigation

Expert → Diagnostics → Diagnostic list → Timestamp

Description

Displays the operating time when the diagnostic message with the fourth-highest priority occurred.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

Display

The diagnostic message can be viewed via the Diagnostics 4 parameter (→ 185).

Example

For the display format:
24d12h13m00s

Diagnostics 5

Navigation

Expert → Diagnostics → Diagnostic list → Diagnostics 5 (0696)

Description

Displays the current diagnostics message with the fifth-highest priority.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

Display

Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the key.

Examples

For the display format:
- F271 Main electronic failure
- F276 I/O module failure
Timestamp

Navigation
- Expert → Diagnostics → Diagnostic list → Timestamp

Description
Displays the operating time when the diagnostic message with the fifth-highest priority occurred.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information
- *Display*
 The diagnostic message can be viewed via the **Diagnostics 5** parameter (→ 186).

Example
For the display format:
24d12h13m00s

3.7.2 "Event logbook" submenu

Navigation
- Expert → Diagnostics → Event logbook

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter options (0705)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Filter options

Navigation
- Expert → Diagnostics → Event logbook → Filter options

Description
Use this function to select the category whose event messages are displayed in the event list of the operating tool.

Selection
- All
- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- Information (I)
Additional information

Description

The status signals are categorized in accordance with VDI/VDE 2650 and NAMUR Recommendation NE 107:
- F = Failure
- C = Function Check
- S = Out of Specification
- M = Maintenance Required

3.7.3 "Device information" submenu

Navigation

Expert → Diagnostics → Device info

Device tag (0011) → 188
Serial number (0009) → 189
Firmware version (0010) → 189
Device name (0020) → 190
Order code (0008) → 190
Extended order code 1 (0023) → 190
Extended order code 2 (0021) → 190
Extended order code 3 (0022) → 191
Configuration counter (0233) → 191
ENP version (0012) → 191

Device tag

Navigation

Expert → Diagnostics → Device info → Device tag (0011)

Description
Displays a unique name for the measuring point so it can be identified quickly within the plant. The name is displayed in the header.

User interface
Max. 32 characters, such as letters, numbers or special characters (e.g. @, %, /).
Additional information

User interface

![Image of the display with a position indicator]

1 Position of the header text on the display

The number of characters displayed depends on the characters used.

Serial number

Navigation

Expert → Diagnostics → Device info → Serial number (0009)

Description

Displays the serial number of the measuring device.

The number can be found on the nameplate of the sensor and transmitter.

User interface

Max. 11-digit character string comprising letters and numbers.

Additional information

Uses of the serial number

- To identify the measuring device quickly, e.g. when contacting Endress+Hauser.
- To obtain specific information on the measuring device using the Device Viewer: www.endress.com/deviceviewer

Firmware version

Navigation

Expert → Diagnostics → Device info → Firmware version (0010)

Description

Displays the device firmware version installed.

User interface

Character string in the format xx.yy.zz

Additional information

The Firmware version is also located:

- On the title page of the Operating instructions
- On the transmitter nameplate
<table>
<thead>
<tr>
<th>Device name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>User interface</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Order code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>User interface</td>
</tr>
<tr>
<td>Additional information</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Uses of the order code</td>
</tr>
<tr>
<td>- To order an identical spare device.</td>
</tr>
<tr>
<td>- To identify the device quickly and easily, e.g. when contacting Endress+Hauser.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Extended order code 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>User interface</td>
</tr>
<tr>
<td>Additional information</td>
</tr>
<tr>
<td>Description</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Extended order code 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Description</td>
</tr>
</tbody>
</table>
User interface
Character string

Additional information
For additional information, see **Extended order code 1 parameter (→ 190)**

Extended order code 3

<table>
<thead>
<tr>
<th>Navigation</th>
<th>️️ Expert → Diagnostics → Device info → Ext. order cd. 3 (0022)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the third part of the extended order code.</td>
</tr>
<tr>
<td>User interface</td>
<td>Character string</td>
</tr>
<tr>
<td>Additional information</td>
<td>For additional information, see Extended order code 1 parameter (→ 190)</td>
</tr>
</tbody>
</table>

Configuration counter

<table>
<thead>
<tr>
<th>Navigation</th>
<th>️️ Expert → Diagnostics → Device info → Config. counter (0233)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the number of parameter modifications for the device. When the user changes a parameter setting, this counter is incremented.</td>
</tr>
<tr>
<td>User interface</td>
<td>0 to 65 535</td>
</tr>
</tbody>
</table>

ENP version

<table>
<thead>
<tr>
<th>Navigation</th>
<th>️️ Expert → Diagnostics → Device info → ENP version (0012)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the version of the electronic nameplate.</td>
</tr>
<tr>
<td>User interface</td>
<td>Character string</td>
</tr>
</tbody>
</table>
| **Additional information** | *Description*
This electronic nameplate stores a data record for device identification that includes more data than the nameplates attached to the outside of the device. |
3.7.4 "Main electronic module + I/O module 1" submenu

Navigation
Expert → Diagnostics → Mainboard I/O1

<table>
<thead>
<tr>
<th>Main electronic module + I/O module 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software revision</td>
</tr>
<tr>
<td>Build no. software</td>
</tr>
<tr>
<td>Bootloader revision</td>
</tr>
</tbody>
</table>

Software revision

Navigation
Expert → Diagnostics → Mainboard I/O1 → Software rev. (0072)

Description
Use this function to display the software revision of the module.

User interface
Positive integer

Build no. software

Navigation
Expert → Diagnostics → Mainboard I/O1 → Build no. softw. (0079)

Description
Use this function to display the software build number of the module.

User interface
Positive integer

Bootloader revision

Navigation
Expert → Diagnostics → Mainboard I/O1 → Bootloader rev. (0073)

Description
Use this function to display the bootloader revision of the software.

User interface
Positive integer
3.7.5 "Sensor electronic module (ISEM)" submenu

Navigation

Expert → Diagnostics → Sens. electronic

Software revision

Description

Use this function to display the software revision of the module.

User interface

Positive integer

Build no. software

Description

Use this function to display the software build number of the module.

User interface

Positive integer

Bootloader revision

Description

Use this function to display the bootloader revision of the software.

User interface

Positive integer
3.7.6 "I/O module 2" submenu

Navigation
Navigate to Expert → Diagnostics → I/O module 2

I/O module 2 terminal numbers

Navigation
Navigate to Expert → Diagnostics → I/O module 2 → I/O 2 terminals (3902–2)

Description
Displays the terminal numbers used by the I/O module.

User interface
- Not used
- 26–27 (I/O 1)
- 24–25 (I/O 2)
- 22–23 (I/O 3)
- 20–21 (I/O 4) *

Software revision

Navigation
Navigate to Expert → Diagnostics → Display module → Software rev. (0072)
Navigate to Expert → Diagnostics → I/O module → Software rev. (0072)
Navigate to Expert → Diagnostics → Sens. electronic → Software rev. (0072)
Navigate to Expert → Diagnostics → Main elec.+I/O1 → Software rev. (0072)
Navigate to Expert → Diagnostics → Mainboard I/O1 → Software rev. (0072)

Description
Use this function to display the software revision of the module.

User interface
Positive integer

* Visibility depends on order options or device settings
Build no. software

Navigation

Expert → Diagnostics → I/O module → Build no. softw. (0079)

Description

Use this function to display the software build number of the module.

User interface

Positive integer

Bootloader revision

Navigation

Expert → Diagnostics → I/O module → Bootloader rev. (0073)

Description

Use this function to display the bootloader revision of the software.

User interface

Positive integer

3.7.7 "I/O module 3" submenu

Navigation

Expert → Diagnostics → I/O module 3

<table>
<thead>
<tr>
<th>I/O module 3 terminal numbers (3902–3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ 195</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Software revision (0072)</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ 196</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Build no. software (0079)</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ 196</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bootloader revision (0073)</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ 196</td>
</tr>
</tbody>
</table>

I/O module 3 terminal numbers

Navigation

Expert → Diagnostics → I/O module 3 → I/O 3 terminals (3902–3)

Description

Displays the terminal numbers used by the I/O module.
Description of Device Parameters

Proline t-mass 500 HART

User interface

- Not used
- 26-27 (I/O 1)
- 24-25 (I/O 2)
- 22-23 (I/O 3)
- 20-21 (I/O 4) *

Software revision

Navigation

- Expert → Diagnostics → Display module → Software rev. (0072)
- Expert → Diagnostics → I/O module → Software rev. (0072)
- Expert → Diagnostics → Sens. electronic → Software rev. (0072)
- Expert → Diagnostics → Main elec.+I/O1 → Software rev. (0072)
- Expert → Diagnostics → Mainboard I/O1 → Software rev. (0072)

Description

Use this function to display the software revision of the module.

User interface

Positive integer

Build no. software

Navigation

- Expert → Diagnostics → Display module → Build no. softw. (0079)
- Expert → Diagnostics → I/O module → Build no. softw. (0079)
- Expert → Diagnostics → Sens. electronic → Build no. softw. (0079)
- Expert → Diagnostics → Main elec.+I/O1 → Build no. softw. (0079)
- Expert → Diagnostics → Mainboard I/O1 → Build no. softw. (0079)

Description

Use this function to display the software build number of the module.

User interface

Positive integer

Bootloader revision

Navigation

- Expert → Diagnostics → Display module → Bootloader rev. (0073)
- Expert → Diagnostics → I/O module → Bootloader rev. (0073)
- Expert → Diagnostics → Sens. electronic → Bootloader rev. (0073)
- Expert → Diagnostics → Main elec.+I/O1 → Bootloader rev. (0073)
- Expert → Diagnostics → Mainboard I/O1 → Bootloader rev. (0073)

Description

Use this function to display the bootloader revision of the software.

* Visibility depends on order options or device settings
User interface

Positive integer

3.7.8 "I/O module 4" submenu

Navigation

Expert → Diagnostics → I/O module 4

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O module 4 terminal numbers (3902–4)</td>
<td>Displays the terminal numbers used by the I/O module.</td>
</tr>
<tr>
<td>Software revision (0072)</td>
<td></td>
</tr>
<tr>
<td>Build no. software (0079)</td>
<td></td>
</tr>
<tr>
<td>Bootloader revision (0073)</td>
<td></td>
</tr>
</tbody>
</table>

I/O module 4 terminal numbers

Navigation

Expert → Diagnostics → I/O module 4 → I/O 4 terminals (3902–4)

Description
Displays the terminal numbers used by the I/O module.

User interface

- Not used
- 26-27 (I/O 1)
- 24-25 (I/O 2)
- 22-23 (I/O 3)
- 20-21 (I/O 4) *

Software revision

Navigation

Expert → Diagnostics → I/O module → Software rev. (0072)

Description
Use this function to display the software revision of the module.

User interface
Positive integer

* Visibility depends on order options or device settings
Description of Device Parameters

Build no. software

Navigation
- Expert → Diagnostics → Display module → Build no. softw. (0079)
- Expert → Diagnostics → I/O module → Build no. softw. (0079)
- Expert → Diagnostics → Sens. electronic → Build no. softw. (0079)
- Expert → Diagnostics → Main elec.+I/O1 → Build no. softw. (0079)
- Expert → Diagnostics → Mainboard I/O1 → Build no. softw. (0079)

Description
Use this function to display the software build number of the module.

User interface
Positive integer

Bootloader revision

Navigation
- Expert → Diagnostics → Display module → Bootloader rev. (0073)
- Expert → Diagnostics → I/O module → Bootloader rev. (0073)
- Expert → Diagnostics → Sens. electronic → Bootloader rev. (0073)
- Expert → Diagnostics → Main elec.+I/O1 → Bootloader rev. (0073)
- Expert → Diagnostics → Mainboard I/O1 → Bootloader rev. (0073)

Description
Use this function to display the bootloader revision of the software.

User interface
Positive integer

3.7.9 "Display module" submenu

Navigation
- Expert → Diagnostics → Display module

<table>
<thead>
<tr>
<th>Function</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software revision (0072)</td>
<td>→ 199</td>
</tr>
<tr>
<td>Build no. software (0079)</td>
<td>→ 199</td>
</tr>
<tr>
<td>Bootloader revision (0073)</td>
<td>→ 199</td>
</tr>
</tbody>
</table>
Software revision

Navigation

Expert → Diagnostics → Display module → Software rev. (0072)

Description

Use this function to display the software revision of the module.

User interface

Positive integer

Build no. software

Navigation

Expert → Diagnostics → Display module → Build no. softw. (0079)

Description

Use this function to display the software build number of the module.

User interface

Positive integer

Bootloader revision

Navigation

Expert → Diagnostics → Display module → Bootloader rev. (0073)

Description

Use this function to display the bootloader revision of the software.

User interface

Positive integer

3.7.10 "Minimum/maximum values" submenu

Navigation

Expert → Diagnostics → Min/max val.

![Minimum/maximum values](image-url)
Reset min/max values

Navigation
- Expert → Diagnostics → Min/max val. → Reset min/max (17015)

Description
Select measured variable whose minimum value and maximum value are to be reset.

Selection
- Main electronic temperature (→ 200)
- Medium temperature (→ 201)

"Main electronic temperature" submenu

Navigation
- Expert → Diagnostics → Min/max val. → Main elect.temp.

Maximum value

Navigation
- Expert → Diagnostics → Min/max val. → Main elect.temp. → Maximum value (17321)

Description
Shows the highest previously measured temperature for the main electronic module in the transmitter.

User interface
Signed floating-point number

Minimum value

Navigation
- Expert → Diagnostics → Min/max val. → Main elect.temp. → Minimum value (17322)

Description
Shows the lowest previously measured temperature for the main electronic module in the transmitter.

User interface
Signed floating-point number
"Medium temperature" submenu

Navigation
Expert → Diagnostics → Min/max val. → Medium temp.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum value (17324)</td>
<td></td>
<td>→ 201</td>
</tr>
<tr>
<td>Minimum value (17323)</td>
<td></td>
<td>→ 201</td>
</tr>
</tbody>
</table>

Maximum value

Navigation
Expert → Diagnostics → Min/max val. → Medium temp. → Maximum value (17324)

Description
Shows the highest previously measured medium temperature.

User interface
Signed floating-point number

Minimum value

Navigation
Expert → Diagnostics → Min/max val. → Medium temp. → Minimum value (17323)

Description
Shows the lowest previously measured medium temperature.

User interface
Signed floating-point number

3.7.11 "Data logging" submenu

Navigation
Expert → Diagnostics → Data logging

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign channel 1 (0851)</td>
<td></td>
<td>→ 202</td>
</tr>
<tr>
<td>Assign channel 2 (0852)</td>
<td></td>
<td>→ 203</td>
</tr>
<tr>
<td>Assign channel 3 (0853)</td>
<td></td>
<td>→ 203</td>
</tr>
<tr>
<td>Assign channel 4 (0854)</td>
<td></td>
<td>→ 204</td>
</tr>
<tr>
<td>Logging interval (0856)</td>
<td></td>
<td>→ 204</td>
</tr>
</tbody>
</table>
Assign channel 1

Navigation

Expert → Diagnostics → Data logging → Assign chan. 1 (0851)

Prerequisite

The **Extended HistOROM** application package is available.

The software options currently enabled are displayed in the **Software option overview** parameter (→ 40).

Description

Use this function to select a process variable for the data logging channel.

Selection

- Off
- Temperature
- Mass flow
- Corrected volume flow
- FAD volume flow
- Volume flow
- Energy flow
- Heat flow
- Density
- Flow velocity
- Pressure
- 2nd temperature delta heat
- Electronic temperature
- Current output 1
- Current output 2
- Current output 3
- Current output 4

* Visibility depends on order options or device settings
Additional information

Description
A total of 1000 measured values can be logged. This means:
- 1000 data points if 1 logging channel is used
- 500 data points if 2 logging channels are used
- 333 data points if 3 logging channels are used
- 250 data points if 4 logging channels are used

Once the maximum number of data points is reached, the oldest data points in the data log are cyclically overwritten in such a way that the last 1000, 500, 333 or 250 measured values are always in the log (ring memory principle).

ℹ️ The log contents are cleared if the option selected is changed.

Assign channel 2

Navigation
Expert → Diagnostics → Data logging → Assign chan. 2 (0852)

Prerequisite
The Extended HistoROM application package is available.

ℹ️ The software options currently enabled are displayed in the Software option overview parameter (→ ⬤ 40).

Description
Options for the assignment of a process variable to the data logging channel.

Selection
Picklist, see Assign channel 1 parameter (→ ⬤ 202)

Assign channel 3

Navigation
Diagnostics → Data logging → Assign chan. 3 (0853)

Diagnostics → Data logging → Assign chan. 3 (0853)

Expert → Diagnostics → Data logging → Assign chan. 3 (0853)

Prerequisite
The Extended HistoROM application package is available.

ℹ️ The software options currently enabled are displayed in the Software option overview parameter (→ ⬤ 40).

Description
Options for the assignment of a process variable to the data logging channel.

Selection
Picklist, see Assign channel 1 parameter (→ ⬤ 202)
Assign channel 4

Navigation
- Diagnostics → Data logging → Assign chan. 4 (0854)
- Expert → Diagnostics → Data logging → Assign chan. 4 (0854)

Prerequisite
The Extended HistoROM application package is available.

Description
Options for the assignment of a process variable to the data logging channel.

Selection
Picklist, see Assign channel 1 parameter (→ 202)

Logging interval

Navigation
- Expert → Diagnostics → Data logging → Logging interval (0856)

Prerequisite
The Extended HistoROM application package is available.

Description
Use this function to enter the logging interval T_{log} for data logging.

User entry
0.1 to 3 600.0 s

Additional information
Description
This defines the interval between the individual data points in the data log, and thus the maximum loggable process time T_{log}:
- If 1 logging channel is used: $T_{\text{log}} = 1000 \times t_{\text{log}}$
- If 2 logging channels are used: $T_{\text{log}} = 500 \times t_{\text{log}}$
- If 3 logging channels are used: $T_{\text{log}} = 333 \times t_{\text{log}}$
- If 4 logging channels are used: $T_{\text{log}} = 250 \times t_{\text{log}}$

Once this time elapses, the oldest data points in the data log are cyclically overwritten such that a time of T_{log} always remains in the memory (ring memory principle).

Example
If 1 logging channel is used:
- $T_{\text{log}} = 1000 \times 1 \text{ s} = 1000 \text{ s} \approx 15 \text{ min}$
- $T_{\text{log}} = 1000 \times 10 \text{ s} = 10000 \text{ s} \approx 3 \text{ h}$
- $T_{\text{log}} = 1000 \times 80 \text{ s} = 80000 \text{ s} \approx 1 \text{ d}$
- $T_{\text{log}} = 1000 \times 3600 \text{ s} = 3600000 \text{ s} \approx 41 \text{ d}$
Clear logging data

Navigation

Expert → Diagnostics → Data logging → Clear logging (0855)

Prerequisite

The **Extended HistoROM** application package is available.

The software options currently enabled are displayed in the **Software option overview** parameter (→ 40).

Description

Use this function to clear the entire logging data.

Selection

- Cancel
- Clear data

Additional information

- **Selection**
 - Cancel
 - The data is not cleared. All the data is retained.
 - Clear data
 - The logging data is cleared. The logging process starts from the beginning.

Data logging

Navigation

Expert → Diagnostics → Data logging → Data logging (0860)

Description

Use this function to select the data logging method.

Selection

- Overwriting
- Not overwriting

Additional information

- **Selection**
 - Overwriting
 - The device memory applies the FIFO principle.
 - Not overwriting
 - Data logging is canceled if the measured value memory is full (single shot).

Logging delay

Navigation

Expert → Diagnostics → Data logging → Logging delay (0859)

Prerequisite

In the **Data logging** parameter (→ 205), the **Not overwriting** option is selected.

Description

Use this function to enter the time delay for measured value logging.

User entry

0 to 999 h

Additional information

Once measured value logging has been started with the **Data logging control** parameter (→ 206), the device does not save any data for the duration of the time delay entered.
Description of Device Parameters

Data logging control

Navigation

Expert → Diagnostics → Data logging → Data log.control (0857)

Prerequisite

In the Data logging parameter (→ 205), the Not overwriting option is selected.

Description

Use this function to start and stop measured value logging.

Selection

• None
• Delete + start
• Stop

Additional information

Selection

• None

Initial measured value logging status.

• Delete + start

All the measured values recorded for all the channels are deleted and measured value logging starts again.

• Stop

Measured value logging is stopped.

Data logging status

Navigation

Expert → Diagnostics → Data logging → Data log. status (0858)

Prerequisite

In the Data logging parameter (→ 205), the Not overwriting option is selected.

Description

Displays the measured value logging status.

User interface

• Done
• Delay active
• Active
• Stopped

Additional information

Selection

• Done

Measured value logging has been performed and completed successfully.

• Delay active

Measured value logging has been started but the logging interval has not yet elapsed.

• Active

The logging interval has elapsed and measured value logging is active.

• Stopped

Measured value logging is stopped.
Entire logging duration

Navigation

Expert → Diagnostics → Data logging → Logging duration (0861)

Prerequisite

In the Data logging parameter (→ 205), the Not overwriting option is selected.

Description

Displays the total logging duration.

User interface

Positive floating-point number

"Display channel 1" submenu

Navigation

Expert → Diagnostics → Data logging → Displ.channel 1

Display channel 1

Navigation

Expert → Diagnostics → Data logging → Displ.channel 1

Prerequisite

The Extended HistOROM application package is available.

The software options currently enabled are displayed in the Software option overview parameter (→ 40).

Description

Displays the measured value trend for the logging channel in the form of a chart.

Additional information

- *x*-axis: depending on the number of channels selected displays 250 to 1000 measured values of a process variable.
- *y*-axis: displays the approximate measured value span and constantly adapts this to the ongoing measurement.

"Display channel 2" submenu

Navigation

Expert → Diagnostics → Data logging → Displ.channel 2
Description of Device Parameters

Proline t-mass 500 HART

Display channel 2

Navigation

Expert → Diagnostics → Data logging → Displ.channel 2

Prerequisite

A process variable is defined in the Assign channel 2 parameter.

Description

See the Display channel 1 parameter → 207

"Display channel 3" submenu

Navigation

Expert → Diagnostics → Data logging → Displ.channel 3

Display channel 3

Prerequisite

A process variable is defined in the Assign channel 3 parameter.

Description

See the Display channel 1 parameter → 207

"Display channel 4" submenu

Navigation

Expert → Diagnostics → Data logging → Displ.channel 4

Display channel 4

Prerequisite

A process variable is defined in the Assign channel 4 parameter.
Description

See the **Display channel 1 parameter → 207**

3.7.12 "Heartbeat" submenu

For detailed information on the parameter descriptions for the **Heartbeat Verification+Monitoring**, refer to the Special Documentation for the device → 7

Navigation

[Expert → Diagnostics → Heartbeat]

3.7.13 "Simulation" submenu

Navigation

[Expert → Diagnostics → Simulation]

Simulation

- Assign simulation process variable (1810) → 210
- Process variable value (1811) → 210
- Current input 1 to n simulation (1608–1 to n) → 211
- Value current input 1 to n (1609–1 to n) → 211
- Status input simulation 1 to n (1355–1 to n) → 212
- Input signal level 1 to n (1356–1 to n) → 212
- Current output 1 to n simulation (0354–1 to n) → 212
- Value current output 1 to n (0355–1 to n) → 213
- Frequency output simulation 1 to n (0472–1 to n) → 213
- Frequency value 1 to n (0473–1 to n) → 214
- Pulse output simulation 1 to n (0458–1 to n) → 214
- Pulse value 1 to n (0459–1 to n) → 215
Assign simulation process variable

Navigation

Expert → Diagnostics → Simulation → Assign proc.var. (1810)

Description
Use this function to select a process variable for the simulation process that is activated. The display alternates between the measured value and a diagnostic message of the ‘Function check’ category (C) while simulation is in progress.

Selection
• Off
• Temperature
• Mass flow
• Corrected volume flow
• FAD volume flow
• Volume flow
• Energy flow
• Heat flow
• Density
• Flow velocity

Additional information

Description
The simulation value of the process variable selected is defined in the Process variable value parameter (→ 210).

Process variable value

Navigation

Expert → Diagnostics → Simulation → Proc. var. value (1811)

Prerequisite
A process variable is selected in the Assign simulation process variable parameter (→ 210).

* Visibility depends on order options or device settings
Description
Use this function to enter a simulation value for the selected process variable. Subsequent measured value processing and the signal output use this simulation value. In this way, users can verify whether the measuring device has been configured correctly.

User entry
Depends on the process variable selected

Additional information
The unit of the displayed measured value is taken from the System units submenu (→ 54).

Current input 1 to n simulation

Navigation
Expert → Diagnostics → Simulation → Curr.inp 1 to n sim. (1608–1 to n)

Description
Option for switching simulation of the current input on and off. The display alternates between the measured value and a diagnostic message of the "Function check" category (C) while simulation is in progress.

The desired simulation value is defined in the Value current input 1 to n parameter.

Selection
- Off
- On

Additional information
Selection
- Off
 Current simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- On
 Current simulation is active.

Value current input 1 to n

Navigation
Expert → Diagnostics → Simulation → Value curr.inp 1 to n (1609–1 to n)

Prerequisite
In the Current input 1 to n simulation parameter, the On option is selected.

Description
Use this function to enter the current value for the simulation. In this way, users can verify the correct configuration of the current input and the correct function of upstream feed-in units.

User entry
0 to 22.5 mA
Description of Device Parameters

Proline t-mass 500 HART

Status input simulation 1 to n

Navigation
[Expert → Diagnostics → Simulation → Status inp.sim 1 to n (1355–1 to n)]

Description
Use this function to switch simulation of the status input on and off. The display alternates between the measured value and a diagnostic message of the 'Function check' category (C) while simulation is in progress.

Selection
- Off
- On

Additional information

Description
The desired simulation value is defined in the Input signal level parameter (→ 212).

Selection
- Off
 Simulation for the status input is switched off. The device is in normal measuring mode or another process variable is being simulated.
- On
 Simulation for the status input is active.

Input signal level 1 to n

Navigation
[Expert → Diagnostics → Simulation → Signal level 1 to n (1356–1 to n)]

Prerequisite
In the Status input simulation parameter (→ 212), the On option is selected.

Description
Use this function to select the signal level for the simulation of the status input. In this way, users can verify the correct configuration of the status input and the correct function of upstream feed-in units.

Selection
- High
- Low

Current output 1 to n simulation

Navigation
[Expert → Diagnostics → Simulation → Curr.out. 1 to n sim. (0354–1 to n)]

Description
Use this function to switch simulation of the current output on and off. The display alternates between the measured value and a diagnostic message of the 'Function check' category (C) while simulation is in progress.

Selection
- Off
- On
Additional information

Description

The desired simulation value is defined in the **Value current output 1 to n** parameter.

Selection

- **Off**
 - Current simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- **On**
 - Current simulation is active.

Value current output 1 to n

Navigation

Expert → Diagnostics → Simulation → Value curr.out 1 to n (0355–1 to n)

Prerequisite

In the **Current output 1 to n simulation** parameter, the **On** option is selected.

Description

Use this function to enter a current value for the simulation. In this way, users can verify the correct adjustment of the current output and the correct function of downstream switching units.

User entry

3.59 to 22.5 mA

Additional information

Dependency

The input range is dependent on the option selected in the **Current span** parameter (→ 112).

Frequency output simulation 1 to n

Navigation

Expert → Diagnostics → Simulation → FreqOutputSim 1 to n (0472–1 to n)

Prerequisite

In the **Operating mode** parameter (→ 119), the **Frequency** option is selected.

Description

Use this function to switch simulation of the frequency output on and off. The display alternates between the measured value and a diagnostic message of the 'Function check' category (C) while simulation is in progress.

Selection

- **Off**
- **On**
Description of Device Parameters

Additional information

Description

The desired simulation value is defined in the **Frequency value 1 to n** parameter.

Selection

- **Off**
 Frequency simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- **On**
 Frequency simulation is active.

Frequency value 1 to n

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Diagnostics → Simulation → Freq value 1 to n (0473–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>In the Frequency output simulation 1 to n parameter, the On option is selected.</td>
</tr>
<tr>
<td>Description</td>
<td>Use this function to enter a frequency value for the simulation. In this way, users can verify the correct adjustment of the frequency output and the correct function of downstream switching units.</td>
</tr>
<tr>
<td>User entry</td>
<td>0.0 to 12500.0 Hz</td>
</tr>
</tbody>
</table>

Pulse output simulation 1 to n

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Diagnostics → Simulation → Puls.outp.sim. 1 to n (0458–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>In the Operating mode parameter (→ 119), the Pulse option is selected.</td>
</tr>
<tr>
<td>Description</td>
<td>Use this function to switch simulation of the pulse output on and off. The display alternates between the measured value and a diagnostic message of the 'Function check' category (C) while simulation is in progress.</td>
</tr>
<tr>
<td>Selection</td>
<td></td>
</tr>
</tbody>
</table>
- **Off**
- **Fixed value**
- **Down-counting value** |

Additional information

Description

The desired simulation value is defined in the **Pulse value 1 to n** parameter.

Selection

- **Off**
 Pulse simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- **Fixed value**
 Pulses are continuously output with the pulse width specified in the **Pulse width** parameter (→ 121).
- **Down-counting value**
 The pulses specified in the **Pulse value** parameter (→ 215) are output.
Pulse value 1 to n

Navigation
> Expert → Diagnostics → Simulation → Pulse value 1 to n (0459–1 to n)

Prerequisite
In the Pulse output simulation 1 to n parameter, the **Down-counting value** option is selected.

Description
Use this function to enter a pulse value for the simulation. In this way, users can verify the correct adjustment of the pulse output and the correct function of downstream switching units.

User entry
0 to 65535

Switch output simulation 1 to n

Navigation
> Expert → Diagnostics → Simulation → Switch sim. 1 to n (0462–1 to n)

Prerequisite
In the Operating mode parameter (→ 119), the Switch option is selected.

Description
Use this function to switch simulation of the switch output on and off. The display alternates between the measured value and a diagnostic message of the ‘Function check’ category (C) while simulation is in progress.

Selection
- Off
- On

Additional information
Description
> The desired simulation value is defined in the **Switch status 1 to n** parameter.

Selection
- Off

 Switch simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- On

 Switch simulation is active.

Switch status 1 to n

Navigation
> Expert → Diagnostics → Simulation → Switch status 1 to n (0463–1 to n)

Description
Use this function to select a switch value for the simulation. In this way, users can verify the correct adjustment of the switch output and the correct function of downstream switching units.

Selection
- Open
- Closed
Description of Device Parameters

Proline t-mass 500 HART

Additional information

Selection
- Open
 Switch simulation is switched off. The device is in normal measuring mode or another
 process variable is being simulated.
- Closed
 Switch simulation is active.

Relay output 1 to n simulation

Navigation

Expert → Diagnostics → Simulation → Relay out. 1 to n sim (0802–1 to n)

Description
Use this function to switch simulation of the relay output on and off. The display
alternates between the measured value and a diagnostic message of the "Function check"
category (C) while simulation is in progress.

Selection
- Off
- On

Additional information

Description
The desired simulation value is defined in the Switch status 1 to n parameter.

Selection
- Off
 Relay simulation is switched off. The device is in normal measuring mode or another
 process variable is being simulated.
- On
 Relay simulation is active.

Switch status 1 to n

Navigation

Expert → Diagnostics → Simulation → Switch status 1 to n (0803–1 to n)

Prerequisite
The On option is selected in the Switch output simulation 1 to n parameter parameter.

Description
Use this function to select a relay value for the simulation. In this way, users can verify the
correct adjustment of the relay output and the correct function of downstream switching
units.

Selection
- Open
- Closed

Additional information

Selection
- Open
 Relay simulation is switched off. The device is in normal measuring mode or another
 process variable is being simulated.
- Closed
 Relay simulation is active.
Device alarm simulation

Navigation

Expert → Diagnostics → Simulation → Dev. alarm sim. (0654)

Description

Use this function to switch the device alarm on and off.

Selection

- Off
- On

Additional information

Description

The display alternates between the measured value and a diagnostic message of the “Function check” category (C) while simulation is in progress.

Diagnostic event category

Navigation

Expert → Diagnostics → Simulation → Event category (0738)

Description

Use this function to select the category of the diagnostic events that are displayed for the simulation in the Diagnostic event simulation parameter (→ 217).

Selection

- Sensor
- Electronics
- Configuration
- Process

Diagnostic event simulation

Navigation

Expert → Diagnostics → Simulation → Diag. event sim. (0737)

Description

Use this function to select a diagnostic event for the simulation process that is activated.

Selection

- Off
- Diagnostic event picklist (depends on the category selected)

Additional information

Description

For the simulation, you can choose from the diagnostic events of the category selected in the Diagnostic event category parameter (→ 217).
3.8 "I/O configuration" submenu

Navigation

Expert → I/O config.

<table>
<thead>
<tr>
<th>I/O configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O module 1 to n terminal numbers (3902–1 to n) → 218</td>
</tr>
<tr>
<td>I/O module 1 to n information (3906–1 to n) → 218</td>
</tr>
<tr>
<td>I/O module 1 to n type (3901–1 to n) → 219</td>
</tr>
<tr>
<td>Apply I/O configuration (3907) → 219</td>
</tr>
<tr>
<td>I/O alteration code (2762) → 220</td>
</tr>
</tbody>
</table>

I/O module 1 to n terminal numbers

Navigation

Expert → I/O config. → I/O 1 to n terminals (3902–1 to n)

Description

Displays the terminal numbers used by the I/O module.

User interface

- Not used
- 26-27 (I/O 1)
- 24-25 (I/O 2)
- 22-23 (I/O 3)
- 20-21 (I/O 4) *

I/O module 1 to n information

Navigation

Expert → I/O config. → I/O 1 to n info (3906–1 to n)

Description

Displays information about the plugged in I/O module.

User interface

- Not plugged
- Invalid
- Not configurable
- Configurable
- HART

* Visibility depends on order options or device settings
Additional information

"Not plugged" option
The I/O module is not plugged in.

"Invalid" option
The I/O module is not plugged correctly.

"Not configurable" option
The I/O module is not configurable.

"Configurable" option
The I/O module is configurable.

"Fieldbus" option
The I/O module is configured for HART.

I/O module 1 to n type

Navigation
Expert → I/O config. → I/O 1 to n type (3901–1 to n)

Prerequisite
For the following order code:
- "Output; input 2", option D "Configurable I/O initial setting off"
- "Output; input 3", option D "Configurable I/O initial setting off"
- "Output; input 4", option D "Configurable I/O initial setting off"

Description
Use this function to select the I/O module type for the configuration of the I/O module.

Selection
- Off
- Current output *
- Current input *
- Status input
- Pulse/frequency/switch output *
- Relay output *

Apply I/O configuration

Navigation
Expert → I/O config. → Apply I/O config (3907)

Description
Use this function to activate the newly configured I/O module type.

Selection
- No
- Yes

* Visibility depends on order options or device settings
I/O alteration code

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → I/O config. → I/O alterat.code (2762)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the ordered activation code to activate the I/O configuration change.</td>
</tr>
<tr>
<td>User entry</td>
<td>Positive integer</td>
</tr>
<tr>
<td>Additional info</td>
<td>Description</td>
</tr>
<tr>
<td></td>
<td>The I/O configuration is changed in the I/O module type parameter (→ 219).</td>
</tr>
</tbody>
</table>
4 Country-specific factory settings

4.1 SI units

Not valid for USA and Canada.

4.1.1 System units

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume flow</td>
<td>m³/h option</td>
</tr>
<tr>
<td>Volume</td>
<td>m³ option</td>
</tr>
<tr>
<td>Mass flow</td>
<td>kg/h option</td>
</tr>
<tr>
<td>Mass</td>
<td>kg option</td>
</tr>
<tr>
<td>Corrected volume flow</td>
<td>Nm³/h option</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>Nm³ option</td>
</tr>
<tr>
<td>FAD volume flow</td>
<td>m³ FAD/h option</td>
</tr>
<tr>
<td>FAD volume</td>
<td>m³ FAD option</td>
</tr>
<tr>
<td>Density</td>
<td>kg/m³ option</td>
</tr>
<tr>
<td>Reference density</td>
<td>kg/Nm³</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C option</td>
</tr>
<tr>
<td>Length</td>
<td>mm option</td>
</tr>
<tr>
<td>Pressure</td>
<td>bar option</td>
</tr>
</tbody>
</table>

4.1.2 Full scale values

The full scale values depend on the medium type, nominal diameter and rectifier.

The factory settings apply to the following parameters:

- 20 mA value (full scale value of the current output)
- 100% bar graph value 1

4.1.3 Output current span

<table>
<thead>
<tr>
<th>Current output 1 to n</th>
<th>4 to 20 mA NAMUR</th>
</tr>
</thead>
</table>

4.1.4 On value low flow cut off

The switch-on point depends on the type of medium and the nominal diameter.

4.2 US units

Only valid for USA and Canada.

4.2.1 System units

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume flow</td>
<td>ft³/h option</td>
</tr>
<tr>
<td>Volume</td>
<td>ft³ option</td>
</tr>
<tr>
<td>Mass flow</td>
<td>lb/h option</td>
</tr>
<tr>
<td></td>
<td>lb option</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Mass</td>
<td></td>
</tr>
<tr>
<td>Corrected volume flow</td>
<td></td>
</tr>
<tr>
<td>Corrected volume</td>
<td></td>
</tr>
<tr>
<td>FAD volume flow</td>
<td></td>
</tr>
<tr>
<td>FAD volume</td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td></td>
</tr>
<tr>
<td>Reference density</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td></td>
</tr>
<tr>
<td>Pressure</td>
<td></td>
</tr>
</tbody>
</table>

4.2.2 Full scale values
The full scale values depend on the medium type, nominal diameter and rectifier.

- The factory settings apply to the following parameters:
 - 20 mA value (full scale value of the current output)
 - 100% bar graph value 1

4.2.3 Output current span

<table>
<thead>
<tr>
<th>Current output 1 to n</th>
<th>4 to 20 mA US</th>
</tr>
</thead>
</table>

4.2.4 On value low flow cut off
The switch-on point depends on the type of medium and the nominal diameter.
5 Explanation of abbreviated units

5.1 SI units

<table>
<thead>
<tr>
<th>Process variable</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>g/cm³</td>
<td>Gram/volume unit</td>
</tr>
<tr>
<td></td>
<td>kg/l, kg/dm³, kg/m³</td>
<td>Kilogram/volume unit</td>
</tr>
<tr>
<td>Pressure</td>
<td>kPa a, MPa a</td>
<td>Kilopascal, megapascal (absolute)</td>
</tr>
<tr>
<td></td>
<td>bar</td>
<td>Bar</td>
</tr>
<tr>
<td></td>
<td>mbar a</td>
<td>Millibar (absolute)</td>
</tr>
<tr>
<td>FAD volume</td>
<td>1 FAD, m³ FAD</td>
<td>FAD liter, FAD cubic meter</td>
</tr>
<tr>
<td>FAD volume flow</td>
<td>1 FAD/s, 1 FAD/min, 1 FAD/h, 1 FAD/d</td>
<td>FAD liter/time unit</td>
</tr>
<tr>
<td></td>
<td>m³ FAD/s, m³ FAD/min, m³ FAD/h, m³ FAD/d</td>
<td>FAD cubic meter/time unit</td>
</tr>
<tr>
<td>Length</td>
<td>mm, m</td>
<td>Millimeter, meter</td>
</tr>
<tr>
<td>Mass</td>
<td>g, kg, t</td>
<td>Gram, kilogram, metric ton</td>
</tr>
<tr>
<td>Mass flow</td>
<td>g/s, g/min, g/h, g/d</td>
<td>Gram/time unit</td>
</tr>
<tr>
<td></td>
<td>kg/s, kg/min, kg/h, kg/d</td>
<td>Kilogram/time unit</td>
</tr>
<tr>
<td></td>
<td>t/s, t/min, t/h, t/d</td>
<td>Metric ton/time unit</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>Nl, Nm³, Sl, Sm³</td>
<td>Normal liter, normal cubic meter, standard liter, standard cubic meter</td>
</tr>
<tr>
<td>Corrected volume flow</td>
<td>Nl/s, Nl/min, Nl/h, Nl/d</td>
<td>Normal liter/time unit</td>
</tr>
<tr>
<td></td>
<td>Nm³/s, Nm³/min, Nm³/h, Nm³/d</td>
<td>Normal cubic meter/time unit</td>
</tr>
<tr>
<td></td>
<td>Sl/s, Sl/min, Sl/h, Sl/d</td>
<td>Standard liter/time unit</td>
</tr>
<tr>
<td></td>
<td>Sm³/s, Sm³/min, Sm³/h, Sm³/d</td>
<td>Standard cubic meter/time unit</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C, K</td>
<td>Celsius, Kelvin</td>
</tr>
<tr>
<td>Volume</td>
<td>m³</td>
<td>Cubic meters</td>
</tr>
<tr>
<td>Volume flow</td>
<td>m³/s, m³/min, m³/h, m³/d</td>
<td>Cubic meter/time unit</td>
</tr>
<tr>
<td></td>
<td>l/s, l/min, l/h, l/d</td>
<td>Liter/time unit</td>
</tr>
<tr>
<td>Time</td>
<td>s, m, h, d, y</td>
<td>Second, minute, hour, day, year</td>
</tr>
</tbody>
</table>

5.2 US units

<table>
<thead>
<tr>
<th>Process variable</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>lb/ft³</td>
<td>Pound/cubic foot</td>
</tr>
<tr>
<td>FAD volume</td>
<td>ft³ FAD</td>
<td>FAD cubic foot</td>
</tr>
<tr>
<td>FAD volume flow</td>
<td>cf FAD/s, cf FAD/min, cf FAD/h, cf FAD/d</td>
<td>FAD cubic foot/time unit</td>
</tr>
<tr>
<td>FAD volume flow</td>
<td>ft³ FAD/s, ft³ FAD/min, ft³ FAD/h, ft³ FAD/d</td>
<td>FAD cubic foot/time unit</td>
</tr>
<tr>
<td>Length</td>
<td>in, ft</td>
<td>Inch, foot</td>
</tr>
<tr>
<td>Mass</td>
<td>lb, ton</td>
<td>Pound, standard ton</td>
</tr>
<tr>
<td>lb/s, lb/min, lb/h, lb/d</td>
<td>Pound/time unit</td>
<td></td>
</tr>
<tr>
<td>Process variable</td>
<td>Units</td>
<td>Explanation</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>STon/s, STon/ min, STon/h, STon/d</td>
<td>Standard ton/time unit</td>
<td></td>
</tr>
<tr>
<td>Mass flow</td>
<td>lb/s, lb/min, lb/h, lb/d</td>
<td>Pound/time unit</td>
</tr>
<tr>
<td></td>
<td>ton/s, ton/min, ton/h, ton/d</td>
<td>Standard ton/time unit</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>Sft³</td>
<td>Standard cubic foot</td>
</tr>
<tr>
<td>Corrected volume flow</td>
<td>Sft³/s, Sft³/min, Sft³/h, Sft³/d</td>
<td>Standard cubic foot/time unit</td>
</tr>
<tr>
<td>Temperature</td>
<td>°F, °R</td>
<td>Fahrenheit, Rankine</td>
</tr>
<tr>
<td>Volume</td>
<td>ft³</td>
<td>Cubic foot</td>
</tr>
<tr>
<td>Volume flow</td>
<td>ft³/s, ft³/min, ft³/h, ft³/d</td>
<td>Cubic foot/time unit</td>
</tr>
<tr>
<td>Time</td>
<td>s, m, h, d, y</td>
<td>Second, minute, hour, day, year</td>
</tr>
<tr>
<td></td>
<td>am, pm</td>
<td>Ante meridiem (before midday), post meridiem (after midday)</td>
</tr>
</tbody>
</table>
Index

0 ... 9
- 0/4 mA value (Parameter) 106, 113
- 0% bargraph value 1 (Parameter) 18
- 0% bargraph value 3 (Parameter) 21
- 2.4 GHz WLAN channel (Parameter) 172
- 2nd temperature heat flow (Parameter) 45, 92
- 20 mA value (Parameter) 106, 114
- 100% bargraph value 1 (Parameter) 19
- 100% bargraph value 3 (Parameter) 21

A
- Access status (Parameter) 12
- Activate in-situ adjustment (Parameter) 95
- Activate SW option (Parameter) 40
- Active gas (Parameter) 69
- Active level (Parameter) 109
- Actual diagnostics (Parameter) 180
- Actual flow value (Parameter) 96
- Adjustment values in use (Submenu) 98
- Administration (Submenu) 36
- Alarm delay (Parameter) 29
- Application (Submenu) 174
- Apply I/O configuration (Parameter) 219
- Apply value (Parameter) 97
- Assign behavior of diagnostic no. 144 (Parameter) 31
- Assign behavior of diagnostic no. 302 (Parameter) 31
- Assign behavior of diagnostic no. 441 (Parameter) 31
- Assign behavior of diagnostic no. 442 (Parameter) 32
- Assign behavior of diagnostic no. 443 (Parameter) 32
- Assign behavior of diagnostic no. 444 (Parameter) 33
- Assign behavior of diagnostic no. 832 (Parameter) 33
- Assign behavior of diagnostic no. 833 (Parameter) 33
- Assign behavior of diagnostic no. 834 (Parameter) 34
- Assign behavior of diagnostic no. 835 (Parameter) 34
- Assign behavior of diagnostic no. 842 (Parameter) 34
- Assign behavior of diagnostic no. 976 (Parameter) 35
- Assign behavior of diagnostic no. 977 (Parameter) 35
- Assign behavior of diagnostic no. 979 (Parameter) 35
- Assign channel 1 (Parameter) 202
- Assign channel 2 (Parameter) 203
- Assign channel 3 (Parameter) 203
- Assign channel 4 (Parameter) 204
- Assign current output 1 to n (Parameter) 111
- Assign diagnostic behavior (Parameter) 128, 136
- Assign frequency output (Parameter) 123
- Assign gas (Parameter) 179
- Assign limit (Parameter) 128, 135
- Assign process variable (Parameter) 66, 175
- Assign pulse output 1 to n (Parameter) 120
- Assign PV (Parameter) 156
- Assign QV (Parameter) 158
- Assign simulation process variable (Parameter) 210
- Assign SSID name (Parameter) 172
- Assign status (Parameter) 131, 136
- Assign status input (Parameter) 108
- Assign SV (Parameter) 156

B
- Backlight (Parameter) 26
- Backup state (Parameter) 28
- Bootloader revision (Parameter) 192, 193, 195, 196, 198, 199
- Build no. software (Parameter) 192, 193, 195, 196, 198, 199
- Burst command 1 to n (Parameter) 147
- Burst command 1 to n (Parameter) 147
- Burst trigger level (Parameter) 151
- Burst trigger mode (Parameter) 151
- Burst variable 0 (Parameter) 148
- Burst variable 1 (Parameter) 149
- Burst variable 2 (Parameter) 149
- Burst variable 3 (Parameter) 150
- Burst variable 4 (Parameter) 150
- Burst variable 5 (Parameter) 150
- Burst variable 6 (Parameter) 150
- Burst variable 7 (Parameter) 150
- Burst variable 8 (Parameter) 150
- Data logging (Parameter) 205
- Data logging control (Parameter) 212
- Data logging status (Parameter) 206
- Date/time format (Parameter) 64

C
- Calibration (Submenu) 104
- Calorific value type (Parameter) 69
- Calorific value unit (Parameter) 61
- Capture mode (Parameter) 140
- Clear logging data (Parameter) 205
- Communication (Submenu) 139
- Comparison result (Parameter) 28
- Configuration (Submenu) 140, 145
- Configuration backup (Submenu) 26
- Configuration counter (Parameter) 191
- Configuration management (Parameter) 27
- Confirm (Parameter) 96
- Confirm access code (Parameter) 37
- Connection state (Parameter) 173
- Contrast display (Parameter) 25
- Control Totalizer 1 to n (Parameter) 178
- Corrected volume flow (Parameter) 43
- Corrected volume flow unit (Parameter) 56
- Corrected volume unit (Parameter) 57
- Current input 1 to n (Submenu) 49, 104
- Current input 1 to n simulation (Parameter) 211
- Current output 1 to n (Submenu) 110
- Current output 1 to n simulation (Parameter) 212
- Current span (Parameter) 106, 112

D
- Damping output 1 to n (Parameter) 115, 125
- Data logging (Parameter) 205
- Data logging (Submenu) 201
- Data logging control (Parameter) 206
- Data logging status (Parameter) 206
- Date/time format (Parameter) 64

Endress+Hauser
<table>
<thead>
<tr>
<th>Decimal places 1 (Parameter)</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal places 2 (Parameter)</td>
<td>20</td>
</tr>
<tr>
<td>Decimal places 3 (Parameter)</td>
<td>22</td>
</tr>
<tr>
<td>Decimal places 4 (Parameter)</td>
<td>23</td>
</tr>
<tr>
<td>Default gateway (Parameter)</td>
<td>161</td>
</tr>
<tr>
<td>Define access code (Parameter)</td>
<td>36</td>
</tr>
<tr>
<td>Define access code (Wizard)</td>
<td>36</td>
</tr>
<tr>
<td>Delete values (Parameter)</td>
<td>95</td>
</tr>
<tr>
<td>Delta heat calculation (Parameter)</td>
<td>92</td>
</tr>
<tr>
<td>Density (Parameter)</td>
<td>45</td>
</tr>
<tr>
<td>Density unit (Parameter)</td>
<td>61</td>
</tr>
<tr>
<td>Description 1 (Parameter)</td>
<td>97</td>
</tr>
<tr>
<td>Description 2 (Parameter)</td>
<td>98</td>
</tr>
<tr>
<td>Description 3 (Parameter)</td>
<td>98</td>
</tr>
<tr>
<td>Description 4 (Parameter)</td>
<td>98</td>
</tr>
<tr>
<td>Device alarm simulation (Parameter)</td>
<td>217</td>
</tr>
<tr>
<td>Device ID (Parameter)</td>
<td>141, 153</td>
</tr>
<tr>
<td>Device information (Submenu)</td>
<td>188</td>
</tr>
<tr>
<td>Device name (Parameter)</td>
<td>190</td>
</tr>
<tr>
<td>Device reset (Parameter)</td>
<td>39</td>
</tr>
<tr>
<td>Device revision (Parameter)</td>
<td>153</td>
</tr>
<tr>
<td>Device tag (Parameter)</td>
<td>145, 188</td>
</tr>
<tr>
<td>Device type (Parameter)</td>
<td>141, 153</td>
</tr>
<tr>
<td>DHCP client (Parameter)</td>
<td>161</td>
</tr>
<tr>
<td>Diagnostic behavior (Submenu)</td>
<td>29</td>
</tr>
<tr>
<td>Diagnostic configuration (Submenu)</td>
<td>162</td>
</tr>
<tr>
<td>Diagnostic event category (Submenu)</td>
<td>217</td>
</tr>
<tr>
<td>Diagnostic event simulation (Parameter)</td>
<td>217</td>
</tr>
<tr>
<td>Diagnostic handling (Submenu)</td>
<td>29</td>
</tr>
<tr>
<td>Diagnostic list (Submenu)</td>
<td>183</td>
</tr>
<tr>
<td>Diagnostics (Submenu)</td>
<td>180</td>
</tr>
<tr>
<td>Diagnostics 1 (Parameter)</td>
<td>183</td>
</tr>
<tr>
<td>Diagnostics 2 (Parameter)</td>
<td>184</td>
</tr>
<tr>
<td>Diagnostics 3 (Parameter)</td>
<td>185</td>
</tr>
<tr>
<td>Diagnostics 4 (Parameter)</td>
<td>185</td>
</tr>
<tr>
<td>Diagnostics 5 (Parameter)</td>
<td>186</td>
</tr>
<tr>
<td>Direct access</td>
<td></td>
</tr>
<tr>
<td>0/4 mA value</td>
<td></td>
</tr>
<tr>
<td>Current input 1 to n (1606–1 to n)</td>
<td>106</td>
</tr>
<tr>
<td>Current output 1 to n (0367–1 to n)</td>
<td>113</td>
</tr>
<tr>
<td>0% bargraph value 1 (0123)</td>
<td>18</td>
</tr>
<tr>
<td>0% bargraph value 3 (0124)</td>
<td>21</td>
</tr>
<tr>
<td>2.4 GHz WLAN channel (2704)</td>
<td>172</td>
</tr>
<tr>
<td>2nd temperature heat flow (17328)</td>
<td>92</td>
</tr>
<tr>
<td>2nd temperature heat flow (17344)</td>
<td>45</td>
</tr>
<tr>
<td>20 mA value</td>
<td></td>
</tr>
<tr>
<td>Current input 1 to n (1607–1 to n)</td>
<td>106</td>
</tr>
<tr>
<td>Current output 1 to n (0372–1 to n)</td>
<td>114</td>
</tr>
<tr>
<td>100% bargraph value 1 (0125)</td>
<td>19</td>
</tr>
<tr>
<td>100% bargraph value 3 (0126)</td>
<td>21</td>
</tr>
<tr>
<td>Access status (0005)</td>
<td>12</td>
</tr>
<tr>
<td>Activate in-situ adjustment (17360)</td>
<td>95</td>
</tr>
<tr>
<td>Activate SW option (0029)</td>
<td>40</td>
</tr>
<tr>
<td>Active gas (17001)</td>
<td>69</td>
</tr>
<tr>
<td>Active level</td>
<td></td>
</tr>
<tr>
<td>Status input 1 to n (1351–1 to n)</td>
<td>109</td>
</tr>
<tr>
<td>Actual diagnostics (0691)</td>
<td>180</td>
</tr>
<tr>
<td>Actual flow value (17365)</td>
<td>96</td>
</tr>
<tr>
<td>Alarm delay (0651)</td>
<td>29</td>
</tr>
<tr>
<td>Apply I/O configuration (3907)</td>
<td>219</td>
</tr>
<tr>
<td>Apply value (17364)</td>
<td>97</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 144 (0631)</td>
<td>31</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 302 (0742)</td>
<td>31</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 441 (0657)</td>
<td>31</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 442 (0658)</td>
<td>32</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 443 (0659)</td>
<td>32</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 444 (0740)</td>
<td>33</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 832 (0675)</td>
<td>33</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 833 (0676)</td>
<td>33</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 834 (0677)</td>
<td>34</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 835 (0678)</td>
<td>34</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 842 (0638)</td>
<td>34</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 976 (0629)</td>
<td>35</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 977 (0627)</td>
<td>35</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 979 (0630)</td>
<td>35</td>
</tr>
<tr>
<td>Assign channel 1 (0851)</td>
<td>202</td>
</tr>
<tr>
<td>Assign channel 2 (0852)</td>
<td>203</td>
</tr>
<tr>
<td>Assign channel 3 (0853)</td>
<td>203</td>
</tr>
<tr>
<td>Assign channel 4 (0854)</td>
<td>204</td>
</tr>
<tr>
<td>Assign current output 1 to n (0359–1 to n)</td>
<td>111</td>
</tr>
<tr>
<td>Assign diagnostic behavior</td>
<td></td>
</tr>
<tr>
<td>Pulse/frequency/switch output 1 to n (0482–1 to n)</td>
<td>128</td>
</tr>
<tr>
<td>Relay output 1 to n (0806–1 to n)</td>
<td>136</td>
</tr>
<tr>
<td>Assign frequency output</td>
<td></td>
</tr>
<tr>
<td>Pulse/frequency/switch output 1 to n (0478–1 to n)</td>
<td>123</td>
</tr>
<tr>
<td>Assign gas</td>
<td></td>
</tr>
<tr>
<td>Totalizer 1 to n (0906–1 to n)</td>
<td>179</td>
</tr>
<tr>
<td>Assign limit</td>
<td></td>
</tr>
<tr>
<td>Pulse/frequency/switch output 1 to n (0483–1 to n)</td>
<td>128</td>
</tr>
<tr>
<td>Relay output 1 to n (0807–1 to n)</td>
<td>135</td>
</tr>
<tr>
<td>Assign process variable</td>
<td></td>
</tr>
<tr>
<td>Totalizer 1 to n (0914–1 to n)</td>
<td>175</td>
</tr>
<tr>
<td>Assign process variable (1837)</td>
<td>66</td>
</tr>
<tr>
<td>Assign pulse output 1 to n (0460–1 to n)</td>
<td>120</td>
</tr>
<tr>
<td>Assign PV (0234)</td>
<td>156</td>
</tr>
<tr>
<td>Assign QV (0237)</td>
<td>158</td>
</tr>
<tr>
<td>Assign simulation process variable (1810)</td>
<td>210</td>
</tr>
<tr>
<td>Assign SSID name (2708)</td>
<td>172</td>
</tr>
<tr>
<td>Assign status</td>
<td></td>
</tr>
<tr>
<td>Pulse/frequency/switch output 1 to n (0485–1 to n)</td>
<td>131</td>
</tr>
<tr>
<td>Relay output 1 to n (0805–1 to n)</td>
<td>136</td>
</tr>
<tr>
<td>Assign status input</td>
<td></td>
</tr>
<tr>
<td>Status input 1 to n (1352–1 to n)</td>
<td>108</td>
</tr>
<tr>
<td>Assign SV (0235)</td>
<td>156</td>
</tr>
<tr>
<td>Assign TV (0236)</td>
<td>157</td>
</tr>
<tr>
<td>BACKlight (0111)</td>
<td>26</td>
</tr>
<tr>
<td>Backup state (2759)</td>
<td>28</td>
</tr>
<tr>
<td>Bootloader revision</td>
<td></td>
</tr>
<tr>
<td>I/O module (0073)</td>
<td>195, 196, 198</td>
</tr>
<tr>
<td>Mainboard I/O1 (0073)</td>
<td>192</td>
</tr>
<tr>
<td>Bootloader revision (0073)</td>
<td>193, 199</td>
</tr>
<tr>
<td>Build no. software</td>
<td></td>
</tr>
<tr>
<td>I/O module (0079)</td>
<td>195, 196, 198</td>
</tr>
<tr>
<td>Mainboard I/O1 (0079)</td>
<td>192</td>
</tr>
<tr>
<td>Index</td>
<td>Proline t-mass 500 HART</td>
</tr>
<tr>
<td>-------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Failure frequency</td>
<td>Pulse/frequency/switch output 1 to n (0474–1 to n) ... 127</td>
</tr>
<tr>
<td>Failure mode</td>
<td>Current input 1 to n (1601–1 to n) ... 107</td>
</tr>
<tr>
<td></td>
<td>Current output 1 to n (0364–1 to n) ... 115</td>
</tr>
<tr>
<td></td>
<td>Pulse/frequency/switch output 1 to n (0451–1 to n) ... 126</td>
</tr>
<tr>
<td></td>
<td>Pulse/frequency/switch output 1 to n (0480–1 to n) ... 122</td>
</tr>
<tr>
<td></td>
<td>Pulse/frequency/switch output 1 to n (0486–1 to n) ... 132</td>
</tr>
<tr>
<td></td>
<td>Relay output 1 to n (0811–1 to n) .. 138</td>
</tr>
<tr>
<td></td>
<td>Totalizer 1 to n (0901–1 to n) .. 179</td>
</tr>
<tr>
<td>Failure mode (7011)</td>
<td>.. 143</td>
</tr>
<tr>
<td>Failure value</td>
<td>Current input 1 to n (1602–1 to n) ... 107</td>
</tr>
<tr>
<td></td>
<td>Failure value (7012) .. 143</td>
</tr>
<tr>
<td></td>
<td>Fieldbus writing access (0273) .. 146</td>
</tr>
<tr>
<td></td>
<td>Filter options ... 187</td>
</tr>
<tr>
<td></td>
<td>Firmware version (0010) .. 189</td>
</tr>
<tr>
<td>Fixed current</td>
<td>Current output 1 to n (0365–1 to n) .. 113</td>
</tr>
<tr>
<td></td>
<td>Flow damping (1802) .. 65</td>
</tr>
<tr>
<td></td>
<td>Flow override (1839) .. 64</td>
</tr>
<tr>
<td></td>
<td>Flow value 1 (17368) .. 100</td>
</tr>
<tr>
<td></td>
<td>Flow value 2 (17369) .. 100</td>
</tr>
<tr>
<td></td>
<td>Flow value 3 (17370) .. 100</td>
</tr>
<tr>
<td></td>
<td>Flow value 4 (17371) .. 101</td>
</tr>
<tr>
<td></td>
<td>Flow value 5 (17372) .. 101</td>
</tr>
<tr>
<td></td>
<td>Flow value 6 (17373) .. 101</td>
</tr>
<tr>
<td></td>
<td>Flow value 7 (17374) .. 101</td>
</tr>
<tr>
<td></td>
<td>Flow value 8 (17375) .. 101</td>
</tr>
<tr>
<td></td>
<td>Flow value 9 (17376) .. 102</td>
</tr>
<tr>
<td></td>
<td>Flow value 10 (17377) .. 102</td>
</tr>
<tr>
<td></td>
<td>Flow value 11 (17378) .. 102</td>
</tr>
<tr>
<td></td>
<td>Flow value 12 (17379) .. 102</td>
</tr>
<tr>
<td></td>
<td>Flow value 13 (17380) .. 103</td>
</tr>
<tr>
<td></td>
<td>Flow value 14 (17381) .. 103</td>
</tr>
<tr>
<td></td>
<td>Flow value 15 (17382) .. 103</td>
</tr>
<tr>
<td></td>
<td>Flow value 16 (17383) .. 103</td>
</tr>
<tr>
<td></td>
<td>Flow velocity (1857) .. 46</td>
</tr>
<tr>
<td></td>
<td>Format display (0098) .. 16</td>
</tr>
<tr>
<td>Frequency output simulation 1 to n (0472–1 to n)</td>
<td>.. 213</td>
</tr>
<tr>
<td>Frequency value 1 to n (0473–1 to n)</td>
<td>.. 214</td>
</tr>
<tr>
<td>Gas (3151)</td>
<td>.. 71, 78</td>
</tr>
<tr>
<td>Gas compensation (17003)</td>
<td>.. 93</td>
</tr>
<tr>
<td>Gas component (17005)</td>
<td>.. 93</td>
</tr>
<tr>
<td>Gas composition (3110)</td>
<td>.. 71, 79</td>
</tr>
<tr>
<td>Gas description 1/2 (17361)</td>
<td>.. 99</td>
</tr>
<tr>
<td>Gas description 2/2 (17362)</td>
<td>.. 100</td>
</tr>
<tr>
<td>Gateway IP address (2719)</td>
<td>.. 173</td>
</tr>
<tr>
<td>Hardware revision</td>
<td>.. 154</td>
</tr>
<tr>
<td></td>
<td>HART address (0219) .. 146</td>
</tr>
<tr>
<td></td>
<td>HART date code (0202) .. 155</td>
</tr>
<tr>
<td></td>
<td>HART descriptor (0212) .. 154</td>
</tr>
<tr>
<td></td>
<td>HART message (0216) .. 154</td>
</tr>
<tr>
<td></td>
<td>HART revision (0205) .. 154</td>
</tr>
<tr>
<td>HART short tag (0220)</td>
<td>.. 145</td>
</tr>
<tr>
<td>Header (0097)</td>
<td>.. 24</td>
</tr>
<tr>
<td>Header text (0112)</td>
<td>.. 24</td>
</tr>
<tr>
<td>Heat flow (1872)</td>
<td>.. 44</td>
</tr>
<tr>
<td>I/O alteration code (2762)</td>
<td>.. 220</td>
</tr>
<tr>
<td>I/O module 1 to n information (3906–1 to n)</td>
<td>.. 218</td>
</tr>
<tr>
<td>I/O module 1 to n terminal numbers (3902–1 to n)</td>
<td>.. 218</td>
</tr>
<tr>
<td>I/O module 1 to n type (3901–1 to n)</td>
<td>.. 219</td>
</tr>
<tr>
<td>I/O module 2 terminal numbers (3902–2)</td>
<td>.. 194, 195, 197</td>
</tr>
<tr>
<td>I/O module 3 terminal numbers (3902–3)</td>
<td>.. 194, 195, 197</td>
</tr>
<tr>
<td>I/O module 4 terminal numbers (3902–4)</td>
<td>.. 194, 195, 197</td>
</tr>
<tr>
<td>Input signal level 1 to n (1356–1 to n)</td>
<td>.. 212</td>
</tr>
<tr>
<td>Input type 2nd temperature heat flow (17327)</td>
<td>.. 92</td>
</tr>
<tr>
<td>Input type reference value (17351)</td>
<td>.. 95</td>
</tr>
<tr>
<td>Insertion depth (17335)</td>
<td>.. 89</td>
</tr>
<tr>
<td>Installation direction (1809)</td>
<td>.. 87</td>
</tr>
<tr>
<td>Installation factor (17333)</td>
<td>.. 87</td>
</tr>
<tr>
<td>Invert output signal</td>
<td>Pulse/frequency/switch output 1 to n (0470–1 to n) .. 133</td>
</tr>
<tr>
<td>IP address (7209)</td>
<td>.. 161</td>
</tr>
<tr>
<td>IP address domain name server (2720)</td>
<td>.. 174</td>
</tr>
<tr>
<td>Last backup (2757)</td>
<td>.. 27</td>
</tr>
<tr>
<td>Length unit (0551)</td>
<td>.. 63</td>
</tr>
<tr>
<td>Level of flow fluctuation (12113)</td>
<td>.. 47</td>
</tr>
<tr>
<td>Locking status (0004)</td>
<td>.. 11</td>
</tr>
<tr>
<td>Logging delay (0859)</td>
<td>.. 205</td>
</tr>
<tr>
<td>Logging interval (0856)</td>
<td>.. 204</td>
</tr>
<tr>
<td>Login page (7273)</td>
<td>.. 162</td>
</tr>
<tr>
<td>MAC address (7214)</td>
<td>.. 160</td>
</tr>
<tr>
<td>Mach number (17302)</td>
<td>.. 46</td>
</tr>
<tr>
<td>Manufacturer ID (0259)</td>
<td>.. 154</td>
</tr>
<tr>
<td>Manufacturer ID (7009)</td>
<td>.. 141</td>
</tr>
<tr>
<td>Mass flow (1838)</td>
<td>.. 43</td>
</tr>
<tr>
<td>Mass flow unit (0554)</td>
<td>.. 55</td>
</tr>
<tr>
<td>Mass unit (0574)</td>
<td>.. 56</td>
</tr>
<tr>
<td>Max. switch cycles number</td>
<td>.. 152</td>
</tr>
<tr>
<td>Relay output 1 to n (0817–1 to n)</td>
<td>.. 54</td>
</tr>
<tr>
<td>Max. update period</td>
<td>Burst configuration 1 to n (2041–1 to n) .. 152</td>
</tr>
<tr>
<td>Maximum frequency value</td>
<td>Pulse/frequency/switch output 1 to n (0454–1 to n) .. 124</td>
</tr>
<tr>
<td></td>
<td>Maximum value (17321) .. 200</td>
</tr>
<tr>
<td></td>
<td>Maximum value (17324) .. 201</td>
</tr>
<tr>
<td></td>
<td>Measured current 1 to n (0366–1 to n) .. 51, 117</td>
</tr>
<tr>
<td></td>
<td>Measured current 1 to n (1604–1 to n) .. 50</td>
</tr>
<tr>
<td></td>
<td>Measured values 1 to n (1603–1 to n) .. 49</td>
</tr>
<tr>
<td></td>
<td>Measurement application (17350) .. 68</td>
</tr>
<tr>
<td></td>
<td>Measuring value at maximum frequency</td>
</tr>
<tr>
<td></td>
<td>Measuring value at minimum frequency</td>
</tr>
<tr>
<td>Min. update period</td>
<td>Pulse output 1 to n (0456–1 to n)</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Burst configuration 1 to n (2042–1 to n)</td>
<td>Pulse output simulation 1 to n (0458–1 to n)</td>
</tr>
<tr>
<td>Minimum frequency value</td>
<td>Pulse scaling</td>
</tr>
<tr>
<td>Pulse/frequency/switch output 1 to n (0453–1 to n)</td>
<td>Pulse/frequency/switch output 1 to n (0455–1 to n)</td>
</tr>
<tr>
<td>Minimum value (17322)</td>
<td>Pulse value 1 to n (0459–1 to n)</td>
</tr>
<tr>
<td>Minimum value (17323)</td>
<td>Pulse width</td>
</tr>
<tr>
<td>Mol% (17007)</td>
<td>Pulse/frequency/switch output 1 to n (0452–1 to n)</td>
</tr>
<tr>
<td>Mol% Air (3170)</td>
<td>Quaternary variable (QV) (0203)</td>
</tr>
<tr>
<td>Mol% Ar (3112)</td>
<td>Received signal strength (2721)</td>
</tr>
<tr>
<td>Mol% C2H4 (3114)</td>
<td>Reference combustion temperature (3143)</td>
</tr>
<tr>
<td>Mol% C2H6 (3115)</td>
<td>Reference conditions (3155)</td>
</tr>
<tr>
<td>Mol% CH4 (3117)</td>
<td>Reference pressure (3146)</td>
</tr>
<tr>
<td>Mol% CO2 (3120)</td>
<td>Reference temperature (3147)</td>
</tr>
<tr>
<td>Mol% H2 (3121)</td>
<td>Reference value (17353)</td>
</tr>
<tr>
<td>Mol% H2O (3122)</td>
<td>Relay output 1 to n simulation (0802–1 to n)</td>
</tr>
<tr>
<td>Mol% H2 (3123)</td>
<td>Relay output function</td>
</tr>
<tr>
<td>Mol% HCl (3124)</td>
<td>Relay output 1 to n (0804–1 to n)</td>
</tr>
<tr>
<td>Mol% He (3125)</td>
<td>Reset access code (0024)</td>
</tr>
<tr>
<td>Mol% i-C4H10 (3126)</td>
<td>Reset all totalizers (2806)</td>
</tr>
<tr>
<td>Mol% i-C4H10 (3126)</td>
<td>Reset min/max values (17015)</td>
</tr>
<tr>
<td>Mol% C4H10 (0101)</td>
<td>Response time</td>
</tr>
<tr>
<td>Mol% CO3H10 (3126)</td>
<td>Pulse/frequency/switch output 1 to n (0491–1 to n)</td>
</tr>
<tr>
<td>Mol% CO (3127)</td>
<td>Response time status input</td>
</tr>
<tr>
<td>Mol% Ne (0217)</td>
<td>Secondary variable (SV) (0226)</td>
</tr>
<tr>
<td>Mol% NH3 (3138)</td>
<td>Security identification (2718)</td>
</tr>
<tr>
<td>Mol% O2 (3137)</td>
<td>Select antenna (2713)</td>
</tr>
<tr>
<td>Mol% O2 (3139)</td>
<td>Select flow reference (17354)</td>
</tr>
<tr>
<td>Mol% O3 (3174)</td>
<td>Select gas type (3109)</td>
</tr>
<tr>
<td>Mol% Xe (3142)</td>
<td>Sensitivity (17032)</td>
</tr>
<tr>
<td>Mol% Ar (3112)</td>
<td>Separator (0101)</td>
</tr>
<tr>
<td>Mol% Ne (3137)</td>
<td>Serial number (0009)</td>
</tr>
<tr>
<td>Mol% NH3 (3138)</td>
<td>Signal mode</td>
</tr>
<tr>
<td>Mol% O2 (3139)</td>
<td>Current input 1 to n (1610–1 to n)</td>
</tr>
<tr>
<td>Mol% O3 (3174)</td>
<td>Current output 1 to n (0377–1 to n)</td>
</tr>
<tr>
<td>Mol% Xe (3142)</td>
<td>Pulse/frequency/switch output 1 to n (0490–1 to n)</td>
</tr>
<tr>
<td>Mounting set height (17336)</td>
<td>Slot number (7010)</td>
</tr>
<tr>
<td>Network security (2705)</td>
<td>Software option overview (0015)</td>
</tr>
<tr>
<td>No. of preambles (0217)</td>
<td>Software revision</td>
</tr>
<tr>
<td>Nominal diameter (2807)</td>
<td>l/O module (0072)</td>
</tr>
<tr>
<td>Off value low flow cutoff (1804)</td>
<td>Mainboard I/O1 (0072)</td>
</tr>
<tr>
<td>On value low flow cutoff (1805)</td>
<td>Software revision (0072)</td>
</tr>
<tr>
<td>Operating mode</td>
<td>Software revision (0224)</td>
</tr>
<tr>
<td>Pulse/frequency/switch output 1 to n (0469–1 to n)</td>
<td>Special gas name (3177)</td>
</tr>
<tr>
<td>Operating time (0652)</td>
<td>SSID name (2707)</td>
</tr>
<tr>
<td>Operating time from restart (0653)</td>
<td>SSID name (2714)</td>
</tr>
<tr>
<td>Order code (0008)</td>
<td>Stability check (17366)</td>
</tr>
<tr>
<td>Output current 1 to n (0361–1 to n)</td>
<td>Status (7004)</td>
</tr>
<tr>
<td>Output frequency 1 to n (0471–1 to n)</td>
<td>Status (17367)</td>
</tr>
<tr>
<td>Pipe inner diameter (17009)</td>
<td>Status input simulation 1 to n (1355–1 to n)</td>
</tr>
<tr>
<td>Pipe shape (17339)</td>
<td>Subnet mask (7211)</td>
</tr>
<tr>
<td>Pipe wall thickness (17340)</td>
<td>Switch cycles</td>
</tr>
<tr>
<td>Power coefficient fluctuation (12112)</td>
<td>Relay output 1 to n (0815–1 to n)</td>
</tr>
<tr>
<td>Powerless relay status</td>
<td>Relay output 1 to n (0816–1 to n)</td>
</tr>
<tr>
<td>Relay output 1 to n (0913–1 to n)</td>
<td>139</td>
</tr>
<tr>
<td>Pressure (17325)</td>
<td>Pressure (17343)</td>
</tr>
<tr>
<td>Pressure compensation (17326)</td>
<td>Process variable value (1811)</td>
</tr>
<tr>
<td>Pressure unit (0564)</td>
<td>Progress (2808)</td>
</tr>
<tr>
<td>Previous diagnostics (0690)</td>
<td>Primary variable (PV) (0201)</td>
</tr>
<tr>
<td>Previous diagnostics (0690)</td>
<td>Process pressure (17343)</td>
</tr>
<tr>
<td>Primary variable (PV) (0201)</td>
<td>Process variable value (1811)</td>
</tr>
<tr>
<td>Process pressure (17343)</td>
<td>Progress (2808)</td>
</tr>
</tbody>
</table>
Index

Proline t-mass 500 HART

Switch output function
 Pulse/frequency/switch output 1 to n (0481–1 to n) ... 127
Switch output simulation 1 to n (0462–1 to n) .. 215
Switch status
 Relay output 1 to n (0801–1 to n) ... 53, 138
 Switch status 1 to n (0461–1 to n) ... 53, 133
 Switch status 1 to n (0463–1 to n) ... 215
 Switch status 1 to n (0803–1 to n) ... 216
Switch-off delay
 Pulse/frequency/switch output 1 to n (0465–1 to n) ... 132
 Relay output 1 to n (0813–1 to n) ... 137
Switch-off value
 Pulse/frequency/switch output 1 to n (0464–1 to n) ... 131
 Relay output 1 to n (0809–1 to n) ... 136
Switch-on delay
 Pulse/frequency/switch output 1 to n (0467–1 to n) ... 132
 Relay output 1 to n (0814–1 to n) ... 138
Switch-on value
 Pulse/frequency/switch output 1 to n (0466–1 to n) ... 130
 Relay output 1 to n (0810–1 to n) ... 137
Temperature (1853) ... 45
Temperature damping (1822) ... 65
Temperature unit (0557) ... 62
Terminal number
 Current input 1 to n (1611–1 to n) ... 105
 Current output 1 to n (0379–1 to n) ... 111
 Pulse/frequency/switch output 1 to n (0492–1 to n) ... 118
 Relay output 1 to n (0812–1 to n) ... 134
 Status input 1 to n (1356–1 to n) ... 108
Tertiary variable (TV) (0228) ... 158
Timeout (7005) ... 143
Timestamp .. 181, 182, 183, 184, 185, 186, 187
Totalizer operation mode
 Totalizer 1 to n (0908–1 to n) ... 177
 Totalizer overflow 1 to n (0910–1 to n) .. 48
 Totalizer value 1 to n (0911–1 to n) ... 48
 Transmitter identifier (2765) .. 39
 Unit totalizer 1 to n (0915–1 to n) ... 176
 User name (2715) ... 170
 Value (7003) .. 144
 Value 1 display (0107) ... 18
 Value 2 display (0108) ... 20
 Value 3 display (0110) ... 20
 Value 4 display (0109) ... 22
 Value current input 1 to n (1609–1 to n) ... 211
 Value current output 1 to n (0355–1 to n) ... 213
 Value status input
 Status input 1 to n (1353–1 to n) ... 109
 Value status input 1 to n (1353–1 to n) ... 50
 Velocity unit (0566) ... 63
 Volume flow (1850) ... 43
 Volume flow unit (0553) .. 57
 Volume unit (0563) .. 58
 Web server functionality (7222) ... 162
 Web server language (7221) ... 160
 WLAN (2702) .. 168
 WLAN IP address (2711) .. 171
 WLAN MAC address (2703) .. 171
 WLAN mode (2717) ... 169
 WLAN passphrase (2706) ... 171
 WLAN password (2716) ... 170
 WLAN subnet mask (2709) ... 171
 Zero point adjustment control (17013) ... 90
 Zeropoint adjust state (17014) ... 90
Direct access (Parameter) .. 13
Display (Submenu) .. 14
Display channel 1 (Submenu) ... 207
Display channel 2 (Submenu) ... 207
Display channel 3 (Submenu) ... 208
Display channel 4 (Submenu) ... 208
Display damping (Parameter) ... 23
Display interval (Parameter) ... 23
Display language (Parameter) ... 15
Display module (Submenu) .. 198
Document
 Explanation of the structure of a parameter .. 6
 Function .. 4
 Structure .. 4
 Symbols used .. 6
 Target group ... 4
 Using the document .. 4
Document function ... 4
Duct height (Parameter) .. 88
Duct width (Parameter) ... 88

E
 Electronic temperature (Parameter) ... 47
 Energy flow (Parameter) .. 44
 Energy flow unit (Parameter) .. 59
 Energy unit (Parameter) ... 60
 ENP version (Parameter) .. 191
 Enter access code (Parameter) ... 13
 Entire logging duration (Parameter) .. 207
 Event category 144 (Parameter) ... 163
 Event category 441 (Parameter) ... 164
 Event category 442 (Parameter) ... 164
 Event category 443 (Parameter) ... 164
 Event category 832 (Parameter) ... 165
 Event category 833 (Parameter) ... 165
 Event category 834 (Parameter) ... 165
 Event category 835 (Parameter) ... 166
 Event category 842 (Parameter) ... 167
 Event category 976 (Parameter) ... 166
 Event category 979 (Parameter) ... 166
 Event logbook (Submenu) .. 187
 Extended order code 1 (Parameter) ... 190
 Extended order code 2 (Parameter) ... 190
 Extended order code 3 (Parameter) ... 191
 External 2nd temperature heat flow (Parameter) ... 93
 External compensation (Submenu) .. 90
 External pressure (Parameter) ... 91
External reference value (Parameter) .. 97

F

Factory settings .. 221
 SI units ... 221
 US units .. 221

FAD conditions (Parameter) .. 85
FAD pressure (Parameter) ... 86
FAD temperature (Parameter) 86
FAD volume flow (Parameter) 44
FAD volume flow unit (Parameter) 58
FAD volume unit (Parameter) 59
Failure current (Parameter) ... 116
Failure frequency (Parameter) 127
Failure mode (Parameter) ... 107, 115, 122, 126, 132, 138, 143, 179
Failure value (Parameter) ... 107, 143
Fieldbus writing access (Parameter) 146
Filter options (Parameter) ... 187
Firmware version (Parameter) 189
Fixed current (Parameter) ... 113
Flow damping (Parameter) ... 65
Flow override (Parameter) ... 64
Flow value 1 (Parameter) .. 100
Flow value 2 (Parameter) .. 100
Flow value 3 (Parameter) .. 100
Flow value 4 (Parameter) .. 101
Flow value 5 (Parameter) .. 101
Flow value 6 (Parameter) .. 101
Flow value 7 (Parameter) .. 101
Flow value 8 (Parameter) .. 101
Flow value 9 (Parameter) .. 102
Flow value 10 (Parameter) ... 102
Flow value 11 (Parameter) .. 102
Flow value 12 (Parameter) .. 102
Flow value 13 (Parameter) .. 103
Flow value 14 (Parameter) .. 103
Flow value 15 (Parameter) .. 103
Flow value 16 (Parameter) .. 103
Flow velocity (Parameter) .. 46
Format display (Parameter) .. 16
Frequency output simulation 1 to n (Parameter) 213
Frequency value 1 to n (Parameter) 214
Function
 see Parameter

G

Gas (Parameter) .. 71, 78
Gas (Submenu) ... 69
Gas compensation (Parameter) 93
Gas component (Parameter) .. 93
Gas composition (Parameter) 71, 79
Gas description 1/2 (Parameter) 99
Gas description 2/2 (Parameter) 100
Gateway IP address (Parameter) 173

H

Hardware revision (Parameter) 154
HART address (Parameter) ... 146
HART date code (Parameter) 155
HART descriptor (Parameter) 154
HART input (Submenu) .. 139
HART message (Parameter) 154
HART output (Submenu) ... 144
HART revision (Parameter) 154
HART short tag (Parameter) 145
Header (Parameter) ... 24
Header text (Parameter) .. 24
Heartbeat (Submenu) .. 209
Heat flow (Parameter) ... 44

I

 I/O alteration code (Parameter) 220
 I/O configuration (Submenu) 218
 I/O module 1 to n information (Parameter) 218
 I/O module 1 to n terminal numbers (Parameter) 218
 I/O module 1 to n type (Parameter) 219
 I/O module 2 (Submenu) 194
 I/O module 2 terminal numbers (Parameter) 194, 195, 197
 I/O module 3 (Submenu) 195
 I/O module 3 terminal numbers (Parameter) 194, 195, 197
 I/O module 4 (Submenu) 197
 I/O module 4 terminal numbers (Parameter) 194, 195, 197
 In-situ adjustment (Submenu) 94
 Information (Submenu) ... 152
 Input (Submenu) ... 104, 144
 Input signal level 1 to n (Parameter) 212
 Input type 2nd temperature heat flow (Parameter) 92
 Input type reference value (Parameter) 95
 Input values (Submenu) .. 49
 Insertion depth (Parameter) 89
 Installation direction (Parameter) 87
 Installation factor (Parameter) 87
 Invert output signal (Parameter) 133
 IP address (Parameter) ... 161
 IP address domain name server (Parameter) 174

L

 Last backup (Parameter) ... 27
 Length unit (Parameter) ... 63
 Level of flow fluctuation (Parameter) 47
 Locking status (Parameter) 11
 Logging delay (Parameter) 205
 Logging interval (Parameter) 204
 Login page (Parameter) .. 162
 Low flow cut off (Submenu) 66

M

 MAC address (Parameter) .. 160
 Mach number (Parameter) .. 46
 Main electronic temperature (Submenu) 200
 Mainboard I/O1 (Submenu) 192
 Manufacturer ID (Parameter) 141, 154
 Mass flow (Parameter) .. 43
 Mass flow unit (Parameter) 55
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass unit (Parameter)</td>
<td>56</td>
</tr>
<tr>
<td>Max. switch cycles number (Parameter)</td>
<td>54</td>
</tr>
<tr>
<td>Max. update period (Parameter)</td>
<td>152</td>
</tr>
<tr>
<td>Maximum frequency value (Parameter)</td>
<td>124</td>
</tr>
<tr>
<td>Maximum value (Parameter)</td>
<td>200, 201</td>
</tr>
<tr>
<td>Measured current 1 to n (Parameter)</td>
<td>50, 51, 117</td>
</tr>
<tr>
<td>Measured values (Submenu)</td>
<td>42</td>
</tr>
<tr>
<td>Measured values 1 to n (Parameter)</td>
<td>49</td>
</tr>
<tr>
<td>Measurement application (Parameter)</td>
<td>68</td>
</tr>
<tr>
<td>Measurement mode (Submenu)</td>
<td>68</td>
</tr>
<tr>
<td>Measuring value at maximum frequency (Parameter)</td>
<td>125</td>
</tr>
<tr>
<td>Measuring value at minimum frequency (Parameter)</td>
<td>124</td>
</tr>
<tr>
<td>Minimum temperature (Submenu)</td>
<td>201</td>
</tr>
<tr>
<td>Min. update period (Parameter)</td>
<td>152</td>
</tr>
<tr>
<td>Minimum frequency value (Parameter)</td>
<td>124</td>
</tr>
<tr>
<td>Minimum value (Parameter)</td>
<td>200, 201</td>
</tr>
<tr>
<td>Minimum/maximum values (Submenu)</td>
<td>199</td>
</tr>
<tr>
<td>Mol% (Parameter)</td>
<td>94</td>
</tr>
<tr>
<td>Mol% Air (Parameter)</td>
<td>72, 80</td>
</tr>
<tr>
<td>Mol% Ar (Parameter)</td>
<td>72, 80</td>
</tr>
<tr>
<td>Mol% C2H4 (Parameter)</td>
<td>72, 80</td>
</tr>
<tr>
<td>Mol% C2H6 (Parameter)</td>
<td>73, 80</td>
</tr>
<tr>
<td>Mol% C3H8 (Parameter)</td>
<td>73, 80</td>
</tr>
<tr>
<td>Mol% CH4 (Parameter)</td>
<td>73, 81</td>
</tr>
<tr>
<td>Mol% Cl2 (Parameter)</td>
<td>73, 81</td>
</tr>
<tr>
<td>Mol% CO (Parameter)</td>
<td>73, 81</td>
</tr>
<tr>
<td>Mol% CO2 (Parameter)</td>
<td>74, 81</td>
</tr>
<tr>
<td>Mol% H2 (Parameter)</td>
<td>74, 81</td>
</tr>
<tr>
<td>Mol% H2O (Parameter)</td>
<td>74, 82</td>
</tr>
<tr>
<td>Mol% H2S (Parameter)</td>
<td>74, 82</td>
</tr>
<tr>
<td>Mol% HCl (Parameter)</td>
<td>74, 82</td>
</tr>
<tr>
<td>Mol% He (Parameter)</td>
<td>75, 82</td>
</tr>
<tr>
<td>Mol% i-C4H10 (Parameter)</td>
<td>75, 82</td>
</tr>
<tr>
<td>Mol% Kr (Parameter)</td>
<td>75, 83</td>
</tr>
<tr>
<td>Mol% N2 (Parameter)</td>
<td>75, 83</td>
</tr>
<tr>
<td>Mol% Ne (Parameter)</td>
<td>75, 83</td>
</tr>
<tr>
<td>Mol% NH3 (Parameter)</td>
<td>76, 83</td>
</tr>
<tr>
<td>Mol% O2 (Parameter)</td>
<td>76, 83</td>
</tr>
<tr>
<td>Mol% O3 (Parameter)</td>
<td>76, 84</td>
</tr>
<tr>
<td>Mol% Xe (Parameter)</td>
<td>76, 84</td>
</tr>
<tr>
<td>Mounting set height (Parameter)</td>
<td>89</td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Network security (Parameter)</td>
<td>169</td>
</tr>
<tr>
<td>No. of preambles (Parameter)</td>
<td>146</td>
</tr>
<tr>
<td>Nominal diameter (Parameter)</td>
<td>104</td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Off value low flow cutoff (Parameter)</td>
<td>67</td>
</tr>
<tr>
<td>On value low flow cutoff (Parameter)</td>
<td>67</td>
</tr>
<tr>
<td>Operating mode (Parameter)</td>
<td>119</td>
</tr>
<tr>
<td>Operating time (Parameter)</td>
<td>26, 38, 182</td>
</tr>
<tr>
<td>Operating time from restart (Parameter)</td>
<td>182</td>
</tr>
<tr>
<td>Order code (Parameter)</td>
<td>190</td>
</tr>
<tr>
<td>Output (Submenu)</td>
<td>110, 155</td>
</tr>
<tr>
<td>Output current 1 to n (Parameter)</td>
<td>51, 116</td>
</tr>
<tr>
<td>Output frequency 1 to n (Parameter)</td>
<td>52, 127</td>
</tr>
<tr>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td></td>
</tr>
<tr>
<td>Structure of a parameter description</td>
<td>6</td>
</tr>
<tr>
<td>Pipe inner diameter (Parameter)</td>
<td>88</td>
</tr>
<tr>
<td>Pipe shape (Parameter)</td>
<td>88</td>
</tr>
<tr>
<td>Pipe wall thickness (Parameter)</td>
<td>89</td>
</tr>
<tr>
<td>Power coefficient fluctuation (Parameter)</td>
<td>46</td>
</tr>
<tr>
<td>Powerless relay status (Parameter)</td>
<td>139</td>
</tr>
<tr>
<td>Preset value 1 to n (Parameter)</td>
<td>178</td>
</tr>
<tr>
<td>Pressure (Parameter)</td>
<td>91</td>
</tr>
<tr>
<td>Pressure compensation (Parameter)</td>
<td>91</td>
</tr>
<tr>
<td>Pressure unit (Parameter)</td>
<td>62</td>
</tr>
<tr>
<td>Previous diagnostics (Parameter)</td>
<td>181</td>
</tr>
<tr>
<td>Primary variable (PV) (Parameter)</td>
<td>156</td>
</tr>
<tr>
<td>Process parameters (Submenu)</td>
<td>64</td>
</tr>
<tr>
<td>Process pressure (Parameter)</td>
<td>45</td>
</tr>
<tr>
<td>Process variable value (Parameter)</td>
<td>210</td>
</tr>
<tr>
<td>Process variables (Submenu)</td>
<td>42</td>
</tr>
<tr>
<td>Progress (Parameter)</td>
<td>90</td>
</tr>
<tr>
<td>Pulse output 1 to n (Parameter)</td>
<td>52, 123</td>
</tr>
<tr>
<td>Pulse output simulation 1 to n (Parameter)</td>
<td>214</td>
</tr>
<tr>
<td>Pulse scaling (Parameter)</td>
<td>121</td>
</tr>
<tr>
<td>Pulse value 1 to n (Parameter)</td>
<td>215</td>
</tr>
<tr>
<td>Pulse width (Parameter)</td>
<td>121</td>
</tr>
<tr>
<td>Pulse/frequency switch output 1 to n (Submenu)</td>
<td>51, 117</td>
</tr>
<tr>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>Quaternary variable (QV) (Parameter)</td>
<td>159</td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Received signal strength (Parameter)</td>
<td>173</td>
</tr>
<tr>
<td>Reference combustion temperature (Parameter)</td>
<td>86</td>
</tr>
<tr>
<td>Reference conditions (Parameter)</td>
<td>85</td>
</tr>
<tr>
<td>Reference conditions (Submenu)</td>
<td>84</td>
</tr>
<tr>
<td>Reference pressure (Parameter)</td>
<td>85</td>
</tr>
<tr>
<td>Reference temperature (Parameter)</td>
<td>85</td>
</tr>
<tr>
<td>Reference value (Parameter)</td>
<td>97</td>
</tr>
<tr>
<td>Relay output 1 to n (Submenu)</td>
<td>53, 134</td>
</tr>
<tr>
<td>Relay output 1 to n simulation (Parameter)</td>
<td>216</td>
</tr>
<tr>
<td>Relay output function (Parameter)</td>
<td>135</td>
</tr>
<tr>
<td>Reset access code (Parameter)</td>
<td>38</td>
</tr>
<tr>
<td>Reset access code (Submenu)</td>
<td>37</td>
</tr>
<tr>
<td>Reset all totalizers (Parameter)</td>
<td>174</td>
</tr>
<tr>
<td>Reset min/max values (Parameter)</td>
<td>200</td>
</tr>
<tr>
<td>Response time (Parameter)</td>
<td>126</td>
</tr>
<tr>
<td>Response time status input (Parameter)</td>
<td>109</td>
</tr>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Second gas (Submenu)</td>
<td>77</td>
</tr>
<tr>
<td>Secondary variable (SV) (Parameter)</td>
<td>157</td>
</tr>
<tr>
<td>Security identification (Parameter)</td>
<td>170</td>
</tr>
<tr>
<td>Select antenna (Parameter)</td>
<td>173</td>
</tr>
<tr>
<td>Select flow reference (Parameter)</td>
<td>96</td>
</tr>
<tr>
<td>Select gas type (Parameter)</td>
<td>70, 78</td>
</tr>
<tr>
<td>Sensitivity (Parameter)</td>
<td>66</td>
</tr>
<tr>
<td>Sensor (Submenu)</td>
<td>41</td>
</tr>
<tr>
<td>Sensor adjustment (Submenu)</td>
<td>87</td>
</tr>
<tr>
<td>Parameter/Item</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>Sensor electronic module (ISEM) (Submenu)</td>
<td>193</td>
</tr>
<tr>
<td>Separator (Parameter)</td>
<td>25</td>
</tr>
<tr>
<td>Serial number (Parameter)</td>
<td>189</td>
</tr>
<tr>
<td>Signal mode (Parameter)</td>
<td>105, 111, 119</td>
</tr>
<tr>
<td>Simulation (Submenu)</td>
<td>209</td>
</tr>
<tr>
<td>Slot number (Parameter)</td>
<td>142</td>
</tr>
<tr>
<td>Software option overview (Parameter)</td>
<td>40</td>
</tr>
<tr>
<td>Software revision (Parameter)</td>
<td>155, 192, 193, 194, 196, 197, 199</td>
</tr>
<tr>
<td>Special gas name (Parameter)</td>
<td>71, 79</td>
</tr>
<tr>
<td>SSID name (Parameter)</td>
<td>169, 172</td>
</tr>
<tr>
<td>Stability check (Parameter)</td>
<td>96</td>
</tr>
<tr>
<td>Status (Parameter)</td>
<td>97, 144</td>
</tr>
<tr>
<td>Status input 1 to n (Submenu)</td>
<td>107</td>
</tr>
<tr>
<td>Status input simulation 1 to n (Parameter)</td>
<td>212</td>
</tr>
<tr>
<td>Adjustment values in use</td>
<td>98</td>
</tr>
<tr>
<td>Administration</td>
<td>36</td>
</tr>
<tr>
<td>Application</td>
<td>174</td>
</tr>
<tr>
<td>Burst configuration 1 to n</td>
<td>147</td>
</tr>
<tr>
<td>Calibration</td>
<td>104</td>
</tr>
<tr>
<td>Communication</td>
<td>139</td>
</tr>
<tr>
<td>Configuration</td>
<td>140, 145</td>
</tr>
<tr>
<td>Configuration backup</td>
<td>26</td>
</tr>
<tr>
<td>Current input 1 to n</td>
<td>49, 104</td>
</tr>
<tr>
<td>Current output 1 to n</td>
<td>110</td>
</tr>
<tr>
<td>Data logging</td>
<td>201</td>
</tr>
<tr>
<td>Device information</td>
<td>188</td>
</tr>
<tr>
<td>Diagnostic behavior</td>
<td>29</td>
</tr>
<tr>
<td>Diagnostic configuration</td>
<td>162</td>
</tr>
<tr>
<td>Diagnostic handling</td>
<td>29</td>
</tr>
<tr>
<td>Diagnostic list</td>
<td>183</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>180</td>
</tr>
<tr>
<td>Display</td>
<td>14</td>
</tr>
<tr>
<td>Display channel 1</td>
<td>207</td>
</tr>
<tr>
<td>Display channel 2</td>
<td>207</td>
</tr>
<tr>
<td>Display channel 3</td>
<td>208</td>
</tr>
<tr>
<td>Display channel 4</td>
<td>208</td>
</tr>
<tr>
<td>Display module</td>
<td>198</td>
</tr>
<tr>
<td>Event logbook</td>
<td>187</td>
</tr>
<tr>
<td>External compensation</td>
<td>90</td>
</tr>
<tr>
<td>Gas</td>
<td>69</td>
</tr>
<tr>
<td>HART input</td>
<td>139</td>
</tr>
<tr>
<td>HART output</td>
<td>144</td>
</tr>
<tr>
<td>Heartbeat</td>
<td>209</td>
</tr>
<tr>
<td>I/O configuration</td>
<td>218</td>
</tr>
<tr>
<td>I/O module 2</td>
<td>194</td>
</tr>
<tr>
<td>I/O module 3</td>
<td>195</td>
</tr>
<tr>
<td>I/O module 4</td>
<td>197</td>
</tr>
<tr>
<td>In-situ adjustment</td>
<td>94</td>
</tr>
<tr>
<td>Information</td>
<td>152</td>
</tr>
<tr>
<td>Input</td>
<td>104, 144</td>
</tr>
<tr>
<td>Input values</td>
<td>49</td>
</tr>
<tr>
<td>Low flow cut off</td>
<td>66</td>
</tr>
<tr>
<td>Main electronic temperature</td>
<td>200</td>
</tr>
<tr>
<td>Mainboard I/O1</td>
<td>192</td>
</tr>
<tr>
<td>Measured values</td>
<td>42</td>
</tr>
<tr>
<td>Measurement mode</td>
<td>68</td>
</tr>
<tr>
<td>Medium temperature</td>
<td>201</td>
</tr>
<tr>
<td>Minimum/maximum values</td>
<td>199</td>
</tr>
<tr>
<td>Output</td>
<td>110, 155</td>
</tr>
<tr>
<td>Output values</td>
<td>50</td>
</tr>
<tr>
<td>Process parameters</td>
<td>64</td>
</tr>
<tr>
<td>Process variables</td>
<td>42</td>
</tr>
<tr>
<td>Pulse/frequency/switch output 1 to n</td>
<td>51, 117</td>
</tr>
<tr>
<td>Reference conditions</td>
<td>84</td>
</tr>
<tr>
<td>Relay output 1 to n</td>
<td>53, 134</td>
</tr>
<tr>
<td>Reset access code</td>
<td>37</td>
</tr>
<tr>
<td>Second gas</td>
<td>77</td>
</tr>
<tr>
<td>Sensor</td>
<td>41</td>
</tr>
<tr>
<td>Sensor adjustment</td>
<td>87</td>
</tr>
<tr>
<td>Sensor electronic module (ISEM)</td>
<td>193</td>
</tr>
<tr>
<td>Simulation</td>
<td>209</td>
</tr>
<tr>
<td>Status input 1 to n</td>
<td>107</td>
</tr>
<tr>
<td>System</td>
<td>14</td>
</tr>
<tr>
<td>System units</td>
<td>54</td>
</tr>
<tr>
<td>System values</td>
<td>47</td>
</tr>
<tr>
<td>Totalizer</td>
<td>47</td>
</tr>
<tr>
<td>Totalizer 1 to n</td>
<td>175</td>
</tr>
<tr>
<td>Value current output 1 to n</td>
<td>51</td>
</tr>
<tr>
<td>Value status input 1 to n</td>
<td>50</td>
</tr>
<tr>
<td>Web server</td>
<td>159</td>
</tr>
<tr>
<td>WLAN settings</td>
<td>167</td>
</tr>
<tr>
<td>Zero point adjustment</td>
<td>89</td>
</tr>
<tr>
<td>Subnet mask (Parameter)</td>
<td>161</td>
</tr>
<tr>
<td>Switch cycles (Parameter)</td>
<td>54</td>
</tr>
<tr>
<td>Switch output function (Parameter)</td>
<td>127</td>
</tr>
<tr>
<td>Switch output simulation 1 to n (Parameter)</td>
<td>215</td>
</tr>
<tr>
<td>Switch status (Parameter)</td>
<td>53, 138</td>
</tr>
<tr>
<td>Switch status 1 to n (Parameter)</td>
<td>53, 133, 215, 216</td>
</tr>
<tr>
<td>Switch-off delay (Parameter)</td>
<td>132, 137</td>
</tr>
<tr>
<td>Switch-off value (Parameter)</td>
<td>131, 136</td>
</tr>
<tr>
<td>Switch-on delay (Parameter)</td>
<td>132, 138</td>
</tr>
<tr>
<td>Switch-on value (Parameter)</td>
<td>130, 137</td>
</tr>
<tr>
<td>System (Subsystem)</td>
<td>14</td>
</tr>
<tr>
<td>System units (Subsystem)</td>
<td>54</td>
</tr>
<tr>
<td>System values (Subtitle)</td>
<td>47</td>
</tr>
<tr>
<td>T Target group</td>
<td>4</td>
</tr>
<tr>
<td>Temperature (Parameter)</td>
<td>45</td>
</tr>
<tr>
<td>Temperature damping (Parameter)</td>
<td>65</td>
</tr>
<tr>
<td>Temperature unit (Parameter)</td>
<td>62</td>
</tr>
<tr>
<td>Terminal number (Parameter)</td>
<td>105, 108, 111, 118, 134</td>
</tr>
<tr>
<td>Tertiary variable (TV) (Parameter)</td>
<td>158</td>
</tr>
<tr>
<td>Timeout (Parameter)</td>
<td>143</td>
</tr>
<tr>
<td>Timestamp (Parameter)</td>
<td>181, 182, 183, 184, 185, 186, 187</td>
</tr>
<tr>
<td>Totalizer (Submenu)</td>
<td>47</td>
</tr>
<tr>
<td>Totalizer 1 to n (Submenu)</td>
<td>175</td>
</tr>
<tr>
<td>Totalizer operation mode (Parameter)</td>
<td>177</td>
</tr>
<tr>
<td>Totalizer overflow 1 to n (Parameter)</td>
<td>48</td>
</tr>
<tr>
<td>Totalizer value 1 to n (Parameter)</td>
<td>48</td>
</tr>
<tr>
<td>Transmitter identifier (Parameter)</td>
<td>39</td>
</tr>
<tr>
<td>U Unit totalizer 1 to n (Parameter)</td>
<td>176</td>
</tr>
<tr>
<td>User name (Parameter)</td>
<td>170</td>
</tr>
</tbody>
</table>
Index

V
- Value (Parameter) ... 144
- Value 1 display (Parameter) 18
- Value 2 display (Parameter) 20
- Value 3 display (Parameter) 20
- Value 4 display (Parameter) 22
- Value current input 1 to n (Parameter) 211
- Value current output 1 to n (Parameter) 213
- Value current output 1 to n (Submenu) 51
- Value status input (Parameter) 50, 109
- Value status input 1 to n (Submenu) 50
- Velocity unit (Parameter) 63
- Volume flow (Parameter) 43
- Volume flow unit (Parameter) 57
- Volume unit (Parameter) 58

W
- Web server (Submenu) 159
- Web server functionality (Parameter) 162
- Web server language (Parameter) 160
- Wizard
 - Define access code 36
- WLAN (Parameter) 168
- WLAN IP address (Parameter) 171
- WLAN MAC address (Parameter) 171
- WLAN mode (Parameter) 169
- WLAN passphrase (Parameter) 171
- WLAN password (Parameter) 170
- WLAN settings (Submenu) 167
- WLAN subnet mask (Parameter) 171

Z
- Zero point adjustment (Submenu) 89
- Zero point adjustment control (Parameter) 90
- Zeropoint adjust state (Parameter) 90